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ABSTRACT
Systemmodels based on Bayesian networks (BNs) are widely applied
in different areas. This paper facilitates the use of such models by
advancing the ranked nodes method (RNM) for constructing condi-
tional probability tables (CPTs) of BNs by expert elicitation. In RNM,
the CPT of a child node is generated using a function known as
the weight expression and weights of parent nodes that are elicited
from the expert. However, there is a lack of exact guidelines for
eliciting these parameters which complicates the use of RNM. To
mitigate this issue, this paper introduces a novel framework for sup-
porting the RNM parameter elicitation. First, the expert assesses the
two most probable states of the child node in scenarios that cor-
respond to extreme states of the parent nodes. Then, a feasible
weight expression and a feasible weight set are computationally
determined. Finally, the expert selects weight values from this set.
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1. Introduction

Bayesian networks (BNs) (e.g. Fenton and Neil 2013) are utilized in numerous system
models to represent uncertain knowledge and conduct reasoning under uncertainty. Their
application areas include, e.g. medical decision making (Hill et al. 2021; Constantinou
et al. 2015), risk and safetymanagement (Xia et al. 2017, 2018; Baraldi et al. 2015; Dahll and
Gran 2000), project management (Freire et al. 2018; Yet et al. 2016; Perkusich et al. 2015),
maintenance, policy and military planning (Mancuso et al. 2021; Barons, Wright, and
Smith 2017; Barreto and Costa 2019), software defect prediction (Fenton et al. 2008), and
adaptive student testing (Plajner and Vomlel 2020). A BN describes a system as a directed
acyclic graph with nodes representing random variables and arcs indicating their direct
dependencies. The dependencies are quantified as conditional probabilities. With suffi-
cient data available, both the graph structure and the conditional probabilities of a BN
can be determined with data-fitting approaches (Scanagatta, Salmerón, and Stella 2019;
Alsuwat et al. 2020; Neapolitan 2004). Alternatively, the whole BN or some parts of it can
be constructed by eliciting information from domain experts (Kjærulff and Madsen 2013;
Fenton and Neil 2013), which is a common practice in the construction of various types
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of system models (Pai and Gaonkar 2020; Zhu et al. 2020; Jin et al. 2019; Brunelli 2018).
The graph and the probabilities of the BN encode together the joint probability distribu-
tion of the nodes. This property enables one to make fast probabilistic queries about the
nodes. The results of the queries are communicated well by the visual graph. These fea-
tures of BNs make them useful systemmodels in many probabilistic domains. In addition,
influence diagrams (e.g. Howard and Matheson 2005), that are the decision theoretical
extension of BNs, offer further means to support decision making under uncertainty in
systemic environments (e.g. Virtanen, Raivio, and Hämäläinen 1999, 2004).

In many practical applications, BNs contain specific types of nodes called ranked nodes
(Fenton, Neil, and Caballero 2007). They represent through discrete ordinal scales quan-
tities that can be considered continuous but may lack well-established interval or ratio
scales. Like with any nodes having discrete scales, the dependencies between ranked nodes
are quantified in conditional probability tables (CPTs). A CPT defines the probability dis-
tributions of the descendant, the child node, for all combinations of states of its direct
predecessors, the parent nodes. Because the measurement scales of ranked nodes are often
subjective, e.g. {low, medium, high}, the construction of their CPTs is usually based on
expert elicitation. However, as a single CPT may consist of dozens or even hundreds of
elements, it is often impossible to have the expert assess all the required probabilities due
to, e.g. cognitive strain or scarcity of time (Druzdel and van der Gaag 2000; Monti and
Carenini 2000). To deal with this challenge, Fenton, Neil, and Caballero (2007) have devel-
oped the ranked nodes method (RNM) in which the CPT is generated based on a small
number of parameters elicited from the expert. These parameters are (1) a function called
the weight expression that defines the basic rule by which the parent nodes affect the child
node, (2) weights of the parent nodes that represent their relative strengths of influence on
the child node, and (3) a variance parameter that describes how precisely the state of the
child node is known if the states of the parent nodes are known. There are four alternatives
for theweight expression in RNM.Thewhole CPT can be constructed by using one of them
together with single values of the weights and the variance parameter. It is also possible to
divide the CPT into parts based on the states of selected parent nodes and generate each
part with a part-specific weight expression and part-specific values of the weights and the
variance parameter. Constructing the CPT in parts is referred to as the use of a partitioned
weight expression.

RNM is implemented in AgenaRisk software (Agena Ltd 2021) through which the
method has been utilized in many BN system models (e.g. Freire et al. 2018; Fenton
et al. 2008; Kaya and Yet 2019). Research on the methodological properties of RNM has
also been conducted. Fenton, Neil, and Caballero (2007) report on the benefits of RNM
over the manual construction of a CPT, i.e. assessing each CPT element individually, in
a case study concerning reliability evaluation of electronic components. While the man-
ual construction was laborious and led to the CPT being probabilistically inconsistent,
RNM enabled the construction of a consistent CPT with much smaller elicitation effort
from the experts. Mkrtchyan, Podofillini, and Dang (2016) investigate the ability of CPTs
constructed with RNM to portray probabilistic relationships typical in human reliabil-
ity analysis. Laitila and Virtanen (2020) elaborate the theoretical principle of RNM and
explore how well CPTs in various real-life BN-based system models can be reproduced
with RNM. They have also established elicitation practices concerning the application of
RNM to nodes with continuous scales (Laitila and Virtanen 2016, 2022). Noguchi, Fenton,
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and Neil (2019) study the capability of RNM to represent the explaining away property of
binary variables.

Despite the easy deployment with AgenaRisk and the methodological insight pro-
vided by the aforementioned studies, the effective use of RNM suffers from the lack of
exact guidelines for the elicitation of the parameters from a domain expert (Mkrtchyan,
Podofillini, and Dang 2016; Laitila and Virtanen 2016). This shortcoming can result in
a cumbersome and time-consuming elicitation process in which suitable values for the
parameters are sought through trial and error (Laitila and Virtanen 2016). For a subject-
matter expert ignorant of the technicalities of RNM, it may even, incorrectly, appear
impossible to construct a desired type of CPT by using the method. The practices pre-
sented by Laitila and Virtanen (2016, 2022) ease the elicitation of RNM parameters, but
they are applicable only for ranked nodes defined through discretized continuous scales.

This paper brings further relief to the elicitation challenges of RNM by presenting a
new elicitation framework designed for ranked nodes whose ordinal scales are defined
by subjective labels. The framework consists of two elicitation procedures called “initial”
and “supplementary”, and a computational procedure. In the initial elicitation procedure,
a domain expert makes mode pair assessments, i.e. assesses two most probable states of
the child node, in scenarios that correspond to extreme combinations of states of the par-
ent nodes. This is followed by the computational procedure that diagnoses whether any
of the four alternative weight expressions of RNM is feasible with regard to the mode pair
assessments. A weight expression is feasible if, with some weights, it yields for the extreme
scenarios such probability distributions of the child node that the twomost probable states
match the mode pair statements of the expert. If a weight expression is feasible, the pro-
cedure produces also the set of feasible weights, i.e. all the values of weights with which
the probability distributions of the child node in the extreme scenarios become compat-
ible with the mode pair assessments. If a weight expression is not feasible, the outcome
of the procedure is information on how the mode pair assessment should change for the
infeasibility to become resolved. With a feasible weight expression, point values for the
weights are selected from the feasible weight set with the supplementary elicitation proce-
dure.Here, the expert decides the point value of a singleweight by reviewing the probability
distribution of the child node in a single extreme scenario. A value for the variance param-
eter is chosen in the same procedure. The framework covers two ways of using RNM. The
primary way is that the whole CPT of the child node is generated with a single weight
expression as well as with single values of the weights and the variance parameter. The sec-
ondary way is constructing the CPT in parts with a partitioned weight expression. A need
to apply a partitioned weight expression is indicated by the outcomes of the procedures of
the framework.

The elicitation framework facilitates the construction of BN system models with RNM
in multiple ways. By utilizing the initial elicitation procedure and the computational pro-
cedure, a feasible weight expression and the related set of feasible weights are found with
low elicitation effort and without deep technical understanding of RNM.With an available
MATLAB (The MathWorks, Inc 2019) implementation of the computational procedure
(Laitila 2021), the feasible weight expression and the feasible weight set are solved in a
typical RNM application in a matter of seconds given the mode pair assessments con-
cerning the extreme scenarios. Thus, with the expert providing only ordinal probabilistic
assessments to well-structured elicitation questions, the feasible weight expression and
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the set of feasible weights are readily discovered. The feasible weight set eases the selec-
tion of point values for the weights by considerably narrowing down their ranges. In
addition, with the supplementary elicitation procedure, the weights receive transparent
interpretations as the point value of each weight is decided based on a single extreme sce-
nario. These interpretations help to justify the selected point values. The execution of the
supplementary elicitation procedure is facilitated by an accessible MATLAB implementa-
tion (Laitila 2021). The framework encompasses the use of a partitioned weight expression
through extended versions of the aforementioned procedures and implementations. They
address the application of a partitionedweight expressionwith a level of detail lacking from
the existing literature on RNM.

The paper is organized as follows. Section 2 provides an overview and a comparison of
CPT constructionmethods that are complementary to RNM. Section 3 briefly presents the
concepts of ranked nodes and RNM. Furthermore, the challenges related to the parameter
eliciation of RNM are discussed. Section 4 presents the steps and the procedures of the
new elicitation framework when using a single weight expression. In turn, Section 5 dis-
cusses the use of the framework with a partitioned weight expression. The application of
the framework is demonstrated throughout these sections with an example BN. Finally,
Section 6 provides concluding remarks and discusses topics for further research. Addi-
tional results are presented in the supplementary material, with references to themmarked
in the paper by “S.#”.

