O

K\

Abo Akademi

A Case Study on Transitioning from
Relational Data models to Graph Data

models in an Industrial Context

Johanna Ilonen

Master’s Thesis in Information Technology, Computer Engineering
Abo Akademi, Faculty of Science and Engineering

Supervisor: Dragos Truscan

Vaasa 2023

TABLE OF CONTENTS

ABSTRACT ...coueeeeeetsseesssssssssessssssssssassssssssssassssssssssessssssssssassssesssssassssssssssassssesssssassssesssssassssessssssssssessssssssssssssas
ABBREVIATIONS. ..o teeeteeuseetseesseessssessessssssssessssssssassssssssessssssssssssesssssssssssssssssssssssssssssssssssessssessssssssssssesens
1. INTRODUCTION ccoiereeeeeessesseeesseessesssssesssssssssssssssssssssssssssssessssssssassssssssessssssssasssssssssssssssssssssssssssssans 1
1.1, ReSEarCh QUESTIONS ..ccircesierseessssssssesssssssssssssssss s ssssssssssssesssssssssssssssssssanes 4
1.2. Research contributions and limMitations ... 4
1.3, THESIS SEIUCTUTE .. eeceeeeeeereeseetseeseesseesse s s s bbb bbb 8
2. BACKGROUNDccoiiterieteteseesssesssesssessssesssessssssssassssssssessssssssessssssssassssssssassssssssssssessssesssessssssssesssssssnns 10
2.1. Databases and database management SYStEMSc.remmereesmesssessssesssesssanes 10
2.2, The GDBMS NEOZ...oomereermeerreermeeseessesssssssssssessssssssessssssssessssssssassssssssessssssssassssssssssssssssssssnns 14
20 TN D F- 1 1 4 Lo T 1= £ 0PSO 17
2.3. 1. ER MOAELuuiiierreeetseessseessessesssesssssssssssssssssssssssssssessssssssassssssssasssssssssssssssssssssssssssssssssssssanns 17
2.3.2. Relational MOdE]eeneeeeenseenesssssesssssssssssssssssssess s ssssssssssssssssssssssssnns 21
2.3.3. Graph data MOAE] ... ssss s sess s sssssssssesssanes 23
2.4. Datamodeling in the DB design phase......nensseseesssesssessssseenns 26
2.4.1. Understanding the Problemessssssssssssssssssssssssssssesnns 28
2.4.2. Conceptual data MOAEL.....oeornrneererreeineeesessessesssesssse s sssssssssesssessssssssssesans 28
2.4.3. Logical data MOAE]eneerieeneseeseesesssesans 31
2.4.4. Physical data MOdel.....eeneneesesisssans 32
3. LITERATURE REVIEW.......oeeeeseessesssssssssssssesssssssssesssssssssessssssssssessssssssssesssssssssssssssessssnes 34
3.1. Therelational DB and itS WeaKnNeSSEesScourmemeememmeesmeeseessesssessssessesssessseeens 34
3.2. Graph DB addressing the weakness of relational DB........coneeenneeesneeennne. 36
3.3. Market leaders using graph DB.......eeeceseesecesessessseeseesssessesssssseeens 37
3.4. Use cases gaining success through graph DB.......cnnenecsreeeeereenseeens 38
3.5. Analytical approach for deciding DB tyPeccoeenmeereeenmeeseesmessseessessseessessseeens 39
3.6. Dynamic data MOAel. ... sesssessesssesssesssessssssesens 41
S J07Z0 010 4 1o L0 1) () o 00O 43
4. CASE STUDY woouteeeerseeesssessessssesssssessssessssssssssessssssssssesssssassssessssssssssessssssssssesssssssssessssssssssesssssssssseses 47
4.1. EXperimental deSIGN ... eeneceseesseessesssesssesssesssssssessssessesssssssssssssesssessssessnns 48

0 0 T €70 =1 06 =Y 500U (5 (0} o 49

4.1.2. Hypothesis formulation ... 51

S T Y= g = o) U= 52
N T =8 53
N T N 4 LIS L o) =T ot PPN 55
0 T N 4 U= o) =T ot PPN 55
0 R D 0T 0 D101 01 U (0) o S PPPPN 55
T ST DF: U ol U U=Tot m 1o} o FO0T OSSP 56
4.1.9. ANALYSIS PIOCEAUTE c.ouvevesrersseersesssseersssessessssssss s ssssssesssssssssessssssssssesssssssssssssssssaeses 56
4.1.10. Evaluation of Validityc.esssssessessssssssesssssssssssssssssssssssssssseess 57
T D P-4 oY U=] 0 o =P 58
4.2.1. Understanding data modeling NEEdSceereenesrnesessesssessssssssesssssessseees 59
4.2.1.1. SUINMATY s ssssssssssses 120
4.2.2. Logical data MOAELScouerenrernreseessesessesssesssssssssesssssssssessssssssssesssssssssssssssssssesssns 121
4.2.2.1. Relational data MOdel. ... sssssssssssssssssessssees 122
4.2.2.2. Graph data MOdel ... sssesssssees 130
4.3. Graph data model implementation in NE04jconemermrenmeenseessesssessesssessseenees 140
5. AN ALYSIS et s s s s s s 144
5.1, Case STUAY FESULL ... sssssssssssssse s ssssss s sssssssssssssssssssssssssesans 144
5.2. Competencies and KNOWIEAZEccoueeeerrreenmemmeerneeseeeseesseessesseesssessessssesssessssessans 146
6. CONCLUSION AND FUTURE RESEARCHocnereerreseesseesesseessesssesssessssssssessseesssens 148
6.1. Answer to resSearch QUESTIONS ... enemmesseessssssssssssssssessssssssssssssssssssssssssssssssnes 148
6.2. Recommendations for future reSearch ... eecneeeeeeeesseeseeseens 151
SWEDISH SUMMARY ..oooeereeeeereeseeeseesessssssseesssssssessssssssessssssssessssssssesssessssessssssssesssessssesssessssees 153

REFERENCES ... ssssssssssssssssssssssssssssanens 159

ABSTRACT

Author: Johanna Ilonen

Master's Degree Program: Information Technology, Computer Engineering
Supervisor: Dragos Truscan

Title: A case study on transitioning from relational data models to graph data

models in an industrial context

Date: 24.3.2023 Number of pages: 151 | Appendices: -

In this research, the graph data model challenges the well-known relational
data model. The relational model, used by the relational data base, uses tables
to present data and data relationships. The graph data model, used by the
graph data base, explains the data as a connected graph. This fundamental
structure makes the relational data model less dynamic and intuitive than the

graph data model.

In our experimental setup, the graph data model is more dynamic than the
relational data model. An interesting finding is that when mapping the data
model needs through data analysis, it is easier to build the relational data
model than the graph data model. Building a well-functioning graph data
model requires understanding on how the business stakeholders describe the
problem and what type and questions they want to answer based on the data.
To achieve the dynamic capability of a graph data model, the data modeler
needs a mindset change from an analytical approach to a social one. The
inputs from the business stakeholders are the key to success in graph data

modeling.

A company considering a change from a relational data base to a graph data
base shall not follow hypes. Careful consideration and analysis are needed.
The study shall show a clear indication of immediate and remarkable practical

benefits in areas like query performance, flexibility, and agility.

Language: English Keywords: data modeling, database, ERDPlus,

arrows.app, Neo4;j

ABBREVIATIONS

3NF
ACID
CPU
CRUD
CTE
DB
DBMS
DBOP
ER
GDBMS
IM
OSME
RAM

RDBMS
RQ
SQL
SSD

STH

Third normal form

Acronym for atomic, consistent, isolated, durable

Central Processing Unit

Acronym for create, read, update, delete

Common Table Expressions

Database

Database Management System

Delivery Bill of Process

Entity-relationship

Graph Database Management System

Information Management

Open Smart Manufacturing Ecosystems

Random Access Memory

(The computer’s short-term memory where data is stored as
the processor needs it.)

RDBMS management system

Research Question

Structured Query Language

Solid State Drive

(A server storage device that retains data in flash memory
instead of a magnetic-based system like a hard disk drive.)
Sustainability Technology Hub

(Wartsild’ s delivery center in Vaasa Finland.)

1. INTRODUCTION

In the latter part of 2021, Wartsila and partners started a Business Finland-
funded project named Open Smart Manufacturing Ecosystems (OSME) [1]. The
goal of the OSME project is to move from traditional linear value streams to a
resilient collaborative network based on a digital foundation. This will enable
proactive planning of activities, first time right, reduced lead times, traceability
and feedback loops, optimized logistics, and better quality with less effort.

Dynamic data models and an understanding of data flow have been recognized
as one of many focus areas to achieve an efficient and value-creating resilient
collaborative network. According to Riithimaki, Director for Delivery Management
at Wartsila, this network “enables Wartsila and the other ecosystem partners to
adapt and innovate to market needs” [1]. Riihimaki also highlights the purpose

of “helping our customers continuously improve” [1].

Dynamic, defined as continuously changing or developing [2], fits well with the
statements from Riihimaki. From his comments, it can be derived that the data
and its requirements change due to dynamic market needs, and the data model
needs to adapt to this. The purpose of a data model is to provide an
understanding of data needs and requirements to be addressed when designing
a database (DB) to fit the needs of an organization [3]. Data models that structure
data into tables have a weak response to change and require expensive
configurations to reflect changing business needs [4] [5]. The relational model,
used by the relational DB, is an example where tables present the data and
relationships among the data [6]. An alternative is the graph data model, used
by the graph DB, which shows the data structure as a connected graph [7]. The

graph data model enables easier data model changes [7].

Another dynamic perspective are data models that allow processes to be
carried out with different approaches while still managing the situation where
the result will be combined and presented [4]. Wartsila has recognized that
connecting and using data from various processes and systems is challenging.
Especially use cases, with complex join queries for fetching data from relational
DB, cause unacceptable query execution time [8]. This has made Wartsila
interested in DBs that efficiently handle relationships between data elements.

The graph DB, explicitly designed to handle and store relationships between

data elements [9], is considered an appealing choice. Of many alternative graph
database management systems (GDBMS) in the market, Neo4j is selected by
Wartsila due to its technical capabilities of being a native GDBMS, its easy-to-
learn Cypher query language, and its position of being a GDBMS market leader
[10].

Wartsila now seeks to extend its success from current implementations of Neo4j
to use cases requiring dynamic data models with a particular focus on data
relationships. This study focuses on understanding how data modeling for a
relational DB differs from data modeling for a graph DB. Aim is to understand if
one approach is more suitable for a dynamic environment and if relationships
between data elements are easier to build and identify in a graph data model
compared to a relational data model.

The result of the study is based on a literature review and a case study where a
limited scope of engine manufacturing process data is modeled as a relational
data model and a graph data model. The graph data model is implemented in
Neo4j to get practical experience and understand what knowledge and

competencies are needed for graph data modeling and implementation in Neo4;.

The study of data models and DB types is limited to graph and relational domains.
The main reason for this limitation is Wartsild’s increased interest in Neo4j graph
DB technology. The relational DB selection is supported by its popularity. It
topped the DB-Engines ranking survey list of the database management systems
(DBMS) most frequently referenced on websites, job offers, and experience
listings in LinkedIn profiles [11]. Figure 1 shows statistics from June 2022, where
seven out of the ten most popular DBMSs are relational DBs [11]. Neo4j ranks
nineteenth and is the most popular graph DB [11]. Trends in Figure 2 indicate
that the relational database management systems (RDBMS) Oracle, MySQL, and
Microsoft SQL Server keep a relatively steady trend as the top three DBMSs
between 2013 and 2022 [12].

Why would an enterprise move from the popular relational DB to a graph DB?
Some arguments can be that:

e The graph DB can be an alternative or an additional option if the relational

DB does not manage well with an increased number of attributes, more

data, higher speed requirements in business agility or data accessibility,

and significantly more connections between data elements [9].

e Inthe graph, itis easy to add new data elements to adapt to new business
requirements [13].
e In contrast to the relational DB, the graph DB is explicitly designed to
handle and store relationships between data elements [9].
398 systems in ranking, June 2022
Rank Score
Jun May Jun DBMS Database Model Jun May fan
2022 2022 2021 2022 2022 2021
1. 1. 1. Oracle gz Relational, Multi-model g 1287.74 +24.92 +16.80
2. 2. 2. MySQL E3 Relational, Multi-model @ 1189.21 -12.89 -38.65
3. 3. 3. Microsoft SQL Server Relational, Multi-model g 933.83 -7.37 -57.25
4. a. 4. PostgreSQL Relational, Multi-model g 620.84 +5.55 +52.32
5. 5. 5. MongoDB & Document, Multi-model @ 480.73 +2.49 -7.49
6. 6. 7. Redisfl Key-value, Multi-model § 175.31 -3.71 +10.06
7. 7. 6. IBMDb2 Relational, Multi-model gl 159.19 -1.14 -7.85
8. 8. 8. Elasticsearch Search engine, Multi-model @ 156.00 -1.70 +1.29
9. 9. A 10. Microsoft Access Relational 141.82 -1.62 +26.88
10. 10. 9. SQLite Relational 135.44 +0.70 +4.90
11. 11. 11. Cassandra g3 Wide column 115,45 -2.56 +1.34
12. 12. 12. MariaDB Relational, Multi-model @ 111.58 +0.45 +14.79
13. a14. 426, Snowflake Relational 96.42 +2.91 +61.67
14, @13 13, Splunk Search engine 95.56 -0.79 +5.30
15. 15. 15. Microsoft Azure SQL Database Relational, Multi-model & 86.01 +0.68 +11.22
16. 16. 16. Amazon DynamoDB 3 Multi-model @ 83.88 -0.58 +10.12
17. 17. J14. Hive Relational 81.58 -0.03 +1.89
18. 18. ¥ 17. Teradata Relational, Multi-model g 70.41 +2.02 +1.07
19. 19. 18, Neodj 3 Graph 59.53 -0.61 +3.78

Score (logarithmic scale)

Figure 1. DB-Engines ranking survey list of most popular DBMS in June 2022 (picture source [11])

100

o

DB-Engines Ranking

2013

2014

© June 2022, DB-Engines.com

2015 2016 2017

2018

2019

2020 2021 2022

Oracle
— MysSoL
Microsoft SQL Server
PostgreSQL
— MongoDB
— Redis
IBM Db2
— Elasticsearch
— Microsoft Access
SQLite
Cassandra
— MariaDB
Snowflake
Splunk
— Microsoft Azure SQL Database

118

Figure 2. DB-Engines ranking survey trend of most popular DBMS (picture source [12])

This chapter continues by presenting the research questions in chapter 1.1.
Chapter 1.2 defines the expected research contributions, approaches, and
limitations. Chapter 1.3 describes the structure of this thesis.

1.1. Research questions

At Wirtsila, the Neo4j GDBMS platform has successfully been used for some specific
use cases. There is a desire to understand if this success can be extended to the
manufacturing process data and later to value creation in internal and partner
networks. This study focuses on finding solutions and answers to the following
research questions (RQ):

RQ1. How does data modeling for a relational DB differ from data modeling for
a graph DB?

RQ2. Can an experiment where the manufacturing process is modeled as a
relational model versus a graph data model prove that the graph data
model is more dynamic than the relational data model?

RQ3. How to present the manufacturing process data in Neo4;j?

RQ4. What knowledge and competencies are needed for graph data modeling

and implementation in Neo4j?

1.2. Research contributions and limitations

This chapter describes how the study results are produced and which limitations
are set. The study is conducted in two sequential steps. A literature review is

followed by a case study in an experimental set-up.

The literature review aims for basic knowledge in data modeling and DB
implementation with a limitation to relational and graph domains. Information
was sought from online books, white papers, research articles, tutorials, and case
studies to answer RQ1 and expressly understand:

1. What is a data model, and how does a data model for a relational DB

implementation differ from a data model for a graph DB implementation?

2. How to choose between a relational DB and a graph DB implementation?
What are the benefits and drawbacks, and what are the current trends?

3. Are graph data models and graph DB implementations dynamic?

4. Is managing and handling relationships among data elements easier in a
graph DB than in a relational DB?

When searching for information, the focal point was to find answers to the above
questions. Instead of conducting an exhaustive literature review, where all the
material returned in the search engines is reviewed and further filtered based on
specific criteria, the author’s judgement on what knowledge is needed to carry
out the empirical study was used in selecting the material. Further, it was verified
that the content in the chosen material is trustworthy by investigating the
reference material and checking if the material has been cited in other literature
and whether the publisher or site provider is well known. The age of the material
plays a vital role in a domain evolving rapidly. Therefore, the oldest source
information used was twelve years old and fifty percent of the information was

less than five years old.

The material was found through Google, Google Scholar, and abo.finna.fi search
engines. Google Scholar is used for searching research articles, while Google is
used for the rest. If the research article was not available for free in Google
Scholar, it was fetched through the university library abo.finna.fi. If the article was
not found in the university library, a corresponding research article was
searched. Keywords utilized in the search are listed below, where each bullet
represents an individual search criterion:

e Neo4j

e Data model

e (Conceptual data model

e Logical data model

e Physical data model

e Flexible data model

e Dynamic data model

e Relational database

e (Graph database

e RDBMS

e GDBMS

e Database

The knowledge gained from the literature review was utilized in a case study
consisting of the following parts:
1. Relational and graph data modeling experiment design and case study (to
answer RQ2)
2. Implementing the graph data model in the Neo4j standalone desktop
version (to answer RQ3).

The data model in the case study covers the data needs for a limited scope of
manufacturing process data for an engine produced in the Wartsila STH delivery
center in Vaasa, Finland. The manufacturing process data in the range of the
research is the Delivery Bill of Process (DBOP). The DBOP describes the sequence
of assembly steps needed to produce a specific customer engine. The
implementation of the graph data model in Neo4;j is limited to a standalone Neo4;j
desktop implementation with no integrations to systems and databases in

Wartsila. Neither is any data imported to the model.

To understand if the graph data model is more dynamic than the relational model,
a small-scale case study with experimental set-up was carried out where the
author modelled the identical data set as a relational data model and a graph data
model. Initial idea was to run an experiment with ten to twenty Information
Technology students as subject. However, due to time constraints of the thesis,
the full-scale experiment was not possible. Instead, author performed own
subjective case study, still following metrics of the experiment design. The
experiment is designed to be possible to use in a later scenario where more

subjects are available for the experiment.

As the dynamic capability is an indirect measure, it was determined from the
following data:

e The time it took to understand the data needs for the model

e The data modeling time

e The number of data elements in the data model

e The effectiveness and efficiency of the implementation of the data model

In addition, the author made a qualitative and subjective analysis of the difficulty

level of building the relational data model versus the graph data model.

Using only one subjective in the analysis causes the value of the evaluation to be
statistically irrelevant. For a statistically relevant result the experiment design
and analysis are recommended to be carried out with an entire class of
Information Technology students. When this number of subjects would be
available the experimental design and analysis planned for in in chapter 4.1would
give a statistically relevant research result.

The graph data model from the RQ2 result, is utilized for RQ3. In RQ3, the graph
data model is implemented in Neo4j. A qualitative review by an independent
domain expert at Wartsila was made to understand if the implementation meets
the expectations of Wartsila. Quantitative measures, such as query execution

times, are beyond the scope of this study.

RQ4 is answered based on the experience gained from the case study and

learnings from the literature review.

Table 1 summarizes the methods used for answering the research questions.

Table 1. Methods used to answer the research questions

Research question Method

RQ1 Literature review and case study

RQ2 Case study

RQ3 Case study

RQ4 Own experience gained through the literature review

and case study

The high-level research plan is visualized in Figure 3. The thesis worker was
responsible for executing the plan, implementation, and results. Guidance was
expected from a Wartsila Information Management (IM) graph expert and the
thesis supervisor. A Wartsila business stakeholder was utilized in requirement
gathering and verification of the results. The study began with a literature review.
The knowledge acquired in the literature review was used in the empirical study.
The study was finalized with an evaluation of the results and defining the
conclusions. The texts in blue visualize inputs. The black arrows indicate testing
needs. For example, when the data model is built, it shall be verified against the

requirements specified for the problem domain.

INPUT

Books
White papers
Research s
Tigs supervisar
Case studies Guidance &
Tulona\s
mformauh RESEARCH WHEN
| May -
Guidance RQ1 Literature review August
2022
b
IM Knowledge
(Graph expertise)
"
S [=
f/ N | 4 Case study and experiment
DBC;Tedata Requirements Understand problem and
and information requirements Verify that
built model
Requirements confirms with September
-~ ¥ requirements .
v
o i RQ2 Build data models LEE s
@R Verify that 2022
- Busi ‘ert 1A’
Process s{aizw;?e y Graph data implementation
v model confirms with
built model and
RQ3 ' |Implementation in Neodj AR
4
Result, knowledge, and experience
i ¥
January -
RQ4 Apalysis and conclusion February
2023
4 N\ s
Documented result, knowledge,
v and experience
pel ™
OUTPUT
‘ Published Master Thesis ‘ May 2023

1.3. Thesis structure

Figure 3. High-level research plan (author’s picture)

The remaining part of this thesis is divided into six main chapters:

e Chapter 2 presents fundamental concepts in the field of data models and

DB implementation. The reader gets a basic understanding of what a data

model is and how a data model for a relational DB implementation differs
from a data model for a graph DB implementation.

Chapter 3 investigates how to select the suitable DB type for a problem at
hand and discusses the literature concerning the dynamic capability of the
data model, handling of relationships between data elements, and query
performance.

Chapter 4 describes the case study, which contains three sequential steps:
experiment design, data modeling and the implementation of the graph
data model in the Neo4j standalone desktop version.

Chapter 5 analyses the learnings and results of the research. A part of the
analysis contains a suggestion for competencies and knowledge needed
for graph data modeling in Neo4;j.

Chapter 6 concludes the thesis by revisiting the research questions to
understand if the research objective is met and provides suggestions for

future study.

10

2. BACKGROUND

This chapter presents fundamental concepts in data models and DB
implementation. This knowledge supports the design and implementation
decisions in the empirical study. The content of this chapter also serves as a good
base for anyone starting a journey from relational DB to graph DB design and
implementation. This chapter hence presents the findings from the analyzed
literature for RQ1, and precisely:

e What is a data model, and how does a data model for a relational DB

implementation differ from a data model for a graph DB implementation?

This chapter is divided into four main parts. Chapter 2.1 introduce DB and DBMS,
focusing primarily on the differences between a relational DB and a NoSQL DB.
Chapter 2.2 gives a brief introduction to Neo4j GDBMS. Chapter 2.3 covers the
data model concept and explains the ER, the relational data, and the graph data
models. Chapter 2.4 describes the process for designing data models for a

relational DB versus a graph DB.

2.1. Databases and database management systems

The word data is the plural form of datum which means one piece of information
or one numerical form [14]. Data can be stored on paper or in electronic form [15].
A frequently used electronic storage is a database (DB), an organized collection
of stored data that can be easily accessed and managed [15]. The database
management system (DBMS) is the software responsible for storing, retrieving,
and running queries on the dataina DB [15]. The DBMS provides alternative user
interfaces and services, such as data redundancy control, data sharing among
multiple users, and data backup and recovery [15]. The DBMS is built for a specific
type of DB [15]. The RDBMS is the software for the relational DB, and the GDBMS
is the software for the graph DB.

The logical structure of a database is described by its data model [16]. The
relational model, chapter 2.3.2, is the logical structure of the relational DB, and
the graph data model, chapter 2.3.3, is the logical structure of the graph DB [16].

11

Figure 4 presents a principal sketch, in which users and applications use a DB
through the DBMS.

— Application —
User L J User
DBMS
! . y

) 4 -
DB =Y

_—

{ DATA MODEL ‘

A 4

Figure 4. DBMS, DB, and Data Model (author’s picture)

Figure 5 visualizes some examples of different DB types. Highlighted are the DB
types covered in this research: relational DB, NoSQL DB, and graph DB. We
notice that the graph DB is a type of NoSQL DB together with key-value pair DB,
column-oriented DB, and document-oriented DB [15]. NoSQL has been
developed as an alternative to the relational DB [17]. A concern of the relational
DB in the age of big data with accelerating data volumes is that its performance
degrades with increased data volume [17]. Big data refers to a large volume and

wide variety of data captured from different sources with high speed [18].

‘ Distributed ‘ ‘ Cloud ‘ ‘ Network ‘ ‘ Hierarchical ‘ ‘ Enterprise ‘

‘ Centralized ‘ ‘ NoSQL ‘ Relational Object Oriented

‘ Operational ‘

Document

Key-value pair Oriented

Column Oriented

‘ Graph ‘

Figure 5. DB types (author’s picture, adopted from [19])

12

Another concern of the relational DB is its rigid and pre-defined DB schemas that
are hard to modify [17]. The relational DB schema contains the DB'’s tables,
attributes, primary keys, and foreign keys, but no data [6]. The NoSQL DB is
developed to handle significant data amounts and has a dynamic DB schema, also
called schemeless [17], which can be altered without downtime or disruption in
the service [18].

The NoSQL DB is not developed to replace the relational DB but rather to coexist
with it [17] [18]. Depending on the needs of an application, it is even possible to
define a hybrid data layer where the data from the application is stored in
multiple DB types [17]. This approach can utilize the strengths of different DB
types [17]. Table 2 summarizes a comparison made by Sahatqjija et al. in a journal
article published in 2018 [17]. It compares relational DB and NoSQL DB in terms
of scalability and performance, data consistency, flexibility, query language,
security, data management storage and accessibility. This comparison is generic

for the DB type and does not consider a specific DBMS provider.

Table 2. Comparison of features in a relational DB versus NoSQL DB (Created based on text in [17])

Feature Relational DB NoSQL DB
Scalability and | Vertical scalability = Horizontal scalability = when
Performance when data volume grows, the data volume grows, the system
data storage and computing expands by adding more
power expand only for existing = hardware components for data
hardware components like CPU | storage and processing power.
capacity, RAM, and SSD of the
DB server. This is a cheaper alternative
than vertical scalability, and by
The overall implementation distributing data on different
cost increases with data growth. | servers, the performance of the
DB increases.
Data The main priority is to fulfill the = Horizontal scalability makes it
consistency ACID properties of Atomicity, challenging to fulfill ACID. The
strategy Consistency, Isolation, and BASE principle is used, and
Durability. stands for Basically Available,
ACID ensures higher data Soft state, and Eventually
reliability and integrity than consistent.
DBs using the BASE principle.
The BASE is more flexible than
ACID but has less consistency
and reliability.
Neo4j is entirely ACID
compliant. (Chapter 2.2)
Flexibility The DB schema is static and The DB schema is dynamic and

pre-defined before inserting

does not have to be predefined.

13

Query
Language

Security

Data
Management-
Storage and
Access

data. Making changes to a DB
with data is challenging and can
cause server failures and
decreased performance.

Only structured data is
supported.

A standard query language
known as SQL is used. This
powerful query language
handles complex queries
through a standardized
interface. When knowing the
SQL, a developer can write
queries in any RDBMS.

The structured data and vertical
scalability make the security
more straightforward to
manage than the NoSQL DB.

The data is stored in tables, is
highly normalized, and is very
clean. Data redundancy is
avoided through normalization,
which slices data into small
logical tables.

The normalized data model is
sometimes denormalized to
avoid joins and get better query
performance. (Chapter 2.4.4)

There are alternative ways of
replicating a relational DB
between sites in a distributed
system:

This supports changes in
structures and data types.
Suitable for agile and scalable
environments where
continuous development and
evolvement can be expected.

Structured, semi-structured,
and unstructured data are
supported.

No standardized query
language. The GDBMS provider
can create its query languages.
A DB developer faces challenges
when getting tasks to
understand or write queries in
different GDBMS systems.

Neo4j has its query language,
Cypher. It is intuitive with
inspiration from SQL. Neo4;j
also supports other query
languages. (Chapter 2.2)

A large amount of unstructured
data distributed between
multiple servers cause
challenges for the security of
the DB. If the NoSQL DBMS
provider does not guarantee
secure client-server
communication, crucial factors
like authentication, access
control, secure configurations,
data encryption, and auditing
must be implemented by
external methods.

[t can contain data redundancy
as data is stored in collections
without normalization.

Data availability can be
improved by replicating the DB
between clustered servers. Two
different approaches are
utilized:

1) master-slave, where the
slave can only read data

2) master-master, which gives
the replicated master both read
and write access to the data.
This can cause inconsistency in
the data.

14

1) entire DB is replicated to all
sites in the distributed system
2) no replication replicates only
a fragment of the DB to one site
3) partial replication replicates
some fragments.

The replication improves the
data availability but consumes a
lot of time and storage.
Therefore, the DB'’s
performance declines.

In short, the NoSQL DB focuses on high performance, availability, data replication,
and scalability. At the same time, the relational DB shows an advantage in data
consistency, powerful query language, structured data storage, and security [17].

2.2. The GDBMS Neo4j

The most popular GDBMS provider is Neo4j [11]. This chapter explains what
Neo4j is. Some of the central elements and terminology are discussed, providing
beneficial resources for learning Neo4j’s graph query language, Cypher. This
chapter offers valuable information for anyone who will start implementing

graphs in Neo4j.

Neo4j's history goes back to 2000, when the three founders of Neo4j encountered
performance problems with RDBMS and initiated the first Neo4j prototype [20].
In 2007, the Neo4j company was founded in Sweden, and its first GDBMS was
open-sourced [20]. In 2021 its open-source community had millions of
downloads and hundreds of thousands of deployments [21]. The open-source
version of Neo4j went under the name Neo4j Community Edition [22]. There is
also an alternative for using the license-based Neo4j Enterprise Edition as a

closed-source software application [22].

In Neo4j, data are stored as graphs, processed as graphs, and presented as graphs
[23]. It is hence a native GDBMS with graph processing and storage [5]. Native
graph processing utilizes index-free adjacency, which means nodes maintain
direct references to nearby nodes [5]. This is a cheaper alternative than using

global indexes [5]. With this approach, the query times are independent of the

15

total graph size and are only affected by the part of the graph searched by the
query [5]. Native graph storage means the DB is specifically built for storing and
managing graphs, having a stack engineered for performance and scalability [5].
In native graph storage, the relationship information is a primary data element
[21]. If graph data is stored in a non-native graph storage DB, the relationship
information can get lost, disconnected, or neglected, which are symptoms of data
corruption [21]. The graph data model Neo4j use is the labeled property graph,
which consists of the elements described in Figure 13 [5]. This is a variant of a
property graph model [5], further described in chapter 2.3.3.

The consistency model which Neo4j uses for data transactions is ACID. Hence
Neo4j reaches the same consistency levels as an RDBMS [24]. ACID stands for
[25]:
e Atomic = All operations in a transaction need to succeed, or every
operation is rolled back.
e Consistent=The DB is structurally intact when a transaction is completed.
e Isolated = Transactions do not compete with one another. The DB controls
the continuous data access to make transactions appear to run
sequentially for the users.
e Durable = The results of a completed transaction are permanent, ensuring

data remains in the DB no matter the failures.

The technical details of Neo4j will not be discussed more profoundly here.
Instead, the focus turns to Cypher, the query language of Neo4j [5]. Query
languages like SPARQL and Gremlin are also supported [5]. Cypher is an open-
source textual query language that utilizes ASCII art symbols in its syntax [26].
The inspiration for Cypher comes from the relational DB domain and the
Structured Query Language (SQL) [26]. All the standard DB CRUD (create, read,
update, and delete) operations are supported [26]. Cypher is the most intuitive
and effortless graph query language to learn [5]. It can be understood by
developers, DB professionals, and even business stakeholders [5]. Its ease of use

derives from its close resemblance to graphs, as presented in Figure 6 [26].

Figure 6 shows a MATCH clause followed by a RETURN clause [26]. The pattern
has been anchored to the node labeled Person, whose name property is Dan [26].
Cypher matches the remainder of the pattern to the nodes immediately

surrounding this anchor point [26]. Hence, we can expect this MATCH pattern to

16

return various values for the whom variable while traversing through the graph
[26].

LOVES

MATCH (:Person { name:"Dan"}) -[:LOVES]-> (whom) RETURN

I 1 I
LABEL PROPERTY VARIABLE

Figure 6. Cypher pattern example (Picture source: [26])

An alternative to anchoring a pattern to a specific node is to move the property
lookup from the MATCH clause to a WHERE clause [5]. With guidelines in [5], the

pattern in Figure 6 transforms to:

MATCH (a:Person) -[:LOVES]-> (whom)
WHERE a.name = ‘Dan’
RETURN whom

Anyone familiar with SQL will find the resemblances when looking at the pattern
above. Other customary clauses from SQL available in Cypher are ORDER BY, SKIP
LIMIT, AND, and comparison possibilities like p.unitPrice > 10 [26]. For further
guidance on Cypher, we recommend investigating the Cypher Developer Guide
[26] and the relevant version of the Neo4j Cypher Manual [27]. The current
Cypher Manual is 4.4.

When starting the developer journey with Neo4j and Cypher, it is essential to
remember to write a code that others quickly understand. This is enabled by
following the guidelines in the Cypher style guide [28] and Cypher naming rules
and recommendations [29]. An excellent approach is collecting hints from the
Cypher query guidelines to ensure the written queries are optimized for

execution performance [30].

