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University kindly agreed to resume the series with the application of computer
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Russia, Finland, Spain, Germany, France, UK, and Norway. Unofficially, this
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the main moving forces in organizing this series of conferences.
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Computer Algebra and Differential Equations

Acta Academiae Aboensis, Ser. B, Vol. 67, no. 2, 2007

A. Mylläri, V. Edneral and N. Ourusoff, eds.

On Completion to Involution Based on Janet

Division

Vladimir P.Gerdt

Laboratory of Information Technologies
Joint Institute for Nuclear Research

141980 Dubna, Russia

E-mail: gerdt@jinr.ru

Abstract. In this paper we outline a general algorithmic approach
to systems of algebraic, differential and (linear) difference equations
which depend polynomially on unknowns with rational function coef-
ficients. For pure algebraic or linear differential / difference systems
the approach is based on their completion to involution. We present
a completion algorithm based on the Janet monomial division. In
the case of polynomial-nonlinear systems of differential type they
can be decomposed into a finite number of involutive subsystems.

1 Completion to Involution

Among the most brilliant results in theory of analytical partial differential equa-
tions (PDEs) is the Cauchy-Kowalevskaya theorem which establishes a class of
quasi-linear PDEs which admit posing an initial-value problem providing exis-
tence and uniqueness of the analytical solution.

The main obstacle in investigating other classes of PDE systems of some
given order q is existence of integrability conditions, that is, such differential but
not pure algebraic consequences of equations in the system whose derivatives
have (total) order ≤ q. A formally integrable system of PDEs has all its inte-
grability conditions incorporated in the system. This means that prolongations
of the system do not reveal integrability conditions. An involutive system is
a formally integrable one of special type [1, 2, 3]. The quasi-linear systems of
Cauchy-Kowalevskaya type form a particular family of involutive systems.

Extension of a system by its integrability conditions is called completion.
From the completion point of view the linear homogeneous PDE systems with
constant coefficients can be associated with pure polynomial systems [2, 3, 4],
and polynomial involutive systems [5] provide a fruitful algorithmic tool in com-
mutative algebra [6].

The most general involutive approach is based on the concept of involutive
monomial division [5] which is defined for a finite monomial set. Every particular
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division provides, for each monomial in the set, the self-consistent separation of
variables into multiplicative and non-multiplicative. Completion to involution is
performed by combining of non-multiplicative prolongations with multiplicative
reductions.

In differential / difference algebra [7], in addition to their role as canonical
bases of differential ideals, linear and quasi-linear (orthonomic) involutive sys-
tems allow one to construct the Hilbert polynomial and thereby to determine
the structure of arbitrariness in general solution [4, 6]. Recently, it was estab-
lished that in linear difference algebra, involutive bases as well as Gröbner bases
form a useful algorithmic tool to construct finite difference schemes for linear
PDEs [8] and to reduce multiloop Feynman integrals [9].

Involutive bases of polynomial ideals [5, 10] as well as of linear differen-
tial [4] / difference ideals [8] are Gröbner bases [11, 12] of special form. Wu
Wen-tsün was the first who pointed out this fact [13]. Though involutive bases
are generally redundant as Gröbner ones, their use makes more accessible the
structural information of ideals. Janet and Pommaret bases may be cited as
typical representatives of involutive bases [5, 6, 10].

2 Involutive Bases

2.1 Polynomial Bases

The basic algorithmic ideas go back to M.Janet [2] who invented a constructive
approach to study PDEs in terms of corresponding monomial sets based on the
following association between derivatives and monomials:

∂µ1+···+µnuα

∂xµ1
1 · · · ∂xµn

n
⇐⇒ [xµ1

1 · · ·xµn
n ]α . (1)

The monomials associated with the different dependent variables uα are to be
considered as belonging to different monomial sets.

The association (1) allows one to reduce the involution analysis of linear
homogeneous systems of PDEs or difference equations with constant coefficients
to pure algebraic systems [2, 3, 4, 9]. Having this fact in mind, we first consider
involutive algebraic systems.

Let R = K[x1, . . . , xn] be a ring of multivariate polynomials over a zero
characteristic coefficient field K. Then a finite set F = {f1, . . . , fm} ⊂ R of
polynomials in R is a basis of the ideal

< F >=< f1, . . . , fm >= {
m∑

i=1

hifi | hj ∈ R } .

In the involutive approach to commutative (polynomial) algebra [5, 10], which is
a mapping of the involutivity analysis of linear PDEs [3, 4], for every polynomial
in a finite set F, variables x1, . . . , xn are separated into the disjoint subsets of
multiplicative and nonmultiplicative variables.
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To be self-consistent such a separation must satisfy certain axioms [5], and
every appropriate separation generates an involutive monomial division in the
following sense. Fix a linear admissible monomial order Â, that is, one satisfying

m 6= 1 =⇒ m Â 1 , m1 Â m2 ⇐⇒ m1m Â m2m, ∀m, m1,m2 ∈ R (2)

where m, m1, m2 are monomials – power products of the variables with integer
exponents. Then for every polynomial f ∈ F one can select its leading monomial
lm(f) (with respect to Â). All leading monomials in F form a finite monomial
set U . If u ∈ U divides a monomial w such that all the variables which occur in
w/u are multiplicative for u, then u is called an involutive divisor of w. We shall
denote by L an involutive division, which specifies a set of multiplicative (resp.
nonmultiplicative) variables for every monomial u in any given finite monomial
set U and write u|Lw if u is an (L−)involutive divisor of w. In the latter case
we shall also write w = u×v where, by the above definition, monomial v = w/u
contains only multiplicative variables.

As an example of involutive division we consider here one named after
M.Janet [5], one of the founders of the involutive approach to PDEs who devised
the related separation of variables [2].

Given a finite set U of monomials in {x1, . . . , xn} and a monomial u =
xd1

1 · · ·xdn
n ∈ U , a variable xi (i > 1) is Janet multiplicative for u if its degree

di in u is maximal among all the monomials in U having the same degrees in
variables x1, . . . , xi−1. As for x1, it is Janet multiplicative for u if d1 takes the
maximal value among degrees in x1 of monomials in U . If a variable is not Janet
multiplicative for u in U it is considered as Janet nonmultiplicative.

Consider, for example, a monomial set U = {u = x2
1x2, v = x2x

2
3, w = x3

3} .
This gives the following Janet multiplicative and nonmultiplicative variables for
monomials in U :

Monomial Variables
Multiplicative Nonmultiplicative

x2
1x2 x1, x2, x3 −

x2x
2
3 x2, x3 x1

x2
3 x3 x1, x2

Given a finite polynomial set F , a noetherian [5, 10] involutive division L,
for instance, Janet division, and an admissible monomial order Â, one can
algorithmically construct [5, 10] a minimal L−involutive basis or L−basis G ⊂ R
of ideal < F >=< G > such that for any polynomial f in the ideal there is a
polynomial g in G satisfying lm(g)|L lm(f), and every polynomial g in G does
not contain monomials having involutive divisors among the leading monomials
of other polynomials in G.

If F = {f1, . . . , fm} ⊂ R is a polynomial set, L is an involutive division, and
Â is an admissible monomial order, then any polynomial p in R can be rewritten
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(reduced) modulo ideal < F > as

p = h−
m∑

i=1

∑

j

aijfi × uij (3)

where aij are elements ( coefficients ) of the ground field K, uij are L−multipli-
cative monomials for lm(fi) such that lm(f)uij ¹ lm(p) for all i, j, and there are
no monomials occurring in h which have L− involutive divisors among lm(fi)
(1 ≤ i ≤ m). In this case h is said to be in the L−normal form modulo F and
written as h = NFL(p, F ).
If G is an L−basis, then NFL(p,G) is uniquely defined1 for any polynomial
p. In this case NFL(p, G) = 0 if and only if p belongs to the ideal < G >
generated by G. Moreover, if the ideal is radical for which any its elements
(polynomial) vanish at the common roots of all the polynomials in G if and
only if this polynomial belongs to the ideal, then it follows that the condition
NFL(p,G) = 0 is necessary and sufficient for vanishing p on those common
roots.

It is important to emphasize that any involutive basis is a Gröbner basis, gen-
erally redundant, and can be used in the same manner as the reduced Gröbner
basis [11, 12].

2.2 Linear Differential/Difference Bases

Let N>0 be the set of positive integers, N≥0 be the set of nonnegative integers,
Y := { yj(x1, . . . , xn)} | j = 1, . . . , m; m,n ∈ N>0} be a set of dependent
variables, i.e., functions in n-variables, and θi be the derivation operator for the
i-th variable in the differential case

θi ◦ yj(x1, . . . , xn) :=
∂yj(x1, . . . , xn)

∂xi

or the right-shift operator in the difference case:

θi ◦ yj(x1, . . . , xn) := yj(x1, . . . , xi + 1, . . . , xn) .

For the power products θµ1
1 · · · θµn

n of derivation/shift operators we shall use the
multiindex notation θµ where µ := {µ1, . . . , µn} (µ ∈ Nn

≥0) with |µ| :=
∑

µi.
The set of all such (operator) products will be denoted by Θ.

Then the most general form of a system of K ∈ N>0 partial (n > 1) and
multivariate (m > 1) linear differential/difference equations is given by

a0 +
m∑

j=1

∑
ν

akj; νϑν
k ◦ yj = 0 , k = 1, . . . ,K , ϑν

k ∈ Θ , (4)

where all sums are finite and coefficients a0, akj; ν may depend on the variables
in X := {x1, . . . , xn} and on a finite set of parameters in C := {c1, . . .}. Here-
after we shall assume that all coefficients in (4) are rational functions of the

1For other properties of involutive bases, proofs and illustrating examples see [5, 10].
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(independent) variables and parameters with integer coefficients:

a0, akj; ν ∈ Q(X ∪ C) . (5)

As well as for the polynomial case of Sect.2.1, the Gröbner basis form of sys-
tem (4) is defined by a linear order on terms θµ ◦ y j , in this case called a
ranking [7], and such that for all i, j, k, µ, ν the following analogue of (2) holds
for all µ, ν, i, j, k:

θiθ
µ ◦ y j Â θµ ◦ y j , θµ ◦ y j Â θν ◦ yk ⇐⇒ θiθ

µ ◦ y j Â θiθ
ν ◦ yk . (6)

When |µ| Â |ν| implies θµ ◦ y j Â θν ◦ yk the ranking is called orderly. When
j > k implies θµ ◦ y j Â θν ◦ yk the ranking is called elimination.

Denote by fk the left-hand side of the k-th equation in (4) and by F :=
{f1, . . . , fK} the set of all the left-hand sides in the system. Then fixing a
ranking Â provides every f ∈ F with the leading term lt(f) := aϑ ◦ yj (ϑ ∈
Θ, a 6= 0), leading monomial lm(f) := ϑ ◦ yj , and leading coefficient lc(f) := a.
Furthermore, denote by R ⊃ F the set of all right-hand sides f 6= 0 for linear
difference equations f = 0 which are consequences of system (4-5). F is called
a generating set or basis of R (denotation: R =< F >). In what follows we
shall assume that, given a ranking Â, all f ∈ R are normalized, that is, divided
by their leading coefficients. Furthermore, lm(F ) will denote the set of leading
monomials and lmj(F ) will denote its subset for function y j . Therefore,

lm(F ) = ∪m
j=1 lmj(F ) . (7)

Now we are ready to define a Gröbner basis, given a set F and a ranking Â,
as a finite subset G ⊂ R =< F > such that R =< G > and

∀f ∈ R ,∃ g ∈ G, θ ∈ Θ : lm(f) = θ ◦ lm(g) . (8)

It follows that the leading term of every f ∈ R is reducible modulo G and yields
the head reduction:

f −→
g

f ′ := f − θ ◦ g, f ′ ∈ R .

If f ′ 6= 0, then its leading term is again reducible modulo G, and, by repeating
the reduction finitely many times [7, 11, 12], we obtain f −→

G
0. Generally, if a

linear differential/difference expression (not necessarily from R) contains a term
u with coefficient c 6= 0 such that u = ϑ ◦ lm(f) for some ϑ ∈ Θ and f ∈ F ⊂ R,
then h can be reduced:

h −→
g

h′ := h− c ϑ ◦ f . (9)

By applying the reduction finitely many times, one obtains a polynomial h̄
which is either zero or such that all its (nonzero) terms are irreducible modulo
F . In both cases h̄ is said to be in the normal form modulo F (denotation:
h̄ = NF (h, F )). A Gröbner basis G is called reduced if g = NF (g, G \ {g}) for
every g ∈ G.
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With the use of association (1) and its difference analogue one can define
multiplicative and nonmultiplicative differential/difference operators (prolonga-
tions) θj for any involutive monomial division [5]. In doing so, this separation
must be done for every indexed group of the leading terms (monomials) in (7).
Below we can consider the Janet division as it defined in Sect.2.1.

A finite set G ∈ R =< F > is called a Janet basis (cf. [10]) if

∀ f ∈ R , ∃ g ∈ G , θ ∈ J(g, G) : lm(f) = θ ◦ lm(g) (10)

where J(g,G) is the monoid of J−multiplicative operators for g ∈ G. Similarly
to (9), a J−reduction is defined as

h −→
g

h′ := h− c ϑ ◦ f (11)

for a polynomial h ∈ R containing a term u with coefficient c 6= 0 satisfying
u = ϑ ◦ lm(f) for some f ∈ F and ϑ ∈ J(f, F ).

Since J−reducibility (11) implies the Gröbner reducibility (9), a Janet basis
satisfying (10) is also a Gröbner basis. The converse is generally not true, that
is, not every Gröbner basis is a Janet one. The algorithmic characterization of
a Janet basis G is the following condition (cf. [10]):

∀ g ∈ G , ϑ ∈ NMJ(g, G) : NFJ(ϑ ◦ g,G) = 0 . (12)

where NMJ (g, G) is the set of nonmultiplicative derivation / difference opera-
tors for g ∈ G. Condition (12) is a cornerstone of the following algorithm for
construction of Janet bases.

Algorithm: JanetBasis(F,Â)

1: choose f ∈ F with the lowest lm(f) w.r.t. Â
2: G := {f}; Q := F \ {f}
3: do
4: h := 0
5: while Q 6= ∅ and h = 0 do
6: choose p ∈ Q with the lowest lm(p) w.r.t. Â
7: Q := Q \ {p}; h :=NFJ(p, G)
8: od
9: if h 6= 0 then

10: if lm(h) 6= lm(p) then
11: for all g ∈ G such that lm(g) = θµ ◦ lm(h), |µ| > 0 do
12: Q := Q ∪ {g}; G := G \ {g}
13: od
14: fi
15: G := G ∪ {h/ lc(h)}; Q := Q ∪ { θβ ◦ g | g ∈ G, θβ ∈ NMJ (g, G) }
16: fi
17: od while Q 6= ∅
18: return G
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This algorithm, including the subalgorithm NFJ in line 7 which computes the
Janet normal form, constructs a minimal and reduced differential/difference
Janet basis for a linear input set F and also a pure polynomial Janet basis if
one replaces the operators θµ by the corresponding products of variables. In its
improved form without the repeated prolongations and with avoidance of some
useless zero reductions the algorithm has been implemented in Maple [14, 15]
and, for the polynomial case, in C/C++ (see references in [10]).

3 Nonlinear Differential Systems

For a finite system F of polynomial-nonlinear PDEs one can also use a rank-
ing Â satisfying (6) to select the leading derivative (leader) in any equations of
the system and thereby to separate derivative operators θi into multiplicative
and nonmultiplicative. However, the concept (11) of reduction admits a natural
generalization only to quasi-linear (orthonomic) equations, i.e. those that are
linear with respect to their highest ranking derivative. Moreover, in the course
of completion to involution a non-orthonomic integrability condition may arise
that makes impossible a straightforward generalization of the above algorithm
JanetBasis to nonlinear systems. Even worse, differential ideals generated by
a finite set of polynomials may not have finite Gröbner [16], and, thereby, in-
volutive bases. This means that there is no hope of generalizing the algorithm
to nonlinear differential polynomials. Instead, one can use a decomposition of
the initial differential system into finitely many involutive subsystems. Such a
decomposition was suggested by J.F.Thomas [17] who applied his own separa-
tion of variables into multiplicative and nonmultiplicative sets that generate an
involutive division called Thomas division [5]. Thomas also gives an algorithm
for explicit construction of the decomposition.

In so doing, Thomas considers, first, an input system of differential polyno-
mials F := {f1, . . . , fm} as an algebraic system in the dependent variables yj

and their derivatives {θyj | θ ∈ Θ, j = 1, . . . , k} which occur in F, whereas in-
dependent variables {x1, . . . , xn} are treated as parameters. In accordance with
the ranking Â chosen, every f ∈ F is a polynomial in its leader (leading deriva-
tive with denotation: ld(f)) whose coefficient in the term in f of the maximal
degree in ld(f) is called initial and will be denoted by init(f).

Thomas introduced a concept of simple algebraic system which has a trian-
gular form. Some of the underlying simplicity properties enumerated below were
also used in [18, 19] for decomposition of algebraic systems and in [20] for de-
composition of PDEs. A system S := {P ∪Q} of polynomials P := {p1, . . . , ps}
for equations (pi = 0) and Q := {q1, . . . , qt} for inequations (qj 6= 0) is called
simple if the following holds

1. ld(p1) ≺ ... ≺ ld(ps), ld(q1) ≺ ... ≺ ld(qt) ∧ ∀p ∈ P, q ∈ Q : ld(p) 6= ld(q) ;

2. ∀ r ∈ S , ∀ x̄ ∈ Zero(P≺r/Q≺r) : init(r)(x̄) 6= 0 ∧ r(ld(r), x̄) is squarefree;

3. elements in P and Q are primitive as polynomials in their leaders;
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4. set P is (algebraically) autoreduced and set Q is reduced modulo P .

Here Zero(P/Q) := {x̄ ∈ Zero(p = 0) ∀p ∈ P ∧ q(x̄) 6= 0, ∀q ∈ Q} is the set of
solutions in an algebraically closed extension of the ground field of characteristic
zero and F≺r := {f ∈ F | ld(f) ≺ ld(r)}.

In his book [17] Thomas designed an algorithm (cf. [18]) for decomposition
of an algebraic polynomial system H := {h1 = 0, . . . , hr = 0} into a finite set of
simple systems {Pi, Qi} such that

Zero(H) = ∪i Zero(Pi/Qi) . (13)

He also described a procedure for completion of (algebraically) simple differential
systems to involution based on his separation of variables (Thomas division [5]).
Generally, such a completion violates simplicity of the system. In this case the
system is further decomposed into simple subsystems and the completion proce-
dure is further processed. Finally, the initial differential system is decomposed
into a finite set of involutive and algebraically simple subsystems.

Motivated by efficiency of the above algorithm JanetBasis in its improved
form [10], we suggest another completion algorithm2 for systems decomposed
into the simple subsystems. Our algorithm starts with the subsystem {Pj , Qj}
in (13) whose highest ranking leader occurring in Pj is minimal (w.r.t.Â) among
all the subsystems in the right-hand side of (13).

Algorithm: JanetCompletion({P,Q},Â)

1: choose f ∈ P with the lowest ld(f) w.r.t. Â
2: G := {f}; T := P \ {f}
3: do
4: h := 0
5: while T 6= ∅ and h = 0 do
6: choose p ∈ T with the lowest ld(p) w.r.t. Â
7: T := T \ {p}; h :=PREMJ(p, G)
8: od
9: if h 6= 0 then

10: if ld(h) = ld(p) then
11: h :=Primitive(h)
12: else
13: UpdateSimplicity
14: for all g ∈ G such that ld(g) = θµ ◦ ld(h), |µ| > 0 do
15: T := T ∪ {g}; G := G \ {g}
16: od
17: fi
18: G := G ∪ {h}; T := T ∪ { θβ ◦ g | g ∈ G, θβ ∈ NMJ(g, G) }
19: fi
20: od while T 6= ∅
21: return {P :=Autoreduce(G), Q :=Reduce(Q,P )}

2A detailed description of the algorithm will be given elsewhere.
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Subalgorithm PREMJ of line 7 computes the Janet pseudo-reminder of p w.r.t.
G by means of pseudo-reductions. The output h of PREMJ(p,G) does not
contain proper J−multiplicative derivatives of elements in {ld(g) | g ∈ G}. This
means that h is partially J−reduced w.r.t. G and is computed by performing
the pseudo-division of p by elements g ∈ G:

sep(g)jp =
∑
α

Aαθαg + r , α ∈ Nn
≥0, |α| > 0, j ∈ N≥0, θα ∈ J(g,G) , ∀α ,

where the pseudo-reminder r is partially J−reduced w.r.t. g and sep(g) denotes
the separant of g. For g written as a polynomial g :=

∑
i ui ld(g)i in its leader

(here ∀i ui does not contain ld(q)) sep(g) :=
∑

i i ui ld(g)i−1.
Subalgorithm Primitive(h) invoked in line 11 computes the primitive part of h
as a polynomial in its leader. Subalgoritm UpdateSimplicity invoked in line
13 verifies for G, enlarged with h, the simplicity conditions 2 and 3. If they are
violated, then, in accordance with Thomas’s algorithm [17], the subalgorithm
updates system {G,Q} to provide validity of the conditions. Generally, the
update may split the system and thus affect the decomposition (13). The con-
dition 1 of simplicity is fulfilled by the appropriate sorting whereas condition 4
for equations is provided by subalgorithms Autoreduce and Reduce that are
called in line 21 and performs algebraic autoreduction and reduction, respec-
tively, for the system constructed in the loop 3-20 whose G-part is involutive
under the inequality conditions in Q.

After completion to involution of the given system, algorithm JanetCom-
pletion is applied to the next (w.r.t. to the maximal ranking of its leaders)
system in (13), and so on. As a result, the decomposition into the regular
(cf. [20]), involutive and algebraically simple systems is obtained. This gives

dZero(H) = ∪i dZero(Pi/Qi), dZero(P/Q) :=
{

x̄ | p(x̄) = 0, q(x̄) 6= 0,
∀p ∈ P, q ∈ Q

}
,

where x̄ belongs to the universal differential field of characteristic zero.
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Abstract. We discuss our long-lasting extensive research from 1990 to the
present on abelian pattern avoidance in words and the use ofMathematica
as a programming tool and computing environment which has been crucial
in interactive development of the code, in visualizations, and in extensive
distributed computations.Mathematicahas enabled us to discover phe-
nomena that otherwise would have been inaccessible or would have been
regarded as unbelievable.

Our recent research findings include a powerful abelian square-free substi-
tution over four letters. The key characteristics of the new substitution de-
rive from delicate mutations in the image words that merely emerged from
the computations. We do not think it would have been feasible to create
them by any design. Another quite recent finding concerns unfavourable
factors that can be used to explain, at least partly, both the highly non-
linear behavior in our earlier computations and the extreme difficulty that
has dominated the search for abelian square-free endomorphisms and sub-
stitutions over four letters.

This paper contains a number of visualizations of the structures and pro-
cesses.

1 Introduction
The systematic study of word structures, i.e., combinatorics on words, was started by
Axel Thue (1863−1922) in [37] at the beginning of the 20th century. One of his discov-
eries was that consecutive repetitions of non-empty factors (squares) can be avoided in
infinite words over a three-letter alphabet. As a simple example of the square concept,
consider the wordsabacaba and ab cd cd ab. The first word does not contain any
square, i.e., it is square-free, whereas the second word contains the underlined square
cd cd as a factor.

The above-mentioned square-freeness property of words is not trivial to prove. The
tool which Thue invented for constructing square-free, and other repetition-free, words,
namely the concept of a repetition-free morphism, is still a basic technique in the study
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of avoidable patterns in words. Repetition-free morphisms are mappings between free
monoids that preserve the repetition-freeness of words. The iteration of a non-trivial
repetition-free endomorphism or substitution (that maps a letter to more than one word)
produces repetition-free words of any length. Dealing with substitutions somewhat
later, we point out that repetition-free morphisms have been sharply characterized in
[5, 10, 19, 20, 27, 28, 34, 38]. The results therein concern different types of repetitions
(k-repetitions for a given integerk ≥ 2) and alphabet sizes. Informally speaking, most
of the characterizations mean that it is possible of test the repetition-freeness of a given
morphism just by checking whether the image words of short repetition-free words
are also repetition-free. A general survey of these and related results, achieved before
1984, is given in [3]. For a short survey of Thue’s results concerning repetition-free
words and their applications, see [16]. Fundamental topics are discussed in [29, 36].

In a paper from 1961, see [15, p. 240], Paul Erdös (1913−1996) raised the question
whether abelian squares can be avoided in infinitely long words, i.e., whether there
exist infinitely many abelian square-free words over a given alphabet. Here, an abelian
square means a non-empty worduv , whereu andv are permutations (anagrams) of
each other. For example,abc acb is an abelian square. A word is called abelian
square-free, if it does not contain any abelian square as a factor. For example, the word
abacaba is abelian square-free, whileab cabdc bcacd ac is not.

Later, in a 1970 paper, Pleasants [33] showed that there exists an infinite abelian
square-free word over five letters. Finally, in 1991, see Keränen [21] the year after, we
managed to show that the same holds true also in the case of four letters. It is easily
seen that abelian squares cannot be avoided over a three-letter alphabet. Indeed, in this
alphabet, each word of length 8 contains an abelian square. In [14] Entringer et al.
showed that every infinite word over a binary alphabet contains arbitrarily long abelian
squares. Dekking [12] in turn proved that abelian repetitions to the fourth power can
be avoided in infinite words over two letters, and abelian repetitions to the third power
(cubes) can be avoided in infinite words over three letters. For a generalization of
abelian squares, see Avgustinovich and Frid [2]. Abelian fractional powers were stud-
ied by Cassaigne and Currie [8]. In [11], Currie showed that the number of binary
words avoiding abelian fourth powers grows exponentially, and in [1], Aberkane, Cur-
rie, and Rampersad showed that the number of ternary words avoiding abelian cubes
grows exponentially as well.

An application of Dekking’s result was given by Justin et al. in [17], where it
was shown that a finitely-generated semigroup is uniformly repetitive if and only if
it is finite. In [32], Pirillo et al. used similar reasoning when proving, among other
results, that the additive semigroupN+ is not uniformly 4-repetitive. It seems to be
an open problem whetherN+ is uniformly 2-repetitive or 3-repetitive. In all these
considerations the use of van der Waerden’s theorem has been very central. In Lothaire
[29, pp. 55−62] van der Waerden’s theorem was used to show that every morphism
from a free semigroupA+, whereA is finite, toN+ is repetitive. This means that every
long enough sequence on a finite set of integers contains two adjacent segments (not
necessarily of the same length) that have the same sum.

The original problem of abelian squares has also attracted attention in the study
of free partially-commutative monoids, see for instance [9, 13]. Moreover, abelian
square-free words have aroused interest in algorithmic music (Laakso [26]) and quite
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recently in cryptography (Rivest [35], Bouillaguet et al. [4]).
In 1993, Carpi [5] gave sufficient conditions for morphisms to preserve abelian

kth power-freeness of words. A conjecture is that these conditions yield an effective
characterization also for abelian square-free endomorphisms on a four-letter alphabet
Σ4 = {a, b, c, d}. However, new examples of relatively short abelian square-free en-
domorphismsg of Σ4

∗ have turned out to be extremely hard to find – and the same
difficulty applies to every systematic attempt for constructing long abelian square-free
words over 4 letters. Before our current findings, we were not at all optimistic that it
would be possible to find more examples of abelian square-free endomorphisms – not
to speak of proper substitutions ofΣ4

∗. Thus far, since 1992 when we presentedg85

in [21], the only new abelian square-free endomorphisms and substitutions have been
found by Carpi [6], cf. also [7, pp. 80−81]. However, his mappings are all based on
the structure ofg85. Moreover, the size of these endomorphisms and substitutions are
large. By using these substitutions, Carpi showed that the number of abelian square-
free words of each length grows exponentially, and that the monoid of (uniform) abelian
square-free endomorphisms ofΣ4

∗ is not finitely generated.
Very recently, we succeeded in finding 200 new abelian square-free endomor-

phisms and some of them work as a starting point for a new powerful abelian square-
free substitution. These endomorphisms have the property that the image wordsg(x),
x ∈ Σ4 are all obtained by cyclically permutating the letters ing(a). The image words
g(a) can be viewed and copied from the Internet [18]. The same cyclic permutation
property is true forg85 as well, and this method was already used by Pleasants [33] in
connection with five letters. Consequently, all of these endomorphisms have a uniform
modulus and the generated words grow uniformly. The size of Pleasants’ endomor-
phism is 5×15 = 75. In our case, we have checked using computers that the size 4×85
= 340 for g85, in spite of its largeness, is actually minimal, at least as far as cyclic
permutation method is used. So far, the search for other kinds of abelian square-free
endomorphisms ofΣ4* has not been very successful, even with extensive experimen-
tation. However, we show later in (1) that 20724 (out of 20736) abelian square-free
endomorphisms indeed possess a different structure.

Moreover, in 2002 we [22, 23] found a nice endomorphismg98 of Σ4
∗ that can

be used in iterations, and together withg85 to produce infinite abelian square-free
DT0L-languages (i.e., languages obtained by using compositions of morphims). This
g98 itself is not an abelian square-free endomorphism, as it does not preserve abelian
square-freeness for all words (starting with already from the length 7). The structure of
the image words ofg98 also partly differs from that of the other above-mentioned 201
(remembering alsog85) cyclic endomorphisms.

Quite recently, we have also gained insight as to why these abelian square-free
structures are so rare. In [24] we explain, at least partly, this rareness of long words
avoiding abelian squares by using the concept of unfavourable factor. We take an
abelian square-free word and, usingMathematica, try to extend it in abelian square-
free fashion to the right and to the left in all possible ways up to a given upper bound
for the total length. At a time, increasing the length of the word by a given fixed length
at each step. We extend alternately to right and left, and backtrack if necessary. If
the given upper bounds are reached then the original word is aso-far-favourableone
(it may still turn out to be unfavourable on later experiments). If there is no way to
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reach the upper bounds, then the original word is classified, without any doubt, to be
as unfavourable. Thus we obtain three kinds of words:unfavourable(bad), so-far-
favourable(so-far-so-good), andfavourable(good).

It is a remarkable phenomenon that sometimes relatively short so-far-favourable
words turn out to be unfavourable factors after being ‘safely’ extendable (to the right
and left) for quite a long distance and with a really huge number of branches. One
might have expected the quite long buffers to guarantee the further growth. We suspect
that the majority of abelian square-free words over four letters cannot occur as proper
factors in the middle of very long (infinite) abelian square-free words. In a way, the
experimental facts concerning unfavourable factors explain the highly non-linear be-
havior of our earlier computations and also the difficulty of finding abelian square-free
endomorphisms ofΣ4

∗ (not to speak of substitutions). At present we know that in the
four letter case about 60 % of the abelian square-free words of length 24 are indeed
unfavourable.

It will be interesting to study, in a similar way, the case of three letters, for which
an exciting open problem was posed by Mäkelä [30], who allows repetitionsxx and
xxx , for a letterx , but no other abelian squares (or cubes).

2 Preliminaries for combinatorics on words
In this section we present notation and terminology. Our terminology is quite standard
in the field of combinatorics on words. Consequently, the reader may consult this
section later, as needed.

An alphabetΣ is a finite non-empty set of abstract symbols calledletters. A word
(string) over Σ is a finite (unless otherwise indicated) string, or sequence, of letters
belonging toΣ. The set of all words overΣ is denoted byΣ∗, while the set of non-
empty words is denoted byΣ+. For wordsu and v in Σ∗, the associative binary
operation ofcatenationis defined as the juxtapositionuv . Theempty word, which is
the neutral element of catenation, is denoted byλ. The algebraic structuresΣ∗ andΣ+

are called, respectively, the free monoid and the free semigroup generated byΣ.
Let w = x1 · · ·xm, xi ∈ Σ. The lengthof the wordw , denoted by|w|, is the

number of occurrences of letters inw , i.e., |w| = m. Let Σ = {a1, . . . , an}. The
number of occurrences of one letterx ∈ Σ in the wordw is denoted by|w|x, or simply
by |w|i if x = ai. The notationψΣ(w) stands for theParikh vectorof w, i.e.,ψΣ(w) =
(|w|1, . . . , |w|n). Usually we will omit the subscriptΣ and write simplyψ instead of
ψΣ.

A word u is called afactor of a wordw, if w = p u s for some wordsp ands.
The notation FACT(w) stands for the set of all factors ofw. If p (or s) = λ, thenu is
called aprefix(or asuffix) of w.

Let k ≥ 2 be a given integer. Ak-repetitionis a non-empty word of the formRk.
An abelian k-repetition is a non-empty word of the formP1 · · ·Pk, whereψ(Pµ) =
ψ(Pν) for all 1 ≤ µ < ν ≤ k, i.e., Pi:s arecommutatively equivalent, that is, they are
permutations, or anagrams, of each other. Instead of [abelian] 2- and 3-repetitions, the
terms [abelian] squaresandcubesare often used. A word is calledk-repetition free,
or k-freefor short, if it does not contain anyk-repetition as a factor. A word sequence
or a word set isk-free, if all words in it arek-free. Abelian analogs of these terms



16 Keränen V.

and definitions also exist and are formed in a natural way by preceding any term with
the word abelian, i.e., abelian square, abelian cube, abeliank-repetition free, etc. The
abelian analog of the short term,k-free is a-k-free. If, for a fixedk, it is possible to
construct arbitrarily long (infinite) a-k-free (or other pattern-free) words over a given
alphabetΣ, then we say that abeliank-repetitions (or those patterns) areavoidable
overΣ.

A morphismh is a mapping between free monoidsΣ∗ and ∆∗ with h(uv) =
h(u)h(v) for everyu andv in Σ∗. In particular,h(λ) = λ. A morphismh : Σ∗ → ∆∗,
being compatible with the catenation of words, is uniquely defined, if the wordh(x) ∈
∆∗ is (effectively) given for eachx ∈ Σ. If ∆ = Σ, we call h an endomorphism
(and usually writeg instead ofh). For a morphismh and a languageL we define
h(L) = {h(w)|w ∈ L}. A morphismh is calleduniformly growing, or is said to have
auniform modulus, if |h(x)| = |h(y)| ≥ 2 for everyx andy ∈ Σ.

A substitutionσ : Σ∗ → 2∆∗ is a monoid morphism ofΣ∗ into a subset monoid
of ∆∗. The substitutionσ can be regarded as a multi-valued mapping between the free
monoidsΣ∗ and∆∗, and writtenσ : Σ∗ → ∆∗. The substitutionσ is finite if σ(Σ) is a
finite subset of∆∗. Obviously, for a morphismh : Σ∗ → ∆∗, it holds that Card(h(Σ))
≤ Card(Σ), and thus a morphism is a special case of a finite substitution. Following
the terminology of Carpi [7], a substitutionσ : Σ∗ → ∆∗ is calledcommutatively
functional, if dom(σ) = Σ∗, and, for allx ∈ Σ, v′ ∈ σ(x), it holds that ψ(v) = ψ(v′)
(this is also written asv ∼ v′). In other words, a substitution is termed commuta-
tively functional, if the image words of a fixed letter are all commutatively equivalent.
Moreover, for a commutatively functional substitutionσ and any wordw in Σ∗, all the
wordsσ(w) are commutatively equivalent.

For a given integerk ≥ 2, a substitution (or a morphism)σ : Σ∗ → ∆∗ is called
k-free[a-k-free], if all the words σ(w) are (or the wordσ(w) is) k-free [a-k-free] for
everyk-free [a-k-free] word w ∈ Σ∗.

3 The new a-2-free substitutionσ109 over 4 letters
Let Σ4 = {a, b, c, d}. Define the substitutionσ109: Σ4

∗ → Σ4
∗ as follows. First let

the 12 image words ofσ109(a), say{A1, A2, . . . , A12}, have the form

Ai = p16 w4 u27 w3 s59 = abcacdcbcdcadcdb w4 badacdadbdcdbdabdbcbabcbdcb
w3 bdcdadcdbcbabcbdcbcacdcacbadabcbdcbcadbabcbabdbcdbdadbdcbca,

with 12 different factor pairs (w4, w3), taken in the natural lexicographical order form
{abcd, abdc, adbc, dabc}×{acd, adc, cad}. The subscripts of the factorsp16, w4, u27,
w3, s59 indicate their lengths. Note that all the words in{abcd, abdc, adbc, dabc}, and
respectively in{acd, adc, cad}, are commutatively equivalent. The delicate mutations
in words ofσ109(a) can also be described and visualized as a movement of lettersd
andc in the invariant background:
____dabc______cad____________ , ____abdc ______cad____________ ,
____dabc______acd ____________ , ____abdc ______acd ____________ ,
____dabc______adc ____________ , ____abdc ______adc ____________ ,
____adbc______cad____________ , ____abcd ______cad____________ ,
____adbc______acd ____________ , ____abcd ______acd ____________ ,
____adbc______adc ____________ , ____abcd ______adc ____________ .
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To complete the definition ofσ109, let σ109(φ(x)) = φ(σ109(x)) for all x ∈
{a, b, c, d}, whereφ : Σ4

∗ → Σ4
∗ is the circular letter-to-letter endomorphism de-

fined byφ(a) = b, φ(b) = c, φ(c) = d, φ(d) = a. Thus, informally, the set of image
words forb, c, d are obtained, letter-by-letter, by cyclic permutation of letters of all
the words in{A1, A2, . . . , A12}. Obviously,σ109 is a commutatively functional sub-
stitution ofΣ4

∗ (of uniform modulus 109). The Parikh vectors for the image words of
letters are the rows of the matrix below:




ψ(A)
ψ(B)
ψ(C)
ψ(D)


 =




21 31 29 28
28 21 31 29
29 28 21 31
31 29 28 21


 ,

whenever
A ∈ σ109(a), B ∈ σ109(b), C ∈ σ109(c), D ∈ σ109(d).

Using a computer, we checked the a-2-freeness ofσ109 in two (albeit not completely)
different ways. The first way was a direct but long method similar to what we used
previously in the paper [21] in 1992. There, the code development was done in LISP.
In the present work, we usedMathematicato make most of the computational steps
visible, thus providing a way to recheck the result. In these computations we benefit-
ted greatly fromMathematica’s dynamic programming feature, which guarantees that
functions remember the values they have found. The second method that we used for
checking the a-2-freeness ofσ109, is an application of Carpi’s [7] characterization.
The details of that method are explained in [25] and lie outside the main topic of this
paper, though, we may mention, in passing, that in this case as well, it was natural to
develop the algorithms by usingMathematica.

In connection with the substitutionσ109, let us consider the124 = 20736 different
endomorphismsg109,ijkl of Σ4

∗, defined by

g109,ijkl(a) = Ai, g109,ijkl(b) = Bj = φ(Aj), g109,ijkl(c) = Ck = φ(Bk),
g109,ijkl(d) = Dl = φ(Cl), i, j, k, l = 1, . . . , 12. (1)

Our checking of eachshow that all124 endomorphisms are indeed abelian square-free.
This alone suggests that the substitutionσ109 might really be a-2-free. Although
additional tests are needed, they pose no particular difficulty. Indeed, in [25] we justify
the following conclusion:

Proposition 1 The substitutionσ109 : Σ4
∗ → Σ4

∗ defined above is abelian square-
free.

Of course, the computational details should also be carried out independently of us.
We hope that in the very near future people will accomplish this.

It is likely that new abelian square-free substitutions ofΣ4
∗ can be constructed not

only from g109,ijkl, but also from other a-2-free endomorphisms that we have recently
found. The image wordg(a) for all 200 a-2-free endomorphisms,g85 (found in 1990),
andg98 (found in 2002), can be viewed and copied from the Internet [18].
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g85HabcacdL

abcacd

Figure 1: Six starting image words of a self-reading string forg85.

The properties ofσ109 lead to a considerably sharper lower bound for the exponen-
tial growth ofcn, i.e., of the number of a-2-free words over 4 letters of lengthn. We
find thatcn > β−50βn with β = 121/m ' 1.02306. For details the reader is referred
to [25]. The exponential growth ofcn was first proved by Carpi [6], who showed that
cn > β−tβn with β = 219/t = 219/(853−85) ' 1.000021, where t = 853 − 85 is the
modulus of his substitution constructed fromg85 that we presented in [21].

The number of all a-2-free words over 4 letters up to the length 60 can be found on
the Internet [18].

4 Visualizations of structures and processes
Some of the visualizations presented in this section can also be found at our web pages.
All of them are created usingMathematica. In many cases, theMathematicagraphics is
imported into interactive tools, such as the LiveGraphics3D Java applet or applications
developed by C++.

The pictorial representation of Figure 1 contains the six image words of the word
abcacdrelated to the iteration of the abelian square-free endomorphismg85. In Figure
2, the visualization can be used to detect structures separately at even and at odd posi-
tions. In Figure 3, one finds the first twenty image words for the self-reading sequence
associated with the endomorphismg98 of Σ4

∗. Note the pink diagonal consisting of
occurrences of the lettera. In Figure 4, the word(g98)

2(a) is represented by using only
the letters in {b, d} and leaving the occurrences ofa and b white. In Figure 5, the
directions for letters are indicated in a quad tree representation. Quad trees can be used
to visualise large sets of words over 4 letters at a glance. In Figure 6, one sees how
longer words can be represented by dividing the squares further. All abelian square-
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g85HabcdL

Figure 2: Even and odd positions separated.

Figure 3: Twenty starting image words forg98. Note the pink diagonal.
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free words of length 2 over 4 letters are shown. Note the white corners representing
the unfavourable wordsaa, bb, cc, dd. In Figure 7, the guad tree shows all the 3576
abelian square-free words of length 8 over 4 letters in one picture. In the Introduction
we explained the concept ofunfavourable(bad), so-far-favourable(so-far-so-good),
andfavourable(good) factors, and noted that it is a remarkable phenomenon that rel-
atively short so-far-favourable words turn out to be unfavourable factors even being
’safely’ extendable (to the right and left) for quite a long distance and sometimes with
a really huge number of branches.

Most surprising in this respect is the behavior ofabcdacbabdabacdacbcdad.For
this word of length 22, we obtain a list of pairs (x, y), wherex represents the length of
the words in the so-far-favourable bi-directional tree, andy represents the number of all
possible extensions of the length in question. The words, in the (somewhat abbreviated)
list below, are extended by one letter at a time only, that is, all extensions of length 1
are tried.
{{22, 1}, {23, 2}, {24, 2}, {25, 5}, {26, 14}, {27, 23}, {28, 14}, {29, 26}, {30, 10}, {31, 16}, {32, 8},

{33, 9}, {34, 9}, {35, 16}, {36, 16}, {37, 27}, {38, 27}, {39, 54}, {40, 54}, {41, 68}, {42, 136}, {43,

194},{44, 291}, {45, 444}, {46, 296}, {47, 450}, {48, 225}, {49, 331}, {50, 331}, {51, 474}, {52, 948},...,

{107, 840479}, {108, 1679287}, {109, 2301836}, {110, 2302465}, {111, 3157227}, {112, 3154210}, {113,

4306159}, {114, 8466798}, {115, 11575001}, {116, 5779271}, {117, 7866918}, {118, 0}}.

The death of all of the nearly 8 million branches of this bi-directional tree at length
117 looks dramatic. We remark that it was necessary to construct all the possible a-2-
free words in the tree to be able to find the numbers and see the collapse. Consequently,
this computation is quite a big, albeit a straightforward, one. Of course a much more
massive search was needed to find this example in the first place. In the search for
unfavourable factors, we have been using many features ofMathematica, including
conversions from strings to symbols and to patterns, and further to cumulative integer
lists. This part of the code uses a state-machine paradigm and the overall structure is
actually quite complex. We do not think it would have been feasible for us to have
developped the code and all the necessary pre-computational structures without the aid
of Mathematica’s technical computing environment. In Figure 8, a part of the complex
behavior of the above list for the unfavourable factorabcdacbabdabacdacbcdadis
represented. In this Figure, we zoom into the middle behavior. The final peak of the
list is omitted for clarity. Figure 9 is a visualization ofg85(a) in the form of DNA. It
would be desirable, if these kind of loops (hypohelix structures) were avoided in real
DNA, since they may lead to diseases, see for example Mirkin [31]. It seems to be an
open question to what extent the loops can be avoided over four letters (provided that
the structure is not too trivial). This figure was designed by Erik Jensen, University of
California, Berkeley, in 2005.