2. Overview of parametric methods for eliciting conditional probability
tables

Defining CPTs by expert elicitation is typically the most challenging part of the construc-
tion of a BN (Renooij 2001; Druzdel and van der Gaag 2000). The size of a CPT grows
exponentially with the number of parent nodes. Therefore, the number of probabilities to
be specified even for a single CPT may rise to tens or hundreds. Assessing so many proba-
bilities coherently and without biases can be virtually impossible for a domain expert due
to mental fatigue or lack of time. Conventional probability elicitation techniques, such as
probability wheel or reference lottery, may be used to mitigate cognitive biases when the
number of required assessments is small. However, they are generally considered to be
too time-consuming for the construction of CPTs (Renooij 2001; Druzdel and van der
Gaag 2000).

To deal with the elicitation challenge of CPTs, their construction is often car-
ried out through methods referred to as parametric probability distributions (Druzdel
and van der Gaag 2000), canonical distributions (Russell and Norvig 2003), canonical
models (Pearl 1988), and filling-up methods (Mkrtchyan, Podofillini, and Dang 2016;
Rohmer 2020). These methods enable the construction of a CPT through parameters that
are assessed by the expert and whose number is significantly smaller than the number of
elements in the CPT. Table 1 lists well-known parametric methods along with information
on their features. These methods are next briefly discussed and compared to RNM.

Røed et al. (2009) have developed a method that shares some key characteristics with
RNM.Also in theirmethod, the construction of a CPT is based on a functional relationship
between the parents and the child node. Similarly to RNM, the relationship is encoded by
weights assigned for the parents and a parameter that defines the level of dispersion of
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Table 1. Features of parametric methods for construction of CPTs concerning non-binary nodes.

Parameters assessed

Method N | n,m∗ N | n = 3,m = 5 Probabilities
Weights of
parent nodes

Dispersion
parameter Other

Optional number of
parameters to use

Hassall et al. n 3 X
RNM∗∗ n + 1 4 X X X
InterBeta∗∗ 2(m − 1) + n 11 X X X X
Røed et al. (m − 1)n 12 X X
WSA m2 − m + n 23 X X
EBBN m2 − m + 2n 26 X
Likelihood (n + 2)m + 1 26 X X
Func. interpol. 2n(m − 1) 32 X
Noisy-MAX n(m − 1)2 48 X
Cain∗∗∗ n(m − 1)2 48 X
Chin et al. n(m2 − m) 60 X
∗N | n,m is the number of parameters elicited when a child node and its n parents havem states each.
∗∗The numbers of parameters correspond to default forms of use of the methods.
∗∗∗The method does not provide a computational routine for the construction of a CPT when the child node has more than three states, i.e.m > 3.
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the probability distributions. However, whereas in RNM there are four alternative weight
expressions to choose from, the method of Røed et al. is limited to a single function. This
function is similar to oneweight expression of RNM that involves takingweighted averages
of the states of the parent nodes. Hassall et al. (2019) have also proposed a method in
which the conditional probability distributions of the child node are calculated utilizing
weighted averages of the parent states.However, themethodomits the expert evaluating the
dispersion of the distributions. Instead, the dispersion levels are dictated by the numbers of
states of the nodes and the weights assigned for the parents. Related to this feature, if a child
node has an odd number of states m, the middle state necessarily obtains the probability
1/m for any combination of the parent states. In this regard, themethod is likely to produce
CPTs that require more manual editing than CPTs constructed with RNM.

The EBBN (Elicitation for Bayesian Belief Networks) method (Wisse et al. 2008), the
weighted sum algorithm (WSA) (Das 2004) and the Cain calculator (Cain 2001) are based
on the interpolation of conditional probability distributions. These methods begin with
the expert assessing the conditional probability distributions of the child node for so-called
anchor combinations of states of the parent nodes. The remaining conditional probability
distributions of the CPT are then derived by interpolating between the anchor distribu-
tions. Both the anchor state combinations and the interpolation techniques vary between
themethods. Like RNM, thesemethods involve the parent nodes obtainingweights reflect-
ing their strength of influence on the child node.However, contrary toRNM, the dispersion
of the derived distributions is not user-controlled, but emulates those of the anchor
distributions.

The functional interpolation method (Podofillini, Mkrtchyan, and Dang 2014) and the
InterBeta method (Barons, Mascaro, and Hanea 2021) are also based on utilizing interpo-
lation to derive missing probability distributions of a CPT from method-specific anchor
distributions assessed by the expert. However, the probabilities of the anchor distributions
are not interpolated directly. In the functional interpolation method, each anchor distri-
bution is approximated by a normal distribution so that best-fit estimates of the mean and
variance parameters are determined. The missing probability distributions of the CPT are
calculated through normal distributions whose mean and variance parameters are inter-
polations of the estimates concerning the anchor distributions. The InterBeta method
involves a similar principle except that Beta distributions are used instead of normal dis-
tributions. The InterBeta method also provides the expert an option to assign weights to
parent nodes, their states, or their state combinations. Therefore, the method has mark X
in the last column of Table 1. By increasing the details of weighting, a greater range of prob-
abilistic relationships of the nodes can be portrayed. The alternative weighting options of
InterBeta are in that regard similar to the use of partitioned weight expressions in RNM.

The noisy-MAX method (Diez 1993; Srinivas 1993) is designed for settings in which
parent nodes represent individual causes for a common effect portrayed by the child node.
The expert must specify CPT entries that express the individual ability of each cause to
bring about the effect. The rest of the CPT is calculated using the assumption that, in the
presence of several causes, each one affects the child node independently of the others.
Noisy-MAX handles nodes with multiple ordinal states (i.e. multiple states on an ordi-
nal scale) whereby it is a methodological extension of the noisy-OR method (Pearl 1988)
designed for binary nodes. Fenton,Neil, andCaballero (2007) note that RNMallows to por-
tray a greater range of probabilistic relationships than noisy-MAX. In addition, Noguchi,
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Fenton, andNeil (2019) show thatwithRNM, the explaining away property of binary nodes
can be represented more extensively than with noisy-OR.

Kemp-Benedict (2008) has developed the likelihoodmethod where different state com-
binations of the parent nodes are seen as moving the probability distribution of the child
node away from a “typical distribution” in a systematic way. The typical distribution is
assessed by the expert and represents the probability distribution of the child node in the
absence of information about the parents. The conditional probability distributions in the
CPT are obtained by multiplying the typical distribution by likelihood terms. These terms
are composed of weighting factors that the expert has selected for the states of the child
node and the parents. No detailed guideline for the elicitation of the weighting factors is
presented by Kemp-Benedict (2008). Hansson and Sjökvist (2013) provide some instruc-
tion and note that themethod becomes very complex if the child node has more than three
states. With RNM, exact guidelines for the parameter elicitation exist for ranked nodes
formed by discretzing continuous scales (Laitila and Virtanen 2016, 2022). Furthermore,
this paper presents new guidance concerning ranked nodes with subjective labeled states.
Also, contrary to the likelihood method, the number of parameters to be elicited in RNM
does not generally increase with the number of states of the nodes.

A method by Chin et al. (2009) utilizes the methodology of the analytic hierarchy pro-
cess (AHP) (Saaty 2000) in the CPT construction. The method begins with the expert
performing pairwise comparisons of the probabilities of the states of the child node given
the state of an individual parent node. These comparisons are then used to calculate condi-
tional probability distributions of the child node regarding single parent nodes. By taking
products of these distributions, the final probability distributions of the CPT are obtained.
As opposed to this method, the existing elicitation guidelines for RNM allow the expert to
evaluate the probabilistic behavior of the child node for specified state combinations of all
the parent nodes. In this regard, the elicitation concerning RNM provides a clear way for
the expert to consider the joint effect of the parent nodes on the child node.

To help compare the required elicitation effort of the methods discussed above, Table 1
presents how many quantitative expert assessments they require when a child node has n
parent nodes and all the nodes have m states. Formulas applicable to any values of n and
m are displayed along with the numerical values specific for the case n = 3 andm = 5. In
this case, the CPT of the child node consists of mn+1 = 625 elements whereby its direct
assessment would require the expert to specifymn(m − 1) = 500 probabilities. Compared
to this number, all the discussed methods drastically reduce the number of quantitative
assessments required from the expert. Moreover, Table 1 indicates that RNM is among
the best ones with regard to this reduction capability. Concerning the Cain calculator, it
should be noted that the method does not provide a computational routine for the CPT
construction when the child has more than three states (Cain 2001). Furthermore, regard-
ing RNMand the InterBetamethod, the numbers in Table 1 correspond to the default ways
of using the methods. As discussed above, they both provide the option of specifying more
parameters to have CPTs portraying a greater range of probabilistic relationships.

Based on the above considerations, RNMenables quick quantification of CPTs for verifi-
cation and their systematic refinement without excessivemanual editing of individual CPT
elements. The ability to generateCPTs quickly fitswell alsowith the utilization of sensitivity
analysis in the construction of a BN.With sensitivity analysis, see, e.g. [66], one can identify
the CPT elements to which the behavior of the BN shows highest sensitivity. Attention can
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then be focused on refining these probabilities. Besides the small number of parameters to
be elicited, a favorable feature of RNM is that the alternative weight expressions can help
experts to understand and describe the probabilistic relationships between nodes (Fen-
ton, Neil, and Caballero 2007). Furthermore, RNM is implemented in AgenaRisk software
(Agena Ltd 2021), which supports its easy deployment. Of the other methods discussed,
only noisy-OR and noisy-MAX have implementations in existing well-known BN software
like GeNIe (BayesFusion, LLC 2021), Netica (Norsys Software Corp. 2021), and Hugin
(Hugin Expert A/S 2021). For the likelihood method and the method of Hassall et al.,
online implementations are available (Luedeling and Goehring 2022; Hassall 2019). How-
ever, these implementations are not associated with a wide range of functionalities of BN
analysis, contrary to the aforementioned software.