17

2.3. Data models

The purpose of a data model is to provide an understanding of data needs and
requirements to be addressed when designing a DB to fit the needs of an
organization [3]. The data model can hence be considered as the design drawing
of the DB, describing the data structure and purpose of the data [31]. Correctly
designed, it improves the quality of information used in decision-making in an
organization [31]. The quality of information means that it fits the needs, is
available when needed and is accurate enough [31]. Tuning a model already
providing the expected information quality increases costs and is not worth the
effort [31].

The relational DB data model focuses on the objects, while the graph data model
focuses on the objects’ relationships [7]. Hurlburt et al. suggest a direct
dependency between the quality of the data in a graph DB and the quality of the
relationships in the data model [32]. This chapter focuses on understanding how
the models produced for a relational DB and a graph DB differ. We limit our guide
to the ER and relational data model for the relational DB design. For the graph
DB, we restrict our attention to the graph data model, further limited to
hypergraphs and property graphs.

2.3.1. ER model

The ER model is not a data model for a specific DB type, but a high-level data
model used to describe the system on a conceptual level [16]. The ER model maps
different entities and how they relate [16]. It describes how users experience a

real-world situation without technical or system details [33].

The ER model is often used as the conceptual data model (chapter 2.4.2) when
designing the relational DB, and after the relational DB is implemented, it is used
in troubleshooting [34]. ER models can also be used in software engineering
design to identify system elements and their relationships [34]. When moving
from relational DB to graph DB, an ER model created for the relational DB is a

valuable input when investigating the problem to model in the graph data model

[7].

18

The ER model represents the data requirements of future users and the structure
that fulfills these requirements [6]. The ER model can be defined in textual, Figure
7, or graphical form, Figure 8 [6]. The elements presented in Figure 8 are named
in Figure 9, and the most relevant ones are further described below:

Entity

An entity is an object, such as a person, a place, an event, or an item. The entity
may be concrete, such as a student or a classroom, or abstract, such as a course
or a department [6]. The ER model names entities using singular nouns [34]. An
entity set is a set of entities that share the same attributes [6]. For example, the
student entity set contains all the student entities in a university [6].

A weak entity set depends on the existence of another entity set [34]. Figure 9
gives two alternative notations for presenting weak entities. Either with the
double-lined box or the double-lined diamond shape [6]. In Figure 8, the section

is an example of a weak entity set that depends on the course entity set [6].

Attribute

An attribute is a property or characteristic of an entity, a relationship, or another
attribute [6, 34]. Each attribute is expected to hold a value in the DB
implementation [6]. Figure 9 gives two alternative notations of visualizing
attributes; either by listing the attributes within the entity set table or with oval
shapes. When the attribute name is underlined, it symbolizes the entity’s unique

identifier, the primary key [6].

In Figure 8, the weak entity set section depends on the course entity set and has
only a partial key [6]. The partial key for the section is {sec id, year, semester} and
is used to distinguish the section entities from a course with the same course_id.
The primary key in the course is course_id. The primary key for the section is a
union of the primary key of the course and the partial key of the section: {course

id, sec id, year, semester}.

A composite attribute identifies other attributes [6, 34]. It can group associated
attributes and make the ER model cleaner [6]. An example is a composite

attribute address and its attributes: street, city, state, and zip_code [6].

19

A multivalued attribute is an attribute that can have more than one value [6,
34]. In Figure 8, the entity set time_slot has the multivalued attribute day with
both start_time and end_time [6].

An attribute based on another attribute is called a derived attribute [6, 34]. This
is seldom used but could, for example, be the area of a circle derived from the
radius of the circle [34].

Attributes can be left out if the ER model is modeled on a very high level [34].
When a relationship has an attribute, this attribute is specified as a descriptive
attribute. In Figure 8, the grade is a descriptive attribute of the takes relation
between student and section entity sets. In this example, the grade is utilized to
specify the grade which the student gets from a specific course during a particular

section.

Relationship

A relationship describes how entities interact [6, 34]. Examples are the teaches
and takes relationships in Figure 8. Combining the relationship with the entities,
we understand that the instructor teaches the section, and the student takes the

section. Verbs are used when naming the relationships in the ER model [34].

A relationship where the same entity participates more than once is called a
recursive relationship [6, 34]. A recursive relationship named prereq for the
course entity is presented in Figure 8. This example describes which course,
identified with prereq_id, is a prerequisite for another course, specified with

course_id.

Mapping the cardinality or ordinality of the relationship sets a constraint on
how many entities another entity can be associated with [6, 34]. Figure 9
illustrates notations for the many-to-many, one-to-one, many-to-one, and one-to-
many. One alternative is to give the cardinality in number format, and another is
to format the relationship line between the entities [6]. The doubled lines
between entity sets in Figure 8 indicate the total participation of an entity in a
relation. For example, between the entity instructor and inst_dept, the doubled
line marks that an instructor must be associated with a department. In addition,
the directed arrow from inst_dept to the department indicates that each instructor

can have only one associated department.

course_id

Entity sets and their attributes, with primary keys underlined:

classroom: with attributes (building, room_number, capacity).
department: with attributes (dept_name, building, budget).
course: with attributes (course_id, title, credits).

instructor: with attributes (ID, namie, salary).

section: with attributes (course.id, sec_id, semester, year).
student: with attributes (ID, nante, totcred).

time_slot: with attributes (timeslot_id, {(day, start_time, end_time) }).

Relationship sets:

[]

course_dept >

inst_dept: relating instructors with departments.
stud_dept: relating students with departments.

teaches: relating instructors with sections.

takes: relating students with sections, with a descriptive attribute grade.

course_dept: relating courses with departments.
sec_course: relating sections with courses.
sec_class: relating sections with classrooms.
sec_time_slot: relating sections with time slots.
advisor: relating students with instructors.

prereq: relating courses with prerequisite courses.

Figure 7. University DB ER model in textual format (picture source: [6])

department

dept_name
building
budget

stud_dept

instructor student
D D

name name
salary tot_cred

section

course

course_id

title

credits

time_slot

sec_course semester Sec_time_slot
ear

time_slot_id

[day
start_time
end_time

!

prereg_id

classroom

building
room_rnumber
capacity

Figure 8. University DB ER model in graphical form (picture source: [6])

20

21

A2 ‘l;:\l:]m?‘\.” composite attribute A2,
s s (A1),

A21 ple 'l A7 and multivalued attribute A3,

o composite (A2) anc derived attribute A4,

and primary key Al

relationship set A22 multivalued (A3)
derived (Ad)

E .
E entity set entity set E with
Al simple attribute Al,

(A3}

Ad0

NN identifying many-to-many * * R
4 ionshi] R 51 b)
Ry relationship set E relationship .’ .
for weak entity set " primary key

total participation E discriminating one-to-one 1 1 - R

o B e R 3 B vl

R of entity set in attribute of relationship = -
/ relationship . weak entity set ,

many-to-many many-to-one b O-One 1
H L R H>— % many-to-one . * - r R o
: : relationship @ relationship relationship El E2 E1 2
R one-to-one L.h cardinality participation R =
relationship ~_| limits in R: total (E1) 7 R 1’-:— 4 E2
A,

and partial (E2)

role-

2 7 N total NICA S
name role indicator H - ISA: generalization weak entity set m generalization \—{;/7 generalization “S"\/
or specialization ; T
|
total (disjoint) disjoint

;']. total generalization 8 generalization

Figure 9. ER notations. Figure 8 uses the left (<) (picture source: [6])

2.3.2. Relational model

The relational DB is based on the relational model, which uses tables to present
the data and relationships among the data [6]. Each table has a unique name [6]
and a predefined set of columns [6]. The relational model structures the DB in
fixed-format records of various types and is hence a record-based model [6].
Each table holds records of a specific kind, and each column in the table
represents an attribute of that record type [6]. The table is also called a relation,
and a row in the table can be called a tuple [6]. A constraint on the table is that

each row needs to be unique [6].

The uniqueness of a row is realized by identifying one or a set of attributes that
contains unique values, the primary key [6]. The attribute value is null if a non-
primary key attribute on a specific row is unknown or does not exist [6].
References between tables in the DB are linked with foreign keys [6]. A table has
only one primary key, while it can have several foreign keys [6]. A foreign key can
contain null values, and its values do not need to be unique [6]. A specific set of
rows in a table is referred to as a relation instance [6].

Figure 10 is an example of relation instances for Instructor and Department in the

university DB where the following elements are identified:

22

1. Unique table (relation) name
2. Relation instance
3. Column names (attributes)
4. Arow (tuple)
5. Primary key in Instructor table
6. Primary key in Department table
7. Foreign key in Instructor table
1 ~Instructor table / relation: Departmenttable / relation:

ID | name deptname | salary {— 3 ‘ dept_name | building | budget
22222 | Einstein Physics 95000 Biology Watson 90000
12121 | Wu Finance 90000 ~ e

. Sci. avlor
32343 | Fl Said History 60000 Comp. Sci. | Taylor | 100000
1455 _ Yo Elec. Eng. | Taylor 85000
5565 | Katz Comp. Sci. | 75000 Financ c Pai) 20000
98345 | Kim Elec. Eng. | 80000 inance ainter | 12
5 | 76766 | Crick Biology | 72000 History Painter | 50000
10101 | Srinivasan | Comp. Sci. | 65000 Music Packard | 80000
58583 | Califieri History 62000 Physics Watson 70000
83821 | Brandt Comp. Sci. | 92000 2
15151 | Mozart Music 40000 6
33456 | Gold Physics 87000
76543 | Singh Finance 80000 4 4
t t

2 /

Figure 10. Elements in the relational model (author’s picture, adopted from [6])

A database instance is all the data in a DB at a particular time [6]. This differs
from the database schema, Figure 11, which is the logical design ofa DB [6]. Each
row in Figure 11 is a schema of a specific table [6]. The database schema can
also be described in graphical form, named schema diagram, Figure 12 [6]. The
database schema or schema diagram contains the tables in a DB, their attributes,

primary keys and foreign keys, but no data [6].

classroom(building, roomtumber, capacity)
department(dept_name, building, budget)
course(coursed, title, dept_name, credits)
instructor(ID, name, dept_name, salary)
section(coursedid, sec_id, semester, year, building, roontinumber, tine_slot_id)
teaches(ID, course_id, sec_id, :;emest(T'}/mr)
student(ID, name, dept_name, tot_m‘ed)_
takes(ID, course_id, sec_id, semester, year, grade)
advisor(s_ID, i_ID) _
timeslot(tineslotid, day, start_time, end_time)
prereq(course_id, p i'er'eq_71)

Figure 11. Database schema of a simple university DB (picture source: [6])

23

s student
D » D <t
Em':;c’ !d name
er id dept_name
semester fot_cred
year
. grade
section course
b course_id < | course id department advisor
> SEC li * title dept_name s id
—p semester -+ dﬂprilmuw [building i_id
year — I credifs © -
| building time_slot budget
| | room_no time_slot_id
time_slot_id [day
start time
end_time
prereq instructor
classroom S D
L building | prereg_id nane
L room_no dept_name
capacity teaches salary
D
L| course id
sec_id
L | semester
jear

Figure 12. Schema diagram of a simple university DB (picture source: [6])

2.3.3. Graph data model

In the past decades, we have witnessed increased data volumes and rapid
changes and variations in data structures [5]. Chapter 2.3.2 explained how the
relational model captures data in rigid data structures that require high effort to
modify once the relational DB implementation is done. To address the challenges
faced in a rapidly changing data environment, the number of NoSQL alternatives
have risen [5]. The NoSQL data models are argued to be less expressive than the
relational model but more flexible and able to handle significant data volumes
better [5]. The graph data model is of NoSQL type but still more explicit than the

relational model [5].

The graph data model is flexible and handles significant data volumes and rapidly
changing demands well [5]. In the graph data model, it is easy to add, modify or
delete data elements based on the needs of the business [5]. The graph DB is
based on the graph data model [16]. In this chapter, we investigate the graph data

model structure to understand better the benefits it brings.

24

Several different graph data models are available in the graph DB’s domain. These
can be, for example, property graphs and hypergraphs [5]. The property graph
is restricted to directed connections, with one start node and one end node [5].
The property graph is the most widely used graph model in GDBMS [5]. The
property graph gives a straightforward and efficient modeling technique [5]. The
labeled property graph is a property graph with the ability to use labels on the
nodes for grouping and indicating specific roles of the nodes in a dataset. A
labeled property graph consists of the elements described in Figure 13.

Labeled Property
Graph Model

/\\

have Purpose:

Nodes » RE'atlDl‘lSthS - Connect nodes
- Structure the graph

— col ns must haml
Vi . can be tagged with can ave
|Properties)
. Labels i Propertles

— - | Direction | | Slngle
Purpose: \ ' hame
- Group nodes together - _
- Indicate roles the node

play in the dataset

| (Start node| | End node)

Figure 13. Elements in a labeled property graph model (Author’s picture adopted from the text in [5])

The hypergraph is an alternative to the property graph that allows any number
of start and end nodes for any relationship in the graph [5]. This graph model can
be practical for capturing data with many-to-many relationships [5]. Figure 14
shows the difference between a hypergraph versus a property graph in a case
where we want to model who owns the cars Alice and Bob drive [5]. To describe
this situation, only one relationship is needed in the hypergraph, while six
relationships are required for the property graph [5]. When the multidimensional

hypergraph is used, there is a risk of missing essential details [5].

The property graph is more explicit and allows for fine-tuning the model by
utilizing properties on the relationships [5]. Adding properties to the relationship
in a hypergraph is not permitted [5]. With properties on the relationships, the
primary owner of the car in Figure 15 can be identified using a property named
primary on the OWNS relationship [5]. The primary property is true for the OWNS

relationship between the car and the car owner [5]. Any use case can be modeled

25

with the multidimensional hypergraph or the property graph, and the builder of
the data model or the type of application determines which is used [5].

driver: Alice

Hypergraph T Property graph T

car: Range
Rover

Figure 14. Hypergraph versus property graph (picture adapted from Figure A-7 and Figure A-8 in [5])

driver: Alice

OWNS
{primary: true} .
(8 3

car: Range
Rover

This study is limited to the labeled property graph as this is the graph data
model used by the Neo4j GDBMS. Figure 15 shows a simple example of the labeled
property graph model and how the different elements come into action [23].

name: “Dan”
born: May 29, 1970
twitter: “@dan”

{ LIVESWITH |

name: “Ann”
born: Dec5, 1975

Jan 10,2011 "¢

brand: “Volvo”
Car @ | model: “V70”

- - -
;.Qf 1204

Figure 15. A simple example of a labeled property graph. (Picture source: [23])

Figure 15 contains:
e Three nodes
e Two different types of nodes with labels: Person or Car
e Node properties as name-value pairs
o Person node: name, born, twitter
= The twitter property does not exist on the node with the
name: "Ann”. If a property is inapplicable for anode, it is left

outinstead, as in a relational database, set the value to null.

26

o Carnode: brand, model
e Four Relationships
o Direction indicated with an arrow
o Single name: LOVES (used twice), LIVES WITH, DRIVES, and OWNS
= The LOVES relationship is needed in two directions, as we

can have a case where Ann loves Dan, but Dan does not love
Ann. LIVES WITH is required only in one direction because
if Ann lives with Dan, it is explicitly understood that Dan
also lives with Ann.

o Start node where the arrow starts

o End node where the arrow points

e Relationship property as name-value pairs: “since: Jan 10, 2011".

From this intuitive representation, we can see that Dan drives a Volvo V70 and
has done this since Jan 10, 2021. However, Dan is not the owner of this car, as the

only owner is Ann.

We note that all the relationships in a graph model are drawn with edges in one
direction. The graph data model requires no primary or foreign keys [5] [7].
Compared to the relational model, there is no requirement that all entities in an

entity group need to share the same attributes.

2.4. Data modeling in the DB design phase

The design phase of a DB aims at translating specific real-world problems,
considerations, and questions into technical terms to use as guidelines in the DB
implementation [7]. Hence, it is essential to understand the user requirements
and data needs first [6] [7].

Reviewing the literature to understand how to perform design for a relational DB
reveals a reoccurring pattern of producing a conceptual data model, a logical
data model, and a physical data model [6]. We also recognize that the
enterprise owning the DB decides on a specific notation and process to follow in

data modeling [31]. The enterprise might also specify the modeling tools [31].

27

There are no rules to follow in data modeling. The general practice is to create an
ER model as the conceptual data model of a relational DB [6] [16].

When searching for guidelines in the literature on how to perform data modeling
for a graph DB, I noticed, as Roy-Hubara et al., that many articles describe the data
modeling process for a specific use case but no data modeling rules to follow [35].
One reason is that data modeling for NoSQL DB is still maturing [36]. There is also
a tendency to doubt the usefulness of data modeling for the schemeless NoSQL
DB [36]. Schema or not, the importance of understanding and describing the data
stored in the DB remains [36]. The best way to represent data structures is
through data models [36]. It is not likely that there will be strict rules to follow
for NoSQL design. It is my believe that, similarly as for the relational DB design, it
will be up to the enterprise owning the DB to decide which design approach and
tools to utilize [31].

The design process for a graph DB follows mostly the same design process as that
of the relational DB. The main difference is the transition from a conceptual to a
logical data model. The ER model is translated into tables in relational data
modeling, while the graph data model remains a graph [7]. In graph data
modeling, the conceptual graph is only enhanced by utilizing the elements for a
specific graph data model type [7]. The physical data model used for the relational
DB is not created for the graph DB. It is directly linked to a DBMS provider and
depends on the DB schema [7]. For the schemeless GDBMS, a physical data model
is not needed [7]. Testing the model to ensure that no poor design decisions are

made is frequently highlighted as the final step in graph data modeling [5] [7].

28

2.4.1. Understanding the problem

The first step in the DB design phase is to thoroughly understand the user
requirements and data needs [6] [7]. These can be derived from user interviews
and analysis carried out in the enterprise [6]. If a DB implementation is available,
the DB schema, ER, and other models are beneficial for understanding data
structures and terminology already used in the problem domain [7].

According to Fernigrini [36], the data structure is essential in the relational DB
design. When modeling a NoSQL DB, the type of queries to be executed on the
data is the focal point. Robinson et al. agree that a graph data model shows how
related issues are considered and communicates essential questions in the
modeled domain [5]. Bechberger and Perryman confirm this and state that the

physical data model is equal to the queries addressed in the problem domain [7].

To reduce data model change needs, the queries should be defined before the
modeling [7]. In addition, the questions need to be prioritized [37]. The
prioritization is needed because no model will be perfect for everything, and
there will always be a need for tradeoffs [37]. Identifying the queries that provide
the most significant business value and need the highest performance is a critical
step at this point [37].

The output from the initial step is a textual description of how the problem is
understood, written in a language understood by business stakeholders [7]. This

forms the base for the conceptual design phase [6] [7].

2.4.2. Conceptual data model

The conceptual data model describes how the users experience real-world
situations without technical or system details for a relational DB and graph DB.
Therefore, it is an excellent tool for communicating requirements between
business stakeholders and developers [7]. The conceptual data model can be as
simple as a graph with entities and relations drawn on a whiteboard in a meeting
between business stakeholders and developers [5] [7]. It is important to

remember in this phase that this is a description of the understanding of the

29

system drawn from the business stakeholder’s point of view [7]. Hence,
developers will not start solving the problem and not think about the actual DB
implementation [7].

For the graph DB design, I found guidelines for how to carry out the whiteboard
drawing in two sequential steps, Table 3. The entities are first identified and
grouped, and then the relationships between the entities are added [7] [37].

Table 3. Guidance for the conceptual data modeling (own table created based on text in [7] [37])

What How
Identify and e Identify entities and name them as singular nouns. Focus on
group entities. understanding the “What” and “Who.”

e Identify groups of entities by listening to business stakeholders
and identify if some nouns are used interchangeably. For
example, the user, employee, and client could form an entity
group named Person.

Identify e Identify the relationships by focusing on functional questions
relationships and understanding the “How.”

between the e Verify that the model supports forming sentences: entity -
entities. relationship - entity. For example, Restaurant - Serves - Cuisine.

e Properties for the entities and relationships do not need to be
included in this model. If some are identified, it is good to list
them separately to review again in the logical design phase.

For the relational DB, no guidelines for the whiteboard drawing were recognized,
but I noticed an often-used approach to transform the whiteboard sketch into an
ER model [6] (see chapter 2.3.1). The guidelines for the ER model describe the
entity as an object such as a person, a place, an event, or an item. The entity may
be concrete, such as a student or a classroom, or abstract, such as a course or a
department [6]. The ER model names the entities using singular nouns [34]. This

description correlates with the graph data model's descriptions in [5] [7].

However, spotting nouns in the domains through speech is a risk, as it can cause
situations where all entities are not found [5]. The reason is that many technical
and business jargon uses nouns instead of verbs [5]. For example, we say email
one another instead of sending an email or google instead of searching Google [5].
This way of speaking also causes a risk for the relationships, which are named in
the ER model and the graph data model with verbs [7] [34] or verbal phrases [6].
Instead of missing entities, the way we speak can cause falsely identified

relationships [5].

30

[also noted a correlation between the statement for the ER model regarding the
entity set, which is a group of entities sharing the same attributes [6], and how
[5] describes the possibility of grouping entities with labels in a graph data model.
A clear difference between the ER model and the graph data model is that all the
entities in a graph group do not need to have common attributes, Figure 15.

Figure 16 shows an example output from the conceptual design phase for a graph
DB [37]. In a meeting with business stakeholders, a whiteboard drawing is
created to map entities and relationships for movies [37]. The whiteboard
drawing is digitalized, and the syntax for the relationship labels, expected by
Neo4j in the property graph, is introduced [37]. According to Bechberger and
Perryman [7], the correct syntax can be left to the logical design phase.

Whiteboard drawing Whiteboard drawing in digital format

W\ oo S Do eV ' Tom Hanks l (Hugo Weaving J
‘
A (Y (K eo

ACTED_IN,
ACTED_IN

[Cloud Atlas) The Matrix
Lana
Wachowski

Figure 16. Conceptual data model as drawn in a meeting with business stakeholders and then digitalized
(picture adapted from figures in [37])

The conceptual data model, having the form of a graph, both in the design process
for arelational DB and a graph DB, is used as an input for the logical data model.
Before moving to the logical design phase, it is an excellent practice for the
relational DB to verify the model against transactions, which the future users will
perform on the data [6]. Transactions mean the updating, searching, retrieving,
inserting, and deleting of the data [6]. In graph DB design, the suggestion for
testing comes after the logical design phase before implementing the model in a
graph DB [5] [7].

31

2.4.3. Logical data model

The logical data model produced in the logical design phase defines how the DB
should be implemented without specifying which DBMS should be used [33].
When designing the relational DB, the high-level ER model is mapped into tables
to fulfill the expectations of the logical structure of the relational model [6]. For
the graph DB, the conceptual data model remains a graph when considering the
data model requirements of the graph data model [6]. This model adds further
details to the conceptual data model and functions as the base for the physical
data model design [33].

Chapters 2.3.1 and 2.3.2 presented an example of a university relational DB being
designed by creating the ER and then the relational models. Involved in the
creation of this model are usually data architects and business analysts [33].
Together, they develop a technical map of rules and data structures based on
technical and performance requirements [33]. Attribute types are specified with
exact precisions and lengths. To avoid duplicate data entries and to ensure only
related data is stored in each table, normalization is usually applied until the third
normal form (3NF) [33]. In the relational DB design, an attribute on a relationship
or other attribute is allowed in the conceptual data model, but no longer in the

logical data model, (see chapter 2.3.2).

The conceptual data model for a graph DB is enriched by clarifying relevant roles
and labels, attributes and properties, and relationships [5]. Figure 17 shows how
the conceptual data model in Figure 16 has been transformed into a logical data
model. Bechberger and Perryman highlight that the usual differences between
the conceptual data model and logical data model are that something that was an
entity in the conceptual data model is implemented as a property on anode in the
logical data model [7]. In graph DB design, the logical data model is the final
design step. Hence, it is emphasized to test this model before implementing it in
a graph DB [5] [7]. In the testing phase, the questions identified in understanding
the problem and the conceptual data model are utilized to verify if it is possible to

traverse through the model to find answers to the questions [7].

32

| Person | Actor | Person W Actor |}
: Tom Hank name: Hugo Weaving
(Ei’é‘ﬁ: 1956) born: 1980
ACTED_IN
roles: Bill Smoke

ACTED_IN

roles: Agent Smith
ACTED_IN

roles: Zachry

title: The Matrix
released: 1999

title: Cloud Atlas
released: 2012

/DIRECTED
Person W Director |}
DIRECTED name: Lana Wachowski
born: 1965

Figure 17. The logical data model for the same movie example as in Figure 16 (picture source [37])

2.4.4. Physical data model

The logical data model needs refinement to a physical data model when the DB
system requires the schema to be explicitly specified [7]. As the GDBMS are
schemeless, this is seldom the case for a graph DB [5] [7]. For the relational DB
with its rigid schema, the physical data model defines how the DB shall be
implemented utilizing a specific RDBMS [33]. This model contains the
specification of the physical features of the RDBMS [6].

Physical features can decide the form of file organization as well as views and
index structures [6] [33]. Naming conventions of the RDBMS need to be followed
for naming the tables and attributes, actual data types need to be set for the
attributes, and constraints, such as primary and foreign keys, need to be specified
[33] [38]. For better performance in DB queries, the normalization made in the
logical data model can be abandoned in the physical data model [5]. This is called
denormalization [5]. A simple example of this is shown in Figure 18, where the
upper frame shows normalized data and the lower frame shows denormalized
data. Through denormalization, the email attribute has been inlined in the user
table. This reduces the penalty of joining operations in queries but introduces
data redundancy [5]. For the relational DB, the physical data model is used in the
actual implementation of the DB [33]. Therefore, it is easy to transform into SQL

scripts that are utilized in creating the DB schema [38].

33

| 3NFnormalized data S]

User Email [
User Id Forename |Surename |Join date UserId email

| 1100022 |Johanna Ilonen 28.5.2022 1100022 |johanna@abo.fi

|| 1100023 |Sara Zassi 30.5.2022 1100022 |johanna@wartsila.com

1100022 |johanna@gmail.com
| 1100023 |(saraZassi@hotmail.com
1100023 |sara@abo.fi

| I— - — — - e —

[Denormalized data |
|
,' User ‘
User Id Forename |Surename |Join date |email

1100022 |Johanna Ilonen 28.5.2022 |johanna@abo.fi |
1100022 |Johanna Ilonen 28.5.2022 |johanna@wartsila.com

| 1100022 |Johanna Ilonen 28.5.2022 |johanna@gmail.com ‘
1100023 |Sara Zassi 30.5.2022 |(saraZassi@hotmail.com

lI 1100023 |Sara Zassi 30.5.2022 |sara@abo.fi

| I — e — — ——— B S — |

Figure 18. Example of 3NF normalized versus denormalized data (author’s picture)

34

3. LITERATURE REVIEW

Chapter 1 mentioned Wartsild’ s increased interest in the graph DB. The graph
data DB is assumed suitable for a dynamic business environment where it
reduces query times and handles relationships between data better than a
relational DB. In this chapter, a motivation pattern for a possible scenario when
an enterprise considers shifting from the relational DB to graph DB, is followed.
The aim is to understand if the graph DB is reasonable for enhancing

manufacturing collaboration in internal and partner networks.

Some weaknesses of the relational DB are listed in chapter 3.1. Chapter 3.2
shows how the graph DB solves the most significant drawback. In chapter 3.3,
the market is investigated, and it is realized that the market leaders use a graph
DB. In chapter 3.4, a success story matching this study’s use case is searched for.
In chapter 3.5, it is recognized that the problem at hand needs to be understood
first and that an analytical approach needs to be used to guide the decision.
Chapter 3.6 summarizes the findings with a specific focus on whether the graph
DB is more dynamic, handles relationships better, and performs better in queries
than the relational DB.

This chapter thus presents the findings from the literature for RQ1, and more
specifically, the answers to these questions:
e How to choose between a relational DB and a graph DB implementation?
What are the benefits and drawbacks, and what are the current trends?
e Are graph data models and graph DB implementations dynamic?
e Is managing and handling relationships among data elements easier in a

graph DB than in a relational DB?

3.1. The relational DB and its weaknesses

The popularity of the relational DB goes back to 1980 [9]. It is still frequently
used, and for some use cases, it is still the best option for storing and organizing
data [9]. Hurlburt et al. suggest that just as the television did not replace the radio,
the graph DB will not replace the relational DB [32]. The relational DB is excellent
for data aggregations [32]. Its high data integrity and consistency make it well-

35

suited for applications where the security of transactions needs to be ensured
[17]. For example, extensive credit card processing systems that require reliable
non-stop operation rely on the relational DB [32]. It is not suitable for use cases
requiring frequent updates to the DB schema, [9] [32] [17] nor when data
volumes proliferate [17].

Introducing a structural change is risky and can take weeks or even months [5].
One reason for the high maintenance cost is that the relational DB stores
structured data in tables with predefined columns [9]. Each row in the table
represents a record, and the intersection between the row and the column
represents a specific data value [17]. There cannot be duplicate rows in a table,
as it would cause ambiguity when executing queries [18]. To prevent duplicate
rows, each table has a primary key consisting of one or several columns with
values unique for every row [18]. The table has another name, relation, and a
column in a link is the attribute [6]. Each relation represents records of a specific
type [6]. The name of the relational DB can hence be misleading, where one
wrongly assumes that the relation is the link between data elements and not the
actual tables [9].

Handling relationships is a significant weakness in the relational DB [9] [39].
Instead of storing relationships, they are computed through expensive join
operations in query executions [17]. The join operations are costly due to the
underlying relational model which, in a query, builds a set of all possible answers
before filtering to arrive at the correct solution [5]. With today’s highly connected
data needs, any enterprise failing to understand connections when making

important data-driven decisions will lack crucial insight [9].

Bechberger and Perryman highlight that for every hundred queries used in a
modern application, the relational DB can handle only eighty-eight queries [7].
The remaining twelve queries deal with complex data links and connections [7].
Especially the queries requiring investigations deeper than three hierarchical
levels, will show the degradation in performance in a relational DB compared to
agraph DB [39]. Robinson et al. [5], bring up an example for query times between
an RDBMS and the Neo4j GDBMS to be according Figure 19. Query times for Neo4;j
remain stable no matter the hierarchy dept, while the RDBMS cannot deliver a

query result on the hierarchy dept level five [5].

36

Relational (EeTt seconds
Database Database 1600,00
Dept Relationship Execution time [Neotl:]] Records returned | 140000
Execution 1200,00
[s] : '
time [s] 1000,00
2 friend-of-friend 0.016 0.010 approx. 2500 800,00
3 friend-of-friend-of 30.267 0.168 approx. 110 000 600,00
friend 400,00
friend-of-friend-of- 200,00
4 friend-of-friend 1543.505 1.359 approx. 600 000 000 a— o —
friend-of-friend-of- 2 3 4 dept
5 friend-of-friend-of- Unfinished 2.132 approx. 800 000 Relational Database W Graph Database (Neodj)
friend

Figure 19. Comparison of execution times in a social network using RDBMS versus GDBMS (author’s picture
adopted from values in [5])

Another weakness of the relational DB is that data mapping into tables is not
how data exists in the real world [9]. In the real world, data exist as objects and
as relationships between these objects [9]. Cao et al. [39] warn that some
knowledge about the data is lost when data is stored in a relational DB. When
product component data is stored in a relational DB, you only understand which
components the product consists of [39]. Holding the same components and their
relationships in a graph DB ensures that the entire product structure is known
[39]. In this case, the graph enables the product to be represented in a 3D
modeling environment as it can be seen in real life [39]. From this connected
structure, design changes are easy to manage, as a change in one component
could, in real-time, indicate which other parts are affected by the change [39]. The
product component nodes can be further connected to supply chain data to
understand the supplier and customer data [39], which gives an even further
real-world perception, where claims concerning specific components are easy to
track [39].

3.2. Graph DB addressing the weakness of relational DB

The graph DB can be an alternative or an additional option if the relational DB
does not manage well with increased attributes, more data, higher speed
requirements in business agility or data accessibility, and significantly more
connections between data elements [9]. The graph DB consists of two main
elements, a node and an edge [9]. The node represents an entity, and the edge
describes the relationship between two nodes [9]. When several nodes and edges
are assembled, they form connected structures called graphs that define a specific

problem domain [9]. In contrast to the relational DB, the graph DB is explicitly

37

designed to handle and store relationships between data elements [9].In a
graph DB, arelationship is seen as essential or even more important than the data
element itself [7]. It is worth noting that the other NoSQL DB types visualized in
Figure 5 are not explicitly designed to handle relationships [5].

The graph makes adding new nodes and edges easy when adapting to new
business requirements [13]. Additions do not require data migrations as the
original data and the purpose remain intact [5]. Bechberger and Perryman
disagree and indicate that changes in a graph DB can still cause data migration
needs. Therefore, they note the importance of not making changes because of
poor design decisions and only due to business changes [7].