In Figures 10, 11, and 12, we represent 4-letter walks in the diamond lattice. The
walks are obtained by first savingMathematicagraphics in a file and, then using Martin
Kraus’s LiveGraphics3D Java applet. The direction vectors for the lettersa, b, c, d are
shown in Figure 10. In Figure 11, the loops inside the walk represent factors containing
an equal number of occurrences of each letter. The example word is the prefixabc
acdcbcdcadcdbdabacabadbabcbd bcbof g85(a).

Our last image, Figure 12, is obtained from interactive experiments with Live-
Graphics3D. Rotating the figure ofg98(a) and looking at it from the direction pointed
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Figure 4: Occurrences ofb andd in the word(g98)
2(a).

0.511.52

0.5

1

1.5
2

ab
c d

Figure 5: Directions for letters in a quad tree.

Figure 6: All abelian square-free words of length 2 over 4 letters.
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Figure 7: All abelian square-free words of length 8 over 4 letters.
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Extend the word
abcdacbabdabacdacbcdad
of length 22
alternately to right and left
step one letter at a time

Figure 8: Unfavourable behavior ofabcdacbabdabacdacbcdadwhen extended by one
letter at a time.
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Figure 9: Hypohelix structures ofg85(a).

a
b

c
d

Figure 10: Direction vectors for lettersa, b, c, d.
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Beginning

Ending

Figure 11: Loops represent factors containing an equal number of occurrences of each
letter.

Figure 12: Semipalindrome structure ofdcdadbdcbdbabdbcbacbcdbabdc d bdcacd-
bcbacbcdcacdcbdcdadbdinside g98(a).
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by the vector ford, one suddenly detects a semipalindrome structure of a long factor
dcdadbdcbdbabdbcbacbcdbabdc d bdcacdbcbacbcdcacdcbdcdadbdinside this word.
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Abstract. In the present paper we briefly describe a Mathematica
package which allows users to specify a quantum circuit, to draw
it, and to construct the unitary matrix for quantum computation
defined by the circuit. For circuits composed from the Toffoli and
Hadamard gates the package can also output the corresponding mul-
tivariate polynomial system over F2 whose number of solutions in F2

determines the circuit matrix. So the matrix can also be constructed
by applying to the polynomial system the Gröbner basis technique
based on the corresponding built-in Mathematica functions. For cir-
cuits of more general form the matrix is computed by means of the
built-in Mathematica linear algebra tools. We illustrate the circuit
matrix construction by an example.

1 Introduction

In spite of the recent unveiling of the 16-qubit quantum computer Orion by the
Canadian company D-WAVE [1] and its demonstration in a black box regime,
many top world experts doubt the authenticity of that demo. Doubts may be
cleared up soon when, as anticipated, Orion is demonstrated in a realistic sit-
uation after further development. However, until realistic multiqubit quantum
computers become available, a computer simulation of quantum computation
will be a prerogative of classical computers. At present, there are several differ-
ent simulators [2], a few of which are written in Mathematica [3].

In our previous papers [4, 5] we presented one more Mathematica program
intended to build quantum circuits and compute their unitary matrices. Un-
like other Mathematica-based quantum simulators [2], our program provides a
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user-friendly graphical interface for generating quantum circuits and implements
special computer-algebra tools for constructing the multivariate polynomial sys-
tem that is uniquely defined for a circuit composed from Toffoli and Hadamard
gates only [6]. The number of roots of the polynomial system in F2 fully deter-
mines the circuit matrix and can be found by using the Gröbner basis built in
Mathematica module.

In the given paper we illustrate the indicated facilities of our Mathematica
program by an example of a three-qubit circuit with five Hadamard and three
Toffoli gates. In contrast to the example from [6] considered also in [5], the
polynomial system in the present paper is underdetermined – it consists of four
equations in five unknowns.

Nevertheless, as we show by explicit computation based on construction of
a pure lexicographical Gröbner basis, it also admits an easy counting of the
number of solutions, and, hence, construction of the circuit matrix.

The paper is organized as follows: In Section 2 we briefly describe the ba-
sic features of our program. Then we illustrate (Section 3) these features by
inputting the example and computing its circuit matrix by applying straightfor-
ward built-in Mathematica linear algebra. In Section 4 we outline the relation
of commutative algebra to the circuits built from Hadamard and Toffoli gates
and apply the Mathematica function GroebnerBasis to reconstruct the exam-
ple circuit matrix by counting the number of common roots for the multivariate
polynomial system associated with the circuit.

2 Basic features of program

The circuit model is a model of quantum computation based on application of
quantum logical gates to the input qubits [7] similar to application of classical
logical gates in the classical circuit model. The principal difference between
classical and quantum circuit models is that a quantum gate performs certain
unitary transformation on the state of its target qubits whereas a classical gate
performs boolean logical operations on the target bits.

A fixed number n of qubits may serve as input for building a quantum
circuit. Our program shows the input qubit states as aj (j = 1, 2, ..., n) from
which quantum “wires” start and, under possible effect of quantum gates, the
output qubit states bj (j = 1, 2, ..., n) at the terminus of the wires..

In quantum computing one uses certain sets of single-qubit, two-qubit and
three-qubit gates. Some of the them, for example, the single-qubit Hadamard
gate and the three-qubit Toffoli gate form a universal gate basis [8]. The data
base of gates in our program contains the following gates [7]:

• one-qubit gates: Hadamard, Pauli X, Pauli Y and Pauli Z, Phase S and
π/8 T .

• two-qubit gates: Controlled-X (CNOT), Controlled-Z, Controlled-S,
Controlled-T and Swap gate.

• three-qubit gates: Toffoli (CCNOT).
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This set of basis gates can be easily extended by the user.
In our package a quantum circuit is represented as a rectangular table. Rows

in the table correspond to qubits in the circuit and columns show the circuit
quantum gates and their arrangement. Each column in the table can contain
either one multi-qubit gate or single-qubit gates only provided that no neigh-
boring column contains only single-qubit gates acting on different qubits.

Thinking of any quantum circuit as a table of elementary quantum gates, our
program associates a certain matrix with the circuit. By invoking the function
matrixGenerating a window appears in which the user is invited to input the
number of rows and columns of the circuit matrix. As a result, a skeleton matrix
is generated with interactive unit entries. Then the user can input one-,two-
or three-qubit gates into the matrix by changing the entries in an appropriate
way. For example, the Hadamard gate is input by typing the symbol H in the
corresponding entry whereas the Toffoli gate is prompted in a column by typing
C for the desired locations of control qubits and N for the location of the target
qubit.

Having all the gates given, the circuit can be depicted by invoking the func-
tion circuit whose argument is the output of function matrixGenerating.
The unitary 2n × 2n matrix of an n−qubit circuit is computed by the function
matrixU. This function in turn calls the Mathematica built-in LinearAlgebra
package.

For a circuit containing the Hadamard and Toffoli gates only, our package
has special functions intended to construct the multivariate polynomial over
F2 whose number of roots uniquely defines the circuit matrix [6]. This rela-
tion between quantum circuits and polynomial systems can also be used for
computation of the circuit unitary matrices as we briefly describe in Section 5.
Function circuitPol draws the circuit with explicit indication of the polyno-
mial variables associated with the Hadamard gates, and function polynomials
outputs the polynomial system. As an argument both functions have the matrix
form of the circuit constructed by the function matrixGenerating.

3 Illustrative example

In this section we consider an example of a three-qubit circuit that contains
five Hadamard and three Toffoli gates. First of all, as outlined in the previous
section, we call the function which opens a window and asks the user to enter

matrixGenerating

Figure 1: Generating matrix for a quantum circuit

the number of rows (qubits) and the number of columns for the circuit. After
entering 3 and 6, respectively, the program outputs the skeleton table (Fig.2).
The unit entries of the skeleton matrix can now be interactively upgraded to
specify the circuit as shown in Fig.3. The command of Fig. 3 outputs the circuit
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mat =
i
kjjjjjj
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

y
{zzzzzz ; circuit@matD

Figure 2: Cell produced for matrix 3× 6

mat =
i
kjjjjjj
C H N H C 1
N H C 1 C H
C 1 C H N 1

y
{zzzzzz ; circuit@matD

Figure 3: Specification of entries in the circuit matrix of Fig.2

with five Hadamard gates and three Toffoli gates (Fig.4).

a1

a2

a3

b1

b2

b3

H

H

H

H

H

Figure 4: The circuit generated

The unitary 8× 8 matrix determined by the circuit of Fig.4 is computed by
calling function matrixU (see Fig.5) with the same argument as used in Fig.2
and Fig.3, and the output is shown in Fig.6.

4 Polynomial equations for circuits built from
Hadamard and Toffoli gates

For circuits composed from the Toffoli and Hadamard gates that form a a uni-
versal gate basis [8], one can construct the circuit unitary matrix by counting
the number of solutions for a multivariate polynomial system associated with
the circuit [5, 6].

The systems of multivariate polynomials associated with such quantum cir-
cuits are obtained by applying the quantum-mechanical Feynman’s sum-over-
paths approach [6]. In so doing, the classical gate for the quantum Haramard
gate outputs the path variable x ∈ F2 [6] irrespective of the input. Its value
determines one of two possible paths of computation. Thereby, the classical
Hadamard gate acts at qubit a as

a 7→ x , a, x ∈ F2 .
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matrixU@matD �� MatrixForm

Figure 5: Computation of unitary circuit matrix
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Figure 6: The unitary matrix for circuit of Fig.4

Classically, the Toffoli gate acts on the triple of qubits with control qubits a1, a2

and target qubit a3 in the following way

(a1, a2, a3) 7→ (a1, a2, a3 ⊕ a1a2)

where ⊕ denotes addition modulo 2.
In Feynman’s sum-over-paths approach, action of a quantum circuit is given

as a sum over all possible classical paths. A classical path is defined by a
sequence of classical bit strings a = s1, s2, . . . , sm = b obtained from action of
the classical gates. Each set of values of the path variables xi gives a sequence
of classical bit strings which form an admissible classical path.

For the circuit of Fig. 4 the path variables and, thus, all admissible classical
paths, can be explicitly shown by invoking the function circuitPol (Fig.7). As
Fig.8 shows, this function depicts the circuit together with the path variables
and the related classical bit strings.

The sequence of classical bit strings for this circuit is given by a = {a1, a2, a3}
= s1, s2 = {a1, a2 ⊕ a1a3, a3}, s3 = {x1, x2, a3}, s4 = {x1 ⊕ x2a3, x2, a3},
s5 = {x3, x2, x4}, s6 = {x3, x2, x4 ⊕ x2x3}, s7 = {x3, x5, x4 ⊕ x2x3} = b.

Each admissible classical path has a phase factor. The phase is determined
in terms of the Hadamard gates applied [6] and is changed only if both input
and output of the Hadamard gate are equal to 1. It yields the formula

ϕ(x) =
∑

Hadamard gates

input • output (1)
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circuitPol@matD
Figure 7: Function showing the path variables for circuit of Fig.4
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H
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x1

x2

x1 Å a3 x2 x3

x4 x4 Å x2 x3

x5

Figure 8: Path variables for circuit of Fig.4

where summation is done in F2. For all that Toffoli gates do not affect the
phase.

In the example of Fig. 4 the phase of the path x is given by expression (cf.
Fig.9)

ϕ(x) = a1x1 ⊕ a2x2 ⊕ a1a3x2 ⊕ x1x3 ⊕ a3x2x3 ⊕ a3x4 ⊕ x2x5 .

The Feynman’s sum-over-paths method derives the following representation
for matrix elements of a circuit matrix U as sums over all the allowed paths
from the initial classical state a to the final classical state b [6]

〈b|U |a〉 =
1√
2h

∑

x:b(x)=b

(−1)ϕ(x)
.

The sum is evaluated over h Hadamard gates which are contained in the circuit.
Let N0 be the number of positive terms in the sum and N1 be the number

of negative terms:

N0 = | { x | b(x) = b and ϕ(x) = 0 } | , (2)
N1 = | { x | b(x) = b and ϕ(x) = 1 } | . (3)

Thus, N0 and N1 count, respectively, the number of solutions in Fh
2 for systems

(2) and (3) of n + 1 polynomials in h variables over F2. Thereby the matrix
element of the circuit unitary matrix U may be written as the difference

〈b|U |a〉 =
1√
2h

(N0 −N1) . (4)

Our Mathematica package contains the function polynomials[mat ?MatrixQ]
which constructs the set of polynomials over F2 which follows from the bit string
of the form b(x) = b that relates the output classical qubit states b with the
path variables. Here b(x) denotes the last bit string sm in the admissible
path set which depends polynomially on the path variables x = {x1, . . . , xh}.
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x3 Å b1
x5 Å b2
x4 Å x2 x3 Å b3
a1 x1 Åa2 x2 Åa1 a3 x2 Åx1 x3 Åa3 x2 x3 Åa3 x4 Åx2 x5

Figure 9: Polynomial system (5) for the circuit of Fig.4

To determine the circuit unitary matrix we have to count the number of so-
lutions for polynomial systems (2) and (3) in Fh

2 with the input and out-
put bit variables ai, bi taking values in F2. For this purpose the function
polynomials[mat ?MatrixQ] of our Mathematica program outputs polynomials
in the form b(x)⊕ b = 0 and adds the phase polynomial (1) to the system.

For the circuit of Fig.4 the call of function polynomials[mat] outputs the
system shown in Fig.9. The first three polynomial in Fig.9 are those generated
by the output bit string relating the input and output qubit values for admissible
paths coded in terms of the variables {x1, x2, x3, x4, x5}. The last (bottom)
polynomial is the phase polynomial defined by formula (1).

5 Solving circuit polynomial systems

To count the total number of solutions for the polynomial systems (2) and (3)
when the variables take their values in F2 we apply formula (4) and rewrite the
polynomial systems into the form

F0 = {b(x)⊕ b, φ(x)} , (5)
F1 = {b(x)⊕ b, φ(x)⊕ 1} . (6)

Here F0 denotes the output of the function polynomials[mat ?MatrixQ] in
our Mathematica package. It is convenient to transform the system into the
canonical Gröbner basis form [9]. The Gröbner basis method invented in [10]
is the most universal algorithmic tool for investigating and solving multivariate
polynomial systems. The pure lexicographical Gröbner bases are most suit-
able for our purposes, and the built-in module of Mathematica can be used for
construction of such Gröbner bases.

For the system of polynomials F0 in (5) shown in Fig.6 the lexicographical
Gröbner basis for the ordering on the variables x5 Â x4 Â x3 Â x2 Â x1 is
given by

G0 :





g1 = a1x1 ⊕ b1x1 ⊕ a2x2 ⊕ a1a3x2 ⊕ b2x2 ⊕ a3b3 ,
g2 = x3 ⊕ b1 ,
g3 = b1x2 ⊕ x4 ⊕ b3 ,
g3 = x5 ⊕ b2 ,

(7)

The Gröbner basis (7) can easily be obtained with Mathematica. To do this it is
sufficient to define the polynomial sets (5) and (6) as Mathematica polynomial
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F0 = 8x3 + b1, x5 + b2, x4 + x2 x3 + b3, a1 x1 + a2 x2 +

a1 a3 x2 + x1 x3 + a3 x2 x3 + a3 x4 + x2 x5<;
Figure 10: Input Mathematica form for F0 in (5)

lists by the command shown in Fig.10 and invoke the Mathematica function
GroebnerBasis as shown in Fig.11. The last option in Fig.11 specifies the

GB0 = GroebnerBasis@F0, 8x5, x4, x3, x2, x1<,
MonomialOrder ® Lexicographic, Modulus ® 2D�. y_^2 ® y

Figure 11: Mathematica command for computation of (7)

coefficient field as F2. As a result, Mathematica will output the Gröbner basis
(7) shown in Fig.12. Here the Mathematica substitution rule x2 → x for all

8a3 b3 + a1 x1 + b1 x1 + a2 x2 + a1 a3 x2 + b2 x2, b1 + x3,

b3 + b1 x2 + x4, b2 + x5<
Figure 12: The Mathematica output for the command of Fig.11

variables x is used in the output. This substitution rule takes into account that
we are looking for the number of roots for variables in (5) taking values in F2.

Similarly, for the system F1 in (6) the Gröbner basis is

G1 :





g1 = a1x1 ⊕ b1x1 ⊕ a2x2 ⊕ a1a3x2 ⊕ b2x2 ⊕ a3b3 ⊕ 1 ,
g2 = x3 ⊕ b1 ,
g3 = b1x2 ⊕ x4 ⊕ b3 ,
g3 = x5 ⊕ b2 ,

(8)

and is computed with Mathematica exactly in the same way as (7). The lexi-
cographical Gröbner bases (7) and (8) immediately yield the following relations
between the parameters and the numbers N0 and N1 in (2) and (3):

G0 :





a1 ⊕ b1 = 1 → N0 = 2 ,
a2 ⊕ b2 ⊕ a1a3 = 1 → N0 = 2 ,
a2 ⊕ b2 ⊕ a1a3 = 0 ∧ a3b3 = 0 → N0 = 4 ,
a2 ⊕ b2 ⊕ a1a3 = 0 ∧ a3b3 = 1 → N0 = 0 .

(9)

G1 :





a1 ⊕ b1 = 1 → N1 = 2 ,
a2 ⊕ b2 ⊕ a1a3 = 1 → N1 = 2 ,
a2 ⊕ b2 ⊕ a1a3 = 0 ∧ a3b3 = 0 → N1 = 0 ,
a2 ⊕ b2 ⊕ a1a3 = 0 ∧ a3b3 = 1 → N1 = 4 .

(10)
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In that way, the 8× 8 matrix for the circuit of Fig.4 is easily determined by the
formula (4) with h = 5 where N0 and N1 are defined, respectively, in (9) and
(10). As a result, the matrix of Fig.6 is obtained.

For an n−qubit circuit with h−Hadamard gates the polynomial systems (5)
and (6) contains n + 1 polynomials in h−variables x = {x1, x2, . . . , xh} and
2n−parameters a = {a1, a2, . . . , an}, b = {b1, b2, . . . , bn}. These parameters
determine the values of the input and output qubits, respectively. To apply
formula (4) for computing the circuit matrix by the Gröbner bases method, as
we emphasized above, one needs to take into account that both variables and
parameters are elements in the finite field F2. For this reason, generally, to
increase the efficiency of computation with the use of the Mathematica function
GroebnerBasis, instead of the substitution rule used in Fig.11, one should add
to each of the polynomial systems (5) and (6) binomials of the form

x2
i + x1 (i = 1, . . . , h) (11)

and also take into account the restrictions

a2
j + aj = 0, b2

j + bj = 0 (j = 1, . . . , n) .

Due to the last restrictions all the intermediate polynomials arising in the
Gröbner basis construction by Buchberger’s algorithm [9, 10] admit substan-
tial simplification.

It turns out that if one uses another algorithmic approach for the construc-
tion of Gröbner bases called involutive (see [11] and references therein), then
one can avoid handling extra binomials (11). In doing so, one can work with
variables directly as with elements in F2. The first implementation in C++ of an
involutive algorithm for computation of Gröbner basis over F2 with polynomial
variables from F2 is described in [12].

In addition to quantum computation, solving systems of multivariate poly-
nomial equations variables over F2 whose variables take values in F2 is also of
interest for cryptoanalysis [13]. In particular, n quadratic polynomials in n ≥ 80
variables over field F2 were recommended as a public key, and n = 80 was sug-
gested as the first challenge. In [14] this challenge was met by computing the
Gröbner basis with a C program implementing author’s algorithm [15]. This
remarkable computational result gives hope that construction of circuit matrices
by means of polynomial systems (5) and (6) may be computationally superior to
the straightforward linear algebra based method for circuits with n À h where
n and h are, as above, the numbers of qubits and Hadamard gates, respectively.
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supported in part by grant 07-01-00660 from the Russian Foundation for Basic
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A. Mylläri, V. Edneral and N. Ourusoff, eds.

Constructivity of Involutive Divisions:
Facts and Examples

Alexander S. Semenov and Petr A. Zyuzikov

Moscow State University,
Department of Mechanics and Mathematics

semyonov1980@mail.ru, petrzyuzikov@gmail.com

Abstract. This work considers involutive divisions and the property
of constructivity, which assures the existence of a minimal involutive
base for every commutative algebraic system. The main result is
classification of constructive involutiveÂ-divisions in three variables.

1 Introduction

The theory of involutive divisions [1, 2, 3] is the core of the approach to Gröbner
base computing for commutative algebraic systems via an involutive base algo-
rithm. The involutive base of a polynomial ideal occurs to as a variant of its
Gröbner base, in most cases redundant but efficient in the sense of computa-
tional speed for a wide range of polynomial systems. However, the involutive
approach uses an entirely different notation then the Buchberger algorithm, as
the involutivity concept comes from PDE theory, where completion of a PDE
system to involution has been used for many years as a common tool. The pos-
sibility of transferring the involutive PDE approach to commutative algebraic
systems was suggested in [8, 9]. The algebraic framework for the involutive
technique was developed by V. P. Gerdt and Yu. A. Blinkov [2, 3] and J. Apel
[1]. In their works the concept of involutive divisions was explicitly introduced.
An overview of involutive division theory can be found in [5] (in Russian).

An involutive division is a rule to separate the variables into multiplicative
and non-multiplicative sets, as in the Pommaret, Janet, and Thomas approach
to PDE systems. The description of algorithmically acceptable involutive di-
visions and their properties is a current problem in computer algebra theory.
Investigating the process of involutive division researchers found that an involu-
tive division appropriate for algorithmic use should possess the special properties
of noetherianity, continuity, and constructivity [2, 3, 4]. In addition, monotonic-
ity [4] is also an important property that simplifies the computational process,
making it more “smooth”.

There is a consensus among specialists that Janet division, well-known for its
applications to PDEs, may be the best method to use in an involutive base com-
puting algorithm for commutative algebraic ideals. This view is supported by
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the good performance of the Janet base computing algorithm on some algebraic
systems that are considered difficult traditionally and are used as benchmarks
in Gröbner base computations. In spite of that, there is almost no hint of a
rigorous proof of the conjecture that Janet division is excellent. In this situa-
tion the question of Janet division generalizations naturally arises. This paper
presents some results in this direction based on the pair property of involutive
divisions.

A generalization of Janet division is the class of Â-divisions, each corre-
sponding to an admissible monomial ordering. They can be explicitly described
on monomial sets consisting of no more than two distinct elements, and on other
monomial sets they can be defined according to the pair property. Janet division
occurs to be the Â-division, corresponding to lexicographic ordering.

The main result of this paper is the classification of constructive Â-divisions
for three variables together with the description of techniques useful in the
classification process. Some of these techniques could work for a greater number
of variables. The last topic will be the theme for future research by the authors.

The authors are grateful to their scientific advisor Dr. E.V. Pankrat’ev,
as well as to Dr. V.P. Gerdt, for the help, remarks, and useful ideas which
influenced the work. The work was partly supported by the Russian Foundation
for Basic Research, project no. 05-01-00671.

2 Basic definitions

By N we denote the set of nonnegative integers. Then M = {xd1
1 . . . xdn

n |di ∈ N}
is the set of all possible monomials in n variables.

By deg(u) and degi(u), we denote the total degree of monomial u and the
degree of u with respect to variable xi. For the least common multiple and
the greatest common divisor of two monomials u and v, we use the notation
lcm(u, v) and gcd(u, v).

In this work U and V denote finite monomial sets with distinct elements.
We say that an involutive division L is specified, if, for any u ∈ U , a sub-

monoid L(u, U) of M is defined such that the following axioms hold [2, 3]:

• if w ∈ L(u,U) and v|w, then v ∈ L(u,U),

• if u, v ∈ U and uL(u,U)∩vL(v, U) 6= ∅, then u ∈ vL(v, U) or v ∈ uL(u,U),

• if v ∈ U and v ∈ uL(u,U), then L(v, U) ⊆ L(u,U),

• if U ⊆ V , then L(u, V ) ⊆ L(u,U) (filter axiom).

Elements of L(u,U) are multiplicative for u. If w ∈ uL(u,U), then u is
an involutive divisor of w. This is denoted as u|Lw. The monomial w is an
involutive multiple of u. The monomial v = w/u is multiplicative for u, and the
equality w = uv is written as w = u × v. If u is an ordinary divisor of w, but
not an involutive one, then this equality is written as w = u · v. In this case,
the monomial v is non-multiplicative for u.
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For any u in U , there exists a partition of the set of all variables into two
disjoint sets, namely, multiplicative variables ML(u,U) ⊂ L(u,U) and non-
multiplicative variables NML(u,U) 6∈ L(u,U).

The submonoids L(u,U) may be naturally interpreted geometrically. Con-
sider a set uL(u,U) for an involutive division L. Denote this set by CL(u, U).
One can easily verify that the image of the set CL(u,U) under a bijective map-
ping from M onto Zn is a discrete cone. The first three axioms are equivalent
to the following two geometric facts:

• the set CL(u,U) is a discrete cone,

• CL(u,U)∩CL(v, U) 6= ∅ =⇒ CL(u,U) ⊆ CL(v, U)∨CL(v, U) ⊆ CL(u,U)

The notation CL(U) = ∪u∈UCL(u,U) is used further.

Definition 1. An involutive division on a finite monomial set U is disjoint, if
@u, v ∈ U , v 6= u, v ∈ uL(u,U).

Example 1. (Thomas division) Consider a finite monomial set U with dis-
tinct elements. Variable xi is treated as multiplicative for u ∈ U , if degi(u) =
max{degi(v)| v ∈ U} and non-multiplicative otherwise.

Example 2. (Janet division) Consider a finite monomial set U with distinct
elements. For any 1 ≤ i ≤ n, the set U may be partitioned into subsets labeled
with nonnegative integers d1, . . . , di as follows:

[d1, . . . , di] = {u ∈ U |dj = degj(u), 1 ≤ j ≤ i}.
A variable xi is multiplicative for an element u ∈ U , if i = 1 and deg1(u) = max
{deg1(v)| v ∈ U}, or if i > 1, u ∈ [d1, . . . , di−1], and degi(u) = max{degi(v)|
v ∈ [d1, . . . , di−1]}.

The filter axiom can be reformulated as follows:

∀u ∈ U ∩ V ML(u,U ∪ V ) ⊆ ML(u,U) ∩ML(u, V ).

Involutive divisions are mainly used to compute involutive bases of polyno-
mial ideals (see [2, 3, 1]). Most algorithms for involutive base computations
have a similar structure. The core of the algorithm is a main loop, which fin-
ishes the computing for every commutative ideal if the division possesses some
special characteristic properties: noetherianity, continuity, constructivity [2, 3],
or admissibility [1]. Each iteration of the loop consists of taking the polynomial
g · x, where x is non-multiplicative for lm(g) and g belongs to the base G in
construction, getting its involutive normal form, and adding it to G, if it is
non-zero. The logic of any algorithm for involutive base computing supposes
that, the greater the size and dimension of the sets of involutive multiples, the
less the number of involutive prolongations should be considered. Starting from
this idea, it is worth finding optimal divisions with the widest possible involu-
tive cones. According to the filter axiom, these are the divisions with property
∀u ∈ U ∩ V

ML(u,U ∪ V ) = ML(u,U) ∩ML(u, V ). (1)
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This class coincides with the class of pairwise involutive divisions, intro-
duced in [4].

Definition 2. [4] An involutive division L is pairwise, if ∀U , ∀u ∈ U(U \{u} 6=
∅) the following condition holds:

ML(u,U) =
⋂

v 6=u,v∈U

ML(u, {u, v}) (2)

The proof of equivalence is given in [6]. In [4], it is proved that Thomas
and Janet divisions are pairwise. Besides, they are disjoint. Another important
example of pairwise disjoint involutive division is Â-division, where Â is an
admissible monomial ordering.

Definition 3 (Â-division). Let U be a finite monomial set of different elements
and L be an involutive division. A variable xi (1 6 i 6 n) is non-multiplicative
for u ∈ U if there exists u1 ∈ U such that u1 Â u, i = min{j | degj(u) <
degj(u1)}.

Janet division is a Âlex-division, where lex is a lexicographical ordering for
which x1 Â x2 Â . . . Â xn. A Â-division may be defined equivalently using the
pair property.

Definition 4. The pairwise involutive Â-division L is defined on sets, consisting
of no more that two elements (basic set), as follows. For an {u, v} (u Â v):

1. NML(u, {u, v}) = {},
2. NML(v, {u, v}) = xp, where p = min{l| degl(v) < degl(u)}

If the set U contains one element, namely, U = {u}, then NML(u, {u}) =
{}.

Pairwise Â-divisions can be viewed as candidates to be optimal among all
involutive divisions, if the optimality is understood as the maximal width of the
involutive cones. Consider the following argument to support this view:

If a set U consists of one element, namely, U = {u}, then NML(u, {u}) = {}
is the best variant for involutive division. If a set U contains two distinct
elements, the optimal possibility is when one element has an n-dimensional
involutive cone and another element has an (n − 1)-dimensional cone or, in
other words, one non-multiplicative variable. The sizes of involutive cones for
sets U , which consist of more than two elements, are the maximal possible for
a pairwise division, if the division on all two-element sets is completely defined.

In papers [2, 3] a concept of continuity of involutive divisions is introduced.
Let an involutive division L be given. A sequence of monomials {ut} (t ∈
{1, 2 . . .}) in a finite monomial set U with distinct elements, such that there
exists xk(t) ∈ NML(ut, U) and [ut+1|Lut · xk(t)] is called a chain.
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Definition 5. [2, 3] An involutive division L is continuous, if, in every chain,
the inequality ∀s1 6= s2 us1 6= us2 holds, and, hence, every chain is finite.

Definition 6. [2, 3] A continuous involutive division L is constructive on a
finite set U ⊂M with distinct elements if for any u ∈ U , xi ∈ NML(u, U) such
that u · xi has no involutive divisors in U and

(∀v ∈ U)(∀xj ∈ NML(v, U))(v · xj |u · xi, v · xj 6= u · xi) ⇒

⇒ [v · xj ∈ CL(U)]

the following condition holds:

∀w ∈ CL(U)[u · xi 6∈ CL(U ∪ {w})].

A continuous involutive division L is constructive if it is constructive on
every finite set U with distinct elements. In [7] it is proven, that all Â-divisions
are continuous.

The constructivity property [2, 3] is a sufficient condition for the existence
and uniqueness of a minimal involutive base. Results on classification of con-
structive Â-divisions are presented in the next section.

3 Constructivity. Main Results

In this part we present results concerning constructivity. The most important
of them is the description of all constructive divisions in three variables.

Definition 7. Let L be an involutive Â-division. A set of distinct monomials
{u1, u, w, û} is a γ-configuration, if it satisfies the following conditions:

1. u ≺ û,

2. w = u1 × v, v ∈ L(u1, {u1, u, û}),
3. u · xi ∈ wL(w, {û, u, u1, w}), where xi = NML(u, {u, û}).
Further, the index i and notation xi is always used in the previous sense

(xi = NML(u, {u, û})). Also, in case u1 ≺ u the notation xj and xk will be
used for xj = NML(u1, {u1, u}) and xk = NML(u1, {u1, û}). Classification of
γ-configurations is an important step towards describing constructive involutive
divisions.

Lemma 1. Let L be an involutive Â-division. Every γ-configuration {u1, u, w, û}
can be of two possible types (m = gcd(u1, u)).

1. (1st type) u1 = m, u = mxk1
1 . . . xkn

n ,

2. (2nd type) u1 = mxi, u = mxk1
1 . . . x

ki−1
i−1 x

ki+1
i+1 xkn

n .



Constructivity of Involutive Divisions: Facts and Examples 43

Proof. It can be seen from the definition that u1|u ·xi in the conventional sense.
If degi(u1) ≤ degi(u), then m = u1 and the γ-configuration is of the first type.
Otherwise, it belongs to the second type.

Lemma 2. [7] (Sufficient conditions of constructivity) Let L be an involutive
Â-division. If there exists no γ-configuration {u1, u, w, û} for which the relations
u1 ≺ u, and u1 <lex(≺) u are simultaneously valid, then L is constructive.

Lemma 3. [7] For every γ-configuration {u1, u, w, û} corresponding to a Â-
division, where u1 ≺ u, the relation xi Â xj is valid.

Lemma 4. Let L be an involutive Â-division with γ-configuration {u1, u, w, û}.
Then degi(u1v) = degi(u) + 1.

Proof. It is obvious that degi(u1v) ≤ degi(u) + 1. If degi(u1v) < degi(u) + 1
then u · xi = u1v×w, u = u1v× w

xi
, which contradicts the properties of disjoint

division.

Lemma 5. Let L be an involutive Â-division. Let {u1, u, w, û} be a γ-configu-
ration of the first type. Then j < i.

Proof. Obviously degi(u1v) = degi(u) + 1 and u1 = m is multiplied by xi.
According to its definition, xj is the variable for which the following relation is
satisfied:

j = min{l| degl(u1) < degl(u)}.
Due to lemma 3 i 6= j. If i < j then degi(u) = degi(u1). As the γ-

configuration is of the first type, degj−(u) = degj−(u1) = degj−(m). This
relation implies NML(u, {u, û}) = NML(u1, {u1, û}) = {xi}. The last equality
contradicts the fact that xi is multiplicative for u1.

Lemma 6. Consider the second-type of γ-configuration for n variables, for
which the relations u1 ≺ u, and u1 <lex(≺) u are simultaneously valid. The
variables can be notated as xi, xj, and xl1 , . . . , xln−2 . Then there exists ls such
that ls > j, xls Â xj.

Proof. Consider the second-type of γ-configuration for n variables. There are
variables xi, xj , and xl1 , . . . , xln−2 . The relations which define the configuration
type have the following form:

xi ≺ x
kj

j xr1
l1

. . . x
rn−2
ln−2

≺ xix
r1−p1
l1

. . . x
rn−2−pn−2
ln−2

,

and the same for the ordering lex(≺). Due to the definition of j, for all lq, such
that rq > 0, lq > j holds.

Also kj > 0. This yields

x
kj

j xp1
l1

. . . x
pn−2
ln−2

≺ xi ≺ x
kj

j xr1
l1

. . . x
rn−2
ln−2

,

and
x

kj

j xp1
l1

. . . x
pn−2
ln−2

<lex(≺) xi <lex(≺) x
kj

j xr1
l1

. . . x
rn−2
ln−2

.
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If pt > 0 then xlt ≺ xi. If all p1, . . . , pn−2 are greater than zero, then all
xl1 , . . . , xln−2 <lex(≺) xi, and xi <lex(≺) x

kj

j xr1
l1

. . . x
rn−2
ln−2

is impossible. So there
exists an s such that ps = 0.

We can choose s, for which also rs 6= 0 and xls >lex(≺) xi. Due to xi Â xj ,
xls >lex(≺) xj and xls Â xj take place. Then for any q, rq − pq > 0, lq > j.
Therefore ls > j.

Theorem 1. [7] Consider the Â-division L. If for the ordering Â one of four
conditions

1. ∃i < j < k s.t. xj ≺ xi ≺ xk,

2. ∃i < j < k s.t. xi ≺ xj ≺ xk,

3. ∃i < j < k, p ∈ N,p > 1 s.t. xi ≺ xk ≺ xj ≺ xp
k,

4. ∃i < j < k < l s.t. xj Â xk Â xi, xj Â xk Â xl

is satisfied, L is non-constructive.

Proof. The proof is done according to the following scheme. First, the set U is
constructed, and L is defined on U according to the pairwise property. Then, for
each case, the example of non-constructivity is given by specifying the set U , the
non-multiplicative prolongation u of the element u ∈ U , and the multiplicative
prolongation w of the element v ∈ U . All the conditions on these elements can
be checked from tables of variable partitioning for U and U ∪ {w}. The tables
in all cases can be seen in the proof of this theorem in [7].

In case 1, relation xj ≺ xi ≺ xk implies xi ≺ xixj ≺ xjxk ≺ xixk ≺ x2
i xjxk.

Then U = {xi, xixj , xjxk, x2
i xjxk}, and w = xi × xk. The main relation is

xixj · xk = xjxk · xi = xixk × xj .
In case 2, relation xi ≺ xj ≺ xk implies xj ≺ xixj ≺ xixk ≺ xjxk ≺

x2
jxk. Then U = {xj , xixj , xixk, x2

jxk}, and w = xj × xk. The main relation is
xixk · xj = xixj · xk = xjxk × xi.

In case 3, relation xi ≺ xk ≺ xj ≺ xp
k implies xk ≺ xixk ≺ xixj ≺ xjxk ≺

xp+1
k . Then U = {xk, xixk, xixj , x

p+1
k }, w = xk × xj . The main relation is

xixk · xj = xixj · xk = xjxk × xi.
The fourth case is proven as follows: Consider the case xj Â xk Â xl Â xi. If

xixl Â xk then x2
l Â xk and the variables x2

l Â xk Â xl Â xi satisfy case 3. Then
xixl ≺ xk, and it is evident that xjxl Â xk, which also yields non-constructivity
by Theorem 7.

Consider the case xj Â xk Â xi Â xl. If xjxl ≺ x2
k then xj ≺ x2

k and the
relation x2

k Â xj Â xk Â xi satisfies case 3. Then xjxl Â x2
k and x2

k Â xixl

which also yields non-constructivity by Theorem 7. Thus, all four cases are
considered, thus proving the theorem.

The next step is to describe all possible γ-configurations for three variables.
If x3 is greater than all other variables, the Â-division is non-constructive. Con-
sider the special case of a second-type γ-configuration for n = 3. There are
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three variables xi, xj , and xl. Lemma 6 yields xl Â xi Â xj , and l > j. So lem-
mas 5 and 6 give an intuition about which configuration may yield constructive
divisions for n = 3. The cases of the four remaining variable permutations are
listed below in the following table.

Ordering 1st type 2nd type
x1 Â x2 Â x3 − −
x1 Â x3 Â x2 i = 3, j = 2, l = 1 −
x2 Â x1 Â x3 i = 2, j = 1, l = 3 −
x2 Â x3 Â x1 i = 3, j = 1, l = 2; i = 2, j = 1, l = 3 i = 3, j = 1, l = 2

Theorem 2. [7] Let Â be an admissible monomial ordering, such that x1 Â
x2 Â . . . Â xn. There is no γ-configurations with u1 ≺ u and u1 <lex(≺) u and
involutive Â-division L is constructive.

Proof. As for first-type configurations, we know that xi Â xj , and i > j
from lemma 5. This is impossible with this ordering and thus there are no γ-
configurations of the first type. As for second-type configurations, there exists ls
such that ls > j, xls Â xj . This is impossible and there are no γ-configurations
of the second type. From lemma 2 we know that if there are no γ-configurations,
division is constructive.

Example 3. Example of non-constructive Â-division.

Consider the Â-division L. If the ordering Â satisfies the conditions: x2 Â
x1 Â x3 and ∃s, t ≥ 0 s.t. xt+1

2 Â xs+1
3 Â x1x

t
2, then L is non-constructive.

The relation xt+1
2 Â xs+1

3 Â x1x
t
2 implies x2

1x
s+1
3 ≺ x2

1x
t+1
2 and x2

1x
t+1
2 ≺

x1x2x
s+1
3 .

Then consider U = {x1x
s+1
3 , x2

1x
s+1
3 , x2

1x
t+1
2 }, w = x1x

s+1
3 × x2. The main

relation is x2
1x

s+1
3 · x2 = x1x2x

s+1
3 × x1.

U NML(U) U ∪ {x1x2x
s+1
3 } NML(U ∪ {x1x2x

s+1
3 })

x1x
s+1
3 x1 x1x

s+1
3 x1, x2

x2
1x

s+1
3 x2 x2

1x
s+1
3 x2

x2
1x

t+1
2 − x2

1x
t+1
2 x3

x1x2x
s+1
3 −

Theorem 3. Let Â be an ordering, for which x2 Â x1 Â x3 is valid, and there
do not exist s, t ≥ 0, xt+1

2 Â xs+1
3 Â x1x

t
2. Then no γ-configurations exist for Â

and Â-division L is constructive.

Proof. According to lemma 2 it is sufficient to prove that there is no γ-configu-
rations for L. Consider the opposite. Let {u1, u, w, û} be a γ-configuration for
L. According to the previous table {u1, u, w, û} is a γ-configuration of the first
type, and i = 2, j = 1, l = 3.

Then, necessarily k = 1, deg1(u1) < deg1(û) ≤ deg1(u), and so we have

deg2(u) < deg2(u) + 1 = deg2(u1v) ≤ deg2(û),
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deg1(u1) = deg1(u1v) < deg1(û) ≤ deg1(u).

Also relation û ≺ u1v is necessary, since in the opposite case

NML(u1v, {u1v, û}) = x1, deg1(u) > deg1(u1v)

and we obtain a contradiction. So u ≺ û ≺ u1v.
Then deg3(û) < deg3(u1v) ≤ deg3(u), since in the opposite case û would be

greater than u1v with respect to Â.
Relations for degrees yield u = m1x

1+r+r1
1 x1+s+s1

3 , û = m1x
1+r
1 x1+t

2 , u1v =
m1x2x

1+s
3 , m1 = gcd(u, u1v, û).

So we have relations on x1, x2, x3:

x1+r+r1
1 x1+s+s1

3 ≺ x1+r
1 x1+t

2 ≺ x2x
1+s
3 .

The second relation yields x1x
t
2 ≺ x1+s

3 and the first yields x1+s
3 ≺ x1+t

2 for
some s, t ≥ 0.

Example 4. Example of non-constructive Â-division.

Consider the Â-division L. If the ordering Â satisfies the condition: x1 Â
x3 Â x2 and ∃s, t > 0 s.t. xt+1

3 Â xs+1
1 Â x2x

t
3, then L is non-constructive.

The relation xt+1
3 Â xs+1

1 Â x2x
t
3 implies x2

2x
t+1
3 Â x2

2x
s+1
1 and x2x3x

s+1
1 Â

x2
2x

t+1
3 . Also, x2

2x
t+1
3 Â x2x

s+1
1 is valid.

Then consider U = {xs+1
1 x2, x

s+1
1 x2

2, x
2
2x

t+1
3 }, w = xs+1

1 x2 × x3. The main
relation is xs+1

1 x2
2 · x3 = xs+1

1 x2x3 × x2.

U NML(U) U ∪ {x2x3x
s+1
1 } NML(U ∪ {x2x3x

s+1
1 })

xs+1
1 x2 x2 xs+1

1 x2 x2, x3

xs+1
1 x2

2 x3 xs+1
1 x2

2 x3

x2
2x

t+1
3 − x2

2x
t+1
3 x1

xs+1
1 x2x3 −

Theorem 4. Let Â be an ordering, for which x1 Â x3 Â x2 is valid. Then
Â-division L is constructive and no γ-configurations exist, if and only if there
do not exist t, s > 0: xt+1

3 Â xs+1
1 Â x2x

t
3.

Proof. Obviously, if t, s > 0, and xt+1
3 Â xs+1

1 Â x2x
t
3 exist, the division is

non-constructive, according to the previous example.
The next step is to prove that every non-constructive division for an ordering

Â, for which x1 Â x3 Â x2, satisfies the second property. Suppose the opposite.
Let {u1, u, w, û} be a γ-configuration. Due to the classification above, it is of
the first type, and i = 3, j = 2, l = 1.

Consider the monomial u1v. As u1v Âlex(≺) u, then necessarily deg1(u1v) =
deg1(u).

deg1(û) 6 deg1(u) = deg1(u1v) = deg1(u1),

deg2(u1) = deg2(u1v) < deg2(û) 6 deg2(u),
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deg3(u1) 6 deg3(u) < deg3(u1v) 6 deg3(û).

These relations yield û ≺ u1v, since if u1v ≺ û, NML(u1v, {u1v, û}) = {x2}.
Then we have u ≺ û ≺ u1v. Relations for degrees lead to u = m1x

s+1
1 x1+r+λ

2 , û =
m1x

1+r
2 xt+1

3 , u1v = m1x
s+1
1 x3, m1 = gcd(u, u1v, û).

