Corrosion behaviour of boiler tube materials during combustion of fuels containing Zn and Pb
Bankiewicz, Dorota (2012-06-16)
Bankiewicz, Dorota
Åbo Akademi University, Process Chemistry Centre
16.06.2012
Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.
Julkaisun pysyvä osoite on
https://urn.fi/URN:ISBN:978-952-12-2747-9
https://urn.fi/URN:ISBN:978-952-12-2747-9
Kuvaus
Många förbränningsanläggningar som bränner utmanande bränslen såsom restfraktioner och avfall råkar ut för problem med ökad korrosion på överhettare och/eller vattenväggar pga. komponenter i bränslena som är korrosiva. För att minimera problemen i avfallseldade pannor hålls ångparametrarna på en relativt låg nivå, vilket drastiskt minskar energiproduktionen.
Beläggningarna i avfallseldade pannor består till största delen av element som är förknippade med högtemperaturkorrosion: Cl, S, alkalimetaller, främst K och Na, och tungmetaller som Pb och Zn, och det finns också indikationer av Br-förekomst. Det låga ångtrycket i avfallseldade pannor påverkar också stålrörens temperatur i pannväggarna i eldstaden. I dagens läge hålls temperaturen normalt vid 300-400 °C. Alkalikloridorsakad (KCl, NaCl) högtemperaturkorrosion har inte rapporterats vara relevant vid såpass låga temperaturer, men närvaro av Zn- och Pb-komponenter i beläggningarna har påvisats förorsaka ökad korrosion redan vid 300-400 °C. Vid förbränning kan Zn och Pb reagera med S och Cl och bilda klorider och sulfater i rökgaserna. Dessa tungmetallföreningar är speciellt problematiska pga. de bildar lågsmältande saltblandningar. Dessa lågsmältande gasformiga eller fasta föreningar följer rökgasen och kan sedan fastna eller kondensera på kallare ytor på pannväggar eller överhettare för att sedan bilda aggressiva beläggningar. Tungmetallrika (Pb, Zn) klorider och sulfater ökar risken för korrosion, och effekten förstärks ytterligare vid närvaro av smälta.
Motivet med den här studien var att få en bättre insikt i högtemperaturkorrosion förorsakad av Zn och Pb, samt att undersöka och prediktera beteendet och motståndskraften hos några stålkvaliteter som används i överhettare och pannväggar i tungmetallrika förhållanden och höga materialtemperaturer. Omfattande laboratorie-, småskale- och fullskaletest utfördes. Resultaten kan direkt utnyttjas i praktiska applikationer, t.ex. vid materialval, eller vid utveckling av korrosionsmotverkande verktyg för att hitta initierande faktorer och förstå deras effekt på högtemperaturkorrosion.
Polttoon perustuvassa sähköntuotannossa polttoaineen energia pyritään muuntamaan sähköenergiaksi. Poltossa vapautuvalla lämpöenergialla tuotetaan tulistettua höyryä. Höyry johdetaan turbiiniin, johon kytketty generaattori muuntaa mekaanista energiaa sähköksi.
Niin kutsutut haastavat polttoaineet, kuten esimerkiksi jäte ja jäteperäiset polttoaineet, voivat aiheuttaa höyrykattilan tulistinputkien hajoamista ja/tai seinäputkien korroosiota Korroosio-ongelmien välttämiseksi tulistetun höyryn lämpötila pidetään suhteellisen alhaisena, mikä alentaa merkittävästi sähköntuotannon hyötysuhdetta.
Jätettä ja jäteperäisiä polttoaineita käyttävien kattiloiden tuhkakerrostumien sisältämät kloori (Cl), rikki (S) ja bromi (Br), alkalimetallit kalium (K) ja natrium (Na), sekä raskasmetallit sinkki (Zn) ja lyijy (Pb) on liitetty korkean lämpötilan korroosioon. Jätettä polttavien kattiloiden seinäputkien lämpötila on yleensä 300-400 °C. Alkaliklorideista (KCl, NaCl) johtuvaa korkean lämpötilan korroosiota ei yleensä esiinny näissä lämpötiloissa. Sen sijaan sinkkiä ja lyijyä sisältävien kerrostumien on havaittu aiheuttaneen korroosiota. Sinkki ja lyijy voivat poltossa reagoida rikin ja kloorin kanssa, muodostaen savukaasuun klorideja ja sulfaatteja. Nämä raskasmetalliyhdisteet ovat korroosion kannalta erityisen merkityksellisiä, koska ne muodostavat alhaisissa lämpötiloissa sulavia suolaseoksia. Kerrostuman osittainenkin sulaminen lisää korroosioriskiä.