3.3. Market leaders using graph DB

LinkedIn, Google, Facebook, and PayPal are early adopters of graph DB, who today
are market leaders who have formed their business value on data relationships
[9] [17]. LinkedIn can be used as an example. They cover all their users with a
graph. Hence, when browsing one’s LinkedIn account, all different connection-
level contacts and mutual connections can be seen in real-time [40]. Also, the
giants in e-commerce, Amazon.com and Wish.com, utilize graphs to rapidly query
information from a scattered and rapidly growing dynamic network of data to

give users spot-on recommendations [40].

A white paper from October 2021 states that more than seventy-five percent of
Fortune 500 companies use graph DB technology [21]. Among these are:
1. Seven of the world’s top ten retailers
Three of the top five aircraft manufacturers
Eight of the top ten insurance companies
All North America’s top twenty banks
Eight of the top ten automakers
Three of the world’s top five hotels

NSk wNb

Seven of the top ten telecommunications companies

https://fortune.com/fortune500/2021/search/

38

3.4. Use cases gaining success through graph DB

Despite the growing trend of graph DB utilization, further investigation is needed
to understand if this is a suitable choice for our problem area. Webber and
Robinson provide a list of five generic use cases where a graph DB brings benefits
to any enterprise [13]:

1. Real-time fraud detection
Real-time recommendations to users
Master data management
Network and Information Technology Operations

i & W N

Identity and accesses management

Saarela agrees with this list and adds use cases for compliance with regulations,
analytics, digital asset management, context-aware services, semantic search,

and situational awareness [40].

Reflecting on chapter 1 and Wartsild’ s desire to know if and how a GDBMS can
enhance manufacturing collaboration in internal and partner networks, it could be
assumed that all of the use cases mentioned above could be encountered in the
requirements for these networks, making the graph DB appealing. For the scope
of this study, only one use case is selected for further investigation. Master data
management is chosen. This selection is based on the assumption that master
data sharing for increased transparency, traceability, and quality improvements

will be of vital interest in the manufacturing ecosystem.

Master data usually consists of data concerning customers, products, accounts,
vendors, and partners [41]. It is highly dynamic and sharable data that is difficult
to fit into a static and generic data model [41]. Itis also challenging to assume that
all master data could be physically stored in one location and that one system
could serve all the needs in master data management [41]. Therefore, enterprises
end up with separate systems covering different needs of master data
management [41]. This creates arisk for information silos, where the data needed

for decisions is not available in real-time [41].

Where data is stored is not relevant. Critical is the availability of consistent and
meaningful views of master data, and that value can be derived from the data and

its relationships [41]. Building relationships between the scattered master data

39

elements and achieving real-time query performance is seen as challenging and
expensive in a relational DB [41]. The graph DB, with its characteristic of
mastering relationships between data elements in a dynamic data structure,
makes it an optimal choice for managing master data within an enterprise [41]
[40] and beyond.

3.5. Analytical approach for deciding DB type

Choosing the graph DB over the relational DB based on reading success stories
and use cases described on the Internet is, according to Bechberger and
Perryman, not a good approach [7]. The risk is getting confused by drastic
oversimplifications, such as, “everything is a graph problem” [7]. In contrast,
there is a risk that the developers choose the familiar relational DB as a form of
convenience or ignorance [7]. However, Robinson et al. note that moving from a
well-established and well-known data platform to graph DB must indicate
immediate and remarkable practical benefits in query performance, flexibility,

and agility [5].

A graph DB is more elegant than a relational DB in problems needing recursive
queries, different result types, or paths [7] [5]. An analytical approach is
proposed to understand if the issue at hand holds these needs. The initial
question in this analysis is: “What problem are we trying to solve?” [7]. Sorting
this out creates an understanding of what data will be stored and how it will be
retrieved [7]. Generalized, any problem fits into one of the following categories
[7]:

e Selection/search

e Related or recursive data

e Aggregation

e Pattern matching

e Centrality, clustering, and influence

Figure 20 summarizes how Bechberger and Perryman describe these separate
categories and how they are utilized for selecting between the relational DB and
the graph DB.

40

RELATIONAL |
—7Y| DATABASE [¥—

Selection / search Aggregation ‘

(Examples: i “_Examples: ™
Give me everyone who works at X7 How many companies are in my system?
Who in my system has a first name like John? R What are my average sales for each day over the
\Locate all stores within X miles? A Bt past month?
I_-' Firsret '-I W:hflt'S the rr:ugnb.gr of transactions processed by my
type? 'system each day? oy

\ Centrality,

Related or recursive clustering, and ‘

L influence

'E:r;amples: ¥ “——Examples: ™
What's the easiest way for me to be introduced to 'Who's the meost influential person | am connected
an executive at X 7 with on LinkedIn?
How do John and Paula know each other?) : What equipment in my network has the most
.@ow's company X related to company Y ? (| substantial impact if it breaks?

Y What parts tend to fail at the same time?

4 Pattern matching i - /’

Y

'E);amples:

Who in my system has a similar profile to me?
Does this transaction look like other known
fraudulent transactions?

@ the user J. Smith the same as Johan 5.7

4/ GRAPH DATABASE &~

Figure 20. By sorting out the questions that will be answered based on the data in the DB, the correct DB type
can be chosen (author’s picture adopted from the text in [7])

If sorting out the category does not clarify which DB type to use, the decision tree
created by Bechberger and Perryman, visualized in Figure 21, can be utilized [7].
Bechberger and Perryman have placed the most vital question first, and
answering “yes” to this question directly indicates that the graph DB is the best
choice [7]. Following this decision tree, the graph DB seems to be a good choice
for manufacturing collaboration in internal and partner networks where the
relations will play a vital part, and frequent evolvements in the systems can be
expected. However, there is no clear indication of immediate and remarkable
practical benefits in areas like query performance, flexibility, and agility. The
specific problem in the domain of interest should according to Robinson et al. be

sorted out before deciding to move from a familiar DB type to the graph DB [5].

https://en.wiktionary.org/wiki/%E2%80%9C

Do | care
about how
things are related
as much as
the things?

Shall we use graph DB?

No

Does my SQL
query perform many
joins on the same table
or require a
recursive
CTE?

No

Yes

Is this because

of a bad
RDBMS model?

Yes
]

How often does
my data structure
evolve?

Rarely

Is my domain a
natural fit for a
graph?

Frequently

Maybe

No

Figure 21. Decision tree to decide between a relational DB or a graph DB (Picture source: [7])

3.6.

Dynamic data model

41

The data models used today need to be flexible and scalable to respond to the

changing demands from within the company and beyond [4]. They need to be

designed to handle complex data and enable rapid insight from data connections

[7]. The data models must be dynamic, allowing the processes to be carried out

with different approaches but still manage situations where the result is

combined and presented [4]. This chapter investigates arguments to understand

if the data models produced for the relational DB versus the graph DB are

dynamic.

The data models produced for a relational DB are rigid table constructions

designed to reflect the data needs of a business at a certain point in time [4]. Their

response to change is weak and requires expensive configurations to reflect

42

changes in business needs [4] [5]. When the data models are designed, there is
usually a need to predict future needs and integrate these requirements into the
models [4]. When the design process is performed, it is often wrongly assumed
that the business is committed similarly throughout the company [4]. If
differences exist, multiple data models may be required [4].

The relational DB design approach is challenging in a world where change is
constant and the future difficult to predict [4]. Robinson et al. [5] recommend
using the graph data modeling approach instead of moving through the relational
DB design process of translating a graph representation into tables, which is done
when the ER model is transformed into the relational model. They claim that each
step in the design process, conceptual data model -> logical data model -> physical
data model, increases the gap between the conceptual world and the model
understood by business stakeholders versus how the DB is implemented. This
gap causes challenges when business needs are changed and must be translated
into concrete actions for the DB implementation. The relational DB design phases
are slow and cause the system to lag behind the evolution of the business. Figure
22 visualizes the gap and the increased risk of misunderstandings between
conceptual and DB implementation when performing data modeling for a

relational DB versus a graph DB.

The graph data model approach is simple, intuitive, and business stakeholder
friendly [5]. The intuitive graph representation of the conceptual world remains
as a graph no matter the design phase [5]. For Bechberger and Perryman [7], this
approach is the solution to fewer design mistakes and easier data model changes.
Adding new elements to the graph model and DB implementation is easy and
straightforward [5] [7]. It remains unclear if data migrations are needed when a
change is made in the data model. Robinson et al. states that no costly and risky
data migrations are required [5]. At the same time, Bechberger et al. notes that
changes in the graph model need changes in the DB implementation, leading to

code changes and some data migration [7].

43

E E z .}" Conceptual o Logical o Physical
model " model " model
Conceptual l
World
Logical
. maodel
it |
Business
\Stakeholder |
graph DB
implementation .
| relational DB
Gap ! implementation
Gap ‘

Figure 22. The gap between the conceptual world and the design steps for a relational DB versus a graph DB
implementation (author’s picture)

3.7. Conclusion

Chapter 3 discussed different situations where the relational DB is suited and
where the graph DB is a better choice. It became clear that this decision should
not be taken based on developers’ preferred choice of DB type or by looking at
success stories from use cases on the Internet. The problem at hand must be
understood before selecting the DB type. Understanding which type of queries
will be addressed on the data in the DB is vital. Mapping the questions according
to the example in Figure 20 can help to choose the correct DB type. The DB type
choice is not straightforward, and sometimes the optimal choice is a hybrid with

several DB types.

The interest in a graph DB existed in Wartsila before the agreement for this thesis
work was made. Based on the literature review, the graph DB seems to be the
correct choice for enhancing manufacturing collaboration in internal and partner
networks. However, a hybrid approach is the most realistic scenario for this type
of enterprise network. With the hybrid system, the optimal data for a relational

DB are stored in a relational DB, and the optimal data for a graph DB is stored in

44

a graph DB. Everything depends on the enterprise network’s requirements and
use cases.

When going through the scenario for why an enterprise would move to a graph
DB from a relational DB, the characteristics listed in

45

Table 4 are recognized. In the table, the happy smiley indicates a positive aspect,
the sad smiley indicates a downside, and the meaning of the neutral smiley is
clarified in the table. In chapter 1, the requirement for dynamic data models and
data models excelling in data queries involving joins were mentioned as two

essential elements.

Based on the arguments in chapter 3.6, it is understood that the data model for a
relational DB is not dynamic. The data model for a graph DB is dynamic and more
intuitive than the relational data model. Hence, it is better understood by
business stakeholders, making discussions and alignment with modification
needs easier. The literature review did not find any investigations where it is
measured how much more effort and time is required for relational versus graph

data modeling.

Based on the literature review, handling relationships is a significant weakness
in the relational DB [9] [39]. Instead of storing relationships, they are computed
through expensive join operations [17]. Join operations become costly due to the
underlying relational model that, in a query, builds a set of all possible answers
before filtering to arrive at the correct solution [5]. The graph DB stores
relationships directly in the graph structure and quickly returns a result for

queries that would require joins between tables in a relational DB [5].

46

Table 4. Recognized benefits and drawbacks of the characteristics described in chapter 3

Characteristic Relational DB Graph DB

High data integrity
and consistency

Relational DBs are known Neo4;j is entirely ACID
compliant. However, this is
not the case for all graph
DBs. NoSQL DBs are
generally only BASE
compliant (Table 2).

to be fully ACID compliant.

Handling
relationships

Maintenance cost

Query execution time

OO

Depending on the size of | Quite stable query execution
the DB and how many time, no matter the
hierarchical levels need to hierarchical level.
be searched. Performance
decline when more than

three hierarchical levels.

Intuitiveness (data
mapping
corresponds to how
we perceive it in the
real world)

Handling the
dynamic business
environment and
changing
requirements

© O

47

4. CASE STUDY

This chapter presents the case study consisting of the following:
1. Relational and graph data modeling experiment design and case study (to
answer RQ2)
2. Graph data model implementation in Neo4j standalone desktop version
(to answer RQ3).

The literature indicates that the relational data model’s response to change is
weak and requires expensive configurations to reflect changes in business needs
[4] [5]. In contrast, the graph data model is described to be dynamic. It is easy to
add new data elements when adapting to new business requirements in the graph
data model [13]. Despite the dynamic capability being highlighted as a benefit of
the graph data model, we note that research comparing the relational domain to
the graph domain mainly focuses on DB query execution times and handling
relationships between data elements. The literature review did not find any
experiments investigating the difference in effort and time needed to implement

and modify a relational data model versus a graph data model.

The data models implemented in this case study cover equal data needs. The case
study is set up with an experimental design and analysis approach. The
implementation level is the logical data model for a relational DB and a graph DB.
The data modeling tools selected are the ERDPlus [42] for relational data
modeling and the arrows.app [43] for graph data modeling. The data needs are
understood from discussions with business stakeholders and an analysis of an
engine’s DBOP. The DBOP is available in an Excel file with a table of 9210 rows
and 38 columns. The content of the DBOP is further explained in chapter 4.2.1.

To understand if the graph data model is more dynamic than the relational model,
an experiment is planned and tested as a case study. The exact data needs were
modeled as a relational data model and a graph data model. In the case study the
author represents the subject., The limitation of having only one subject available
creates the limitation of nut running a statistically relevant experiment. In a
future experiment ten to twenty Information Technology students would be a

reasonable subject scope.

48

The dynamic capability is seen as an indirect measure. To calculate the dynamic
capability, the following data is realistic to collect:
e The time needed for data analysis and discussions with business
stakeholders to understand the data needs
e The data modeling time

e The number of data elements in the data model

In addition, the subjective qualitative and subjective analysis of the difficulty level
of building the relational data model versus the graph data model gives valuable
insight.

In the case study an independent domain expert reviewed the models to
understand if the implementation meets the expectations of Wartsila.
Quantitative implementation measures, such as query execution times, are
beyond the scope of this case study and has neither been planned for in the

experiment design.

The design of the experiment is described in chapter 4.1. Chapter 4.2 describes
the data modeling process and the resulting data models. Chapter 4.3 describes
the steps and results of the graph data model implementation in the Neo4j

standalone desktop version.

4.1. Experimental design

This chapter describes the outcome of the experimental planning stage. The

chapter covers the reporting structure suggested by Wohlin et al. [44], Figure 23.

49

Experimental design Describes the outcome of the experimental planning stage

Goals, hypotheses and ~ Presents the refined research objectives
variables

Design Deline the type of experimental design

Subjects Defines the methods used for subject sampling and group allocation

Objects Defines what experimental objects were used

Instrumentation Defines any guidelines and measurement instruments used

Data collection Delines the experimental schedule, timing and data collection procedures
procedure

Analysis procedure Specifies the mathematical analysis model to be used

Evaluation of validity Describes the validity of materials, procedures to ensure participants

keep to the experimental method. and methods to ensure the
reliability and validity ol data collection methods and tools

Figure 23. The reporting structure for the experimental design (picture source: [44])

4.1.1. Goal definition

The experiment is motivated by the lack of evidence for the claim that the graph
data model is more dynamic than the relational data model. Dynamic is seen as
equal to the effectiveness and efficiency of creating a data model and later
implementing changes to this model. The time for analysis and data modeling,
together with a qualitative review of challenges faced during the implementation,
indicate the implementation's efficiency. Effectiveness is a measure of how well
the model meets the expected result. The best option in a dynamic environment
is amodel that is easy to implement and adapts to changes easily. If both the data
modeler and the business stakeholder understand the implemented model, it is

easier to discuss and align on needed changes.

The object of study is a relational data model and a graph data model. Often in
DB design, three levels of data models are created. These levels are presented in
chapter 2.4. This experiment is limited to the logical data model. With this
selection, the specific requirements of DB providers are avoided, but it is still

possible to identify a difference between the graph and the relational models.

The purpose of the experiment is to understand the dynamic capability of the

relational data model and the graph data model.

50

The perspective is from the point of view of the author. Seeking to understand if
the literature describing the graph data model to be more dynamic than the
relational data model can be verified.

The quality focus for the dynamic capability is on the effectiveness and
efficiency of implementing the selected data model types. The time it takes to
understand the data needs and later implement the relational data model versus
the graph data model is measured in minutes. Also, the number of elements in
each model is counted. In the relational data model, the tables and relations
between the tables are calculated. The number of nodes and edges for the graph
data model is considered. The effectiveness and efficiency of the data modeling
are computed by summing the time it takes for data analysis and modeling, and
then dividing this total time by the number of elements in the data model.

Context. When the experiment is carried out three sequential steps are
recommended. The first step is the data analysis and discussion with business
stakeholders. The second step is relational data modeling and the third is graph
data modeling. The data analysis and modeling shall be carried out in a
disturbance-free environment. A maximum length of 90 minutes per session shall
be set to ensure proper focus during the analysis and modeling. The date and time
used per session shall be recorded. In the calculations, only each data model's

complete analysis and data modeling time shall be used.

The goal summary was defined using the Wohlin et al. goal template, Figure 24.

Analyze <Obiject(s) of study>

for the purpose of <Purpose>

with respect to their <Quality focus>

from the point of view of the <Perspective>
in the context of <Context>.

Figure 24. Wohlin et al. goal template (Picture source: [44])

Analyze the graph data model and relational data model dynamic capability

for the purpose of evaluation

with respect to their effectiveness and efficiency

from the point of view of the author

in the context of a subject, first analyzing the data needs and then modeling the

relational and graph data model for an engine DBOP.

51

4.1.2. Hypothesis formulation

The basis for the hypotheses is that the graph data model is assumed to be more
dynamic than the relational data model. The null hypothesis defines the graph
and relational data models as equally dynamic. The alternative hypothesis
explains the graph data model as more dynamic than the relational data model.

Table 5 presents the null and alternative hypotheses and measures needed in the

experiment.

Table 5. Null hypothesis and alternative hypothesis, together with their mathematical formulation and

measures needed for understanding the dynamic capability of the data models

The null hypothesis, Ho: The alternative hypothesis, Hi:

Ho_crete: Analyzing the data needs and | Hicrete: Analyzing the data needs and
implementing a graph data model | implementing a graph data model
requires as much effort and time as the | requires less effort and time than the

corresponding relational data model. corresponding relational data model.
Mathematical formulation:
Ho_crete: (AnalysisTime(graph) + H1_cretet (AnalysisTime(graph) +

CreateTime(graph)) / Elements(graph) = | CreateTime(graph)) / Elements(graph) >
(AnalysisTime(relational) + CreateTime | (AnalysisTime(relational) + CreateTime

(relational)) / Elements (relational) (relational)) / Elements (relational)
Simplified: Simplified:
Ho_crete: CreateEff(graph) = CreateEff H1_cretet CreateEff(graph) > CreateEff
(relational) (relational)

Measures needed:
When the data needs are understood:
During analysis and discussion sessions, the time used is recorded in minutes. When
the model is completed, all session times are summed and registered as, AnalysisTime.

When the models are implemented:
During the modeling sessions, the time used is recorded in minutes. When the model
is completed, all session times are summed and registered as, CreateTime.

After model implementation:

The number of elements in the data model is calculated when the model is complete.
For the relational data model, the number of tables and the relations between the
tables are counted. The number of nodes and edges for the graph data model are
measured.

The effectiveness and efficiency of implementing the data model for a specific data
model type, CreateEff, is calculated with the formula also used in the mathematical
formulation of the hypothesis:

CreateEff = (AnalysisTime(modelType) + CreateTime(modelType)) /
Elements(modelType)

52

4.1.3. Variables

The variables used in the experiment are summarized in Table 6. The data model
type is the only independent variable. It has two nominal levels: a graph data
model and a relational data model.

The variables of the subject experience in graph data modeling and relational
data modeling are controlled. The subject’s experience is mapped per modeling
type and measured on an ordinal scale with the levels:

1. No prior experience.

N

Followed a course or read a book.

w

Less than six months of industrial experience.

=

More than six months of industrial experience.

The dependent variables are related to the time spent on data analysis and
modeling and the number of elements in each data model. The time measured is
objective. The decision of whether the model is correctly implemented is
subjective. Also, the number of elements can be considered subjective. The reason
is that fulfilling specific data needs can be modeled in numerous ways. To
minimize the bias in these measurements, the 3NF normalized form for the
relational model and guidelines on building a labeled property graph for the
graph data model are followed. In determining if the model is correct, a
qualitative review is performed with an independent and experienced data

modeling expert and a business stakeholder.

The effectiveness and efficiency of the model are calculated as the summed data
analysis and modeling time, divided by the number of elements in the data model.

This measure gives an understanding of the dynamic capability of the data model

type.

Table 6. Variables used in the experiment

53

Name Values Description

ModelType {graph, relational} | The subject creates two alternative logical
data model types: a graph data model and a
relational data model.

GraphExp Ordinal The subject’s experience with modeling
graphs is measured on a four-level ordinal
scale.

Relational Exp Ordinal The subject’s experience with relational data
modeling is measured on a four-level ordinal
scale.

AnalysisTime Integer The total time subject uses when analyzing the
data needed for a data model. The unit is
minutes.

CreateTime Integer The total time subject uses when creating a
data model. The unit is minutes.

Elements Integer The number of elements in a data model.

CreateEff (AnalysisTime + | The effectiveness and efficiency of the

CreateTime) / | implementation of the data model. The units
Elements are left out in the CreateEff calculation.

4.1.4. Design

When designing the experiment, the hypothesis was used as a starting point to
understand which statistical analysis to perform to reject the null hypothesis
[44]. The experiment was designed as a set of tests from which the data needed
for the statistical analysis was collected. General design principles of

randomization, blocking, and balancing were followed in the design [44].

Randomization was used to fulfill the requirement of collecting the data for
statistical analysis from independent random variables [44]. Randomization can
be applied to the objects, subjects, and the order of the tests in the experiment
[44].

The subjects for the experiment are recommended to be a natural random
selection of ten to twenty M.Sc. Information Technology students at Abo Akademi.
The subjects perform data analysis and discussions with business stakeholders
to understand the problem and to create the data models. The order in which the
models are created could be randomized. Instead, a conscious decision to create

the data model for which the subject has better experience first. This balances the

54

subject performance possibilities when creating the two alternative data models.
Starting data modeling on an unfamiliar data set takes time. It is hence considered
fair to take the hit in ramp-up time when modeling the more familiar modeling
type. This way, undertaking the more unfamiliar data modeling type will only
cause ramp-up time in the modeling approach and not the data set. Due to the
small size of the experiment, no blocking was applied.

Wohlin et al. also present some frequently used experiment design types, which
range from simple experiments with only one factor to more complex ones with

many factors [44]:

e One factor with two treatments.
e One factor with more than two treatments.
e Two factors with two treatments.

e More than two factors, each with two treatments.

The factor is the independent variable on which treatments are applied [44]. The
only factor is the ModelType. There are two treatments: graph and relational. This
experiment’s design type is one factor with two treatments. This type of
experiment intends to compare two treatments against each other [44]. The
dependent variables of this experiment are defined in chapter 4.1.3. The main

interest is the CreateEff, which indicates the dynamic capability of the data model.

The most used approach for the one factor with two treatments experiment
design type is to have a completely randomized design where the subject uses
only one treatment. In this experiment, the same subject uses both treatments.
This design type is defined to be a paired comparison design or a crossover
design. The risk in the paired comparison design is that the subject utilizes
experience from treatment one when applying the second treatment. This risk is
identified as an opportunity. In case where the relational is more familiar, the
relational is selected to be used as the first treatment. The experience from

relational data modeling can then be utilized when applying the graph treatment.

55

4.1.5. The subject

The subjects for the experiment are recommended to be a natural random
selection of ten to twenty M.Sc. Information Technology students at Abo Akademi.

In the case study the subject is the author, who is an M.Sc. Information
Technology student at Abo Akademi, Vaasa. The author has experience level 4,
more than six months of industrial experience, in relational data model design. The
graph data modeling experience level is 2, followed a course or read a book. Level
2 in graph data modeling is acquired from the literature review made for this

study.

4.1.6. The object

The objects of the study are a relational data model and a graph data model.
Both are on a logical data model level and describe the same data scope. The data
scope is the DBOP for an engine produced in the Wartsila STH delivery center in

Vaasa, Finland.

4.1.7. Instrumentation

Wohlin et al. [44] recognize three types of instruments to be chosen in the
planning phase of an experiment. These are objects, guidelines, and measurement
instruments. The following are needed:

e The exact data scope will be used for the graph and relational data models.

e Mapping the experience level of the subject.

e Basic understanding of data modeling concepts, chapter 2.

e Selection of and familiarization with data modeling tools.

e A timing watch for measuring the length of the data modeling sessions.

The data modeling tools selected are ERDPlus [42] for relational data modeling
and arrows.app [43] for graph data modeling. These were chosen because both
are free web-based data modeling tools. Both are easy to use due to their

graphical modeling capability which does not require specific data modeling

56

language skills. Both offer the possibility of exporting the created data models as
query commands to be used when a DB is created. The query language used in
the export by ERDPlus is SQL [42]. Arrows.app exports query commands as
Cypher clauses [43].

4.1.8. Data collection

The case study to evaluate the experiment design was carried out during the fall
of 2022. The measurements needed and the data collection approach is defined
in Table 6.

4.1.9. Analysis procedure

The mathematical analysis model is selected based on the experiment design
type. The condition of the experiment hypothesis is accepted or rejected based
on the observed p-values. The p-value is the lowest possible significance that can

reject the null hypothesis. [44]

In chapter 4.1.4, the design type was specified to be paired comparison design.
Examples of analytical models suitable for the paired comparison design are a
paired t-test, a sign test, and a Wilcoxon [44]. The paired t-test is a parametric
test that requires some of the parameters involved in the test to be normally
distributed and the values to be on an interval scale [44]. The sign test and the
Wilcoxon are non-parametric tests that do not require a specific distribution of
the involved parameters [44]. The analyzed parameters (time in minutes,
number of elements, effectiveness, and efficiency) are on a ratio scale, and normal
distributions are not guaranteed. Based on this, the Wilcoxon test was selected
for the analysis. A significance level of 0.05 was chosen to consider the result
significant. In other words, the probability of not getting a random result was
95%.

57

4.1.10. Evaluation of validity

A valid result can be ensured by considering the experiment's validity already in
the planning stage [44]. Wolin et al. [44] describe different types of threats to the

validity of an experiment.

Conclusion validity concerns correct conclusions concerning the relationship
between the treatment and the experiment result [44]. Possible problems are
choosing the wrong statistical analysis or performing mathematical calculations
wrong [44]. The conclusion validity also highly depends on the data quality used
in the calculations [44]. Internal validity addresses issues where some
uncontrolled factors affect the result of the experiment [44]. Construct validity
discusses problems with how the experiment is designed [44]. External validity
concerns if we can generalize the experiment to other environments, subjects,
and contexts [44].

Validity in the experiment can be ensured by:

e Noting the importance of not searching for a specific experiment result.

¢ Having an independent data modeling expert verify the correctness of the
data models.

¢ Including the time-consuming task of understanding the data needs as a
measure in the experiment.

e Understanding the basic concepts of relational data modeling and graph
data modeling. This is ensured by performing the background study and
literature review before the experiment.

e Recognizing the need to map the experience of the subjects. This will help
understand if the result is screwed due to unbalanced relational and graph
data modeling skill levels.

e Disturbances are eliminated by keeping the experiment in a quiet
environment and not allowing more than 90 minutes for each data

analysis or modeling session.

The generalization of the result is limited to relational and graph data models.
Understanding the dynamic capability of other data models needs separate
investigation. Additionally, the limitation to the logical data model shall be noted.

More data model levels, like conceptual and physical models, would be included

58

in an actual DB design and implementation scenario. An increased amount of data

models increases the complexity and data modeling time.

Generalizing the result to an industrial setting with more experienced subjects
cause a situation where the time needed to carry out the data analysis and
modeling is reduced. Also, the data scope and cooperation with business
stakeholders affect the result of the experiment. The data analysis time is reduced
if the business stakeholders communicate their needs. While more data analysis
time is needed in case discussions with business stakeholders are minimal. It is
expected that the ratio of the dynamic capabilities of the relational data model
versus the graph data model remains the same no matter the data in the scope
and the involvement of the business stakeholders.

4.2. Data modeling

In our case study an incremental data modeling process is used where the steps
described in chapter 2.4 are followed. The design process starts with
understanding the problem and business needs. This is done through discussions
with business stakeholders and analyzing any relevant material. The second step
is to create the conceptual data model. We do not create a conceptual model but
utilize an existing Excel file with a table describing the hierarchical structure of
an engine DBOP. The third step is to make the logical data model. As the aim is to
implement the graph data model in Neo4j, the labeled property graph is selected
as the graph model type. For the relational data model, no specific RDBMS
provider needs are considered. Still, we decided on a 3NF-normalized relational
data model. In the 3NF normalized data model, we aim to build tables with a
realistic minimum of duplicated data. At the same time also reduces the number
of null values. The data model correctness is verified against the data needs and
through an evaluation by an independent data modeling expert and business
stakeholder feedback.

The remaining part of this chapter covers the result of the process in Figure 25.
The black text describes what was done and the blue text the measurements
collected from evaluating the experiment design. The variables are explained in
chapter 4.1.3. The measures are explained in chapter 4.1.2. Chapter 4.2.1

presents the data modeling needs. Chapter 4.2.2 presents the decisions made

59

when creating the relational and graph logical data models, including
modifications to fulfill the expectations of the independent data modeling expert
and business stakeholder.

Understand the data Create a relational Create a graph Analyze and verify
modeling needs data model data model the created data models
L, Ll Calculate
Measure Measure Elements(Relational)

Measure

AnalysisTime(Relational
y CreateTime(Relational)

AnalysisTime(Graph)

CreateTime(Graph) Elements(Graph)
CreateEff(Relational)
CreateEff(Graph)

Figure 25. Data modeling process, including the measures and calculations needed for the experiment

(Author’s picture)

4.2.1. Understanding data modeling needs

An ideal scenario for data modeling is where the data modeler and business
stakeholders discuss and align on the data needs. Discussions with business
stakeholders are minimal in this experiment. Instead, focus is put on
understanding the data needs from the DBOP Excel file. The business stakeholder
describes the DBOP as the manufacturing steps of an engine built at the Wartsila
STH manufacturing site in Vaasa. The DBOP is engine configuration specific and
matches the needs of a unique engine. Other variations in the DBOP are due to

the layout of the manufacturing site.

In Figure 26 to Figure 28, the 29 first rows of the DBOP can be seen. The data is
obfuscated not to disclose company-sensitive data. According to the business
stakeholder, the key column in the DBOP Excel file is the StrLevel. In contrast, the
data modeling expert selected the TcType column. Further explanations of the
DBOP were not given. Due to this minimal input that does not provide much
guidance for the data modeling, only 10 minutes from the discussions with
business stakeholders were recorded to the AnalysisTime variable for both the

relational and graph treatment.

The DBOP Excel file data analysis took place on the 17t - 20t of August 2022.
The total analysis time was 597 minutes. During the analysis, it was not easy to
distinguish which part was dedicated to the relational versus the graph data
model needs. The data modeling phase, described in chapter 4.2.2, revealed that

the data analysis is ninety percent focused on the requirements for the relational

60

data model. The remaining ten percent focused on the needs for the graph data
model, the investigation concerning the hierarchical structure of the DBOP. Based
on this understanding, the 537 minutes were added to the
AnalysisTime(relational) and 60 minutes to the AnalysisTime(graph). When
adding the 10 minutes of discussion with the business stakeholder, the total
AnalysisTime(relational) is 547 minutes, and AnalysisTime(graph) is 70 minutes.