So we have relations on x1, x2, x3:

xs+1
1 x1+r+λ

2 ≺ x1+r
2 xt+1

3 ≺ xs+1
1 x3.

They are equivalent to the following relations:

xs+1
1 xλ

2 ≺ xt+1
3 (⇒ xs+1

1 ≺ xt+1
3 ), x1+r

2 xt
3 ≺ xs+1

1 (⇒ x2x
t
3 ≺ xs+1

1 ).

Theorem 5. Consider the case when x2 Â x3 Â x1. Then Â-division L is
constructive if and only if

∀p, q ∈M deg2(p) > deg2(q) ⇒ p Â q.

Proof. If the second condition of the theorem is not satisfied then ∃p > 1,
xp

3 Â x2, and the division is non-constructive due to Theorem 1. Then, if division
is constructive, the second condition of the theorem is satisfied necessarily. Our
aim is to prove that any Â-division, for which x2 Â x3 Â x1 and the second
condition satisfied, is constructive.

Consider the opposite. Then there exists a set U for which constructivity
does not hold on elements u1, u, u1v ∈ U and a corresponding γ-configuration
{u1, u, w, û} for which relations u1 ≺ u and u1 <lex(≺) u hold simultaneously.

In the proof of the theorem we will consider that û is the maximal pos-
sible with respect to Â, which satisfies the corresponding properties of a γ-
configuration.

Due to lemma 3, i 6= 1 so

deg1(û) ≤ deg1(u).

According to the definition of the ordering Â, we have

deg2(u1) ≤ deg2(u) ≤ deg2(û).

If deg2(u) < deg2(û) then i = 2, and otherwise i = 3.
The case deg2(u1) = deg2(u) = deg2(û) is impossible, as it yields 2 6∈

{i, j, k}, and the proof is analogous to that of Theorem 6. So,

deg2(u1) < deg2(û).

As u1v >lex(≺) u deg2(u) ≤ deg2(u1v), and, if i = 2, deg2(u1v) = deg2(u)+1.
The next step is to prove that deg2(u1) < deg2(u1v). If i = 2 it is obvious.

If i = 3 then deg2(u) = deg2(û), and deg2(u1) < deg2(u) = deg2(u1v).
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Hence, x2 ∈ ML(u1, {u1, u}) and x2 ∈ ML(u1, {u1, û}). Due to deg2(u1) <
deg2(û), k = 1, which yields

deg1(u1) < deg1(û) ≤ deg1(u),

and j = 1.
The last relation implies that if u1v ≺ û then NML(u1v, {u1v, û}) = x1

which is impossible since deg1(u1v) < deg1(u). So, û ≺ u1v, hence

deg2(u1v) = deg2(û).

For i = 3 we show below that u1v|û and NML(u1v, {u1v, û}) = xj . This
leads to a contradiction and proves the theorem.

Corollary 1. Let L be a Â-division in three variables. It is constructive in and
only in the following cases:

• x1 Â x2 Â x3,

• x2 Â x1 Â x3, @s > 0, t > 0 s.t. xt+1
2 Â xs+1

3 Â x1x
t
2

• x2 Â x3 Â x1, ∀p, q ∈M deg2(p) > deg2(q) ⇒ p Â q,

• x1 Â x3 Â x2, @s > 0, t > 0 s.t. xt+1
3 Â xs+1

1 Â x2x
t
3.

Below are outlined two theorems, which consider the cases of two and four
variables.

Theorem 6. [7] Consider the two-variable case, i.e. when n = 2. Then every
involutive Â-division L is constructive.

Theorem 7. Consider the Â-division L. If for the ordering Â the condition is
satisfied: ∃s,m, q ∈ N s.t. xm+1

2 xq
4 Â xs

3 Â x1x
m
2 xq

4, then L is non-constructive.

Proof. The relation xm+1
2 xq

4 Â xs
3 Â x1x

m
2 xq

4 implies x2
1x

m+1
2 xq

4 Â x2
1x

s
3 and

x1x2x
s
3 Â x2

1x
m+1
2 xq

4. Also, x2
1x

m+1
2 xq

4 Â x1x
s
3 is valid.

Then consider U = {x1x
s
3, x

2
1x

s
3, x

2
1x

m+1
2 xq

4}, w = x1x
s
3 × x2. The main

relation is x2
1x

s
3 · x2 = x1x2x

s
3 × x1.

U NML(U) U ∪ {x1x2x
s
3} NML(U ∪ {x1x2x

s
3})

x1x
s
3 x1 x1x

s
3 x1, x2

x2
1x

s
3 x2 x2

1x
s
3 x2

x2
1x

m+1
2 xq

4 − x2
1x

m+1
2 xq

4 x3

x1x2x
s
3 −

That proves the theorem.



Constructivity of Involutive Divisions: Facts and Examples 49

References

[1] Apel J. The Theory of Involutive Divisions and an Application to Hilbert
Function Computations. Journal of Symbolic Computations, (1998) 25, no
6, 683–704.

[2] Gerdt V.P., Blinkov Yu. A. Involutive Bases of Polynomial Ideals. Mathe-
matics and Computers in Simulation, (1998) 45, 519–542.

[3] Gerdt V.P., Blinkov Yu. A. Minimal Involutive Bases. Mathematics and
Computers in Simulation, (1998) 45, 543–560.

[4] Gerdt V.P. Involutive Division Technique: Some Generalizations and Op-
timizations. Journal of Mathematical Sciences, (2002) 108(6), 1034–1051.

[5] Pankrat’ev E.V. The Elements of Computer Algebra (in Russian). INTUIT-
BINOM, Moscow, 2007.

[6] Semenov A.S. Pair Analysis of Involutive Divisions. Fundamental and Ap-
plied Mathematics, (2003) 9(3), 199–212.

[7] Semenov A.S. On Connection Between Constructive Involutive Divisions
and Monomial Orderings. CASC-2006 Proceedings, Springer Verlag, (2006)
261–278.

[8] Zharkov A. Yu. and Blinkov Yu. A. Involutive Approach to Investigating
Polynomial Systems. Proceedings of “SC93”, International IMACS Sym-
posium on Symbolic Computations: New Trends and Developments (Lille,
June 14-17,1993). Mathematics and Computers in Simulation, (1996) 42,
323–332.

[9] Zharkov A. Yu. and Blinkov Yu. A. Involutive Bases of Zero-Dimensional
Ideals. Preprint No. E5-94-318, Joint Institute for nuclear Research, Dubna,
1994.



Computer Algebra and Differential Equations

Acta Academiae Aboensis, Ser. B, Vol. 67, no. 2, 2007
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Abstract.

We give a brief sketch of recent results on finiteness conditions for
differential standard bases in ordinary rings of differential polyno-
mials F{ y}.

1 Introduction

Consider a differential polynomial ring F{ y} over a field of constants F of char-
acteristic zero. The elements of this ring correspond to autonomous differential
equations in one unknown function y. The algebraic study of systems of such
differential equations leads to problems concerning differential ideals in F{y}.
The membership problem is the classical one [13]. It is undecidable for infinite-
ly generated differential ideals in general [3]. On the other hand, for finitely
generated ideals it is still open. There is a beautiful algorithmic solution to this
problem in the case of radical ideals via decomposition of a radical ideal in-
to finite intersections of characterizable (or regular) components. Further, one
can algorithmically check whether a given polynomial belongs to an isobaric
ideal [3, 13]. We consider the third case, the case of ideals that have a finite
(or parametric) differential standard basis (DSB) w.r.t. some admissible order-
ing [1, 8, 14]. DSBs are natural generalizations of Gröbner bases to the case of
differential ideals. The difference between DSBs and characteristic sets lies in
the reduction process. While the characteristic sets technique involves pseudo-
reduction, DSBs need full differential reduction (without initials and separants).
As a result, DSBs may be infinite even in very simple cases, but they can be
applied to non-radical ideals. The interest in DSBs reappeared after new exam-
ples of finite and recursive bases w.r.t. more general admissible orderings had
been found by the authors [12]. In fact, the existence of a finite DSB of an ideal
depends on admissible ordering. A. Zobnin extended the notion of admissible
ordering on differential monomials and introduced special classes of orderings
that share common properties w.r.t. differential operations [14]. It turned out
that finiteness conditions of DSBs are closely related to the existence of linear
and quasi-linear polynomials (or their powers) in the ideal [14]. Moreover, the
authors found a link between the existence of a finite DSB and the property
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of being radical for ideals generated by at most first-order polynomials. One
of the key tools in researching DSBs of certain differential ideals is the ideal of
separants, introduced by D. Trushin [11].

2 Preliminaries

We give necessary information on Gröbner bases: Fix a polynomial ring
K[x1, . . . , xn] over a field K. Denote by Mn the set of all monomials in
x1, . . . , xn, i.e., the expressions of form

∏n
i=1 xαi

i , αi > 0. Mn is a multiplicative
monoid. A term is a monomial with a nonzero coefficient from K.

Definition. An (admissible) monomial ordering on Mn is a linear order that
satisfies the following properties:

1. M ≺ N =⇒ MP ≺ NP ∀M,N,P ∈Mn;

2. 1 4 M ∀M ∈Mn.

Examples. Fix an order on variables (for example, x1 ≺ x2 ≺ . . . ≺ xn).
Let M = xα1

1 . . . xαn
n and N = xβ1

1 . . . xβn
n be arbitrary monomials in Mn. The

following binary relations on Mn are monomial orderings:
• Lexicographical ordering (lex):

M ≺lex N ⇐⇒ (α1, . . . , αn) ≺lex (β1, . . . , βn).

• First by degree, then lexicographical ordering (deglex):

M ≺deglex N ⇐⇒ (deg M, α1, . . . , αn) ≺lex (deg N, β1, . . . , βn).

• First by degree, than reverse lexicographical ordering (degrevlex):

M ≺degrevlex N ⇐⇒ (deg M, βn, . . . , β1) ≺lex (deg N,αn, . . . , α1).

It is well-known that a monomial ordering well orders the set M. Fix a
monomial ordering ≺. For any f ∈ K[x1, . . . , xn] \ {0} one can define the
leading monomial lm≺ f and the leading coefficient lcf≺ f .

Definition. The set G is called a Gröbner basis of the ideal I / K[x1, . . . , xn]
w.r.t. ≺ if G ⊂ I and ∀f ∈ I, f 6= 0, ∃g ∈ G : lm≺ g | lm≺ f .

Any ideal in K[x1, . . . , xn] has finite Gröbner basis w.r.t. any monomial
ordering, because the ring of polynomials over a field is Noetherian. In the
differential polynomial case this is not so.

2.1 Matrix Representation of Monomial Orderings

It is well known that any admissible ordering onMn can be specified by a matrix
M∈ Mm,n(R) of the size m× n (for some m > 1) with zero kernel over Q and
lexicographically positive columns:

xα1
1 . . . xαk

k ≺ xβ1
1 . . . xβn

n ⇐⇒ M
(

α1

...
αn

)
≺lex M

(
β1

...
βn

)
.
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Conversely, any matrix M possessing such properties specifies a monomial or-
dering. Such matrices are called monomial matrices. By definition, the identity
matrix specifies a lexicographical ordering. Surely, the same ordering can be
specified by different matrices. For example, a lexicographical ordering can be
specified by any nonsingular upper-triangular matrix.

Example. The orderings deglex and degrevlex with x1 ≺ x2 ≺ . . . ≺ xn can
be specified by n× n matrices




1 1 1 ... 1 1 1
1

1
1

...
1

1


 and




1 1 1 ... 1 1 1
−1

−1
−1

...
−1

−1


 , respectively.

2.2 Rings of Differential Polynomials

We give necessary definitions from differential algebra that can be found in
books by Ritt and Kolchin [9, 4].

An ordinary differential ring R is a commutative ring with a derivative
operator δ, i.e., a linear operator that satisfies the product rule: δ(ab) = δa b +
a δb. We put Θ := {δk : k > 0}. An ideal I of R is called differential if δI ⊂ I.
The intersection of differential ideals is a differential ideal. If F ⊂ R then [F ]
denotes the differential ideal generated by F , i.e., the smallest differential ideal
containing F . It is equal to the intersection of all differential ideals containing
F .

Let F be a field of constants, i.e., a differential field such that δF = 0. We
assume that the characteristic of F is zero. Let y be a differential indetermi-
nate. The polynomial ring F{y} := F [Θy] = F [y, y1, y2, . . .] in infinitely many
differential variables is called the ring of differential polynomials over F . We
denote a differential variable δiy by yi. The rule δyk = yk+1 makes F{y} a
differential ring. We put Rk = F [y0, y1, . . . , yk].

Any differential monomial M ∈ R{y} can be written as M =
∏n

i=0 yαi
i ,

where αi > 0. The weight of monomial M is wt M :=
∑n

i=1 iαi. Any differential
polynomial is a finite sum of differential terms, i.e., expressions of the form c·M ,
where c ∈ F and M is a differential monomial.

We shall often omit the word “differential” for short.

3 Differential Standard Bases

Standard bases of differential ideals in rings of differential polynomials are sim-
ilar to Gröbner bases in polynomial rings. The first generalizations of Gröbner
bases in differential algebra appeared independently in the late 1980s in works of
G. Carrà Ferro [1, 2] (“differential Gröbner bases”) and F. Ollivier [8] (“standard
bases of differential ideals”). In the early 1990s the work of E. Mansfield [7] ap-
peared, where the notion of differential Gröbner basis was redefined. Mansfield
used pseudo-reduction instead of differential reduction, and her bases extend
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the concept of the characteristic set of the ideal. In contrast to Mansfield’s
construction, bases introduced by Ollivier and Carrà Ferro allow testing mem-
bership in the ideal. To avoid confusion, we use the term “differential standard
basis” for the bases in the sense of Carrà Ferro and Ollivier.

3.1 Admissible Orderings on Differential Monomials

Let M be the set of all differential monomials of F{y}. An admissible ordering
on differential monomials is a linear order ≺ on M, satisfying the following
properties:

1. M ≺ N =⇒ MP ≺ NP ∀M, N, P ∈M;

2. 1 4 P ∀P ∈M;

3. yi ≺ yj ⇐⇒ i < j.

A. Zobnin proved [12] that these properties are sufficient to guarantee that ≺
well orders M.

We denote by Rk the polynomial ring F [y, y1, . . . , yk]. Let Mk now be the
set of all monomials in y = y0, y1, . . . , yk, and ≺k be the restriction of ≺ to Mk.
The orderings ≺k are concordant : ≺k is the restriction of ≺k+1 to Mk. The
authors proved in [14] that one can choose monomial matrices specifying ≺k

also concordantly in some sense.

Definition. The set of monomial matrices {Mk} is called concordant, if the
matrix Mk−1 can be obtained from Mk by removing the rightmost column and
then by removing a row of zeroes, if such a row exists.

Proposition ([14]). If monomial matrices Mk−1 and Mk are concordant then
the corresponding orderings ≺k−1 and ≺k are concordant too.

Theorem 1 (Zobnin, [14]). Any concordant set of admissible orderings such
that yk ≺k+1 yk+1 can be specified by a concordant set of matrices.

Corollary 1 (Zobnin, [14]). Any admissible ordering on differential monomi-
als can be specified by a concordant set of monomial matrices, or, equivalently,
by an “infinite” monomial matrix.

Remark. By an infinite monomial matrix we mean an ordered system of infinite
rows with real elements such that for any k > 0 the first k + 1 columns contain
only finitely many non-zero rows. Moreover, this finite set of rows must form
a monomial matrix Mk specifying ≺k. Then {Mk} is a concordant set of
matrices. We emphasize that the ordinal type of the ordered system of rows in
an infinite monomial matrix may differ from the ordinal types of N and Z. Of
course, any concordant set of monomial matrices, as well as the corresponding
infinite matrix, specifies an admissible ordering.

The “infinite” matrix from Corollary 1 is not uniquely determined, but the
author introduced [14] the notion of canonical infinite matrix specifying the
ordering, which is unique.
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Example. The ordering (lex) is specified by the infinite matrix



... ... ... ... ... ... ... ... ...
... 1 ...
... 1 ...
... 1 ...

... ... ... ... ... ... ... ... ...
1 ... ...

1 ... ...


 ,

or by the concordant set of matrices

( 1 ) , ( 0 1
1 0 ) ,

(
0 0 1
0 1 0
1 0 0

)
,

(
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

)
, . . .

(new rows and columns of matrices are printed in bold).

Example. The ordering degrevlex (first by degree, then reverse lexicographical)
can be specified by the matrix




1 1 1 ... 1 1 1 ...
−1 ... ...

−1 ... ...
−1 ... ...

... ... ... ... ... ... ... ...
... −1 ...
... −1 ...
... −1 ...

... ... ... ... ... ... ... ...


 .

The first row in this matrix can be replaced by ( 1 2 3 4 ... ) , and that gives the
new admissible ordering (wt+deg)revlex. Considering the rows of the form

( 1 1 1 1 ...
0 1 2 3 ... ) and ( 0 1 2 3 ...

1 1 1 1 ... ) ,

one can construct matrices specifying orderings degwtrevlex and wtdegrevlex.

3.2 Special Classes of Admissible Orderings

Definition (Levi, [6]). Let p > 0. A monomial M =
∏k

i=0 yαi
i is called an

αp-monomial, if for all i from 1 to k we have αi−1+αi < p. All other monomials
are called βp-monomials.

It is easy to check that for any k > 0 the polynomial δkyp contains the
unique βp-monomial. If k = ap + b, where 0 6 b < p, this βp-monomial is equal
to yp−b

a yb
a+1. Certainly, when b = 0, one obtains yp

a.

Theorem 2 (Levi, [6, Theorem 1.1]). For a monomial P one has P ≡∑
ciMi mod [yp], where Mi are αp-monomials, and ci are uniquely determined

rational coefficients. No nontrivial linear combination of αp-monomials with
rational coefficients is in [yp].

Definition ([14]). A polynomial f is called ≺-quasi-linear if deg lm≺ f = 1.
An admissible ordering ≺ is called:
• δ-lexicographical, if lm≺ δM = lmlex δM ∀M 6= 1;
• β-ordering, if lm≺ δkyn = lmdegrevlex δkyn ∀k, n > 1 (i.e., the leading mo-

nomial of δkyn is βn-monomial);
• concordant with quasi-linearity, if the derivative of any ≺-quasi-linear po-

lynomial is also ≺-quasi-linear.
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Example ([12, 14]).
• the orderings lex, deglex and wtlex are δ-lexicographical;
• degrevlex, (wt+deg)revlex, degwtrevlex and wtdegrevlex are β-orderings;
• all these orderings are concordant with quasi-linearity.

3.3 Differential Standard Bases

For simplicity, we consider differential standard bases in the differential polyno-
mial ring F{y} with one derivative operator δ. In the cases of partial differential
rings or several indeterminates all definitions are similar. Let an admissible or-
dering ≺ be fixed1.

Definition. A set S ⊂ I is a differential standard basis of the differential ideal
I / F{y} w.r.t. ≺, if ΘS is an (infinite) algebraic Gröbner basis of the ideal I
considered as ideal in F [y, y1, y2, . . .].

Differential standard bases in F{y} can be viewed as a suitable parametriza-
tion of infinite algebraic Gröbner bases in F [Θy]. This parametrization is pro-
vided by differential operators and is compatible with the differential structure
of the ring F{y}. Thus, we can work with the single element f instead of the
family Θf .

As in the polynomial case, differential standard bases allow several equivalent
definitions. They are based on the notion of differential reduction (we shall
simply write reduction if there are no misunderstandings). A polynomial f
elementary (differentially) reduces w.r.t. a polynomial s, if there exists k > 0
such that M = lm δks divides a monomial Q occurring in f . Every chain
of elementary differential reductions is finite, since the set of all differential
monomials is well ordered w.r.t. ≺ [12].

Example (Ollivier, [8]). The ideal [y2+y+1] has a finite differential standard
basis w.r.t. ≺lex consisting of two elements: {y2 + y + 1, y′}.

If a finite differential standard basis of an ideal is known, membership in this
ideal can be effectively tested. For example, this is the case for ideals generated
by linear polynomials. In the general case, differential standard bases may be
infinite. Nevertheless, in some cases (for instance, for radical or isobaric ideals)
one can still test membership using other methods [3, 13].

Recently, the authors found abundant beautiful examples of finite differ-
ential standard bases, as well as finiteness criteria for such bases under some
orderings [14], which are more general than that of Carrà Ferro [2]. Examples
of finite and parametric DSBs and the proofs can be found in [11, 14, 15] and
at the web page http://shade.msu.ru/˜difalg/DSB. These examples have stimu-
lated further research. The following theorems (finiteness conditions for DSBs)
have been proven:

1Note, that Carrà Ferro and Ollivier used strong additional properties of ≺ connected with
differentiations.
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Theorem 3 ([15]). Let f be a quasi-linear polynomial and n > 1. The singleton
{fn} is a finite differential standard basis of [fn] w.r.t. any concordant with
quasi-linearity β-ordering. The ideal [fn] has no finite differential standard
basis w.r.t. any δ-lexicographical ordering.

Theorem 4 (Zobnin, [14]). Let an ordering ≺ be concordant with quasi-
linearity, and [F ] contain an ≺-quasi-linear polynomial. Then [F ] has a finite
differential standard basis w.r.t. ≺.

Theorem 5 (Zobnin, [14]). Let ≺ be a δ-lexicographical ordering, and [F ] be
a proper nonzero differential ideal in F{y}. [F ] has a finite differential standard
basis w.r.t. ≺ iff [F ] contains an ≺-quasi-linear polynomial.

Theorem 6 (Zobnin, [14]). If an ideal has a finite differential standard basis
w.r.t. a δ-lexicographical ordering, then it has a finite differential standard basis
w.r.t. pure lexicographical ordering.

Proposition. For any k > 0 there exists an admissible ordering ≺(k) such that
for any lexicographically quasi-linear polynomial f of order k and for all n > 1
the ideal [fn] has a finite differential standard basis w.r.t. ≺(k) consisting only
of fn.

Ollivier [8] suggested a completion process that returns a minimal differential
standard basis if by chance it stops. This process uses criteria for avoiding
useless s-pairs that are similar to Buchberger criteria. But even if there exists a
finite basis, Ollivier’s process may not stop. In contrast, the authors suggested
and implemented a completion process [14] that returns a reduced differential
standard basis w.r.t. a δ-lexicographical ordering if it is finite. This process
is based on Theorem 5. It is called “Improved Ollivier Process”. Unlike the
original Ollivier process, the improved one surely stops if the ideal has a finite
standard basis.

We summarize the results in the following corollaries.

Corollary 2. The following are equivalent:
• the ideal I / F{y} has the finite lex DSB;
• I contains a lex-quasi-linear polynomial;
• the factoralgebra F [y, y1, y2, . . .]/I is finitely generated.

Corollary 3. The following are equivalent:
• the ideal I / F{y} has the finite deglex DSB;
• I contains a linear polynomial.
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1 Introduction

Over last decades Gröbner bases have been widely used as a universal algo-
rithmic tool to deal with polynomial, differential and difference equations [1].
Applying Gröbner bases one can in particular:

• verify consistency of equations;

• detect the dimension of a solution space;

• convert an initial system of equations into another form more suitable for
solution by numerical methods;

• determine some special features such as Lie symmetries and/or the inte-
grability of nonlinear evolution equations.

Recently the need arose to compute Gröbner bases for multivariate polyno-
mial systems over the field F2 with all the variables taking values also from F2.
Such systems are of interest for simulation of quantum computation, namely
for computing the unitary matrix defined by a quantum circuit [2, 3], and in
cryptoanalysis of HFE (hidden function equations) systems [4, 5, 6].

There are a number of computer algebra systems that can compute Gröbner
bases over F2: Maple [7], Mathematica [8], Singular [9], CoCoA [10] and some
others. But all of them exploit extension of the system with the binomials
x2

i +xi whose number is equal the number of the polynomial variable xi. In the
present paper we try to avoid explicit use of these extra binomials.

1.1 Preliminaries

Throughout the paper we use the following notations and definitions:

X = {x1, . . . , xn} is the set of polynomial variables.

R = K[X] is a polynomial ring over field K of characteristic 0.
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R′ = F2[X] is a polynomial ring over field F2.

Id(F ) is the ideal generated by polynomial set F .

R̃ = F2[{x1, . . . , xn} ∈ Fn
2 ] is a polynomial ring over field F2 with variables

from F2. Therefore multiplication of monomials in this ring reads:

m1 ·m2 = xi1
1 · · ·xin

n · xj1
1 · · ·xjn

n = x
max(i1,j1)
1 · · ·xmax(in,jn)

n .

Definition 1.1. Admissible monomial order. A linear monomial order Â is
called admissible if the conditions

(i) m 6= 1 ⇐⇒ m Â 1, (ii) m1 Â m2 ⇐⇒ m1m Â m2m

hold for any monomials m, m1,m2 ∈M.

Definition 1.2. Monomial quotient in R̃. A monomial m will be called a
quotient for division of monomial b by monomial a in the ring R̃ if m · a = b
and deg(m) = min{deg(mi) | mi ⊗ a = b}.
Definition 1.3. Gröbner basis. Given an ideal I ⊂ R(R′, R̃) and an order Â,
a finite subset G ⊂ R(R′, R̃) is called Gröbner basis of I if

(∀f ∈ I)(∃g ∈ G) [lm(g) | lm(f)],

where u | v denotes divisibility of monomial v by monomial u.

For further notations and definitions we refer to [11, 12].

2 Implemented algorithms

2.1 Buhberger’s algorithm

We implemented the following algorithm as a version of Buchberger’s algo-
rithm [13] for the purpose of preliminary testing of data structures and for
experimental comparison with the Involutive algorithm [11, 12] whose version
for R̃ is considered below. Unlike the Involutive, the Bushberger algorithm deals
with all S-polynomials (critical pairs). At the initialization step in our version
of Buchberger’s algorithm an autoreduction of the input basis is done (step 1)
and all possible S−polynomials for the autoreduced initial basis are collected
at step 2 in set B. Here k is the number of polynomials in G.

Then a while-loop is started at step 3. Here a pair from the set B is
selected at step 4 and the two Buchberger criteria [13] are verified (step 5).
If both criteria fail the normal form of the selected S-polynomial is computed
(step 6). The non-vanishing normal form is added to the basis at step 8 and
the set of B is upgraded to include new S−polynomials. The loop is terminated
with a Gröbner basis [1] in G. Its autoreduction at step 12 gives the reduced
Gröbner basis as the algorithm output.
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Buchberger’s Algorithm(F )

Input: F ∈ R(R′) \ {0} – finite polynomial set, Â – monomial order
Output: G – autoreduced Gröbner bases of Id(F )
1: G :=AutoReduce(F )
2: k := card(G); B := {[i, j] : 1 ≤ i < j ≤ k}
3: while B 6= ∅ do
4: [i, j] :=SelectPair(B, G); B := B \ {[i, j]}
5: if criterion1([i, j], G) and criterion2([i, j], B,G) then
6: h :=NormalForm(Spoly(Gi, Gj), G)
7: if h 6= 0 then
8: G := G ∪ {h}; k := k + 1; B := B ∪ {[i, j] : 1 ≤ i < k}
9: fi

10: fi
11: od
12: return AutoReduce(G)

There are some functions (subalgorithms) used in Buhberger’ algorithm. The
AutoReduce function performs autoreduction of its argument. The NormalForm
function computes a normal form of the given polynomial modulo a given set.
The SelectPair function implements a selection strategy for S−polynomials for
further processing in the while-loop. Efficiency of the whole algorithm substan-
tially depends on this function. In our implementation we choose the normal
selection strategy [13]: the S−polynomial is selected with the minimal least
common multiple (lcm) w.r.t. the ordering Â. As a monomial order Â we
implemented degree-reverse-lexicographical.

2.2 Involutive algorithm

This is our main interest. The Involutive algorithm [11, 12] constructs an in-
volutive basis which is generally a redundant Gröbner basis. In doing so, the
reduced Gröbner basis is a well-defined subset of the involutive basis and can
be extracted from the last basis as shown in line 15 of the algorithm. Correct-
ness of step 15 is proved in [12]. We implemented the Involutive algorithm for
the Janet monomial division [11]. For this reason we call the algorithm Janet
Division Based Involutive Algorithm.
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Janet Division Based Involutive Algorithm(F,Â)

Input: F ⊂ R(R′) \ {0} – finite set of polynomials, Â – monomial order
Output: G – reduced Gröbner bases of Id(F )
1: F :=AutoReduce(F )
2: choose f ∈ F such that lm(f) = min{lm(F )}
3: T := {f, f, ∅}; Q := {{q, q, ∅} | q ∈ F \ {f}}
4: while Q 6= ∅ do
5: choose p ∈ Q such that lm(pol(p)) = min{lm(pol(Q))}
6: Q := Q \ {p}; h :=JanetNormalForm(p, T )
7: if h 6= 0 then
8: T := T ∪ {h, anc(p), nmp(p)}
9: for all q ∈ T and x ∈ NMJ(q, T ) \ nmp(q) do

10: Q := Q ∪ {{pol(q) · x, anc(q), ∅}}
11: nmp(q) := nmp(q) ∩NMJ(q, T ) ∪ {x}
12: od
13: fi
14: od
15: return {pol(f) | f ∈ T : anc(f) = f}

At the initial steps 1-3 the conventional autoreduction is done, and a polyno-
mial with the minimal leading monomial is chosen. This polynomial is inserted
in set T whereas the remaining polynomials are inserted in set Q. Both sets
T and Q consist of triples. Each triple includes a polynomial itself (pol), the
ancestor [12] of this polynomial (anc), and a (possibly empty) subset of non-
multiplicative variables for the polynomial (nmp).

Then the while-loop starts. At step 5 a triple with the minimal leading
monomial of its polynomial is chosen from the set Q. Then this polynomial is
Janet-reduced modulo set T . If its Janet normal form h is nonzero, then the
corresponding new triple is inserted in T at step 8. The insertion causes the
upgrade of the set Q done at steps 10 and 11. After termination of the loop, a
reduced Gröbner basis is extracted from T as the final step (step 15).

The AutoReduce function is just the same as in the Buhberger algorithm.
The JanetNormalForm function computes the Janet normal form [11, 12] of a
polynomial in a given triple modulo polynomials in triples of a given set T . In
the JanetNormalFrom function we verify four involutive criteria (see [12]) which
in aggregate are equivalent [14] to the Buchberger criteria.

3 Peculiarities of implementation

3.1 Polynomials in R̃

By definition, a polynomial in ring R̃ is a sum of monomials whose coefficients
and degrees of variables belong to the field F2. All operations over such poly-
nomials are performed in accordance with the field operations in F2. As the
following simple example of multiplication by a variable shows, in R̃ the lex-
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icographical or degree-compatible monomial orders are not admissible if one
follows Definition 1.1.

Addition: (xy + x + 1) + (xy + y + 1) = x + y
Multiplication: (xy + x + 1) · y = xy + xy + y = y

Furthermore, any monomial order Â in the ring R̃ is not admissible, as
is easily seen in the following: Let m1,m2 ∈ R̃ be two different monomials
satisfying m1 Â m2, and let m3 ∈ R̃ be the third monomial such that m3 =
lcm(m1,m2). Then we obtain m1 ·m3 = m2 ·m3 that contradicts the second
admissibility condition (ii) in Definition 1.1. This fact can be explicitly verified:

m1 := xi1
1 · · ·xin

n , m2 := xj1
1 · · ·xjn

n , m1 Â m2 ,

m3 := lcm(m1, m2) = x
max(i1,j1)
1 · · ·xmax(in,jn)

n ,

m1 ·m3 = x
max(i1,max(i1,j1))
1 · · ·xmax(in,max(in,jn))

n = m3 ,

m2 ·m3 = x
max(j1,max(i1,j1))
1 · · ·xmax(jn,max(in,jn))

n = m3 .

Therefore, one has to check carefully the applicability of the Involutive algorithm
to the ring R̃ .

One more unusual feature of R̃ : unlike the rings R and R′, a basis consisting
of a single polynomial may not be a Gröbner basis. We give a simple example.

〈xy + x + 1〉 = 〈x + 1, y〉
If one multiplies polynomial xy+x+1 by all monomials in the bivariate ring R̃ –
there are 15 of them – it becomes obvious that the Gröbner basis consists of two
polynomials: x + 1 and y. Therefore, neither Buchberger’s nor the Involutive
algorithms can be straightforwardly applied to the ring R̃ .

3.2 Maximal vectorization

On the other hand, in ring R̃ we ask if it is possible to use the maximal vector-
ization for the monomial inner data structures. By maximal vectorization we
mean an opportunity to store exponents of the monomial variables by using one
bit only for each variable. Here we use bit massives of lengths 32, 64 and so on
depending on the number of variables under consideration: up to 32, up to 64,
etc. Thus, the corresponding variable has the degree one if and only if this vari-
able occurs in the monomial. From the programming point of view exploitation
of the maximal vectorization is a useful means to speed up computation.

An example of the monomial representation based on maximal vectorization
reads:

x0x1x4x5 = 〈00000000000000000000000000110011〉︸ ︷︷ ︸
32(64,96,128)bits

Thus, we are faced with two problems:

1. How to compute a Gröbner basis (Definition 1.3) in the ring R̃ where
known algorithms cannot be straightforwardly applied.

2. How to use the maximal vectorization in the computation.
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3.3 Ideals in rings R̃ and R′: a solution to problem 1

It is easy to prove the following theorem.

Theorem 3.1. Let F := {f̃1, . . . f̃m} be a finite set of polynomials in R̃. By
using the natural homomorphism of R̃ into R′ consider the polynomial set F ′ :=
{f1, . . . , fm}∪B ⊂ R′ where fi is an image of f̃i and B = {x2

1+x1, . . . , x
2
n+xn}.

Then if G′ := {g̃1, . . . , g̃k} ∪ B1 is a Gröbner basis set of Id(F ′) with B1 ⊆ B
and with the polynomials gi (1 ≤ i ≤ k) having their variables in degree at
most one, then G := {g1, . . . , gk} where each gi ∈ R̃ is a preimage of g̃i is the
Gröbner basis of Id(F ) ⊂ R̃.

Therefore, one can implicitly work in ring R̃ by applying the above algo-
rithms to the elements in ring R′ rather then in R̃ . In doing so, though some
operations in R′ look identical to the corresponding operations in R̃ , they are
still performed in the ring R′.

3.4 Using maximal vectorization: a solution to problem 2

With respect to both the initial and resulting polynomials belonging to ring R̃
- and, hence having no variables with degree more then 1 - one can implement
operations in the algorithms to avoid the presence in intermediate polynomials
of variables with degree two and higher. Having all binomials included in the
initial basis, one can perform reductions in such a way as to provide every
variable with degree 0 or 1. For instance,

Elementary reductions: xy · yz = xy2z 7−→y2+y xyz =⇒ xy · yz = xyz

On the one hand, all binomials x2
i + xi cannot be stored in a computer

memory by using the maximal vectorization. On the other hand, after per-
forming elementary reductions, binomials are still needed for construction of
new S-polynomials in Buhgerger’s algorithm and for separation of variables in-
to multiplicative and non-multiplicative in the Involutive algorithm. At present
we have managed to surmount this obstacle only for Buhberger’s algorithm.

Instead of S-polynomial Spoly(fi, x
2
j + xj) of fi ∈ R′ and x2

j + xj one can
consider the product pij := fixj . It is easy to prove that the image p̃ij ∈ R̃ of
pij is the image of Spoly(fi, x

2
j + xj) reduced modulo x2

j + xj .
This fact allows us to use the maximal vectorization.

4 Computer experiments

We compared the running time for implementation of the above-described algo-
rithms with some other computer algebra systems and packages implementing
computation of Gröbner bases over F2. In particular, we compared our timings
with those for CoCoA 4.6, Singular 3.0.2 and FGb 1.34 [15] library for Maple. All
these software packages were running on the 2xOpteron-242 (1.6GHz) computer
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with 6Gb of RAM under Gentoo Linux 2005.1. Both of our implementations
were built with gcc-4.1.0 compiler.

As benchmarks we took some of the serial examples in the collections [16]
widely used for Gröbner bases software. Those of the serial benchmarks having
no variables with degrees higher than 1 were used. They are cyclic, eco, red-
cyclic, redeco, noon and katsura. In addition to these famous series, a new one
was taken from [17]. We designate these benchmarks by life, since they were
derived [17] from analysis of the famous Game of Life by J.Conway. Every ex-
ample of the new series consists of the single polynomial in variables x0, . . . , xi

of the form:

xi + xi−1(σi−2 + σi−3 + σ3 + σ2) + σi−2 + σ3

where σk is the k−th symmetric polynomial of variables x0, . . . , xi−2.
Some of the timings obtained are depicted in Figures 1-3.
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Figure 1: Timings for the katsura benchmarks

5 Effectivenes of involutive criteria

We also experimentally analyzed the role of criteria [12] in our implementation
of the Involutive algorithm. Table 1 shows the timings for some benchmarks
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Figure 2: Timings for the life benchmarks

under application of different criteria. The row C0 corresponds to the Involu-
tive algorithm without application of any criteria; C1 - with the 1st criterion
applied, C1+C2 - with the 1st criterion applied and, if it fails, the 2nd criterion
applied; and so on. As one can see, the effect of the criteria application, except
example life10, is insignificant. We analyzed the action of criteria for many
other examples, and only in a few cases did their application lead to a substan-
tial speeding-up of computation. This experimental observation is in agreement
with our earlier experimentation with the role of criteria in computation over
Q [12].

Table 1: Avoidance of useless critical pair in involutive completion

Example Number of C0 C1 C1+C2 C1+C2+ C1+C2+
variables +C3 +C3+C4

life9 10 6.77 6.92 5.06 6.58 7.85
life10 11 651.27 667.76 100.92 112.88 114.86
kats17 18 122.47 108.90 100.27 100.92 101.21
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Figure 3: Timings for the redcyc benchmarks

6 Future work

We are going to work to improve the version of the Involutive algorithm and its
implementation presented above for constructing Gröbner bases in the ring R̃.
In particular, we plan the following:

• Improvement of the inner data structures. In the present implementation
we use bitsets for storing monomials and one-way lists for polynomials,
but there may be more suitable structures.

• Optimization of some functions. For example, the very often-used opera-
tion of multiplication of a polynomial by a monomial consumes a substan-
tial part of CPU resources and should be optimized.

• Search for heuristically better selection strategies for non-multiplicative
prolongations.

• Investigation of applicability to the ring R̃ of involutive divisions different
from the Janet one (Pommaret division, etc.).

Acknowledgements. The research presented in this paper was partially sup-
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Abstract. We describe POTHMF, a program to compute matrix el-
ements of the coupled radial equations for a hydrogen-like atom in a
homogeneous magnetic field. POTHMF computes with a prescribed
accuracy the oblate angular spheroidal functions, which depend on a
parameter and corresponding eigenvalues, and the matrix elements,
which are integrals of the eigenfunctions multiplied by their deriva-
tives with respect to the parameter. The program, implemented
in Maple-Fortran, consists of a package of symbolic-numerical algo-
rithms that reduce a singular two-dimensional boundary value prob-
lem for an elliptic second-order partial differential equation to a reg-
ular boundary value problem for a system of second-order ordinary
differential equations using the Kantorovich method.

1 Introduction

The calculation of the dynamics of electron states of hydrogen-like atoms in a
magnetic field in atomic physics is reduced to a boundary value problem for
an elliptic second-order partial differential equation in a two-dimensional region
for fixed values of the magnetic number and parity [1]. Efficient algorithms for
the numerical solution of this problem are based on its reduction to a system
of ordinary differential equations by the Kantorovich method, using the oblate
angular spheroidal functions [2] as the basis for the expansion of the unknown
solution. For an efficient application of the Kantorovich method we elaborate
the POTHMF program as a set of symbolic-numerical algorithms for computing
the following quantities to a prescribed accuracy [3]:

• oblate angular spheroidal functions on a bounded interval of the parameter
values,
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• derivatives with respect to the parameter of the angular functions and of
the matrix elements (integrals of the eigenfunctions multiplied by their deriva-
tives with respect to the parameter),

• asymptotics of the radial parameter of the eigenfunctions and of the matrix
elements that appear as variable coefficients in the system of ordinary differential
equations,

• asymptotics of the solutions to the system of ordinary differential equations
for small and large values of the radial variable,

• solutions of the boundary value problem for the system of second-order
ordinary differential equations.

The program also calculates asymptotic regular and irregular matrix solu-
tions of the system of second-order ordinary differential equations at the end
of interval in the radial variable needed for solving the corresponded boundary
problem with third-type boundary conditions.

2 The problem statement

The Schrödinger equation for the hydrogen atom in an axially symmetric mag-
netic field B = (0, 0, B) in spherical coordinates (r, η = cos θ, ϕ) can be written
as the 2D-equation in the region Ω = {0 < r < ∞,−1 < η < 1} [1]

(
− 1

r2

∂

∂r
r2 ∂

∂r
+

Â(0)(r, η)
r2

− 2Z

r
− ε

)
Ψ(r, η) = 0. (1)

The operator Â(0)(r, η) = A(0)(r, η) + γmr2, where A(0)(r, η) is given by

A(0)(r, η) = − ∂

∂η
(1− η2)

∂

∂η
+

m2

1− η2
+

(
γr2

2

)2

(1− η2). (2)

Here m = 0,±1, . . . is the magnetic quantum number, γ = B/B0, B0
∼= 2.35×

105T is a dimensionless parameter which determines the field strength B, and
the atomic units (a.u.) ~ = me = e = 1 are used under the assumption of infinite
mass of the nucleus having charge Z. In these expressions, ε = 2E is the doubled
energy (in Rydbergs, 1Ry=(1/2) a.u.) of the state |mσ〉 at fixed values of m
and z-parity; σ = ±1; Ψ ≡ Ψmσ(r, θ) = (Ψm(r, θ) + σΨm(r, π − θ))/

√
2 is the

corresponding wave function. The wave functions ΨEmσ
i (r, η) exp(ımϕ)/

√
2π

with fixed parity σ and azimuthal quantum number m is expanded over the
one-dimensional basis, Φmσ

j (η; r),

ΨEmσ
i (r, θ) =

∑jmax

j=1
Φmσ

j (η; r)χ(mσi)
j (E, r),

with unknown radial vector-solutions χ
(mσi)
j (E, r). The basis functions are so-

lutions of the eigenvalue problem for the angular oblate spheroidal functions[2]

Â(0)(r, η)Φj(η; r) = Ej(r)Φj(η; r), Iij(r) =
∫ 1

−1

Φi(η; r)Φj(η; r)dη = δij . (3)
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Thus, the Schrödinger equation in the 2D-region, Ω = {R1
+× [−1, 1]}, is reduced

to a set of coupled differential equations
(
−I

1
r2

d

dr
r2 d

dr
+

U(r)
r2

+ Q(r)
d

dr
+

1
r2

d r2Q(r)
dr

)
χ(i)(r) = εi Iχ(i)(r). (4)

The matrix of effective potentials U(r) and Q(r) of jmax × jmax are given by

Uij(r) =
Ei(r) + Ej(r)

2
δij − 2Zrδij + r2Hij(r), Iij = δij , (5)

Hij(r) =
∫ 1

−1

∂Φi(η; r)
∂r

∂Φj(η; r)
∂r

dη, Qij(r) = −
∫ 1

−1

Φi(η; r)
∂Φj(η; r)

∂r
dη.

The wave function χ(r) = {χ(mσi)
j (E, r)}j=1 satisfies the following boundary

conditions at r → 0

lim
r→0

r2

(
I

d

dr
−Q(r)

)
χ(r) = 0, (6)

and at large r = rmax À 1

χ(r) = 0, for the discrete spectrum, (7)(
I

d

dr
−Q(r)

)
χ(r) = µ(r)χ(r), for the continuous spectrum. (8)

Note, the energy ε ≡ ε(rmax) plays the role of eigenvalues of the boundary
problem (4)–(7) on a finite interval 0 ≤ r ≤ rmax, while the unknown parameters
µ ≡ µ(rmax, ε) at fixed value of ε play the role of eigenvalues of the logarithmic
normal derivative matrix of the solution of the boundary problem (4)–(6), (8).

