New Approach for Market Intelligence Using Artificial and Computational Intelligence
Yoseph, Fahed (2023-02-10)
Yoseph, Fahed
Åbo Akademi - Åbo Akademi University
10.02.2023
Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.
Julkaisun pysyvä osoite on
https://urn.fi/URN:ISBN:978-952-12-4258-8
https://urn.fi/URN:ISBN:978-952-12-4258-8
Tiivistelmä
Small and medium sized retailers are central to the private sector and a vital contributor to economic growth, but often they face enormous challenges in unleashing their full potential. Financial pitfalls, lack of adequate access to markets, and difficulties in exploiting technology have prevented them from achieving optimal productivity. Market Intelligence (MI) is the knowledge extracted from numerous internal and external data sources, aimed at providing a holistic view of the state of the market and influence marketing related decision-making processes in real-time. A related, burgeoning phenomenon and crucial topic in the field of marketing is Artificial Intelligence (AI) that entails fundamental changes to the skillssets marketers require.
A vast amount of knowledge is stored in retailers’ point-of-sales databases. The format of this data often makes the knowledge they store hard to access and identify. As a powerful AI technique, Association Rules Mining helps to identify frequently associated patterns stored in large databases to predict customers’ shopping journeys. Consequently, the method has emerged as the key driver of cross-selling and upselling in the retail industry. At the core of this approach is the Market Basket Analysis that captures knowledge from heterogeneous customer shopping patterns and examines the effects of marketing initiatives. Apriori, that enumerates frequent itemsets purchased together (as market baskets), is the central algorithm in the analysis process.
Problems occur, as Apriori lacks computational speed and has weaknesses in providing intelligent decision support. With the growth of simultaneous database scans, the computation cost increases and results in dramatically decreasing performance. Moreover, there are shortages in decision support, especially in the methods of finding rarely occurring events and identifying the brand trending popularity before it peaks.
As the objective of this research is to find intelligent ways to assist small and medium sized retailers grow with MI strategy, we demonstrate the effects of AI, with algorithms in data preprocessing, market segmentation, and finding market trends. We show with a sales database of a small, local retailer how our Åbo algorithm increases mining performance and intelligence, as well as how it helps to extract valuable marketing insights to assess demand dynamics and product popularity trends. We also show how this results in commercial advantage and tangible return on investment. Additionally, an enhanced normal distribution method assists data pre-processing and helps to explore different types of potential anomalies. Små och medelstora detaljhandlare är centrala aktörer i den privata sektorn och bidrar starkt till den ekonomiska tillväxten, men de möter ofta enorma utmaningar i att uppnå sin fulla potential. Finansiella svårigheter, brist på marknadstillträde och svårigheter att utnyttja teknologi har ofta hindrat dem från att nå optimal produktivitet. Marknadsintelligens (MI) består av kunskap som samlats in från olika interna externa källor av data och som syftar till att erbjuda en helhetssyn av marknadsläget samt möjliggöra beslutsfattande i realtid. Ett relaterat och växande fenomen, samt ett viktigt tema inom marknadsföring är artificiell intelligens (AI) som ställer nya krav på marknadsförarnas färdigheter.
Enorma mängder kunskap finns sparade i databaser av transaktioner samlade från detaljhandlarnas försäljningsplatser. Ändå är formatet på dessa data ofta sådant att det inte är lätt att tillgå och utnyttja kunskapen. Som AI-verktyg erbjuder affinitetsanalys en effektiv teknik för att identifiera upprepade mönster som statistiska associationer i data lagrade i stora försäljningsdatabaser. De hittade mönstren kan sedan utnyttjas som regler som förutser kundernas köpbeteende. I detaljhandel har affinitetsanalys blivit en nyckelfaktor bakom kors- och uppförsäljning. Som den centrala metoden i denna process fungerar marknadskorgsanalys som fångar upp kunskap från de heterogena köpbeteendena i data och hjälper till att utreda hur effektiva marknadsföringsplaner är. Apriori, som räknar upp de vanligt förekommande produktkombinationerna som köps tillsammans (marknadskorgen), är den centrala algoritmen i analysprocessen.
Trots detta har Apriori brister som algoritm gällande låg beräkningshastighet och svag intelligens. När antalet parallella databassökningar stiger, ökar också beräkningskostnaden, vilket har negativa effekter på prestanda. Dessutom finns det brister i beslutstödet, speciellt gällande metoder att hitta sällan förekommande produktkombinationer, och i att identifiera ökande popularitet av varumärken från trenddata och utnyttja det innan det når sin höjdpunkt.