Tämän työn tavoitteena oli sinkin ja lyijyn aiheuttaman korkean lämpötilan korroosion mekanismien parempi ymmärrys, sekä joidenkin höyrykattiloissa käytettyjen seinäputki- ja tulistinmateriaalien käyttäytymisen ja korroosionkeston arviointi kyseessä olevien raskasmetallien vaikutuksen alaisena, myös korkeissa lämpötiloissa. Tavoitteeseen pääsemiseksi suoritettiin laboratorio-, penkki-, ja teollisuuskokoluokan kokeita. Kokeiden tuloksia voidaan hyödyntää suoraan käytännössä, esimerkiksi tehtäessä materiaalivalintoja sekä kehitettäessä korroosionkeston parantamiseen tähtääviä työkaluja tunnistamalla korroosiota käynnistäviä tekijöitä ja ymmärtämällä niiden vaikutuksia.
Beläggningarna i avfallseldade pannor består till största delen av element som är förknippade med högtemperaturkorrosion: Cl, S, alkalimetaller, främst K och Na, och tungmetaller som Pb och Zn, och det finns också indikationer av Br-förekomst. Det låga ångtrycket i avfallseldade pannor påverkar också stålrörens temperatur i pannväggarna i eldstaden. I dagens läge hålls temperaturen normalt vid 300-400 °C. Alkalikloridorsakad (KCl, NaCl) högtemperaturkorrosion har inte rapporterats vara relevant vid såpass låga temperaturer, men närvaro av Zn- och Pb-komponenter i beläggningarna har påvisats förorsaka ökad korrosion redan vid 300-400 °C. Vid förbränning kan Zn och Pb reagera med S och Cl och bilda klorider och sulfater i rökgaserna. Dessa tungmetallföreningar är speciellt problematiska pga. de bildar lågsmältande saltblandningar. Dessa lågsmältande gasformiga eller fasta föreningar följer rökgasen och kan sedan fastna eller kondensera på kallare ytor på pannväggar eller överhettare för att sedan bilda aggressiva beläggningar. Tungmetallrika (Pb, Zn) klorider och sulfater ökar risken för korrosion, och effekten förstärks ytterligare vid närvaro av smälta.
Motivet med den här studien var att få en bättre insikt i högtemperaturkorrosion förorsakad av Zn och Pb, samt att undersöka och prediktera beteendet och motståndskraften hos några stålkvaliteter som används i överhettare och pannväggar i tungmetallrika förhållanden och höga materialtemperaturer. Omfattande laboratorie-, småskale- och fullskaletest utfördes. Resultaten kan direkt utnyttjas i praktiska applikationer, t.ex. vid materialval, eller vid utveckling av korrosionsmotverkande verktyg för att hitta initierande faktorer och förstå deras effekt på högtemperaturkorrosion.
Polttoon perustuvassa sähköntuotannossa polttoaineen energia pyritään muuntamaan sähköenergiaksi. Poltossa vapautuvalla lämpöenergialla tuotetaan tulistettua höyryä. Höyry johdetaan turbiiniin, johon kytketty generaattori muuntaa mekaanista energiaa sähköksi.
Niin kutsutut haastavat polttoaineet, kuten esimerkiksi jäte ja jäteperäiset polttoaineet, voivat aiheuttaa höyrykattilan tulistinputkien hajoamista ja/tai seinäputkien korroosiota Korroosio-ongelmien välttämiseksi tulistetun höyryn lämpötila pidetään suhteellisen alhaisena, mikä alentaa merkittävästi sähköntuotannon hyötysuhdetta.
Jätettä ja jäteperäisiä polttoaineita käyttävien kattiloiden tuhkakerrostumien sisältämät kloori (Cl), rikki (S) ja bromi (Br), alkalimetallit kalium (K) ja natrium (Na), sekä raskasmetallit sinkki (Zn) ja lyijy (Pb) on liitetty korkean lämpötilan korroosioon. Jätettä polttavien kattiloiden seinäputkien lämpötila on yleensä 300-400 °C. Alkaliklorideista (KCl, NaCl) johtuvaa korkean lämpötilan korroosiota ei yleensä esiinny näissä lämpötiloissa. Sen sijaan sinkkiä ja lyijyä sisältävien kerrostumien on havaittu aiheuttaneen korroosiota. Sinkki ja lyijy voivat poltossa reagoida rikin ja kloorin kanssa, muodostaen savukaasuun klorideja ja sulfaatteja. Nämä raskasmetalliyhdisteet ovat korroosion kannalta erityisen merkityksellisiä, koska ne muodostavat alhaisissa lämpötiloissa sulavia suolaseoksia. Kerrostuman osittainenkin sulaminen lisää korroosioriskiä.