To reduce the system of radial equations to the finite interval r ∈ (0, rmax)
with homogeneous boundary conditions of the third type, symbolic algorithms
for evaluating asymptotics of the effective potentials and the solutions of radial
equations at small and large values of r are elaborated. The resulting system
of radial equations, which contains the first-derivative coupling terms, is solved
using the finite element method by means of the KANTBP program, imple-
mented in FORTRAN. POTHMF calculates energy values, the reaction matrix
and unknown radial vector-solutions, and the photoionization cross-sections.
POTHMF prepares input files for KANTBP and has the structure given by the
following diagram:

→ 1. EIGENF → 3. MATRA
↘ ↓ ↘

2. MATRM 4. ASYMRS
↓ ↘↙ ↓

KANTBP(I) KANTBP(II)
↘ ↓

5. DIPPOT →
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In procedure EIGENF, the eigenvalue problem for one-dimension differential
equation is reduced to the algebraic eigenvalue problem, which is solved for a
finite set of values of parameter r.
In procedure MATRM, using solutions of the algebraic eigenvalue problem
above, the parametric derivatives of the basis functions, ∂Φj(η; r)/∂r and ma-
trix elements Qij(r), Hij(r), ∂Qij(r)/∂r, etc, are calculated.
In procedure MATRA, the asymptotic solutions of the algebraic eigenvalue prob-
lem generated in EIGENF as well as its matrix elements are calculated as a
power series in the parameter r2 and its inverse.
In procedure ASYMRS, using asymptotics of matrix elements, the asymptotics
of the fundamental radial solutions at small and large values r are calculated and
the needed boundary conditions for a reduced interval [0, rmax] are generated.
In procedure DIPPOT, the transition matrix elements are evaluated using the
results of program KANTBP.

3 The procedure EIGENF

In procedure EIGENF, the eigenvalue problem for a one-dimensional differential
equation is reduced to the algebraic eigenvalue problem, which is solved for a
finite set of values of parameter r.

We obtain eigenfunctions Φj(η; r̂) in the form of a series expansion at fixed
values σ = ±1 and m,

Φj(η; r̂) =
smax∑

s=(1−σ)/2

cmσ
sj (r̂)P |m||m|+s(η). (9)

Here, s is an even (odd) integer at σ = (−1)s = ±1 until smax = 2(Nmax − 1) +
(1 − σ)/2, where Nmax is the number of even or odd terms of expansion, and
P
|m|
|m|+s(η) are the normalized associated Legendre polynomials defined by the

relation [2]:

− d

dη
(1− η2)

d

dη
P
|m|
|m|+s(η) +

m2

1− η2
P
|m|
|m|+s(η) = λmσ

s (0)P |m||m|+s(η), (10)

λmσ
s (0) = (|m|+ s)(|m|+ s + 1), s = 2(j − 1) + (1− σ)/2,

∫ 1

−1

P
|m|
|m|+s(η)P |m||m|+s′(η)dη = δss′ . (11)

The coefficients cmσ
sj (r̂) satisfy the relation

smax∑

s=(1−σ)/2

cmσ
sj (r̂)cmσ

sj′ (r̂) = δjj′ . (12)

The eigenvalue problem for eigenvectors cj = {cmσ
sj (r̂)}smax

(1−σ)/2 , and eigenvalues
λj(r̂) take the form

A(0)cj = λj(r̂)cj , (13)
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where matrix A(0) is the symmetric tridiagonal Nmax ×Nmax matrix:

A
(0)
ss−2 = A

(0)
s−2s =

−p2

(2s + 2|m| − 1)

√
(s− 1)s(s + 2|m| − 1)(s + 2|m|)
(2s + 2|m| − 3)(2s + 2|m|+ 1)

,

A(0)
ss = (s+|m|)(s+|m|+1) + 2p2 (s2 + s + 2s|m|+ 2m2 + |m| − 1)

(2s + 2|m| − 1)(2s + 2|m|+ 3)
. (14)

The expansion (9), which provides stability of the numerical calculation with
double precision arithmetic (the relative machine precision is eps ≈ 2 · 10−16),
was implemented using the subroutine DSTEVR from the LAPACK Fortran
Library [4]. The orthogonality relations (12) were computed with an accuracy
of the order of eps.

3.1 Finding the optimal value of smax and the matching
point Rmatch of numerical and asymptotic solutions

At large s elements of matrix A(0) (14) take the form

A(0)
ss =

(2s+2|m|+1)2 − 1
4

+
p2

2
+ O(s−2), A

(0)
ss±2 = −p2

4
+ O(s−2). (15)

On intervals s ∈ (sb, se) at sb, se À 1, we suppose that the elements of matrix
A(0) have slow dependence on s. Therefore, for a given value of λ, the solution
of the algebraic problem (13), (15) will be represented in the form

cs = xcs+2, cs−2 = xcs. (16)

From (16), (13), and (15) we have the following algebraic equation with respect
to factor x

x + x−1 = d ≡ p−2
(
(2s + 2|m|+ 1)2 − 1− 4λ + 2p2

)
. (17)

For s > s2, where s2 = (
√

4λ + 1 − 2|m| − 1)/2 is determined from equation
(17) at d = 2, equation (17) has two real solutions. One of them,

xs = p−2
(√

(s−s2)(s+s2+2|m|+1) +
√

p2+(s−s2)(s+s2+2|m|+1)
)2

, (18)

exceeds unity by its absolute value and the other, x−1, is smaller than one.
Thus, the solution of (16) with decreased coefficients cs at increased s exists.
For s < s2 we have two solutions with oscillating coefficients cs. Then, the
solution of Eq. (17) allows us to determine an algorithm for evaluating smax:

∏smax−1

s=s2
xs < 1/eps,

∏smax

s=s2
xs > 1/eps. (19)

We need an approximate value of the eigenvalue λ for the above calculation.
If we use the fact all diagonal elements A

(0)
ss of the tridiagonal matrix A(0) and
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eigenvalues εj(p) or λj(p) increased by the number j, then we can obtain the
upper bound of the eigenvalue λN with the help of Wilkinson’s shift [5]:

shift = G + A(0)
sN sN

+
√

G2 + (A(0)
sN sN−2)2, G =

A
(0)
sN−2sN−2 −A

(0)
sN sN

2
, (20)

where sN = 2(N − 1) + (1 − σ)/2. But shift À λN at p À 1. In this case
we use an asymptotic expression of the eigenvalue (29) at p ≥ 2sN , since the
asymptotic expression gives an upper bound of the eigenvalue.

The matching point Rmatch of the numerical and asymptotic solution is cal-
culated by the MATRA algorithm as follows:

rmatch = max(rε, rh, rq), rε =
18

√
|ε(18)

N |
eps

, rh =
18

√
|H(18)

NN |
eps

, rq =
17

√
|Q(17)

NN−1|
eps

, (21)

since |ε(2k)
j | < γ|ε(2k+2)

j |, |Q(2k−1)
jj′ | < γ|Q(2k+1)

jj′ |, |H(2k)
jj′ | < γ|H(2k+2)

jj′ | and

|Q(17)
jj′ | ≤ |Q(17)

NN−1|, |H(18)
jj′ | ≤ |H(18)

NN |.

4 The procedure MATRM

In the procedure MATRM, based on solutions of the above algebraic eigenvalue
problem, the parametric derivatives of the basis functions ∂Φj(η; r)/∂r and
matrix elements Qij(r), Hij(r), ∂Qij(r)/∂r, etc., are calculated.

The derivatives of functions Φj(θ; r) at fixed values of σ = ±1 and m can
be represented as the following expansion in terms of the normalized Legendre
polynomials (9):

Φ(n)
j (θ; r) =

smax∑

s=(1−σ)/2

c
(n)
sj P

|m|
|m|+s(η), c

(n)
sj ≡ ∂ncsj(r)

∂rn
, (22)

where c(0) ≡ cj and λ(0) ≡ λj(r).
Following (12)–(13), we solve the following linear recurrence system of alge-

braic equations:

(A(0)c(k) − c(k)λ(0)) + (A(k)c(0) − c(0)λ(k)) = b(k), A(k) ≡ ∂kA(0)

∂rk
,

b(k) ≡
k−1∑
n=1

k!
n!(k − n)!

(c(k−n)λ(n) −A(n)c(k−n)), b(1) ≡ 0. (23)

From the normalization condition (12) we obtain the required additional equality

k∑
n=0

k!
n!(k − n)!

c(k−n)T
c(n) = 0, (24)

providing the uniqueness of the solution (23). The details of the algebraic
realization of the algorithm are given in [3].
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5 The procedure MATRA

In procedure MATRA, the asymptotic solutions of the algebraic eigenvalue prob-
lem generated in EIGENF and the matrix elements are calculated as a power
series of the parameter r2 and its inverse at small and large values r.

At step 1 we go from coordinate η ∈ [0, 1] (or η ∈ [−1, 0]) to the new
coordinate y using the formula y = 2p(1− η) (or y = 2p(1 + η)).
At steps 2 and 3 we go from the set of functions Φj(y) to the set of functions
Fn(y)

Φj(y) = exp
(
−y

2

) (
y

4p

)|m|/2 (
1− y

4p

)|m|/2

Fn(y), (25)

that are found as a sum of Laguerre polynomials L
|m|
n+s(y) [2] with unknowns

Cn(s, r)

Fn(y) = 2|m|+1/2p(|m|+1)/2
∑

s
Cn(s, r)L|m|n+s(y). (26)

In step 4, where we evaluate integrals, we change the domain from [0, 2p] to
[0,∞), and then drop exponentially small terms. Step 5 finds Cn(s, r) and λn

as a series expansion

Cn(s, r) = c(0)
s,n +

kmax∑

k=1

c
(k)
s,n

(4p)k
, λn = 4p

[
|m|+ 1

2
+ β(0)

n +
kmax∑

k=1

β
(k)
n

(4p)k

]
. (27)

Substituting (27) in the result of step 3 and equating coefficients at the same
powers of p, we arrive at a system of recurrence relations for evaluating coeffi-
cients β

(k)
n and c

(k)
s,n (except c

(k)
0,n):

sc(k)
s,n = ((ns + |m|+ 1)(2ns + |m|+ 1)− (ns + |m|)(|m|+ 1))c(k−1)

s,n (28)

−ns(ns + |m|)c(k−1)
s−1,n − (ns + |m|+ 1)(ns + 1)c(k−1)

s+1,n +
k−|s|∑

k′=1

β(k′)
n c(k−k′)

s,n ,

with initial conditions β
(0)
n = n, c

(0)
s,n = δs0

√
n!/(n + |m|)!.

In step 6, substituting (27) the coefficients c
(k)
s,j evaluated in step 5 for expressions

of the matrix elements evaluated in step 4, we easily find the matrix elements
as a series expansion of inverse powers of r

r−2εj(r) =
kmax∑

k=0

ε
(2k)
j

r2k
, Hjj′(r) =

kmax∑

k=1

H
(2k)
jj′

r2k
, Qjj′(r) =

kmax∑

k=1

Q
(2k−1)
jj′

r2k−1
. (29)

6 Procedure ASYMRS

In procedure ASYMRS, using asymptotics of matrix elements, the asymptotics
of the fundamental radial solutions at small and large values r are calculated and
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the needed boundary conditions for a reduced interval [0, rmax] are generated.
Now let us consider the asymptotic solution

χjio(r) = R(pio , r)φjio(r) +
dR(pio , r)

dr
ψjio(r), (30)

where R(pio , r) = p
−1/2
io

r−1(ı F0(pio , r) + G0(pio , r))/2, F0(pio , r) and G0(pio , r)
are the Coulomb regular and irregular functions, respectively [2]. The function
R(pio

, r) satisfies the differential equation

d2R(pio , r)
dr2

+
2
r

dR(pio , r)
dr

+
(

p2
io

+
2Z

r

)
R(pio , r) = 0. (31)

Substituting the function (30) into Eq. (4) using (31) and extracting the coef-
ficients for the Coulomb function and its derivative, we arrive at two coupled
differential equations with respect to the unknown functions φjio

(r) and ψjio
(r).

Then we expand the functions φjio(r) and ψjio(r) in the inverse power series
of r:

φjio
(r) =

∑kmax

k=0
φ

(k)
jio

r−k, ψjio(r) =
∑kmax

k=0
ψ

(k)
jio

r−k. (32)

After substituting the expansions (29), (32) to the given coupled differential
equations and equating the coefficients of the same powers of r, we compute
a set of recurrence relations with respect to the unknown coefficients φ

(k)
jio

and

ψ
(k)
jio

(
p2

io
− 2E + ε

(0)
j

)
φ

(k)
jio
− 2p2

io
(k − 1)ψ(k−1)

jio
− (k − 2)(k − 3)φ(k−2)

jio

−2Z(2k − 3)ψ(k−2)
jio

+
k∑

k′=1

(
ε
(k′)
j + H

(k′)
jj

)
φ

(k−k′)
jio

(33)

=
N∑

j′=1,j′ 6=j

k∑

k′=1

[(
(2k − k′ − 3)Q(k′−1)

jj′ −H
(k′)
jj′

)
φ

(k−k′)
j′io

+
(
2p2

io
Q

(k′)
jj′ + 4ZQ

(k′−1)
jj′

)
ψ

(k−k′)
j′io

]
,

(
p2

io
− 2E + ε

(0)
j

)
ψ

(k)
jio

+ 2(k − 1)φ(k−1)
jio

− k(k − 1)ψ(k−2)
jio

+
k∑

k′=1

(
ε
(k′)
j + H

(k′)
jj

)
ψ

(k−k′)
jio

(34)

=
N∑

j′=1,j′ 6=j

k∑

k′=1

[(
(2k − k′ + 1)Q(k′−1)

jj′ −H
(k′)
jj′

)
ψ

(k−k′)
j′io

− 2Q
(k′)
jj′ φ

(k−k′)
j′io

]
.

From the first four equations of the set (33), (34) for φ
(0)
ioio

, φ
(0)
j0io

, ψ
(0)
ioio

, ψ
(0)
j0io

, we
obtain the leading terms of the eigenfunction, the eigenvalue p2

io
, i.e., the initial
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data for solving the recurrence equations (33), (34),

φ
(0)
j0io

= δj0io
, ψ

(0)
j0io

= 0, p2
io

= 2E − ε
(0)
io

. (35)

Open channels have p2
io
≥ 0, and close channels have p2

io
< 0. Suppose that

there are No ≤ N open channels, i.e., p2
io
≥ 0 for io = 1, . . . No and p2

io
< 0 for

io = No + 1, . . . N .
In addition, it should be noted that at large r the linearly independent

functions (30) satisfy the Wronskian-type relation

W(Q(r); χ∗(r), χ(r)) =
ı

2
Ioo, (36)

where W(•; χ∗(r),χ(r)) is a generalized Wronskian with a long derivative de-
fined as

W(•;χ∗(r), χ(r)) = r2

[
(χ∗)T

(
dχ

dr
− •χ

)
−

(
dχ∗

dr
− •χ∗

)T

χ

]
.

These relations will be used to examine the accuracy of the above expansion.
The calculations of the above asymptotics were performed using MATRA and
ASYMRS implemented in MAPLE 8.

7 Procedure DIPPOT

In procedure DIPPOT, the transition matrix elements are evaluated using the
results of program KANTBP.

Let us construct the longitudinal and transversal dipole matrix elements
D

(mσσ′)
jj′ (r) and P

(mm′σ)
jj′ (r) with the photon polarized along the z axis and

along the XOY plane, respectively. Using the expression (9), the above matrix
elements can be written in the form

D
(mσσ′)
jj′ (r)=δ|σ+σ′|0 r

smax∑

s=s(σ)

smax∑

s′=s(σ′)

cmσ
sj (r)cmσ′

s′j′ (r)δ|s−s′|1

√
s>

√
s>+2|m|√

4(s>+|m|)2−1
,

P
(mm′σ)
jj′ (r) = δ|m−m′|1

r√
2

smax∑

s=s(σ)

smax∑

s′=s(σ′)

cmσ
sj (r)cm′σ

s′j′ (r) (37)

×
{

δss′+2

√
s(s−1)

4(s+m<)2−1
− δss′

√
(s+2m<+1)(s+2m<+2)

(2s+2m<+1)(2s+2m<+3)

}
,

where s(σ) = (1− σ)/2, s> = max(s, s′) and m< = min(|m|, |m′|).
Using the coefficients c

(k)
s,j obtained in sections 3 and 4, one can easily find

longitudinal and transversal dipole matrix elements as the series expansion by
the inverse power of r without the exponential terms

D
(mσσ′)
jj′ (r) = r

kmax∑

k=0

r−2kD
(2k)
jj′ , P

(mm′σ)
jj′ (r) = −

kmax∑

k=0

r−2kP
(2k)
jj′ . (38)
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8 Conclusion

Using elaborated algorithms, for large r one could build asymptotic expansions
in the inverse powers of r needed for calculation with a given accuracy of the re-
quired set of basis functions for all values of parameter r [3]. As a consequence,
at large values of the radial variable r, the potential curves, radial matrix el-
ements, and dipole transition matrix elements are calculated using asymptotic
formulae and matching points rmatch < rmax that are found automatically from
the interval of integration 0 ≤ r ≤ rmax. Thus, we can build a more efficient
algorithm for solving the partial algebraic eigenvalue problem depending on pa-
rameter r with an automatic choice of Wilkinson’s shift [5]. Thus, we give a
constructive solution of the key problem to build up a nonsymmetric matrix log-
arithmic derivative, i.e., R-matrix in an adiabatic (parametrically dependent)
basis in terms of the recalculation matrix for solution of a boundary problem
with the boundary conditions of the third type from the inner region to the
outer region.
The LONG WRITE UP of POTHMF and KANTBP will be published in Com-
puter Physics Communications.
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Abstract. In this work the self-consistent basis method for solving
the two-dimensional stationary Schrödinger equation is presented.
The solution shows a potential energy surface with two local minima
and a unique saddle point. We have developed a symbolic-numeric
algorithm and Maple program (SELFA) that realizes the compu-
tation. The low part of energy spectrum and corresponding wave
functions for the C2v invariant Hamiltonian were also calculated by
means of this program.

1 Introduction

For solving an eigenvalue problem, in particular the Schrödinger equation, there
are many different methods, for example: diagonalization method [1, 2, 3], quasi-
classical approaches [4, 5, 6], different variants of perturbation theory [7, 8], finite
element method [9], generalized continuous analog of the Newton method [10],
normal form methods [11, 12, 13, 14], the so-called 1/N expansion [15], oscillator
representation method [16], variation and operation methods [17, 18, 19, 20],
symplectic method [21].

As is known, when a dimension of the considered system is increased, the
complexity of the differential Schrödinger operator for which an eigenvalue prob-
lem is solved results in a concomitant increase in numerical difficulties. Besides
this, the accuracy of energy spectra and wave functions calculated decreases if
the quantum system allows the existence of dynamical chaos in its classical limit
[22].

In Ref. [23] the invariant of the two-dimensional polynomial C3v Schrödinger’s
equation shows that the potential energy surface (PES) has the only minimum.
The self-consistent basis method [24, 25] was used to obtain the solution.
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In this paper we consider the C2v symmetric Hamiltonian with four parame-
ters. The parameters were chosen in such a way that PES has two local minima
and a unique saddle point (see Fig. 1). On the one hand this choice of the PPE
results in simplifying the solution of the Schrödinger equation in comparison
with that PES that have more than two local minima. On the other hand, this
choice results in the possibility that tunneling effects and classical chaos may
exist and affect the properties of the energy spectrum and wave functions.

2 Main equations

In this report the self-consistent basis method is used to solve the eigenvalue
problem for the C2v invariant Schrödinger operator

Ĥ(x, y, p̂x, p̂y) =
1
2
(p̂2

x + p̂2
y) + V (x, y), (1)

where the potential energy surface (PES)

V (x, y) =
a

2
(x2 + y2)− a

′

2
x2 + bx2y2 + c(x2 + y2)2, (2)

has two local minima for a = 1.8490, a
′

= 8.257825, b = −0.287070, c =
0.375509 (see Fig. 1).

Figure 1: Isolines of the PES (dotted) and the Gaussian curvature zero line
(continuous) for Eq. (2).

Expressed as polar coordinates, x = r cosϕ, y = r sin ϕ, Eqs. (1)-(2) we
have

Ĥ(r, ϕ)ψ(r, ϕ) = Eψ(r, ϕ), (3)

Ĥ(r, ϕ) = −1
2

(
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂ϕ2

)
+

r2

2
+

br3

2
sin 3ϕ + cr4. (4)
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A regular and bounded solution of the partial eigenvalue problem for Eqs.(3)-
(4) can be found in the form of the following Fourier series:

u(r, ϕ) =
√

rψ(r, ϕ) =
A0(r)

2
+

n∑

l=1

[Al(r) cos lϕ + Bl(r) sin lϕ]. (5)

Projecting the unknown solution u(r, ϕ) onto basis functions, sin l′ϕ and
cos l′ϕ (l′ = 1, ..., n), we have four linear systems of second-order ordinary dif-
ferential equations (ODE), the consequence of a discrete symmetry, C2V , of the
Hamiltonian (4), which correspond to four irreducible representations:

A1 : u(r, ϕ)=
A0(r)

2
+

∑

l=1

A2l(r) cos 2lϕ,

A2 : u(r, ϕ)=
∑

l=1

B2l(r) sin 2lϕ,

B1 : u(r, ϕ)=
∑

l=1

A2l+1(r) cos(2l+1)ϕ,

B2 : u(r, ϕ)=
∑

l=1

B2l+1(r) sin(2l+1)ϕ.

As result we obtained the following infinite system for the second-order dif-
ferential equations:

A1 :
A′′0 +α0A0+2βA2+2γA4 =0,
A′′2 +α2A2+β(A0+A4)+γ(A6+A2)=0,
A′′l +αlAl+β(Al−2+Al+2)+γ(Al−4+Al+4)=0,

l=4, 6, 8, . . . , (6)
A2 :

B′′
2 +(α2−γ)B2+βB4+γB6 =0,

B′′
4 +α4B4+β(B2+B6)+γB8 =0,

B′′
l +αlBl+β(Bl−2+Bl+2)+γ(Bl−4+Bl+4)=0,

l=6, 8, 10, . . . , (7)
B1 :

A′′1 +A1α1+A3(β+γ)+γA5 =0,
A′′l +Alαl+β(Al−2+Al+2)+γ(Al−4+Al+4)=0,

l=3, 5, 7, . . . , (8)
B2 :

B′′
1 +α1B1+βB3+γ(B5−B3)=0,

B′′
3 +α3B3+β(B1+B5)+γ(B7−B1)=0,

B′′
l +αlBl+β(Bl−2+Bl+2)+γ(Bl+4−Bl−4)=0,

l=5, 7, 9, . . . , (9)

where αl = 2E− ((4l2− 1)/4)r2−ar2 +(a′/2)r2− (b/4)r4− 2cr4, β = (a′/4)r2,
γ = (b/8)r4.
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We rewrite linear systems (6)–(9) in the form of a first-order ODE using a
transformation of the above functions Ai(r), Bj(r) (i, j = 1, 2) to new functions
zk(r):

A1 : (Al → zl+1, A
′
l → zl+2, l = 0, 2, 4, ...),

A2 : (Bl → zl−1, B
′
l → zl , l = 2, 4, 6, ...),

B1 : (Al → zl , A′l → zl+1, l = 1, 3, 5, ...),
B2 : (Bl → zl , B′

l → zl+1, l = 1, 3, 5, ...),

and we obtain the following system:

A1 :
z′l+1 − zl+2 = 0, l = 0, 2, 4, ...,
z′2+α0z1+2βz3+2γz5 = 0,
z′4+α2z3+β(z1+z5)+γ(z7+z3) = 0,
z′l+αlzl+1+β(zl−1+zl+3)+γ(zl−3+zl+5) = 0,

l = 4, 6, 8, . . . , (10)
A2 :

z′l−1 − zl = 0, l = 2, 4, 6, ...,
z′2+α2z1+βz3+γ(z5−z1) = 0,
z′4+α4z3+β(z1+z5)+γz7 = 0,
z′l+αlzl−1+β(zl−3+zl+1)+γ(zl−5−zl+3) = 0,

l = 6, 8, 10, . . . , (11)
B1 :

z′l − zl+1 = 0, l = 1, 3, 5, ...,
z′2+α1z1+βz3+γ(z3+z5) = 0,
z′l+1+αlzl+β(zl−2+zl+2)+γ(zl−4+zl+4) = 0,

l = 3, 5, 7, . . . , (12)
B2 :

z′l − zl+1 = 0, l = 1, 3, 5, ...,
z′2+α1z1+βz3+γ(z5−z3) = 0,
z′4+α3z3+β(z1+z5)+γ(z7−z1) = 0,
z′l+1+αlzl+β(zl−2+zl+2)+γ(zl+4+zl−4) = 0,

l = 5, 7, 9, . . . . (13)

Truncating the system obtained (10)–(13) up to the 2Neq equations, we
cast it as a finite homogeneous system of linear first-order ODE in the unknown
functions zk(r), where the function αl consists of an arbitrary eigenvalue E.

To solve the obtained eigenvalue problem numerically, one needs to define
2Neq initial condition data. From the general theory of linear ODE it is known
that its general solution has the form of a linear combination:

Zj =
2Neq∑

k=1

Ckz
(k)
j , (14)
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spanned the 2Neq linear-independent solutions

zj = {zj
1, z

j
2, ..., z

j
2Neq}, (j = 1, 2, ..., 2Neq), (15)

for any system (10)–(13).
To calculate unknown coefficients Ck in Eq. (14), one needs to take into

account appropriate boundary conditions placed on functions Ai(r) and Bj(r)
that correspond to the general solution with odd index, i.e. Z2j−1(r) (j =
1, 2, ..., Neq) . Then conditions Z2j−1(0) = 0 and Z2j−1(∞) = 0 lead to a sys-
tem of algebraic equations with respect to unknown coefficients Ck. A nontrivial
solution of this system is calculated by setting to zero the corresponding deter-
minant, D(E) = |zk

j (E)| = 0. Roots of this determinant give us the low part
of the energy spectrum E = Ej , (j = 1, 2, 3, . . . , Neq) for the two-dimensional
Schrödinger equation (3)-(4) under consideration. For given Ej we also con-
struct the corresponding eigenfunction.

3 Results

Grounded in the self-consistent basis method [23, 24, 25, 26, 27], a symbolic-
numeric algorithm and Maple program have been developed to solve the Schrö-
dinger equation (3) with Hamiltonian (4).

For all four state types A1, B1, A2, B2, the energy spectrum En and wave
functions were calculated. In the Table below, values of the lowest energy levels
are presented, while in Figure 2 the structure of its localization in double-well
potential is shown. In Figures 3 and 4 some profiles and isolines of the wave
functions are plotted.

Table. The energy spectrum of the Hamiltonian (1)-(2).

n En Type n En Type n En Type
0 -3.898 809 A1 9 1.346 141 B2 18 4.365 241 A2

1 -3.897 242 B1 10 1.529 112 A2 19 5.300 808 B1

2 -1.423 213 B2 11 2.056 203 B1 20 5.667 120 A1

3 -1.419 615 A2 12 3.242 163 B2 21 5.940 909 B2

4 -0.903 803 A1 13 3.684 687 A1 22 6.293 753 B2

5 -0.807 265 B1 14 3.773 432 A1 23 6.683 205 A2

6 1.160 673 A1 15 3.918 503 B2 24 6.735 355 B1

7 1.196 685 B1 16 3.923 146 A2 25 6.740 105 A1

8 1.217 782 A1 17 4.039 048 B1 26 6.907 529 B1

4 Conclusion and Acknowledgments

A program, SELFA, grounded in the self-consistent basis method, was imple-
mented in MAPLE to solve the two-dimensional Schrodinger equation. The
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Figure 2: Structure of the energy level localization in double-well potential
V (x, y = 0).

efficiency of this program is shown on the C2V symmetric Hamiltonian with
two local minimuma, for which the lowest energy levels and wave functions are
calculated. Further applications of SELFA include solving the eigenvalue prob-
lem for different Hamilton operators, studying tunneling effects, and avoiding
crossing phenomena of eigenenergies. An appropriate development of this ap-
proach can also be done within the framework of the Kantorovich method using
a self-consistent basis with r as a parameter, taking into account the discrete
symmetry of Hamiltonian under consideration.

The authors are deeply indebted to Prof. I.V. Puzynin and to the partici-
pants of his seminar for a useful discussion. This work is partially supported by
BelSU (grant VKG-003-04).
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1 Introduction

In this work, we review methods for investigating the compatibility (or formal
integrability) of systems of partial differential equations (PDEs) based on the jet
space approach. They were originated by D. Spencer. To apply them one should,
first of all, realize our system, say E, as a tower E(k) ⊂ Jk (π), k = 0, 1, ... of
subsets (prolongations) in the jet-spaces Jk (π) . Here we meet the first condition
for regularity: are all E(k) smooth submanifolds or not? If not, then the simplest
case of singularities of vector fields, or 1-st order PDEs, shows how different
should be methods for regular or singular cases. So, we’ll assume that E is a
regular system of PDEs, that is, all prolongations E(k) are smooth submanifolds.
The second regularity condition arises from the study of compatibility, namely,
we investigate the surjectivity of the maps πk,k−1 : E(k) → E(k−1). If they
are surjective then our system is compatible, that is, we could not get new,
”hidden” PDEs from the given ones by algebraic manipulations and derivations.
The obstructions to surjectivity are realized in terms of Weyl tensors Wk ()
which are closely related to metasymplectic structures on jet spaces and which
take their values in the 2-nd Spencer cohomology of the PDE system. This
cohomology forms a family of vector spaces over E(k), and we arrive at a second,
more subtle, condition for regularity: the 2-nd Spencer cohomology should form
vector bundles over prolongations E(k). Then the Weyl tensors are sections of
these bundles, and the third, the more delicate regularity condition, requires
that either Wk = 0 identically, or sections Wk are transversal to zero. Then
one should reconsider the PDE system E by adding new PDEs Wk = 0, and
repeat all previous steps. This is a geometrical jet-space interpretation of the
Cartan’s method of projections and prolongations.

The straightforward computations of Weyl tensors are extremely costly (see,
for example, [1]). So we propose a different method based on syzygies of the
symbolic modules. The method uses Buchsbaum-Rim complexes instead of
Spencer δ-complexes and provides us with a constructive form of Weyl tensors.
Moreover, for PDEs which we call the Cohen-Macaulay type, and especially for
(generalized) complete intersections, one gets explicit formulae for obstructions
in terms of generalized Mayer brackets and multi-brackets.

This paper is based on joint research with Boris Kruglikov.
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2 Geometry of Compatibility

A regular system of PDEs for sections of a smooth bundle π : E (π) → M is a
tower of smooth bundles

Ek1 → Ek1−1 → · · · → Ek0 ,

where Ek are subbundles of the jet bundles πk : Jk (π) → M,

Ek+1 ⊂ (Ek)(1)

and

πk+1,k : Ek+1 → Ek,

k = k0, ...., k1 − 1,

are smooth bundles too.
The PDEs system is said to be formally integrable (or, more concisely, com-

patible) if
πk+1,k : Ek+1 → Ek,

are smooth bundles for all values of k, where

Ek1+i = (Ek1)
(i)

for all i ≥ 0.
To check that maps

πk+1,k : E(1)
k → Ek,

are surjective, we introduce Cartan forms:

f ∈ C∞
(
Jkπ

) 7−→ ωf ∈ Ω1
(
Jk+1π

)
,

ωf = df − d̂f.

The Cartan distribution Ck on Jkπ is defined as an annihilator of all Cartan
forms ωf , where f ∈ C∞

(
Jk−1π

)
.

The restriction of the de Rham differential dωf on the Cartan distribution
Ck leads to the metasymplectic structure

Ω : f 7−→ dωf |Ck

on the Cartan distribution:

Ω : Sk−1T ⊗ π∗ → Λ2C∗k .

For k = 1,dim π = 1, Ω is the canonical symplectic structure on the contact
distribution C1.
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In canonical local coordinates in the jet spaces one has the following expres-
sions for the Cartan forms:

ωf =
∑

σ,j

∂f

∂uj
σ

ωj
σ,

ωj
σ = duj

σ −
∑

i

uj
σ+1i

dxi.

The restriction of the Cartan distribution and the metasymplectic structure
on a PDEs Ek ⊂ Jkπ leads to the metasymplectic structure

Ω : g∗k−1 → Λ2C (Ek)∗

where gk−1 ⊂ Sk−1T ∗ ⊗ π is the symbol of Ek−1 :

0 → gk−1 → TEk−1 → TEk−2 → 0.

Restriction of the metasymplectic structure on a horizontal subspace, H, in
the Cartan distribution C (Ek) gives tensors

ΩH ∈ gk−1 ⊗ Λ2T ∗.

They are 2-cocycles for the Spencer δ-complex:

0 → gk+1 → gk ⊗ T ∗ → gk−1 ⊗ Λ2T ∗ → gk−2 ⊗ Λ3T ∗ → · · ·

The cohomology classes
Wk−1 ∈ Hk−1,2 (g)

do not depend on the choice of the horizontal subspaces H and are called Weyl
tensors (see, [5]).

Proposition 1 A point xk ∈ Ek belongs to the image of the map πk+1,k : E(1)
k →

Ek if and only if Wk−1 = 0 at this point.

3 Syzygies of Symbolic Modules

The ST = ⊕kSkT -module, graded by dual symbols g∗k,

g∗ = ⊕kg∗k

is called a symbolic module (of the system of PDEs at the point of the equation
xk ∈ Ek, k ≥ k1).

The annihilator I ⊂ ST of the symbolic module is called a characteristic
ideal, and the corresponding projective variety of I-zeros is called a character-
istic variety:

Char E ⊂ PT ∗C.
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We say that the PDE system is of the Cohen-Macaulay type if the symbolic
module is a Cohen-Macaulay ST -module ( at the point of the equation, xk ∈ Ek).

Let the PDE system has form

F1

(
x1, , , xn, u1, .., um, ..., uj

α, ...
)

= 0, · · · , FN

(
x1, , , xn, u1, .., um, ..., uj

α, ...
)

= 0,

in canonical jet coordinates, and let

σ (Fi) =
(
σ1 (Fi) , ..., σm (Fi)

)
,

be the symbol of i-th equation, where

σj (Fi) =
∑

|α|=ki

∂Fi

∂uj
α

∂a,

∂a = ∂α1
1 ◦ · · · ◦ ∂αn

n ,

∂s =
∂

∂xs
, α = (α1, ..., αn)

and ki is a order of i-th PDE.
Then the symbolic module g∗ is the factor of ST ⊗ Rm by submodule

〈σ (F1) , .., σ (FN )〉 generated by symbols σ (F1) , .., σ (FN ) .

Denote by Σ the syzygy ST -module for g∗. Note that this module as well as
g∗ depends on a point of the PDE system E. We shall require that this mod-
ules form a vector bundles over the PDE system (this is the second regularity
condition discussed in the introduction).

Under the regularity condition the following theorem holds.

Theorem 2 1. Any syzygy λ =
(∑

|α|=R−k1
λ1

α∂a, ....,
∑
|α|=R−kN

λN
α ∂a

)

produces a compatibility condition:

λ =
∑

|α|=R−k1

λ1
αDa (F1) + · · ·

+
∑

|α|=R−kN

λ1
αDa (FN ) = 0 mod

(
Dβ1

(F1) , ..., DβN

(FN )
)

,

where
∣∣β1

∣∣ < R−k1, ....,
∣∣∣βN

∣∣∣ < R−kN , and Da are the total differential
operators corresponding to ∂a.

2. The system of PDEs, E , is formally integrable (compatible) if and only if
λ = 0 for all syzygies λ.

Remark that the obstructions λ are representatives of the Weyl tensors in the
2-nd Spencer δ-cohomology.
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4 Compatibility of Scalar PDEs and Mayer
Brackets

Applying the description of obstructions for a system E of scalar PDEs

F1

(
x, u,

∂u

∂x
, ...,

∂σu

∂xσ

)
= 0,

.....................

Fr

(
x, u,

∂u

∂x
, ...,

∂σu

∂xσ

)
= 0

which satisfy the following condition:

• The equations F1 = 0, ...., Fr = 0 have transversal complex characteristic
varieties (or, equivalently: The characteristic ideal is a complete intersec-
tion),

we get

Theorem 3 ([1],[3]) The PDEs system E is formally integrable if and only if
all Mayer brackets [Fi, Fj ] vanish due to the system E .

Here, the (higher) Mayer bracket of two functions F ∈ C∞(JkRn) and G ∈
C∞(JlRn) is defined as follows

[F, G] =
∑

|α|=k

∂F

∂uα
DαG−

∑

|β|=l

∂G

∂uβ
DβF

where Dα = Dα1
1 · · ·Dan

n , α = (α1, ..., αn), and Di are the operators of total
derivatives.

Remark that

• [F, G] ∈ C∞(Jk+l−1Rn), if F ∈ C∞(JkRn) and G ∈ C∞(JlRn),

• The Mayer bracket is bilinear, skew-symmetric, but

• The Jacobi identity for Mayer brackets is violated.

• If r = n and the above conditions hold then the PDE system E is solvable
in smooth functions.

• If H is a higher symmetry of the PDE system E such that complex charac-
teristics of H are transversal to complex characteristics of E , then the PDE
system E∩H−1(0) for H-invariant solutions of E is formally integrable.

• We call a function G ∈ C∞(JlRn) an auxiliary integral for the system
E if all Mayer brackets [Fi, G] vanish due to the system E∩G−1(0) and
complex characteristics of H are transversal to complex characteristics of
E . In this case the system E∩G−1(0) is formally integrable.
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Example 1 1. The PDE system

uxxuyy − u2
xy = aebu,

uxx ± uyy = 0

is formally integrable for any constants a, b.

2. The PDE system

uxx + uyy = u−1,

uxxuyy − u2
xy = 0.

is formally integrable.

3. The associativity equation:

uxxxuxyy − u2
xxy + uyyy = 0

has

(a) The 1st order auxiliary integrals

λxux + µyuy + (µ− 4λ)u,

xux + yuy − 2u, xux − u, xux + c, u

yuy − ru, r = 1, 2

(b) The 2nd order auxiliary integrals

auxx + buxy + cuyy,

2uxxuyy − 3u2
xy

and

(c) The 3rd order auxiliary integrals

auxxx + buxxy + cuxyy + duyyy,

2uxxy − u2
xxx

5 Compatibility of PDE Systems and
Multi-brackets

Let A be an (non commutative) algebra, and let denote by 〈a1, ....,am〉 =
Ndet ‖aij‖ ∈ A any generalization of the determinant for non commutative
algebras for

a1 = (a11, ..., a1m) ∈ Am,

.......................

am = (am1, ..., amm) ∈ Am.
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Define a multi-bracket as follows

{a1, ....,am+1} =
m+1∑

k=1

(−1)k 〈a1, ..., âk, ..., am+1〉ak.

Example 2 1. Let m = 1. Then

{a, b} = ab− ba.

2. Let m = 2. Then
{a1,a2,a3} = (x1, x2)

where

x1 = −a21a32a11 + a31a22a11 + a11a32a21

−a31a12a21 − a11a22a31 + a21a12a31,

x2 = −a21a32a12 + a31a22a12 + a11a32a22

−a31a12a22 − a11a22a32 + a21a12a32.

Remark that:

• If A is a commutative algebra, then

{a1, ....,am+1} ≡ 0

for all a1, ....,am+1.

• If A is an algebra of differential operators, and order of ai ≤ ki, then order
of {a1, ....,am+1} does not exceed

k1 + · · ·+ km+1 − 1.

Let π : Rm × M → M be the trivial vector bundle and let difk(π,1) =
C∞

(
Jkπ

)
be the module of non-linear scalar differential operators on π of order

≤ k.
Denote by

l(F ) = (l1(F ), ..., lm(F ))

the linearization of differential operator F ∈ difk(π,1).
Define a multi-bracket {F1, ..., Fm+1} as follows

1
m!

∑

α∈Sm,β∈Sm+1

(−1)α(−1)βlα1(Fβ1
) · · · lαm(Fβm

)(Fβm+1
).

Note that
{F1, ..., Fm+1} ∈ difk1+···km+1−1(π,1)

if
Fi ∈ difki(π,1).
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Let a PDE system E given by equations

F1 = 0, ..., Fr = 0

where Fi ∈ difki(π,1), and let

Js = 〈DσFi with ki + |σ| ≤ s〉 ⊂ difs(π,1).

Then by the Mayer multi-bracket we mean

[F1, ..., Fm+1]E = {F1, ..., Fm+1}modJs,

where
s = k1 + · · ·+ km+1 − 1.

We say that the PDE system E of r differential equations on m unknowns is
of generalized complete intersection type if

1.
m ≤ r ≤ n + m− 1.

2. The complex projective characteristic variety has dimension

m + n− r − 2

at each point.

3. The kernel bundle is a 1-dimensional bundle over the characteristic variety.

Remark that:

• this class of systems is included into the class of Cohen-Macaulay type
systems introduced in [2].

• The number r of equation, called codimension of PDE system E , is defined
[2] via the Spencer δ-cohomology as

dim H∗,1 (E) .

Theorem 4 Let a PDE system E be given by equations

F1 = 0, ..., Fr = 0

where Fi ∈ difki(π,1). Then

1. If the system is formally integrable, then all Mayer multi-brackets

[Fi1 , ..., Fim+1 ]E

vanish.
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2. If the system is of generalized complete intersection type, then E is formally
integrable if and only if the all Mayer multi-brackets vanish.

Example 3 The Cauchy-Riemann system

ux = vy, uy = −vx

has an auxiliary integral of the form

det
∥∥∥∥
ux vx

uy vy

∥∥∥∥ = G(u, v)

if and only if

∆G =
|∇G|2

G
.
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Abstract. We consider univariate, nonconstant polynomials P with
real coefficients. For computing the real roots of such polynomials
it is convenient to isolate the roots. A key step in real isolation of
roots is the computation of lower bounds for the real roots. This
can be realized as soon as we obtain accurate upper bounds for pos-
itive roots. We present some bounds for positive roots and compare
them with other methods. We also compute bounds for the roots of
orthogonal polynomials.

1 Introduction

Orthogonal polynomials have real coefficients and all their zeros are real, dis-
tinct, simple, and located in the interval of orthogonality. Therefore, the meth-
ods of real root isolation using continued fractions or those based on Descartes’
rule of signs can be applied. It is sufficient to estimate the smallest positive
root. And this can be done if we are able to compute the largest positive root
(LPR).

We obtain new estimates for LPR of orthogonal polynomials using two ap-
proaches. We use results of Lagrange, Kioustelidis and Ştefănescu on real roots
of polynomials with real coefficients. And, we study the ordinary differential
equations satisfied by orthogonal polynomials through the Hessian of Laguerre.
The results are compared with other bounds.

2 On the Bound of Lagrange

We first recall some results on upper bounds for positive roots of univariate
polynomials with real coefficients. The first such bounds were obtained by
Lagrange [6] and Cauchy [3]. Other limits were obtained by J. B. Kioustelidis
[5] and D. Ştefănescu [10]. These bounds are expressed as functions of the degree
and of the coefficients. We compare the bounds of Lagrange [6], Koustelidis [5]
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and a bound from our paper [10]. Other comparisons can be found in Akritas–
Strzeboński–Vigklas [2] and Ştefanescu [11].

In his treatise on the numerical solution of algebraic equations (1769) La-
grange [6] obtained several bounds for the real roots of univariate polynomials
with real coefficients. We remind the reader of two of them.

Theorem 1 (Lagrange) Let F be a nonconstant monic polynomial of degree n
over R and let {aj ; j ∈ J} be the set of its negative coefficients. Then an upper
bound for the positive real roots of F is given by the sum of the largest and the
second largest numbers in the set

{
j

√
|aj | ; j ∈ J

}
.

Theorem 2 (Lagrange) Let P (X) = a0X
d+· · ·+amXd−m−am+1X

d−m−1±
· · · ± ad ∈ R[X] , with all ai ≥ 0, a0, am+1 > 0 . Let

A = max
{
ai ; coeff (Xd−i) < 0

}
.