To recapitulate, the methodological principle of RNM is complementary to those of
other parametricmethods. The alternative weight expressions used in RNMgive the expert
both flexibility and cognitive support for describing probabilistic relationships of nodes.
In addition, the small default number of parameters to be elicited, the option to specify
more parameters for depicting complex probabilistic relationships, and the existing soft-
ware implementation are favorable features that promote the use of RNM for constructing
BN-based system models in various application fields.

3. Ranked nodesmethod (RNM)

3.1. Ranked nodes

A ranked node is a discrete random variable whose states are expressed with an ordinal
scale such that each state can be considered to represent a range of values of a continu-
ous quantity. If there is no well-established continuous scale to measure the quantity, the
ordinal scale of the ranked node consists of descriptive labels that may be subjective. If a
well-established continuous scale exists, the states of the ranked node can be defined by
discretizing the continuous scale.

Figure 1 displays an example BN representing how the success level of performing a
givenwork assignment depends on the skill and concentration levels of an employee as well
as on the challenge level of the assignment. All the nodes in the BN are ranked nodes. Fur-
thermore, as all the quantities represented by the nodes lack well-established continuous
scales, the ordinal scales of the nodes consist of descriptive labels.

3.2. Functioning of RNM

Let there be the parent nodesX1, . . . ,Xn and the child nodeXC defined on discrete ordinal
scales. Furthermore, let there be random variables χ1, . . . ,χn defined on a unit scale [0, 1]
and a random variable χC that depends on them according to a regression model

χC = f (χ1, . . . ,χn,w) + e, e ∼ N(0, σ 2), (1)

where the regression function f (·) is called a weight expression, the related regression coef-
ficients w = (w1, . . . ,wn) are called weights, and e is an error term that follows a normal
distributionwith a zeromean and a variance σ 2. The functioning of RNM is based on asso-
ciatingX1, . . . ,Xn,XC withχ1, . . . ,χn,χC so that knowingXi to be in a given state xi on the
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Figure 1. Example BN.

ordinal scale corresponds to knowing χi to lie within a specific subinterval [ai, bi], called
a state interval, on the unit scale. The state intervals associated with consecutive states of a
node are also consecutive, of equal width, and cover up the whole unit scale. Moreover, the
order of the state intervals with each node must be defined so that the direction of influ-
ence of the parent nodes on the child node becomes correctly portrayed. As an example,
Figure 1 displays the state intervals associated with the states of the nodes of the example
BN. The state intervals indicate that high levels of skill and concentration and low levels of
challenge all promote high levels of success.

A given conditional probability P(XC = xC |X1 = x1, . . . ,Xn = xn), i.e. an element of
the CPT of XC, is computed in RNM according to

P(XC = xC |X1 = x1, . . . ,Xn = xn)

= P(χC ∈ [aC, bC] | χ1 ∈ [a1, b1], . . . ,χn ∈ [an, bn],χC ∈ [0, 1]), (2)

where the right-hand side of the equation is calculated based on Equation (1). Note that
while χC ∈ (−∞,∞) according to the regression model (1), the condition χC ∈ [0, 1] is
included in Equation (2). In practice, the computation of Equation (2) involves taking
equidistant sample points from the state intervals [ai, bi], i = 1, . . . , n, and integrating nor-
mal distributions truncated to [0, 1] over the state interval [aC, bC]. The computational
process is explained in detail by Laitila and Virtanen (2020).

The parameters that are elicited from the expert are the weight expression f (·), the
related weights w, and the variance parameter σ 2. Being the regression function in
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Equation (1), the weight expression f can be interpreted as the basic rule by which the par-
ent nodes affect the child node. There are four alternative weight expressions: WMEAN,
WMIN, WMAX, and MIXMINMAX. With given sample points of χ1, . . . ,χn, WMEAN
yields their weighted average. MIXMINMAX produces a weighted average of their mini-
mum and maximum. WMIN and WMAX result in values that are below and above the
average of the sample points, respectively. The functional forms of the weight expres-
sions are presented in Section S.1 (supplementary material). The basic conditions that the
weights of the different weight expressions must fulfill are defined by so-called preliminary
sets of weightsWf as follows:

WWMEAN =
{

(w1, . . . ,wn) ∈ R
n |w1, . . . ,wn ∈ [0, 1],

n∑
i=1

wi = 1

}
, (3a)

WWMIN = {(w1, . . . ,wn) ∈ R
n |w1, . . . ,wn ≥ 1}, (3b)

WWMAX = {(w1, . . . ,wn) ∈ R
n |w1, . . . ,wn ≥ 1}, (3c)

WMIXMINMAX = {(wMIN ,wMAX) ∈ R
2 |wMAX ∈ [0, 1],wMIN = 1 − wMAX}. (3d)

The variance parameter σ 2 defines how dispersed the conditional probability distributions
of the child node are. It reflects how precisely the state of the child node is known given
the states of the parent nodes.

Instead of generating the whole CPT with a single weight expression and single values
of the weights and the variance parameter, the CPT may also be generated in parts based
on the states of selected parent nodes. Then, each part of the CPT is generated with fixed
part-specific values of the RNM parameters that are elicited from the expert separately for
each part. This manner of using RNM is called a partitioned weight expression.

3.3. Challenges with elicitation of parameters of RNM

Concerning ranked nodes defined through subjective labeled states, there are no detailed
guidelines for the elicitation of the RNM parameters in the literature. Therefore, the elici-
tation is likely to be performed through trial and error. That is, the CPT of the child node
is repeatedly generated with alternative parameter values until it is considered to repre-
sent the views of the expert with sufficient accuracy. However, without proper technical
understanding of RNM, the trial-and-error process easily reduces to a random search of
the parameter values which makes the elicitation cumbersome.

For the elicitation of the weight expression, some instruction is presented by Fenton,
Neil, and Caballero (2007). According to it, the elicitation can be supported by having the
expert assess the mode of the child node for different combinations of extreme states of the
parent nodes. Table 2 presents these combinations for the example BN alongwith examples
of assessments of the mode of Success Level marked with the number 1 in each row. The
idea is now that a suitable weight expression is deduced based on the mode assessments of
the expert. However, no exact guideline for the deduction is presented in Fenton, Neil, and
Caballero (2007). Therefore, technical insight on RNM is required in order to conclude
whether some weight expression is suitable or whether a partitioned weight expression
is needed. For example, the probabilistic behavior of Success Level indicated by the mode
statements in Table 2 is representable with bothWMIN andMIXMINMAX. However, this
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Table 2. Expert assessments of the mode of Success Level for the combinations of the extreme states of
the parent nodes.

Success Level

Row Scenario Skill Level Concentration Level Challenge Level Very High High Medium Low Very Low

1 – Very High Very High Very Low 1
2 xD,1 Very Low Very High Very Low 2 1
3 xD,2 Very High Very Low Very Low 2 1
4 xD,3 Very High Very High Very High 1 2
5 xR,1 Very High Very Low Very High 1 2
6 xR,2 Very Low Very High Very High 1 2
7 xR,3 Very Low Very Low Very Low 2 1
8 – Very Low Very Low Very High 1

Note: Green and red highlight the states of the parent nodes associated with the state intervals (0.8, 1] and [0, 0.2], respec-
tively. In each row, the mode assessment of the expert is indicated by the number 1. In Rows 2–7, the assessment of the
expert on the second most probable state of Success Level is indicated by the number 2.

is not straightforward to realize if one, e.g. only knows the verbal descriptions of the weight
expressions but lacks deeper understanding of the technical functioning of RNM.

As there are no elicitation guidelines for the weights and the variance parameter, their
values are decided through trial and error. Then, the main challenge is that without proper
instruction, it may not be easy to distinguish and comprehend the effect of individual
weights on the CPT (Laitila and Virtanen 2016). Moreover, especially with f = WMIN
and f = WMAX, the preliminary weight set Wf (Equations (3b) and (3c)) defines a vast
range for the search of suitable weight values.

Besides the above problems regarding the parameter elicitation, the use of RNMthrough
a partitioned weight expression is hampered by the lack of instructions for deciding
whether aCPT should be generated in parts and how such a partition should be established.
This shortcoming is noted by Mkrtchyan, Podofillini, and Dang (2016) when they explore
the applicability of RNM for portraying probabilistic relationships typical in human reli-
ability analysis. The lack of guidance for the use of a partitioned weight expression can
increase the burden of the trial and error practice in the CPT construction. As a result,
RNMmay be discarded as a too cumbersome way to construct required CPTs.

Another elicitation challenge is specific to a typical application setting of RNM in which
all the parent nodes and the child node have the same number of states. In this setting,
the probabilistic relationship between the nodes can be represented with RNM only if the
nodes are elementarily RNM-compatible (Laitila and Virtanen 2020). A child node and
its parent nodes are called elementarily RNM-compatible if (1) the nodes have the same
number of states and (2) the states of each node can be sorted so that when the parent
nodes are in states of equal rank, the mode of the child node is the state with the same
rank. If one fails to realize that the nodes are not elementarily RNM-compatible, time may
be spent in vain for the elicitation of suitable parameters even though there actually exists
none. For example, suppose that during the elicitation of the weights for the example BN,
the expert evaluates a scenario in which all the parent nodes are in the stateMedium. If she
deems that the mode of Success Level is anything else thanMedium, there are no values of
the parameters that can yield a CPT portraying her opinion correctly.