Tämän työn tavoitteena oli sinkin ja lyijyn aiheuttaman korkean lämpötilan korroosion mekanismien parempi ymmärrys, sekä joidenkin höyrykattiloissa käytettyjen seinäputki- ja tulistinmateriaalien käyttäytymisen ja korroosionkeston arviointi kyseessä olevien raskasmetallien vaikutuksen alaisena, myös korkeissa lämpötiloissa. Tavoitteeseen pääsemiseksi suoritettiin laboratorio-, penkki-, ja teollisuuskokoluokan kokeita. Kokeiden tuloksia voidaan hyödyntää suoraan käytännössä, esimerkiksi tehtäessä materiaalivalintoja sekä kehitettäessä korroosionkeston parantamiseen tähtääviä työkaluja tunnistamalla korroosiota käynnistäviä tekijöitä ja ymmärtämällä niiden vaikutuksia.
Tiivistelmä
Many power plants burning challenging fuels such as waste-derived fuels experience failures
of the superheaters and/or increased waterwall corrosion due to aggressive fuel components
already at low temperatures. To minimize corrosion problems in waste-fired boilers, the steam
temperature is currently kept at a relatively low level which drastically limits power
production efficiency.
The elements found in deposits of waste and waste-derived fuels burning boilers that are most
frequently associated with high-temperature corrosion are: Cl, S, and there are also
indications of Br; alkali metals, mainly K and Na, and heavy metals such as Pb and Zn. The
low steam pressure and temperature in waste-fired boilers also influence the temperature of
the waterwall steel which is nowadays kept in the range of 300 °C - 400 °C. Alkali chloride
(KCl, NaCl) induced high-temperature corrosion has not been reported to be particularly
relevant at such low material temperatures, but the presence of Zn and Pb compounds in the
deposits have been found to induce corrosion already in the 300 °C - 400 °C temperature
range. Upon combustion, Zn and Pb may react with Cl and S to form chlorides and sulphates
in the flue gases. These specific heavy metal compounds are of special concern due to the
formation of low melting salt mixtures. These low melting, gaseous or solid compounds are
entrained in the flue gases and may stick or condense on colder surfaces of furnace walls and
superheaters when passing the convective parts of the boiler, thereby forming an aggressive
deposit. A deposit rich in heavy metal (Zn, Pb) chlorides and sulphates increases the risk for
corrosion which can be additionally enhanced by the presence of a molten phase.
The objective of this study was to obtain better insight into high-temperature corrosion
induced by Zn and Pb and to estimate the behaviour and resistance of some boiler superheater
and waterwall materials in environments rich in those heavy metals, including at increased
temperatures of materials. Therefore, extensive laboratory, bench-scale and full-scale tests
were carried out. The results from these tests may be directly made use of in practical
applications, for example for screening steels from the materials selection, as well as in the
development of corrosion preventing tools by finding corrosion initiating triggers and
understanding their effect on high-temperature corrosion.
The laboratory study covered steel exposure tests with pure ZnCl2, ZnO, PbCl2 and PbO as
well as with a number of salt mixtures: ZnCl2-K2SO4, PbCl2-K2SO4, PbCl2-KCl and PbCl2-
ZnCl2-KCl. It was shown that pure PbCl2 starts to be aggressive to the low-alloy steel
(10CrMo9-10) and also to the stainless steels (AISI 347) already at temperatures around
350 °C, below the melting temperature of PbCl2 which is 501 °C. The protective Cr2O3 on the
AISI 347 was destroyed due to PbCrO4 formation. The exposures to ZnCl2 showed an
increased oxide layer growth on the 10CrMo9-10 already at 350 °C, but negligible oxide layer
growth on the AISI 347 up to 450 °C. Above 350 °C, the fast evaporation of ZnCl2
suppressed the growth of the oxide layer.