The number

1 +
(

A

a0

)1/(m+1)

is an upper bound for the positive roots of P .

This Theorem 1 result has apparently been completely forgotten. We note
that in some particular cases it can be successfully used. On the other hand
Theorem 2 is very popular. We give here two results that extend it.

Theorem 3 Let P (X) = a0X
d + · · · + amXd−m − am+1X

d−m−1 ± · · · ± ad ∈
R[X] , with all ai ≥ 0, a0, am+1 > 0 . We put

A = max
{
ai ; coeff (Xd−i) < 0

}
.

The number

1 + max

{(
pA

a0 + a1 + · · ·+ as

)1/(m−s+1)

,

(
qA

sa0 + · · ·+ +2as−2 + as−1

)1/(m−s+2)
}

is an upper bound for the positive roots of P for any s ∈ {1, 2, . . . ,m} and
p ≥ 0 , q ≥ 0 such that p + q = 1 .

Proof:
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We consider x ∈ R, x > 1. We have

|P (x)| ≥ |a0x
d + · · ·+ amxd−m| − |am+1x

d−m−1 ∓+ . . .∓ ad|

≥ a0x
d + · · ·+ asx

d−s −A(xd−m−1 + · · ·+ 1)

≥ (a0 xs + · · ·+ as)xd−s −A
xd−m − 1

x− 1

=
(a0 xs + · · ·+ as)(x− 1)xd−s −A

x− 1
· xd−m +

A

x− 1
.

(1)

The last right hand side of (1) is strictly positive provided

(a0 xs + · · ·+ as)(x− 1)xm−s ≥ A . (2)

Now we put x = 1 + y and note that xj ≥ 1 + jy for all j ∈ N. We observe that

(a0 xs + · · ·+ as)(x− 1)xm−s

≥ (a0(1 + sy) + · · ·+ as−1(1 + y) + a0) ym−s+1

= (a0 + · · ·+ as) ym−s+1 + (sa0 + · · ·+ 2as−2 + as−1) ym−s+2 .

It follows that (2) is satisfied if

(a0 + · · ·+ as−1 + as) ym−s+1 ≥ pA ,

(sa0 + · · ·+ 2as−2 + as−1) ym−s+2 ≥ qA ,

with p, q ≥ 0, p + q = 1 .

These inequalities are satisfied if

y ≥ max

{(
pA

a0 + a1 + · · ·+ as

)1/(m−s+1)

,

(
qA

sa0 + · · ·+ +2as−2 + as−1

)1/(m−s+2)
}

.

We also obtain

Theorem 4 Let P (X) = a0X
d + · · · + amXd−m − am+1X

d−m−1 ± · · · ± ad ∈
R[X] , with all ai ≥ 0, a0, am+1 > 0 . We put

A = max
{
ai ; coeff (Xd−i) < 0

}
.
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The number

1 + max

{(
pA

a0 + · · ·+ as

)1/(m−s+1)

,

(
qA

sa0 + · · ·+ 2as−2 + as−1

)1/(m−s+2)

,

(
2rA

s(s− 1)a0 + (s− 1)(s− 2)a1 + · · ·+ 2as−2

)1/(m−s+3)
}

.

is an upper bound for the positive roots of P for any s ∈ {2, 3, . . . ,m} and
p ≥ 0 , q ≥ 0 , r ≥ 0 such that p + q + r = 1 .

Proof:
We consider x ∈ R, x > 1. As in the proof of Theorem 3 P (x) 6= 0 if

(a0 xs + · · ·+ as)(x− 1)xm−s ≥ A . (3)

We consider again x = 1 + y and note that

xj ≥ 1 + jy +
j(j − 1)

2
y2 for all j ≥ 2 .

It follows that the inequality (3) is satisfied if the following three conditions are
fulfilled:

(a0 + · · ·+ as)ym−s+1 ≥ pA ,

(sa0 + · · ·+ 2as−2 + as−1)ym−s+2 ≥ qA ,

(s(s− 1)a0 + (s− 1)(s− 2)a1 + · · ·+ 2 · 1 · as−2)ym−s+3 ≥ rA

for p, q, r positive with p + q + r = 1 .

Example
Let P (X) = X15 + X13 + X12 + 2X6 − 5X5 − 3X2 + 2X − 6
and denote by B = B(m, s, p, q, r) the bound given by Theorem 4. We have
A = 6, m = 9 . We obtain the following bounds

s p q r B LPR
2 0.5 0.5 0 2.06 1.11
2 0.25 0.25 0.5 2.07 1.11
3 0.5 0.5 0 2.00 1.11
3 0.25 0.25 0.25 2.00 1.11
9 0.5 0.5 0 1.84 1.11
9 0.25 0.25 0.5 1.67 1.11
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3 Another Bound

J. B. Kioustelidis [5] gives the following upper bound for the positive real roots:

Theorem 5 (Kioustelidis) Let P (X) = Xd− b1X
m1 −· · ·− bkXm−k +g(X),

with g(X) having positive coefficients and b1 > 0, . . . , bk > 0 . The number

K(P ) = 2 ·max{b1/m1
1 , . . . , b

1/mk

k } .

is an upper bound for the positive roots of P .

For polynomials with an even number of variations of sign, we have the
following bound:

Theorem 6 (Ştefănescu) Let P (X) ∈ R[X] be such that the number of vari-
ations of signs of its coefficients is even. If

P (X) = c1X
d1 − b1X

m1 + c2X
d2 − b2X

m2 + · · ·+ ckXdk − bkXmk + g(X) ,

with g(X) ∈ R+[X], ci > 0, bi > 0, di > mi > di+1 for all i, the number

S(P ) = max

{(
b1

c1

)1/(d1−m1)

, . . . ,

(
bk

ck

)1/(dk−mk)
}

is an upper bound for the positive roots of the polynomial P .

Remark: Note that the bound of Lagrange returns only bounds surpassing
unity, so it cannot be used for some classes of orthogonal polynomials. For
example the roots of Legendre polynomials are subunitary.

4 Applications to Orthogonal Polynomials

Let us consider the polynomials of Laguerre and Chebyshev of first and second
kind. Using Theorem 6 we obtain:

Proposition 7 Let Ln, Tn and Un be the orthogonal polynomials of degree n
of Laguerre, respectively Chebyshev of first and second kind. We have

i. The number K(Ln) = S(Ln) = n2 is an upper bound for the roots of Ln .

ii. The numbers K(Tn) =
√

n and S(Tn) =
√

n

2
are upper bounds for the

roots of Tn .

iii. The numbers K(Un) =
√

n− 1 and S(Un) =
√

n− 1
2

are upper bounds
for the roots of Un .
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Proof:
We use the representations

Ln(X) =
n∑

k=0

(
n

n− k

)
(−1)k

k!
Xk,

Tn(X) =
n

2

bn/2c∑

k=0

(−1)k 2n−2k

n− k

(
n− k

k

)
Xn−2k,

Un(X) =
bn/2c∑

k=0

(−1)k 2n−2k

(
n− k

k

)
Xn−2k ,

and Theorems 5 and 6.

Examples:
We denote by LPR the largest positive root of a polynomial and by L the

bound of Lagrange (Theorem 2).

1. Laguerre Polynomials

n L(P) K(P) S(P) LPR
8 376321.0 64 64 22.86

120 1.94× 10206 14400 14400 487.696

2. Chebyshev Polynomials of First Kind

n L(P) K(P) S(P) LPR
8 2.41 2.83 1.41 0.994

120 27917.33 10.00 5.00 0.99991

3. Chebyshev Polynomials of Second Kind

n L(P) K(P) S(P) LPR
8 2.322 2.83 1.41 0.994

120 25864.44 9.96 4.98 0.9996

Note that for Chebyshev polynomials we have K(P ) = 2 S(P ).

5 Applications of the Hessian of Laguerre

A second approach for estimating the largest positive root of an orthogonal poly-
nomial is the consideration of properties of its associated differential equation.
This can be realized by considering the positivity of the Hessian of Laguerre

H (f) = (n− 1)2 f ′2 − n(n− 1) ff ′ .

We discuss applications to Legendre and Hermite polynomials.
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Definition of the Hessian of Laguerre

Let us suppose that

f(X) =
n∑

j=1

aj Xj

is an univariate polynomial with real coefficients.

We associate to f the corresponding bivariate polynomial

F (X, Y ) =
n∑

j=1

aj Xj Y n−j

and consider its Hessian

H (F ) = det




FXX FXY

FXY FY Y


 .

We have

FXX =
n∑

j=0

j(j − 1)aj Xj−2Y n−j ,

FXY =
n∑

j=0

j(n− j)aj Xj−1Y n−j−1,

FY Y =
n∑

j=0

(n− j)(n− j − 1)aj XjY n−j−2.

We denote

f ′′xx = FXX(x, 1),

f ′′xy = FXY (x, 1),

f ′′yy = FY Y (x, 1),

and compute

H (F )(x, 1) := det




fxx fxy

fxy fyy


 .
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This determinant can be expressed as a function of f , f ′ and f ′′. In fact, we
have

f ′′xx =
∑n

j=0 j(j − 1)aj xj−2 = f ′′ ,

f ′′xy =
n∑

j=0

j(n− j)aj xj−1

= n

n∑

j=0

jaj xj−1 −
n∑

j=0

j2 aj xj−1

= nf ′ − x

n∑

j=0

j(j − 1)aj xj−2 −
n∑

j=0

jaj xj−1

= (n− 1)f ′ − xf ′′ ,

f ′′yy =
n∑

j=0

(n− j)(n− j − 1)aj xj

= (n2 − n)
n∑

j=0

aj xj − 2n

n∑

j=0

j aj xj +
n∑
0

j(j + 1)aj xj

= (n2 − n)
n∑

j=0

aj xj − 2(n− 1)
n∑

j=0

j aj xj +
n∑
0

j(j − 1)aj xj

= (n2 − n)
n∑

j=0

aj xj − 2(n− 1)x
n∑

j=0

j aj xj−1 + x2
n∑
0

j(j − 1)aj xj−2

= (n2 − n)f − 2(n− 1)xf ′ + x2 f ′′.

It follows that

H (F )(x, 1) =

∣∣∣∣∣∣

f ′′ (n− 1)f ′ − xf ′′

(n− 1)f ′ − xf ′′ (n2 − n)f ′2 − 2(n− 1)xf ′ + x2f ′′

∣∣∣∣∣∣

= n(n− 1)ff ′′ − (n− 1)2 f ′2 .

Note that this differs only by a sign from the Hessian considered by Laguerre
[7]:
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H(f) = (n− 1)2 f ′2 − n(n− 1) ff ′ ≥ 0 .

We remind the reader of the following:

Theorem 8 (Laguerre) If the polynomial f has real simple roots, then the
Hessian H (f) is positive.

Applications to Roots of Orthogonal Polynomials

Let f ∈ R[X] be a polynomial of degree n ≥ 2 that satisfies the second–order
differential equation

p(x) y′′ + q(x) y′ + r(x) y = 0 , (4)

with p, q and r univariate polynomials with real coefficients, p(x) 6= 0.
Let us assume that all the roots of f are simple and real and let α be a root of
f . Laguerre established

4(n− 1)
(
p(α)r(α) + p(α)q′(α)− p′(α)q(α)

)
− (n + 2)q(α)2 ≥ 0 . (5)

The inequality (4) can be applied succesfully for finding upper bounds for the
roots of orthogonal polynomials.

Example. Consider the Legendre polynomial Pn, which satisfies the differential
equation

(1− x2)y′′ − 2xy′ + n(n + 1)y = 0 .

From (4) it follows that La(n) = (n − 1)

√
n + 2

n(n2 + 2)
is a bound for the roots

of Pn . We have:

Bounds for Zeros of Legendre Polynomials

n La(P) LPR
5 0.91084 0.90617
8 0.96334 0.96028
11 0.98021 0.97822
55 0.99917 0.99906
100 0.99975 0.99971

Remark: The Hessian can give accurate bounds also for other orthogonal poly-
nomials if convenient differential equations are examined.
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Abstract. A normal form approach is used to get an analytical
handle on geometric objects, such as the normally hyperbolic invari-
ant manifolds (NHIMs), and to achieve as a consequence a break-
through in astrodynamics and reaction dynamics. The technique
is illustrated by applying it to the three collinear equilibria (L1,
L2 and L3) of the spatial circular restricted three-body problem.
The expressions involved in the procedure need to be known very
accurately; thus, one has to carry out the computations to a high
degree, necessitating the handling of huge expressions through sym-
bolic computations. The advantages of this approach compared to
other techniques are emphasized. Finally we give some hints on its
application to time-dependent Hamiltonians.

1 Introduction

Transition State (TS) has been a subject of continuous interest in chemistry
since the early nineties. Classical Transition State Theory (TST) is the cor-
nerstone of reaction rate theory. It postulates a partition of phase space into
reactant and product regions, which are separated by a dividing surface that
reactive trajectories must cross. Historically, it has been analyzed from various
points of view and a great development in the understanding of TS has been
made. For a good introduction on the subject, see [2] and references therein.
Several techniques for studying two-degrees-of-freedom problems have been pro-
posed and successfully used. The generalization to more than two degrees of
freedom is a non-trivial result. It was made possible through a phase space
formulation of TS and the computation of geometric structures such as NHIMs,
as well as the computation of other related structures [7].

Transition phenomena do not only occur in chemical reactions [2], but also
in other kinds of problems, such as those appearing in astrodynamics. For
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instance, we can mention capture and escape phenomena in the solar system [4],
the design of space missions using low-energy orbits, and the determination of
homoclinic and heteroclinic trajectories. All share a common mathematical
framework. Thus, TS techniques applied in chemistry can also be applied to
astrodynamic problems and vice-versa: celestial mechanics tools can be used to
deal with chemical reaction dynamics. As a result, both fields are advanced.

Examples of mathematical models used to study problems in astrodynamics
are the spatial (or planar) elliptic (or circular) restricted three-body problem,
the quasi-bicircular or tricircular problems, and the restricted four-body prob-
lem with Hill approximation [6], among others.

Here we will choose the spatial circular restricted three-body problem as
an example to calculate the geometric structures defining the TS around the
collinear equilibria (L1, L2 and L3). The calculation of normal forms is a key
to computing the TS and their associated structures with great precision. In
case of no resonances among the fundamental frequencies of the linearised sys-
tem around the collinear points, we compute the normal form as a Hamiltonian
with zero degrees of freedom. We show how to determine analytically the TS,
as well as the NHIM, together with its stable and unstable invariant manifolds.
We compute trajectories that start on the NHIM in the energy surface. And,
we determine trajectories in either the forward or backward stable and unstable
manifolds associated with the NHIM. These trajectories are simply chosen and
computed from the normal form vector field. Then, the normal form transfor-
mation allows us to visualize these structures in the original coordinates if the
number of degrees of freedom is two or three. Thus, we have complete control
and knowledge of the exact dynamical trajectories near the TS in an n-DOF
system.

Our approach is algorithmic in nature in the sense that we provide a series
of steps that can be carried out to locate the NHIM, its stable and unstable
manifolds, and the TS, as well as describing all possible trajectories near the
TS [7].

The advantages of our approach compared to the technique called reduction
to the central manifold are emphasized. For instance, we can determine halo and
Lissajous quasiperiodic orbits only from the normal form without calculating
any Lindstedt series. We also mention how to detect homoclinic and heteroclinic
orbits without resorting to Montecarlo simulations. The theoretical background
of our exposition appears in [7, 8, 9, 2].

We start by recalling the definition of the geometric structures we will com-
pute [7]. In Section 3 we make a brief statement on the technique to compute
the geometric structures defined in Section 2: normal forms. Section 4 treats the
spatial circular restricted three-body problem. Finally, in Section 5 we consider
the extension of the method to time-dependent systems.
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2 Definition of the geometric structures

We start by stating the definition of the structures we want to compute. For
more information, see [7, 2]. Let us consider a Hamiltonian system of the type:

H =
n−1∑

i=1

ωi

2
(
p2

i + q2
i

)
+ λqnpn + f1(q1, . . . , qn−1, p1, . . . , pn−1, I)

+f2(q1, . . . , qn−1, p1, . . . , pn−1), (1)

where (q1, . . . , qn, p1, . . . , pn) ∈ R2n denote canonical coordinates, I ≡ pnqn

and f1, f2 are at least of third order, i.e., they are responsible for the non-linear
terms in the Hamiltonian vector field, and f1(q1, . . . , qn−1, p1, . . . , pn−1, 0) = 0.
Hamiltonian H has an equilibrium at the origin.

The dynamics associated with H occurs in the (2n− 1)-dimensional energy
surface given by:

n−1∑

i=1

ωi

2
(
p2

i + q2
i

)
+ λqnpn + f1(q1, . . . , qn−1, p1, . . . , pn−1, I)

+f2(q1, . . . , qn−1, p1, . . . , pn−1) = h = constant > 0. (2)

Taking qn = pn = 0 in (1) we get a (2n− 2)-dimensional invariant manifold.
Its intersection with the (2n− 1)-dimensional energy surface (2) is given by

M2 n−3
h =

{
(q1, . . . , qn, p1, . . . , pn) | qn = pn = 0,

n−1∑

i=1

ωi

2
(
p2

i + q2
i

)
+ f2(q1, . . . , qn−1, p1, . . . , pn−1) = h = constant > 0

}
. (3)

This is the NHIM, a “multidimensional version of a saddle” (“saddle sphere”)
whose dimension is 2 n−3 and which possesses a codimension of one stable and
one unstable manifold. It is approximated by using high-order normal forms,
as we will see in next section. A NHIM roughly means that the stretching and
contraction rates under linearised dynamics transverse to the (2n − 3)-sphere
dominate those tangent to the (2n − 3)-sphere. The dynamics normal to the
(2n − 3)-sphere is described by the exponential contraction and expansion of
the saddle point dynamics.

A key advantage of the normal form is that the stable and unstable manifolds
of M2n−3

h can be known explicitly. They are given by the following expressions:

W s
(M2n−3

h

)
=

{
(q1, . . . , qn, p1, . . . , pn) |

n−1∑

i=1

ωi

2
(
p2

i + q2
i

)

+f2(q1, . . . , qn−1, p1, . . . , pn−1) = h = constant > 0, qn = 0} ,
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Wu
(M2n−3

h

)
=

{
(q1, . . . , qn, p1, . . . , pn) |

n−1∑

i=1

ωi

2
(
p2

i + q2
i

)

+f2(q1, . . . , qn−1, p1, . . . , pn−1) = h = constant > 0, pn = 0} .(4)

Hence, the stable and unstable manifolds of the sphere have the structure of
M2n−3

h ×R. They are (2 n− 2)-dimensional objects which act as multidimen-
sional separatrices. The central manifold (with dimension 2 n − 2) associated
with the equilibrium (the origin) is given by pn = qn = 0. The stable manifold
of dimension 1 is given by qi = pi = 0 for i = 1, . . . , n− 1, qn = 0. The unstable
manifold of dimension 1 is given by qi = pi = 0 for i = 1, . . . , n − 1, pn = 0.
Precisely the intersection of the central manifold of the origin with the energy
surface (2) is the NHIM. Taking into account that the dynamics takes place on
the energy surface, the NHIM, rather than the central manifold, is the right
structure to compute in order to study the dynamics.

The TS for (1) is obtained by taking qn = pn:

T S2 n−2
h =

{
(q1, . . . , qn, p1, . . . , pn) | qn = pn,

n−1∑

i=1

ωi

2
(
p2

i + q2
i

)
+ f1(q1, . . . , qn−1, p1, . . . , pn−1, p

2
n)

+ f2(q1, . . . , qn−1, p1, . . . , pn−1) = h = constant > 0
}

.

This structure has all the properties that define the so-called TS: it is locally
a “surface of no return” where the trajectories crossing T S2 n−2

h correspond to
“reactive” trajectories and all reactive particles must pass through it.

3 Normal forms

All the structures defined in the previous section can be obtained analytically
by means of normal forms [1]. We outline here the main ideas of the procedure.

Consider a Hamiltonian vector field H such that

H(q,p; ε) =
∑

i≥0

εi

i!
Hi(q,p), |H0| À ε |H1| À ε2 |H2|/2 À . . . ,

where (q,p) = (q1, . . . , qn, p1, . . . , pn), ε is a small parameter and:

dq
d t

=
∂H
∂p

,
dp
d t

= −∂H
∂q

.

Denoting x = (q,p), calculating a normal form associated with H means con-
structing an application X : (y; ε) → x, as a solution of the initial value problem

dx
d ε

=
∂W
∂ x

(x; ε), x(0) = y
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through a generating function

W(x; ε) =
∑

i≥0

εi

i!
Wi+1(x)

such that the vector field H is transformed into

K(x; ε) =
∑

i≥0

εi

i!
Ki(y).

The procedure to construct K is recurrent and, at each step, one has to solve
the homology equation, which is the partial differential equation:

{H(0)
0 , Wi }+Ki = H̃(i)

0

where terms H̃(i)
0 are the ones depending on the previous orders and are already

known and Ki is chosen to be simple” according to the goal of the transfor-
mation. The application x = X(y; ε) relates the old coordinates x with the
new ones y and is a near-identity transformation. This is a direct change of
variables, given by

x = X(y; ε) = y +
∑

i≥1

εi

i!
y(i)

0

with y(0)
0 ≡ y, y(0)

i ≡ 0 if i ≥ 1. The inverse change of variables is also given
explicitly through the expression:

y = Y(x; ε) = x +
∑

i≥1

εi

i!
x(i)

0 (5)

with x(0)
0 ≡ x, x(0)

i ≡ 0 if i ≥ 1. The way of computing the terms y(i)
0 and x(i)

0

is recurrent and uses the generators given by Wi.
The advantage of the normal form is that once it is obtained, one can com-

pute analytically the NHIM, its stable and unstable manifolds, and the TS in
the original coordinates in terms of so-called “normal form” coordinates. To ac-
complish that, we make use of direct and inverse changes of the variables given
above.

The NHIM is obtained by setting qn = pn = 0 in the normal form; its stable
manifold is got by setting qn = 0; the unstable manifold is obtained by setting
pn = 0; the TS results after making qn = pn.

4 The circular restricted three-body problem

In this section we focus on the circular restricted three-body problem and cal-
culate the TS, the NHIM, and its stable and unstable manifolds. An extended
study of this system will be made in a subsequent paper.
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The Hamiltonian corresponding to the circular restricted three body problem
centered on the center of mass of the primaries is:

H =
1
2

(
P 2

1 + P 2
2 + P 2

3

)− (x1 P2 − x2 P1)− 1− µ√
(µ + x1)2 + x2

2 + x2
3

− µ√
(1− µ− x1)2 + x2

2 + x2
3

,

where (x1, x2, x3, P1, P2, P3) represent Cartesian coordinates and momenta and
µ = m1/(m1 + m2) ∈ (0, 1/2] is the reduced mass.

We know from classical analysis that this system has five equilibria: the
so-called Euler equilibria L1, L2, L3, which are unstable, and the Lagrange equi-
libria, L4 and L5, which are linearly stable up to a certain value of µ (the Routh
limit), see for instance [5]. The three Lagrange equilibria are of interest to us
because after expanding (4) around each of them and performing appropriate
changes of variables, one gets a Hamiltonian of the type (1).

First, we translate the equilibrium (either L1, L2 or L3) to the origin and
then Taylor-expand the Hamiltonian (4) around the origin up to order n. We
get H =

∑n
i=0Hi, where each Hi denotes a homogeneous polynomial of degree

i + 2. The eigenvalues of the matrix associated with H0 are:

γ1,2 = ±√α ı,

γ3,4 = ±
√

α− 2−
√

α (9α− 8)
2

, γ5,6 = ±
√

α− 2 +
√

α (9 α− 8)
2

,

where α = µ/d3
2 + (1− µ)/d3

1 and di is the distance from the equilibrium to the
body i. As α > 1, γ5,6 are real and γ1,2 and γ3,4 are purely imaginary. Using
the eigenvectors associated to the linear part of the system we perform a linear
canonical change of coordinates and arrive at a Hamiltonian whose quadratic
part is

H0 =
ω1

2
(q2

1 + p2
1) +

ω2

2
(q2

2 + p2
2) + µ q3 p3,

or
H0 = ı ω1 q̄1 p̄1 + ı ω2 q̄2 p̄2 + µ q̄3 p̄3,

where ω1 = γ1, ω2 = γ3 and µ = γ5. Once having the linear part in an adequate
form we apply the change to the non-linear terms.

The following step transforms H into K through a normal form calculation
in such a way that K admits three independent formal integrals in involution.
For that, we identify K0 = H0 and, for each i ∈ [1, n], choose Ki so that the
Poisson bracket {Ki , K0 } = 0. Picking a monomial mi of degree i + 2:

mi = c q̄j1
1 q̄j2

2 q̄j3
3 p̄k1

1 p̄k2
2 p̄k3

3 with
3∑

l=1

(jl + kl) = i + 2,

notice that {mi;H0} = 0 if and only if j1 = k1, j2 = k2 and j3 = k3. In this
case mi is part of Ki; otherwise, the monomial mi/(µ (k3− j3)+ ı ω1 (k1− j1)+
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ı ω2 (k2− j2)) goes to Wi. This, then, is a step-by-step method for constructing
the normal form K and the generating function W.

In order to check the validity of the transformation, we estimate its global
error. Here we only present the calculations for L1 but the results are similar
for the remaining equilibria. We fix a neighborhood of the origin, then we take
a sample of points such that

‖(x1, x2, x3, P1, P2, P3)‖ ≤ 10−2

and compose the transformed Hamiltonian K with the inverse change (5):

|K(Y(x))−H(x)| = E(x) = En+1(x) +O(‖x‖n+2).

For Jupiter and the Sun, the relative error En+1(x)/|H(x)| yields

degree 4 0.0000292729...
degree 6 1.2966485295...× 10−7

degree 8 3.5986352013...× 10−9

degree 10 1.3577798902...× 10−10

degree 12 5.8177310016...× 10−12

degree 14 1.2314332549...× 10−14

Once the normal form is obtained, we calculate the geometric structures
defined in Section 2. The dynamics occurs in a 5-dimensional (5D) energy
surface. Setting q3 = p3 = 0 in the vector field associated with H, then q̇3 =
ṗ3 = 0 and we get the central manifold. Its intersection with the 5D energy
surface is the NHIM. Given an energy value h > 0, the NHIM of L1 associated
with the Hamiltonian in the normal form coordinates has the form:

M3
h(q1, q2, p1, p2) ={

(q1, q2, p1, p2) | ω1

2
(q2

1 + p2
1) +

ω2

2
(q2

2 + p2
2) + f2(q1 p1, q2 p2) = h

}
,

where f2 represents polynomials of degree at least three. This is topologically a
deformed sphere, the generalization of the Lyapunov orbit of the planar problem.

The NHIM has 4D stable and unstable manifolds in the 5D energy surface
since normal hyperbolicity is preserved under perturbations. In the normal form
coordinates they are:
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W s
(M3

h

)
= {(q1, q2, q3, p1, p2, p3) | q3 = 0,

ω1

2
(q2

1 + p2
1) +

ω2

2
(q2

2 + p2
2) + f2(q1 p1, q2 p2) = h

}
,

Wu
(M3

h

)
= {(q1, q2, q3, p1, p2, p3) | p3 = 0,

ω1

2
(q2

1 + p2
1) +

ω2

2
(q2

2 + p2
2) + f2(q1 p1, q2 p2) = h

}
,

T S = {(q1, q2, q3, p1, p2, p3) | p3 = 0,

ω1

2
(q2

1 + p2
1) +

ω2

2
(q2

2 + p2
2) + µ p2

3 + f1(q1 p1, q2 p2, p
2
3)

+ f2(q1 p1, q2 p2) = h} .

The expressions of the manifolds of L1 in the original variables are:

• xNHIM = ψ X(q1, q2, 0, p1, p2, 0) and we add K(q1, q2, 0, p1, p2, 0) = h
(3D NHIM),

• xSNHIM = ψ X(q1, q2, 0, p1, p2, p3) with K(q1, q2, 0, p1, p2, p3) = h
(4D stable manifold of the NHIM),

• xUNHIM = ψ X(q1, q2, q3, p1, p2, 0) and K(q1, q2, q3, p1, p2, 0) = h
(4D unstable manifold of the NHIM).

The existence of true invariant sets of H close to the ones we have computed
can be guaranteed, provided the global error of the process is kept bounded. The
manifolds xSNHIM and xUNHIM can be globalized numerically. The first integrals
for the original Hamiltonian can be calculated from the integrals of motion for
K, which are: q̄1 p̄1, q̄2 p̄2 and q̄3 p̄3. Their inverses via the Lie transformation
and linear changes, i.e. the polynomials in (x1, x2, x3, P1, P2, P3) which are
approximate integrals of motion for H, are:

J1 = ψ Y(q̄1 p̄1), J2 = ψ Y(q̄2 p̄2), J3 = ψ Y(q̄3 p̄3).

Checking that the Poisson brackets {H , Ji } ≈ 0, we conclude that the integrals
are approximated up to 14 digits within balls of radii 10−2 and n = 15.

It is also possible to calculate halo and Lissajous orbits, invariant 2-tori and
other quasi-periodic trajectories of H. For that we make use of action and angle
coordinates:

q1 =
√

2 I1 cos θ1, p1 =
√

2 I1 sin θ1, q2 =
√

2 I2 cos θ2, p2 =
√

2 I2 sin θ2.

The expression

Th = ψ X
(√

2 I1 cos θ1,
√

2 I2 cos θ2, 0,
√

2 I1 sin θ1,
√

2 I2 sin θ2, 0
)

with θ1, θ2 ∈ [0, 2π) and 0 ≤ I2 ≤ I2MAX and I1 obtained from K(I1, I2, 0) = h
represents a one-parameter family of 2-tori. For an example, see Figure 1. By
doing in Th, θ1 = ν1 t + φ1, θ2 = ν2 t + φ2 with ν1, ν2, φ1 and φ2 ∈ R we get
Lissajous trajectories. By doing in Th, θ1 ≡ θ2 = ν t + φ, we get halo orbits.
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Figure 1: Projection of the NHIM foliated by invariant 2-tori

5 Generalizations and Further Considerations

In this section we point out some generalizations of TST to time-dependent
Hamiltonians. We see through an example how to handle, for instance, non-
autonomous Hamiltonians appearing in some extensions of the circular restricted
three-body problem. Problems of molecular dynamics where the reactions are
driven by laser pulses [3] are modeled through non-autonomous Hamiltonians.
Let us consider the following example borrowed from astrodynamics [6]:

H =
1
2

(p2
x + p2

y + p2
z)− (m + 1) (x py − y px) +

1
2
(m + 1)2 (x2 + y2) + V(x, y, z),

where the potential is given through

V(x, y, z) =
1
2

(1 + 2m +
3
2
m2)(x2 + y2)− 1

2
m2 z2

+
3
4
m2

[
(x2 − y2) cos 2τ − 2x y sin 2τ

]
+

m2

a3
0

(
1− ν

R1−ν
+

ν

Rν

)
,

and
R1−ν =

√
(x + ν Rx)2 + (y + ν Ry)2 + z2,

Rν =
√

[x− (1− ν)Rx]2 + [y − (1− ν)Ry]2 + z2,

a0 = m2/3

(
1− 2

3
m +

7
18

m2 + · · ·
)

.

The model is the so-called restricted four-body problem with Hill approximation.
It enlarges the restricted three-body problem (recovered after setting m = 0), as
well as the Hill problem (recovered after setting ν = 0). When both parameters
ν and m do not vanish, H represents a time-dependent Hamiltonian system
with three degrees of freedom. First we expand it around a small periodic
orbit surrounding the collinear points. Then we eliminate the time variable
by applying canonical Floquet theory. The quadratic part of the system is
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associated with the linear ordinary differential equation (ODE)

x(t) = A(t; c)x(t).

We need to solve the equation above accurately in order to get the monodromy
matrix. The numerical resolution can lead to poor results since the ODE is
stiff, in general. An alternative to Floquet theory in the periodic case could
be an approximation of the fundamental matrix of the ODE using the Picard
iterations:

X0 = Im, Xn+1(t) = X0 +
∫

A(t)Xn(t) dt.

In this case the monodromy matrix is obtained through the expression M =
Xp(T ). Then one follows the same steps as in canonical Floquet theory. The
canonical lineal change of coordinates is calculated either following a recurrent
scheme or using Fourier series adjusting their coefficients by least squares. The
system is converted into an autonomous one of three degrees of freedom and
similar techniques to those explained here are applied to get the invariant struc-
tures.

The theory described throughout the paper and applied in Section 4 works
also for resonant systems (i.e. systems where resonances among the central
directions appear), although in these situations the normal form Hamiltonian
has more than zero degrees of freedom.

As we have seen in Section 4, we determine the invariant 2-tori, Lissajous
and halo orbits without using Lindstedt-Poincaré techniques. We can look for
heteroclinic trajectories without using Monte Carlo simulations, but using the
2-tori. Except for estimating of the error, the approach is purely analytical.

The calculations have been made with Mathematica.
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1 Introduction

We are studying the convergence criterium (see Section 2.3) and the algebraic
combinatoric aspects of the asymptotic behaviour of the coefficients {yn}n≥0 of
the following formal serial expansion (see Section 2.4)

y(z) =
∑

n≥0

ynzn, (1)

of the output y of the nonlinear dynamical system with singular inputs




y(z) = f(q(z)),
q̇(z) = A0(q)u0(z) + A1(q)u1(z),
q(z0) = q0,

(2)

where, u0(z) and u1(z) are respectively the singular inputs z−1 and (1− z)−1,
the state q = (q1, . . . , qn) belongs to the complex analytic manifold of dimension
n denoted by Q and q0 denotes the initial state, the observation f belongs to
the ring of holomorphic functions over Q denoted by O, and for i = 0..1, Ai is
the analytic vector field over Q defined by

Ai(q) =
n∑

j=1

Aj
i (q)

∂

∂qj
, with Aj

i (q) ∈ O, for j = 1, . . . , n. (3)

Let us consider the smallest algebra containing C = C[z, u0(z), u1(z)] and
being stable by derivation and by integration with respect to the following differ-
ential forms ω0(z) = u0(z) dz and ω1(z) = u1(z) dz. This is called polylogarithm
algebra and it is denoted by LIC (see Section 2.1). Let us consider also the al-
gebra generated by the special value at the singularity z = 1, when it exists, of
the elements belonging LIC . This is called polyzêtas algebra and it is denoted
by Z (see Section 2.1).
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In this work, to manipulate these algebras, let us introduce the set of words
(resp. Lyndon words) on the finite encoding alphabet X = {x0, x1}, denoted by
X∗ (resp. LynX). Let {Sl}l∈LynX denotes a transcendence basis of the shuffle
algebra over C on X and let {Šl}l∈LynX denote the Lyndon basis of the free
Lie algebra over C on X. Each word u = xs1−1

0 x1 . . . xsr−1
0 x1 in X∗x1 can be

associated to the multi-index s = (s1, . . . , sr) and it can be itself associated to
the word v = ys1 . . . ysr

in the the set of words Y ∗ over the infinite encoding
alphabet Y = {ys}s≥1. Therefore, the polylogarithms, polyzêtas and multiple
harmonic sums can be indexed by the multi-index s, as well as by the words u
or v:

Lis(z) = Liu(z) = Liv(z) =
∑

n1>...>nr>0

zn1

ns1
1 . . . nsr

r
, (4)

ζ(s) = ζ(u) = ζ(v) =
∑

n1>...>nr>0

1
ns1

1 . . . nsr
r

, (5)

Hs(N) = Hu(N) = Hv(N) =
∑

N>n1>...>nr>0

1
ns1

1 . . . nsr
r

. (6)

By considering the noncommutative generating series on Y of these objects (see
Section 2.2), in particular

Λ(z) =
∑

w∈Y ∗
Liw(z) w and H(N) =

∑

w∈Y ∗
Hw(N) w, (7)

we show the existence of a noncommutative generating series S of convergent
polyzêtas {ζ(w)}w∈Y ∗\y1Y ∗ such that

lim
z→1

exp
[
y1 log

1
1− z

]
Λ(z) = lim

N→∞
exp

[∑

k≥1

Hyk
(N)

(−y1)k

k

]
H(N) = S. (8)

This enables us to focus on the algebraic combinatoric aspects of the asymptotic
behaviour of the coefficients of the formal serial expansion of the output of (2).

2 Asymptotic analysis of dynamical system

2.1 Multiple harmonic sum and polylogarithm

Let {ti}i∈N+ be an infinite set of variables. The elementary symmetric functions
λk and the sums of powers ψk are defined by

λk(t) =
∑

n1>...>nk>0

tn1 . . . tnk
and ψk(t) =

∑
n>0

tkn. (9)

They are respectively coefficients of the following generating functions

λ(t|z) =
∏

i≥1

(1 + tiz) and ψ(t|z) =
∑

i≥1

ti
1− tiz

. (10)
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These generating functions satisfy a Newton identity

d/dz log λ(t|z) = ψ(t| − z). (11)

The fundamental theorem from symmetric function theory asserts that {λk}k≥0

are linearly independent, and, putting λ0 = 1, gives the remarkable identity:

k!λk = (−1)k
∑

s1,...,sk>0
s1+...+ksk=k

(
k

s1, . . . , sk

)(
−ψ1

1

)s1

. . .

(
−ψk

k

)sk

(12)

Let w = ys1 . . . ysr
∈ Y ∗. The quasi-symmetric function Fw, of depth r = |w|

and of degree (or weight) s1 + . . . + sr, is defined by

Fw(t) =
∑

n1>...>nr>0

ts1
n1

. . . tsr
nr

. (13)

In particular, Fyk
1

= λk and Fyk
= ψk. As a consequence, the functions {Fyk

1
}k≥0

are linearly independent and integrating the differential equation (11) shows that
functions Fyk

1
and Fyk

are linked by the formula

∑

k≥0

Fyk
1
zk = exp

[
−

∑

k≥1

Fyk

(−z)k

k

]
. (14)

The remarkable identity (12) can be then seen as

k!yk
1 = (−1)k

∑
s1,...,sk>0

s1+...+ksk=k

(
k

s1, . . . , sk

)
(−y1) s1

1s1
. . .

(−yk) sk

ksk
(15)

Every Hw(N) can be obtained by specializing variables {ti}N≥i≥1 at ti = 1/i
and, for i > N, ti = 0 in the quasi-symmetric function Fw [11]. In the same
way, when w ∈ Y ∗ \ y1Y

∗, the convergent polyzêta ζ(w) can be obtained by
specializing variables {ti}i≥1 at ti = 1/i in Fw [11]. The notation Fw is extended
by linearity to all polynomials over Y .

If u (resp. v) is a word in Y ∗, of length r and of weight p (resp. of length
s and of weight q), Fu v is a quasi-symmetric function of depth r + s and of
weight p + q, and we have Fu v = Fu Fv. Hence, Hu v = Hu Hv [11]. In the
same way, when u, v ∈ Y ∗ \ y1Y

∗, we also have ζ(u v) = ζ(u) ζ(v) [11].
The Chen’s iterated integral over ω0, ω1 associated to the word w = xi1 · · ·xik

over X and along the integration path z0 Ã z is defined recursively as follows
∫

z0Ãz

ωi1 · · ·ωik
=

∫

z0Ãz

ωi1(z1)
∫

z0Ãz1

ωi2 · · ·ωik
. (16)

In a shortened notation, we denote this integral by αz
z0

(w) and αz
z0

(ε) = 1.
One can check that the polylogarithm Lis1,...,sr is also the value of the iterated
integral over ω0, ω1 and along the integration path 0 Ã z :

Liw(s1, . . . , sr) = αz
0(x

s1−1
0 x1 . . . xsr−1

0 x1). (17)
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The definition of polylogarithms is extended over X∗ by putting, for k ∈ N,
Lixk

0
(z) = logk z/k!.

The functions {Liw}w∈X∗ are C-linearly independent [7]. Thus, the func-
tions defined by Pw(z) = (1 − z)−1 Liw(z), for w ∈ X∗, are also C-linearly
independent. Since, for any w ∈ Y ∗,Pw is the ordinary generating function
of {Hw(N)}N≥0 : Pw(z) =

∑
N≥0 Hw(N) zN , then {Hw(N)}w∈Y ∗ are also C-

linearly independent. On the one hand, ker P = {0} and kerH = {0}, and on
the other hand, P is a morphism for the Hadamard product:

Pu(z)¯ Pv(z) =
∑

N≥0

Hu(N)Hv(N)zN =
∑

N≥0

Hu v(N)zN = Pu v(z). (18)

Proposition 1 ([10]). Extended by linearity, the application P : u 7→ Pu

is an isomorphism from polynomial algebra (C〈Y 〉, ) over Hadamard algebra
(C{Pw}w∈Y ∗ ,¯). Moreover, the application H : u 7→ Hu = {Hu(N)}N≥0 is an
isomorphism from (C〈Y 〉, ) over the algebra (C{Hw}w∈Y ∗ , .).

Studying the equivalence between the action of {(1−z)l}l∈Z over {Pw(z)}w∈Y ∗

and the action of {Nk}k∈Z over {Hw(N)}w∈Y ∗ (see [9]), we have

Theorem 1. The Hadamard C-algebra of {Pw}w∈Y ∗ can be identified with that
of {Pl}l∈LynY . Identically, the algebra of harmonic sums {Hw}w∈Y ∗ with poly-
nomial coefficients can be identified with that of {Hl}l∈LynY .

By Identity (15) and by applying the isomorphism H on the set of Lyndon
words {yr}1≤r≤k, we obtain Hyk

1
as a polynomial in {Hyr

}1≤r≤k (which are
algebraically independent), and

Hyk
1

=
∑

s1,...,sk>0
s1+...+ksk=k

(−1)k

s1! . . . sk!

(
−Hy1

1

)s1

. . .

(
−Hyk

k

)sk

. (19)

Since the coefficient of zN in the Taylor expansion of Pyk
1

is Hyk
1
(N) then let

Mono(z) = e−(x1+1) log(1−z) =
∑

k≥0

Pyk
1
(z) yk

1 (20)

Const =
∑

k≥0

Hyk
1

yk
1 = exp

[
−

∑

k≥1

Hyk

(−y1)k

k

]
. (21)

2.2 Noncommutative generating series

The noncommutative generating series L =
∑

w∈X∗ Liw w satisfies the Drinfel’d
differential equation [1, 2]

dL = (x0ω0 + x1ω1)L with L(ε)
ε̃→0+ ex0 log ε. (22)

This enables us to prove that L is the exponential of a Lie series [7]. So, apply-
ing a Ree’s theorem, it verifies Friedrichs criterion [7], i..e Liuttv = Liu Liv, for
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u, v ∈ X∗. In particular, when u, v ∈ x0X
∗x1, we also have ζ(uttv) = ζ(u) ζ(v).

From the factorization of the monoid by Lyndon words, we obtain the factor-
ization of the series L (see[7]) :

L(z) = ex1 log 1
1−z Lreg(z)ex0 log z with Lreg =

↘∏

l∈LynX\{x0,x1}
eLiSl

Šl . (23)

For l ∈ LynX \ {x0, x1}, the polynomial Sl is a finite combination of words in
x0X

∗x1. So, let Z = Lreg(1) and let µ be the monoid endomorphism verifying
µ(x0) = −x1, µ(x1) = −x0. One also has [8]

L(z) = µ[L(1− z)]Z = ex0 log zµ[Lreg(1− z)]e−x1 log(1−z)Z. (24)

Thus L(z)
z̃→0

exp(x0 log z) and L(z)
z̃→1

exp(−x1 log(1− z)) Z.
Let πY : LIC〈〈X〉〉 → LIC〈〈Y 〉〉 be a projector such that πY (f wx0) = 0, for

f ∈ LIC , w ∈ X∗. Then

Λ(z) = πY L(z)
z̃→1

exp
(

y1 log
1

1− z

)
πY Z. (25)

By (23), the noncommutative generating series of {Pw}w∈X∗ is given by

P(z) = (1− z)−1L(z) = e−(x1+1) log(1−z)Lreg(z)ex0 log z (26)

= ex0 log zµ[Lreg(1− z)]e−(x1+1) log(1−z)Z (27)
= ex0 log zµ[Lreg(1− z)]Mono(z)Z. (28)

Thus, P(z)
z̃→0

ex0 log z and P(z)
z̃→1

Mono(z)Z. Let H(N) =
∑

w∈Y ∗ Hw(N) w
be the noncommutative generating series of {Hw(N)}w∈Y ∗ [10]. Then

Proposition 2. πY P(z)
z̃→1

Mono(z)πY Z and H(N)
Ñ→∞ Const(N)πY Z.