Eftersom målet för denna forskning är att hjälpa små och medelstora detaljhandlare att växa med hjälp av MI-strategier, demonstreras effekter av AI med hjälp av algoritmer i förberedelsen av data, marknadssegmentering och trendanalys. Med hjälp av försäljningsdata från en liten, lokal detaljhandlare visar vi hur Åbo-algoritmen ökar prestanda och intelligens i datautvinningsprocessen och hjälper till att avslöja värdefulla insikter för marknadsföring, framför allt gällande dynamiken i efterfrågan och trender i populariteten av produkterna. Ytterligare visas hur detta resulterar i kommersiella fördelar och konkret avkastning på investering. Dessutom hjälper den utvidgade normalfördelningsmetoden i förberedelsen av data och med att hitta olika slags anomalier.
A vast amount of knowledge is stored in retailers’ point-of-sales databases. The format of this data often makes the knowledge they store hard to access and identify. As a powerful AI technique, Association Rules Mining helps to identify frequently associated patterns stored in large databases to predict customers’ shopping journeys. Consequently, the method has emerged as the key driver of cross-selling and upselling in the retail industry. At the core of this approach is the Market Basket Analysis that captures knowledge from heterogeneous customer shopping patterns and examines the effects of marketing initiatives. Apriori, that enumerates frequent itemsets purchased together (as market baskets), is the central algorithm in the analysis process.
Problems occur, as Apriori lacks computational speed and has weaknesses in providing intelligent decision support. With the growth of simultaneous database scans, the computation cost increases and results in dramatically decreasing performance. Moreover, there are shortages in decision support, especially in the methods of finding rarely occurring events and identifying the brand trending popularity before it peaks.
As the objective of this research is to find intelligent ways to assist small and medium sized retailers grow with MI strategy, we demonstrate the effects of AI, with algorithms in data preprocessing, market segmentation, and finding market trends. We show with a sales database of a small, local retailer how our Åbo algorithm increases mining performance and intelligence, as well as how it helps to extract valuable marketing insights to assess demand dynamics and product popularity trends. We also show how this results in commercial advantage and tangible return on investment. Additionally, an enhanced normal distribution method assists data pre-processing and helps to explore different types of potential anomalies.
Enorma mängder kunskap finns sparade i databaser av transaktioner samlade från detaljhandlarnas försäljningsplatser. Ändå är formatet på dessa data ofta sådant att det inte är lätt att tillgå och utnyttja kunskapen. Som AI-verktyg erbjuder affinitetsanalys en effektiv teknik för att identifiera upprepade mönster som statistiska associationer i data lagrade i stora försäljningsdatabaser. De hittade mönstren kan sedan utnyttjas som regler som förutser kundernas köpbeteende. I detaljhandel har affinitetsanalys blivit en nyckelfaktor bakom kors- och uppförsäljning. Som den centrala metoden i denna process fungerar marknadskorgsanalys som fångar upp kunskap från de heterogena köpbeteendena i data och hjälper till att utreda hur effektiva marknadsföringsplaner är. Apriori, som räknar upp de vanligt förekommande produktkombinationerna som köps tillsammans (marknadskorgen), är den centrala algoritmen i analysprocessen.
Trots detta har Apriori brister som algoritm gällande låg beräkningshastighet och svag intelligens. När antalet parallella databassökningar stiger, ökar också beräkningskostnaden, vilket har negativa effekter på prestanda. Dessutom finns det brister i beslutstödet, speciellt gällande metoder att hitta sällan förekommande produktkombinationer, och i att identifiera ökande popularitet av varumärken från trenddata och utnyttja det innan det når sin höjdpunkt.
Eftersom målet för denna forskning är att hjälpa små och medelstora detaljhandlare att växa med hjälp av MI-strategier, demonstreras effekter av AI med hjälp av algoritmer i förberedelsen av data, marknadssegmentering och trendanalys. Med hjälp av försäljningsdata från en liten, lokal detaljhandlare visar vi hur Åbo-algoritmen ökar prestanda och intelligens i datautvinningsprocessen och hjälper till att avslöja värdefulla insikter för marknadsföring, framför allt gällande dynamiken i efterfrågan och trender i populariteten av produkterna. Ytterligare visas hur detta resulterar i kommersiella fördelar och konkret avkastning på investering. Dessutom hjälper den utvidgade normalfördelningsmetoden i förberedelsen av data och med att hitta olika slags anomalier.