The tests with ZnCl2- and PbCl2-containing mixtures (ZnCl2-K2SO4, PbCl2-K2SO4, PbCl2-KCl
and PbCl2-ZnCl2-KCl) showed that the ZnCl2-containing mixture (PbCl2-ZnCl2-KCl) was
more aggressive and active at lower temperatures than the PbCl2-KCl mixture. It suggests,
therefore, that ZnCl2 is more likely to cause problems at lower material temperatures, while
PbCl2 is more stable and is expected to be problematic at both waterwall and superheater
temperatures. At 400 °C, the highest corrosion rates on both test materials were observed
when both PbCl2 and ZnCl2 were present in the salt. The PbCl2-ZnCl2-KCl mixture contained
the highest fraction of melt out of all tested salt mixtures but the corrosiveness of this mixture
was not the highest at all test temperatures. Thus, the amount of melt does not necessary
decide the extent of corrosion. At 500 °C and above the corrosion caused by all three mixtures
containing PbCl2 was significant and both steels were damaged to a similar degree. The results
from the tests with the mixtures containing 5 wt-% PbCl2 were similar to the results from the
tests with pure PbCl2 showing its extremely corrosive character.
ZnO was shown not to be corrosive to the low-alloy steel (10CrMo9-10) and nor to the
stainless steel (AISI 347) at 550 °C. The oxide layer thickness was comparable to the test with
no salt present. However, tests with PbO at 550 °C caused a noticeable oxide layer growth on
10CrMo9-10 and fairly low on AISI 347.
To better understand the fate of Zn and its effect on high-temperature corrosion specifically in
waste-wood fired fluidized bed boilers, high-temperature corrosion/deposit probe tests were
performed in a 30 kWth bubbling fluidized-bed reactor by firing wood pellets doped with
ZnCl2 to simulate waste wood. Specific issues of interest in this study included the general
impact of firing waste wood containing higher amounts of Zn and Cl and the evaluation of the
role of ZnCl2 in high-temperature corrosion. The tests showed that the presence of ZnCl2 had
a clear impact on high-temperature corrosion of low-alloy steel. When compared to the
combustion of pure wood pellet, corrosion increased at temperatures above 450 °C (probe
cooling temperature). The K2ZnCl4 which was found in the deposit was concluded to be the
main corrosive agent.
During the planning stage of further experiments there were strong indications of bromide
induced high-temperature corrosion of the waterwalls. In consequence, a measurement
campaign in a BFB co-combusting SRF was performed to determine the occurrence of
corrosive Cl-, Br-, Zn- and Pb-compounds in the fuel, in the furnace vapours and in the
waterwall deposits. The relative corrosiveness of chlorides and bromides was further
established by means of laboratory experiments. A ZnBr2-K2SO4 salt mixture was tested and
compared with a corresponding ZnCl2-K2SO4 salt mixture. The mixture with ZnBr2 was found
to be more aggressive at 400 °C in oxidising conditions than the corresponding mixture with
ZnCl2. A measurement campaign showed that vapours in the furnace were enriched with Cl
and small amounts of Br, Zn and Pb. The chemical thermodynamic calculations indicated that
possible forms of those compounds at the waterwall deposit temperatures (400 °C) were Na-,
K-bromides and chlorides and Zn- and Pb-sulphides or sulphates in reducing and oxidizing
conditions, respectively. The thermodynamic calculations correlated with the deposit analysis.
of the superheaters and/or increased waterwall corrosion due to aggressive fuel components
already at low temperatures. To minimize corrosion problems in waste-fired boilers, the steam
temperature is currently kept at a relatively low level which drastically limits power
production efficiency.
The elements found in deposits of waste and waste-derived fuels burning boilers that are most
frequently associated with high-temperature corrosion are: Cl, S, and there are also
indications of Br; alkali metals, mainly K and Na, and heavy metals such as Pb and Zn. The
low steam pressure and temperature in waste-fired boilers also influence the temperature of
the waterwall steel which is nowadays kept in the range of 300 °C - 400 °C. Alkali chloride
(KCl, NaCl) induced high-temperature corrosion has not been reported to be particularly
relevant at such low material temperatures, but the presence of Zn and Pb compounds in the
deposits have been found to induce corrosion already in the 300 °C - 400 °C temperature
range. Upon combustion, Zn and Pb may react with Cl and S to form chlorides and sulphates
in the flue gases. These specific heavy metal compounds are of special concern due to the
formation of low melting salt mixtures. These low melting, gaseous or solid compounds are
entrained in the flue gases and may stick or condense on colder surfaces of furnace walls and
superheaters when passing the convective parts of the boiler, thereby forming an aggressive
deposit. A deposit rich in heavy metal (Zn, Pb) chlorides and sulphates increases the risk for
corrosion which can be additionally enhanced by the presence of a molten phase.
The objective of this study was to obtain better insight into high-temperature corrosion
induced by Zn and Pb and to estimate the behaviour and resistance of some boiler superheater
and waterwall materials in environments rich in those heavy metals, including at increased
temperatures of materials. Therefore, extensive laboratory, bench-scale and full-scale tests
were carried out. The results from these tests may be directly made use of in practical
applications, for example for screening steels from the materials selection, as well as in the
development of corrosion preventing tools by finding corrosion initiating triggers and
understanding their effect on high-temperature corrosion.