61

= o v B W R

A B D E F G H K L M o} P Q R
ParentlD ParentReviD |StrLevel [Seq Nr [Qty 1D ReviD [Name TcType ReleaseDate OccType |Description Plant |EngineNumber
root o 1 XAAC111111 (A DBOP-PBOP-WI2VAGTSDF A CdA A35 Power Supply SP/05555.3 |WDelivery Process Revision|2022-02-17 08:16:00.000 |[NULL DBOP-PBOP-W12V46TSDF A CdA A35 Power Supply SP/05555.3|[NULL [XAAC121212
XAACIII111 (A 1 1 ¥AAC222222 (A U46-FI06-PLANT WPlant Process Revision 2022-02-17 08:16:00.000 [NULL DU46-FI06-PLANT NULL [NULL
XAAC222222 |A 2 1 XAAC333333 |- PRODUCT PREPARATION AND TESTING WZone Process Revision 2022-02-17 08:16:00.000 [NULL NULL NULL NULL
XAAC222222 |A 2 1 XAACT39638 |- PRODUCT MAIN ASSEMBLY WZone Process Revision 2022-02-17 08:16:00.000 [NULL PRODUCT MAIN ASSEMBLY NULL NULL
XAAC222222 (A 2 1 XAACAA44S - MODULE SUBASSEMBLIES WZone Process Revision 2022-02-17 08:16:00.000 [NULL MODULE SUBASSEMBLIES NULL |NULL
XAAC333333 |- 3 1 ¥AAC555555 |- WA46TS PREPARATION & TESTING & DISPATCH Wline Process Re! 2022-02-17 08:16:00.000 [NULL W46TS PREPARATION & TESTING & DISPATCH NULL |NULL
XAACAA4444 |- 3 1 XAACH66666 |- WA46TS ENGINE BLOCK w CRANKSHAFT SUBASSEMBLY WLine Process Re! 2022-02-17 08:16:00.000 [NULL W46TS ENGINE BLOCK w CRANKSHAFT SUBASSEMBLY NULL |NULL
XAACA44444 |- 3 1 XKAACT39649 |- WA46TS PUMP COVER SUBASSEMBLY WLine Process Re! 2022-02-17 08:16:00.000 [NULL W46TS PUMP COVER SUBASSEMBLY NULL NULL
XAACA44444 |- 3 1 XAACT39651 |- WA46TS CONNECTING ROD w PISTON SUBASSEMBLY WLine Process Re! 2022-02-17 08:16:00.000 [NULL W46TS CONNECTING ROD w PISTON SUBASSEMBLY NULL NULL
XAAC739638 |- 3 1 XAACT39639 |- W46TS LARGE ASSEMBLIES Wline Process Revi 2022-02-17 08:16:00.000 [NULL W46TS LARGE ASSEMBLIES NULL [NULL
XAACAA4AA4 |- 3 1 XAACT39653 |- WA46TS POWERUNIT SUBASSEMBLY WLine Process Revision 2022-02-17 08:16:00.000 [NULL W46TS POWERUNIT SUBASSEMBLY NULL |NULL
XAACAA4AA4 |- 3 1 XAACT39655 |- W46TS MULTI-TRANSFER PIPE SUBASSEMBLY, A BANK WlLine Process Revision 2022-02-1708:16:00.000 [NULL W46TS MULTI-TRANSFER PIPE SUBASSEMELY, A BANK NULL |NULL
XAACA44444 |- 3 1 XAACT39657 |- WA46TS MULTI-TRANSFER PIPE SUBASSEMBLY, B BANK WLine Process Revision 2022-02-17 08:16:00.000 [NULL WA46TS MULTI-TRANSFER PIPE SUBASSEMBLY, B BANK NULL NULL
XAACA44444 |- 3 1 XAACT39659 |- W46TS AUTOMATION SUBASSEMBLY WLine Process Revision 2022-02-17 08:16:00.000 [NULL WA6TS AUTOMATION SUBASSEMBLY NULL NULL
XAACAA4A44 |- 3 1 XAACT39661 |- WA46TS HP PUMP SUBASSEMBLY, A BANK WLine Process Revisian 2022-02-17 08:16:00.000 [NULL W46TS HP PUMP SUBASSEMBLY, A BANK NULL [NULL
XAACAA4444 |- 3 1 XAACT39663 |- WA46TS HP PUMP SUBASSEMBLY, B BANK WlLine Process Revision 2022-02-17 08:16:00.000 [NULL W46TS HP PUMP SUBASSEMBLY, B BANK NULL |NULL
XAACAA4AA4 |- 3 1 XAACT39665 |- WAETS EXHAUST PIPE SUBASSEMBLY WLine Process Revision 2022-02-17 08:16:00.000 [NULL W46TS EXHAUST PIPE SUBASSEMBLY NULL |NULL
XAACA44044 |- 3 1 XAACT39667 |- WA46TS CYLINDER HEAD + COOLED PARTS SUBASSEMBLY WLine Process Revision 2022-02-17 08:16:00.000 [NULL W46TS CYLINDER HEAD + COOLED PARTS SUBASSEMBLY NULL NULL
XAACA44444 |- 3 1 XAACT39669 |- WA46TS CYLINDER HEAD SUBASSEMBLY WLine Process Revision 2022-02-17 08:16:00.000 [NULL WA46TS CYLINDER HEAD SUBASSEMBLY NULL NULL
XAACA44444 |- 3 130 1 XAACT39671 |- WAGTS HP CAC SUBASSEMBLY, A BANK Wline Process Revisi 2022-02-17 08:16:00.000 [NULL WAGTS HP CAC SUBASSEMBLY, A BANK NULL [NULL
XAACAA4AA4 |- 3 140 1 XAACT39673 |- WAETS HP CAC SUBASSEMBLY, B BANK WLine Process Revi. 2022-02-17 08:16:00.000 [NULL W46TS HP CAC SUBASSEMBLY, B BANK NULL |NULL
XAACAA4444 |- 3 150 1 XAACT39675 |- WA4ETS HP AIR DUCT SUBASSEMBLY, A BANK WLine Process Revi. 2022-02-17 08:16:00.000 [NULL W46TS HP AIR DUCT SUBASSEMELY, A BANK NULL |NULL
XAACA44044 |- 3 160 1 XAACT39677 |- WA46TS HP AIR DUCT SUBASSEMBLY, B BANK WLine Process Re! 2022-02-17 08:16:00.000 [NULL W46TS HP AIR DUCT SUBASSEMBLY, B BANK NULL NULL
XAACA44444 |- 3 170 1 XAACT39679 |- WA46TS LP-COOLER SUBASSEMBLY A-BANK WLine Process Re! 2022-02-17 08:16:00.000 [NULL WA46TS LP-COOLER SUBASSEMBLY A-BANK NULL NULL
XAAC444444 |- 3 180 1 XAACT39681 |- WAETS LP-COOLER SUBASSEMBLY B-BANK WLine Process Re! 2022-02-17 08:16:00.000 [NULL WAGETS LP-COOLER SUBASSEMBLY B-BANK NULL |NULL
XAACAA4444 |- 3 190 1 XAACT39683 |- W46TS TURBOCHARGER SUBASSEMELY Wline Process Re! 2022-02-17 08:16:00.000 [NULL W46TS TURBOCHARGER SUBASSEMBLY NULL |NULL
XAACS555555 |- 4 1 XAACT39628 |- WA46TS COUPLING FOR ME FAT GENERATOR WStation Process Rev 2022-02-17 08:16:00.000 [NULL W46TS COUPLING FOR ME FAT GENERATOR NULL |NULL
XAACE66666 |- 4 1 XAACT39648 |- EBCS-5UB WStation Process Revision (2022-02-17 08:16:00.000 [NULL WA4ETS EB with CS-SUBASSEMBLY NULL [NULL

Figure 26. The 29 first rows of the DBOP Excel file. Part 1 of 3. The data is obfuscated. (Author’s picture)

62

S T u v w X Y z AB AC AD

EngineA ion|EngineDescripti Ma9_Parentltem |PhaselLevel PlantLevel |ProcessType |QualityKey |AlternateProcess |C C bly |Purch: RealizationIlD
W12V46TSDF W12VA6TSDF A CdA A35 Power Supply SP/05555.3 |NULL NULL NULL NULL MNULL NULL NULL NULL MNULL MNULL

NULL NULL NULL NULL NULL NULL MNULL NULL NULL NULL MNULL MNULL

NULL NULL NULL NULL NULL NULL MNULL NULL NULL NULL MNULL MNULL

NULL NULL NULL NULL NULL NULL MNULL NULL NULL NULL MNULL MNULL

NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL

NULL NULL NULL NULL NULL NULL MNULL NULL NULL NULL MNULL XAAC111285
NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL XAAC111282
NULL NULL NULL NULL NULL NULL MNULL NULL NULL NULL MNULL XAAC111296
NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL XAAC111238
NULL NULL NULL NULL NULL NULL NULL NULL MNULL NULL NULL XAAC111288
NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL XAAC111301
NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL XAAC111302
NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL XAAC111303
NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL XAAC111304
NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL XAAC111309
NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL XAACI11311
NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL XAAC111313
NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL XAAC111335
NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL XAAC111314
NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL XAAC111340
NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL XAAC111342
NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL XAAC111344
NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL XAAC111348
NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL XAAC111359
NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL XAAC111366
NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL XAAC111318
NULL NULL NULL CPLG-ME-PREP=COUPLING PREPARATION FOR MAIN ENGI! NULL NULL NULL NULL NULL NULL NULL NULL

NULL NULL NULL EBCS-SUB=EN E BLOCK + CRANKSHAFT MODULE (DCT) NULL NULL NULL NULL NULL NULL NULL NULL

Figure 27. The 29 first rows of the DBOP Excel file. Part 2 of 3. The data is obfuscated. (Author’s picture)

63

QN o e W =

AF AG AH Al Al AK
OwningUser |OwningGroup PSA |MfgProcessi METargetltemiD |SortString
grpadm 4st Engines.Product Engineering.Delivery |NULL |NULL NULL NULL NULL
grpadm 4st Engines.Product Engineering.Delivery |NULL |NULL NULL NULL NULL
grpadm 4st Engines.Product Engineering.Delivery |NULL |NULL NULL NULL NULL
grpadm 4st Engines.Product Engineering.Delivery [NULL |NULL NULL NULL NULL
grpadm 4st Engines.Product Engineering.Delivery [NULL |NULL NULL NULL NULL
grpadm 4st Engines.Product Engineering.Delivery [NULL |NULL NULL NULL NULL
grpadm 4st Engines.Product Engineering.Delivery [NULL |NULL NULL NULL NULL
grpadm 4st Engines.Product Engineering.Delivery [NULL |NULL NULL NULL NULL
grpadm 4st Engines.Product Engineering.Delivery [NULL |NULL NULL NULL NULL
grpadm 4st Engines.Product Engineering.Delivery [NULL |NULL NULL NULL NULL
grpadm 4st Engines.Product Engineering.Delivery [NULL |NULL NULL NULL NULL
grpadm 4st Engines.Product Engineering.Delivery [NULL |NULL NULL NULL NULL
grpadm 4st Engines.Product Engineering.Delivery [NULL |NULL NULL NULL NULL
grpadm 4st Engines.Product Engineering.Delivery [NULL |NULL NULL NULL NULL
grpadm 4st Engines.Product Engineering.Delivery [NULL |NULL NULL NULL NULL
grpadm 4st Engines.Product Engineering.Delivery [NULL |NULL NULL NULL NULL
grpadm 4st Engines.Product Engineering.Delivery [NULL |NULL NULL NULL NULL
grpadm 4st Engines.Product Engineering.Delivery [NULL |NULL NULL NULL NULL
grpadm 4st Engines.Product Engineering.Delivery |NULL |[NULL NULL NULL NULL
grpadm 4st Engines.Product Engineering.Delivery |NULL |NULL NULL NULL NULL
grpadm 4st Engines.Product Engineering.Delivery |NULL |NULL NULL NULL NULL
grpadm 4st Engines.Product Engineering.Delivery |NULL |[NULL NULL NULL NULL
grpadm 4st Engines.Product Engineering.Delivery |NULL |NULL NULL NULL NULL
grpadm 4st Engines.Product Engineering.Delivery |NULL |NULL NULL NULL NULL
grpadm 4st Engines.Product Engineering.Delivery |NULL |NULL NULL NULL NULL
grpadm 4st Engines.Product Engineering.Delivery |NULL |NULL NULL NULL NULL
grpadm 4st Engines.Product Engineering.Delivery |NULL |NULL NULL NULL NULL
grpadm 4st Engines.Product Engineering.Delivery |NULL |NULL NULL NULL NULL

and how the

Jupyter Notebook’s version 4.5.6 web-based

Identify groups of data. The primary keys are mapped in the identified
language.

Check and handle columns containing only null values.
Understand relationships between data elements
hierarchical structure of the DBOP is constructed.
groups for the needs of the relational data model.

Check and handle duplicate data.

Figure 28. The 29 first rows of the DBOP Excel file. Part 3 of 3. The data is obfuscated. (Author’s picture)
°

company-specific and sensitive data, some data is obfuscated or hidden. Instead
interactive computing platform was chosen as the programming environment.

The size of the DPOB is 9210 rows and 38 columns. This large Excel file requires
structured and efficient data analysis. Python 3.6 was selected as the

In this chapter, the findings from the DBOP Excel analysis are presented. Due to

of focusing on specific data values, the aim is to:

programming

64

This selection was made due to the author’s preference. Building the data analysis
with a Python script also enables code to be reused for other engine DBOP
analyses.

Figure 29 shows the Python libraries used in the data analysis. Pandas is the most
central library used. The data is stored in a Pandas data frame when reading the
data from the Excel file. From the Pandas data frame, data is manipulated, viewed,
and used. Pandas is an open-source data analysis and manipulation tool that is
fast, powerful, and easy to use [45]. NumPy is used in Python array computations
because it is fifty times faster than traditional Python lists [46]. NumPy also
includes many supporting functions that make working with arrays easy [46].
Matplotlib, Seaborn, NetworkX, and Pydot are used to visualize data. Table 7

summarizes the library versions used in the analysis.

import numpy as np #arrays

import pandas as pd # data processing

import matplotlib.pyplot as plt #plotting

import seaborn as sns #plotting

import networkx as nx #graph presentation

import pydot

from networkx.drawing.nx_pydot import graphviz_layout

Figure 29. Libraries used in the data analysis (Author’s code)

Table 7. Library versions used in the data analysis

Library Version
Numpy 1.19.5
Pandas 0.25.3
Matplotlib 3.2.2
Seaborn 0.11.2
NetworkX 2.5.1
Pydot 1.4.2

Figure 30 shows the code for viewing the DBOP data frame info. In the result,
Figure 31, the number of rows and columns in the data frame and the name and
datatype of each column can be seen. The number of non-null values per a specific
column is also presented. Five columns in the data frame contain only null values.
These columns are:

e occpuid

e Plant

e (CombidingParameter

65

e MfgProcessRevision
e METargetitemID

The columns without values do not bring value to the data analysis or the data
model and are thus removed. Columns marked as irrelevant by the business
stakeholders are also removed from the data frame. These are:

e ParentRevUID

e RevUID

e ReleaseStatus

e OccType

print("A list of all column names in the DPOB dataframe. ")
print("Including a summary of number of non-null values.\n")

dfDBOP. info()

Figure 30. The Pandas info method is utilized for viewing info about the DBOP data frame (Author’s code)

A list of all column names in the DPOB dataframe.
Including a summary of number of non-null values.

<class 'pandas.core.frame.DataFrame’ >
RangeIndex: 9218 entries, @ to 928%
Data columns (total 38 columns):

ParentID
ParentRevID
ParentRevlUID
Strievel

Seq_HNr

oty

ID

RevID

RevUID
ReleaseStatus

MName

TcType

ReleaseDate
occpuid

OccType
Description

Plant

Enginshumber
Enginefbbreviation
EngineDescription
Maf_ParentItem
PhaselLavel
FlantLevel
ProcessType
QualityKey
AlternateProcess
CombiningParameter
ConsumadAssembly
PurchaseCode
RealizationID
RealizationRevisionID
OwningUser
OwningGroup

P54
MfgProcessRevision
METargetItemID
SortString
DrawingRelation

9218 non-null object
9289 non-null object
921@ non-null object
8921@ non-null inted
9218 non-null inted
9218 non-null object
9218 non-null object
921@ non-null object
9218 non-null object
8282 non-null object
9218 non-null object
9218 non-null object
8187 non-null object
8 non-null floatsd
4182 non-null object
7838 non-null object
@ non-null floato64d

3 non-null object

3 non-null object

3 non-null object
4872 non-null object
378 non-null obhject
331 non-null object
331 non-null object
73 non-null object
331 non-null object
@ non-null floatsd
28 non-null object
46 non-null object
21 non-null cbject
21 non-null cbhject
9288 non-null object
9288 non-null object
331 non-null object
8 non-null floatsd

@ non-null floato64d
332 non-null object
257 non-null obhject

dtypes: floate4(5), inte4({2), object(31)

memory usage: 2.7+ MB

Figure 31. Info about the DBOP data frame (Author’s code)

66

Before starting a more detailed data analysis, it was checked if the DBOP data

frame has duplicate data rows. The code and result for this check are presented

67

in Figure 32. The result shows that there are no duplicate rows in the data frame
that would need to be addressed.

dfDuplicateDataDBOP = dfDBOP[dfDBOP.duplicated()]

#visualizing how many duplicate rows were found in format (rows, columns)
print('Number of duplicated rows in DBOP: ', dfDuplicateDataDBOP.shape[@]);

Number of duplicated rows in DBOP: @

Figure 32. Code and result to check if duplicate data rows exist in the DBOP data frame. (Author’s code)

A contradicting message concerning a pivotal column to use in the data analysis
was received in the initial discussions with the business stakeholder and the data
modeling expert. One of then marked the StrLevel as the essential column, while
the other specified the TcType as important. Hence, it is relevant to understand if

there is a direct relationship between these two columns.

A relationship is confirmed if a unique value of TcType returns a unique value of
StrLevel and if a unique value of StrLevel returns a unique value of TcType. Figure
33 shows the code for a function plotting how many unique values of
columnName each group value has. Figure 34 is the result of calling this function
to understand how many TcType each StrLevel has. The result shows that there
are values of StrLevel returning more than one TcType value. Hence, the TcType

is not dependent on the StrLevel.

def uniqueValueGraphWithTicks(dataframeName, group, columnMame, graphTitle, rotationValue):
dataframelame.groupby(group)[columnName].nunique().plot.bar(rot=8)

plt.title(graphTitle, size=15)
plt.ylabel(Count')
plt.xticks(rotation=rotationValue)

Figure 33. Function for plotting how many values for the column given in the columnName argument exist for
each column included in the group argument in the data frame given the in dataframeName argument. The
graphTitle is the argument for the title of the plot. The rotationValue specifies which direction the x-axis ticks
shall have. (Author’s code)

68

uniqueValueGraphWithTicks(dfDBOP, 'StrlLevel’, 'TcType',
'Mumber of unique values of TcType per StrlLevel’, 'horizontal’)
Number of unique values of TcType per StrLevel
4.0
35
30
25
E
3
820
15
1.0
0.0
0 1 2 3 4 5 8 7 8 901 996 997 988 989 1100 1200
StrLevel

Figure 34. Number of unique values of TcType per StrLevel (Author’s code)

Figure 35 shows how many unique values of StrLevel each TcType value has. The
result indicates that five TcType values return more than one unique StrLevel
value. Based on the outcome, it can be concluded that the StrLevel is not
dependent on the TcType, and there is no direct relationship between the TcType
and StrLevel.

uniqueValueGraphWithTicks (dfDBOP, 'TcType', ’Strlievel’,
"Mumber of unique values of StrlLevel per TcType', ‘vertical')

Number of unigue values of StrLevel per TcType

Mfg Revision -

Module Variant Revision -
StandardMaterial Revision

WProcess Revision -

Wtation Process Revision -

Drawing Set Revision
Material Revision

,: A
MEPrStationRevision -

WLine Process Revision -
WPIlant Process Revision -
WZone Process Revision -

Catalog Material Revision
Document Set Revision
WDelivery Process Revision -
WhE_RealizationRevision
WhE_SolutionltemRevision

TeTyp

@

Figure 35. Number of unique values of StrLevel per TcType (Author’s code)

69

By looking at the column names, it was assumed that:
e an OwningUser always belongs to the same OwningGroup

e an OwningGroup has one or many OwningUsers

Through investigation, this assumption was proved to be partly false. Figure 37
shows that an OwningUser can belong to eight OwningGroups. Figure 38 confirms
that an OwningGroup can have one or many OwningUsers. The function called
when creating the graphs in Figure 37 and Figure 38 is visible in Figure 36.

The OwningUser and OwningGroup values are hidden for confidentiality reasons.
The OwningUser values represent the user identification in the Surname,
Forename format, or as a code like grpadm. For the relational data model, where
normalization rules are followed, consideration to split the forename and
surname into separate columns is needed. The OwningGroup is a company

organizational code in text format.

def unigueValueGraph(dataframelame, group, columnName, graphTitle):
dataftrameName.groupby(group)[columnName].nunique().plot.line{rot=8)

plt.title(graphTitle, size=15)
plt.ylabel(' Count’}

#changing the y-axis range from decimals to integers
locs, labels = plt.yticks()
yint = []

for each in locs:
yint.append(int({each))
plt.yticks(yint)

plt.xticks([]) #hiding x-axis ticks

Figure 36. Function for plotting how many values for the column in the columnName argument exist for each
column included in the group argument in the data frame in the dataframeName argument. The graphTitle

argument specifies the title of the plot. (Author’s code)

70

uniqueValueGraph(dfDBOP, 'OwningUser', 'OwningGroup’,
‘Number of unique values of OwningGroup per OwningUser')

Number of unique values of OwningGroup per OwningUser

Count
-~ 3]

w

OwningUser

Figure 37. The number of unique values of OwningGroup per OwningUser (Author’s code)

uniqueValueGraph(dfDBOP, 'OwningGroup', 'OwningUser’,
‘Number of unique values of OwningUser per OwningGroup')

00 Number of unique values of OwningUser per OwningGroup

175

150

Count

OwningGroup

Figure 38. The number of unique values of OwningUser per OwningGroup (Author’s code)

By looking at the column names and order of the columns, it is assumed that:
e ParentRevID is the revision of the ParentID
e RevID is the revision of the ID

e RealizationRevisionlD is the revision of the RealizationID

Storing a revision value for the id calls for the understanding that an id can have
several revisions. Figure 39 shows that the DBOP data frame has 2395 unique
ParentID values and 11 unique ParentRevID values. The function in Figure 36
checks the number of unique values of ParentRevIDs for each ParentID. Figure 40

shows that most of the ParentID values have one ParentRevID. Looking carefully

71

at the graph in Figure 40, a line drop to Count level 0 can be seen on the right
edge. This drop is for the ParentID value equal to the root. The root is the first row
in the DBOP Excel file and the only ParentID without a revision value.

print('Number of unique values ParentID: ', dfDBOP.ParentID.nunique())
print('Number of unique values ParentRevID: ', dfDBOP.ParentRevID.nunique())

Number of unique values ParentID: 2395
Number of unique values ParentRevID: 11

Figure 39. The number of unique values of ParentID and ParentRevID in the DBOP data frame (Author’s code)

uniquevalueGraph(dfDBOP, 'ParentID’, 'ParentRevID’,
‘Number of unigue values of ParentRevID per ParentID')

Number of unique values of ParentRevID per ParentlD

Count

ParentiD

Figure 40. The number of unique values of ParentRevID per ParentID (Author’s code)

In the DBOP data frame, there are 5225 unique /D values and 18 unique RevID
values, Figure 41. By calling the function in Figure 36, it is checked how many
unique values of RevID each value of ID has. Figure 42 shows that most of the ID
values have one RevID. Some ID values also have two, three, or six different ReviD

values.

print('Number of unique values ID: ', dfDBOP.ID.nunique())
print("Number of unique values RevID: °, dfDBOP.RevID.nunique())

Number of unique wvalues ID: 5225
Number of unique values RevID: 18

Figure 41. The number of unique values of ID and RevID in the DBOP data frame (Author’s code)

uniquevalueGraph(dfDBOP, 'ID', 'RevID',
"Number of unigue values of RevID per ID')

Number of unique values of RevID per ID

2 | II " “ | |
1

D

Figure 42. The number of unique values of RevID per ID (Author’s code)

72

In the DBOP data frame, there are 21 unique RealizationID values and two unique

RealizationRevisionID values, Figure 43. The function in Figure 36 is used to check

how many unique values of RealizationRevisionID each value of RealizationID has.

The result in Figure 44 shows that each RealizationID has one unique

RealizationRevisionID.

print('Number of
print('Number of

Number of unique
Number of unique

unique values RealizationID:

values RealizationID: 21
values RealizationRewvisionID:

', dfDBOP.RealizationID.nunique())
unique values RealizationRevisionID: ', dfDBOP.RealizationRevisionID.nunique())

2

Figure 43. The number of unique values of RealizationID and RealizationRevisionlID in the DBOP data frame

(Author’s code)

uniqueValueGraph(dfDBOP, 'RealizationID®, ‘RealizationRevisionID',

"Number of unique values of RealizationRevisionID per RealizationID')

Number of unique values of RealizationRevisionID per RealizationID

Count

RealizationlD

Figure 44. The number of unique values of RealizationRevisionID per RealizationID (Author’s code)

73

From the analysis result of the three different id columns and their respective
revision columns, it is recognized that each value of ParentID and RealizationID
has one unique revision. It can be dangerous to assume that each id will always
have one revision. Instead, it is believed that having decided to include the id and
its revision in the DBOP, these columns will be considered as a pair. The situation
with the ID and the RevID pair is a likely scenario for the ParentID and the
ParentRevID pair and the RealizationID and the RealizationRevisionID pair.

The Id and the revision pairs are also recognized in the Ma9_Parentltem column.
In this column, the id and the revision values are combined and separated with a
/ character. This column has one or many ids and revision pairs in one value. Each
pair is split with the | character. This column is hence multivalued. An example of

values in the Ma9_Parentltem column can be seen in Figure 45.

Ma9_Parentltem
PABA191919/A|PABA181818/A
PABA252525/A
PABAQ77777/-|PABA055555/A|PAAF666666/A

Figure 45. Ma9_Parentltem example values in the DBOP Excel file. The data has been obfuscated. (Author’s

picture)

A separate data frame is created from the DBOP data frame to investigate the
Ma9_Parentltem. Only rows with a Ma9_Parentitem value are selected for the new
data frame. Additionally, all columns containing only null values for the selected
rows are dropped. The code and information about the new data frame are
presented in Figure 46. The new data frame is named dfMa9_Parentltem and

contains 4072 rows and 15 columns.

74

dfMa®_ParentItem = JfDBOP[~dfDBOP['Mag_ParentItem’].isnull()]
dfMa®_ParentItem

dfMa®_ParentItem = dfMa% ParentItem[dfMad9 ParentItem.columns[~dfMa? ParentItem.isnull().all{}]]
print(Mumber of rows in the DBOP with Ma9 ParentItem value: °, dfMa9 ParentItem.shape[@], "\n')
dfMa®_ParentItem.info()

Mumber of rows in the DBOP with Ma%9_ParentItem valus: 4872

<class 'pandas.core.frame.DataFrame’ >

Inte4Index: 4872 entries, 1396 to 5539
Data columns (total 15 columns)

ParentID 4872 non-null object
ParentRevID 472 non-null obhject
Strievel 472 non-null inte4
Seq _Nr 4872 non-null inte4
Qty 4272 non-null object
0 472 non-null obhject
RevID 472 non-null obhject
Mame 472 non-null obhject
TcType 4872 non-null object
Releaselate 4272 non-null object
Description 3116 non-null object
Ma2 ParentItem 4272 non-null object
PurchaseCode 42 non-null chject

OwningUser 4872 non-null object
OwningGroup 4872 non-null object

dtypes: inte4(2)}, ocbject{13)
memory usage: 58%.8+ KB

Figure 46. The data frame where every row has a Ma9_Parentltem value, and none of the columns contain
only null values (Author’s code)

For investigating the Ma9_Parentltem id and the revision pairs, a dedicated data
frame containing only the Ma9_Parentltem column is created. In this data frame,
the Ma9_Parentltem id and revision pairs are separated into pairwise rows, and
the id and revision values are split into separate columns. The code for this is
visible in Figure 47. The code rows with a comment sign (#) in front of the
table_Ma9_Parentltem have been used to output intermediate results during

coding.

75

#creating a copy from dfMa9 ParentItem containing only Ma9 ParentItem column
table MaS8 ParentItem = dfMa9 ParentItem[[Ma% ParentItem']].copy()

#dropping duplicates
table_Ma9_ParentItem=table_Ma9_ParentItem.drop_duplicates()

#copying the Ma9 ParentItem column to keep the original as a reference to the DBOP datafarme,
#and have a copy of this that can be splitted to have one value / cell in the table
table_Ma9_ParentItem['MaS_ParentItemSplit'] = table_Ma9_ParentItem['Ma9_ParentItem']
#table Ma9 ParentItem

#splitting on |

#new rows are created for each split and the original Ma9 ParentItem is copied to edach new row
table_Ma9_ParentItem[*Mad_ParentItem'] = table_Ma%_ParentItem['Ma9_ParentItem’].str.split(’|")
table_Ma9_ParentItem = table_Ma9_ParentItem.explode('Mag_ParentItem').reset_index(drop=True)
cols = list(table_Ma9_ParentItem.columns)

cols.append{cols.pop(cols.index('Ma% ParentItemSplit')))

table_Ma%_ParentItem = table_Ma9_ ParentItem[cols]

#table Ma9_ParentItem

#splitting the ID from revision based on the separator string: /

table_Ma9_ParentItem[['Ma¢_ParentItemID', 'Ma9_ParentItemRevID']]=table Ma® ParentItem.Ma%_ParentItem.str.split('/’,
expand=True)

#table Ma9_ParentItem

#removing unneccessary column
table_Ma9 ParentItem.drop({'Ma% ParentItem', inplace=True, axis=1)

#renaming columns
table MaS8_ ParentItem.rename(columns = {'Ma@ ParentItemSplit':'Ma% ParentItem'}, inplace = True)
table_Ma% ParentItem

Figure 47. The code for creating a separate data frame where the Ma9_Parentltem id and the revision pairs are
split into individual rows, and the id and the revision values are separated into columns.

Figure 48 shows an example of running the code in Figure 47. The
Ma9_Parentltem column contains the original value. Comparing the split data to
its initial value indicates how the data is split. Figure 49 shows the principle for

the Ma9_Parentiltem data splitting.

Ma9_Parentltem Ma9_ParentitemID |Ma9 ParentltemRevIiD
PABA198198/A|PABA183183/A PABA198198 A
PABA198198/A|PABA183183/A PABA183183 A

PABA251251/A PABA251251 A

PAAF811811/- PAAF811811 -

PAAF812812/C PAAF812812 C

PABA777775/-|PABA777755/A|PAAF666666/A PABA777775

PABA777775/-|PABA777755/A|PAAF666666/A PABA777755 A
PABA777775/-|PABA777755/A|PAAFG666666/A PAAF666666 A
PABA215215/A|PAAF667667/A PABA215215 A
PABA215215/A|PAAF667667/A PAAF667667 A

Figure 48. Example result where the Ma9_Parentltem id revision pairs are split into their own rows and

separate columns are created for the id and the revision. The data has been obfuscated. (Author’s picture)

76

Ma9_Parentltem Ma9_ParentItemID Ma9_ParentltemRevID

PABA198198/A|PABA183183/A PABA198198

PABA183183

Figure 49. The principle for splitting the Ma9_Parentitem values (Author’s picture)

Figure 50 shows that there are 225 unique Ma9_ParentitemID values and seven
unique Ma9_ParentltemRevID values in the DBOP data frame.

print('Number of unique values Ma9 ParentItemID: ', table Ma9 ParentItem.Ma® ParentItemID.nunique())
print('Number of unique values Ma9_ParentItemRevID: ", table Ma9 ParentItem.MaS ParentItemRevID.nunique())

Number of unique wvalues Ma9_ParentItemID: 225
Number of unique values Ma9_ParentItemRevID: 7

Figure 50. The number of unique values of Ma9_ParentltemID and Ma9_ParentltemRevID in the DBOP data
frame (Author’s code)

The function in Figure 36 is used to check how many unique
Ma9_ParentltemRevID values each Ma9_ParentltemID value has. Figure 51 shows
that each Ma9_ ParentltemID value has one Ma9_ParentitemRevID. With the same
arguments as for the previous id and revision pairs, it can be concluded that an id
and its revision need to be considered as a pair.

uniquevalueGraph(table Ma9 ParentItem, 'Ma9 ParentItemID', 'Ma9 ParentItemRevID',
‘Number of unique values of Ma9 ParentItemRevID per Ma9 ParentItemID')

Number of unique values of Ma9 ParentltemRevID per Ma9 ParentitemID

Count

]

Ma9_ParentitemID

Figure 51. The number of unique values of Ma9_ParentitemRevID per Ma9_ParentitemID (Author’s code)

77

A pattern between ID and RevID pairs and ParentID and ParentRevID pairs are
recognized when outputting the first ten rows of the DBOP. Figure 52 shows the
principle for the identified pattern. Where the ID and RevID pair at row zero
becomes the ParentID and ParentRevID pair at row one. The ID and RevID in row
one become the ParentID and ParentRevID pair in rows two, three, and four. This
pattern is assumed to form the hierarchical structure in the DBOP. If the same
ParentID and ParentRevID pair exists on several rows with the same StrLevel
values, the Seq_Nr value differs. From the Ma9_Parentltem column name, a
possible connection to the ParentID and ParentRevID pair is also assumed. The
recognized hierarchical structure and possible relation to Ma9_Parentitem values
are investigated to understand the following:

e Does the hierarchical structure exist throughout the DBOP?

e Is the Ma9_Parentltem involved in forming the hierarchical structure of

the DBOP?

ParentlD ParentRevIiD StrLevel Seq_Nr Qty ID ReviD

0 root NaN 0 0

10

8 5 30

9 3 30

Figure 52. Principal sketch of the hierarchical structure in the DBOP. The gray area from row 5 forward
contains ID and RevID pairs for which there are rows further down in the DBOP with matching ParentID and
ParentRevID pairs. (Author’s picture)

Figure 53 presents the code for creating two separate data frames from the DBOP

data frame. One of them contains unique values of ParentID and ParentRevID

78

pairs. The other has unique values of ID and RevID pairs. These data frames are
merged with the Pandas merge function, which automatically adds a column
named _merge. The _merge column identifies if the id and revision pair are found
in both original data frames, or only in one of these data frames. If the _merge
value is left_only, the id and rev pair are only found in the dfParentIDandRev data
frame, and if the _merge value is right_only, the id and rev pair are only found in
the dfIDandRev data frame. The id and revision pairs where the _merge value is
both indicate that the id and revision pair is found in both data frames. When
found in both data frames, it equals an identified link between the ID and RevID
pair to the ParentID and ParentRevID pair. What the link means in this context

can be seen in Figure 52.