The challenges discussed above are alleviated by Laitila and Virtanen (2016, 2022) with
approaches concerning the application of RNM to ranked nodes formed by discretizing
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continuous scales into ordinal scales. However, if the ranked nodes lack such continuous
scales, the approaches cannot be used because their elicitation means are based on asso-
ciating points on the continuous scales of the nodes with points on the unit scale used in
RNM.

4. Elicitation framework for parameters of RNM

In order to mitigate the challenges discussed in the previous section, a new framework for
the elicitation of the RNM parameters is presented. It is designed for situations in which a
child node and its parent nodes all have the same number of states. This is often the case
in real-world applications of RNM (e.g. Xia et al. 2017, 2018; Baraldi et al. 2015; Freire
et al. 2018; Perkusich et al. 2015; Barreto and Costa 2019; Fenton et al. 2008; Kaya and
Yet 2019; Xue et al. 2016). The framework can be applied to nodes with unequal number of
states with means described by Laitila and Virtanen (2016). For example, one may initially
define an equal number of states for all the nodes and construct a CPTwith the framework.
After that, states of selected nodes are either divided or merged and the CPT is updated in
accordance to the views of the expert.

The steps of the framework are displayed in Figure 2. The starting point is that there
is a BN fragment, i.e. a piece of a BN, consisting of a child node XC and its parent nodes
X1, . . . ,Xnwhich all are rankednodes andhavem of states. The ending point is that suitable
parameters have been determined, and a CPT is generated with them for further review.
Steps 1, 2, and 4 require probabilistic assessments of the expert and they are highlighted
in Figure 2 with grey boxes. Step 3 is a computational procedure that does not require
involvement of the expert. The primary way of using RNM in the framework is that the
entire CPT is generated with a single weight expression as well as with single values of the
weights and the variance parameter. If no single values of the parameters are suitable, a
partitioned weight expression is applied.

The steps of the framework with regard to the use of a single weight expression are next
presented. Throughout the presentation, the example BN displayed in Figure 1 is used to
demonstrate the execution of the steps in practice. The application of the framework with
a partitioned weight expression is discussed in Section 5 in the same way. While the BN in
Figure 1 is used as an illustrative example, the steps would be applied in a similar manner
to any other instance of a child node and its parents being ranked nodes with an equal
number of ordinal states.

4.1. Step 1: check of elementary RNM-compatibility of nodes

In Step 1, the elementary RNM-compatibility of the nodes is checked. The expert assesses
themode of the child node in them scenarios in which all the parent nodes are in the states
of equal rank on their ordinal scales. For example, with the BN in Figure 1, themode assess-
ment is required form = 5 scenarios of which two correspond to Rows 1 and 8 of Table 2.
The corresponding mode assessments presented in the table now indicate the elementary
RNM-compatibility of the nodes.

If the nodes are not elementarily RNM-compatible, one should try to update them
accordingly. The first means is to try to define for the nodes new ordinal scales with which
the compatibility is achieved. In addition, it can be considered whether some of the nodes
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Figure 2. Steps of the elicitation framework for RNM. The steps requiring involvement of the expert are
shaded with grey.

could be replaced by newnodes representing slightly different quantities for which the con-
struction of suitable ordinal scales is easier. If performing such measures is not possible or
does not help, the probabilistic interaction between the nodes cannot be portrayed with a
CPT generated with RNM.

4.2. Step 2: initial elicitation procedure

Step 2 is an initial elicitation procedure in which the expert assesses a so-called mode pair,
i.e. the most probable state and the second most probable state of the child node, in 2n
specific scenarios. The first half of the scenarios corresponds to the type represented by
Rows 2–4 of Table 2. These scenarios are called “D-scenarios” referring to the idea that a
single parent node has “dropped” to its lowest state on the ordinal scale (the state associated
with the subinterval [0, 1/m] on the unit scale) while the others remain in their highest
states (the states associated with the subinterval [(m − 1)/m, 1] on the unit scale). The
second half of the scenarios corresponds to the type displayed in Rows 5–7 of Table 2.
These scenarios are called “R-scenarios” as one parent node can be thought to have “risen”
to its highest state while the others remain in their lowest states.

Rows 2–7 of Table 2 display examples of mode pair statements concerning the D- and
R-scenarios. In the rows, numbers 1 and 2 indicate the expert views of themost and second
most probable states of Success Level.

A conditional probability distribution generated with RNM always has the two most
probable states of the child node being consecutive on the ordinal scale (Laitila and Vir-
tanen 2021). Therefore, in order for RNM to be suitable for representing the views of the
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expert, each of the mode pair statements concerning the D- and R-scenarios must consist
of two consecutive states of the child node. The mode pair statements depicted in Table 2
are suitable from this point of view.

If there are mode pair statements that do not consist of two consecutive states of the
child node, one should try to redefine the nodes by using similar means as described in
the end of Section 4.1. However, in such a case, the execution of the framework has to be
started again from Step 1.

4.3. Step 3: computational procedure for determining feasible weight expression
and set of feasible weights

In Step 3, a computational procedure is used to check the feasibility of weight expressions
with regard to the mode pair statements. If the procedure finds a weight expression to be
feasible, it also determines the related set of feasible weights for it. The feasibility of the
weight expressions and the weights are defined as follows.

Definition 4.1: Let there be the mode pair statements of the expert for the D- and
R-scenarios. If there exist a weight expression f andweightsw ∈ Wf with which the proba-
bility distributions generated for theD- andR-scenarios become compatible with themode
pair statements of the expert, then f and w are said to be feasible with regard to the mode
pair statements.

The computational procedure consists of two phases. In Phase 1, the mode pair state-
ments of the expert are used to form so-called “elicitation weight intervals” for the weights
of each weight expression. In Phase 2, the feasibility of the weight expressions and the
related sets of feasible weights are determined by studying the elicitation weight inter-
vals with regard to feasibility conditions specific to each weight expression. The phases
are explained below more specifically. Technical details of Phases 1 and 2 are presented
in Sections S.2 and S.3 (supplementary material). A MATLAB implementation of the
computational procedure is also available (Laitila 2021).

4.3.1. Phase 1: determination of elicitation weight intervals based onmode pair
statements
Let xD,i denote the ithD-scenario, i.e. a scenario in which the parent nodeXi is in its lowest
state and the other parent nodes are in their highest states. Correspondingly, let xR,i denote
the ith R-scenario with pD,i and pR,i designating the mode pair statements concerning xD,i
and xR,i. Referring to the example BN, if Skill Level, Concentration Level, and Challenge
Level are represented by X1, X2, and X3, Row 2 of Table 2 depicts the scenario xD,1 =
(Very Low,Very High, Very Low) and the mode pair statement pD,1 = (Medium,High).
The other D- and R-scenarios are also presented in the table.

Depending on theweight expression, either themode pair statement pD,i or pR,i, or both,
is used to form an elicitationweight interval for theweightwi. In the case ofWMEAN, both
pD,i and pR,i yield the intervals [wD

i ,w
D
i ] and [wR

i ,w
R
i ] for wi, respectively. With WMIN,

pD,i produces the interval [wD
i ,w

D
i ] for wi but the mode pair statements concerning the

R-scenarios do not provide any intervals. On the other hand, with WMAX, the interval
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Table 3. Elicitation weight intervals determined based on the mode pair statements in Table 1.

Mode pair
statement WMEAN WMIN WMAX MIXMINMAX

pD,1 [wD
1 ,w

D
1 ] = [0.38, 0.50] [wD

1 ,w
D
1 ] = [1.2, 2.0] – [wD,1

MAX ,w
D,1
MAX ] = [0.48, 0.60]

pR,1 [wR
1,w

R
1] = [0.14, 0.25] – [wR

1,w
R
1] = [0.29, 0.67] [wR,1

MAX ,w
R,1
MAX ] = [0.17, 0.29]

pD,2 [wD
2 ,w

D
2 ] = [0.38, 0.50] [wD

2 ,w
D
2 ] = [1.2, 2.0] – [wD,2

MAX ,w
D,2
MAX ] = [0.48, 0.60]

pR,2 [wR
2,w

R
2] = [0.14, 0.25] – [wR

2,w
R
2] = [0.29, 0.67] [wR,2

MAX ,w
R,2
MAX ] = [0.17, 0.29]

pD,3 [wD
3 ,w

D
3 ] = [0.50, 0.63] [wD

3 ,w
D
3 ] = [2.0, 3.33] – [wD,3

MAX ,w
D,3
MAX ] = [0.36, 0.48]

pR,3 [wR
3,w

R
3] = [0.25, 0.38] – [wR

3,w
R
3] = [0.67, 1.2] [wR,3

MAX ,w
R,3
MAX ] = [0.29, 0.41]

[wR
i ,w

R
i ] for wi is formed through pR,i but the mode pair statements concerning the D-

scenarios do not result in any intervals. In the case of MIXMINMAX, both pD,i and pR,i
yield the intervals [wD,i

MAX ,w
D,i
MAX] and [w

R,i
MAX ,w

R,i
MAX] for the weightwMAX , respectively. As

an illustration, Table 3 presents the elicitation weight intervals implied by the mode pair
statements displayed in Table 2.

The construction of the elicitation weight interval [w∗
i ,w

∗
i ] (∗ = D or ∗ = R) based on

the mode pair statement p∗,i originates from a feature of RNM that in the scenario x∗,i,
wi is generally the only weight that defines the compatibility of the conditional probability
distribution P(XC | x∗,i) with the mode pair statement p∗,i. The technical explanation of
this feature is presented in Section S.2 (supplementary material). Concerning the feature,
the interval [w∗

i ,w
∗
i ] contains all the values ofwi by which P(XC | x∗,i) becomes compatible

with p∗,i. Especially, when wi = w∗
i or wi = w∗

i , either (1) the states of XC specified in p∗,i
are together itsmost probable states with equal probabilities or (2) themode ofXC specified
in p∗,i is unique and the second most probable state specified in p∗,i has an equal proba-
bility with the third most probable state of XC. This property of [w∗

i ,w
∗
i ] generally holds

independent of the individual values of the other weightswj – as long as all the weights as a
whole belong to the set of preliminaryweightsWf defined in Equations (3a)–(3d). Thereby,
it provides for the weight wi a clear interpretation regarding the probabilistic behavior of
the child node.