The laboratory study covered steel exposure tests with pure ZnCl2, ZnO, PbCl2 and PbO as
well as with a number of salt mixtures: ZnCl2-K2SO4, PbCl2-K2SO4, PbCl2-KCl and PbCl2-
ZnCl2-KCl. It was shown that pure PbCl2 starts to be aggressive to the low-alloy steel
(10CrMo9-10) and also to the stainless steels (AISI 347) already at temperatures around
350 °C, below the melting temperature of PbCl2 which is 501 °C. The protective Cr2O3 on the
AISI 347 was destroyed due to PbCrO4 formation. The exposures to ZnCl2 showed an
increased oxide layer growth on the 10CrMo9-10 already at 350 °C, but negligible oxide layer
growth on the AISI 347 up to 450 °C. Above 350 °C, the fast evaporation of ZnCl2
suppressed the growth of the oxide layer.
The tests with ZnCl2- and PbCl2-containing mixtures (ZnCl2-K2SO4, PbCl2-K2SO4, PbCl2-KCl
and PbCl2-ZnCl2-KCl) showed that the ZnCl2-containing mixture (PbCl2-ZnCl2-KCl) was
more aggressive and active at lower temperatures than the PbCl2-KCl mixture. It suggests,
therefore, that ZnCl2 is more likely to cause problems at lower material temperatures, while
PbCl2 is more stable and is expected to be problematic at both waterwall and superheater
temperatures. At 400 °C, the highest corrosion rates on both test materials were observed
when both PbCl2 and ZnCl2 were present in the salt. The PbCl2-ZnCl2-KCl mixture contained
the highest fraction of melt out of all tested salt mixtures but the corrosiveness of this mixture
was not the highest at all test temperatures. Thus, the amount of melt does not necessary
decide the extent of corrosion. At 500 °C and above the corrosion caused by all three mixtures
containing PbCl2 was significant and both steels were damaged to a similar degree. The results
from the tests with the mixtures containing 5 wt-% PbCl2 were similar to the results from the
tests with pure PbCl2 showing its extremely corrosive character.
ZnO was shown not to be corrosive to the low-alloy steel (10CrMo9-10) and nor to the
stainless steel (AISI 347) at 550 °C. The oxide layer thickness was comparable to the test with
no salt present. However, tests with PbO at 550 °C caused a noticeable oxide layer growth on
10CrMo9-10 and fairly low on AISI 347.
To better understand the fate of Zn and its effect on high-temperature corrosion specifically in
waste-wood fired fluidized bed boilers, high-temperature corrosion/deposit probe tests were
performed in a 30 kWth bubbling fluidized-bed reactor by firing wood pellets doped with
ZnCl2 to simulate waste wood. Specific issues of interest in this study included the general
impact of firing waste wood containing higher amounts of Zn and Cl and the evaluation of the
role of ZnCl2 in high-temperature corrosion. The tests showed that the presence of ZnCl2 had
a clear impact on high-temperature corrosion of low-alloy steel. When compared to the
combustion of pure wood pellet, corrosion increased at temperatures above 450 °C (probe
cooling temperature). The K2ZnCl4 which was found in the deposit was concluded to be the
main corrosive agent.
During the planning stage of further experiments there were strong indications of bromide
induced high-temperature corrosion of the waterwalls. In consequence, a measurement
campaign in a BFB co-combusting SRF was performed to determine the occurrence of
corrosive Cl-, Br-, Zn- and Pb-compounds in the fuel, in the furnace vapours and in the
waterwall deposits. The relative corrosiveness of chlorides and bromides was further
established by means of laboratory experiments. A ZnBr2-K2SO4 salt mixture was tested and
compared with a corresponding ZnCl2-K2SO4 salt mixture. The mixture with ZnBr2 was found
to be more aggressive at 400 °C in oxidising conditions than the corresponding mixture with
ZnCl2. A measurement campaign showed that vapours in the furnace were enriched with Cl
and small amounts of Br, Zn and Pb. The chemical thermodynamic calculations indicated that
possible forms of those compounds at the waterwall deposit temperatures (400 °C) were Na-,
K-bromides and chlorides and Zn- and Pb-sulphides or sulphates in reducing and oxidizing
conditions, respectively. The thermodynamic calculations correlated with the deposit analysis.
Kokoelmat
- 116 Kemia [51]