#selecting only relevant columns from the DBOP dataframe and dropping duplicates in the new dataframe
dfParentIDandRev= dfDBOP[['ParentID', 'ParentRevID']].copy()
dfParentIDandRev.drop duplicates{inplace =True)

#selecting only relevant columns from the DBOP dataframe and dropping duplicates in the new dataframe
dfIDandRev= dfDBOP[['ID', 'RevID']].copy()
dfIDandRev.drop duplicates(inplace =True)

#renaming column names in the dataframe to perform an comparison between the content of the dfParentIDandRev and dfIDandRev
dfParentIDandRev.columns = ['id", ‘rev']
dfIDandRev.columns = ['id", 'rev']

#merging the dataframes on id, rev columns. The merge function adds an additional column with the result of the comparison
m_differences = dfParentIDandRev.merge(dfIDandRev, on=['1id", 'rev'], how="outer', suffixes=['"', '_'], indicator=True)
m_differences

Figure 53. The code for investigating if an id, revision pair is found in both ParentID and ParentRevID column

pair and ID and RevID column pair or only in either one of these column pairs (Author’s code)

Figure 54 presents an example result of running the code in Figure 53. The id
values in Figure 54 are obfuscated. If the _merge value is right_only, the particular
ID and RevID pair form an end node in the hierarchical structure. This means that
no further links to lower levels in the hierarchical structure exist from that
specific ID and RevID pair. If the _merge value is left only, it implies that the
ParentID and ParentRevID pair has been linked from another column other than
the ID and RevID pair. The rows whit left_only require further investigation to
identify another pattern in the hierarchical structure that, in addition to the ID
and RevID pair, forms links to the ParentID and ParentRevID pair.

79

id rev _merge
root left_only
XAAC749690 A both
XAAC749627 A both
XAAC749628 - both
XAAC749648 - both
DAAF521031 B right_only
DAAF523346 B right_only
DAAF527352 - right_only
XAAC399556 - right_only
XAAC539259 AB right_only

Figure 54. An example of a result of investigating if the id and revision pair is found in both the ParentID and
ParentRevID pair and the ID and RevID pair. The id values are obfuscated. (Author’s picture)

With the code in Figure 55, the ParentID and ParentRevID pairs with no link from
the ID and RevID pair are copied into a separate data frame. This data frame is
named dfParentiDandRevMissinglDandRev and modified to exclude the _merge
column. Its id and rev column names are changed to ParentID and ParentRevID.
The reason for changing the column names back to their original form is that
Pandas merge requires that the column names in the comparison are equal in
both data frames. The Pandas merge operation is now performed on the

dfParentIDandRevMissingIDandRev and a copy of the original DBOP data frame.

#interested in ParentID ParentRevID combinations which do not have a Link from an ID, RevID combination
dfParentIDandRevMissingIDandRev = m_differences[m_differences['_merge'] =='left_only']
dfParentIDandRevMissingIDandRev

#dropping the _merge column
dfParentIDandRevMissingIDandRev = dfParentIDandRevMissingIDandRev[['id', 'rev']].copy()

#changing the column names to fit the original dataframe

dfParentIDandRevMissingIDandRev.rename(columns = {'id':'ParentID', 'rev':'ParentRevID'}, inplace = True)
dfParentIDandRevMissingIDandRev

Figure 55. Creating a data frame containing only the ParentID and ParentRevID column pairs with no link from
the ID and RevID column pairs. (Author’s code)

The code for the second merge operation is shown in Figure 56. In this merge
operation, the _merge values equal to both are in focus. These are the DBOP rows
where the ParentID and ParentRevID pair do not have a link from the ID and RevID
pair. The rows with _merge value both are stored in a data frame named
dfRowsWithNoLink_IDandRevID_ParentlDandParentRevID. =~ The row with
ParentID equal to the root is dropped. This is the first node in the hierarchical
structure for which no link from any previous node is expected. Also, the _merge

column and columns with only null values are dropped. The remaining size of the

80

dfRowsWithNoLink_IDandRevID_ParentIDandParentRevID is 153 rows and 14
columns, Figure 57. The following investigates if the remaining 153 rows are
linked from the Ma9_Parentiltem column.

#creating copy of the original dataframe
dfDBOP_copy = dfDBOP

#comparing the dfDBOP_copy to dfParentIDandRevMissingIDandRev
m_differences2 = dfDBOP_copy.merge(dfParentIDandRevMissingIDandRev,

on=['ParentID', 'ParentRevID'], how='outer', suffixes=['"', '_'], indicator=True)
m_differences2

dfRowsWithNoLink_IDandRevID_ParentIDandParentRevID = m_differences2[m_differences2['_merge'] =="both']
dfRowsWithNoLink_IDandRevID_ParentIDandParentRevID

#removing root as this 1is the initial node, not expected to have previous Linkage from the ID, RevID columns
dfRowsWithNoLink_IDandRevID_ParentIDandParentRevID = dfRowsWithNolLink_IDandRevID_ParentIDandParentRevID[

dfRowsWithNoLink_IDandRevID_ParentIDandParentRevID['ParentID'] !='root']
dfRowsWithNoLink_IDandRevID_ParentIDandParentRevID

#removing the _merge column and columns with only null values
dfRowsWithNoLink_IDandRevID_ParentIDandParentRevID.drop('_merge', inplace=True, axis=1)
dfRowsWithNoLink_IDandRevID_ParentIDandParentRevID = dfRowsWithNoLink_IDandRevID_ParentIDandParentRevID[
dfRowsWithNoLink_IDandRevID_ParentIDandParentRevID.columns[
~dfRowsWithNoLink_IDandRevID_ParentIDandParentRevID.isnull().all()]]

dfRowsWithNoLink_IDandRevID_ParentIDandParentRevID.info()

Figure 56. The code for selecting the rows in the DBOP data frame with no link from the ID and RevID column
pair to the ParentID and ParentRevID column pair. The resulting data frame is named
dfRowsWithNoLink IDandRevID_ParentIDandParentRevID (Author’s code)

<class 'pandas.core.frame.DataFrame'>
Inté4Index: 153 entries, 9©31 to 9199
Data columns (total 14 columns):
ParentID 153 non-null object
ParentRevID 153 non-null object
StrLevel 153 non-null inte4
Seg_Nr 153 non-null inté4
Qty 153 non-null object
ID 153 non-null object
RevID 153 non-null object
Name 153 non-null object
TcType 153 non-null object
ReleaseDate 153 non-null object
Description 135 non-null object
OwningUser 153 non-null object
OwningGroup 153 non-null object
DrawingRelation 153 non-null object
dtypes: inté4(2), object(12)

memory usage: 17.9+ KB

Figure 57. The dfRowsWithNoLink _the IDandRevID_the ParentID and the ParentRevID contain 153 rows and

14 columns. (Author’s code)

Figure 58 presents the code where a third merge operation is performed. This
time the merge is performed on copies of the data frame created in Figure 47 for

the Ma9 Parentltem investigation and the data frame made in Figure 56. Only

81

columns containing an id and a revision are kept in the copied data frames.
Duplicated values of the id and revision pairs are dropped before performing the
Pandas merge operation.

#creating copy of the table_Ma9 ParentItem with only columns Ma3_ParentItemID and
#Ma9_ParentItemRevID included

#dropping duplicates

dfMad_ParentItemIDandRev= table_Ma9 ParentItem[['Ma% ParentItemID', "Ma® ParentItemRevID']].copy()
dftMad_ParentItemIDandRev.drop_duplicates(inplace =True)

#dfMad_ParentItemIDandRev

#creating copy of the dfRowsWithNolLink_IDandRevID ParentIDandParentRevID with only columns ParentID and
#ParentRevID included

#dropping duplicates

dfParentIDandRev2= dfRowskWithNoLink_IDandRevID_ParentIDandParentRevID[['ParentID', 'ParentRevID']].copy()
dfParentIDandRev2.drop_duplicates(inplace =True)

#dfParentIDandRev2

#renaming columns to match in order to make a comparison
dfMad_ParentItemIDandRev.columns = ['id', "rev']
dfParentIDandRevZ.columns = ['id", "rev']

#comparing dfParentIDandRev2 to dfMa® ParentItemIDandRev on the columns id and rev
m_differences3 = dfParentIDandRev2.merge(dfMa9_ParentItemIDandRev, on=["id', 'rev’], how='outer’,
suffixes=["", '_'], indicator=True)

Figure 58. The code for creating a merged column of the Ma9_Parentitem id and revision pairs and the
ParentID and ParentRevID pairs that are missing links from the ID and RevID columns (Author’s code)

Figure 59 presents the result of the merge operation. It can be seen that all the
ParentID and ParentRevID pairs that did not have a connection from the ID and
RevID pairs have a relationship from the Ma9_Parentitem. Additionally, there are
no remaining ParentID and ParentRevID pairs with a missing link from either the

ID and RevID pair or the Ma9_Parentltem. The investigation also reveals that

82

values with no link forward exists in the Ma9_Parentltem column. As for the ID
and RevID pairs, these form the so-called end nodes in the hierarchical structure.

#where _merge = both we have a connection between Ma9_ParentItem and ParentID, ParentRevID
dfRowsWithLink_Ma9_ParentItem_ParentIDandParentRevID = m_differences3[m_differences3['_merge'] =="both']

print('Number of rows with a connection between Ma9_ParentItem and ParentID, ParentRevID:’,
dfRowsWithLink_Ma9_ParentItem_ParentIDandParentRevID.shape[@])

Number of rows with a connection between Ma%_ParentItem and ParentID, ParentRevID: 141
#where _merge = Left_only there are still ParentID, ParentRevID combinations we have

#not found a Link to in the dataframe
dfRowsWithNoLink_Mag_ParentItem_ParentIDandParentRevID = m_differences3[m_differences3['_merge'] =="left_only']

print('Number of rows where a connection to the ParentID, ParentRevID combinations is still misssing:’,
dfRowsWithNoLink_Ma2_ParentItem_ParentIDandParentRevID.shape[@])

Number of rows where a connection to the ParentID, ParentRevID combinations is still misssing: @

#where _merge = right_only there are Ma9 ParentItem values that has no Link forward
dfMag9_ParentItem_endNode = m_differences3[m_differences3['_merge'] =="right_only’]

print('Number of rows where a Ma9_ParentItem value has no link forward:",
dfMa9_ParentItem_endNode.shape[@])

Number of rows where a Ma9_ParentItem value has no link forward: 84

Figure 59. Investigating the links from Ma9_Parentltem to ParentID and ParentRevID shows that there are
141 unique id and revision pairs with links from the Ma9_ParentltemID and Ma9_ParentltemRevID column
pair to the ParentID and ParentRevID column pair. In the DBOP structure, there are no ParentID and
ParentRevID pairs that are not linked from either the ID and RevID pair or the Ma9_Parentitem. In the DBOP,
84 unique Ma9_ParentltemID and Ma9_ParentitemRevID pairs have no link forward in the hierarchical
structure. (Author’s code)

The investigation of the hierarchical structure shows that a ParentID and a
ParentRevID pair is linked from a higher hierarchical level of an ID and a RevID
pair or an id and a revision pair in the Ma9_Parentitem column. Figure 60 shows

a simplified sketch of the recognized hierarchical structure.

ParentlD,
ParentReviD

| —

Ma9_Parentitem
(splitted into ID,
ReviD)

ID, ReviD

ParentlD,
ParentRevID

S

ParentlD,
ParentReviD

Figure 60. Simplified sketch of the principle of links to the ParentID and ParentRevID pairs. This forms the
hierarchical structure of the DBOP. (Author’s picture)

83

The entire hierarchical structure of the DBOP can be visualized with the
NetworkX library. A graph with the dependencies between ID and RevID pairs
and ParentID and ParentRevID pairs is first created. Then a graph with the
dependencies between Ma9_Parentltem and ParentID and ParentRevID pairs
follows. These NetworkX graphs are then merged.

A copy of the DBOP data frame is created to prepare for the visualization. The
code in Figure 61 creates a column connecting the ID and RevID pairs and a
column combining the ParentID and ParentRevID pairs. Figure 62 shows how
these new columns are utilized when creating the NetworkX graph of the DBOP
hierarchical structure formed between the ID and RevID pairs and the ParentID
and ParentRevID pairs. The result in Figure 63 shows a gap in the DBOP
hierarchical structure.

#creating a dataframe where there is dedicated columns where ID and Revisions combined
dfDBOPForGraphs = dfDBOP

dfDBOPForGraphs['ParentIDandRev'] = dfDBOPForGraphs['ParentID'] + '/' + dfDBOPForGraphs[’'ParentRevID"]
dfDBOPForGraphs[' IDandRev’] = dfDBOPForGraphs['ID'] + '/' + dfDBOPForGraphs[RevID']

dfDBOPForGraphs['ParentIDandRev'].iloc[®] = 'root’

Figure 61. The code for creating a data frame of the DBOP data where the id and revision pairs are combined
in a separate column for both ID and RevID pairs and the ParentID and ParentRevID pairs (Author’s code)

G_DBOP_ParentIDLink = nx.from_pandas_edgelist(
df = dfDBOPForGraphs,
source="IDandRev",
target="ParentIDandRev")

G_DBOP_ParentIDLink_color_map = []

for node in G_DBOP_ParentIDLink:
if node =='root':
G_DBOP_ParentIDLink_color_map.append(' green’)
else:
G_DBOP_ParentIDLink_color_map.append(orange")

plt.figure(3,figsize=(15,15))

nx.draw(G_DBOP_ParentIDLink, with_labels=False, node_size=18,
node_color=G_DBOP_ParentIDLink_color_map)

plt.show()

Figure 62. T code for creating a graph with edges connected from the combined ID and Rev ID (IDandRev)
node to the combined ParentID and ParentRevID node (ParentIDandRev) (Author’s code)

84

Figure 63. A NetworkX graph visualization of the DBOP hierarchical structure formed between ID and RevID
pairs and ParentID and ParentRevID pairs (Author’s code)

The gap in Figure 63 can be filled by knowing that some data points are connected
from the Ma9_Parentltem column to ParentID and ParentRevID pairs. When
preparing for the second graph, a copy of the data frame created in Figure 61 is
made to reuse the combined ParentID and ParentRevID column. The new data
frame is then modified to contain dedicated rows for each Ma9 Parentltem id and
revision pairs initially stored in the same value. The knowledge that the |-sign
separates each pair is utilized in the split. The code for creating this data frame is

presented in Figure 64.

85

#creating a copy from dfDBOP
dfDBOPForGraphs_Ma9 = dfDBOPForGraphs

#copying the Ma% ParentItem column to keep the original
dfDBOPForGraphs_Ma9['Ma9_ParentItemIDandRev'] = dfDBOPForGraphs_Ma9['Ma9 ParentItem’]

#splitting on |
#new rows are created for each split and the original data on the row is copied to the new row.
#0nly difference is Mag9 Parentltem data that is splitted

dfDBOPForGraphs_Ma9['Ma9 ParentItem'] = dfDBOPForGraphs_Ma9['Ma9 ParentItem'].str.split('|")
dfDBOPForGraphs_Ma9 = dfDBOPForGraphs_Ma9.explode('Mad9 ParentItem').reset_index(drop=True)

cols = list(dfDBOPForGraphs_Ma9.columns)
cols.append(cols.pop(cols.index('Ma9_ParentItemIDandRev')))

dfDBOPForGraphs_Ma9 = dfDBOPForGraphs_Ma9[cols]

#splitting the ID from revision based on the separator string: /
dfDBOPForGraphs_Ma9[['Ma9_ParentItemID’, 'Ma9 ParentItemRevID']]=dfDBOPForGraphs_Ma9.Ma9 ParentItem.str.split('/’,
expand=True)

Figure 64. The code where the data frame created in Figure 61 is copied to a new data frame where the
Ma9_Parentltem id and revision pairs are split into individual rows. (Author’s code)

Figure 65 presents the code for creating the second NetworkX graph of the DBOP
data, utilizing the connection between Ma9 Parentitem and ParentID and
ParentRevID pairs. Figure 66 presents the result. There is a dense data cluster

forming in the middle and some data points surrounding it.

G_DBOP_Ma9ParentItemParentIDLink = nx.from_pandas_edgelist(
df = dfDBOPForGraphs_Ma9,
source="Ma9_ParentItemIDandRev’,
target="ParentIDandRev")

plt.figure(3,figsize=(15,15))

nx.draw(G_DBOP_Ma9ParentItemParentIDLink, with_labels=False, node_size=18, node_color="blue’)

plt.show()

Figure 65. The code for creating a graph with edges connected from the Ma9_Parentltem id and revision pair
(Ma9_ParentltemIDandRev) node to the combined ParentID and ParentRevID node (ParentIDandRev)
(Author’s code)

86

Figure 66. A NetworkX graph visualization of the DBOP hierarchical structure formed between

Ma9_Parentltem id and revision pairs and ParentID and ParentRevID pairs (Author’s code)

The two separate graphs are combined into one with the NetworkX compose
functionality. The code is presented in Figure 67. The node colors are kept as in
Figure 63 and Figure 66. The result of the combined graph is presented in Figure
68. The result shows a dense data cluster with no disconnected data points. A
meticulous reader may even spot the first node in the hierarchical structure, the

root colored in green.

87

GH_DBOP_color_map = []

for node in GH_DBOP_hierarchy:
if node in lstMNodesInG_DBOP_MaSParentItemParentIDLink:
GH_DBOP_color_map.append(" blue’)
else:
if node =='root’:
GH_DBOP_color_map.append({ 'green’)
else:
GH_DBOP_color_map.append('orange")

plt.figure(3,figsize=(15,15))

plt.show()

GH_DBOP_hierarchy = nx.compose(G_DBOP_ParentIDLink,G_DBOP_Ma9ParentItemParentIDLink)

#creating List of the Ma9 Parentltem nodes to be able to colour these differently
lstNodesInG_DBOP_Ma9ParentItemParentIDLink = list(dfDBOPForGraphs_Ma9.Ma9 ParentItemIDandRev)

#defining different colours for the nodes depending of "source graph”

nx.draw(GH_DBOP_hierarchy, with_labels=False, node_color=GH_DBOP_color_map, node_size=18)

Figure 67. Creating a graph visualizing the complete DBOP hierarchical structure (Author’s code)

88

Figure 68. A NetworkX graph visualization of the DBOP hierarchical structure formed between ID and RevID
pairs and ParentID and ParentRevID pairs (Author’s code)

Identifying the hierarchical structure in the graph visualizations with over 9000
data points is problematic. A couple of alternative visualizations with a reduced
number of data points are shown in Figure 70 and Figure 72. Figure 69 presents
the code where the selection of data points is made. The data points are limited
based on their StrLevel value, which can be considered as a level in the
hierarchical structure. In the starting node, the root has StrLevel 0 value. The
nodes on the next level have values StrLevel 1, 1100, and 1200. The nodes after
StrLevel 1 have StrLevel 2 value. The nodes after StrLevel 2 have StrLevel 3 value
etc. The selection of data points is limited to include StrLevel values from 0 to 5.
As all the data points in this selection are connected from the ID and RevID pair

to the ParentID and ParentRevID pair, a copy of the data frame created in Figure

89

61 is used as a base when creating the data frame with limited data points. Figure
69 presents the limited data frame, which covers 435 data points.

After selecting the data points, Figure 69 presents how the NetworkX graph is
created. The desired node color and size are set for the graph, and the NetworkX
graphviz_layout of type dot is used to visualize the graph, as seen in Figure 70.

strlLevellist = [0,1,2,3,4,5,1100,1260]
dfDBOPForGraphs_limited = dfDBOPForGraphs[dfDBOPForGraphs["Strlevel”].isin(strlevellist)]
dfDBOPForGraphs_limited.shape[@]

435

G_dfDBOP_limited = nx.from_pandas_edgelist(
df = dfDBOPForGraphs_limited,
source="IDandRev’,
target="ParentIDandRev",
edge_attr = ['StrlLevel’, "Seq Nr', 'Qty'])

#defining different colours for the nodes
G_DBOP_limited_color_map = []

for node in G_dfDBOP_limited:
if node =="root':
G_DBOP_limited color_map.append('green’)
else:
G_DBOP_limited color_map.append('orange')

intNodesize = 200
bolLabels = False

plt.figure(3,figsize=(15,15))

pos = graphviz_layout(G_dfDBOP_limited, prog="dot")
nx.draw(G_dfDBOP_limited, pos, with_labels=bollLabels, node_size=intNodesize,
node_color=G_DBOP_limited_color_map)

plt.show()

Figure 69. The code for limiting the DBOP data frame to contain only five first levels in the DBOP hierarchical
structure and for visualizing this as a NetworkX graph with graphviz_layout of type dot. (Author’s code)

90

/
N

i

‘ Al “

Figure 70. The five first levels in the DBOP hierarchical structure are visualized as a NetworkX graph with

graphviz_layout of type dot. (Author’s code)

Figure 71 presents the code for changing the graphviz_layout to another type. In
this example, the layout algorithm dot is changed to sfdp. The result is presented
in Figure 72.

plt.figure(3,figsize=(15,15))

pos = graphviz_layout(G_dfDBOP_limited, prog="sfdp")
nx.draw(G_dfDBOP_limited, pos, with_labels=bollabels, node size=inthlodesize,
node_color=G_DBOP_limited color_map)

plt.show()

Figure 71. The code for an alternative NetworkX graphviz_layout. This time of type sfdp. The five first levels in

the DBOP hierarchical structure are visualized. (Author’s code)

91

Figure 72. The five first levels in the DBOP hierarchical structure are visualized as a NetworkX graph with
graphviz_layout of type sfdp. (Author’s code)

The idea of using the number of non-null values as an indicator for possible data
groups is derived from Figure 31. This chapter continues with the investigation

of likely data groups.

The columns EngineNumber, EngineAbbreviation, and EngineDescription, have
three non-null objects each. From the author’s own Wartsila experience, it is
known that the EngineNumber is a unique identifier. This means that there cannot
be more than one engine with a specific EngineNumber. The business
stakeholders further clarify that a DBOP always belongs to one specific

EngineNumber. And an EngineNumber can only have one EngineAbbreviation

92

value and one EngineDescription value in the DBOP. These statements are
confirmed with the code and result in Figure 73.

print('Number of unique values of EngineAbbreviation & EngineDescription per EngineNumber:')
dfDBOP.groupby('EngineNumber')['EngineAbbreviation', 'EngineDescription'].nunique()

Number of unique values of EngineAbbreviation & EngineDescription per EngineNumber:

EngineAbbreviation EngineDescription

EngineNumber

Figure 73. A specific EngineNumber has one specific EngineAbbreviation value and one specific
EngineDescription value. The EngineNumber is hidden in this picture. (Author’s code)

The EngineNumber, EngineAbbreviation, and EngineDescription columns have
values in text format. The actual values are irrelevant for this study. Creating a
separate table for these columns with the EngineNumber as the primary key is
relevant for the relational data model design. It is considered beneficial to
highlight that the DBOP belongs to a specific engine with EngineNumber,

EngineAbbreviation, and EngineDescription properties in the graph data model.

In the DBOP data frame, columns RealizationID and RealizationRevisionID each
have 21 non-null row values. In Figure 74, the rows with a RealizationID value
are selected from the DBOP data frame. This selection is stored in the
dfDBOPWithRealizationID data frame. All columns containing only null values are

dropped from this data frame. Fifteen columns remain.

93

#selecting rows in DBOP with @ RealizationID value and removing columns for
#this selection where column values are only null

dfDBOPWithRealizationID = dfDBOP[~dfDBOP['RealizationID'].isnull()]
dfDBOPWithRealizationID

dfDBOPWithRealizationID = dfDBOPWithRealizationID[dfDBOPWithRealizationID.columns|[
~dfDBOPWithRealizationID.isnull(}.all()]]

print('Mumber of rows in the DBOP with RealizationID value: °,
dfDBOPWithRealizationID.shape[@], '“n')

dfDBOPWithRealizationID. info()
Number of rows in the DBOP with RealizationID value: 21
<class 'pandas.core.frame.DataFrame’»

Int64Index: 21 entries, 5 to 25
Data columns (total 15 columns):

ParentID 21 non-null object
ParentRevID 21 non-null object
StriLevel 21 non-null inté4
Seq_Nr 21 non-null inté4
Qty 21 non-null object
ID 21 non-null object
RevID 21 non-null cbject
Name 21 non-null chject
TcType 21 non-null cbject
ReleaseDate 21 non-null object
Description 21 non-null object
RealizationID 21 non-null chject
RealizationRevisionID 21 non-null chject
OwningUser 21 non-null object
OwningGroup 21 non-null object

dtypes: int64(2), object(13)
memory usage: 2.6+ KB

Figure 74. The code for creating a data frame with rows containing a RealizationID and a

RealizationRevisionID. (Author’s code)

It is interesting to understand how the RealizationID and RealizationRevisionID

relate to the DBOP hierarchical structure. According to Figure 60, central

elements in the hierarchical structure are ID and RevID pairs, ParentlD and
ParentRevID pairs, and Ma9_Parentitem. In the dfDBOPWithRealizationID data

frame, there is no Ma9 Parentltem value, and we can conclude that there is no

direct relationship between the RealizationID and RealizationRevisionID pair and

Ma9 Parentltem. ID, RevID, ParentID, and ParentRevID columns exist and are

further investigated.

Figure 75 presents a function for plotting the number of unique values of columns

in a columnList argument per column combination in a group argument.

94

def uniquevalueGraphForColumnList(dataframeName, group, columnList, graphTitle):
dataframelame.groupby(group)[columnList].nunique().plot.bar(rot=0)

plt.title(graphTitle, size=15)
plt.ylabel(' count")

#changing the y-axis range from decimals to integers
locs, labels = plt.yticks()
yint = []

for each in locs:
yint.append(int(each))
plt.yticks(yint)

plt.xticks([]) #hiding x-axis ticks

Figure 75. A function for plotting how many values for the columns given in the columnList argument exist for
the columns in the group argument. The calculation is performed on the data in the data frame specified in
the dataframeName argument. The graphTitle argument specifies the title of the plot. (Author’s code)

Figure 76 presents the result of calling the function in Figure 75 for plotting the
number of unique values of RealizationID and RealizationRevisionID per ID and
RevID pair. As each ID and RevID pair has one unique RealizationID and
RealizationRevisionID, we can determine that the RealizationID and
RealizationRevisionID depend on the ID and RevID pair.

uniguevalueGraphForColumnList(dfDBOPwithRealizationID, ['ID', 'RevID'],
['RealizationID’, 'RealizationRevisionID'],
'Number of RealizationID, RealizationRevisionID per ID, RevID pair')

Number of RealizationID, RealizationRevisionlD per 1D, RevID pair

1 - RealizationlD
|| || || || || || || || | || || i
0 ‘ ‘ ‘ ‘ “ ‘

ID,ReviD

Count

Figure 76. The number of unique values of RealizationID and RealizationRevisionID per ID and RevID pair
(Author’s code)

Figure 77 presents the result of calling the function in Figure 75 to plot the
number of unique values of RealizationID and RealizationRevisionID per ParentID
and ParentRevID pair. The RealizationID and RealizationRevisionID are not
dependent on ParentID and ParentRevID pairs as a unique ParentID and
ParentRevID pair can have up to 19 different RealizationID values and 2

RealizationRevisionID values.

95

uniquevalueGraphForColumnList (dfDBOPWithRealizationID, ['ParentID’, 'ParentRevID'],
['RealizationID’, 'RealizationRevisionID'],
‘Number of RealizationID, RealizationRevisionID per ParentID, ParentRevID pair')

Number of RealizationlD, RealizationRevisionlD per ParentlD, ParentRevID pair

mmm RealizationlD
mmm RealizationRevisionlD

0 | I -

ParentlD ParentReviD

Figure 77. The number of unique values of RealizationID and RealizationRevisionID per ParentID and
ParentRevID pair (Author’s code)

A direct relationship is confirmed between the RealizationID and
RealizationRevisionID and ID and RevID pairs. The RealizationID values are
similar to those in ID, ParentlD, and Ma9 Parentltem. Hence, it is decided to
investigate if the RealizationID and RealizationRevisionID pairs are involved in
forming the DBOP hierarchical structure. Figure 78 presents the code for
checking if values of the RealizationID are found in the ID, ParentID, or
Ma9_Parentltem columns. The result shows that the RealizationID is not found in
these columns. Hence, we can conclude that the RealizationID and

RealizationRevisionID pair do not contribute to the DBOP hierarchical structure.

96

dfDBOP_IDRealizationIDMatch =dfDBOP[dfDBOP['ID'].isin(lstRealizationID)]

print(‘Number of rows in DBOP where a RealizationID found in the ID column: °,
dfDBOP_IDRealizationIDMatch.shape[8])

Number of rows in DBOP where a RealizationID found in the ID column: 8

dfDBOP_IDRealizationIDMatch =dfDBOP[dfDBOP['ParentID’].isin(lstRealizationID)]

print('Number of rows in DBOP where a RealizationID found in the ParentID column: °,
dfDBOP_IDRealizationIDMatch.shape[8])

Mumber of rows in DBOP where a RealizationID found in the ParentID column: 8

dfMa9_ParentItemRealizationIDMatch =table Ma9 ParentItem[
table Ma® ParentItem['MaS ParentItemID'].isin(lstRealizationlID)]

print('Number of rows in DBOP where a RealizationID found in the Ma9 ParentItem column: °,
dfMa9_ParentItemRealizationIDMatch.shape[@])

Mumber of rows in DBOP where a RealizationID found in the Ma% ParentItem column: @

Figure 78. The code for verifying that the RealizationID and RealizationRevisionID do not contribute to the
hierarchical structure of the DBOP (Author’s code)

From Figure 31, reveals that the DrawingRelation has 257 occurrences with non-
null values. The possible values for DrawingRelation are presented in Figure 79.
The remaining columns in a data frame when extracting the rows with a
DrawingRelation and then removing columns with only null values are presented
in Figure 80. In this data frame, there are 257 rows and 17 columns. Among these
columns are the ParentlD and ParentRevID pair and the ID and RevID pair. As
these are central elements in the DBOP hierarchical structure, it needs to be

investigated if there is a relation between these pairs and the DrawingRelation.

print{‘'The alternative DrawingRelation found in DBOP are:')
lstDrawingRelation = list({dfDBOP.DrawingRelation.unique(})

[print(x) for x in lstDrawingRelation]

The alternative DrawingRelation found in DBOP are:
nan

Tool Drawing

Described By

Related Drawings

Ma%_Relate DBOP

1ib8_RelatedDesign

Figure 79. DrawingRelation values (Author’s code)

97

#5electing rows with DrawingRelation value and removing columns with anly null values
dfDBOPWithDrawingRelation = dfDBOP[~dfDBOP['DrawingRelation’].isnull(}]
dfDBOPWithDrawingRelation

dfDBOPWithDrawingRelation = dfDBOPWithDrawingRelation[dfDBOPWithDrawingRelation.columns|
~dfDBOPWithDrawingRelation.isnull().all()]]

print('Number of rows in the DBOP with DrawingRelation value: ',
dfDBOPWithDrawingRelation.shape[8], "\n')

dfDBOPWithDrawingRelation.info()
Mumber of rows in the DBOP with DrawingRelation value: 257
<class 'pandas.core.frame.DataFrame'>»

Inte4Index: 257 entries, 8953 to 9289
Data columns (total 17 columns):

ParentID 257 non-null object
ParentRevID 257 non-null ohject
StriLevel 257 non-null inte4
Seq_Nr 257 non-null int64
Qty 257 non-null object
ID 257 non-null object
RevID 257 non-null object
MName 257 non-null ohject
TcType 257 non-null object
ReleaseDate 255 non-null object
Description 238 non-null object
EngineNumber 2 non-null object

EngineAbbreviation 2 non-null object

EngineDescription 2 non-null object

OwninglUser 255 non-null ohject
OwningGroup 255 non-null object
DrawingRelation 257 non-null object

dtypes: ints4(2), object(15)
memory usage: 36.1+ KB

Figure 80. The code and result when selecting the rows in the DBOP where a DrawingRelation value exists.