As a consequence of (25), (20) and of Proposition 2, one obtains

Theorem 2.

lim
z→1

exp
(

y1 log
1

1− z

)
Λ(z) = lim

N→∞
exp

(∑

k≥1

Hyk
(N)

(−y1)k

k

)
H(N) = πY Z.

Thus, by the knowledge of Taylor expansion in 0 of {Pw(1 − z)}w∈X∗ we
obtain

Theorem 3 ([9]). For all g ∈ C{Pw}w∈Y ∗ , there exist algorithmically com-
putable cj ∈ C, αj ∈ Z, βj ∈ N and bi ∈ C, ηi ∈ Z, κi ∈ N such that

g(z) ∼
+∞∑

j=0

cj(1− z)αj logβj (1− z) for z → 1,

[zn]g(z) ∼
+∞∑

i=0

bin
ηi logκi(n) for n →∞.
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Corollary 1 ([9]). Let Z be the Q-algebra generated by convergent polyzêtas
and Z ′ be the Q[γ]-algebra generated by Z. Then there exist algorithmically
computable cj ∈ Z, αj ∈ Z, βj ∈ N and bi ∈ Z ′, κi ∈ N, ηi ∈ Z such that

∀w ∈ Y ∗, Pw(z) ∼
+∞∑

j=0

cj(1− z)αj logβj (1− z) for z → 1,

∀w ∈ Y ∗, Hw(N) ∼
+∞∑

i=0

biN
ηi logκi(N) for N → +∞.

Definition 1 ([6]). Let ζtt : (C〈〈X〉〉, tt) → (C, .) be the algebra morphism
(i.e. for u, v ∈ X∗, ζtt (uttv) = ζtt (u)ζtt (v)) verifying for all convergent words
w ∈ x0X

∗x1, ζtt (w) = ζ(w), and such that ζtt (x0) = ζtt (x1) = 0.

Then, the noncommutative generating series Ztt =
∑

w∈X∗ ζtt (w) w verifies
Ztt = Z = Lreg(1) [6]. In consequence, Ztt is the unique Lie exponential
verifying 〈Ztt |x0〉 = 〈Ztt |x1〉 = 0 and 〈Ztt |w〉 = ζ(w), for any w ∈ x0X

∗x1.

Definition 2. Let ζ : (C〈Y 〉, ) → (C, .) the algebra morphism (i.e. for
all convergent words u, v ∈ Y ∗, ζ (u v) = ζ (u)ζ (v)) verifying for w ∈
Y ∗ \ y1Y

∗, ζ (w) = ζ(w) and such that ζ (y1) = γ.

Lemma 1. Let bn,k(t1, . . . , tn−k+1) be the (exponential) partial Bell polynomials
in the variables {tl}l≥1. If tm = (−1)m(m− 1)!ζ (m), for m ≥ 1 then

exp
[∑

k≥1

ζ (k)
(−y1)k

k

]
= 1 +

∑

n≥1

[ n∑

k=1

bn,k(γ, ζ(2), 2ζ(3), . . .)
]
(−y1)n

n!
.

Let us build the noncommutative generating series of ζ (w). Taking the
constant part of the two members of H(N)

Ñ→∞ Const(N)πY Z, we have

Theorem 4. Let Z =
∑

w∈Y ∗ ζ (w) w be the noncommutative generat-
ing series of ζ (w). Let bn,k(t1, . . . , tn−k+1) be the (exponential) partial Bell
polynomials in the variables {tl}l≥1. If tm = (−1)m(m− 1)!ζ (m) then

Z =
[
1 +

∑

n≥1

( n∑

k=1

bn,k(γ, ζ(2), 2ζ(3), . . .)
)

(−y1)n

n!

]
πY Z.

Therefore, by identifying the coefficients of yk
1w in each member and by using

the identity xk
1x0u =

∑k
l=0 xl

1 tt(x0[(−x1)k−l tt u]), for u ∈ X∗ (see [6]), we get

Corollary 2. For w ∈ x0X
∗x1, i.e. w = x0u and πY w ∈ Y ∗ \ y1Y

∗, and for
k ≥ 0, the constant ζ (xk

1w) associated with the divergent polyzêta ζ(xk
1w) is

a polynomial of degree k in γ and with coefficients in Z :

ζ (xk
1w) =

k∑

i=0

ζ(x0[(−x1)k−ittu])
i!

[ i∑

j=1

bi,j(γ,−ζ(2), 2ζ(3), . . .)
]
.
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Moreover, for l = 0, .., k, the coefficient of γl is of weight |w|+ k − l.
In particular, for s > 1, the constant ζ (1, s) associated with ζ(1, s) is

linear in γ and with coefficients in Q[ζ(2), ζ(2i + 1)]0<i≤(s−1)/2.

Applying the (surjective) morphism ζ on the identity (15), we deduce

Corollary 3. The constant ζ (xk
1) associated with the divergent polyzêta ζ(xk

1)
is a polynomial of degree k in γ with coefficients in Q[ζ(2), ζ(2i+1)]0<i≤(k−1)/2 :

ζ (xk
1) =

∑
s1,...,sk>0

s1+...+ksk=k

(−1)k

s1! . . . sk!
(−γ)s1

(
−ζ(2)

2

)s2

. . .

(
−ζ(k)

k

)sk

.

Moreover, for l = 0, .., k, the coefficient of γl is of weight k − l.

2.3 Polysystem and convergence criterium

Here, generalizing a little, suppose that A is a C-algebra and is a complete
normed vector space and that a norm is denoted by ‖.‖. The set of formal
power series (resp. polynomials) on X, is denoted by A〈〈X〉〉 (resp. A〈X〉).
Definition 3. Let φ, χ be real positive functions over X∗. Let S ∈ A〈〈X〉〉.

1. S will be said to be φ−exponentially majored if it verifies

∃K ∈ R+, ∃n ∈ N,∀w ∈ X≥n, ‖〈S|w〉‖ ≤ Kφ(w)/|w|!.
We denote by Aφ−em〈〈X〉〉 the set of formal power series in A〈〈X〉〉 which
are φ−exponentially majored.

2. S verifies the χ−growth condition if it verifies

∃K ∈ R+,∃n ∈ N, ∀w ∈ X≥n, ‖〈S|w〉‖ ≤ Kχ(w)|w|!.
We denote by Aχ−gc〈〈X〉〉 the set of formal power series in A〈〈X〉〉 verifying
the χ−growth condition.

Definition 4. Let Cl be a class of formal power series in A〈〈X〉〉. The power
series S ∈ A〈〈X〉〉 is said to be continuous over Cl if for any H ∈ Cl,∑

w∈X∗〈H|w〉〈S|w〉 is normally convergent. In this case, we denote this sum as
〈H‖S〉.

In particular, let φ be a real positive function defined over X∗, S will be
said to be φ−exponentially continuous if it is continuous over Aφ−em〈〈X〉〉. We
denote by Aφ−ec〈〈X〉〉 the set of formal power series which are φ−exponentially
continuous.

For any real positive function φ defined over X∗, we have A〈X〉 ⊂ Aφ−ec〈〈X〉〉.
Otherwise, for φ = 0, we get A〈X〉 = A0−ec〈〈X〉〉. Hence, any formal power se-
ries is 0−exponentially continuous. If φ, χ verify

∑
x∈X χ(x)φ(x) < 1 then∑

w∈X∗ χ(w)φ(w) is normally convergent. If F ∈ Aχ−gc〈〈X〉〉, C ∈ Aφ−em〈〈X〉〉
then there exists Ki ∈ R+, ni ∈ N such that for w ∈ X≥ni , i = 1, 2, one has
‖〈F |w〉‖ ≤ K1χ(w)|w|! and ‖〈C|w〉‖ ≤ K2φ(w)/|w|!. Hence, ‖〈F |w〉〈C|w〉‖ ≤
K1K2χ(w)φ(w), for w ∈ X∗ and |w| ≥ max{n1, n2}. In other terms,



124 Hoang Ngoc Minh

Proposition 3 ([4]). Suppose two real positive morphisms over X∗, φ and
χ verify the condition

∑
x∈X χ(x)φ(x) < 1. Then, for S ∈ Aχ−gc〈〈X〉〉, S is

continuous over Aφ−em〈〈X〉〉.
Let q1, . . . , qn be commutative indeterminates over C. The algebra of formal

power series (resp. polynomials) over Q = {q1, . . . , qn} with coefficients in C is
denoted by C[[Q]] (resp. C[Q]).

Definition 5. Let f =
∑

i1,...,in≥0 fi1,...,inqi1
1 . . . qin

n ∈ C[[Q]]. We set

E(f) = {ρ ∈ Rn
+ : ∃Cfρ ∈ R+ st ∀i1, . . . , in ≥ 0, |fi1,...,in

|ρi1 . . . ρin ≤ Cfρ}
Ě(f) : interior of E(f) in Rn.

CV(f) = convergence domain of f = {q ∈ Cn : (|q1|, . . . , |qn|) ∈ Ě(f)}.
The power series f is said to be convergent if CV(f) 6= ∅. Let U be an open
domain in Cn and let q ∈ Cn. The power series f is said to be convergent
on q (resp. over U) if q ∈ CV(f) (resp. U ⊂ CV(f)). We set Ccv[[Q]] =
{f ∈ C[[Q]] : CV(f) 6= ∅}. Let q ∈ CV(f). There exist constants Cfρ, ρ and
ρ̌ such that |q1| < ρ̌ < ρ, . . . , |qn| < ρ̌ < ρ and |fi1,...,in

|ρi1+...+in ≤ Cfρ, for
i1 . . . , in ≥ 0. The convergence module of f at q is (Cfρ, ρ, ρ̌).

Suppose that CV(f) 6= ∅ and let q ∈ CV(f). If (Cfρ, ρ, ρ̌) is a convergence
module of f at q then |fi1,...,in

qi1
1 . . . qin

n | ≤ Cfρ(ρ̌/ρ)i1+...+in . Hence, at q, the
power series f is majored term by term by Cfρ

∏m
k=0(1− ρ̌k/ρk)−1. Therefore,

f is uniformly absolutely convergent in {q ∈ Cn : |q1| < ρ̌, . . . , |qn| < ρ̌} which
is an open domain in Cn. Thus, CV(f) is an open domain in Cn. Since the
partial derivation of order j1, . . . , jn ≥ 0 of f is estimated by ‖Dj1

1 . . . Djn
n f‖ ≤

Cfρ∂
j1+...+jn/∂ρ̌j1+...+jn

∏m
k=0(1− ρ̌k/ρk)−1 then CV(f) ⊂ CV(Dj1

1 . . . Djn
n f).

Let f ∈ Ccv[[Q]] and let {Ai}i=0,1 be a polysystem. Let (ρ, ρ̌, Cf ) and let
{(ρ, ρ̌, Ci)}i=0,1 be convergence modules at q ∈ CV(f)ei=0,1,j=1,..,nCV(Aj

i ) of f

and {Aj
i}j=1,..,n respectively. Let X be an alphabet in bijection with {Ai}i=0,1.

We put Aε = identity and Cε = 1. For any word w = vxi, xi ∈ X, v ∈ X∗, we
set Aw = AvAi and Cw = CvCi. These notations are extended to A〈〈X〉〉 and
we will denote by Awf|q the evaluation at q of Awf . Then [4]

|Awf|q| ≤
Cf

(1− r)n

Cw|w|!(
n+|w|−1
|w|

)
[

n(n + 1)
τ(1− r)n+1

]|w|
, (29)

where, τ = min1≤k≤n ρk and r = max1≤k≤n ρ̌k/ρk. Therefore,

Theorem 5 ([4]). Let K = Cf (1− r)−n and let χ be the real positive function
defined over X∗ by χ(xi) = Cin(n + 1)τ−1(1− r)−(n+1), for i = 0, 1. Then the
generating series

∑
w∈X∗ Awf|q w satisfies the χ−growth condition.

2.4 Polysystem and nonlinear differential equation

Here, the observation f of the nonlinear dynamical system (2) is an element
of Ccv[[Q]] and the analytic vector fields {Ai}i=0,1 (3) constitute a polysystem.
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Let (ρ, ρ̌, Cf ) and let (ρ, ρ̌, Ci), for i = 0, 1, be convergence modules of f and
{Aj

i}j=1,..,n respectively at q ∈ CV(f) ei=0,1,j=1,..,n CV(Aj
i ).

Let σf|q0 =
∑

w∈X∗ Awf|q0 w be the Fliess’ generating series of (2) satisfying
the χ−growth condition and let Sz0Ãz =

∑
w∈X∗ αz

z0
(w) w be the Chen’s gen-

erating series of inputs u0, u1. Let ε ∈]0, 1[ and let zi = ε exp(iθi), for i = 0, 1.
We set θ = θ1 − θ0. Let Γ0(ε, θ) (resp. Γ1(ε, θ)) be the path turning around 0
(resp. 1) in the positive direction from z0 to z1.

By induction on the length |w| of w, one has |〈SΓi(ε,θ)|w〉| = (2ε)|w|xi θ|w|/|w|!,
where |w|xi

, denotes the number of occurrences of letter xi in w, for i = 0, 1.
For ε → 0+, these estimation yield SΓi(ε,θ) = eiθxi + o(ε). In particular, if Γ0(ε)
(resp. Γ1(ε)) is a circular path of radius ε turning around 0 (resp. 1) in the
positive direction, starting at z = ε (resp. 1− ε), then, by the noncommutative
residu theorem [7, 5], we get SΓ0(ε) = e2iπx0 + o(ε) and SΓ1(ε) = e−2iπx1 + o(ε).
The Chen’s generating series Sz0Ãz also satisfies the following differential equa-
tion

dS = (x0ω0 + x1ω1)S with S(0) = 1. (30)

Thus, Sz0Ãz and L(z)L(z0)−1 satisfy (22) taking the same value at z0 and
Sz0Ãz = L(z)L(z0)−1. Finally, the asymptotic behavior of L gives

Proposition 4 ([7, 5]). SεÃ1−ε ε̃→0+ e−x1 log εZe−x0 log ε.

The Fliess’ fundamental formula [3] can be then extended and gives the
output y of (2) as follows

Theorem 6. y(z) = 〈σf|q0‖Sz0Ãz〉 =
∑

w∈X∗〈Awf|q0 |w〉〈Sz0Ãz|w〉.
Using the factorization indexed by Lyndon words of the Lie exponential

series L (23), we deduce some expansions of the Chen’s generating series Sz0Ãz

and we obtain finally

Corollary 4. The output y of the nonlinear dynamical system with singular
inputs admits then the following functional expansions

y(z) =
∑

w∈X∗
gw(z) Aw ◦ f|q0 ,

=
∑

k≥0

∑

n1,...,nk≥0

gx
n1
0 x1...x

nk
0 x1

(z) adn1
A0

A1 . . . adnk

A0
A1e

log zA0 ◦ f|q0 ,

=
∏

l∈LynX

exp
(

gSl
(z) AŠl

◦ f|q0

)
,

= exp
( ∑

w∈X∗
gw(z) Aπ1(w) ◦ f|q0

)
,

where, for any word w in X∗, gw belongs to a polylogarithm algebra and π1(w)
is the following Lie series

π1(w) =
∑

k≥1

(−1)k−1

k

∑

u1,··· ,uk∈X∗\{ε}
〈w|u1tt · · · ttuk〉 u1 · · ·uk.
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3 Conclusion

By Corollary 4, the output y of the nonlinear dynamical system (2) is a combi-
nation of elements g belonging to a completion of the polylogarithm algebra. If
its Taylor expansion is given as in (1) then, by Corollary 1, the coefficients of
this expansion belong to a completion of the harmonic algebra and there exist
algorithmically computable coefficients ai ∈ Z, bi ∈ N and ci, belonging to the
C-algebra generated by Z and by Euler’s γ constant, such that

yn ñ→∞
∑

i≥0

cin
ai logbi n. (31)
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Abstract. We analyze the Lyapunov stability of a particle moving
under the gravitational field of a finite body. We complete previous
results by determining the stability of 1:2 resonance.

1 Introduction

Geostationary points are very important in space missions, since many satellites,
especially for communications, are placed in neighborhoods of such points [1].
Besides, there are space missions to other celestial bodies different from the
Earth, hence the importance of determining the stability of stationary points
for other bodies like planets, natural satellites, etc.

In order to have a general result, it would be desirable to consider several
terms of the potential symbolically, and once the theory is elaborated one can
obtain the stability for any particular case by replacing the symbols by the
specific numerical values of the body considered. The first attempt to work in
this direction was done by Deprit and López-Moratalla [2, 3], who formulated
the problem from scratch. By considering the first tesserals in the classical
expansion in Legendre polynomials of the potential, they found the possible
equilibria in a synodic frame and computed the linear stability, showing that
among the six possible equilibria (although for the Earth there are only four)
four of them are linearly unstable, and hence Lyapunov unstable, whereas the
other two (the ones placed on the y axis) are linear stable in some regions of the
parametric plane (the parameters depend essentially on the C20 C22 harmonics,
and on the distance of the equilibrium to the origin; for more details, see [4]).

To determine the non-linear stability, Deprit and López-Moratalla [2] fol-
lowed the scheme given in [5], that is: Expand the Hamiltonian around the
equilibrium; next compute the normal form of the expanded Hamiltonian; then
apply Arnold theorem [6] to determine whether the equilibrium is stable or un-
stable in a non-linear sense. However, since the Arnold theorem is not valid for
resonances, these cases must be analyzed in a different way.

In [4] the work done in [2] is extended by considering some cases that re-
quire higher order normalization and some resonances, although some specific
resonance cases are left without analysis. In this communication, we complete
the above-mentioned work [4] by analyzing 1:2 resonance.
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2 Equations of motion and equilibria

Let us consider the motion of a satellite with respect to a synodic frame that
is rotating, as the planet does, around the axis of greatest inertia with angular
velocity ν. The Hamiltonian for this problem is

H =
1
2
(X2 + Y 2 + Z2)− ν(xY − yX) + V(x, y, z), (1)

with potential V(x, y, z) defined by

V = −µ

r

[
1 +

(⊕
r

)2 {
3 Γ2,2

x2 − y2

r2
− 1

2Γ2,0

(
1− 3

z2

r2

)}]
, (2)

where µ is the Gaussian constant, r =
√

x2 + y2 + z2 is the radial distance of the
satellite, ⊕ the planet’s equatorial radius and where the harmonic coefficients
are such that Γ2,0 < 0 < Γ2,2, because of planetary oblateness and our choice
of the axes.

Equilibria are found by zeroing the corresponding Hamilton equations. It is
shown in [2] that, in general, there are 6 equilibria on the plane xy, two on the
x axis (E1(±r1, 0)), and four on the y axis (E2(±r2, 0) and E′

2(±r′2, 0)).
By expanding the Hamiltonian in Taylor series around the equilibria, one

obtains

H(j) = H(j)
2 +H(j)

3 +H(j)
4 + . . . (3)

where H(j)
n is a homogeneous polynomial of degree n in the new variables (vari-

ations). The script j = 1, 2 depending on the equilibrium considered. The
quadratic part is

H(j)
2 =

1
2
(Ξ2

j + H2
j )− ω(ξjHj − ηjΞj) +

1
2
ω2(αj ξ2

j + βj η2
j ) =

1
2
ζjAjζj , (4)

and the parameters αj , βj are

αj = 1− 12 (−1)jΓ22
a3

k⊕2

r5
j

and βj = 2

(
a3

k

r3
j

− 2

)
,

with ak the semimajor axis of a Keplerian ellipse with mean motion equal to ν.
From here on, we will drop the index j.

This quadratic Hamiltonian provides the linearized equations of motion ζ̇ =
JAζ = Bζ, where J is the standard symplectic matrix. The eigenvalues of
matrix B, i.e. the roots of the characteristic equation

det(λI −B) = λ4 + ν2(α + β + 2)λ2 + ν4(1− α)(1− β) = 0,

will determine the stability character of the equilibria. The roots are

ω2
1 = (ν2/2)

[
−(α + β + 2) +

√
(α− β)2 + 8(α + β)

]
,

ω2
2 = (ν2/2)

[
−(α + β + 2)−

√
(α− β)2 + 8(α + β)

]
.

(5)
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As proven in [2], points E1 and E′
2 are unstable everywhere, whereas points

E2 enjoy linear stability at some specific regions. To determine its Lyapunov
stability, that is, the influence of the remaining terms of the Hamiltonian (3),
Arnold’s theorem [6] is used.

Theorem 1 (Arnold) Consider a two-degrees-of-freedom Hamiltonian system
H, expressed in real canonical coordinates (Φ1, Φ2, φ1, φ2), as

H = H2 +H4 + . . . +H2n + H̃,

where:

1. H is real analytic in a neighborhood of the origin R4,

2. H2k, 1 ≤ k ≤ n, is a homogeneous polynomial of degree k in Φi, with real
coefficients. In particular,

H2 = ω1Φ1 − ω2Φ2, 0 < ω1, 0 < ω2;

H4 =
1
2

(
AΦ2

1 − 2BΦ1Φ2 + CΦ2
2

)
.

3. H̃ has a power expansion in Φi which starts with terms at least of order
2n + 1.

Under these assumptions, the origin is a stable equilibrium provided for some k,
2 ≤ k < n, H2 does not divide H2k or equivalently, provided D2k = H2k(ω2, ω1)
6= 0 and for 2 ≤ j < k, D2j = H2j(ω2, ω1) = 0.

This theorem assumes that there are no resonances in the principal part of
the Hamiltonian, and that the Hamiltonian is expressed in its normal form. The
study for non-resonant cases was made in [2, 4], and we will not repeat it here.
However, we will reproduce the symplectic transformation that converts the
quadratic Hamiltonian (4) in the simple form of two oscillators as in Arnold’s
theorem. This transformation

w = (u1, u2, U1, U2) 7−→ ζ = (ξ, η, Ξ, H),

valid even for resonances, is defined by the linear transformation ζ = Bw, with

B =




ia1 −ia2 a1 a2

−b1 b2 −ib1 −ib2

b1ν − a1ω1 a2ω2 − b2ν −i(a1ω1 − b1ν) −i(a2ω2 − b2ν)

i(a1ν − b1ω1) −i(a2ν − b2ω2) a1ν − b1ω1 a2ν − b2ω2




,

and a1, a2, b1, b2 given by the expressions

a2
1 =

ω2
1 + ω2(1− β)
2ω1(ω2

1 − ω2
2)

, b2
1 =

ω2
1 + ω2(1− α)
2ω1(ω2

1 − ω2
2)

,

a2
2 =

ω2
2 + ω2(1− β)
2ω2(ω2

1 − ω2
2)

, b2
1 =

ω2
2 + ω2(1− α)
2ω2(ω2

1 − ω2
2)

.
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After a significant amount of symbolic algebra, it can be proved that Eq.
(4) becomes

H2 = i ω1u1 U1 + i ω2u2 U2, (6)

and each term Hk of the Hamiltonian (3) is a homogeneous polynomial of degree
k in the variables w = (u1, u2, U1, U2).

By making use of the Poincaré variables (φ1, φ2, Φ1,Φ2), related with the
complex variables above defined by the symplectic transformation

u1 =
√

Φ1 exp (iφ1), u2 =
√

Φ2 exp (−iφ2),

U1 = −i
√

Φ1 exp (−iφ1), U2 = i
√

Φ2 exp (iφ2),
(7)

the linearized Hamiltonian (4) reduces to

H2 = ω1Φ1 − ω2Φ2, (8)

3 1:2 resonance

If there is a commensurability among the frequencies given in (5) we face the
problem of resonances. For instance if ω1 = 2ω2 we have the resonance 1:2, that
is, a resonance of third order. In this case, α and β are related by

3(α + β + 2) + 5
√

(α− β)2 + 8(α + β) = 0,

or equivalently, by

β =
1
8

[
(−41 + 17 α) + 5

√
73− 82 α + 9 α2

]
. (9)

The normalized Hamiltonian will be made of the kernel of the Lie derivative
L2. In the algebra of homogeneous polynomials in (u, v, U, V ),

L2 (um
1 Un

1 up
2U

q
2 ) = [i ω1 (m− n) + i ω2 (p− q)] um

1 Un
1 up

2U
q
2 .

Thus, monomials of the type (u1 U1)m(u2 U2)p belong to kerL2. Besides, due
to the resonance (ω1 = 2ω2 = ω),

L2 (um
1 Un

1 up
2U

q
2 ) = i ω [2(m− n) + (p− q)] um

1 Un
1 up

2U
q
2 ,

and hence, kerL2 also contains resonant terms of the type U1u
2
2 and u1U

2
2 .

Thus, the normal form is generated by the following invariants with respect to
H2

I1 = u1U1, I2 = u2U2, I3 = u1U
2
2 , I4 = U1u

2
2.

Hence, normalization up to first order only contains the terms inH3 correspond-
ing to these monomials. In this way, we have

H3 = c1(u1U
2
2 − iU1u

2
2), (10)
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where
c1 =

1
2r2

[
a2(−4 + 5α− β)(a2b1 − 2a1b2)− (8 + 7β)b1b

2
2

]
,

and β is given by (9).
To study the stability in the resonant cases, we will use a result given in [8],

but before doing so, we need to define the real functions [7, 8]

M1 =
i

2
(2I1+I2), M2 =

i

2
(2I1−I2), S =

i√
2
(I4+iI3), C =

1√
2
(I4−iI3),

that satisfy the relation

C2 + S2 = (M1 + M2)(M1 −M2)2.

The normalized Hamiltonian (10) may be expressed as

H3 =
√

2 c1 S.

Now, we can apply the geometric criterion given by the authors in [8]:

Theorem 2 (Geometric criterion) Let us suppose that the Hamiltonian is
normalized up to a certain order N ≥ r, the first term that does not vanish
for M2 = 0, and let us consider the two surfaces G1 ≡ C2 + S2 = Mr

1 and
G2 ≡ H(C, S,M1; M2 = 0) = 0. Then, if their only common point is the
origin, this point is stable. If they transversely intersect each other, the origin
is unstable.

Thus, whenever c1 6= 0, by the geometric stability criterion, the equilibrium
position is unstable. Otherwise, the stability is decided by higher order terms
in the normalization.

In Figure 1 we plot coefficient r2c1 as a function of α. By solving the equation
c1 = 0 we find the root at α = α0 = 0.9823588648766484. Consequently, at
resonance 1:2, the equilibrium is unstable everywhere except (perhaps) at α0.
For this particular case, we need to push forward the normal form.

After some computations, for α = α0, the next non-null term of the normal-
ized Hamiltonian, expressed as a function of the invariants M1, M2, C and S,
is

H4 =
1
r2
2

(
5.69310754306M2

1 − 6.24186562149 M1M2 + 0.52415122257 M2
2

)
.

Applying the geometric criterion, that is, by setting M2 = 0 in H4 = 0, the
function G2 is

G2 ≡ 1
r2
2

(
5.69310754306 M2

1

)
,

which intersects with G1 ≡ C2 + S2 = M4
1 only at the origin. In consequence,

at the resonance, we have instability except at α = α0, where the equilibrium
is stable.
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Figure 1: Plot r2c1 versus α.

It is worth noting that this result could be obtained without any computation
of the normal form. In fact, if c1 = 0, H3 contains no resonant monomial.
As a consequence, the first order normalized Hamiltonian coincides with that
obtained by means of Birkhoff normalization in [4]. Moreover, the generating
function also coincides, provided no resonant terms exist. But, for a third-
order resonance, there are no resonant monomials of degree four, and it follows
that the second-order normalized Hamiltonian must be given by the expression
computed in [4].

This expression provides us D4, the information required by Arnold’s the-
orem to decide the stability. But this is also the information required by the
geometric criterion. So, in this case both theorems must give the same informa-
tion, as stated in [8]. However, D4 is given by the quotient of two polynomials.
The polynomial in the numerator vanishes for α = α0, as it was noticed in [4].
But, the denominator also vanishes (indeed it vanishes for every α correspond-
ing to a third-order resonance). Thus, the factor 2ω1 − ω2 appears in both
numerator and denominator of D4 and it cancels out giving rise to a non-zero
value of D4. Consequently, the equilibrium is stable in this particular case.

Acknowledgments. Supported by the Spanish Ministry of Science and Tech-
nology (Projects # ESP2005-07107 and MTM2005-08595).
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Abstract. By means of analytical theories based on Lie-Deprit
transforms, we obtain families of periodic orbits for the zonal prob-
lem of an orbiter around the moon. We recover previous results and
find new orbits.

1 Introduction

The problem of finding periodic orbits about the moon, natural satellites or
asteroids is of interest, since several space missions are planned with the goal
of orbiting such bodies (see for instance [11, 14, 12] and references therein).
Among the possible orbits, frozen orbits are very useful; indeed, frozen orbits
are characterized by constant eccentricity, inclination and pericenter direction
on the average; thus, they are very convenient for reconnaissance. Several pro-
cedures are used to find frozen orbits, from brute force, that is, by zeroing Gauss
equations and solving the corresponding system, to more sophisticated methods
like the numerical continuation of families of periodic orbits, or by averaging the
Hamiltonian and finding the equilibria of the reduced Hamiltonian. This later
procedure is the one we will use in this work. It has been successfully used for
finding frozen orbits for the zonal problem of an Earth artificial satellite [3, 2]
and has yielded insight on so-called critical inclination [1].

In general, for orbiters around the moon, it is necessary to consider the third
body attraction, that is, the earth’s attraction, which means that time appears
in the Hamiltonian. However, as proved in [9], for orbits whose altitude is below
100 km, the third body attraction is almost negligible; thus, for a low-altitude
satellite, which is the case studied in this note, we will only consider the moon’s
gravitational effect, and more precisely, the zonal terms.

In Section 3 we give a brief description of the Lie-Deprit transforms we
use, namely, the Delaunay normalization and elimination of the parallax. The
analytical integration is done in Section 4, and finally, in Section 5, frozen orbits
are determined for low-altitude satellites. The case of high-altitude satellites will
appear elsewhere.
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2 Dynamical model

We consider the motion of a Moon orbiter under the Moon’s gravitational force.
Let us consider a rotating reference frame Oxyz, centered on the Moon and

such that the plane Oxy coincides with the Moon’s equator and the axis Ox
continuously points towards the Earth, which is moving in a circular orbit with
radius ae synchronized with the rotation of the Moon. Let ω be the angular
velocity vector of the Moon; thus, the Hamiltonian of an orbiter is

H =
1
2
X ·X − ω · (x×X) + Vm,

where Vm is the gravitational potential originated by the Moon. For the Moon
we only take into account the zonal contribution; thus,

Vm = −µ

r
+

µ

r

∑

n≥2

α

r
JnPn (z/r) ,

with α the equatorial radius of the Moon, r = ‖x‖, µ the Gaussian constant for
the Moon, Jn the Moon harmonics coefficients, and Pn the Legendre polynomial
of degree n. Consequently, the Hamiltonian of the orbiter may be split into the
sum of the Kepler problem HK and the zonal Moon potential HZ

HK =
1
2
X ·X − µ

r
=

1
2

(
R2 +

Θ2

r2

)
− µ

r
,

HZ =
∑

n≥2

µ

r

(α

r

)n

JnPn(sin i sin(f + g)),

where (r, θ, ν, R, Θ, N) are the polar-nodal variables, i the inclination, f the true
anomaly and g the argument of the periapse.

We take the Hamiltonian as

Hl = H0 + εH1 (1)

with H0 = HK, εH1 = HZ, and the small parameter ε = J2. Note that
we dropped the Coriolis term since the nodal angle ν does not appear in the
Hamiltonian.

3 Lie Transforms for Differential Systems

Let us give here a short description of the general algorithms of the Lie trans-
forms; for more details the reader is referred to the original work of Deprit [4],
or to the tutorial [10].

A Lie transform of generator W is a near-identity canonical transformation
ϕ : (y,Y ; ε) −→ (x,X), such that x(y, Y ; ε) and X(y, Y ; ε) verify

dx

dε
=

∂W

∂X
,

dX

dε
= −∂W

∂x
,
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with initial conditions x(y, Y ; 0) = y and X(y, Y ; 0) = X.
Let us now consider a Hamiltonian H that is a power series of the small

parameter ε

H(x,X; ε) =
∑

n≥0

εn

n!
Hn(x, X), (2)

and a Lie transform whose generating function is the series

W (x,X; ε) =
∑

n≥0

εn

n!
Wn+1(x,X).

We may ask ourselves how this Hamiltonian is affected by the Lie transform.
By putting Hn,0 = Hn, ∀n ≥ 0, the following recurrence relation holds

Hi,j = Hi1,j−1 +
∑

0≤k≤i

(
i

j

)
{Hk,j−1,Wi+1−k}, (3)

for i ≥ 0 and j ≥ 1, and where {−,−} stands for the Poisson bracket.
This recursive algorithm can be performed by means of the so-called Lie

triangle (cfr. Deprit [4]) which simplifies the task of automating the method.
The new Hamiltonian, denoted by K, reads

K(y, Y ; ε) =
∑

n≥0

εn

n!
Kn(y,Y ) =

∑

n≥0

εn

n!
H0,n(y, Y ).

Usually, the generating function is not known, and it must be determined term
by term by means of Eq. (3) in order for the new Hamiltonian to satisfy some
predetermined conditions or requirements. The generating function is thus ob-
tained by solving the PDE (3) which may be put in the form of the so-called
homology equation

L0(Wn) +Kn = H̃0,n, (4)

where H̃0,n collects all the terms known from the previous order, and L0(−) is
the Lie derivative operator, i.e., L0(−) = {−,H0}.

Once the generating function W is obtained, it is possible to get both the
direct and inverse transformations. For details, see the original work of Deprit
[4].

Now, it is necessary to choose the properties the new Hamiltonian must
satisfy. The main goal of the analytical theories for artificial satellites is to
reduce the original Hamiltonian by means of Lie transformations and in such a
way that the new Hamiltonian would be simple enough.

As is seen from Eq. (4), the term H0 plays a very important rôle, since it is
necessary to compute the Lie derivative L0 with respect to it. Thus, the simpler
the expression of H0, the easier it is to compute the Lie derivative.

In the Delaunay map (`, g, h, L, G, H), the Keplerian Hamiltonian reads as

H0 = − µ2

2L2
(5)
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The Lie derivative L0 : F 7→ {F ;H0} in the vector field generated by H0 is
very simple indeed: it is the differential operator

L0 = n
∂

∂`
with n =

µ2

L3
, (6)

and the PDE to be solved, at each order n of the transformation, according to
(4) is

n
∂Wn

∂`
+Kn = H̃0,n.

The perturbation R in Delaunay variables is

R ≡ R(`, g, h, L, G, H; ε) =
∑

n≥1

εn

n!
Rn(`, g, h, L,G, H), (7)

that is, a power series of the small parameter ε.
It still remains to fix what we want to obtain after a Lie transformation.

Ideally, we would like to have a new Hamiltonian independent of some variables,
which is known as a normalization, but this goal is not always possible and
usually it requires expansions in terms of the eccentricity (that is, valid only
for almost circular orbits) or a great deal of symbolic computation. Deprit
[5] introduced other transformation simplifications that do not eliminate the
variables, but convert the original Hamiltonian into a simpler Hamiltonian, and
to which normalization techniques may be applied; by so doing, the amount of
computation is drastically reduced.

3.1 Delaunay Normalization

Essentially, a normalization consists of removing all the coordinates from the
Hamiltonian by means of Lie transforms.

The kernel of the Lie derivative along the Hamiltonian flow of the pure
Kepler problem is

ker(L0) =
{

F (`, g, h, L,G, H) | L0(F ) = 0
}

.

Consequently, as the Delaunay action L is an integral of H0, it generates an
infinitesimal contact transformation [6].

The purpose in that local map is to replace R by R′ such that R′ ∈ ker (L0).
Then it appears that the symmetrization induced by the new Delaunay action
L′ is obtained by eliminating `′ from the transformed Hamiltonian H′. As a
side effect, the normalization of (1) allows reducing the number of degrees of
freedom by one unit H ≡ H(g′, h′, G′,H ′).

3.2 Simplifications. Elimination of parallax.

With a simplification, the coordinates from the Hamiltonian are not removed,
but the Hamiltonian is reduced to a simpler one.
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Given a vector space A of functions defined over the phase space (`, g, h,
L, G, H), we say that it is a Poisson algebra if, for any p, q ∈ A the Poisson
bracket {p; q} ∈ A.

If we assume that: i) A is a Poisson algebra of functions over the phase
space; ii) B is a proper vector subspace of A; and iii) A ∈ A with A ∈/ B, then
a canonical transformation

ϕ : (`′, g′, h′, L′, G′,H ′) 7→ (`, g, h, L, G, H)

is a simplification of A if ϕ(A) ∈ B (see e.g. [7, 8]).
We emphasize that although a normalization is always a simplification, the

converse is not true. While normalizing a perturbed Hamiltonian, in the sense
of Delaunay, implies removing the variable ` from the perturbation and making
the transformed system belong to the kernel of L0, simplifying a Hamiltonian
does not necessarily imply reducing the number of degrees of freedom.

The elimination of the parallax invented by Deprit [5] is the paradigm of
simplification. We borrow from the abstract: “When the perturbation affecting
a Keplerian motion is proportional to r−n (n ≥ 3), a canonical transformation of
Lie type will convert the system into one in which the perturbation is proportional
to r−2. Because it removes parallactic factors, the transformation is called the
elimination of the parallax.”

The main advantage in performing this transformation is that it drastically
reduces computations needed for performing further normalizations.

In Whittaker (polar-nodal) variables, the Keplerian Hamiltonian becomes

H0 =
1
2

(
R2 +

Θ2

r2

)
− µ

r
.

The state functions

p ≡ p(Θ) = Θ2/µ,

C ≡ C(r, θ, R, Θ) =
(p

r
− 1

)
cos θ +

p

Θ
R sin θ,

S ≡ S(r, θ, R, Θ) =
(p

r
− 1

)
sin θ − p

Θ
R cos θ

(8)

play a prominent role in the course of eliminating parallax.
In Delaunay variables, these functions become

C ≡ C(g, L, G) = e cos g, S ≡ S(g, L, G) = e sin g, (9)

and because neither C nor S depend on the mean anomaly, it follows that
L0(C) = 0, L0(S) = 0 and L0(p) = 0,

The key to the elimination of parallax is the property of functions of the
family

F ≡
{

F =
∑

j≥0

(Cj cos jθ + Sj sin jθ)
∣∣∣ Cj , Sj ∈ ker(L0)

}
. (10)
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Indeed, it can be proven that ∀F ∈ F ,

L0


∑

j≥1

1
j

(Cj sin jθ − Sj cos jθ)


 +

Θ
r2

C0 =
Θ
r2

F.

We may identify this relation with the homology equation (4) by putting

F =
r2

Θ
H̃n,0, H0,n =

Θ
r2

C0, Wn =
∑

j≥1

1
j

(Cj sin jθ − Sj cos jθ) .

Thus, it is sufficient to start with the function r2 H̃n/Θ, and express it as a
function of the family (10) by replacing 1/r and R with

1
r

=
1
p
(1 + C cos θ + S sin θ), R =

Θ
p

(C sin θ − S cos θ), (11)

and then, select from this expression C0, i.e. those terms which do not depend
on θ. With this, and after a suitable rearranging of terms, we will build up the
generating function Wn.

4 Analytical integration

As explained in the above section, once the elimination of parallax is performed,
the new Lie transforms are easier to implement. Thus, our first step consists of
applying the elimination of parallax to the Hamiltonian. After the elimination of
parallax, the new Hamiltonian, when expressed in the Delaunay chart, depends
on the mean anomaly `, and hence, our second step is to make a Delaunay
normalization. Note that the zero order Hamiltonian is the Kepler problem,
H0 = HK . The Lie derivative is the one given in (6), and the new Hamiltonian
chosen is the averaged Hamiltonian over the mean anomaly `,

Kn =
1
2π

∫ 2π

0

H̃0,n d`; (12)

hence, the homology equation gives

Wn =
1
n

∫ (
H̃0,n −Kn

)
d`. (13)

The Delaunay normalization reduces by 1 the degrees of freedom since it
makes the angle ` cyclic. Hence, its conjugate action L is an integral. After
the Dealunay normalization, the Hamiltonian corresponding to low orbit has
only one degree of freedom; it contains only one angle, the pericenter g, and we
stop the process of applying more Lie transforms to it. In short, after several
transformations and an adequate rearranging of terms, we arrive at the 1-DOF
Hamiltonian KZ = K(−, g,−; L,G, H).
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A detailed analysis of the qualitative behavior of this system for several
models of the Moon potential shows that the influence of harmonics J2 and J7

is dominant with respect to other harmonics. This agrees with previous results
obtained numerically in [11], [15] and [13]. Hence, in order to have a simpler
qualitative analysis, from now on we shall consider only these two harmonics in
our study. Thus, we will deal with the following Hamiltonian

KZ =
µJ2α

2

4
3s2 − 2
a3η3

+
3µJ7α

7

16384
es

a8η13

[
231e4s4(13s2 − 12) sin 5g

−105e2s2(3e2 + 8)(143s4 − 220s2 + 80) sin 3g

+70(5e4 + 20e2 + 8)(429s6 − 792s4 + 432s2 − 64) sin g
]
.

(14)

As usual, c = cos i, s = sin i and η2 = 1− e2.
The equations of motion of the Hamiltonian (14) are

dg

dt
= m00 + m01 sin g + m03 sin 3g + m04 sin 5g,

dG

dt
= m10 cos g + m12 cos 3g + m13 cos 5g,

(15)

where mi,j are coefficients depending on a, e, i, µ, α, ω, J2 and J7, but once
the fundamental constants are fixed, the coefficients only depend on the three
orbital elements, a, e and i.

5 Analysis for low-altitude orbits

Frozen orbits correspond to equilibria of a system. In the case of low-altitude
orbits, the system under consideration is given by Equations (15). Thus, we have
to make zero the right hand part of these equations and solve the corresponding
system

m00 + m01 sin g + m03 sin 3g + m04 sin 5g = 0,

m10 cos g + m12 cos 3g + m13 cos 5g = 0,
(16)

The second equation holds when cos g = 0, that is, for g = π/2, 3π/2; thus,
by replacing these values in the first equation of (16), there results one equation
depending on three variables that represents a 3-D surface in the variables i, e
and a, whose graphics appear in Figure 1. Points on this surface correspond to
equilibria of the system (16), that is, to frozen orbits.

In this figure we see that for sections a = constant, we obtain very similar
curves; thus, to explore details more deeply, we choose a semi-major axis a =
α+100 km, which indeed corresponds to low orbits. For this value of a, we plot
the curve i versus e such as it appears in Figure 2.



An Analytical Model for a Lunar Orbiter 141

0

0.5

1

1.5

0
0.05
0.1
0.151
1.05
1.1
1.15
1.2

1
1.05
1.1
1.15
1.2

a

e

i

Figure 1: Surface of frozen orbits for values of i, e and a.
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Figure 2: Frozen orbits for a = α+100 km. The horizontal line e = 0.054407 is
the limit for impact orbits. Right plot is a part of the left one, showing realistic
orbits.
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Figure 3: Evolution after 20 days of a frozen orbit (e sin ω, e cosω) of the orig-
inal Hamiltonian. Initial conditions for the left are averaged elements. Initial
conditions for the right are osculating elements, obtained by the inverse of the
Lie transforms.

The horizontal line at e = 0.054407 is the limit for impact orbits. The higher
the eccentricity, the shorter the distance at the pericenter, and for eccentricities
bigger than e = 0.054407 the orbiter would impact the moon surface. Both
graphics in Fig. 2 represent the same section, but the one on the right shows
fewer values of the eccentricity. The solid line corresponds to g = π/2, while
the dashed line corresponds to g = 3π/2.