To exemplify the above property of the elicitation weight intervals, consider the interval
[wD

1 ,w
D
1 ] = [1.2, 2.0] related toWMIN inTable 3. Now, Figure 3(a) displays the probability

distribution of the scenario xD,1 that WMIN yields with any w = (w1,w2,w3) ∈ WWMIN

such that w1 = wD
1 = 1.2, together with the variance parameter σ 2 = 0.01. The states

Medium and High of Success Level have equal probabilities and they are together the most
probable states. The probability distribution in the figure represents an extreme example
of a distribution still compatible with the mode pair statement pD,1 = (Medium,High) dis-
played in Row 2 of Table 2. In turn, Figure 3(b) illustrates the probability distribution of the
scenario xD,1 obtained by using anyw = (w1,w2,w3) ∈ WWMIN such thatw1 = wD

1 = 2.0.
The stateMedium is now the unique mode while the states High and Low are together the
secondmost probable states. Thereby, this probability distribution represents another type
of extreme case still compatible with the mode pair statement pD,1 = (Medium,High).

It should be noted that withWMIN andWMAX, exceptions to the demonstrated prop-
erty of the interval [w∗

i ,w
∗
i ] may occur when n ≥ 2(m − 1), i.e. when the number of parent

nodes n is almost twice the number of states of the nodes m or larger, and pD,i consists of
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Figure 3. Probability distribution of Success Level obtained for the firstD-scenario xD,1 usingWMINwith
the variance parameter σ 2 = 0.01 and any values of weights (w1,w2,w3) ∈ WWMIN having (a) w1 =
wD
1 = 1.2 or (b)w1 = wD

1 = 2.0.

the two highest states of the child node (a condition specific for WMIN) or pR,i consists of
the two lowest states (a condition specific forWMAX). In these specific cases, the compat-
ibility of P(XC | x∗,i) with p∗,i (∗ = D with WMIN and ∗ = R with WMAX) may depend
also on weights other than wi, see Section S.3 (supplementary material) for more infor-
mation. This feature of WMIN andWMAX is taken into account while determining their
feasibility in Phase 2 of the computational procedure.

As another technical detail concerning eachweight expression, the bounds of the elicita-
tion weight intervals are actually dependent on the variance parameter σ 2 and the number
of sample points s taken from the state intervals of parent nodes in CPT generation. How-
ever, the differences between boundswith different values of σ 2 and s are insignificant from
the practical point of view (Laitila andVirtanen 2021). In the computational procedure, the
default values areσ 2 = 1/(4m2) and s = 5 that are applied also in the illustrations of Figure
3. When a CPT is generated with any weight expression using σ 2 = 1/(4m2), the majority
of the probability mass of the child node is always shared either by its two or three most
probable states (Laitila and Virtanen 2021). Thus, if the weights are taken from the elicita-
tion weight intervals and σ 2 = 1/(4m2), the resulting probability distributions of the child
node in the D- and R-scenarios represent well the mode pair statements of the expert. On
the other hand, when the CPT is generated with s = 5, the conditional probability distri-
butions reflect well the underlying regression model of RNM (Laitila and Virtanen 2020).
This sampe size is also the default in AgenaRisk implementation of RNM.

4.3.2. Phase 2: determination of feasible weight expression and set of feasible weights
In Phase 2, the elicitation weight intervals formed in Phase 1 are studied with regard to
feasibility conditions that are specific to each weight expression. If the feasibility condi-
tions of a weight expression f are fulfilled, f is feasible and the procedure provides the
related set of feasible weights Ff . Here, Ff ⊂ Wf , i.e. the set of feasible weights is a subset
of the preliminary weight set Wf defined in Equations (3a)–(3d). Furthermore, any sin-
gle feasible weight wi necessarily belongs to the elicitation weight interval [w∗

i ,w
∗
i ] (∗ = D

or ∗ = R), see Section S.3 (supplementary material) for further discussion. For a feasible
weight expression f, the procedure also produces “central weights” w0 ∈ Ff that represent
an average type of element of Ff . On the other hand, if a weight expression is not feasible,
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the procedure indicates which feasibility condition is being violated and gives information
on how the mode pair statements should change for the violation to become resolved. This
feature is indicated in Figure 2 with a dashed line running to the box of Step 2.

4.3.2.1. WMEAN. With WMEAN, the feasibility conditions concern weight intervals
[wi,wi] that are formed based on the elicitation weight intervals [wD

i ,w
D
i ] and [wR

i ,w
R
i ]

as the intersection [wi,wi] = [wD
i ,w

D
i ] ∩ [wR

i ,w
R
i ] for each i = 1, . . . , n. The feasibility

conditions derived in Section S.3 (supplementary material) are

(I) Theweight intervals [wi,wi], i = 1, . . . , nmust all be non-empty sets. If [wi,wi] is an
empty setwith a given i, themode pair statements pD,i and pR,i indicate contradictory
values for the weight wi. In other words, pD,i and pR,i suggest that the strength of
influence of the parent node Xi on the child node is too different in the scenarios
xD,i and xR,i.

(II) The sum of the lower bounds wi, i = 1, . . . , n, must not exceed 1. If this condi-
tion is violated, too many parent nodes are considered to have too large strength
of influence on the child node.

(III) The sum of the upper bounds wi, i = 1, . . . , n, must not be smaller than 1. A sum
less than 1 indicates that too many parent nodes are considered to have too small
strength of influence on the child node.

If the feasibility conditions I, II, and III are satisfied, WMEAN is feasible with regard to
the mode pair statements of the expert. The set of feasible weights FWMEAN is

FWMEAN =
{
w = (w1, . . . ,wn) ∈ R

n |

wi ∈ [wi,wi] ∀ i = 1, . . . , n,
n∑
i=1

wi = 1

}
. (4)

4.3.2.2. WMIN and WMAX. With WMIN and WMAX, the elicitation weight intervals
[w∗

i ,w
∗
i ] (∗ = D with WMIN and ∗ = R with WMAX) are examined with respect to fea-

sibility conditions that are analogical between the weight expressions. Therefore, only the
conditions regarding WMIN are now discussed. The feasibility conditions of both weight
expressions are derived in Section S.3 (supplementary material).

With WMIN, there are generally two feasibility conditions:

(I) All the upper bounds wD
i , i = 1, . . . , nmust be at least equal to 1. If wD

i is less than 1
with some i, the parent node Xi exhibits too small strength of influence on the child
node in the scenario xD,i.

(II) The intervals [max{wD
i , 1},wD

i ], i = 1, . . . , n, must include weights w = (w1, . . . ,wn)

by which the probability distributions P(XC | xR,i), i = 1, . . . , n, become compati-
ble with the mode pair statements pR,i. The violation of this condition means that
the strengths of influence of the parent nodes on the child node indicated by the
D-scenarios are not valid in the R-scenarios.
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If n ≥ 2(m − 1) and there is a mode pair statement of the form pD,i = (xmC , x
m−1
C ), an

additional, third, feasibility condition is also checked:

(III) When n ≥ 2(m − 1) and pD,i = (xmC , x
m−1
C ), the intervals [max{wD

j , 1},wD
j ], j =

1, . . . , n,must includeweightsw = (w1, . . . ,wn) bywhich the probability distribution
P(XC | xD,i) becomes compatible with the mode pair statement pD,i. This condition
can be violated under the given circumstances if weights other than wi are large
enough.

If the feasibility condition I is satisfied, the fulfillment of the condition II is analyzed
numerically. Different weight combinations w = (w1, . . . ,wn) are constructed by taking
equidistant sample points from the intervals [max{wD

i , 1},wD
i ], i = 1, . . . , n. With each w,

the probability distributions of the R-scenarios are generated, and the fulfillment of the
feasibility condition II is checked. If there is a need, probability distributions of specific
D-scenarios are also generated for checking the feasibility condition III. The weights w
through which all all conditions I, II, and III are satisfied form the set of feasible weights
FWMIN.

4.3.2.3. MIXMINMAX. In the case of MIXMINMAX, the feasibility conditions con-
cern weight intervals [wD

MAX ,w
D
MAX], [w

R
MAX ,w

R
MAX], and [wMAX ,wMAX] that are formed

from the elicitation weight intervals [wD,i
MAX ,w

D,i
MAX] and [w

R,i
MAX ,w

R,i
MAX], i = 1, . . . , n, as the

intersections

[wD
MAX ,w

D
MAX] = [wD,1

MAX ,w
D,1
MAX] ∩ · · · ∩ [wD,n

MAX ,w
D,n
MAX],

[wR
MAX ,w

R
MAX] = [wR,1

MAX ,w
R,1
MAX] ∩ · · · ∩ [wR,n

MAX ,w
R,n
MAX],

[wMAX ,wMAX] = [wD
MAX ,w

D
MAX] ∩ [wR

MAX ,w
R
MAX]. (5)

The feasibility conditions derived in Section S.3 (supplementary material) are

(I) The interval [wD
MAX ,w

D
MAX]must not be an empty set. The violation of this condition

means that the strength by which the parent node in the lowest state affects the child
node in a given D-scenario varies too much between different D-scenarios.