After the row selection, the columns with only null values are removed. (Author’s code)

The function in Figure 36 plots the number of unique DrawingRelation values per
ID and RevID pair. Figure 81 presents the result. The result shows that there are
three ID and RevID pairs with two different values of DrawingRelation. The
remaining 254 ID and RevID pairs have a unique DrawingRelation value. Figure
82 presents the result of calling the function in Figure 36 to understand how
many DrawingRelation values exist for each ParentID and ParentRevID pair. The
result returns 12 ParentID and ParentRevID pairs with two DrawingRelation
values (Figure 82). Calling the function in Figure 36 with the group argument
extended to ParentID and ParentRevID, StrLevel, ID, and RevID columns, shows
that two occurrences with two different DrawingRelation values are still returned
(Figure 83).

uniquevalueGraph(dfDBOPWithDrawingRelation, ['ID', 'RevID'], 'DrawingRelation’,

‘Number of unique DrawingRelation per ID, RevID pair')
Number of unique values of DrawingRelation per ID, RevID pair
2
g
1
8
0
ID,ReviD

Figure 81. The number of unique DrawingRelation values per ID and RevID pair (Author’s code)

uniqueValueGraph(dfDBOPWithDrawingRelation, ['ParentID’, 'ParentRevID'], 'DrawingRelation’,
‘Mumber of unique DrawingRelation per ParentID, ParentRevID pair')

Number of unique values of DrawingRelation per ParentlD, ParentRevID pair
2

A

ParentlD ParentReviD

Count

Figure 82. The number of unique DrawingRelation values per ParentID and ParentRevID pair (Author’s code)

99

uniqueValueGraph(dfDBOPWithDrawingRelation, ['ParentID’, 'ParentRevID','StrLevel’,'ID', 'RevID'],
'DrawingRelation’,
'Mumber of unique DrawingRelation per ParentID, ParentRevID, StrLevel, ID, RevID combination')

Number of unique DrawingRelation per ParentlD, ParentRevID, StrLevel, ID, RevID combination
2

Count
-

ParentiD,ParentReviD, StrLevel, ID, ReviD

Figure 83. The number of unique DrawingRelation values per ParentID and ParentRevID, StreLevel, ID, and
RevID combination (Author’s code)

Based on the author’s Wartsild experience, the expectation is that each ID and
RevID pair returns a unique value of DrawingRelation. The reason why this does
not happen is investigated by outputting the data rows with ID and RevID pair
duplicates. The code for this is visible in Figure 84. The result is not made visible
in this report. With a visual inspection of the result, it is noticed that two data
rows require all the available columns to be used to identify a unique
DrawingRelation value. The author assumes this is a data quality error and that

each ID and RevID pair will have a unique value of DrawingRelation.

|dFDBGPNithDrawingRelation[dFDBOPNithDPawingRelatiDn[['ID'J 'RevID']].duplicated() == True]

Figure 84. The code for investigating the rows with an ID and RevID pair occurring on several rows. Aiming to
understand what the DrawingRelation values on these rows are. (Author’s code)

Itis investigated next if the columns with a non-null value above 7000 could form
a data group with the ID and RevID column pair as a primary key. The
investigation is performed by checking if each ID and RevID pair returns a unique
column value for each of the following columns:

e StrLevel (9210 non-null values)

e Seq_Nr (9210 non-null values)

e (ty (9210 non-null values)

e [D (9210 non-null values)

e RevID (9210 non-null values)

e Name (9210 non-null values)

e TcType (9210 non-null values)

100

e ReleaseDate (8187 non-null values)
e Description (7030 non-null values)
e OwningUser (9208 non-null values)

e OwningGroup (9208 non-null values)

The uniqueValueGraph function in Figure 36 is called to plot the number of unique
values for each column per ID and RevID pair. Each ID and RevID pair is expected

to return one unique column value to identify a dependence between a column.

Figure 85 reveals that an ID and RevID pair return one or two unique StrLevel
values. This means that StrLevel is not dependent on ID and RevID pairs.

uniquevalueGraph(dfDBOP,['ID', 'RevID'], 'StrLevel’,
"Mumber of unique values of StrLevel per ID, RevID pair')

Number of unique values of StrLevel per ID, RevlD pair

Count
-

D, ReviD

Figure 85. The number of unique values of StrLevel per ID and RevID pair (Author’s code)

Figure 86 reveals that an ID and RevID pair return either one or many unique

Seq_Nr values. This means that Seq_Nr is not dependent on ID and RevID pairs.

101

uniquevalueGraph(dfpBoP, ['ID', 'RevID'], 'Seq Nr',
"Number of unique values of Seq Nr per ID, RevID pair')

Number of unique values of Seq_Nr per ID, RevID pair

Count

ID,ReviD

Figure 86. The number of unique values of Seq_Nr per ID and RevID pair (Author’s code)

Figure 87 reveals that an /D and RevID pair return either one or many unique Qty
values. This means that Qty is not dependent on ID and RevID pairs.

uniqueValueGraph(dfbBop, ['ID', 'RevID'], 'Qty’,
‘Number of unique values of Qty per ID, RevID pair')
© Number of unique values of Qty per ID, RevID pair
B
30
25
- 20
5
8 15
10
5
0
_5
ID,ReviD

Figure 87. The number of unique values of Qty per ID and RevID pair (Author’s code)

Figure 88 reveals that all ID and RevID pairs return a unique Name value. This

means that Name is dependent on ID and RevID pairs.

102

uniquevalueGraph(dfpBor, ['ID', 'RevID'], 'Name',

"Number of unique values of Mame per ID, RevID pair')

Number of unique values of Name per ID, RevID pair

Count

ID,ReviD

Figure 88. The number of unique values of Name per ID and RevID pair (Author’s code)

Figure 89 reveals that all ID and RevID pairs return a unique TcType value. This
means that TcType is dependent on ID and RevID pairs.

uniquevalueGraph(dfbBorP, ['ID', 'RevID'], 'TcType',

'Number of unique values of TcType per ID, RevID pair')

Number of unique values of TcType per ID, RevID pair

Count

ID,ReviD

Figure 89. The number of unique values of TcType per ID and RevID pair (Author’s code)

As 8187 of the 9210 rows in the DBOP data frame have a ReleaseDate value, it was
decided to filter out these rows to a different data frame to get a cleaner plot. The
code for creating a separate data frame is visible in Figure 90. Figure 91 reveals
that all rows with a ReleaseDate have a unique ReleaseDate for each ID and RevID
pair. This means that the ReleaseDate is dependent on ID and RevID pairs.

103

dfDBOP_ReleaseDate = dfDBOP[~dfDBOP['ReleaseDate’].isnull()]
dfDBOP_ReleaseDate

dfDBOP_ReleaseDate = dfDBOP_ReleaseDate[dfDBOP_ReleaseDate.columns|
~dfDBOP_ReleaseDate.isnull().all()]]

print('Number of rows in the DBOP with ReleaseDate value: '
dfDBOP_ReleaseDate.shape[@], "\n")

E

Number of rows in the DBOP with ReleaseDate value: 8187

Figure 90. The code for creating a data frame for the rows with a ReleaseDate value. After the row selection,

the columns with only null values are dropped from the data frame. (Author’s code)

uniqueValueGraph(dfDBOP_ReleaseDate, ['ID', 'RevID'], 'ReleaseDate’,
"Number of unique values of ReleaseDate per ID, RevID pair')

Number of unique values of ReleaseDate per ID, RevID pair

Count

D, ReviD

Figure 91. The number of unique values of ReleaseDate per ID and RevID pair (Author’s code)

As 7030 of the 9210 rows in the DBOP data frame have a Description value, it was
decided to filter out these rows to a different data frame to get a cleaner plot. The
code for creating a separate data frame is visible in Figure 92. Figure 93 reveals
that all rows with a Description value return a unique Description value for each

ID and RevID pair. This means that the Description is dependent on ID and RevID
pairs.

dfDBOP_Description

~dfDBOP_Description.isnull().all()]]

print('Number of rows in the DBOP with Description value:
dfDBOP_Description.shape[@], "\n')

Number of rows in the DBOP with Description value: 7@3e

dfDBOP_Description = dfDBOP[~dfDBOP['Description’'].isnull()]

dfDBOP_Description = dfDBOP Description[dfDBOP Description.columns]

'
»

104

Figure 92. The code for creating a data frame for the rows with a Description value. After the row selection, the

columns with only null values are dropped from the data frame. (Author’s code)

uniquevalueGraph(dfDBOP Description, ['ID', 'RevID'], 'Description’,

Number of unique values of Description per ID, RevID pair

"Number of unique values of Description per ID, RevID pair')

Count

ID,ReviD

Figure 93. The number of unique values of Description per ID and RevID pair (Author’s code)

The plots in Figure 94 and Figure 95 show that all ID and RevID pairs return a
unique OwningUser and OwningGroup value. This means that both the
OwningUser and the OwningGroup depend on ID and RevID pairs. The drop to

count level 0 represents two data rows in the DBOP with missing OwningUser and

OwningGroup values.

105

uniqueValueGraph(dfDBOP, ['ID', 'RevID'], 'OwningUser’,
"Number of unique values of OwningUser per ID, RevID pair')

Number of unique values of OwningUser per ID, RevID pair

Count

ID,ReviD

Figure 94. The number of unique values of OwningUser per ID and RevID pair (Author’s code)

uniquevalueGraph(dfbDBoP, ['ID', 'RevID'], 'OwningGroup',
"Number of unique values of OwningGroup per ID, RevID pair')

Number of unique values of OwningGroup per ID, RevID pair

Count

ID,RevID

Figure 95. The number of unique values of OwningGroup per ID and RevID pair (Author’s code)

The investigation of the columns with non-null values above 7000 reveals that
Name, TcType, ReleaseDate, Description, OwningUser, and OwningGroup depend
on the ID and RevID column pair. StrLevel, Seq_Nr, and Qty are not dependent on
the ID and RevID column pair. Based on the data frame content in Figure 52, the
StrLevel and Seq_Nr are assumed to be directly involved in forming the DBOP
process steps together with ParentID and ParentRevID. Qty is interpreted to
indicate how many repetitions of a specific process step are needed.

106

The following columns have around 300 non-null values in the DBOP data frame:
e PhaseLevel (370 non-null values)
e PlantLevel (331 non-null values)
e Process Type (331 non-null values)
e AlternateProcess (331 non-null values)
e PSA (331 non-null values)

e SortString (333 non-null values)

The function in Figure 96 is utilized for plotting the number of unique values for
the columns included in the columnList argument per the column or columns
included in the group argument. It is first assumed that all these columns belong
to the same group. If this is true, and one of the columns is selected as the primary
key, there is only one alternative column to choose as the primary key. This is the
column with the highest number of non-null values, the PhaseLevel with 370 non-
null values. None of the other columns can be the primary key, as a primary key
cannot have null values. For example, the PlantLevel column requires 370 - 331
= 39 null values in a table to cover the 370 non-null values of the PhaseLevel

column.

def uniquevalueGraphForColumnListLineFormat(datatramenName, group, columnList, graphTitle):
dataframeName. groupby(group) [columnList].nunique().plot()

plt.title(graphTitle, size=15)
plt.ylabel('Count')

#changing the y-axis range from decimals to inntegers
locs, labels = plt.yticks()
yint = []

for each in locs:
yint.append(int(each))
plt.yticks(yint)

plt.xticks([]) #hiding x ticks

Figure 96. The function for plotting the number of unique values of XXXXX. (Author’s code)

Figure 97 reveals that the only column possibly dependent on PhaseLevel is the
AlternateProcess. All other columns have several unique values per PhaseLevel.
Figure 98 confirms that every distinctive value of PhaseLevel returns a unique

AlternateProcess value.

- Number of unique values per PhaselLevel
—— SortSiring
0 FlantLevel
ProcessType
25 —— AlternateProcess
—— P5A
20
E 15
3
10
5
0
= Phaselevel

107

Figure 97. The number of unique SortString, PlantLevel, ProcessType, AlternateProcess, and PSA, values per

PhaselLevel. (Author’s code)

unigueValueGraphForColumnlListLineFormat(dfDBOP, 'Phaselevel’,
["AlternateProcess’],
‘Number of unigue values of AlternateProcess per Phaselevel')

Number of unique values of AlternateProcess per PhaselLevel

Count

—— AlternateProcess

PhaselLevel

Figure 98. The number of unique AlternateProcess values per PhaseLevel value (Author’s code)

SortString is the column with the following highest number of non-null values.

When selecting SortString as the primary key, the PhaseLevel no longer fits in the

group. The reason is that PhaseLevel has more rows than SortString. When

SortString is the primary key, only 333 rows with non-null values for SortString

are included in the group. The code and result for this selection are visible in

Figure 99. When looking at the PhaseLevel non-null value, it is noted that this

value has dropped from 370 to 331. This confirms that the PhaseLevel cannot be

in a group with the SortString as the primary key, because it loses 39 PhaseLevel

values.

108

dfDBOP_withSortStringWValue = dfDBOP[~dfDBOP['SortString’].isnull()]
dfDBOP_withSortStringValue

dfDBOP_withSortStringValue = dfDBOP_withSortStringValue[dfDBOP_withSortStringValue.columns[
~dfDBOP_withSortStringValue.isnull(}.all()]1]

print(’Number of rows in the DBOP with SortString value: °,
dfDBOP_withSortStringValue.shape[@], "‘n")

dfDBOP_withSortStringValue.info()
Number of rows in the DBOP with SortString value: 333
<class 'pandas.core.frame.DataFrame’>»

Int6dIndex: 333 entries, 78 to 5748
Data columns (total 28 columns):

ParentID 333 non-null object
ParentRevID 333 non-null object
Strlevel 333 non-null intéd
Seq_MNr 333 non-null intéd
Qty 333 non-null object
D 333 non-null object
RevID 333 non-null object
HName 333 non-null object
TcType 333 non-null cobject
ReleaseDate 332 non-null object
Description 331 non-null object
Phaselevel 331 non-null cbject
PlantlLevel 331 non-null object
ProcessType 331 non-null object
QualityKey 73 non-null object
AlternateProcess 331 non-null object
OwninglUser 333 non-null object
OwningGroup 333 non-null object
PSA 331 non-null cbject
SortString 333 non-null object

dtypes: intb4(2), object(18)
memory usage: 54.6+ KB

Figure 99. The code for creating a data frame for the rows with a SortString value. (Author’s code)

Figure 100 reveals that PlantLevel, ProcessType, AlternateProcess, and PSA are
suited in a group where the SortString is selected as the primary key. Each non-
primary key column will have a null value on two of the 333 rows. This is
identified from the drop to count level 0 in Figure 100 and the indicated number

of non-null values per column in Figure 99.

109

uniqueValueGraphForColumnListLineFormat (dfDBOP_withSortStringValue, “SortString’
["PlantLevel’, 'ProcessType’, 'AlternateProcess’, 'PSA’],
‘Number of unique values per SortString’)

Number of unique values per SortString

.
(=
3
8
—— PlantLevel
ProcessType
—— AlternateProcess
o — PSA

SortString

Figure 100. The number of unique PlantLevel, ProcessType, AlternateProcess, and PSA values per SortString.
(Author’s code)

Figure 101 verifies that selecting the ID and RevID pair as the key for this group

is impossible. The main reason for this is that the number of unique SortString
values per ID and RevID is more than one.

uniqueValueGraphForColumnlListlLineFormat (dfDBOP, ['ID", 'RevID'],
['PlantLevel’, 'SortString’, 'ProcessType’, 'AlternateProcess’, PSA"],
"Number of unique values per ID, RevID pair’)
Number of unique values per ID, RevID pair
2 —— PlantLevel
SortString
—— ProcessType
= AlternateProcess
— PSA
5
8
[i]
ID,ReviD

Figure 101. Verifying that the ID and RevID par is not possible as the primary key in the group of PlantLevel,
SortString, ProcessType, AlternateProcess, and PSA. (Author’s code)

As PhaseLevel does not suit the PlantLevel, SortString, ProcessType,
AlternateProcess and PSA group, it was next investigated if the PhaseLevel is
dependent on the central elements in the DBOP hierarchical structure:

e [D and RevID pair
e ParentID and ParentRevID pair

110

Investigating PhaseLevel dependencies on Ma9_Parentitem, the third column

involved in forming the DBOP hierarchical structure is unnecessary. This decision

was made based on Figure 102, where it can be noted that Ma9_Parentltem is not

included in the data frame containing the rows with a PhaseLevel value.

dfDBOP_withPhaselevelValue = dfDBOP.loc[~dfDBOP["Phaselevel™].isnull()]

dfDBOP_withPhaselevelValue = dfDBOP_withPhaselevelValue[dfDBOP_withPhaselevelValue.columns|[
~dfDBOP_withPhaselevelValue.isnull().all1()]]

dfDBOP_withPhaselevelValue.info()

<class 'pandas.core.frame.DataFrame’ >

IntédIndex: 370 entries, 26 to 432

Data columns (total 28 columns)

ParentID 37@ non-null object

ParentRevID 378 non-null object

Strlevel 37@ non-null inted

Seq_Nr 37@ non-null inted

Qty 37@ non-null object

1D 37@ non-null object

RevID 37@ non-null object

MName 37@ non-null object

TcType 37@ non-null object

ReleaseDate 369 non-null object

Description 37@ non-null object

Phaselevel 37@ non-null object

PlantLevel 331 non-null object

ProcessType 331 non-null object

QualityKey 73 non-null object

AlternateProcess 331 non-null object

OwningUser 37@ non-null object

OwningGroup 37@ non-null object

PSA 338 non-null object

SortString 331 non-null object

dtypes: int64(2), object(18)

memory usage: 6@8.7+ KB

Figure 102. The code for creating a data frame for the rows with a PhaseLevel value. (Author’s code)

The result presented in Figure 103, Figure 104, and Figure 105 reveals that
PhaseLevel is dependent on the ID and RevID pair. As ParentID and ParentRevID

pairs can return several unique PhaseLevel values, the PhaseLevel is not reliant on

this pair. When extending the ParentID and ParentRevID pair with StrLevel, and

Seq_Nr, it is noted that this combination returns unique PhaseLevel values and is

dependent on this combination.

111

uniqueValueGraph(dfDBOP_withPhaselevelValue, ["ID', 'RevID"], 'Phaselevel’,
‘Number of unique values of Phaselevel per ID, RevID pair')

Number of unique values of PhaselLevel per ID, RevlD pair

Count

ID ReviD

Figure 103. The number of unique PhaseLevel values per ID and RevID pair. (Author’s code)

unigueValueGraph(dfDBOP_withPhaselevelValue, ['ParentID', 'ParentRevID'], "Phaselevel’,
'Number of unique values of Phaselevel per ParentID, ParentRevID pair')

© Number of unique values of PhaselLevel per ParentlD, ParentRevID pair

Count
o

ParentlD ParentRevIiD

Figure 104. The number of unique PhaseLevel values per ParentID and ParentRevID pair. (Author’s code)

112

unigueValueGraph{dfDBOP_withPhaselevelValue,
['ParentID", 'ParentRevID’, 'Strlevel', 'Seq_Nr'], 'Phaselevel’,
"Number of unique Phaselevel per ParentID, ParentRevID, StrlLevel, Seq_Nr combination')

Number of unique PhaseLevel per ParentlD, ParentRevID, StrLevel, Seq_Nr combination
1

Count

ParentlD ParentRevID,StrLevel Seq_Nr

Figure 105. The number of unique PhaseLevel values per ParentID and ParentRevID. StrLevel, and Seq_Nr
combination. (Author’s code)

When examining the similar number of non-null values for the columns in the
DBOP in Figure 31, no data groups are identified for QualityKey. Therefore, it was
investigated if the QualityKey depends on the central elements in the DBOP
hierarchical structure, or on some previously identified groups. A separate data
frame containing the rows with a QualityKey value was created with the code in
Figure 106. From this data frame, the columns with only null values were
dropped. When looking at the result in Figure 106, it was decided to check the
dependency on the following columns:

e [D and RevID pair

e ParentlD and ParentRevID pair

e ParentlD, ParentRevID, StrLevel, and Seq_Nr combination

e SortString

The result in Figure 107, Figure 108, Figure 109, and Figure 110 reveals that the
QualityKey is dependent on one of the following:

e [D and RevID pair

e ParentlD and ParentRevID, StrLevel, and Seq_Nr combination

e SortString

The dependency on ParentID and ParentRevID pairs does not exist, as a pair can

return several unique QualityKey values.

dfDBOP_withQualityKeyValue = dfDBOP.loc[~dfDBOP["QualityKey"].isnull()]

dfDBOP_withQualityKeyValue = dfDBOP_withQualityKeyValue[dfDBOP_withQualityKeyValue.columns|
FdFDEOP_withQualityKeyValue.isnull().all()]]

dfDBOP_withQualityKeyValue.info()

<class 'pandas.core.frame.DataFrame’>»

IntedIndex: 73 entries, 124 to 417

Data columns (total 28 columns):

ParentID 73 non-null object

ParentRevID 73 non-null object

StrLevel 73 non-null int64

Seqg_Nr 73 non-null int64d

Oty 73 non-null object

1D 73 non-null object

RevID 73 non-null object

Name 73 non-null object

TcType 73 non-null object

ReleaseDate 73 non-null object

Description 73 non-null object

Phaselevel 73 non-null object

PlantlLevel 73 non-null object

ProcessType 73 non-null object

Qualitykey 73 non-null object

AlternateProcess 73 non-null object

OwninglUser 73 non-null object

OwningGroup 73 non-null object

PSA 73 non-null object

SortString 73 non-null object

dtypes: int64(2), object(18)

memory usage: 12.8+ KB

Figure 106. The code for creating a data frame for the rows with a QualityKey value (Author’s code)

uniqueValueGraph{dfDBOP_withQualityKeyValue,
['ID", 'RevID'], 'QualityKey",
‘Number of unique QualityKey per ID, RevID pair')

Number of unique QualityKey per ID, RevlD pair

Count

ID,ReviD

Figure 107 The number of unique QualityKey values per ID and ID pair (Author’s code)

113

114

unigueValueGraph(dfDBOP_withQualityKeyValue,
['ParentID’, 'ParentRevID'], 'QualityKey’,
‘Number of unigue QualityKey per ParentID, ParentRevID pair')

o Number of unique QualityKey per ParentlD, ParentRevID pair

10

2 7

ParentlD ParentReviD

Figure 108. The number of unique QualityKey values per ParentID and ParentRevID pair. (Author’s code)

unigueValueGraph(dfDBOP_withQualityKeyValue,
['ParentID’, ‘ParentRevID’, 'StrlLevel’, 'Seq_Nr'], 'QualityKey’,
"Number of unique QualityKey per ParentID, ParentRevID, Strlevel, Seg_Nr combination')

Number of unique QualityKey per ParentlD, ParentRevID, StrLevel, Seq_Nr combination
1

Count

ParentlD ParentRevID,StrLevel Seq_Nr

Figure 109. The number of unique QualityKey values per ParentID and ParentRevID. StrLevel, and Seq_Nr
combination. (Author’s code)

115

unigueValueGraph{dfDBOP_withQualityKeyValue,
['SortString'], 'QualityKey',
"Number of unique QualityKey per SortString')

Number of unique QualityKey per SortString

Count

SortString

Figure 110. The number of unique QualityKey values per SortString. (Author’s code)

When examining the similar number of non-null values for the columns in the
DBOP in Figure 31, no data groups were identified for ConsumedAssembly.
Therefore, it was investigated if the ConsumedAssembly depends on the central
elements in the DBOP hierarchical structure, or on some previously identified
groups. A separate data frame containing the rows with a ConsumedAssembly
value was created in the code in Figure 111. From this data frame, the columns
with only null values were dropped. When looking at the result in Figure 111, it
was decided to check the dependency on the following columns:

e [D and RevID pair

e ParentlD and ParentRevID pair

e ParentlD and ParentRevID, StrLevel, and Seq_Nr combination

The result in Figure 112, Figure 113, and Figure 114 indicates that
ConsumedAssembly is dependent on one of the following:

e [D and RevID pair

e ParentlD and ParentRevID, StrLevel, and Seq_Nr combination

The dependency on ParentlID and ParentRevID pairs does not exist, as pairs return

several unique ConsumedAssembly values.

116

Data columns (total 12

ParentID 20
ParentRevID 20
StrLevel 20
Seq_Nr 28
Qty 28
D 28
RevID 28
MName 28
TcType 28
ConsumedAssembly 28
OwningUser 28
OwningGroup 20

memory usage: 2.8+ KB

dfDBOP_withConsumedAssemblyValue

dfDBOP_withConsumedAssemblyValue
dfDBOP_withConsumedAssemblyValue. columns[~dfDBOP_withConsumedAssemblyValue.isnull({).all()]]

non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null

dtypes: int64(2), object(1@)

= dfDBOP.loc[~dfDBOP["ConsumedAssembly™].isnull()]

= dfDBOP_withConsumedAssemblyValue[

dfDBOP_withConsumedAssemblyValue.info()

<class 'pandas.core.frame.DataFrame’>
Int6dIndex: 28 entries, 517 to 1315
columns):

object
object
inte4

int64

object
object
object
object
object
object
object
object

Figure 111. The code for creating a data frame for the rows with a ConsumedAssembly value. (Author’s code)

uniqueValueGraph(dfDBOP_withConsumedAssemblyValue,
['ID", 'RevID'], ‘ConsumedAssembly’,
‘Number of unique ConsumedAssembly per ID, RevID pair')

Number of unique ConsumedAssembly per ID, ReviD pair

Count

ID,ReviD

Figure 112. The number of unique ConsumedAssembly values per ID and RevID pairs. (Author’s code)

117

unigueValueGraph(dfDBOP_withConsumedAssemblyValue,
['ParentID", 'ParentRevID'], 'ConsumedAssembly’,
"Number of unique ConsumedAssembly per ParentID, ParentRevID pair’)

Number of unique ConsumedAssembly per ParentlD, ParentRevID pair

Count
-

ParentlD ParentReviD

Figure 113. The number of unique ConsumedAssembly values per ParentID and ParentRevID pairs. (Author’s
code)

uniqueValueGraph(dfDBOP_withConsumedAssemblyValue,
['ParentID*, 'ParentRevID', 'StrLevel', 'Seq_Nr'], 'ConsumedAssembly’,
‘Number of unique ConsumedAssembly per ParentID, ParentRevID, StrlLevel, Seq_Nr combination®)

Number of unique ConsumedAssembly per ParentlD, ParentRevID, StrLevel, Seq_Nr combination
1

Count

ParentlD ParentReviD, StrLevel Seq_Nr

Figure 114. The number of unique ConsumedAssembly values per ParentID and ParentRevID. StrLevel, and
Seq_Nr combination. (Author’s code)

When examining the similar number of non-null values for the columns in the
DBOP in Figure 31, no data groups were identified for PurchaseCode. Therefore,
it was investigated if the PurchaseCode depends on the central elements in the
DBOP hierarchical structure, or on some previously identified groups. A separate
data frame containing the rows with a PurchaseCode value was created in Figure
115. From this data frame, the columns with only null values were dropped. When

looking at the result in Figure 115, it was decided to check the dependency on the
following columns:

e [D and RevID pair

118

e ParentID and ParentRevID pair

e ParentlD and ParentRevID, StrLevel, and Seq_Nr combination

The results in Figure 112 and Figure 113 indicate that PurchaseCode is dependent
on one of the following:

e [D and RevID pair

e ParentID and ParentRevID

The dependency on ParentID and ParentRevID, StrLevel, and Seq_Nr combination
exists, as a part of this column combination was already proved to have a
dependence on PurchaseCode (see Figure 113). Extending an identified key to an
additional column did not bring any benefits.

dfDBOP_withPurchaseCodeValue = dfDBOP.loc[~dfDBOP["PurchaseCode”].isnull()]

dfDBOP_withPurchaseCodeValue = dfDBOP_withPurchaseCodeValue[dfDBOP_withPurchaseCodeValue.columns|
~dfDBOP_withPurchaseCodeValue.isnull(}.all()]1]

dfDBOP_withPurchaseCodeValue.info()

<class 'pandas.core.frame.DataFrame'>
Int6dIndex: 46 entries, 1428 to 5237
Data columns (total 15 columns):

ParentID 46 non-null object
ParentRevID 46 non-null object
StrlLevel 46 non-null int64
Seqg_MNr 46 non-null inté4
Qty 46 non-null object
ID 46 non-null object
RevID 46 non-null object
Name 46 non-null object
TcType 46 non-null object
ReleaseDate 46 non-null object
Description 42 non-null object
Ma9_ParentItem 42 non-null object
PurchaseCode 46 non-null object
OwninglUser 46 non-null object
OwningGroup 46 non-null object

dtypes: int64(2), object(13)
memory usage: 5.8+ KB

Figure 115. The code for creating a data frame for the rows with a PurchaseCode value. (Author’s code)

119

uniqueValueGraph(dfDBOP_withPurchaseCodeValue,
['ID", 'RevID'], 'PurchaseCode’,
‘Number of unique PurchaseCode per ID, RevID pair')

Number of unique PurchaseCode per ID, ReviD pair

Count

ID,ReviD

Figure 116. The number of unique PurchaseCode values per ID and RevID pair. (Author’s code)

unigueValueGraph{dfDBOP_withPurchaseCodeValue,
['ParentID", 'ParentRevID'], 'PurchaseCode’,
‘Number of unigue PurchaseCode per ParentID, ParentRevID pair')

Number of unique PurchaseCode per ParentlD, ParentRevID pair

Count

ParentlD ParentReviD

Figure 117. The number of unique ConsumedAssembly values per ParentID and ParentRevID pair. (Author’s
code)

120

4.2.1.1. Summary

The following is a summary of the findings from the investigation:

There is no direct relation between StrLevel and TcType
There is a group for engine-specific columns where the EngineNumber is
the key, identifying the EngineAbbreviation and EngineDescription of this
engine. A DBOP will always cover only one specific EngineNumber.
There is no direct relation between OwningUser and OwningGroup. The
graphs reveal that an OwningUser can have as many as 8 OwningGroup,
and in an OwningGroup, there can be over 175 OwningUsers. These
numbers will vary depending on the DBOP investigated.
Each id type has its own revision.

o ReviD is the revision of the ID

o ParentRevID is the revision of ParentID

o RealizationRevisionID is the revision of RealizationID
The Ma9_Parentitem column also contains ids and revisions. The
Ma9_Parentltem is a multivalued attribute in which the id and revision
pairs are separated with the |-character, and the revision for the id is split
with the /-character.
The ID and RevID pair’s link to ParentID and ParentRevID pair does not
exist throughout the DBOP structure. Also, the Ma9_Parentiltem’s link to
the ParentID and ParentRevID pair needs to be considered.
The RealizationID and RealizationRevisionID pairs depend on the ID and
RevID combination. To understand if the RealizationID and
RealizationRevisionID pairs are involved in forming the hierarchical
structure, it was investigated if some of the RealizationIDs can be found in
the ID, ParentID, or Ma9_Parentitem columns. The RealizationID values
were not found in any of the investigated columns. Hence, it was
confirmed that it is not involved in creating the hierarchical structure.
When investigating what DrawingRelation depends on, a possible data
quality error was noticed for three ID and RevID pairs. The ID and RevID
combination can identify a unique DrawingRelation value if the possible
data quality error can be corrected.
A group with ID and RevID pair as a key for columns with approx. 9000
non-null values were found. The following columns fit into that group: ID,
RevID, Name, TcType, ReleaseDate, Description, OwningUser, and

OwningGroup.

121

e StrLevel, Seq_Nr, and Qty are not dependent on the ID and RevID pair.
Instead, StrLevel and Seq_Nr are assumed to form the DBOP process steps
together with ParentID and ParentRevID. Qty is taken to indicate how
many repetitions of a specific process step are needed.

e A group of SortString, PlantLevel, ProcessType, AlternateProcess, and PSA
was identified. In this group, SortString is the key. PhaseLevel cannot be
part of this group.

e PhaseLevel is dependent on ID and RevID pair or a combination of
ParentID, ParentRevID, StrLevel, and Seq_Nr.

e Three possible dependencies were recognized for QualityKey:

o ID and RevID pair
o ParentID, ParentRevID, StrLevel and Seq_Nr combination
o SortString

e (ConsumedAssembly depends on the ID and RevID pair, or a combination of
ParentID, ParentRevID, StrLevel and Seq_Nr.

e PurchaseCode depends on the ID and RevID pair, or the ParentID and
ParentRevID pair.

4.2.2. Logical data models

This chapter presents the design decisions made during the data model creation,
and the data collected for the experiment. The logical data models were created
based on the findings from the data analysis in chapter 4.2.1. The normalization
guidelines up to the 3NF form are followed for the relational data model. The
general principle of normalization is to reduce data redundancy [47]. Table 8
summarizes what was considered for the normalization. The graph type used for
the graph data model is the labeled property graph. The labeled property graph
was selected for the final aim of implementing the graph data model in Neo4j. The
elements of the labeled property graph are explained in chapter 2.3.3. Technical

and performance requirements are not considered in these logical data models.

Table 8. Guidelines to reach 3NF normalization for the relational data model

INF | All attributes have a unique name. None of the attributes are composite or
multivalued. [47]

2NF | No partial dependencies on a primary key exist in the tables. This means that
in a table where the primary key consists of two or more attributes, the non-

122

primary key attribute must depend on the complete primary key and not part
of it. [48]

3NF | Notransitive dependencies on the primary key exist in the tables. For example,
if A is dependent on B, B is dependent on C. Hence, A is dependent on C, is a
transitive dependency. [49]

In addition to data model creation, the experiment follows the experiment design
in chapter 4.1. For the experiment, the data modeling time is measured in
minutes. The relational data model is created first. After that, the same data
modeler creates the graph data model. The reason for the selected data modeling
order is elaborated in chapter 4.1.4.

4.2.2.1. Relational data model
The creation of the relational data model took place on 24t of August 2022. The

data modeling was carried out in a single session of 74 minutes without
disruptions. The result is presented in Figure 118. This chapter explains how this

result was reached.