When comparing this map of frozen orbits with the one given by Elipe and
Lara [11, Fig. 1], we see that they are almost identical; the only exception
is that in Fig. 2 we detect a new family of almost equatorial frozen orbits, -
represented as the line very close to the vertical axis, - that was not detected in
the quoted paper.

Note that these frozen orbits correspond to the averaged Hamiltonian. As
an illustration on how these orbits evolve in the original Hamiltonian, we take
from the graphics one a set of initial conditions of a frozen orbit. Then, we
implement the initial conditions in an orbit propagator with the initial system
and we plot the evolution of the orbit for 200 revolutions (almost 20 days) in
the left part of Figure 3. We clearly see that the frozen character degenerates
for long time integration.

However, since we obtained the averaged Hamiltonian through Lie trans-
forms, we have the generating functions, and by means of the inverse trans-
formation we convert the averaged initial conditions into osculating elements.
Then, we again compute the orbit with the propagator for the same time inter-
vals as in the above case as is shown in the right part of Figure 3. For this new
set of initial conditions, the orbit remains very close to being periodic.

It still remains to analyze the case cos g 6= 0 in the system (15). This case
will appear in a forthcoming work.
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Abstract. A class of perturbed Keplerian systems (the so-called
generalized quasi-Keplerian systems) is considered, and the problem
of finding the distance (in the sense of Set Theory) between two gen-
eralized quasi-Keplerian orbits (with a common focus) is formulated
in terms of universal functions, irrespective of the specific kind of
perturbed conic-section orbits at issue.
Key words and expressions: Perturbed Keplerian systems, (per-
turbed) conic-section orbits, distance function, uniform treatment
of two-body motion, universal functions, universal orbital variables
and parameters.

1 Introduction

Within the framework of Hamiltonian Celestial Mechanics, Deprit ([4], §4) con-
sidered certain reducing canonical transformations (quasi-Delaunay transforma-
tions and torsions, according to his own terminology) for the contraction of the
simplest model of quasi-Keplerian systems onto Keplerian Hamiltonians. De-
prit himself (ibid. §7, §9) resorted to torsion-type transformations to reduce and
solve the generalized quasi-Keplerian Hamiltonian characterizing his first-order
radial intermediary for the Main Problem in Artificial Satellite Theory. A simi-
lar treatment can be applied to any member of the related class of conservative
generalized quasi-Keplerian systems defining his chain of radial intermediaries
(integrable approximations for the said non-integrable Main Oblateness Pertur-
bation Problem), in which the perturbation terms are proportional to r−2 .

A more general class of perturbed Keplerian Hamiltonians (see Floŕıa [5]),
giving rise to our concept of generalized quasi-Keplerian systems, was reduced
and solved under the assumption of perturbed elliptic-type orbital motion.

Although most of Deprit’s analysis seems to be restricted to the consideration
of bound orbits within the attraction field of quasi-Keplerian potentials, some of
his developments can be extended to the case of any kind of (perturbed) orbital
motion under the said quasi-Keplerian models.

Our approach is based on an extended phase-space formulation and treat-
ment of our generalized quasi-Keplerian systems (namely, those previously stud-
ied in Floŕıa [5]), whose canonical reduction and solution can be achieved with
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the help of appropriate generalized TR-mappings (Deprit, [3]), in terms of the
corresponding sets of generalized canonical orbital TR-elements that are uni-
formly applicable to any kind of (not necessarily bound) two-body orbital motion.

Baluyev and Kholshevnikov [1] have investigated in detail the problem of
finding the (minimal) distances between two arbitrary Keplerian orbits that
share a common center of force (focus), taking into account every possible com-
bination of ordered pairs of confocal conic-section solutions to the unperturbed
gravitational two-body problem.

Thus, with the closest approach between two orbiting particles in mind,
they established a normalized, adimensional, squared Keplerian distance func-
tion and a set of two simultaneous equations corresponding to the necessary
conditions for its critical points (relative extrema), for all types of confocal Kep-
lerian solutions. In each case of interest, they parameterized the orbital motion
with an adequate anomaly-like variable. With appropriate notations, their dis-
cussion is performed in terms of combinations of (trigonometric, hyperbolic
and/or algebraic) “polynomial-like” expressions involving the angular variables
parameterizing the two paths.

The present paper is devoted to the problem of the minimum separation
distance between pairs of point masses moving along their respective general-
ized quasi-Keplerian orbits about a common center of force. The aforesaid (see
[1]) exhaustive taxonomy and treatment of the diverse combinations of cases is
systematized and reformulated into a compact, unified approach, in terms of uni-
versal functions and universal parameters (see, e.g., Stiefel and Scheifele [7], §11;
Battin [2], §4.5 - §4.7). The squared distance function between two perturbed
Keplerian-like orbits with a “common focus”, the two bivariate components of
its gradient, and the subsequent discussion of stationarity conditions can be
translated into a universal formulation; the parametric equations of the orbits
are given by using the respective universal eccentric-like anomaly, introduced
through Stumpff’s generalization of Sundman’s differential transformation of
the time variable. Such pseudo-times are involved in the argument of universal
functions occurring in the solutions.

2 On the Concept of Quasi-Keplerian Systems

Keplerian systems are governed by the Newtonian Gravitation-Law Potential

Vκ(r) = −K/r , K being a positive constant.

In turn, quasi-Keplerian systems (Deprit [4], §4, §7, §9) are one-degree-of-
freedom perturbed Keplerian systems governed by potentials of the type

Q2(r) = Vκ(r) + V2(r) = −K/r + D/r2 ,

where D might be either an absolute constant (e.g., Manev’s model) or some
function of conserved quantities (e.g., Deprit-type radial intermediaries in Arti-
ficial Satellite Theory). As an extension of this idea, generalized quasi-Keplerian
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systems (Floŕıa [5], §2) are one-degree-of-freedom perturbed Keplerian systems
with perturbing potentials containing a linear combinations of terms propor-
tional to r−j , j = 0, 1, 2:

V(r) = Vκ(r) + V0(r) + V1(r) + V2(r) , Vj(r) = J /rj ,

each coefficient J being an absolute constant or some function of conserved
quantities. These potentials are compatible with a basic geometrical and dy-
namical Keplerian-like pattern.

3 Distance Between Two Keplerian Orbits

In this Section, we closely follow and summarize the considerations of Baluyev
and Kholshevnikov in [1]. The idea of distance between two orbits is taken in the
sense of Set Theory: minimal value of distances between two points belonging
to two given curves, C , C ′ ⊂ R 3 , with respective parametric representations
C ≡ ~r = ~r (u) and C ′ ≡ ~r ′ = ~r ′ (u ′) . Accordingly, one is interested in critical
points of the function

d 2 ( u, u ′ ) = || ~r − ~r ′ ||2 .

Such critical points must satisfy the necessary conditions for extrema:

∇(u,u′) d 2 =
(
∂ d 2/∂u , ∂ d 2/∂u ′

)
= ( 0 , 0 ) .

In particular, let C ⊂ R 3 be an arbitrary (conic-section) solution to the
unperturbed Kepler problem governed by the vector differential equation

d 2 ~r

d t 2
+

µ

r 3
~r = ~0 , (1)

where µ stands for the gravitational coupling parameter of this Keplerian sys-
tem. For future use, let ( a, q, p, e, I, ω, Ω ) be a set of Keplerian orbital elements
of C , and hk its Keplerian energy. The metric elements q (distance of the
pericenter) and p (semi-latus rectum) are given by

−hk = µ ( 1 − e )/( 2 q ) , p = q ( 1 + e ) .

In terms of an adequate eccentric-like anomaly, the position along the (planar)
curve C is expressed with the help of elementary circular or hyperbolic functions:
• Elliptic orbit:

~r = ~r (u ) = a ( cos u − e ) ~P +
(

a
√

1 − e 2 sin u
)

~Q ,

~S =
√

1 − e 2 ~Q .

• Hyperbolic orbit:

~r = ~r (u ) = a ( e − cosh u ) ~P −
(

a
√

e 2 − 1 sinh u
)

~Q ,

~S =
√

e 2 − 1 ~Q .



On the Distance Between Two Quasi-Keplerian Orbits 147

• Parabolic orbit (as a limiting case of an ellipse):

~r = ~r (σ ) = q
(
1 − σ 2

)
~P + q (2 σ) ~Q , q ≡ pericentric distance,

σ = tan
(

f

2

)
, f ≡ true anomaly.

These expressions can be considered to be particular instances of a more
general situation, namely, the parametric representation of a planar curve, in
terms of a parameter u , with the help of two orthogonal unit vectors ~P and
~Q :

~r = ~r (u ) = ϕ ( u ) ~P + ψ (u ) ~Q .

In cases of interest in Orbital Mechanics, vector ~P points towards the peri-
center of the orbit C (which is unambiguously determined, except for circular
motion, e = 0 ); once given ~P , vector ~Q is uniquely determined, except for
rectilinear trajectories (p = q = 0 , ψ (u ) = 0 ). In all cases, components of
vectors ~P and ~Q can be expressed in terms of orbital elements ( I , ω , Ω) :

Px = cos ω cosΩ − cos I sin ω sinΩ ,

Py = cos ω sinΩ + cos I sinω cosΩ ,

Pz = sin I sin ω ,

Qx = − sin ω cosΩ − cos I cos ω sin Ω ,

Qy = − sin ω sinΩ + cos I cosω cosΩ ,

Qz = sin I cosω .

Let C ′ denote another solution to the Kepler problem given in Eq. (1):

~r ′ = ϕ ′ (u ′ ) ~P ′ + ψ ′ ( u ′ ) ~Q ′ .

(Note: Quantities pertaining to curve C ′ are marked with a stroke (′)).
The squared distance function δ (u , u ′ ) = || ~r − ~r ′ ||2 = r 2 + r ′ 2 − 2~r · ~r ′ :

|| ϕ(u)~P + ψ(u) ~Q − ϕ ′( u ′)~P ′ − ψ ′(u ′) ~Q ′ ||2,

r 2 = ϕ 2 (u) + ψ 2 (u) , r ′ 2 = ϕ ′ 2 (u ′) + ψ ′ 2 (u ′) ,

~r · ~r ′ = ϕ(u)ϕ ′(u ′)~P ~P ′ + ϕ(u)ψ ′(u ′)~P ~Q ′

+ ψ(u)ϕ ′(u ′) ~Q~P ′ + ψ(u)ψ ′(u ′) ~Q~Q ′.

And critical points of δ satisfy the system of equations

∂ δ (u , u ′) /∂ u = ∂ δ (u , u ′) /∂ u ′ = 0 .

A thorough analysis of this function δ and its critical points for all types of
Keplerian solutions is performed by Baluyev and Kholshevnikov in [1]. For ar-
bitrary pairs of Keplerian conic-section solutions to the two-body problem, they
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consider all possible combinations of ordered pairs of orbits about a common cen-
ter of force. There are nine main cases, {K j k ; j , k = 1 , 2 , 3 }, corresponding
to the three main types of orbits (ellipse, hyperbola, parabola):

1 −→ ellipse , 2 −→ hyperbola , 3 −→ parabola .

Notice that the ellipse-hyperbola K 1 2 and hyperbola-ellipse K 2 1 cases
are not equivalent, since the analysis involves elimination of the variable u ′

parameterizing the position along the second curve. For practical applications,
the four cases K 1 1 , K 1 2 , K 2 1 , and K 2 2 are the most important.

4 On Universal Functions in Orbital Mechanics

Some members of certain families of special functions (Stiefel and Scheifele [7],
§11; Battin [2], §4.5 - §4.7) can be used for a compact representation and treat-
ment of analytical solutions of the two-body problem.

The Stumpff cn-functions solve, under a unified treatment, the second-order
linear differential equation with constant coefficients

d2y/ds2 + % y = 0 (% is a real parameter).

For z = % s2 , the solution can be given by means of a “linear combination” of
c0(z) and c1(z) , irrespective of the sign and value of % :

y(s) = y(0) c0

(
% s2

)
+ y ′(0) s c1

(
% s2

)
.

• Stumpff cn-functions are defined by means of the power series:

cn(z) =
∞∑

k=0

(−1)k z k

( 2 k + n ) !
, n = 0, 1, 2, ...

and have the following properties:
– The series are absolutely convergent for all complex values of z .
– They are real-valued for real z .
– If % is a real parameter, and z = % s 2 , the series is convergent for all s
regardless of % .
– They are slowly varying functions.
• Alternative Universal Functions Un :

Un (s, %) = s n cn

(
% s2

)
=

∞∑

k=0

(−1)k % k s 2 k + n

( 2 k + n ) !
, n = 0, 1, 2, ...

Some properties and relations, satisfied by these functions, are:

Ù0 = dU0/d s = − %U1 ; Ùn = dUn/d s = Un− 1 , n ∈ N ;
1 = U0

2 + % U1
2 , 1 = U0 + % U2 ,

U1
2 = U2 (1 + U0) , U1

2 = 2 U2 − % U2
2 .
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In many practical applications to the Kepler problem, % is related to the
orbital energy hk of the Keplerian systems, and one usually takes:
µ ≡ gravitational bodycentric parameter (Keplerian coupling parameter),
e ≡ eccentricity of the Keplerian orbit, q ≡ distance of the pericenter,
L ≡ negative of the Keplerian energy, L = −hk ,

% = 2L , L =
µ (1− e)

2q
, p = q (1 + e) , sncn

(
2Ls2

)
= Un (s, 2L) .

These considerations lead to a universal formulation of and solution to the
Kepler problem. In terms of s as the argument of universal functions, the two-
body problem admits a compact closed-form analytical solution in the orbital
plane:

x = x1 = q − µs2c2

(
2Ls2

)
= q − µU2 (s, 2L) ,

y = x2 =
√

µq (1 + e) sc1

(
2Ls2

)
=

√
µq (1 + e)U1 (s, 2L) ,

r = || ~r ||= q + µes2c2

(
2Ls2

)
= q + µeU2 (s, 2L) ,

dr = µesc1

(
2Ls2

)
ds = µeU1 (s, 2L) ds ,

dt = r ds (Sundman’s transformation),
t = qs + µeU3 (s, 2L) , Kepler’s equation.

The fictitious time s (proportional to the classical eccentric anomaly in the cases
of elliptic and hyperbolic motion) is a universal eccentric-like anomaly, given
via Stumpff’s universal generalization of Sundman’s regularizing transformation
dt = r ds . It vanishes at a chosen reference time which usually corresponds to
the pericenter: r = q −→ s0 = 0 .

The dependence of s on the physical time t is given by the Kepler equation.

This universal description of motion can be supplemented with an additional
representation in polar coordinates. Consider the polar equation of a conic
section in the orbital plane, in terms of polar coordinates (r, f) :

r (f) = p/ ( 1 + e cos f ) , p = q ( 1 + e ) .

The universal parameters s and f are related to each other via the expressions
√

r cos ( f/2 ) =
√

q U0 ( s/2 , 2L ) ,
√

r sin ( f/2 ) =
√

µ (1 + e) U1 ( s/2 , 2L ) ,

r sin f =
√

µ q (1 + e) U1 ( s , 2L ) .

As a consequence (see also notations in Section 3), a Keplerian orbit C ,
solution to Eq. (1), can be represented in its orbital plane by means of

~r = ~r ( s ) = [ q − µU2 (s, 2L) ] ~P +
[√

µ q ( 1 + e ) U1 (s, 2L)
]

~Q ,

~S =
√

1 + e ~Q , || ~P ||= 1 , || ~Q ||= 1 , ~P ⊥ ~Q .
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Another Keplerian orbit C ′ ≡ ~r ′ = ~r ′ ( s ′ ) would admit an analogous represen-
tation in its orbital plane. As a matter of notation, remember the convention
in Section 3, and denote

Un ≡ Un (s, 2L) , Un
′ ≡ Un

′ (s ′, 2L ′) .

5 Distance Function in Universal Formulation

In this Section we propose (in terms of universal functions) a unified approach
to the problem of obtaining the distance between two arbitrary Keplerian orbits.
Taking advantage of our previous considerations, from the Euclidean distance
|| ~r − ~r ′ ||2= r2 + r′2 − 2~r ~r ′ , one defines the adimensional distance function

ρ (s, s′) = || ~r − ~r ′ ||2 /(2 q q ′) = δ (s, s′) , with

r2 = [ q + µeU2 ]2 = q2 + µ2e2U2
2 + 2µqeU2 ,

~r ~r ′ = (qq′ − qµ′U ′
2 − µq′U2 + µµ′U2U

′
2) PP ′

+
(
q
√

µ′q′ U ′
1 − µ

√
q′µ′ U2U

′
1

)
PS′

+(q′
√

µq U1 − µ′
√

qµ U1U
′
2)P ′S +

√
µqµ′q′ U1U

′
1SS′ .

After introducing the notations and abbreviations

M = µ/q , ~Σ =
√

M ~S , α = q/q ′ ,

M ′ = µ ′/q ′ , ~Σ ′ =
√

M ′ ~S ′ , α ′ = q ′/q ,

one has

ρ (s, s ′) =
|| ~r − ~r ′ ||2

2q q ′
= δ (s, s ′) =

(
α

2
+

α ′

2
− PP ′

)

+
α

2
M2 e2 U2

2 +
α ′

2
M ′2 e′2 U ′

2
2 + (αMe + MPP ′)U2

+ (α ′M ′e ′ + M ′PP ′)U2
′ − MM ′PP ′U2 U2

′ − ΣΣ ′U1 U1
′

−PΣ ′U1
′ + MPΣ ′U2 U1

′ − P ′Σ U1 + M ′P ′ΣU1 U2
′ .

Notice that function ρ involves functions U1 (s) , U2 (s) , U1
′ (s ′) , U2

′ (s ′) :

ρ = Funct ( U1 (s) , U2 (s) , U1
′ (s ′) , U2

′ (s ′)) .

Accordingly, function ∂ρ/∂s involves U1 (s) , Ù1 (s) = U0 (s) , U2 (s) , Ù2 (s) =
U1 (s) , U1

′ (s ′) , U2
′ (s ′) . Contributions of U0 (s) can be expressed in terms of

U2 (s) , since U0 (s) = 1 − ( 2 L ) U2 (s) .
An analogous dependence is found for ∂ρ/∂s ′. And function U0

′ (s ′) can be
eliminated with the help of the relation U0

′ (s ′) = 1 − ( 2 L ′ ) U2
′ (s ′) . Sub-

sequent calculations can be reduced to expressions in terms of functions

U1 (s) , U2 (s) , U1
′ (s ′) , U2

′ (s ′) .



On the Distance Between Two Quasi-Keplerian Orbits 151

Then, necessary conditions for extrema,

∇( s , s ′ ) ρ (s, s ′ ) = ( ∂ ρ/∂ s , ∂ ρ/∂ s ′) = ~0 , yield :

∂ ρ/∂ s = 0 =⇒ A (s) U1
′ + B (s)U2

′ = C (s) ,

∂ ρ/∂ s ′ = 0 =⇒ M (s) U1
′ +N (s) U2

′ = K U1
′ U2

′ + N̂ (s) ,

where the functions depending on the universal variable s read

A (s) = MPΣ ′U1 − ΣΣ ′ U0 = MPΣ ′U1 + (2L)Σ Σ ′ U2 − Σ Σ ′ ,

B (s) = M ′P ′ΣU0 − MM ′ PP ′ U1

= M ′P ′Σ − (2L)M ′P ′ ΣU2 − MM ′ PP ′ U1 ,

C (s) = ( B (s)/M ′ ) − α M e U1 ( 1 + M e U2) ,

M (s) = MM ′PP ′ U2 − M ′P ′Σ U1 − M ′PP ′ − α ′M ′e ′ ,

N̂ (s) = M P Σ ′ U2 − ΣΣ ′ U1 − P Σ ′ , N (s) = ( 2 L ′ ) N̂ (s) ,

K = α ′M ′ 2 e ′ 2 , independent of s .

All these expressions can be reformulated (cf. Gronchi [6], §3) into a poly-
nomial form by means of the change of variable s −→ τ (Battin [2], §4.7):

U1 (s, 2L) = ( 2 τ )/
[
1 + (2 L) τ 2

]
, U2 (s, 2L) = (2 τ 2)/

[
1 + (2 L) τ 2

]
.

Analogous formulae replace functions of s ′ with functions of τ ′ .

6 Case of Generalized Quasi-Keplerian Orbits

Consider the canonical set (see Deprit [3]; [4], §2; Floŕıa [5], §2) of the Hill-
Whittaker polar-nodal variables ( r , θ , ν ; pr , pθ , pν ) , enlarged with the canon-
ically conjugate pair ( t ; p0 ) , where t is the physical time (as an additional co-
ordinate), and p0 denotes its conjugate momentum (negative of the total energy
of the system), to coordinatize the extended, 8-dimensional phase space.

The Hamiltonian of the basic quasi-Keplerian system (according to the con-
cept due to Deprit), as a perturbation of a standard Keplerian system, reads

Q ≡ Q ( r , − , − ; pr , pθ , − ; α ) = Hk ( r , − , − ; pr , pθ , − ) − µα

2 r 2

=
1
2

[
p2

r +
p2

θ

r 2

]
− µ

r
− µα

2 r 2
,

where Hk stands for the Hamiltonian of a conventional Kepler problem.
The extended phase-space formulation of the homogeneous Hamiltonian of

a generalized quasi-Keplerian system, in extended polar nodal variables, yields

H ≡ H ( r , − , − , − ; pr , pθ , pν , p0 ) = p0 + Hk ( r , − , − ; pr , pθ , − )

+V0 ( pθ , pν , p0 ) +
1
r

V1 ( pθ , pν , p0 ) +
1
r 2

V2 ( pθ , pν , p0 ) .
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Certain “radial intermediaries” for the Main Oblateness Perturbation Problem
in Artificial Satellite Theory fit into this model (Floŕıa [5]). To solve this Hamil-
tonian, we perform a generalized TR-like canonical transformation (Deprit [3]),
from polar nodal variables to new variables ( qΦ , qL , qG , qN ; Φ , L , G , N ) ,
and a reparametrizing transformation t −→ τ∗ of the independent variable,
given by a generalized Sundman-type differential relation

d t = f̃ d τ∗ , f̃ =
(
2 r 2

)
/ (2G− Φ) ,

such that function H is contracted onto a Keplerian-like Hamiltonian K(Φ) = Φ,
with a simple canonical solution in terms of τ∗: qΦ = τ∗ + const., while the
remaining new variables are constant. Now, let Q denote the function

Q ≡ Q ( r ; Φ , L , G , N ) =
2 ( µ − V1 )

r
− 2 ( L + V0 ) −

(
γ 2 + 2 V2

)

r 2
,

where one understands that here Vj ≡ Vj (L , G , N ) and γ = G− Φ are func-
tions of the new momenta. And introduce subsidiary quantities µ ∗, q , p , e , Γ , Λ:

µ ∗ = µ− V1 , Λ = L + V0 ,

q =
µ ∗ ( 1 − e )
2 ( L + V0 )

=
µ ∗ ( 1 − e )

2Λ
,

Γ 2 = γ 2 + 2 V2 = µ ∗ q ( 1 + e ) = µ ∗ p , p = q ( 1 + e ) ,

and auxiliary anomaly-like universal variables f and s such that

r(f) = p/ (1 + e cos f) ,

simulating the polar equation of a conic section in the orbital plane, in terms of
polar coordinates (r, f), and

√
r cos ( f/2 ) =

√
q U0 ( s/2 , 2Λ ) ,

√
r sin ( f/2 ) =

√
µ∗ (1 + e) U1 ( s/2 , 2Λ ) ,

r sin f =
√

µ∗ q (1 + e) U1 ( s , 2Λ ) ,

r(s) = q + µ∗ eU2 ( s , 2Λ ) , d r = µ∗ eU1 ( s , 2Λ ) d s ,

d f = (Γ/r) d s .

With the additional notations

I0 = q s + µ∗ eU3 ( s , 2Λ ) , I1 = s , I2 = f/Γ ,

a Keplerian-like solution to H in terms of the universal parameters f and s is

r = p/ (1 + e cos f) = q + µ∗eU2(s, 2Λ) ;

pr =
√

Q = (µ∗/p) e sin f = µ∗eU1(s, 2Λ)/r ;
pθ = G, pν = N, p0 = L are constant;
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qΦ = γ I2 = τ∗ + const.,

θ = qG +
∂V0

∂G
I0 +

∂V1

∂G
I1 +

[
γ +

∂V2

∂G

]
I2,

ν = qN +
∂V0

∂N
I0 +

∂V1

∂N
I1 +

∂V2

∂N
I2,

t = qL +
[
1 +

∂V0

∂L

]
I0 +

∂V1

∂L
I1 +

∂V2

∂L
I2.

After this universal formulation and canonical reduction (in extended phase-
space) of the generalized quasi-Keplerian system characterized by H, the pre-
ceding considerations concerning the treatment of the distance between two
arbitrary (unperturbed) Keplerian orbits can be translated into the case of two
arbitrary (perturbed) quasi-Keplerian orbits C and C ′ generated by H . Formally,
a simple “change of notations” suffices to readily achieve this goal.

The subsequent investigation of the systems of equations obtained from the
conditions for extrema, the algebraic elimination process, the search for positive
roots of polynomial equations, etc. will require the adequate use of Computer
Algebra systems.
Acknowledgments. This research was supported by MCYT (DGI) of Spain,
Project MTM2006-06961.
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Abstract. We outline a C program for symmetry analysis of dis-
crete dynamical systems and lattice models in statistical mechan-
ics. In particular, the program constructs and investigates phase
portraits of discrete dynamical systems modulo groups of their sym-
metries, searches dynamical systems possessing specific properties,
e.g.,reversibility, computes microcanonical partition functions and
searches phase transitions in mesoscopic systems.

1 Introduction

An appealing feature of symmetry analysis of finite discrete systems is its com-
pleteness, in contrast to the case of continuous systems where only a negligible
small part of all thinkable symmetries — point and contact Lie, Bäcklund and
Lie–Bäcklund, and some sporadic instances of so-called non-local symmetries —
can be studied. Furthermore, there are many philosophical and physical argu-
ments that discreteness is more fundamental than continuity, which arises only
as a logical limit in considering large collections of discrete structures.

Recently [1, 2] we have shown that any collection of discrete points taking val-
ues in finite sets possesses some kind of locality. More specifically, let us consider
a collection δ = {x1, . . . , xN} of N “points”. Each xi takes value in its own set
of values Qi =

{
s1

i , . . . , s
qi

i

}
or using the standard notation Qi = {0, . . . , qi − 1}.

Adopting Qδ as the symbolical notation for the Cartesian product Q1×· · ·×QN ,
we define a relation on δ as an arbitrary subset Rδ ⊆ Qδ. Then we define a
consequence of relation Rδ as an arbitrary superset Sδ ⊇ Rδ and a proper conse-
quence as a consequence which can be represented in the form Pα×Qδ\α, where
Pα is a nontrivial relation (i.e., Pα �= Qα) on the proper subset α ⊂ δ. Any
relation Rδ allows a decomposition in terms of its proper consequences and this
decomposition imposes naturally a structure of an abstract simplicial complex
which is one of the mathematical abstractions of locality.

These discrete relations on abstract simplicial complexes in special cases
correspond to systems of polynomial equations (if all points xi take values in
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the same set Q with cardinality being a power of a prime |Q| = pk) and to
cellular automata (if domain δ allows decomposition into congruent simplices
with the same relation on the simplices and this local relation is functional).
The notion of discrete relations also covers discrete dynamical systems more
general than cellular automata. The lattice models in statistical mechanics can
be treated in this framework too by considering ensembles of discrete relations
on abstract simplicial complexes.

In this paper we study the dependence of the behavior of discrete dynamical
systems on graphs — one-dimensional simplicial complexes — on symmetries
of the graphs. We describe our C program for discrete symmetry analysis and
results of its application to cellular automata and mesoscopic lattice models.

2 Symmetries of Lattices and Orbits of Func-
tions on Lattices

The space of a discrete dynamical system is a lattice L represented by a k-
valent graph GL. By a symmetry of lattice L we mean the automorphism
group Aut(GL) of the graph of L. In applications one often assumes that the
lattice L is embedded in some continuous space. In this case the notion of
‘dimension’ of lattice makes sense. Note that the same graph can be embedded
regularly in different continuous spaces as is clear from Fig. 1. Thus, the group
Aut(GL) is usually larger than the symmetry group of the lattice placed in a
space.

a

b

−→

a

a

a

a

b

b

−→

Figure 1: The same graph forms a 4-gonal (6 tetragons) lattice in sphere S
2 and

a 6-gonal (4 hexagons) lattice in torus T
2.

The automorphism group of a graph with n vertices may have up to n!
elements. Nevertheless, currently the most efficient algorithm designed by B.
McKay [4] determines graph automorphisms by constructing a compact set (no
more than n − 1 elements, but usually much less) of generators of the group.

To study the symmetry properties of a dynamical system on a lattice L
we should consider the action of Aut(GL) on the space Σ = QL of Q-valued
functions on L, where Q = {0, . . . , q − 1} is the set of vertex values. We shall
call the elements of Σ states (or later in Sect. 5 microstates). Aut(GL) acts
non-transitively on the space Σ splitting Σ into disjoint orbits of different sizes.
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Burnside’s lemma counts the total number of orbits in Σ

Norbits =
1

|Aut(GL)|
∑

g∈Aut(GL)

qNg
cycles ,

where Ng
cycles is the number of cycles in a group element g.

A large symmetry group allows us to represent the dynamics on the lattice
in more compact form. For example, the symmetry group of an icosahedron,
dodecahedron and buckyball1 is S5, and the information about behavior of any
dynamical system on these lattices can be compressed nearly in proportion to
|S5| = 120.

In Tab. 1 we collect some quantitative information about the lattices
shown in Fig.2 and their automorphism groups, namely, number of vertices
V (GL), size of automorphism group |Aut(GL)|, total number of states Ω =
|Σ| ≡ qV (GL) (here q = 2) and number of group orbits Norbits in the space of
states.

Table 1: Lattices, groups, orbits: quantitative characteristics.
Lattice V (GL) |Aut(GL)| Ω = qV (GL) Norbits

Tetrahedron 4 24 16 5
Hexahedron 8 48 256 22
Icosahedron 12 120 4096 82
Dodecahedron 20 120 1048576 9436
Graphene 3×4
Torus 24 48 16777216 355353

Graphene 3×4
Klein bottle 24 16 16777216 1054756

Triangular 4×6 24 96 16777216 180070
Square 5×5 25 200 33554432 172112

Buckyball 60 120
1152921504606846976

≈ 1018
9607679885269312

≈ 1016

Note that the lattices marked in Fig. 2 as “Graphene 3×4”, “Triangular
4×6” and “Square 5×5” can be closed by identifications of opposite sides of rect-
angles in several different ways, in particular, forming embeddings in the torus
and in the Klein bottle. Computation shows that the Klein bottle arrangement
(as well as others except for embeddings in the torus) leads to non-transitive
lattices. For example, the Klein bottle arrangement of the hexagonal lattice
“Graphene 3×4” has a 16-element symmetry group splitting the set of vertices
into two orbits of sizes 8 and 16. Since non-transitivity of points contradicts to
our usual concept of space, we shall not consider such non-transitive lattices.

1Traditionally, the icosahedral group Ih = A5 is considered as the symmetry group for
these polyhedra. A5 is a 60-element discrete subgroup of SO(3). Adding reflections to A5 we
get a twice as large (and hence more efficient for our purposes) group S5.
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Tetrahedron Hexahedron Icosahedron Dodecahedron

BuckyballSquare 5×5Triangular 4×6Graphene 3×4

Figure 2: Lattices of Tab. 1.

3 Computer Program

A C program exploiting symmetries for study different properties of determin-
istic and statistical lattice systems takes the following input elements:

• Graph of lattice GL = {N1, . . . , Nn}. Ni is the neighborhood of the ith
vertex.

• Cellular automata branch:
A set of local rules R = {r1, . . . , rm}. ri is the bit representation of ith
rule.

• Statistical models branch:
Hamiltonian of the model.

• Some control parameters.

The program computes the automorphism group Aut(GL) and

• in the case of cellular automata the program constructs phase portraits of
automata modulo Aut(GL) for all rules from R.
Manipulating the above-mentioned control parameters we can

– select automata with specified properties, for example, reversibility ;

– search automata whose phase portraits contain specified structures,
for example, limit cycles of a given length, Gardens of Eden [5], or,
more generally, isolated cycles, etc.

• in the case of a lattice model the program computes the partition function
and other characteristics of the system, and searches phase transitions.

Example of timing. The full run of all 136 symmetric 3-valent binary cellular
automata on the dodecahedron takes ≈ 40 sec on a 1133MHz Pentium III PC.
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4 Deterministic Systems

The splitting of the space Σ of functions on a lattice into group orbits of different
sizes imposes a universal restriction on the behavior of any dynamical
system whatever particular law governs the evolution of the system. Namely,
the dynamical trajectories can obviously be directed only from larger orbits to
smaller orbits or to orbits of the same size, and periodic trajectories must lie
within the orbits of equal size. This is an analog of the Second Law of Thermo-
dynamics: any isolated system may only lose information in its evolution.

As a specific class of discrete dynamical systems, we consider the ‘one-time-
step’ cellular automata on k-valent lattices with local rules symmetric
with respect to all permutations of k outer vertices of the neighborhood. This
symmetry property is an immediate discrete analog of the general local diffeo-
morphism invariance of fundamental physical theories based on the continuum
of space and time — the diffeomorphism group of manifold M is very special
subgroup of the infinite symmetric group of M , i.e., Diff(M) ⊂ Sym(M).

As we demonstrate in [3], in the binary case (q = 2) the automata with
symmetric local rules are completely equivalent to the generalized Conway’s
“Game of Life” automata [5] and, hence, their rules can be formulated in terms
of “Birth”/“Survival” lists.

Adopting the convention that the outer points and the root point of the
neighborhood are denoted x1, . . . , xk and xk+1, respectively, we can write a
local rule determining one time-step evolution of the root in the form

x′
k+1 = f (x1, . . . , xk, xk+1) . (1)

The total number of rules (1) symmetric with respect to permutations of points
x1, . . . , xk is equal to q(

k+q−1
q−1 )q. For the case of our interest (k = 3, q = 2) this

number is 256.
Observing that the rules which can be obtained from each other by permuting

q elements of the set Q are equivalent (such a permutation means nothing but a
renaming of values), we can reduce the number of rules of interest. This reduced
number can be easily counted via Burnside’s lemma as the number of orbits of
rules (1) under the action of the group Sq. The concrete expression depends on
the cyclic structure of elements of Sq. For the case q = 2 we have the number
of non-equivalent rules

Nrules = 22k+1 + 2k.

Thus, studying 3-valent binary case, we have to consider 136 different rules.

4.0.1 Examples of Phase Portraits. Cellular Automaton 86.

As an example, let us consider rule 86 on a tetrahedron, cube and dodecahedron.
The number 86 is the “little endian” representation of the bit string 01101010
taken from the last column of the rule table with S3-symmetric combinations of
values for x1, x2, x3
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x1 x2 x3 x4 x′
4

0 0 0 0 0
0 0 0 1 1
1 0 0 0 1
1 0 0 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 1
1 1 1 1 0.

The rule can also be represented in the “Birth”/“Survival” notation as B123/S0,
or as polynomial over the Galois field F2 (see [3]):

x′
4 = x4 + x1x2x3 + x1x2 + x1x3 + x2x3 + x1 + x2 + x3 .

The phase portraits on a tetrahedron and a cube are sketched in Fig. 3. A
number within a circle representing a state orbit is the size of the orbit.

Tetrahedron
Attractor (Sink)

14 4 1

Isolated 2-cycles

66

Hexahedron
Attractors

11

2

4

4

6624 24 12 12 8

8

8

8

8

Sink Limit 2-cycles Limit 4-cycles

Isolated cycles

66 2424 12

12

12

12

24

2424

24

24 24

Figure 3: Rule 86. Equivalence classes of trajectories on tetrahedron and cube.

As for the dodecahedron case, the phase portrait consists of 3774 classes of
trajectories and is too large to be pictured. Instead, a concise form of output
with information about numbers and periods of isolated and limit cycles is
presented below:
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========================= Basic values ========================

Valence of lattice VALENCE_K = 3

Number of lattice vertices GRAPH_V = 20

Order of lattice automorphism group AUTOMORPHISM_N = 120

Number of vertex values VALUE_Q = 2

Number of states StateN = 1048576

Number of state orbits StateOrbitN = 9436

Number of automata under study AUTOMATON_LOCAL_RULE_N = 1

===============================================================

===================== Automaton 86 ======================

Isolated cycles modulo automorphisms

Period Number

2 25

4 25

6 17

10 1

Limit cycles modulo automorphisms

Period Number

1 1

2 8

4 24

6 24

10 5

12 4

20 1

22 2

30 1

There are 3636 separate influxes

==========================================================

===== Max Period = 30 Max Trajectory Length = 41 =====

===== Number of Trajectory Classes = 3774 =====

======================= Statistics =======================

Time: 0.64 sec

4.0.2 Reversibility.

The program is able to select automata with properties specified at input. One
such important property is reversibility.

In this connection we would like to mention recent works by G. ’t Hooft. One
of the difficulties of Quantum Gravity is a conflict between the irreversibility
of Gravity — information loss (dissipation) at the black hole horizon — with
the reversibility and unitarity of standard Quantum Mechanics. One of the
approaches to reconcile both theories proposed by ’t Hooft (see, e.g., [6, 7]) is
based on the following concepts

• physical systems have discrete degrees of freedom at tiny distance scales;
• the states of these degrees of freedom form the primordial basis of a

(nonunitary) Hilbert space;
• primordial states form equivalence classes: two states are equivalent if

they evolve into the same state after some lapse of time;
• the equivalence classes form by construction the basis of a unitary Hilbert

space and now evolution is described by the time-reversible Schrödinger
equation.
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In our terminology this corresponds to transition to limit cycles: after a short
time of evolution the limit cycle becomes physically indistinguishable from a
reversible isolated cycle. Computation confirms that such behavior is typical
for dynamical systems, whereas reversibility is a rather rare property tending
to disappear with the growth of complexity of a system. Moreover, reversible
systems revealed in our computation are trivial, as one can see below.

Applying our program to all 136 symmetric 3-valent automata we have the
following two rules trivially reversible on all lattices:

• 85 ∼ B0123/S ∼ x′
4 = x4 + 1,

• 170 ∼ B/S0123 ∼ x′
4 = x4.

Besides these uninteresting rules there are 6 reversible rules on a tetrahedron:

• 43 ∼ B0/S012 ∼ x′
4 = x4(x2x3 + x1x3 + x1x2 + x3 + x2 + x1) + x1x2x3

+x2x3 + x1x3 + x1x2 + x3 + x2 + x1 + 1;

• 51 ∼ B02/S02 ∼ x′
4 = x3 + x2 + x1 + 1;

• 77 ∼ B013/S1 ∼ x′
4 = x4(x2x3 + x1x3 + x1x2 + x3 + x2 + x1 + 1)

+x1x2x3 + x2x3 + x1x3 + x1x2 + 1;

• 178 ∼ B2/S023 ∼ x′
4 = x4(x2x3 + x1x3 + x1x2 + x3 + x2 + x1 + 1)

+x1x2x3 + x2x3 + x1x3 + x1x2;

• 204 ∼ B13/S13 ∼ x′
4 = x3 + x2 + x1;

• 212 ∼ B123/S3 ∼ x′
4 = x4(x2x3 + x1x3 + x1x2 + x3 + x2 + x1)

+x1x2x3 + x2x3 + x1x3 + x1x2 + x3 + x2 + x1.

Two already listed of the above rules, 51 and 204, are reversible on a cube.
There are no nontrivial reversible rules on a dodecahedron or a 3×4 graphene.

5 Mesoscopic Lattice Models

The state of a deterministic dynamical system at any point of time is deter-
mined uniquely by previous states of the system. A Markov chain — for which
transition from any state to any other state is possible with some probability —
is a typical example of a non-deterministic dynamical system. In this section
we apply a symmetry approach to the lattice models in statistical mechanics.
These models can be regarded as special instances of Markov chains. Stationary
distributions of these Markov chains are studied by the methods of statistical
mechanics.

The main tool of conventional statistical mechanics is the Gibbs canonical
ensemble – an imaginary collection of identical systems placed in a huge ther-
mostat with temperature T . The statistical properties of a canonical ensemble
are encoded in the canonical partition function

Z =
∑

σ∈Σ

e−Eσ/kBT . (2)
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Here Σ is the set of microstates, Eσ is energy of microstate σ, and kB is Boltz-
mann’s constant. The canonical ensemble being essentially an asymptotic con-
cept — its formulation is based on an approximation called the “thermodynamic
limit” — is applicable only to large (strictly speaking, infinite) homogeneous
systems.

Nowadays much attention is paid to study systems which are too large for
a detailed microscopic description but too small for essential features of their
behavior to be expressed in terms of classical thermodynamics. A discipline
— often called mesoscopy — to study such systems covers a wide range of
applications from nuclei, atomic clusters, and nanotechnological structures to
multi-star systems [8, 9, 10]. To study mesoscopic systems one should use the
more fundamental microcanonical ensemble instead of the canonical one.
A microcanonical ensemble is a collection of identical isolated systems at fixed
energy. Its definition does not include any approximating assumptions. In fact,
the only key assumption of a microcanonical ensemble is that all its microstates
are equally probable. This leads to the entropy formula

SE = kB ln ΩE , (3)

or, equivalently, to the microcanonical partition function

ΩE = eSE/kB . (4)

Here ΩE is the number of microstates at fixed energy E. We omit further Boltz-
mann’s constant assuming kB = 1. Note that in the thermodynamic limit the
microcanonical and canonical descriptions are equivalent and the link between
them is provided by the Laplace transform. On the other hand, mesoscopic sys-
tems demonstrate observable experimentally and in computation peculiarities
of behavior, such as heat flowing from cold to hot, negative specific heat, and
“convex intruders” in the entropy versus energy diagram, etc. These anoma-
lous – from the canonical thermostatistics point of view – features have natural
explanation within microcanonical statistical mechanics [10]. Note also that fi-
nite and long-range interacting infinite systems demonstrate similar statistical
behavior. Such systems are called nonextensive in statistical mechanics.

The symmetry approach to study mesoscopic lattice models is based on
exact enumeration of group orbits of microstates. Since statistical studies are
based essentially on simplifying assumptions, it is important to control these
assumptions by exact computation, wherever possible. Moreover, exact compu-
tation, hopefully, might reveal subtle details in behavior of considered systems.

As a typical example, let us consider the Ising model. The model consists
of spins placed on a lattice. The set of vertex values is Q = {−1, 1} and the
interaction Hamiltonian is given by

H = −J
∑

(i,j)

sisj − B
∑

i

si , (5)

where si, sj ∈ Q; J is a coupling constant (J > 0 and J < 0 correspond
to ferromagnetic and antiferromagnetic cases, respectively); the first sum runs
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Figure 4: Microcanonical density of states ρ(e) = ΩE/Ω versus energy per
vertex e = E/V (GL) for the Ising model on a dodecahedron.

over all edges (i, j) of the lattice; B is an external “magnetic” field. The second
sum M =

∑
i

si is called the magnetization. To avoid technical details we will

consider only the case J > 0 (we take J = 1) and B = 0 in what follows.
Since Hamiltonian and magnetization are constants on the group orbits, we

can count the number of microstates corresponding to particular values of these
functions – and hence compute all needed statistical characteristics – simply by
summation of sizes of appropriate orbits.

Fig. 4 shows the microcanonical partition function for the Ising model on a
dodecahedron. Of course, other characteristics of the system can be computed
easily via counting sizes of group orbits, e.g., the magnetization is shown in Fig.
5.