(II) The interval [wR
MAX ,w

R
MAX]must not be an empty set. The violation of this condition

indicates that the strength by which the parent node in the highest state in a given
R-scenario influences the child node varies toomuch between different R-scenarios.

(III) The interval [wMAX ,wMAX] must not be an empty set. This condition is violated
when the effect that the parent nodes pose on the child node in the D-scenarios is
not consistent with that observed in the R-scenarios.

If all the above feasibility conditions are satisfied, MIXMINMAX is feasible. The set of
feasible weights FMIXMINMAX is

FMIXMINMAX = {w = (wMIN ,wMAX) ∈ R
2 |

wMAX ∈ [wMAX ,wMAX],wMIN = 1 − wMAX}. (6)
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4.3.3. Illustration of Phase 2 with example BN
When Phase 2 of the computational procedure is applied to the weight intervals in Table 3,
WMEAN, WMAX, and MIXMINMAX are all found to be infeasible weight expressions.
With WMEAN, the feasibility condition I is violated because the intervals [wD,i

i ,wD,i
i ] and

[wR,i
i ,wR,i

i ] do not intersect each otherwith any value of i. Regarding this violation, the com-
putational procedure indicates that the mode pairs of Success Level should be raised in the
D-scenarios and/or lowered in the R-scenarios for WMEAN to become a feasible weight
expression. Here, “raising” (“lowering”) the mode pair means changing the value of one or
both of its elements so that the new value is higher (lower) on the ordinal scale of the child
node than the initial value. For example, if pD,1 is raised from pD,1 = (Medium,High), see
Row 2 of Table 2, to pD,1 = (High, Very High), the elicitation weight interval [wD,1

1 ,wD,1
1 ]

changes from [0.38, 0.50] to [0.14, 0.25] which coincides with [wR,1
1 ,wR,1

1 ] = [0.14, 0.25],
see Table 3. In order to resolve the violation of the feasibility condition I completely, also
the mode pairs of the other D- and/or R-scenarios would need to undergo similar types of
adjustments.

In the case of WMAX, the feasibility condition I is not satisfied because the upper
bounds wR

1 and wR
2 in Table 3 are smaller than 1. To fix this matter, the computational

procedure indicates that the mode pairs pR,1 and pR,2 of Success Level displayed in Rows 5
and 6 of Table 2 should be raised upwards.

With MIXMINMAX, the elicitation weight intervals [wD,i
MAX ,w

D,i
MAX], i = 1, 2, 3, in

Table 3 intersect only at wMAX = 0.48. Thereby, the feasibility condition I is satisfied with
wMAX = 0.48 being the only feasible value of wMAX . The single intersection point is the
result of the fact that themode pair pD,3 = (Medium, Low) in Row4of Table 2 is close to but
not equalwith the values pD,1 = pD,2 = (Medium,High) in Rows 2 and 3. Correspondingly,
the condition II is satisfied with wMAX = 0.29 being the only feasible value of wMAX , i.e.
the only point in the intersection of the elicitation weight intervals [wR,i

MAX ,w
R,i
MAX], i = 1,

2, 3. In this case, the origin of the single intersection point is that pR,3 = (Low,Medium) in
Row 7 of Table 2 is close to but not equal to pR,1 = pR,2 = (Low, Very Low) in Rows 5 and
6. However, as the values 0.48 and 0.29 are not equal, the condition III is violated making
MIXMINMAX infeasible. To overcome this violation, the computational procedure indi-
cates that one should lower mode pairs of the D-scenarios and/or raise mode pairs of the
R-scenarios.

Unlike the other weight expressions, WMIN is determined to be feasible with a specifc
set of feasible weights. The upper bounds of the weight intervals ofWMINwD,i

i , i = 1, 2, 3,
in Table 3 fulfill the feasibility condition I. Furthermore, the numerical analysis of the elic-
itation weight intervals carried out in the computational procedure reveals that also the
feasibility condition II is satisfied. There is no need to check the feasibility condition III
because the special circumstances concerning it do not apply now. Figure 4 illustrates all
the weight values analyzed. The coordinate axes correspond to the elicitation weight inter-
vals [wD,i

i ,wD,i
i ], i = 1, 2, 3 of WMIN in Table 3. The weights through which the feasibility

conditions I and II are fulfilled, i.e. the weights forming the feasible weight set FWMIN, are
highlighted in green. Most of the weights within the elicitation intervals are feasible. Yet,
if in a weight combination w = (w1,w2,w3) both w1 and w2 are near the upper bounds of
their elicitation weight intervals (wD,1

1 = wD,2
2 = 2.0), w is infeasible.

The central weights of WMIN provided by the procedure are w0 = (1.54, 1.54, 2.63).
Figure 5 displays the probability distributions obtained with w0 and σ 2 = 0.01 for all the
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Figure 4. Set of feasible weights FWMIN determined for WMIN based on the mode pair statements
displayed in Table 1. The weights belonging to FWMIN are highlighted in green. The coordinate axes cor-
respond to the elicitation weight intervals presented in Table 2. The weightsw1,w2, andw3 refer to Skill
Level, Concentration Level, and Challenge Level, respectively.

D- and R-scenarios. The distributions are compatible with the mode pair statements in
Rows 2–7 of Table 2. In all the probability distributions displayed, virtually all of the prob-
ability mass of Success Level is shared between its three most probable states. Thus, the
distributions are in line with the discussion in Section 4.3.1 concerning the default value
of the variance parameter σ 2 = 0.25/m2 = 0.25/52 = 0.01.

4.4. Step 4: supplementary elicitation procedure for selection of point values for
weights and variance parameter

Step 4 of the approach is carried out if a feasible weight expression f and the related set of
feasible weights Ff are discovered in Step 3. In Step 4, suitable point values for the weights
w are selected from Ff alongwith a suitable value for the variance parameter σ 2. If there are
more than one feasible weight expressions, any of them can be selected for the execution
of Step 4.

Compared to the preliminary weight setWf defined in Equations (3a)–(3d), the set Ff
considerably narrows down the range of possible weight values. Therefore, with the help
of Ff , it may be easy to select point values for w and σ 2 by freely applying trial and error
as discussed in Section 3. Alternatively, the values of w and σ 2 can be decided in a more
structured manner with a supplementary elicitation procedure in which the expert further
considers the probabilistic behavior of the child node in either the D- or R-scenarios. The
basic idea in the procedure is the same with all the weight expressions and it is next pre-
sented. After that, features specific to differentweight expressions are discussed. Finally, the
procedure is briefly demonstrated with the example BN. A MATLAB implementation to
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Figure 5. Probability distributions obtained for the D- and R-scenarios of the example BN using WMIN
with the central weightsw0 = (1.54, 1.54, 2.63) and the variance parameter σ 2 = 0.01.

support the execution of the procedure is available (Laitila 2021). Using the RNM param-
eters defined by the expert, it generates and visualizes the probability distributions for the
D- and R-scenarios. The illustrations in Figures 3, 5, and 6 have been produced with the
implementation.

4.4.1. Description of elicitation procedure
The elicitation procedure begins with designating either theD-scenarios or theR-scenarios
as “primary scenarios” denoted by xP,i. Which way the scenarios are designated depends
on the weight expression. Generally, the only weight that affects the conditional probability
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Figure 6. Probability distribution of the scenario xD,3 obtained using WMIN with (a)
w = (1.54, 1.54, 2.63), σ 2 = 0.01, (b) w = (1.54, 1.54, 3.0), σ 2 = 0.01, and (c) w = (1.54, 1.54, 3.0),
σ 2 = 0.03.
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distribution P(XC | xP,i) is wi. This feature enables the elicitation of a point value for wi by
having the expert review P(XC | xP,i) generated with different values of wi. At the same
time, a value for σ 2 is also assessed.

The elicitation concerning P(XC | xP,i) proceeds as follows. First, P(XC | xP,i) is gen-
erated with some feasible values of the weights w and the variance parameter σ 2. Here,
the central weights w0 obtained in Step 3 can be used as the initial weights when the
first primary scenario is taken under review. Furthermore, the initial value of the vari-
ance parameter can be σ 2 = 0.25/m2 used in the computational procedure in Step 3. The
expert then reviews and comments on the generated distribution. Based on the comments,
the values of wi and σ 2 are adjusted and P(XC | xP,i) is regenerated for a new review. If the
expert thinks that probability mass in P(XC | xP,i) should be moved from one side of the
mode to the other, wi is to be changed. The limits for the adjustment of wi are dictated by
the feasible weight set Ff . On the other hand, if the expert desires the probability mass to
be more (less) dispersed altogether, the value of σ 2 should be increased (decreased). The
practice of regenerating P(XC | xP,i) and adjusting the values of wi and σ 2 is repeated until
the distribution is deemed suitable by the expert.

After a value for wi is selected based on the scenario xP,i, it is kept fixed when eliciting
values for other weights with the other primary scenarios. Furthermore, the value of σ 2

selected with a given primary scenario is used as the initial value when another primary
scenario is taken into review.

It may happen that alternative values of σ 2 are considered appropriate in different pri-
mary scenarios. Then, one should first check whether there is any single value of σ 2 that
could be applied in all the scenarios. If no single value is considered suitable, the use of
a partitioned weight expression is necessary. Instead, if suitable values for the weights
and the variance parameter are found, the ending point of the framework is reached, see
Figure 2.

4.4.2. Specific features withWMIN andWMAX
With WMIN, the primary scenarios are the D-scenarios whereas with WMAX they are
the R-scenarios. With both WMIN and WMAX, before the expert starts to review the
probability distributions of the primary scenarios, the parent nodes Xi as well as the sce-
narios xD,i and xR,i are reordered according to increasing values of the central weights
w0 = (w0

1, . . . ,w
0
n). After the reordering, w0 fulfills w0

1 ≤ · · · ≤ w0
n. The scenarios are

addressed by starting from xP,n and descending towards xP,1. Thereby, the values of the
weights that affect the CPT elements the most become fixed first. Here, changing wi does
not require any changes to be made to the other weights.