BOPhasProcessDetails
ParentlD
ParentRevIiD
StrLevel

Seqg Nr
SortString

ParentlD
ParentRevID
(FK}

StrLevel
Seq_Nr

l_’ StrLevel

SortString (FK)
SortString ~ (FK)
Process Details

BOP_Structure
ParentlD
ParentRevID

Seq_Nr

Qty

ParentlD
ParentReviD]‘FK’
Parent/D
ParentReviD
StrLevel } Fo
Seq_Nr

ParentlD
ParentRevID }*FK)

Quality Process
SortString
QualityKey

ortString (FK)

SortString
PlantLevel
ProcessType
AlternateProcess
PSA

Engine_Details
EngineNumber
EngineAbbreviation
EngineDescription

ParentID
ParentRevID

Realization

=]

r

eviD
RealizationlD
RealizationRevisionlD

D
ReviD |9

Phase Level
ParentlD
ParentRevID
StrLevel
Seq_Nr
PhaselLevel

ParentlD
ParentRevID
(FK)

StrLevel

Seq_Nr

ParentlD
ParentRevID] (FK)

Consumed_Assembly

StrLevel
Seq_Nr
ConsumedAssembly
ParentiD X
ParentRevID }(FK)

Mag_Parentltem
Mag_ParentltemID
Ma9_ParentltemRevID

D
ReviD | ™

Purchase_Code
1D
RevlD
PurchaseCode

D
ReviD | '™

IDhasEngine
ID

ReviD
EngineNumber
EngineNumber (FK}
ID

ReviD |9

Drawing Relation
1D

ReviD
DrawingRelation

1D]
ReviD | '™

Figure 118. The DBOP relational data model (author’s picture)

ID_Details

D

ReviD

Name

TcType
ReleaseDate
Description
OwningUser
OwningGroup

123

The data analysis and the summary presented in chapter 4.2.1.1 are an excellent

bases for the relational data model. Data dependencies and possible data groups

with primary keys are available in the analysis result. Building the relational data

model starts with creating tables of the identified data groups. Table 9

summarizes how the data analysis finding is translated into data model design

decisions. The intermediate result of the relational data model after the

considerations in Table 9 is presented in Figure 119.

124

Table 9. How the identified data groups are utilized in the relational data model design

Data analysis finding

Data model design decision

There is a group for
engine-specific columns
where the
EngineNumber is the
key, identifying the
EngineAbbreviation and
EngineDescription of
this engine.

A group with ID and
RevID pair as key,
where the following
columns are included:
Name, TcType,
ReleaseDate,
Description,
OwningUser, and
OwningGroup.

StrLevel, Seq_Nr, and Qty
are not dependent on
the ID and RevlID pair.
Instead, StrLevel and
Seq_Nr are assumed to
form the DBOP process
steps together with
ParentID and
ParentRevID. Qty is
assumed to indicate
how many repetitions

Implement an Engine_Details table with three attributes:
e FEngineNumber
e EngineAbbreviation
e EngineDescription

Of which EngineNumber is the primary key.

Implement an [D_Details table with the following
attributes:
e ID
ReviD
Name
TcType
ReleaseDate
Description
OwningUser
OwningGroup
Of which the ID and RevID pair is the primary key.

The OwningUser is a multivalued attribute. To fulfill 1NF,
the multivalued attribute needs to be split. In the
investigation in chapter 4.2.1, it was noticed that the
OwningUser values represent the user identification in
the Surname, Forename format, or a code like grpadm. As
the OwningUser contains a diverse set of Surname,
Forename values, and codes, it was decided to treat all
the values as codes.

An alternative solution that fulfills the 1NF is to create a
User_Details table with Surname and Forename
attributes. This table would use a synthetic primary key
or the employee number if it could be included in the
DBOP. The primary key would be named UserID and
linked to the OwningUser attribute in the ID_Details table.
With this approach, the Surname, Forename values in
OwningUser is replaced by the UserID for that specific
user.

Implement a BOP_Structure table with the following
attributes:

e ParentlD

e ParentRevID
e StrLevel

e Seq Nr

* Qu

The primary key is the combination of ParentID,
ParentRevID, StrLevel, and Seq_Nr.

125

of a specific process
step are needed.

A group of SortString, Implement a Process_Details table with the following
PlantLevel, ProcessType, attributes:

AlternateProcess, and e SortString

PSA is identified. In this e PlantLevel

group, SortString is the e ProcessType

key. e AlternateProcess

e PSA
Of which the SortString is the primary key.

Engine_Details ID Details BOP_Structure Process_Details
EngineNumber ID ParentID SortString
EngineAbbreviation RevID ParentRevID PlantLevel
EngineDescription Name StrLevel ProcessType

TcType Seq_Nr AlternateProcess
ReleaseDate Qty PSA

Description

OwningUser

OwningGroup

Figure 119. The first intermediate result of the DBOP relational data model (author’s picture)

The data dependencies recognized in chapter 4.2.1 were utilized in the next step
of the relational data model design. The identified data dependencies are
summarized in Table 10. The intermediate result of the relational data model

after the considerations in Table 9 and Table 10 is presented in Figure 120.

Table 10. How the identified data dependencies are utilized in the relational data model design

Data analysis finding Data model design decision
The Ma9_Parentitem Implement a Ma9_Parentitem table with the

is a multivalued following attributes:

attribute consisting of e Ma9 ParentitemID

one or several ids and e Ma9 ParentltemRevID
revisions. Of which the Ma9_ParentitemID and

Ma9_ParentltemRevID pair is the primary key.

The decision to split the Ma9_Parentltem
multivalued attribute into rows per id and rev pair
and separate the id and revision into dedicated
attributes supports the 1NF guideline. Additionally,
it makes working with the data in the DBOP easier.
For example, the need for string manipulation
when linking the Ma9_Parentltem id and revision
pair to the ParentID and ParentRevID pair is
removed with this design decision.

RealizationID and Implement a Realization table with the following

RealizationRevisionID attributes:

126

pairs are dependent
on the ID and RevID
combination.

A possible data
quality error in the
DrawingRelation
attribute for three ID
and RevID pairs was
noticed in the data
analysis. If this is
confirmed to be an
error, the ID and
RevID combination
can be used to identify
a unique
DrawingRelation
value.

PhaselLevel is
dependent on the ID
and RevID pair or a
combination of
ParentID,
ParentRevID, StrLevel,
and Seq_Nr

Three possible
dependencies are
recognized for the

QualityKey:
e ID and RevID
pair
e ParentlID,
ParentRevID,
StrLevel, and
Seq_Nr
combination
e SortString
ConsumedAssembly
depends on the ID and

RevID pair or a
combination of

ID
RevID
RealizationID
e RealizationRevisionID
Of which the ID and RevID pair is the primary key.
Implement a Drawing_Relation table with the
following attributes:
e ID
e ReviD
e DrawingRelation
Of which the ID and RevID pair is the primary key.

The suspected data quality error is confirmed to be
an error, which means that a unique ID and RevID
pair can only have one DrawingRelation value.

Implement a Phase_Level table with the following
attributes:

e ParentlD

e ParentRevID
e StrLevel

e Seq_ Nr

e Phaselevel
ParentID, ParentRevID, StrLevel, and Seq_Nr
combination is the primary key.

This primary key selection over the ID and RevID
pair assumes that the PhaseLevel attribute clarifies a
specific process step.
Implement a Quality_Process table with the
following attributes:

e SortString

e (QualityKey
SortString is selected as the primary key, based on
an explanation from business stakeholders that the
SortString is a unique identifier for a process step
that requires a quality check or some other quality
measure.

Implement a Consumed_Assembly table with the
following attributes:

e ParentlD

e ParentRevID

127

ParentID, e Strlevel
ParentRevID, StrLevel, e Seq Nr
and Seq_Nr. e ConsumedAssembly

ParentID, ParentRevID, StrLevel, and Seq_Nr
combination is the primary key.

Any strong reasoning behind designing a table with
the ParentID, ParentRevID, StrLevel, and Seq_Nr
attributes instead of ID and RevID attributes does
not exist.

Implement a Purchase_Code table with the

PurchaseCode is

dependent on the ID following attributes:
and RevID pair or e ID

ParentID and e RevID
ParentRevID pair e PurchaseCode

For which the ID and RevID pair is the primary key.

The primary key selection assumes that a purchase
is related to an activity (ID_Details table) and not to
a particular DBOP step (BOP_Structure table).

Engine Details ID Details BOP_Structure Process Details
EngineNumber ID ParentID SortString
EngineAbbreviation ReviD ParentRevID PlantLevel
EngineDescription Name StrLevel ProcessType

TcType Seq_Nr AlternateProcess
ReleaseDate Qty PSA
Description
OwningUser
OwningGroup
Ma$9 Parentltem Realization Drawing Relation Phase Level
Ma9_ParentltemID D 1D ParentID
Ma9_ParentltemRevID RevID RevID ParentRevID
RealizationID DrawingRelation StrLevel
RealizationRevisionlD Seq_Nr
PhaselLevel

Quality Process Consumed Assembly Purchase Code

SortString ParentlD I

QualityKey ParentRevID RevID
StrLevel PurchaseCode
Seq_Nr
ConsumedAssembly

Figure 120. The second intermediate result of the DBOP relational data model (author’s picture)

The tables in the relational data model, Figure 120, cover a storage location for
each of the DBOP attributes in focus. The relationships between the tables are still
missing when compared to the result presented in Figure 118. The relational data
model identifies relationships with foreign keys (chapter 2.3.2). Different

relationship notations exist depending on the tool used when creating the model.

128

ERDPlus specifically lists the attributes of the foreign key. The list is automatically
created when dragging a relationship line between two tables. If the attributes
forming the foreign key already exist in the table with the foreign key, it can be
incorrectly assumed that the attributes are duplicated. The Purchase_Code table
in Figure 118 is an excellent example of this. When foreign key attributes are not
previously identified as attributes in a table, ERDPlus indicates the need when
dragging the relationship line between tables. The MA9 Parentitem table in
Figure 118 is an excellent example of this.

When creating the relationships in the DBOP model, the ID_Details table and the
BOP_Structure table were considered to be the core tables. All other tables in the
DBOP are connected to one or both. Based on the data analysis in chapter 4.2.1, it
is understood that the BOP_Structure table describes the process structure, and
the ID_Details table describes the activity performed at that specific process step.

An action can be completed in multiple DBOP process steps.

The Ma9_Parentltem table is another core table. Ma9 Parentltem is directly
involved in forming the DBOP hierarchical structure. The most important
relationship this table has is to the BOP_Structure. To understand the details of

the activity performed, a relationship to the ID_Details is also needed.

Based on the data analysis result in chapter 4.2.1, it is known that:
e A RealizationID and RealizationRevisionID pair only depend on the ID and
RevID pair. Hence, the only relationship to the Realization table is from the
ID Details table.
e DrawingRelation is only dependent on the ID and RevID pair. Hence, the
only relationship to the DrawingRelation table is from the ID_Details table.

The data analysis results in chapter 4.2.1 reveal that the PhaseLevel and the
ConsumedAssembly have a data dependency on both the ParentID, ParentRevID,
StrLevel, and Seq_Nr combination and the ID and RevID pair. It is assumed that
these dependencies are essential and create relationships for the Phase_Level and
Consumed_Assembly tables to BOP_Structure and ID_Details tables.

The PurchaseCode attribute is identified to have a data dependency on the /D and
RevID pair and the ParentID and ParentRevID pair. Table 10 elaborates that a

purchase is related to a specific activity (/D_Details table) and not to a particular

129

DBOP step (BOP_Structure table). Based on this, only a relationship from the
ID_Details table to the Purchase_Code table is created.
In Figure 120, two tables with SortString as the primary key can be identified:

e Process_Details table

e (Quality_Process table
The SortString attribute is used when creating a relationship between the data in
these two tables. The data in these tables are assumed to give details to the DBOP
step, and relation to the BOP_Structure is needed. Considering the possible future
query needs on the data in the data model, a separate join table is created. The
join table is named BOPhasProcessDetails, and it has relationships to both the
Process_Details table and the Quality_Process table. With this join table, the
SortString attribute is not needed in the BOP_Structure table. Including the
SortString attribute in the BOP_Structure table would cause only 333 of the 9210
rows to have a SortString value. The number of rows is derived from the number

of non-null values per column in Figure 31.

The Engine_Details table is the final table without a relationship. This table
contains the data for the engine owning the DBOP. The data analysis result,
discussed in chapter 4.2.1, revealed that the same engine information is repeated
on three rows in the DBOP. To reduce the data redundancy, a join table named
IDhasEngine is created between the ID_Details and Engine_Details tables. This
table contains three attributes: ID, RevID, and EngineNumber. As the DBOP covers
only one EngineNumber, the same EngineNumber is repeated as many times as
there are ID and RevID pairs relating to the engine data. The Engine_Details table
will only have one row. This row specifies the EngineAbbreviation and

EngineDescription for a specific EngineNumber.

All the design decisions made when creating the DBOP relational data model are
described in Figure 118. The aim was to create a data model that reaches 3NF.
Based on the data analysis, discussed in chapter 4.2.1, it is understood which
tables are needed in the data model to reduce data redundancy, to avoid partial
dependencies, and not to have any transitive dependencies in the data tables.
With one exception, the guidelines to reach 3NF were fulfilled, as listed in Table
8. The exception made is for the partly multivalued attribute: OwningUser. The
reasoning behind this decision is elaborated in Table 9. In short, all the data in

OwningUser is considered as a code.

130

4.2.2.2. Graph data model

The graph data model is created as the second step. The inputs used for the graph
data model are the result of the data analysis, described in chapter 4.2.1, and the
DBOP relational data model, presented in Figure 118. Discussions with business
stakeholders or data modeling experts were not held between the data modeling

sessions for the relational and graph data models.

The creation of the graph data model took place on 30t of August 2022. The
data modeling was carried out in a single session of 48 minutes. The resulting
graph data model is presented in Figure 121. This DBOP graph data model and
the process used to reach the result was very much disliked by the graph data
model expert at Wartsila. The business stakeholders did not give any comments

on the model.

sirLevel
seqNr
aty:

DBOP

Step “--____CONSUME consumedAssembly

[} T realizationld
% realizationRevision|d:
g q

< @ : Realizati

& ‘i'?/‘. Lq’?f/;’.é‘ \d‘ ealization

| %, 0 revid
2 ~8y, teType:

z ~ &
} * releaseDate:
description o @65

DwmngGrDup

<

x

v %
v
% owningUser: o
z 5 &

plantLevel s i <
process Type: rocess 0 ,1’
alternateProcess: \ Details a od, BELONGS_TO s F’urchase purchaseCode:
psa: o A HAS DETAILS B 4— Code
.

: %
%
S D
OQ;(/ ma! E!F arentltemld: Escl?fge
/) ma9ParentltemRevld: @ \
%
(qb Drawmg drawingRelation:
R Relation
%,
P hase \

qua\llyKey
Level
phaseLevel:
engineNumber:

engineAbbreviation:
engineDescription

Figure 121. The first DBOP graph data model. The graph data model expert did not accept this version
(Author’s picture)

The process followed to reach the result in Figure 121 is the Neo4j advice on how
to move from a relational data model to a graph data model [50]. The guidance
suggests analyzing the relational data model with the following sequential steps:

Locate all foreign keys

2. Drop all foreign keys
3. Name relations
4. Locate join tables

131

5. Change join tables to relations

Figure 122 presents the result of the analysis made on the DBOP relational data
model. This result is then translated into the graph presented in Figure 121. In
the graph data model, the tables are nodes. The attributes in the tables are
properties on the node. The relationships are named as planned in Figure 122. All
the table attributes were defined as node properties for the simplicity of the first
model. If this approach would have been continued, keeping the properties on the
nodes, moving some of them to the edges or even separating them as separate
nodes would have been considered.

| 1. Locate all foreign keys

| 4. Locate JOIN tables ‘ -\

5. Join tables changed to
relations

RealizationID
RealizationRevisionlD

Phase_Level
BOP_Structure

o

Consumed_ASsemb|
el
r

n:

v
ReleaseDate
Description

o
rLe
Seq N
ConsumedAssembl
OwningUser

HAS_P ROCESS Ma9_Parentitem OwningGroup

Ma8_Parentitem!D

Quality_Process Ma$g_ParentitemRevID
Process Details o] i
SortString ?

PlantLevel
ProcessType
AlternateProcess

Engine_Details
[EngineNumber
[EngineAbbreviation
[EngineDescription BELONGS TO
Drawing _Relation

*v rawingRelation

Figure 122. The result of the relational data model analysis (Author’s picture)

The graph data model expert at Wartsila commented that carrying out the
systematic relational data model analysis gives some insight into the data.
However, it is not enough to make a well-functioning graph data model. Aligned
with the suggestions in chapter 2.4, he marks the importance of discussing with
business stakeholders to understand the actual business process and needs. He
also emphasizes the art of designing an intuitive graph data model for the people
using it. And that the DBOP model should withstand changes in the

132

manufacturing process and have the flexibility to cover the DBOP for different
products.

To reach a better DBOP graph data model, the graph data model expert suggests
focusing on TcType. The TcType values give an indication of which nodes are
needed. The suggestion of creating separate nodes for properties assumed to be
good link points between different engine DBOPs was immediately turned down.
A concrete example of this is presented in Figure 123, which suggests creating a
node for the engine-type data. The idea is that this node links all DBOPs with a
specific engine type. Based on the data graph data modeling expert’s experience,
this causes so-called "super nodes" with millions of edges that reduce the
performance of the graph database. A better approach is to keep the attributes
from the relational data model as properties on nodes or edges.

engineNumber:
engineDescription:

. Engine
Engine — HAS — Type engineAbbreviation:

Figure 123. The suggestion of breaking out properties assumed to be good linking points between different
engine’s DBOP is not a good idea (Author’s picture)

The second graph data model was created on the 1st of September 2022, with a
total modeling time of 180 minutes from two separate sessions. The inputs used
for the modeling are the feedback and advice from the graph data modeling
expert and the DBOP Excel file. The only information taken from the data analysis
in chapter 4.2.1 is the knowledge of how the hierarchical structure is built with
the principle in Figure 60. The resulting graph data model is presented in Figure
124.

133

Figure 124. The second DBOP graph data model. The graph data model expert did not accept this version

(Author’s picture)

The node name is a simplification of the TcType value. The properties on the
nodes are the column names of the columns with non-null values for the specific
TcType. The labels on the nodes are a further simplification of the node name and

the StrLevel value the specific TcType value has. The edges are named utilizing the

134

node name, the direction to which the arrow points to. An alternative naming
approach would have been simply to use “HAS” for each edge. A more
complicated naming approach was selected to later distinguish the edges in
Neo4j.

Figure 125 presents the first part of Figure 124. This part of the created graph
data model is aligned with how the graph data model expert and business
stakeholder see the DBOP graph data model. The second part, Figure 126, was
disliked by both parties. The second part is too complicated and focuses too much
on the DBOP data structure.

The simplification of the second part was done in two steps. First, the different
material type nodes at StrLevel 7 were combined into one Material node. This also
reduces the number of needed edges. The result of the first simplification step is
presented in Figure 125. Next, the Material node at StrLevel 7 and the Material
node at StrLevel 8 are combined, and the duplicates of DocumentSet nodes and
DrawingSet nodes are removed. The result of the second simplification step is
presented in Figure 128. The simplification of the graph data model took place on
the 2nd of September 2022, with a modeling time of 25 minutes. The complete
final DBOP graph data model is presented in Figure 129. By simplifying the graph
data model from 26 to 16 nodes and from 41 to 17 edges, a result aligned with
the expectations of the business stakeholder and graph data model expert was
reached. Twenty minutes was included to the AnalysisTime(graph) variable from
the additional discussions with the graph data modeling expert and business
stakeholder

engineumber
engneAtbrevation

enginaDescrption
.

]
revia

name.
1Types
arawingReiation

engineNumber.
ineen

\ﬂ%~ - S‘t‘

engineNumBEr

e
1ETyp
releaselite
description
ownngUser.
CwningGrou

reaizatond
realizationRevisionid

135

parentid.
parsntisvid
stiLavel

altemateProcess

psa
sortString

Figure 125. The first part of the second DBOP graph data model. This part was accepted by the graph data
model expert and the business stakeholder (Author’s picture)

paretid
pareniRmid
srlavel
s
@
o
rovid
nama
kType
reteawelalo
descrphon
wngUse §

parerniid

poameiee sarters

purchaseCode e

AT

aty

—— "

HAS CATALOG_MATER revid

~ name

\. parantid cType

paraniReid reasal e

SSCTphOn

cnningLiser

WG T

&
‘}r i parentid
& " parentRmid
¥)
?& ralsasaDale e
. drscrgton o
‘s gl

ownngGioup
purchaseCode

drawngRoaton

WG
COMGUTDAASOMENY

parentid
paranifievid
sirLoval

misassDte
SISCNPHON
P
g Gioug
matParentiem
purchassCode

paafilkd
paranlRedd
strLenwnl
sahr

parantid
Farentfievid newne
sir_owol I Type

panmniid

i
KType
reieaselaly
drawrgRuaticn b descriphon
owringlier
paveniid ownngGroup
parentfiodd .
siriavel sorSinng
sehlt
aty
o
renvid
name T
KTy gl
ekl
descnpton
irtuligf e
it i

drawng Relaton

136

pargatla
parentRevid
strLovel

panniid
parntREvid
strLewel
soafr

aty

[£]

L)

rame

wType
nisassDiate
Sescripton
ownngllser
ownngGoup
demwngRelabon

Figure 126. The second part of the second DBOP graph data model. This part was not accepted by the graph

data model expert or the business stakeholder (Author’s picture)

137

parentld
parentld parentRevid
parentRevid strLevel
strlevel seqNr.
Hp, parentid qz
id parenttevid parentid revid
revid S ;;ﬁr parentRevid name:
name ay strLevel teType:
cType d seqNr releaseDate
owningUser revid qty desﬁrluuuon
OWnir Sar;
- owningGroup name id / ngG d
Hag consumedAssembly 1ol D revid: owningGroup:
~Mrg %zﬁﬁm?@'ﬁ name drawingRelation

tcType:

owningUser:

releaseDate:

ouningGroup description:

ma8Farentitem. ;

(6] purchaseCode awnmguser.

owningGroup:

psa: %0~
soriString: ®

parentid
parentRevld
strievel
SeqNr

aty.

tcType:
releaseDate
deseniption
owningUser:
owningGroup:
drawingRelation

parentid.
parentRevid
strLavel

teType:
releaseDate
description
owningUser.
owningGroup
drawingRelation

Figure 127. Different material nodes are combined in the second part of the second DBOP graph data model.

(Author’s picture)

parentid:

parentid
parentRevid parentRevid:
strLevel strievel:
seqNr. seqNr:
qty aty:
id: id.
revid revid
name name:
tcType teType
releaseDate: releaseDale
description: description
owningUser. owningUser.
owningGroup: m‘_ﬁﬂlngsmup
drawinaRelation drawingRelation

parentid
parentRavid
strLevel

seqNr

1cType
releaseDate
description
owningUser
owningGroup
drawingRelation

parentld
parentRevid
sirLevel

1cType:
releaseDate:
description.
owningUser.
owningGroup
drawingRelation

parentid:

parentRevid:

strLevel:

seqNr:

qty:

id:

revid:

name:

teType:

releaseDate:

description

owningUser:

parentld: owningGroup:

parentRevid: psa:

strlevel: sortSlring:
seghr:
qty:
id:

revid:

name:
tcType:
awningUser:
-~ owningGroup:
Hq 5 MPG consumedAssembly:

S

Mfg

i
5 4 & Riay

parentld:
parentRevid: \ 5
strLevel: 4 Es,
seghr) CQ"S‘EO
aty: N)(‘) h
id: D(
revld:)
name:
releaseDafe: %
description: <
owningUser:
awningGroup:
maBParenthtem
purchaseCode:
parentld:
parentRevld:
strLevel:
seqNr
aty:
id:
revld:
name:
teType:
releaseDate:
description:
owningUser:
owningGroup:
drawingRelation:

parentld:
parentRevid:
strievel:
seqNr

aty:

name
tcType:
releaseDate:
description:
owningUs
owningGrou
drawingRelation:

138

parentld:
parentRevid:
strLevel:
seqNr:

qty:

8

revid:

name:

teType:
releaseDate:
description:
awningUser:
owningGroup:
drawingRelation:

Figure 128. Material nodes are combined and duplicates of Drawing Set nodes and Document Set nodes are

removed. (Author’s picture)

139

et

name:
IeTyme.
dravnpReaton
ananshumser.

parsnlid

n
onmingUser
aurngCioue
engreNumber

perenta

parentiiza T2
: u
%,
cﬁﬁ»m’
descigiion
paantia
parsrtc ounngliser DT
iR ouningCroug: YIREHE
siLovel A el
sl D) ar
alr 5 i
[el
v
name
iciype c

rpton .
naUser awningCroup:
oCroup phaseLausl iR

pareniln. pareniRevid

parntic
parantisia

onringlsec.
owrngCrow
cramnglisieticn

raalzstionRevision'd

aun i awning
drawngReaton arawingRalaton

Figure 129. The final DBOP graph data model (Author’s picture)

140

4.3. Graph data model implementation in Neo4j

This chapter presents the steps to bring a graph data model created in
arrows.app [43] to the Neo4j desktop version.

A new project is created in Neo4j, and within this project a new DBMS is added.
The project is named as DBOP_experiment, and the DBMS is DBOP Graph DBMS,
as presented in Figure 130. The DBMS is started and opened in the Neo4j

Browser.

A1 Neodj Desktop - 14,15 - O >

File Edit View Window Help Developer

Projects *~ Active DEMS ~ DBOP_experimer Q
DBOP Graph DBMS i '

3 DBOP_experiment .
DBOP_experiment
€8 DBOP Graph DBMS 4.45 (8 active m

" .
neodj (default)

© Createdatabase & Refresh

File Reveal files in File Explors IF Filename ~

Add project files to get started.

Figure 130. The Neo4j Desktop with the DBOP Graph DBMS running (Author’s picture)

The arrows.app export functionality is utilized to copy the Cypher CREATE
statement (Figure 132), from the arrows.app to the Neo4;.

141

Export

PNG SVG Cypher JSON URL GraphdQl

Cypher Clause: @ CREATE MATCH MERGE
a Copy to dipboard 3 Runin Neo4] Browser

CREATE (:Engine {engineMNumber: "", engineAbbreviation: ™", engineDescription: ""})-
[:HAS_DELIVERY_PROCESS]->(Delivery Process :DeliveryProcess: @ {parentId: "",
strievel: "7, seghr: s gty: , id: , revId: , name: , tcType: , releaseDate:
"", description: ", owningUser: "", owningGroup: "", engineMumber: ""})-
[:HAS_RELATED_DESIGN]->(:Realization: 1280 {parentId: "", parentRevId: "", strlievel:
", seqghr: , gty: "7, did: "7, revId: "V, name: "7, tcType: , drawingRelation:
engineNumber: ""1),
(:ToolDrawingSet {parentId:

, parentRevId: , strievel: , seqghir: » gty: "7, id:
, revId: "", name: "7, tcType: "", relesaseDate: , description: "", owningUser: ™"
owningGroup: "", drawingRelation: ""})<-[:HAS_TOOL_DRAWING]-(n78: Material?” {parentId:
"", parentRevId: , strievel: » saghir: , gty: "", id: "", revId: "", name: "",
releaseDate: "", description: , owningUser: "", owningGroup: , mafParentItem :
purchaseCode: ""})<-[:HAS_MATERIAL]-(:Mfg: 6" {parentId: "", parentRevId: "", strlLevel:
", seqghr: » gty: "™, id: "7, revId: "", name: "7, tcType: ,» ouningUser:
owningGroup: "", consumedAssembly: ""})<-[:HAS_MFG]-(:ProcessDetails: 5" {parentId: "",

parentRevId: , strLevel: "", segNr: "7, gty: "", id: "", revId: "", name: "", tcType:
", releaseDate: "", description: "", owningUser: "", owningGroup: ", phaseLevel: ™",
plantLevel: "", processType: "", qualityKey: "", alternateProcess: "", psa: ""

Done

Figure 131. Using the arrows.app export functionality to copy the Cypher CREATE statement (Author’s
picture)

The Neo4j Browser is opened from the Neo4j Desktop and pasted into the Cypher
CREATE statement, as presented in Figure 132. After pressing the play icon in
blue, the statement is executed, and the graph is created in 261 ms, as presented

in Figure 133.

A neodj@bolt://localhost: 7687/neod;) - Neodj Browser - O *
File Edit View Window Help Developer

1 CREATE (:Engine {engineNumber: "", engineAbbreviation: "" P oox
engineDescription: ""})-[:HAS_DELIVERY_PROCESS]—(Delivery
Process :DeliveryProcess: 0" {parentId: "", strLevel: "", segNr: "'
gty: "', id: """, revId: "", name: "", tcType: "", releaseDate: ""
description: "", owningUser: "", owningGroup: "", engineNumber:
""})-[:HAS_RELATED_DESIGN]—(:Realization: 1200 {parentId: "",
parentRevId: "", strlevel: "", segNr: "", gty: "", id: "", revId:
"', name: "", tcType: "", drawingRelation: "", engineNumber: ""})
2 (:ToolDrawingSet {parentId: "", parentRevId: "", strlevel: ""
segNr: "", qty: "", id: "", revId: "", name: "", tcType: "’

wn "o wn nn

releaseDate: , description: , owningUser: , owningGroup: ,
drawingRelation: ""})«[:HAS_TOOL_DRAWING]-(n78: Material7"

Figure 132. The Cypher CREATE statement is pasted to the Neo4j Browser window (Author’s picture)

142

A neodj@bolt://localhost: 7687 /necd] - Neodj Browser
File Edit View Window Help Developer

neo4j$

CREATE (:Engine {engineNumber: "", engineAbbreviation: "", engi. p @

Added 26 labels, created 16 nodes, set 208 properties, created 17 relationships, completed after 261 ms
Table

Figure 133. The DBOP graph created in Neo4j in 261 ms (Author’s picture)

Figure 134 demonstrates that the graph that was created in the arrows.app is

now available in Neo4j. Properties and labels are visible by pressing a specific
node, as presented in Figure 135.

7 nectj@bok focalhnst 507 e - e Browser - @ x
Fle Edt Viw Winow Help Develaper

MATCH (n) RETURN n LIMIT 25

a
=}

Figure 134. The DBOP graph model in Neo4j (Author’s picture)

143

Node properties ©

<id> o]
engineAbbreviation
engineDescription

engineNumber

Figure 135. Viewing the label and properties of the Engine node in Neo4j (Author'’s picture)

With these few simple steps, the graph data model created in the arrows.app can
be imported to Neo4;j.

5. ANALYSIS

144

This chapter analyses the lessons and results of the research. Competencies and

knowledge needed for graph data modeling in Neo4j are also suggested.

5.1. Case study result

In the experiment design phase, discussed in chapter 4.1, the alternative

hypothesis defines the graph data model as more dynamic than the relational

data model. The case study indicates the graph data model to be more dynamic

than the relational data model. The availability of only one subject for the case

study restrict us to give a statistically relevant result. Despite this fact the result

of the case study is calculated according to the planned experiment analysis

procedure. This provides an example for how we suggest the result of an future

experiment to be analyzed.

The data collected in the experiment are summarized in Table 11. The alternative
hypothesis, Hi_crete: CreateEff(graph) > CreateEff (relational), is formed by
inserting the values: 21.4 > 10.4.

Table 11. The experiment result

Name Value | Description
GraphExp 2 Followed a course or read a book
RelationalExp 4 More than six months of industrial
experience.
AnalysisTime(relational) | 547 Total time from the initial analysis. No
min additional research is needed during data
model implementation.
AnalysisTime(graph) 90 70 minutes of initial analysis + 20 minutes
min during data modeling.
CreateTime(relational) 74 Figure 118 was created in one single session.
min
CreateTime(graph) 253 48 minutes for the first version, Figure 121.
min 180 minutes for the second version, Figure
124.
25 minutes of simplification to reach the final
model in Figure 129.
Elements(relational) 29 13 tables

145

16 relations
Elements(graph) 33 16 nodes

17 edges
CreateEff(graph) 214 | (547 +74)/29=21.4137931
CreateEff(graph) 10.4 | (90+253) /33=10.394

The Wilcoxon test was used for analysis. The significance level of 0.05 was used
to consider the result significant. R-Studio [51], the open-source and
professional software for data analysis, is used for the Wilcoxon test. The code
created in R-Studio is presented in Figure 136, and the result is given in Figure
137.

##Inserting values to variables
createEff_graph = 21.4137931
createEff_relational = 10.3%4

##using the test "wilcoxsign_test™ 1n "coin" Tibrary
#to compute the 7 statistic and the p-wvalue
s e

install.packages{"coin™)
Tibrary{coin)

##Hypothesis testing
testResult= wilcoxsign_test(createEff_graph ~createEff_relational)
teztResult

Figure 136. The code in R-Studio for Wilcoxon (Author’s code)

=~ ##Hypothes1s testing
= testResult= wilcoxsign_test{createEff_graph ~createEff_relational)
= testResult

Asymptotic Wilcoxon-Pratt 5igned-Rank Test
data: v bv x (pos, neqg)

Z =1, p-value = 0.3173
alternative hypothesis: true mu 1s not equal to O

Figure 137. The result of Wilcoxon analysis in R-Studio (Author’s picture)

A key finding in the case study was that a change of mindset of the data modeler
is needed when moving from the relational domain to the graph domain. As
suggested in chapter 2.4.1, the questions to ask from the model need to be
understood already when forming the understanding of the data model needs. It
is not enough to use an analytical approach to translate a relational data model
to a graph data model. Instead, the policy must be to hold discussions and to align
with business stakeholders. Hence, the approach used in this experiment was
wrong. It was too focused on the data and lacked the understanding of the

conceptual world of the data at hand.