The needs of nanotechnological science and nuclear physics focus special
attention on phase transitions in finite systems. Unfortunately, classical
thermodynamics and the rigorous theory of critical phenomena in homogeneous
infinite systems fails at the mesoscopic level. Several approaches have been pro-
posed to identify phase transitions in mesoscopic systems. The most accepted of
them is search for “convex intruders” [11] in the entropy versus energy diagram.
In standard thermodynamics there is a relation

∂2S

∂E2

∣∣∣∣
V

= − 1
T 2

1
CV

, (6)

where CV is the specific heat. We see from (6) that ∂2S
∂E2

∣∣∣
V

< 0 and hence the
entropy versus energy diagram must be concave. Nevertheless, in mesoscopic
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Figure 5: Specific magnetization m(e) = M(E)/V (GL) vs. energy per vertex e
for the Ising model on a dodecahedron.

systems there might be intervals of energy where ∂2S
∂E2

∣∣∣
V

> 0. These intervals
correspond to first-order phase transitions and are called convex intruders.
From the point of view of standard thermodynamics one can speak about phe-
nomenon of negative heat capacity, of course, if one accepts that it makes sense
to define the variables T and CV as temperature and the specific heat, respec-
tively, in these circumstances. In [12] it was demonstrated via computation with
exactly solvable lattice models that the convex intruders flatten and disappear
in the models with local interactions as the lattice size grows, while in the case
of long-range interaction these peculiarities survive even in the infinite limit.

A convex intruder can be found easily by computer for the discrete systems
we discuss here. Let us consider three adjacent values of energy Ei−1, Ei, Ei+1

and corresponding numbers of microstates ΩEi−1 ,ΩEi
,ΩEi+1 . In our discrete

case the ratio (Ei+1 − Ei) / (Ei − Ei−1) is always a rational number p/q and we
can write the convexity condition for entropy in terms of numbers of microstates
as the easily computed inequality

Ωp+q
Ei

< Ωp
Ei−1

Ωq
Ei+1

. (7)

As a rule Ei+1 − Ei = Ei − Ei−1 and the inequality (7) takes the form

Ω2
Ei

< ΩEi−1ΩEi+1 .

This means that within a convex intruder the number of states with energy Ei

is less than the geometric mean of the number of states at neighboring energies.
Fig. 6 shows the entropy vs. energy diagram for the Ising model on a

dodecahedron. The diagram has an apparent convex intruder in the energy
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Figure 6: Specific microcanonical entropy s(e) = ln (ΩE) /V (GL) vs. energy per
vertex e for the Ising model on a dodecahedron and on a circle of length 24. The
left diagram contains a distinct convex intruder in the interval −1.2 ≤ e ≤ −0.9
and subtle one in the interval −0.8 ≤ e ≤ −0.6. The right diagram is fully
concave: a one-dimensional Ising model has no phase transitions.

interval [−24,−18]. Exact computation also reveals a subtle convex intruder
in the interval [−16,−12]. In terms of specific energy, as in Fig. 6, these
intervals are [−1.2,−0.9] and [−0.8,−0.6], respectively. It is known that a one-
dimensional Ising model has no phase transitions. To illustrate the difference
between the diagrams for the cases with and without phase transitions, we place
also in Fig. 6 the diagram for the Ising model on the 1D circle lattice with 24
vertices.

6 Summary

• A C program for symmetry analysis of finite discrete dynamical systems
has been created.

• We pointed out an obvious but important restrictions on possible trajec-
tories of deterministic dynamical systems with non-trivial symmetry.

• Some computational results for cellular automata with symmetric local
rules are presented. For these dynamical systems we showed in particular
that reversibility is a rare property.

• We demonstrated the capability of exact computing based on symmetries
in search of phase transitions for mesoscopic models in statistical mechan-
ics.
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Abstract. Recently we developed an algorithmic method to gener-
ate finite difference schemes for linear partial differential equations.
The method is based on difference elimination by means of Gröbner
bases. To analyze the stability of a generated difference scheme one
can compute its differential approximation which is also called the
modified equation. There are whole classes of difference schemes
for which their stability properties can be studied by this method.
However, in many cases, the underlying computation can be done
with modern computer algebra software. In this paper we briefly
describe the method of differential approximation for Burger’s equa-
tion and demonstrate both generation of a difference scheme and
computation of its differential approximation with Maple.

1 Introduction

1.1 Finite difference approach

The finite difference approach [1, 2, 3, 4, 5] with finite elements and finite vol-
umes is the most popular discretization technique for solving ordinary or partial
differential equations (PDEs) numerically. In this approach derivatives are ap-
proximated by finite differences and the resulting algebraic system – a difference
scheme – is solved numerically.

In [6] we described an algorithmic method to generate finite difference schemes
for linear PDEs. The method is based on enlargement of the equations in their
integral or differential form by extra integral relations between unknown func-
tions and their derivatives, and on discretization of the obtained system. The
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structure of the last system depends on numerical approximation methods for
the added integrals. As a result, a system of linear difference equations is derived
for the unknown functions and their partial derivatives. A difference scheme is
constructed by elimination of all the partial derivatives. The elimination can be
achieved by selecting a proper elimination ranking and by computing a Gröbner
basis of the linear difference ideal generated by the polynomials in the discrete
system.

Sometimes Gröbner bases can be computed even for nonlinear difference
systems, as we show in [6] for the Falkowitch-Karman equation describing tran-
sonic flow in gas dynamics, derived from discretization of the original PDEs and
related integral equations. In this case nonlinear difference schemes can also be
generated by our method.

1.2 Stability of difference schemes

A difference scheme, to be of practical interest, must be stable. The stability
study of difference schemes exploits symbolic mathematical operations. Thus it
can be analyzed with help of computer algebra methods and software [7].

To analyze stability one can use a differential approximation that is often
called the modified equation(s) of difference scheme. There are wide classes of
difference schemes whose stability properties can be investigated with the aid of
the differential approximation [8]. For all that, in many cases, the computation
can be done by means of modern computer algebra software.

In this paper we shall demonstrate how Maple can be used for this purpose
and present a Maple program that computes differential approximations for
difference schemes. Together with the Maple package for constructing Gröbner
bases for linear difference systems [9] the program allows one to generate schemes
possessing stability properties.

2 Difference schemes for hyperbolic equations

2.1 Difference Cauchy problem

Consider the following Cauchy problem
∂u

∂t
= Au, −∞ < x < ∞, t > 0 , (1)

u(x, 0) = u0(x), −∞ < x < ∞ (2)

where x is the spatial variable, t is the temporal variable, A is a linear differential
operator and u0(x) is a given function.
We approximate the Cauchy problem (1)-(2) by the following difference Cauchy
problem:

un+1
j − un

j

τ
= Λ1u

n+1
j + Λ2u

n
j , j = 0,±1,±2, . . . ; n = 0, 1, 2, . . . (3)

u0
j = u0(xj) .
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2.2 Notion of approximation for the initial problem

Let L be the differential operator in the initial equation (1), i.e.

Lu =
∂u

∂t
−Au, (4)

and let Lh be a difference operator defined in accordance to (4) as

Lhu =
u(x, t + τ)− u(x, t)

τ
− Λ1u(x, t + τ)− Λ2u(x, t) .

Suppose the solution u(x, t) of the Cauchy problem (1)-(2) is smooth enough.
If

‖Lu− Lhu‖ ≤ C1h
k1 + C2τ

k2

where k1 > 0, k2 > 0 and constants C1 and C2 do not depend on τ and h, then
it is said that difference scheme (3) approximates equation (1) and has the order
of approximation k1 w.r.t. h and the order k2 w.r.t. τ .

3 First differential approximation of difference
scheme

The first differential approximation (FDA) of difference scheme (3) is the partial
differential equation which is obtained from (3) substituting the Taylor expan-
sion for the grid function, while keeping the main terms [8].

One distinguishes hyperbolic and parabolic forms of a FDA [7]. To obtain the
parabolic form of a FDA one uses differential consequences of the initial PDE

∂u

∂t
= Au

obtained by differentiating both sides of the PDE w.r.t. the independent vari-
ables.

Discretization of PDEs implies that their difference solutions do not satisfy
the original PDEs. Deviation of a difference solution from the exact one is
called an error of difference scheme. Study and classification of errors is based
on representing the solution by a trigonometric Fourier series, detecting the
variation in amplitude and phase of each harmonic in one step in time, and
comparing it with the variation of the exact solution (of PDEs) on the same
time interval.
If the harmonic amplitude decreases faster then that for the exact solution,
then this effect is called the amplitude error of the scheme caused by an extra
diffusion inherent to the scheme – numerical viscosity. The phase variation of
the difference solution distinct from that for the exact solution is called the phase
error caused by distinction in the phase velocities of the harmonic propagation
– numerical dispersion.
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3.1 Example: Lax scheme for Burger’s equation

Consider Burgers’ equation [1, 2, 5]

ut + fx = ν uxx, ν = const (5)

where we denoted u2 by f in order to deal with linear expressions. One of the
difference schemes for equation (5) has the form [6]

2un+1
j+2 − (un

j+3 + un
j+1)

2τ
+

fn
j+3 − fn

j+1

2h
= ν

un
j+4 − 2un

j+2 + un
j

4h2
. (6)

Its differential approximation at the point (n, j + 2) is given by
︷ ︸︸ ︷
ut + fx − νuxx− 1

2uxx
h2

τ +
+ 1

2uttτ + ( 1
6fxxx − 1

3νuxxxx)h2 − 1
24uxxxx

h4

τ +
+ 1

6utttτ
2 + ( 1

120fxxxxx − 2
45νuxxxxxx)h4 − 1

720uxxxxxx
h6

τ +
+ . . . = 0 .

(7)

From (7) it follows that scheme (6) does not approximate equation (5) at
O(h2/τ) ∼ 1. It is an example of a conditionally convergent scheme.

For a more detailed analysis of scheme (6) one can construct a parabolic form
of the FDA for f = u2/2:

ut + uux −
︷ ︸︸ ︷(

ν +
h2

2τ
+ (2ντ +

h2

2
)ux − τ

2
u2

)
uxx+

+(uτ)ux − (νuτ + h2

3 u)uxxx + ( ν2τ
2 + νh2

6 + h4

12τ )uxxxx = 0.

(8)

Formula (8) shows that to approximate the initial PDE the expression marked
by ︷︸︸︷. . . is to be of order ν whereas the remaining terms which do not occur in
PDE are to be small (vanishing). For equation (5) and zero viscosity (ν = 0) the
expression marked by ︷︸︸︷. . . must be positive. Otherwise the diffusion coefficient
becomes negative and the boundary-value problem becomes incorrect.

For some classes of PDEs one can use the equivalence theorem to relate the
scheme stability with its differential approximation.

4 Generation of difference schemes

In [6] we suggested an algorithmic approach to generation of difference schemes.
For instance, consider Burger’s equation (5) and add the integral relations to-
gether with their numerical approximation as follows

∫
utdt = u, utτ = un+1

j − un
j+2 + un

j

2
,∫

fxdx = f, 2 h(fx)n
j+1 = fn

j+2 − fn
j ,∫

uxdx = u, 2 h(ux)n
j+1 = un

j+2 − un
j ,∫

uxxdx = ux, 2 h(uxx)n
j+1 = (ux)n

j+2 − (ux)n
j .
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Computation of a Gröbner basis for an elimination ranking uxx Â ut Â ux Â
fx Â u Â f derives scheme (6).

We call such a method of integration in time as a Lax-type one and use
different numerical quadrature formulae for integration over x. For the midpoint
or the trapezoidal rule for these integrals 8 different schemes are generated.

Here, a question arises: How closely related are the properties of these 8
schemes? A partial answer can be obtained by using the differential approxi-
mation technique described in the next section.

5 Construction of differential approximation

5.1 Hyperbolic form

Since an order (for instance, in h) of the ratio h
τ is not known, one cannot

specify a linear order w.r.t. divisibility in τ and h for terms in the differential
approximation for a PDE. Equation (7) multiplied by τ can be partitioned into
three groups determining the hyperbolic form:

[
(ut + fx − νuxx)τ − 1

2uxxh2,
1
2uttτ

2 + ( 1
6fxxx − 1

3νuxxxx)τh2 − 1
24uxxxxh4,

1
6utttτ

3 + ( 1
120fxxxxx − 2

45νuxxxxxx)τh4 − 1
720uxxxxxxh6

]

We see that

• the first group does not have divisors;

• the second group has divisors occurring in the first group;

• the third group has divisors occurring in the first and the second groups.

In so doing, a truncation order for the Taylor expansion is to be specified to
provide a correct partition into groups.

5.2 Parabolic form

To construct a FDA in parabolic form, the derivatives w.r.t. t in the second
group are replaced by their values from the first group so that we can com-
pare scheme properties. It can be achieved by the sequential substitution of
derivatives in accordance to the lexicographic order utt Â utx Â ut. Thereby we
obtain

[
(ut + uux − νuxx)τ − uxx

h2

2 ,

+(−νuuxxx − 2νuxuxx + 1
2ν2uxxxx + 1

2u2uxx + uu2
x)τ2

+( 1
6uxxxxν − 1

3uxxxu− 1
2uxxux)τh2 + 1

6uxxxxh4
]

.
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5.3 Implementation in Maple

We implemented the above described method in Maple as a package, FDA (First
Differential Approximation). To illustrate the work of the package for Burger’s
equation we use also the Maple package, LDA (Linear Differential Algebra) [9]
which allows to compute a Janet basis for an input system of linear difference
equations and thereby to generate a difference scheme. The Maple session be-
low shows both generation of the difference scheme for Burger’s equation and
computation of its parabolic form:

>restart;

>libname:=libname, “/usr/local/lib/lda”, “/usr/local/lib/Janet”, “/usr/local/lib/fda”:

>with(LDA);

[AddRelation,AffEqn,AppShiftOp,AssertJanetBasis,CartanCharacter ,CompCond ,
CompCondBasis,Diff2Shift ,HF ,HP ,HilbertFunction,HilbertPolynomial ,
HilbertSeries, IndexRegularity , InvReduce, JanetBasis,LDAOptions,LDAStats,
LeadingShift ,Pol2Shift ,RemoveLowerOrderTerms,ResidueClassBasis,
ResidueClassRelations,ReverseShift ,Shift2Diff ,Shift2Op,Shift2Pol ,
ShiftGroebnerBasis,ShiftOpRepres,ShiftRepres,ShiftTabVar ,WeightedHilbertSeries,
ZeroSets]

>with(FDA);

[DForm,PForm]

>L:=[ut(n,j)+fx(n,j)-nu*uxx(n,j),
>ut(n,j+1)*tau-(u(n+1,j+1)-(u(n,j+2)+u(n,j))/2),
>2*fx(n,j+1)*h-(f(n,j+2)-f(n,j)),
>2*ux(n,j+1)*h-(u(n,j+2)-u(n,j)),
>2*uxx(n,j+1)*h-(ux(n,j+2)-ux(n,j))];

[ut (n, j) + fx (n, j)− ν uxx (n, j) , ut (n, j + 1) τ − u (n + 1, j + 1) + 1
2

u (n, j + 2)+

1
2

u (n, j) , 2 fx (n, j + 1) h− f (n, j + 2) + f (n, j) ,

2 ux (n, j + 1) h− u (n, j + 2) + u (n, j) ,

2 uxx (n, j + 1) h− ux (n, j + 2) + ux (n, j)]

>JanetBasis(L, [n,j], [uxx,ux,ut,fx,u,f],2);
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[[−4 h2u(n+1,j+2)
ν τ

+ u (n, j) + u (n, j + 4) + 2 h2u(n,j+3)
ν τ

− 2 u (n, j + 2) + 2 h2u(n,j+1)
ν τ

− 2 hf(n,j+3)
ν

+ 2 hf(n,j+1)
ν

, 2 fx (n, j + 1) h− f (n, j + 2) + f (n, j) ,

ut (n, j + 1) τ − u (n + 1, j + 1) + 1
2

u (n, j + 2) + 1
2

u (n, j) ,

ux (n, j) + 2 hu(n+1,j+1)
ν τ

− 1
2

u(n,j+3)
h

− hu(n,j+2)
ν τ

+ 1
2

u(n,j+1)
h

− hu(n,j)
ν τ

+ f(n,j+2)
ν

− f(n,j)
ν

,

ut (n, j) + fx (n, j)− ν uxx (n, j)], [n, j], [a, uxx , ux , ut , fx , u, f ]]

>collect(%[1,1]*nu/(4*hˆ2),[tau,h,nu]);

−1/2 f(n,j+3)+1/2 f(n,j+1)
h

+ (1/4 u(n,j+4)−1/2 u(n,j+2)+1/4 u(n,j))ν

h2

+ 1/2 u(n,j+3)+1/2 u(n,j+1)−u(n+1,j+2)
τ

>a:=-DForm(%,[u,f],[[n,tau,t],[j,h,x]],[0,2],2);

[D2 (f) (t, x)−D2,2 (u) (t, x) ν + D1 (u) (t, x)− 1
2

D2,2(u)(t,x)h2

τ
,

1
2

D1,1 (u) (t, x) τ − (− 1
6

D2,2,2 (f) (t, x) + 1
3

D2,2,2,2 (u) (t, x)
)
νh2

− 1
24

D2,2,2,2(u)(t,x)h4

τ
,

1
6

D1,1,1 (u) (t, x) τ2 − (− 1
120

D2,2,2,2,2 (f) (t, x) + 2
45

D2,2,2,2,2,2 (u) (t, x)
)
νh4

− 1
720

D2,2,2,2,2,2(u)(t,x)h6

τ
]

>f:=uˆ2/2:
>PForm(a);

[D2 (u) (t, x) u (t, x)−D2,2 (u) (t, x) ν + D1 (u) (t, x)− 1
2

D2,2(u)(t,x)h2

τ
,

(−ν D2,2,2 (u) (t, x) u (t, x)− 2 ν D2,2 (u) (t, x) D2 (u) (t, x)

+ 1
2

ν2D2,2,2,2 (u) (t, x) + 1
2

(u (t, x))2 D2,2 (u) (t, x) + u (t, x) (D2 (u) (t, x))2
)
τ

− (
1
3

D2,2,2 (u) (t, x) u (t, x) + 1
2

D2,2 (u) (t, x) D2 (u) (t, x)− 1
6

D2,2,2,2 (u) (t, x) ν
)
h2

+ 1
12

D2,2,2,2(u)(t,x)h4

τ
]

In the input set of difference equations the midpoint rule is used for the integral
relations. One can also use the trapezoidal rule for spatial integration. This
derives other schemes. By selecting either the midpoint or the trapezoidal rule
for the spatial integrals, we obtain 8 possible schemes [6]. Two of these 8 schemes
coincide, and, hence, there are 7 different schemes. Apart from scheme 6 they
are
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2(un+1
j+2 +un+1

j+1 )−(un
j+3+un

j+2+un
j+1+un

j )

4τ + (fn
j+3+fn

j+2)−(fn
j+1+fn

j )

4h =

= ν
(un

j+3−un
j+2)−(un

j+1−un
j )

2h2 ,

2un+1
j+1−(un

j+2+un
j )

2τ + fn
j+2−fn

j

2h = ν
un

j+2−2un
j+1+un

j

h2 ,

2(un+1
j+3 +2un+1

j+2 +un+1
j+1 )−(un

j+4+2un
j+3+2un

j+2+2un
j+1+un

j )

8τ + (fn
j+4+2fn

j+1)−(2fn
j+1+fn

j )

8h =

= ν
un

j+3−2un
j+2+un

j+1
h2 ,

2(un+1
j+3 +un+1

j+2 )−(un
j+4+un

j+3+un
j+2+un

j+1)

4τ + fn
j+3−fn

j+2
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= ν
((un

j+5+un
j+4)−2un

j+3)−(2un
j+2−(un

j+1+un
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8h2 ,

2(un+1
j+2 +un+1

j+1 )−(un
j+3+un

j+2+un
j+1+un

j )

4τ + fn
j+2−fn

j+1
h = ν

(un
j+3−un

j+2)−(un
j+1−un

j )

2h2 ,

2(un+1
j+3 +2un+1

j+2 +un+1
j+1 )−(un

j+4+2un
j+3+2un

j+2+2un
j+1+un

j )

8τ + fn
j+3−fn

j+1
2h

= ν
un

j+3−2un
j+2+un

j+1
h2 .

The second scheme from the bottom is obtained twice in the course of generating
eight schemes.

Computation of differential approximations for scheme (6) and for the above
6 schemes with f = u2 gives

ut + uxu− ν uxx = (− 1
2 ν2uxxxx + (uxxxu + 2 uxxux)ν − u2

xu− 1
2 u2uxx)τ

+(∗)h2 + (∗∗)h2

τ + . . . = 0.

where contributions of the order h2 and h4/τ read

[. . . = (. . .)τ +(1
6uxxxxν − 1

3uxxxu− 1
2uxxux)h2 + 1

8uxxxx
h4

τ ]

[. . . = (. . .)τ +( 5
12uxxxxν − 1

2uxxxu− 1
2uxxux)h2 + 3

16uxxxx
h4

τ ]

[. . . = (. . .)τ +( 5
12uxxxxν − 1

3uxxxu− 1
2uxxux)h2 + 1

8uxxxx
h4

τ ]

[. . . = (. . .)τ +(2
3uxxxxν − 1

3uxxxu− 1
2uxxux)h2 + 1

4uxxxx
h4

τ ]

[. . . = (. . .)τ +(1
6uxxxxν − 7

12uxxxu− 5
4uxxux)h2 + 3

16uxxxx
h4

τ ]

[. . . = (. . .)τ +( 5
12uxxxxν − 7

12uxxxu− 5
4uxxux)h2 + 3

16uxxxx
h4

τ ]

[. . . = (. . .)τ +(2
3uxxxxν − 7

12uxxxu− 5
4uxxux)h2 + 1

4uxxxx
h4

τ ]

(9)

From differential approximations (9) it can be easily seen that all schemes have
similar properties, and three of them have identical differential approximations.

By inspection of the schemes we see that they have
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• the same order of approximation;

• identical dissipative properties;

• very close dispersion properties with some small distinctions in the rational
coefficients at derivatives in the terms of order h2 and h4/τ .

5.4 Two-Step Lax-Wendroff Schemes

Denoting the values of functions on the intermediate time level by u and f we
obtain the following difference system:





ut
n
j + fx

n
j = ν uxx

n
j

ut
n
j τ = u n+1

j − un
j+2+un

j

2

2fx
n
j+1 h = fn

j+2 − fn
j

2ux
n
j+1 h = un

j+2 − un
j

2uxx
n
j+1 h = ux

n
j+2 − ux

n
j

ut
n
j + fx

n

j = ν uxx
n
j

ut
n
j τ = un+1

j − un
j

2fx

n

j+1 h = f
n

j+2 − f
n

j

2ux
n
j+1 h = un

j+2 − un
j

2uxx
n
j+1 h = ux

n
j+2 − ux

n
j .

For the elimination ranking

uxx Â uxx Â ux Â ux Â ut Â ut Â fx Â fx Â f Â u Â f Â u

a Gröbner basis contains the Lax-Wendroff scheme




un+1
j+2−(un

j+3+un
j+1)

2 τ + fn
j+3−fn

j+1
2 h = ν

un
j+4−2un

j+2+un
j

4h2 ,

un+1
j+3−un

j+2

2 τ + f
n
j+3−f

n
j+1

2 h = ν
un

j+4−un
j+2+un

j

4 h2 .
(10)

With all possible combinations of the trapezoidal and midpoint rules one can
obtain 49 different Lax-Wendroff which are similar to scheme (10).

6 Conclusions

As shown in [6] and in the present paper, Gröbner bases provide a tool for al-
gorithmic construction of finite difference schemes for linear PDEs. Having a
difference scheme constructed, the method of differential approximation (mod-
ified equation) allows one to study the stability of schemes for a wide class of
PDEs. In particular, the first differential approximation (FDA) plays an impor-
tant role in stability analysis.
For linear and some quasilinear PDEs differential approximations can be con-
structed algorithmically, and the underlying algorithms for computing parabolic
and hyperbolic forms of FDA have been implemented in Maple.
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The methods and software designed were applied to many different PDEs,
for example, to Burgers’ equation.Several difference schemes were generated
and their stability properties were studied using the method of differential ap-
proximation.
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Abstract. This paper consists of two parts. In the first part we
give an overview of the capabilities of the computer logic system
redlog, an integral part of the computer algebra system reduce
since 1999. redlog implements quantifier elimination over vari-
ous domains including, among many others, the reals, the integers,
and differential algebras. Our focus here is on previously published
work on quantifier elimination methods within the field of differen-
tial equations. This comprises real quantifier elimination methods
and a quantifier elimination method for differentially closed fields.
In the second part we announce the new redlog website. This
website provides regular updates of precompiled redlog binaries.
In addition, it features the redlog Example Management and In-
formation System (remis). This is an online database containing
redlog input files for computation examples discussed in scientific
publications over the years. Moreover, remis covers the correspond-
ing publications themselves, and provides all relevant links between
redlog input examples on the one hand and publications on the
other hand. Our references at the end of this article are quite com-
prehensive in order to provide a good starting point to researchers
interested in applying quantifier elimination techniques.

1 The REDLOG Computer Logic System

Based on experimental implementations beginning in 1992, the author started
the realization of redlog in early 1994. In April 1995, the system was re-
designed by the author together with A. Dolzmann [9], who from then on
equally contributed to the realization of redlog. redlog 1.0 [7] was pub-
lished on the Web in October 1996. This first redlog distribution was quite
a success. In October 1996 both the author and A. Dolzmann joined the re-
duce development group, with the result that redlog is now developed not
as a separate contributed package but as an integral part of the reduce sys-
tem itself. redlog 2.0 [10] appeared as part of the distribution of reduce 3.7
issued in April 1999. redlog 3.0 appeared as part of the current distribution
of reduce 3.8 in April 2004. Regular updates of redlog are now available on
the Web. We are going to describe this in more detail in Section 4.
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redlog stands for reduce logic system [9, 10]. It provides an extension of
the computer algebra system reduce to a computer logic system implementing
symbolic algorithms on first-order formulas with respect to temporarily fixed
first-order languages and theories. Such a choice of language and theory is
called a domain or, more technically, a context.

We briefly summarize the currently existing domains together with short
names and alternative names, which are supported for backward compatibility:

boolean, B, ibalp The class of Boolean algebras with two elements. These al-
gebras are uniquely determined up to isomorphisms. boolean comprises
quantified propositional calculus [35].

complex, C, acfsf The class of algebraically closed fields such as the complex
numbers over the language of rings.

differential, dcfsf A domain for computing over differentially closed fields.
There is no natural example for such a field, but the methods can well be
used for obtaining relevant and also interpretable results for reasonable
differential fields [11].

integers, Z, pasf The theory of the integers as an ordered ring with congru-
ences. This comprises Presburger arithmetic and recent work on so-called
weak quantifier elimination on the full linear theory and certain special
cases of nonlinear formulas [26, 27].

padics, dvfsf The discretely-valued fields of p-adic numbers for some prime
p with abstract divisibility relations encoding order between values. All
padics algorithms are optionally uniform in p [43].

queues, qqe A (two-sided) queue is a finite sequence of elements of some basic
type. There are two sorts of variables, one for the basic type and one for
the queue type. Accordingly, there is first-order quantification possible
for both sorts. So far, the implementation is restricted to the reals as the
basic type [39].

reals, R, ofsf The class of real closed fields such as the real numbers with
ordering. This domain was the original motivation for redlog. It is still
the most important and most comprehensive one [13].

terms, talp Free Malcev-type term algebras. The available function symbols
and their arity can be freely chosen. [46].

The idea of redlog is to combine methods from computer algebra with first-
order logic, thus extending the computer algebra system reduce to a computer
logic system. In this extended system both the algebraic side and the logic
side greatly benefit from each other in numerous ways. redlog began with
the implementation of real quantifier elimination. Successfully applying such
methods to both academic and real-world problems, the authors have developed
a large collection of formula manipulation tools, many of which are interesting
in their own right.
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2 Real Quantifier Elimination

For real quantifier elimination, it is common to use the language of ordered
rings L = (0, 1,+,−, ·,≤). Certainly, there are integer coefficients admitted in
the input. They are formally an abbreviated notation for terms ±(1 + · · ·+ 1).
Consider a first-order formula like the following one originally suggested by
H. Hong:

ϕ ≡ ∀x∃y(x2 + xy + b > 0 ∧ x + ay2 + b ≤ 0).

The notion first-order refers to the fact that the quantifiers ∀x and ∃y range
over real numbers. In higher order formulas, quantifiers would possibly range
over relations as well. There are two kinds of variables in this formula: The first
kind are the quantified variables x and y. The second kind are free variables
or parameters a and b. A quantifier elimination procedure takes such a formula
as an input. Its output is an equivalent quantifier-free formula. That is, the
output will not contain any quantifiers and, consequently, also not the variables
x and y. In other words we obtain a necessary and sufficient condition in the
parameters a and b for validity of the given formula. We would like to encourage
the readers to find the answer for our rather simple example themselves. We are
going to present the solution computed with redlog at the end of this section.

First, we summarize some successful applications of redlog within various
fields of science and engineering. We start with applications by the research
group around the redlog developers:

• parametric and nonlinear optimization [13]

• transportation problems [28, 6]

• circuit analysis, design, and diagnosis [41]

• generalized scheduling problems [13, 6]

• real implicitation [13, 5]

• automated theorem proving [12, 40, 14]

• computational geometry [45, 40]

• solid modeling [44, 40, 42]

• robot motion planning [13, 48, 49, 15]

• guarded expressions [8].

Even more interesting are the following third-party applications. They demon-
strate that redlog is a useful, stable, and well-documented tool, which is ac-
cepted and actively used by a considerable community of scientists:

• automatic loop parallelization [16]

• hybrid control theory [22, 1, 25]
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• hydraulic network diagnosis (industrial cooperation project)

• theoretical mechanics [21, 20, 19]

• software security [37, 38].

Our list continues with further third-party applications in the area of differential
equations. These are probably of particular interest to the CADE community:

• deciding Hopf bifurcations [23]

• equilibrium point analysis [24, 4]

• stability of differential equations [18]

• deciding ellipticity [36].

We are not going to discuss here any of these applications in detail. The in-
terested reader will find that our citations mostly refer to well-established and
widely available journals and conference proceedings. We would like to point in
particular at the excellent recent survey by Weber on real quantifier elimination
and differential equations [47].

In the next section we are going to discuss quantifier elimination for differ-
entially closed fields. It is noteworthy, however, that all relevant applications of
redlog to differential equations so far, which are listed above, have used real
quantifier elimination.

To close the present section, we give the solution of our real quantifier elim-
ination puzzle: redlog computes in about 200 ms that the formula ∀x∃y(x2 +
xy + b > 0 ∧ x + ay2 + b ≤ 0) discussed above is equivalent to a < 0 ∧ 16b2 +
36b + 27 > 0 ∧ b > 0. This can obviously be simplified to a < 0 ∧ b > 0.

3 Quantifier Elimination in Differential Fields

Differential algebra is usually attributed to Ritt [30]. Ritt had the idea of treat-
ing differential equations to a large extent in a purely algebraic framework and
developed such framework. As a major result, he proved his differential Nullstel-
lensatz, which is a perfect analogue to Hilbert’s Nullstellensatz for algebraically
closed fields [17].

The first major algorithmic contribution in differential algebra was Sei-
denberg’s elimination theory [34]. It provided an elimination theorem for 1-
primitive formulas with a perfectly algorithmic proof. Using standard tech-
niques this can be easily extended to arbitrary first-order input formulas. The
output is, however, correct only in some differential extension field of the consid-
ered field, which depends on the input. Hence Seidenberg did not really provide
a quantifier elimination procedure for any fixed structure or theory.

On the basis of Seidenberg’s work, Robinson introduced in 1959 the notion
of a differentially closed field [31]. He axiomatized the class of differentially
closed fields by combining the following sets of axioms:
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1. The field axioms.

2. The Leibniz axioms for the derivative.

3. For each existential formula, the equivalence between this formula and the
corresponding quantifier-free formula obtained according to Seidenberg.

Thus while Seidenberg provided a dynamic process in the sense that equivalence
holds in differential extension fields, Robinson switched from the outset to a suf-
ficiently large field such that no such extension would ever become necessary.
From a model-theoretic point of view, these differentially closed fields are per-
fect analogues of algebraically closed fields. Unfortunately, there is no natural
example for such fields which could play the role that the complex numbers play
for algebraically closed fields. Robinson’s main result was the model complete-
ness of the class of differentially closed fields. It is obvious that Seidenberg’s
procedure is an effective quantifier elimination procedure for the class of differ-
entially closed fields. Consequently, beyond model completeness, differentially
closed fields have even stronger property of substructure completeness, which
is equivalent to the existence of quantifier elimination. Interestingly, Robinson
who had just one year before discussed this stronger phenomenon [32]—without
introducing the notion of substructure completeness, however—did not address
this fact at all.

In 1968 Blum reanalyzed Seidenberg’s proof w.r.t. the assumptions on the
differential extension fields made there [2, 3]. By indirect model theoretic meth-
ods, viz. saturated models, she found, in contrast to Robinson’s pragmatic col-
lection of all possible results of Seidenberg’s procedure, a natural axiomatization
of differentially closed fields:

3′. For each pair f , g of univariate differential polynomials with ord(f) >
ord(g) there is a c in the field such that f(c) = 0 and g(c) 6= 0.

Note that this is still an infinite set of axioms. In contrast to Robinson’s, how-
ever, these axioms are very natural. In fact, they nicely resemble the axioma-
tization of algebraically closed fields. At that time the notion of substructure
completeness had been introduced by Sacks [33], and the scientific community
was generally aware of the fact that differentially closed fields admit quantifier
elimination via Seidenberg’s procedure.

It is a straightforward idea to come full circle by reformulating Seidenberg’s
elimination procedure in such a way that exactly Blum’s axioms become explicit
there. This has actually been done by Weispfenning in 1973. This work has
became part of his university lectures on differential algebra during the 1980’s.
An outline of the procedure can be found in [11], to which we refer the reader
for more detailed information.

We have already mentioned that there is no natural example at all for a
differentially closed field. That is, quantifier elimination will certainly never take
place in structures that users actually have in their minds. It rather takes place
in a differentially closed extension field, where there generally exist elements
that cannot be interpreted as functions.
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Nevertheless, quantifier elimination results will also, for certain first-order
formulations of natural questions, provide information on the differential field
actually under consideration. In the first place, this applies to input formulas
that are either purely existential or purely universal.

Example 1 (Solvability Conditions for parametric systems) One exam-
ple for a purely existential question is that for the solvability of a parametric
system of differential equations

ψ ≡ f1(x1, . . . , xn, u1, . . . , um) = 0 ∧ · · · ∧ fk(x1, . . . , xn, u1, . . . , um) = 0,

where the f1, . . . , fk ∈ Z{x1, . . . , xn, u1, . . . , um} are differential polynomials.
We are interested in conditions on the parameters u1, . . . , um for the solvability
of the system w.r.t. x1, . . . , xn. A corresponding first-order formulation is given
by ϕ ≡ ∃x1 . . . ∃xnψ.

For such existential problems, quantifier elimination yields a quantifier-free for-
mula ϕ̂ such that for any differentially closed field K̄, we have K̄ |= ϕ ←→ ϕ̂.
In other words, ϕ̂ is a necessary and sufficient condition in the parameters u1,
. . . , um for the solvability of ψ in the differentially closed field K̄. From this point
of view we have in particular that ϕ̂ is a necessary condition: K̄ |= ϕ −→ ϕ̂,
alternatively K̄ |= ∀u1 . . . ∀um(ϕ −→ ϕ̂), which can in turn be rewritten as
follows:

∀u1 . . . ∀um(ϕ −→ ϕ̂) ⇐⇒ ∀u1 . . . ∀um(∃x1 . . . ∃xn(ψ) −→ ϕ̂)
⇐⇒ ∀u1 . . . ∀um

(¬∃x1 . . . ∃xn(ψ) ∨ ϕ̂
)

⇐⇒ ∀u1 . . . ∀um

(∀x1 . . . ∀xn(¬ψ) ∨ ϕ̂
)

⇐⇒ ∀u1 . . . ∀um∀x1 . . . ∀xn(¬ψ ∨ ϕ̂).

Note first that the fact that ϕ̂ is a necessary condition can be expressed as a
universal sentence. It thus holds in all subfields of K̄, and in particular, in the
field actually under consideration by the user.

Applied to our Example 1, the quantifier elimination result ϕ̂ will thus in
addition to valid choices possibly identify choices of parameters for which the
considered system has no solutions in the field actually under consideration.
Note second that we nevertheless expect the case distinctions on the parameters
made in ϕ̂ to be typical for the input problem rather than for the considered
differential field. They would then provide a certain structural insight into the
problem modeled by the parametric system ψ.

The first point is a fact, which we have proved above. The second point
though not mathematically precise, can hopefully be substantiated by empirical
data in the future.

Example 2 (Conditions on the solutions of systems)1 As an example for
a purely universal question consider the differential equation x′2 + x = 0. By

1This very instructive problem has been suggested by E. V. Pankratiev at the mexmat
faculty of Moscow State University during the author’s stay there.
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taking the derivative we obtain

0 = (x′2 + x)′ = 2x′x′′ + x′ = x′(2x′′ + 1).

It is thus necessary for solutions x that x′ = 0 or x′′ = −1/2. We can ask for
such conditions by means of a universal formula:

ϕ ≡ ∀xψ, where ψ ≡ x′2 + x = 0 −→ x′ = a ∨ x′′ = b.

Our procedure delivers ϕ̂ ≡ a = 0 ∧ 2b + 1 = 0 as a quantifier-free equivalent
after automatic simplification.

As for Example 1 we formally have K̄ |= ϕ ←→ ϕ̂. This time the implication
K̄ |= ϕ̂ −→ ϕ corresponds to a universal sentence:

∀a∀b(ϕ̂ −→ ϕ) ⇐⇒ ∀a∀b(ϕ̂ −→ ∀xψ)
⇐⇒ ∀a∀b(¬ϕ̂ ∨ ∀xψ)
⇐⇒ ∀a∀b∀x(¬ϕ̂ ∨ ψ).

That is, the quantifier-free condition ϕ̂ on the parameters is sufficient for ϕ in
all subfields of K̄, in particular in the field actually under consideration.

Applying this observation to Example 2 is a bit puzzling at first: We ask for a
necessary condition on a = x′ and b = x′′ for being a solution of the considered
equation x′2 + x = 0. According to the discussion above we may, however,
only conclude that the obtained result is—in any reasonable differential field—a
sufficient condition on a = x′ and b = x′′ for being a necessary condition as
required in the formulation of the input formula. We see that, in general, it
requires a certain intuition about mathematical logic to deal with the results
of our procedure. Here, the situation can be resolved as follows:2 From K̄ |=
ϕ ←→ ϕ̂ it follows that in particular K̄ |= (ϕ ←→ ϕ̂)

[
a/0, b/− 1

2

]
. That is,

K̄ |= ∀x
(
x′2 + x = 0 −→ x′ = 0 ∨ x′′ = −1

2

)
←→

(
0 = 0 ∧ 2 ·

(
−1

2

)
+ 1 = 0

)
.

Equivalently, K̄ |= ∀x(
x′2 + x = 0 −→ x′ = 0 ∨ x′′ = − 1

2

)
, which as a universal

formula holds also in the subfield of K̄ actually under consideration.

4 Online Resources

redlog is a package of the computer algebra system reduce. For running
redlog, there is thus a reduce license necessary. reduce is distributed by
two different providers on the basis of correspondingly different implementations
of Standard Lisp [29], which are called CSL and PSL. Detailed information on
obtaining reduce can be found on www.reduce-algebra.com.

The redlog website is located at www.redlog.eu. It provides various ser-
vices to the user community including

2This pragmatic treatment for the considered example has been suggested by A. Seidl at
the University of Passau.
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• up-to-date system documentation,

• regular system updates as both source tree and precompiled binaries for
various architectures.

• the online database remis containing redlog application examples and
literature on the system itself, its theoretical foundations, and its applica-
tions.

In the following subsections we address these items one by one.

4.1 Documentation

From the very beginning the redlog user manual had been written using the
GNU Texinfo system. This system was designed to produce from one source
printed output using TEX as well as an online documentation for the GNU info
system, which is also integrated into the Emacs editor.

Our current policy is to use the Texinfo sources to produce on the one hand
PDF for download and on the other hand an HTML version of the content for
online browsing. For the HTML version we have decided to produce one single
web page for the entire document. This allows use of the search facility of the
web browser to find the desired information.

The printed documentation for previous redlog releases had been published
as technical reports of the University of Passau [7, 10]. Users should be aware
that these manuals, the latest of which is now 8 years old, are considerably
out of date. The current PDF version on the web provides much more recent
documentation in the exactly the same format.

In order to allow users to “quickly-start” without having to read any manual
first, we provide one real quantifier elimination example online with a detailed
description and a screenshot. This example is exactly the one by Hong, discussed
in Section 2.

4.2 Updates

Until and including the current release reduce 3.8 in 2004, new versions of
reduce 3 used to appear at least every four years. We had considered it
sufficient at that time to simply synchronize redlog releases with releases of
reduce. According to this policy redlog 1.0 had been published on the web
as a supplement for reduce 3.6 in 1996, redlog 2.0 had been distributed as
part of reduce 3.7 in 1999, and redlog 3.0 has been distributed as part of
reduce 3.8 since 2004.

Recently there is a consensus in the developer community to publish new
reduce releases less frequently. The reason is that a new release actually refers
to a revision of the underlying Lisp system. This is an enormous effort for the
maintainers, which is not really necessary frequently anymore since the systems
have become sufficiently stable over the years. Certainly, reduce development
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is continuing. The system is maintained and regularly updated using the support
for patch files of the respective Lisp systems.

So the idea is to disconnect releases of reduce packages from releases of the
reduce system itself. Our work described here is one step into that direction.

In the download section of the redlog website there are, besides the source
tree, precompiled versions of the current redlog available for the two major re-
duce distributions: CSL-based and PSL-based. For CSL there is a distinction
between 32-bit architectures and 64-bit architectures. For PSL, which compiles
to native code, we support the most-requested architectures. Users of other ar-
chitectures are welcome to contact support@redlog.eu if they require support
for compilation of the sources.

The release numbers of the online updates of redlog are constructed from
the release dates in such a way that they become monotonic. For instance red-
log 3.070328 refers to the release of March 28, 2007. From redlog 3.061113
on, there is a function rlabout(), which displays a banner message including
the release number.

4.3 REMIS

We have discussed in the previous sections that over the years there have been
numerous redlog applications documented in the literature. Their number at
the time of writing this note is considerably larger than 100. The applications
cover eight different domains of computation. This domains are cited widely
and possibly reconsidered in follow-up publications. In that case, they are often
modified such that variants come into existence, possibly under the same name.

For the sake of reproducibility and coherent research we consider it crucial
to organize all this information in a central online database. This database is
called remis, i.e., redlog example management and information system. It is
accessible via a web frontend on the redlog homepage.

There are two types of entries in remis: computation examples and pub-
lications. With each computation example, we regularly store the following
information:

• links to citing papers in the database

• links to related papers in the database

• links to related examples in the database

• reduce source files for computing the examples.

With each publication we regularly store the following information:

• a paper classification, which we discuss in more detail below

• links to contained examples in the database

• links to related examples in the database
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Figure 1: remis result page for the search text differential

• bibliographical information

• links to other versions (preprint, final, etc.) in the database

• an external link to the most canonical online resource providing the paper
(DOI if existent)

• PDF full text to the extent permitted by copyright agreements.

The database design is quite flexible such that arbitrary extra information can
be, and in fact is, stored for certain papers and examples whenever this appears
reasonable.

remis features a keyword search as well as full text search. Figure 1 gives
an impression of the result page for the search text differential. The names of
the examples and of the paper are links to the detailed information pages.

Finally, the redlog website offers a comprehensive list of references, which is
consequently automatically generated from the remis database. It is organized
into four different categories of papers: system papers, applications, third-party
applications, and theoretical foundations.

5 Conclusions

In the first part, we have given an overview of the computer logic system red-
log, the currently available domains, and its applicability to questions related
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to differential equation. In the second part, we have discussed the services
available online on the redlog website for the user community. Our article
is intended to encourage and provide a starting point to researchers concerned
with differential equations to consider the integration of quantifier elimination
techniques into their set of mathematical tools. Then redlog could become a
valuable software tool for them as well.

Acknowledgments. The majority of the work discussed throughout this paper
is joint work with Andreas Dolzmann.
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