4.4.3. Specific features withWMEAN
In the case of WMEAN, it can be freely decided whether the primary scenarios are the D-
scenarios or the R-scenarios. The review of the probability distributions is carried out in a
similar way as with WMIN and WMAX. However, unlike with either WMIN or WMAX,
when the weight wi is changed, also the weights w1, . . . ,wi−1 must be updated to new val-
ues in line with the conditions defining FWMEAN in Equation (4). In contrast, the weights
wi+1, . . . ,wn decided before wi stay in their fixed values. At some point of the review pro-
cess, this update scheme of the weights may reveal that there are no weights in FWMEAN
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by which the expert’s views on all the primary scenarios could be portrayed accurately
enough. In this type of situation, it is necessary to use a partitioned weight expression.

If Step 4 is successfully executed, one may discover that the probability distributions
P(XC | xP,i) obtained with the final weights slightly differ from those initially reviewed and
accepted by the expert. This is due to technical properties of WMEAN discussed more in
Section S.4 (supplementary material). However, as the changes in single probabilities are
generally less than 0.01, the effects are insignificant from the practical point of view.

4.4.4. Specific features withMIXMINMAX
With MIXMINMAX either the D-scenarios or the R-scenarios can be designated as the
primary scenarios. Then, with any primary scenario xP,i, point values for the weightwMAX
and the variance parameter σ 2 are selected by reviewing the probability distribution of
xP,i. After this, the expert evaluates whether the distribution of xP,i is applicable also in
all the other primary scenarios. If different probability distributions are considered to
be necessary in various primary scenarios, the use of a partitioned weight expression is
needed.

4.4.5. Demonstration with example BN
Recall from Section 4.3.3 that WMIN is feasible with regard to the mode pair statements
presented in Table 2. The central weights belonging to the feasible weight set FWMIN are
w0 = (1.54, 1.54, 2.63). By following the elicitation procedure for WMIN, theD-scenarios
are designated as the primary scenarios with the correspondence xP,i = xD,i, i = 1, 2, 3. As
w0
1 ≤ w0

2 ≤ w0
3, the parent nodes and the scenarios are already in the desired order.

Becausew0
3 is the largest central weight, the expert first reviews the probability distribu-

tion of the scenario xD,3. The initial distribution is generated with the weights w0 and the
variance parameter σ 2 = 0.25/m2 = 0.01, see Figure 6(a). The main remark of the expert
is that the distribution is too strongly focused to the state Medium and that the probabil-
ities of the states Medium and Low should be more alike. In order to shift the probability
distribution more towards Low, the weight w3 should be increased. The feasible weight set
FWMIN depicted in Figure 4 indicates that the upper bound ofw3 isw3 = 3.33. The value of
w3 is then raised from 2.63 to 3.0 which produces the probability distribution displayed in
Figure 6(b). While the probabilities ofMedium and Low of Success Level have now become
more alike, the expert says that the distribution is now too heavily focused on these two
states. This indicates that σ 2 should be increased. When σ 2 is raised from 0.01 to 0.03, the
more dispersed distribution depicted in Figure 6(c) is obtained.

Let the expert be satisfied with the probability distribution displayed in Figure 6(c).
Then, the elicitation procedure would continue with the review of the probability distri-
bution of the scenario xD,2 in order to assess a value for w2, and possibly a new value
for σ 2. The distribution of xD,2 would initially be generated with the current weights
w = (1.54, 1.54, 3.0) and the variance parameter σ 2 = 0.03. After addressing the scenario
xD,2, the review of the scenario xD,1 would be carried out in the same manner. As each pri-
mary scenario is used to define a value for a single weight, one should be able to find point
values for all the weights by addressing all the primary scenarios. However, the elicitation
procedure could indicate that no single value of the variance parameter is adequate in all
the primary scenarios. In such a case, a partitioned weight expression should be taken into
use.
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5. Application of elicitation framework with partitioned weight expression

A partitioned weight expression is used if no feasible weight expression is found in Step 3
or no values of the weights and the variance parameter are deemed suitable in Step 4. Then,
the CPT of the child node is divided into parts based on the states of one or more parent
nodes, referred to as “conditioning parent nodes”. Each part is separately generated with
a fixed part-specific weight expression along with fixed part-specific values of the weights
and the variance parameter that are elicited from the expert.

The application of a partitioned weight expression begins with the selection of con-
ditioning parent nodes. This is followed by the elicitation of the part-specific RNM
parameters for the accordingly divided CPT. These actions are explained below in more
detail, see also Figure 2.

5.1. Selection of conditioning parent nodes

In order to restrain the elicitation effort of the expert, it is desirable to have as few condi-
tioning parent nodes as possible. Moreover, a need to generate a CPT extensively in parts
contradicts the basic idea of RNM, i.e. that the probabilistic behavior of the child node
corresponds to a simple general rule. If the use of several conditioning nodes appears nec-
essary, it is worth considering whether the group of parent nodes could be modified. For
example, aggregating the effect of some of the nodes into a new auxiliary node can help to
create a setting in which a partitioned weight expression is not needed. However, if new
parent nodes are declared, the execution of the elicitation framework should be restarted
from Step 1.

A good candidate for a conditioning parent node is such that the expert finds it natural
to describe how changes in the states of the other parent nodes affect the child node for
a given state of the candidate. To illustrate this idea, consider the example BN in Figure
1. Suppose that the expert can readily describe how the challenge level of an assignment
defines the effect that a certain drop in the skill or concentration level of an employee has
to the expected success level of performing the assignment. This indicates that Challenge
Level is a good candidate for a conditioning node.

It is also possible to use conditioning parent nodes that are not ranked nodes. For exam-
ple, any kind of labeled or boolean node suffices as well. For any combination of states of
such conditioning nodes, the part-specific RNM parameters can be elicited by applying
Steps 1–4 to the non-conditioning parent nodes exactly in the same way as described in
Section 4. The given states of the conditioning non-ranked nodes only define conditions
under which the expert should consider the effect of the non-conditioning ranked nodes to
the child node. In the description that follows, all parent nodes, including the conditioning
ones, are ranked nodes with the same number of states as the child node.

5.2. Elicitation of part-specific parameters of RNM for divided CPT

Once the conditioning parent nodes are selected, the CPT of the child node is divided into
parts based on combinations of their states. For example, if Challenge Level is the con-
ditioning parent node in the example BN, the CPT of Success Level is divided into five
parts according to theChallenge Level states. For each part of the divided CPT, part-specific
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parameters are elicited from the expert by applying slightly modified versions of Steps 2–4
of the framework. If there are nc conditioning parent nodeswithm states each, themodified
versions of Steps 2–4 explained below have to be executedmnc times in total.

5.2.1. Modified Step 2
Let n denote the number of all parent nodes and nc denote the number of conditioning
parent nodes. In Step 2, the expert assesses themode pair of the child node inn − nc + 1D-
scenarios and equally many R-scenarios that are specific for the part of the CPT being
addressed. These part-specific D- and R-scenarios are analogical to those defined in
Section 4.2. Now, the conditioning parent nodes are in their fixed states in all of the scenar-
ios. In one D-scenario, the non-conditioning nodes are all simultaneously in their highest
states whereas in one R-scenario they all are simultaneously in their lowest states. In the
rest of theD- andR-scenarios, the non-conditioning nodes alternate in being alone in their
lowest and highest states, as explained in Section 4.2.

As an example, Table 3 presents theD- and R-scenarios related to the stateHigh ofChal-
lenge Levelwhen it is the conditioning parent node in the example BN.Here, n = 3, nc = 1,
and the number of D- and R-scenarios each is n − nc + 1 = 3 − 1 + 1 = 3. Some of the
D- and R-scenarios coincide because there are three parent nodes. The table also displays
example mode pair statements for Success Level.

5.2.2. Modified Step 3
In Step 3, a computational procedure is executed to determine feasibility of weight expres-
sions and feasible weight sets based on the mode pair statements assessed in Step 2. This
procedure is an extended version of the procedure presented in Section 4.3. It examines
the feasibility of the weight expressions with two alternate settings concerning the condi-
tioning parent nodes. The settings are elaborated below and the details of the procedure
are explained in Section S.5 (supplementary material). AMATLAB implementation of the
procedure is also made accessible (Laitila 2021).

In the first setting, all the conditioning parent nodes are “computationally inactive” in
the examined CPT part. This means that their states are not associated with subintervals
of the unit scale and they are not given any weights. Thereby, their states only represent
conditions under which the effects of the non-conditioning parent nodes to the child node
are to be considered and the related RNM parameters are to be determined. The compu-
tational procedure determines elicitation weight intervals, feasible weight expressions, sets
of feasible weights, and central weights only for the non-conditioning parent nodes.

In the other setting, the feasibility of the weight expressions is studied so that exactly
one of the conditioning parent nodes is “computationally active” in the examined CPT
part. This node, denoted by Xq, is assigned with a weight and its states are associated with
subintervals of the unit scale. It is involved in the generation of the CPT part in the same
manner as the non-conditioning parent nodes. On the other hand, the rest of the condi-
tioning parent nodes are computationally inactive. Each conditioning parent is set in turn
to be Xq. With a given Xq, elicitation weight intervals are first formed for Xq based on the
mode pair statements of the D- and R-scenarios in which all the non-conditioning par-
ents are in the same ordinal state (scenarios xD,3 and xR,3 in Table 4). Using these intervals
and the other mode pair statements, elicitation weight intervals are formed for the non-
conditioning parents analogously to Phase 1 of Step 3 in Section 4.3.1. Then, the elicitation
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Table 4. D- and R-scenarios related to the state High of the conditioning parent node Challenge Level
along with mode pair statements for Success Level.