146

The analysis time needed for the relational data model versus the graph data
model indicates the effort required when change needs arise due to changing
business needs. The relational data model analysis took six times longer than the
graph data model analysis.

When designing the experiment, it was expected that the ratio of the dynamic
capabilities of the relational data model versus the graph data model would
remain the same no matter the data in the scope and the involvement of the
business stakeholders. After the experiment, this assumption was recognized to
be wrong. Producing a 3NF relational data model based on a data analysis result
is relatively easy. The data analysis did not benefit the graph data model creation
greatly. Creating a well-functioning and intuitive graph data model requires more
time sorting out the problem with the business stakeholders.

When discussing the data models with the business stakeholder and the data
modeling expert, it was noted that neither of them provided any comments
regarding the relational model result. For the graph data model, criticism that the
first attempts were not aligned with their expectations was received
immediately. This indicates that the graph data model is easier to discuss and
align with business stakeholders and other data modelers. This confirms that the
graph data model is more intuitive than the relational data model and reduces
the gap between the conceptual world and the model implemented in a DB. This

gap was discussed in chapter 3.6 and visualized in Figure 22.

5.2. Competencies and knowledge

This chapter answers RQ4:
e What knowledge and competencies are needed for graph data modeling

and implementation in Neo4j?

The question is answered based on experience gained through the literature

review and case study.

The literature review revealed that the graph data model is often described as
more dynamic and intuitive than the relational data model. From the experiment

described in chapter 4.2.2, it can be noticed that an engineer from the relational

147

domain focuses too much on data structures and specific details, which makes the
graph data model too complex and difficult to understand.

Creating a simple and intuitive graph data model requires discussions with
business stakeholders over extensive data analysis. This can be a challenge from
two different angles:

¢ Time and commitment from business stakeholders

e Social skills and attitude of the data modeler

From the experience gained in this study, it was noticed that a 30-minute session
with business stakeholders could be enough to draw the graph whiteboard model
that can be further enhanced by either the data modeler alone or with business
stakeholders. This study's almost 10-hour long data analysis benefits the
relational data model but not the graph data model. Hence, the attitude of making
it alone needs to be forgotten, and the engineer needs to engage in discussions

with business stakeholders.

The engineer starting graph data modeling needs a basic understanding of graph
data modeling, tools, and practices, and a willingness to continuously study and
learn more. The engineer should also have enough experience to determine if
there will be a benefit in moving from the existing DB to the graph DB. This

decision should not be made without analysis and careful consideration.

148

6. CONCLUSION AND FUTURE RESEARCH

This chapter concludes the thesis by revisiting the research questions to
understand if the research objective is met and provides suggestions for future

research.

6.1. Answer to research questions

The research was initiated by Wartsild’s desire to understand if its experienced
success with graph data models and Neo4j GDBMS could be extended to the
manufacturing process data and later to value creation in internal and partner
networks. The literature review revealed that the graph DB seems to be a good
choice for manufacturing collaboration in internal and partner networks where the
relations will play a vital part and frequent evolvements in the systems can be
expected. However, there are no clear indications of immediate and remarkable
practical benefits in areas like query performance, flexibility, and agility. The
suggestion from Robinson et al. [5] is to sort out what the specific problems to

solve is, before deciding to move from a familiar DB type to the graph DB.

Modeling the DBOP as a graph data model shows that the data structure has
eleven dept levels, Figure 129. The literature review revealed an indication that
when there are more than four dept levels, the graph DB will show remarkably
better query performance than the relational DB, as presented in Figure 19. Based
on this, it is understood that if the DBOP is the core data in the manufacturing

collaboration in the internal and partner network, the graph DB is a suitable choice.

From the case study of implementing the DBOP relational and graph data model it
was noticed that the graph data model seems more dynamic than the relational data
model. It is also more intuitive and easier to align with business stakeholders and
other data modelers. A good measure of intuitiveness is how easy the model is to
discuss with other stakeholders. From the two alternative models created, there was
no feedback on the relational data model. At the same time, the business stakeholder
and the graph data modeling expert could give their opinions on the graph data
model. It was also noticed that the business stakeholder cannot comment on a
graph data model that is too data-focused and complex.

149

This research focused on finding solutions and answers to the following research

questions (RQ):

RQ1. How do data modeling for a relational DB differ from data modeling for a
graph DB?

RQ2. Can an experiment where the manufacturing process is modeled as a
relational model versus a graph data model prove that the graph data
model is more dynamic than the relational data model?

RQ3. How to present the manufacturing process data in Neo4;j?

RQ4. What knowledge and competencies are needed for graph data modeling

and implementation in Neo4j?

RQ1 is answered based on a literature review and the practical implementation
of relational and graph data models. Chapter 2 and chapter 3 collects the finding
from the literature review on alevel that anyone interested in data modeling will
find easy to understand. Especially business stakeholders without experience in
data modeling and data modelers moving from the relational domain to the graph

domain will benefit from reading these chapters.

A key finding in the literature review is that a company considering a switch to
the graph domain should not only follow the hype of moving to graphs. A
careful analysis of their specific needs is recommended. In case a company faces
the challenge of choosing between a relational DB or graph DB, it is suggested to
use the recommendations in chapter 3.5, where the Bechberger and Perryman

decision tree is presented in Figure 21.

For RQ2 an experiment has been designed. The experiment is not carried out due
to resource issues. A case study to evaluate the experiment design however
indicate that the graph data model is more dynamic than the relational data
model. The data being modeled in the case study is the DBOP of an engine
manufactured in Wartsila STH. Chapter 5 provides an analysis of the experiment
result together with an answer to RQ4. The result shows a clear difference in the
mindset needed from the data modeler when focusing on a relational DB versus
a graph DB. According to Fernigrini [36], the data structure is essential in the
relational DB design. When modeling a NoSQL DB, the type of queries to be
executed on the data is the focal point. Robinson et al. agree that a graph data
model not only shows how we consider things to be related but also clearly

communicates the kinds of questions that are important in the modeled domain

[5].

150

The input for the data modeling was mainly an Excel file consisting of a table of
9210 rows and 38 columns. To understand the data, an almost 10-hour long data
analysis was performed. The strategy set up for the analysis was later in the
modeling phase recognized to be a heavy focus on the needs for the relational
database. The data relationships and groups identified through the data
analysis focused on data structures and not the questions that are
important in the DBOP domain.

Figure 118 presents the resulting relational data model. It is in 3NF, and it
manages the current DBOP data scope. it is recognized that if the model needs to
be kept in 3NF, a change request would require data analysis to be performed
again. When looking at the relational data model, a set of connected tables can be
identified. The visibility of the process flow is missing, and no comments were
received when showing it to the business stakeholder. The silence is

interpreted to mean that the model is not intuitive.

Neither did the business stakeholder comment on the first graph data model,
presented in Figure 121. This also indicates that if business needs were changed,
the business stakeholders could not explain how this change affects the data
model. The graph data modeling expert disliked this result and gave the
impression that the art of graph data modeling is not only to translate tables
from a relational data model into nodes and attributes into properties. The
graph data model should be intuitive and flexible to withstand changes in

the business.

it was recognized to be a challenge to drop the detailed data focus and create a
graph data model that is simple and intuitive for the business stakeholder. There
were no questions to ask about the data and no discussions with the business
stakeholders. It was recognized that a 30-minute-long session with business
stakeholders describing the DBOP and listing the questions they are interested in
would have produced a better graph data model. After several modifications, a
graph data model was formed, which was aligned with how the business
stakeholder and the graph data modeling expert understands the DBOP,
presented in Figure 129.

The key finding is that a graph data model is not a translation of relational
model tables and attributes into graph nodes and properties. Discussions
with business stakeholders produce an intuitive and dynamic graph data

151

model. Therefore, the data modelers need to understand the importance of
conversations and drop the attitude of managing alone.

The graph data model was implemented in Neo4j to answer RQ3. This is
recognized to be an easy step thanks to the arrows.app that provided a Cypher
statement to be run in Neo4j. The decision to use a modeling tool over the
possibility of creating the graph data model directly in Neo4j did not create
additional work. Importing the data to Neo4j is outside the scope of this study.
Importing the data and performing queries on the data would indicate how
efficient the graph data model is.

Based on this study, a possibility of extending Wartsild’ s success with graph data
models and Neo4j GDBMS to the manufacturing process data and later to value
creation in internal and partner networks is recognized. However, a clear yes or

no answer cannot be given based on this study.

6.2. Recommendations for future research

The logical data models created in the experimental setup would require further

testing and discussions with business stakeholders before being used.

There is an indication that the graph data model would be suited for DBOP. Before
Wartsila decides on a graph DB implementation for the DBOP, importing data to
the Neo4j implementation and testing how this implementation performs
compared to the current DB implementation is recommended. The performance
can be measured by performing queries designed based on the questions

business stakeholders define to be necessary.

An interesting future research would be an experiment where the DBOP graph
data model created from the data structure perspective, presented in Figure 121,
is compared to the graph data model aligned with business stakeholder
understanding, presented in Figure 129. The test could be performed by
implementing both in Neo4j, importing the DBOP data, and running performance
tests on questions that are interesting to the business stakeholders. This would

give an interesting result of how the difference in viewpoint and data

152

understanding affects the quality of the data model and, hence, the DB'’s

performance.

From the literature review was found indications that the relational data model’s
response to change is weak and requires expensive configurations to reflect
changes in business needs [4] [5]. In contrast, the graph data model is described
to be dynamic. It is easy to add new data elements when adapting to new business
requirements in the graph data model [13]. Despite the dynamic capability being
highlighted as a benefit of the graph data model, we note that research comparing
the relational domain to the graph domain mainly focuses on DB query execution
times and handling relationships between data elements. The literature review
did not find any experiments investigating the difference in effort and time
needed to implement and modify a relational data model versus a graph data

model.

We designed an experiment to get statistical fact that the graph data model is
more dynamic than the relational model. With limit the of only one subject
participating in our experiment, we cannot say that our result is statistically
relevant. We however, recognized the experiment design and analysis planned to
be valid. To get a statistically relevant result we recommend the experiment to be

carried out with ten to twenty subjects.

153

SWEDISH SUMMARY

En fallstudie om en évergang fran en relationsdatamodell till en
grafdatamodell i ett industriellt sammanhang

Den populdara relationsdatamodellen ar i det hdr arbetet utmanad av
grafdatamodellen. Relationsdatamodellen dr en beskrivning av datastrukturen
for en relationsdatabas och grafdatamodellen dr en beskrivning av
datastrukturen for en grafdatabas. Arbetet tar upp grundbegrepp i
datamodelleringsprocessen samt beskriver skillnader mellan relations- och
grafdatamodellen. Huvudfokusen i litteraturgranskningen ar att fa en forstaelse
av nar och hur det lonar sig for en firma att ta steget fran relations- till
grafdatabas. Wartsild, som ar uppdragsgivare till arbetet ar speciellt intresserat
av den dynamiska egenskapen av grafdatamodellen. I litteraturen hittas inget
bevis pa att grafdatamodellen dr mer dynamisk dn relationsdatamodellen. Det
har arbetet innehaller darfor ett experiment dar den dynamiska egenskapen av
en relations- och grafdatamodell mats. Eftersom endast en person deltog i

experimentet kan resultatet dock inte tolkas som statistiskt relevant.

Forskningsfragorna i fokus i detta arbete ar:
RQ1. Hur skiljer sig datamodellering for en grafdatabasimplementering
jamfort med en relationsdatabasimplementering?
RQ2. Kan man genom ett experiment bevisa att grafdatamodellen ar mer
dynamisk an relationsdatamodellen?
RQ3. Hur kan en motors tillverkningsprocess modelleras i Neo4;j?
RQ4. Vilka kunskaper och kompetenser behdévs for grafdatamodellering och

vidare implementation i Neo4j?

En grundforstaelse for datamodellering och databaser, samt far forstaelse nar och
hur en firma bor byta fran en relationsdatabas till en grafdatabas bildas genom
att studera virtuella bocker, fallstudier, forskningsresultat och rapporter.
Kallmaterialet som anvands dr till storsta del mellan noll till fem ar gammalt och
hittas genom Google, Google Scolar och Abo Akademis virtuella
biblioteksdatabas.

Relationsdatamodellen som anvands for att beskriva strukturen i en

relationsdatabas beskriver bade data och kopplingar mellan data i tabellformat.

154

Grafdatamodellen beskriver datastrukturen som en graf. Denna fundamentala
skillnad gor att det ar lattare att gora andringar i grafdatamodellen an i
relationsdatamodellen.

Datamodelleringsprocessen for en relations- samt grafdatamodell utgar fran att
forsta problemet som ska modelleras. Detta arbete sker i samforstdelse med
affarsintressenter. Enligt Fernigrini [36] ar det viktigt att fa en forstaelse for
datastrukturen om man modellerar for en relationsdatabas. Daremot ar det
viktigt att skapa en forstdelse for vilken typ av fragor man ar intresserat av att fa
svar pa utifran data om man designar en grafdatabas [36]. Robinson med flera
anser ocksa att grafdatamodellen beskriver hur saker ar relaterade och vilka de
essentiella fragorna ar [5]. DA problemet ar forstatt och dokumenterat i
textformat overgar man till det konceptuella modelleringsskedet.

Tekniska eller systemdetaljer ingar inte i denna datamodell. En ofta anvand
teknik i relations data modelleringen ar att skapa en ER-modell. En ER-modell
kan antingen uttryckas som graf- eller textformat. I grafmodellering skapar man
ocksa en graf som kan vara sa enkel som en skiss pa en whiteboardtavla
framtagen i ett mote med affarsintressenter. Viktigt i detta skede ar att forsta att
den konceptuella modellen beskriver problemet fran affarsintressenternas
synvinkel [7]. Databasutvecklare ska darfor vara forsiktiga med att inte redan i

detta skede 16sa problemet och tanka pa den verkliga databasimplementeringen

[7].

Efter den konceptuella datamodelleringen foljer det logiska
datamodelleringsskedet. 1 detta skede definieras hur databasen ska
implementeras. Man tar fortfarande inte in detaljer fran specifika
databassystemleverantorer. For en relationsdatabas dversatts ER-modellen till
en relationsdatamodell, vilket innebar att en grafrepresentation dversitts till
tabellformat. Datatabellerna normaliseras ofta till tredje grad. For en grafdatabas
forblir modellen i grafformat. Skillnader man kan se dd man oOvergar fran
konceptuell till logisk datamodell for en grafdatamodell ar att sddant som var en

entitet blir en egenskap for en nod i den raffinerade modellen [7].

[grafdatabasdesign ar den logiska datamodellen den sista modellen som skapas
fore databasimplementeringen. For en relationsdatabas skapas en fysisk

datamodell som gar in pad detaljer och krav fran en specifik databasleverantor.

155

Datastrukturen kan aven modifieras och det som man normaliserat i det

foregdende skedet kan de-normaliseras for battre frageprestanda.

Relationsdatabasen ar trots sin robusta tabellstruktur fortfarande popular och
passar utmarkt for dataaggregation. Relationsdatabasen med hog dataintegritet
och konsistens anvands ofta i anvandarfall som kraver hog garanti for
datatransaktioner. Ett exempel dr banktransaktioner. Relationsdatabasen har
dock sina nackdelar. En som lyfts fram i litteraturen ar dess hoga
underhallskostnad. Den hoga underhallskostnaden ar direkt beroende av
databasens tabellstruktur med fordefinierade kolumner och krav pa att varje rad
i tabellen ska vara unik. Dessutom dar mappningen av data i tabellformat inte
hur data existerar i verkligheten. [verkligheten existerar data som objekt och
relationer mellan dessa objekt.

Enrelationsdatabas sparar inte relationer, utan dessa kalkyleras vid behov med
hjalp av kopplingsforfragningar mellan tabeller. Dessa kalkyler ar kostsamma,
eftersom relationsmodellen forst tar fram en mangd mojliga svar och fran dessa
sedan filtrerar ut det ratta svaret. Med dagens extensiva datakopplingar kan
relationsdatabasen orsaka situationer dar ett foretag gar miste om vardefull
forstaelse av data och dess kopplingar pa grund av att en relationsdatabas inte

klarar av att leverera svar pa fragor som gar djupare an fyra hierarkiska nivaer.

Grafdatabasen kan i motsats till relationsdatabasen prestera val i situationer dar
antal attribut, data samt kopplingar mellan data ar stora, det finns hoga krav pa
affarsflexibilitet och hur snabbt man far tillgang till data. I motsats till
relationsdatabasen ar grafdatabasen direkt framtagen for att spara data och
kopplingar mellan data. I en grafdatabas dar kopplingen mellan data lika viktig
som dataelementet, om inte annu viktigare. Grafdatabasens struktur som
utgors av noder samt kopplingar mellan dessa noder gor det latt att utoka
strukturen for att svara pa dndrade affirsbehov. Exempel pa varldsledande
foretag som skapat sitt varde utgdende fran datakopplingar ar Facebook, Google,

LinkedIn samt Paypal. Alla dessa ar tidiga adoptanter av grafdatabasen.

Grafdatabasen har visat sig fortrafflig i situationer som:
e Bedrageriupptackt i realtid

Realtidsrekommendationer till anvandare

Masterdata

Natverks- och informationsteknikverksamhet

Identitets- och dtkomsthantering

156

Uppfyllande av regelverk
Analyser

Digital tillgdngshantering
Kontextmedvetna tjdnster
Semantisk sokning
Situationsmedvetenhet

Trots att man pa internet kan ldsa om manga fortraffliga implementeringar av
grafdatabasen i olika typer av foretag, ska man inte bli féorbryllad och vilja
databastyp utgaende fran nagot man last om. Viktigt ar i stéllet att forsta sitt eget
problem och anvinda sig av ett analytiskt forfarande da typ av databas viljs. En
tydlig indikering pa battre svarsprestanda, flexibilitet och smidighet behovs for
att overvaga ett byte fran en vialetablerad och lattforstadd databas till en
grafdatabas.

[ett analytiskt forfarande for att vilja typ av databas utgar man fran vilket typ av
problem man forsoker 16sa. Man bildar en forstaelse av vilken typ av data man
kommer lagra samt hur data ska hdmtas. Pa en generell niva anses alla problem
passa i nagon av dessa kategorier:

1. Urval/so6kning

2. Aggregation

3. Relaterade eller rekursiva data

4. Monstermatchning

5. Centralitet, bildning av kluster och inflytande
Kategori ett och tva anses vara battre amnade for en relationsdatabas, medan
kategori tre till fem ar ldmpade for en grafdatabas. Om man efter
kategoriseringen fortfarande kanner osdkerhet kan man anvidnda sig av

beslutstradet i Figure 21.

Uppdragsgivaren, Wartsild, var speciellt intresserat av den dynamiska
kapabiliteten av grafdatabasen. I litteraturen fanns inget bevis pa att
grafdatamodellen ar mer dynamisk an relationsdatamodellen. For att fa ett svar
gjordes en fallstudie dar den dynamiska egenskapen av en relations- och
grafdatamodell mats. En dynamisk egenskap anses i detta arbete vara detsamma
som effektiviteten av att skapa och darefter modifiera datamodellen. I
experimentet modelleras en logisk relationsdatamodell samt en grafdatamodell.
Data som modelleras ar DBOP fér en motor som produceras vid Wartsila STH i

Vaasa, Finland.

157

Trots utmaningar att bygga en grafmodell som godkdndes av en
grafmodelleringsexpert pa Wartsila, visar fallstudien att grafdatamodellen visar
indikation pa att vara mer dynamisk dn relationsdatamodellen. Resultatet kan
dock inte tolkas som statistiskt relevant pa grund av att endast en person utférde
fallstudien. Storsta tiden av fallstudien gick at till att analysera och forsta data
som skulle modelleras. Utgdende fran analysen var det med tidigare erfarenheter
av en relationsdatabas relativt enkelt att bygga en relationsdatamodell enligt

tredje gradens normalisering.

Att bygga grafmodellen utgdende fran samma dataanalys och oversatta tabeller
och attributirelationsdatamodellen till noder och egenskaper i grafdatamodellen
visade sig vara ett daligt val. Att vara for analytisk i grafdatamodellering &ar en
nackdel. I stdllet for att datamodelleraren ensam analyserar data, bor hen
uppsoka de som forstar sig pa problemeti fraga och tillsammans med dem ta fram
en konceptuell 16sning till problemomradet. Endast genom diskussion kan
konsten med att skapa en intuitiv, valfungerande och dynamisk grafdatamodell
uppnés. Ar grafdatamodellen en 6verséttning fran relationsdatamodellen saknas
intuitivitet och affiarsintressenter kommer inte forstd modellen, vilket i sin tur
leder till problematik i diskussioner da en eventuell dndring ska 6verenskommas
och implementeras. Vilket verktyg som anvands i datamodelleringsskedet ar
ocksa viktigt att tdnka pa. I det har arbetet anviandes arrows.app. Arrows.app
genererar ett Cypher-skript som kan koras i Neo4j vid en

databasimplementering. Detta sparar tid och dubbelarbete undviks.

Genom fallstudien bildades d&dven forstdelsen av att ett eventuellt
modifieringsbehov av datamodellen skulle vara mer tidskrdvande for
relationsdatamodellen dn for grafdatamodellen. Detta baserar sig delvis pa att
dataanalysen for att skapa relationsmodellen var sex ganger langre jamfort med
grafdatamodellen. En annan orsak ar att affarsintressenterna hade lattare att
kommentera grafdatamodellen jamfért med relationsdatamodellen. Flera
kommentarer visar att grafdatamodellen ar lattare att forsta och det ar dairmed
lattare att diskutera och uppna konsensus om vilka dndringar som behdvs nar

affiarskraven andras.

Genom en litteraturgranskning samt en fallstudiehar i detta arbete uppnatts en
forstdelse av datamodelleringsprocessen for en relationsdatamodell samt
grafdatamodell. Relationsmodellen med sin robusta tabellstruktur kan anses

vara mindre dynamisk dn grafdatamodellen i en varld med stindiga férandringar.

158

Dock ska beslutet av att dverga till en grafdatamodell inte fattas okritiskt eller
utgdende fran trender. I stéllet ska en noggrann analys pa basen av det egna
problemomradet goras. Problemomradet i fokus i detta arbete var en motors
tillverkningsprocess och en eventuell utvidgning till partnernatverk. Fran
dataanalysen som visar att DBOP har elva hierarkiska nivaer kan man anta att
grafdatabasen skulle uppvisa sin fordel i frageprestanda jamfort med
relationsdatabasen. Detta understdds av resultatet av litteraturgranskningen
som visar att en relationsdatabas har svarigheter att leverera resultat i fragor
som stracker sig djupare an fyra nivaer. For Wartsila rekommenderas dock

fortsatta studier i problemomradet innan ett slutgiltigt beslut gors.

159

REFERENCES

[1]

Wartsila, "New Open Smart Manufacturing Ecosystem aims at
transforming manufacturing collaboration," Wartsila, 26 1 2022. [Online].
Available: https://www.smarttechnologyhub.com/new-open-smart-
manufacturing-ecosystem-aims-at-transforming-manufacturing-
collaboration/.

[Accessed 16 5 2022].

"Cambridge Dictionary," [Online]. Available:
https://dictionary.cambridge.org/dictionary/english /dynamic.
[Accessed 24 5 2022].

R. Kumar, "Flexible Data Modeling is Key for Product Information
Management Strategy," 4 2 2020. [Online]. Available:
https://pimcore.com/en/resources/blog/flexible-data-modeling-is-key-
for-product-information-management-strategy_a44814.

[Accessed 23 5 2022].

M. Kunkel, "The Rise of the Flexible Data Model," 6 5 2019. [Online].
Available: https://www.logicgate.com /blog/the-rise-of-the-flexible-data-
model/.

[Accessed 23 5 2022].

I. Robinson,]. Webber and E. Eifrem, Graph Database New Opportunities
for Connected Data, Sebastopol, USA: O'Reilly Media Inc, 2015.

A. e. a. Silberschatz, Database System Concepts, McGraw-Hill Companies,
2010.

D. Bechberger and |. Perryman, Graph Databases in Action, Shelter Island:
Manning, 2020.

H. Piili, "Comparing EDW and PLMGraph (Wartsila internal
documentation),” 13 10 2021. [Online]. Available:
https://confluence.devops.wartsila.com/display/PLMB/Comparing+EDW
+and+PLMGraph. [Accessed 7 6 2022].

M. Hunger, R. Boyd and W. Lyon, The Definitive Guide to Graph Databases,
Neo Technology, 2021.

H. Piili, "Graph Database Selection (Wartsila internal documentation)," 14
52022. [Online]. Available:

[11]

[12]

[18]

160

https://confluence.devops.wartsila.com/display/PLMB/Graph+Database
+Selection.
[Accessed 7 6 2022].

"DB-Engines Ranking," DB-Engines, 6 2022. [Online]. Available:
https://db-engines.com/en/ranking. [Accessed 8 6 2022].

"DB-Engines Ranking - Trend Popularity," DB-Engines Ranking, 6 2022.
[Online]. Available: https://db-engines.com/en/ranking_trend.
[Accessed 8 6 2022].

J. Webber and I. Robinson, "The Top 5 Use Cases of Graph Databases," 8 5
2017.[Online]. Available: https://go.neo4j.com/rs/710-RRC-
335/images/Neo4j_Top5_UseCases_Graph%?20Databases.pdf?_gl=1*1n48
pdm*_ga*NDM2NDcxODK3LjE2ZNDc10TY2NDY.*_ga_DL38Q8KGQC*MTY1
MjMzOTMONi43LjEuMTY1MjMzOTQ4MC4w&_ga=2.100916361.9655070
18.1652339346-436471897.1647596646& _gac=1.586691.

[Accessed 23 5 2022].

"datum/data," The Mayfield Handbook of Technical & Scientific Writing,
[Online]. Available:
https://web.mit.edu/course/21/21.guide/data.htm#:~:text=Datum%20i
s%20singular%?2C%20meaning%20%22one,used%20as%20a%?20singul
ar%20noun..

[Accessed 23 6 2022].

"Database," javatpoint, [Online]. Available:

https://www.javatpoint.com/what-is-database. [Accessed 10 6 2022].
"What is a Database Model," Lucidachart, [Online]. Available:

https://www.lucidchart.com/pages/database-diagram/database-models.
[Accessed 9 6 2022].

K. Sahatqija, J. Ajdari, X. Zenuni, B. Raufi and F. Ismaili, "Comparison
between relational and NoSQL databases," International Convention on
Information and Communication Technology, Electronics and
Microelectronics (MIPRO), 2018.

J. Bhogal and I. Choksi, "Handling Big Data Using NoSQL," International
Conference on Advanced Information Networking and Applications
Workshops, 2015.

"Types of Databases," Javatpoint, [Online]. Available:

https://www.javatpoint.com/types-of-databases.
[Accessed 10 6 2022].

[20]

[21]

[22]

[24]

[25]

[26]

[28]

[29]

[30]

161

"Neo4j - The Leader in Graph Technology," Neo4j, 2022. [Online].
Available: https://neo4j.com/company/.
[Accessed 2 6 2022].

"The Graph Technology Buyer's Guide - What You Should Know Before
Selecting a Graph Technology Solution," 28 10 2021. [Online]. Available:
https://neo4j.com/whitepapers/graph-database-buyers-guide/.
[Accessed 27 5 2022].

"Neo4j Licensing," Neo4j, 2022. [Online]. Available:
https://neo4j.com/licensing/.

[Accessed 27 6 2022].

J. Depeau, "Graphs in Automotive and Manufacturing: Unlock New Value
from Your Data," neo4j, 27 5 2020. [Online]. Available:
https://neo4j.com/blog/graphs-in-automotive-and-manufacturing/.
[Accessed 315 2022].

A. Vucotic, N. Watt, T. D. F. Avedrabbo and J. Partner, Neo4j in Action,
Shelter Island, NY: Manning Publications Co., 2014.

B. M. Sasaki, "Graph Databases for Beginners: ACID vs. BASE Explained,"
Neo4j, 13 11 2018. [Online]. Available: https://neo4j.com/blog/acid-vs-
base-consistency-models-explained/?ref=blog.

[Accessed 2 6 2022].

"Neo4j Developer Guide - Cypher Query Language,” Neo4j, [Online].
Available: https://neo4j.com/developer/cypher/.
[Accessed 1 6 2022].

"The Neo4j Cypher Manual v4.4," Neo4j, 2022. [Online]. Available:
https://neo4j.com/docs/cypher-manual/current/.
[Accessed 2 6 2022].

"Neo4j Cypher Manual - Cypher styleguide,” Neo4j, [Online]. Available:
https://neo4j.com/docs/cypher-manual/current/styleguide/.
[Accessed 2 6 2022].

"Neo4j Cypher Manual - Naming rules and recommendations,” Neo4j,
[Online]. Available: https://neo4j.com/docs/cypher-
manual/current/syntax/naming/.

[Accessed 2 6 2022].

"Neo4j Cypher Manual - Query tuning,” Neo4j, [Online]. Available:
https://neo4j.com/docs/cypher-manual/current/query-tuning/.
[Accessed 2 6 2022].

[31]

[32]

[33]

[34]

[35]

162

M. West, Developing high quality data models, Burlington, USA: Elsevier
Inc,, 2011.

G. F. Hurlburt, G. K. Thiruvathukal and M. R. Lee, "The Graph Database
Jack of All Trades or Just Not SQL?," IT Pro / IEEE Computer Society, no.
November/December 2017, 2017.

D. Taylor, "Data Modelling: Conceptual, Logical, Physical Data Model
Types," 23 4 2022. [Online]. Available: https://www.guru99.com/data-
modelling-conceptual-logical.html.

[Accessed 255 2022].

"Ultimate Entity Relationship Diagram Tutorial (ER Diagrams)," Creately,
254 2022. [Online]. Available: https://creately.com/blog/diagrams/er-
diagrams-tutorial/.

[Accessed 10 6 2022].

N. Roy-Hubara, L. Rokach, B. Shapira and P. Shoval, "Modeling Graph
Database Schema," IT Professional, vol. vol. 19, no. no. 6, pp. pp. 34-43,
2017.

K. Kaur and R. Rani, "Modeling and Querying Data in NoSQL Databases,"
IEEE International Conference on Big Data, 2013.

"Neo4j Developer Guide - Graph Data Modeling," Neo4j, [Online].
Available: https://neo4j.com/developer/data-modeling/. [Accessed 16 6
2022].

L. Fernigrini, "What Are Conceptual, Logical, and Physical Data Models?,"
Vertabelo, 9 2 2021. [Online]. Available:
https://vertabelo.com/blog/conceptual-logical-physical-data-model/.
[Accessed 11 6 2022].

J. Cao, D. F. Bucher, D. M. Hall and M. Eggers, "A graph-based approach for
module library development in industrialized construction,” Elsevier, 15 3
2022.

J. Saarela, "Graph Database Use Cases (10 examples)," 7 2 2020. [Online].
Available: https://www.profium.com/en/blog/graph-database-use-

cases/.
[Accessed 24 5 2022].

ActiveWizard, "Graph Databases Use Cases," [Online]. Available:
https://activewizards.com/blog/graph-databases-use-cases/.
[Accessed 24 5 2022].

[42]

[43]

[44]

[45]

[46]

[47]

[49]

[50]

[51]

163

"ERDPlus," [Online]. Available: https://erdplus.com/. [Accessed 10 8
2022].

"Arrows.app,” [Online]. Available: https://arrows.app/. [Accessed 10 8
2022].

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, R. B. and A. Wesslén,
Experimentation in Software Engineering, Springer, 2012.

"Pandas," [Online]. Available: https://pandas.pydata.org/.
[Accessed 119 2022].

"NumPy Introduction,” w3schools, [Online]. Available:
https://www.w3schools.com/python/numpy/numpy_intro.asp#:~:text=
NumPy%20aims%?20to%20provide%20an,and%?20resources%20are%?2
Overy%20important..

[Accessed 119 2022].

"First Normal Form (1NF)," Geeks for Geeks, 15 7 2022. [Online].
Available: https://www.geeksforgeeks.org/first-normal-form-
1nf/?ref=lbp. [Accessed 1 10 2022].

"Second Normal Form (2NF)," Geeks for Geeks, 25 11 2019. [Online].
Available: https://www.geeksforgeeks.org/second-normal-form-
2nf/?ref=lbp.

[Accessed 1 10 2022].

"Third Normal Form (3NF)," Geeks for Geeks, 31 7 2019. [Online].
Available: https://www.geeksforgeeks.org/third-normal-form-
3nf/?ref=1bp.

[Accessed 1 10 2022].

"Intro to Graph Databases Episode #4 - (RDBMS+SQL) to
(Graphs+Cypher)," Neo4j, 22 3 2016. [Online]. Available:
https://www.youtube.com/watch?v=NO3C-CWykKkY&t=294s.
[Accessed 2022 8 1].

"R-Studio," [Online]. Available: https://www.rstudio.com/.
[Accessed 10 14 2022].