Success Level

Scenario Skill Level Concentration Level Challenge Level Very High High Medium Low Very Low

xD,1 Very Low Very High High 2 1
xD,2 Very High Very Low High 2 1
xD,3 Very High Very High High 1 2
xR,1 Very High Very Low High 2 1
xR,2 Very Low Very High High 2 1
xR,3 Very Low Very Low High 2 1

Note: The notation xD,i and xR,i refers now to the part-specific D- and R-scenarios. With each scenario, the statement of
the expert on the mode and the second most probable state of Success Level are indicated by the numbers 1 and 2,
respectively.

weight intervals are examined with respect to feasibility conditions analogously to Phase 2
of Step 3 in Section 4.3.2. For each feasible weight expression f , the procedure produces a
feasible weight set Ff and central weights w0.

When the computational procedure is executed in a given CPT part, there are several
alternative outcomes. A feasible weight expressionmay be found only with all conditioning
parent nodes being computationally inactive. On the other hand, it could be found only
with specific conditioning parent nodes being computationally active. It is also possible
that in the CPT part, multiple feasible weight expressions are discovered when all condi-
tioning nodes are computationally inactive and/or when specific conditioning nodes are
computationally active. Because the results of Step 3 are part-specific, the feasible weight
expressions and weights, and the possible computationally active parent node, can vary in
different parts of the CPT.

Concerning the mode pair statements in Table 4, the computational procedure dis-
covers that both WMIN and MIXMINMAX are feasible provided that the condition-
ing parent node Challenge Level is computationally active. The feasible set fMIXMINMAX

is characterized by the interval [wMAX ,wMAX] = [0.25, 0.31] of the weight wMAX , cf.
Equation (3d). The central weights determined are w0 = (w0

MIN ,w
0
MAX) = (0.72, 0.28).

The feasible weight set fWMIN of WMIN is displayed in Figure 7. In this case, the central
weights are w0 = (w0

1,w
0
2,w

0
3) = (1.9, 1.9, 7.0).

5.2.3. Modified Step 4
In Step 4, point values are selected for the weights of the parent nodes and the variance
parameter, provided that a feasible weight expression is discovered in Step 3. The point
values are specific to the CPT part that is being analyzed.

If a feasible part-specific weight expression is found in Step 3 with all conditioning par-
ent nodes being computationally inactive, Step 4 should primarily be executed using that
one. This helps to minimize the elicitation effort of the expert. The part-specific point val-
ues for the weights and the variance parameter are in this case selected by carrying out
Step 4 according to the description in Section 4.4.

When the feasible part-specific weight expression involves a computationally active
conditioning parent node Xq, the selection of weights in Step 4 becomes slightly altered
compared to the description in Section 4.4. If the feasible weight expression is WMIN,
WMAX or WMEAN, the first weight to be decided is wq of Xq. The point value of wq
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Figure 7. Set of feasible weights FWMIN determined for WMIN based on the mode pair statements dis-
played in Table 3. The coordinate axes correspond to the elicitationweight intervals of individualweights.
The weightsw1,w2, andw3 refer to Skill Level, Concentration Level, and Challenge Level, respectively.

is assessed by the expert based on reviewing the probability distribution of the primary
scenario in which all the non-conditioning parent nodes are in the same ordinal state.
The scenario xD,3 (xR,3) in Table 4 is an example of such a scenario when D-scenarios (R-
scenarios) are the primary scenarios. After the value of wq is chosen, the selection of the
weights of the non-conditioning parent nodeswi proceeds in the order of decreasing values
of the central weights w0

i , as described in Section 4.4. If the feasible weight expression is
MIXMINMAX, the point value of wMAX is selected by reviewing first the probability dis-
tribution of the primary scenario in which all the non-conditioning nodes are in the same
state. By using this point value, a probability distribution for the other primary scenario
is generated for a review. The expert then has to evaluate whether this other probability
distribution is applicable in all those scenarios.

Like in the non-partitioned case, the part-specific value of the variance parameter σ 2

is selected with any weight expression while reviewing the probability distributions of the
primary scenarios. If no single value of σ 2 is considered adequate in all of them, the CPT
can be further partitioned to represent the views of the expert more comprehensively.

Regarding the example of Table 4, one could try executing Step 4 either with WMIN or
MIXMINMAX. With WMIN, the primary scenarios are the D-scenarios and xD,3 would
be the first scenario to be reviewed. In the case of MIXMINMAX, the primary scenarios
could be either theD- or the R-scenarios. Depending on the choice, the first scenario to be
reviewed would be either xD,3 or xR,3.

6. Conclusion

This paper discussed how the lack of exact guidelines complicates the elicitation of parame-
ters of RNMand thereby hampers the application of themethod in constructing BN system
models. In order to alleviate this challenge, the paper presented a novel framework for
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applying RNM. It consists of two elicitation procedures and a computational procedure
which enable systematic elicitation of the parameters from the expert by easily under-
standable questions about the probabilistic behavior of the child node. The framework is
primarily designed for ranked nodes whose ordinal scales are defined by subjective labeled
states. In this respect, the framework complements existing elicitation approaches that are
applicable only to ranked nodes formed by discretizing continuous scales. The new frame-
work can also be applied to those kinds of nodes by regarding their discretization intervals
as the subjective labeled states.

The framework eases the use of RNM through various ways which further encourages
the deployment of RNM in practical applications. To begin with, a feasible weight expres-
sion and a set of feasible weights are determined based on expert assessments of the two
most probable states of the child node in scenarios in which the parent nodes are in their
extreme states. Therefore, a suitable weight expression can be found with low elicitation
effort and without deep technical insight on RNM. At the same time, also the range of
possible values for each weight is narrowed down considerably compared to the initial
range defined by the preliminary weight set. This narrowing helps the selection of appro-
priate point values for the weights. The feasible weight expression and the feasible weight
set are solved with a computational procedure for which a MATLAB implementation is
available. With this implementation, the execution of the computational procedure takes
typically only some seconds of time. Thus, the feasible weight expression and the feasible
weight set are discovered virtually immediately after obtaining ordinal probabilistic assess-
ments from the expert. The structured elicitation questions and the swift utilization of the
answers computationally are features of the framework that streamline the elicitation of
RNM parameters compared to the current practice, i.e. the ungoverned search through
trial and error.

To bring additional support to the selection of the point values of the weights, the frame-
work includes a procedure in which they are elicited one by one by having the expert
describe in more detail the probabilistic behavior of the child node in the extreme sce-
narios. Simultaneously, a suitable value for the variance parameter is chosen. To facilitate
the execution of the procedure, an existing MATLAB implementation generates and visu-
alizes the probability distributions of the extreme scenarios using the RNM parameters
defined by the expert. The fact that the value of a single weight is specified based on a
single scenario makes the origins of the weights easy to track. This transparent interpreta-
tion is helpful if there is a need to explain or justify the weights that are being used, e.g. to
different stakeholders related to the BN application in which RNM is utilized.

The framework addresses the use of RNM with both a single weight expression and a
partitioned weight expression. While a single weight expression is the default way to use
RNM, the need to shift to a partitioned weight expression is indicated by the outcomes of
the procedures discussed above. Covering the two forms of using RNM and indicating the
need to change from one to the other are properties of the framework that further ease
the use of RNM. These properties are also unique in the sense that the earlier literature on
RNM does not present any guidelines for deciding whether to use a single or a partitioned
weight expression.

The framework also allows for the elicitation of the RNM parameters based on state-
ments ofmultiple experts or data.When there aremultiple experts, they can together define
the labeled states of nodes and decide the probabilistic assessments required in the elici-
tation procedures. Alternatively, once the states of the nodes are defined, the framework
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can initially be used separately with each individual expert. If the sameweight expression is
feasible with each of them, a single set of feasible weights can be established as the intersec-
tion or the union of the individual feasible weight sets. The experts can then select together
point values for the weights from this common set.

If there is data available for estimating probability distributions of the child node in the
extreme scenarios, the estimated distributions can be utilized in the elicitation procedures.
The data could be, e.g. anymeasurements or records enabling to calculate relative frequen-
cies of the child’s states for the combinations of the parents’ extreme states. Then, in the
initial elicitation procedure, mode pairs can be selected according to these distributions. In
the supplementary elicitation procedure, the expert can use the estimated distributions as
a reference when selecting point values for the weights and the variance parameter. Alter-
natively, the point values of the parameters can be determined by data fitting so that the
estimated distributions are approximated with distributions generated with RNM. Over-
all, the new framework enables a new way to combine expert knowledge and data in the
construction of CPTs included in a BN system model.

A tentative version of the framework was applied in a case study involving the con-
struction of a BN-based system model of an air surveillance network. In the construction
of the BN with RNM, the domain experts found the use of the framework preferable to
the practice of trial and error when eliciting the RNM parameters. A theme for future
research are more structured experiments in which the framework is tested with humans
in various setups to understand better its strengths and weaknesses. With such experi-
ments, further knowledge could be acquired on, e.g. how fast, easily and accurately CPTs
can be constructed by applying the framework. Comparisons could be made to RNM used
without the framework, other parametric methods for CPT construction, and elementwise
assessment of CPTs with and without conventional probability elicitation techniques. The
comparisons could also address biases concerning expert elicitation that might be faced
or mitigated when using the different means. Another future research theme concerns the
design of the framework. At present, the framework is meant to be used when a child node
and its parents all have the same number of states, which is a common setting in RNM
applications. While there are means for using the framework with nodes having non-equal
numbers of states, its further development with regard to this capability would bring more
relief to the use of RNM.
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