

A Case Study on Transitioning from

Relational Data models to Graph Data

models in an Industrial Context

Johanna Ilonen

Master’s Thesis in Information Technology, Computer Engineering

Åbo Akademi, Faculty of Science and Engineering

Supervisor: Dragos Truscan

Vaasa 2023

TABLE OF CONTENTS
ABSTRACT ..

ABBREVIATIONS...

1. INTRODUCTION ... 1

1.1. Research questions ... 4

1.2. Research contributions and limitations ... 4

1.3. Thesis structure .. 8

2. BACKGROUND ...10

2.1. Databases and database management systems ..10

2.2. The GDBMS Neo4j..14

2.3. Data models ..17

2.3.1. ER model ..17

2.3.2. Relational model ..21

2.3.3. Graph data model ..23

2.4. Data modeling in the DB design phase ..26

2.4.1. Understanding the problem ...28

2.4.2. Conceptual data model..28

2.4.3. Logical data model ..31

2.4.4. Physical data model ..32

3. LITERATURE REVIEW ...34

3.1. The relational DB and its weaknesses ...34

3.2. Graph DB addressing the weakness of relational DB ...36

3.3. Market leaders using graph DB ...37

3.4. Use cases gaining success through graph DB ...38

3.5. Analytical approach for deciding DB type ...39

3.6. Dynamic data model ...41

3.7. Conclusion ...43

4. CASE STUDY ...47

4.1. Experimental design ..48

4.1.1. Goal definition ...49

4.1.2. Hypothesis formulation ..51

4.1.3. Variables ..52

4.1.4. Design ..53

4.1.5. The subject ..55

4.1.6. The object ..55

4.1.7. Instrumentation ...55

4.1.8. Data collection ...56

4.1.9. Analysis procedure ...56

4.1.10. Evaluation of validity ..57

4.2. Data modeling ...58

4.2.1. Understanding data modeling needs ...59

4.2.1.1. Summary .. 120

4.2.2. Logical data models ... 121

4.2.2.1. Relational data model .. 122

4.2.2.2. Graph data model .. 130

4.3. Graph data model implementation in Neo4j ... 140

5. ANALYSIS .. 144

5.1. Case study result ... 144

5.2. Competencies and knowledge .. 146

6. CONCLUSION AND FUTURE RESEARCH ... 148

6.1. Answer to research questions .. 148

6.2. Recommendations for future research .. 151

SWEDISH SUMMARY .. 153

REFERENCES .. 159

ABSTRACT

Author: Johanna Ilonen

Master's Degree Program: Information Technology, Computer Engineering

Supervisor: Dragos Truscan

Title: A case study on transitioning from relational data models to graph data

models in an industrial context

Date: 24.3.2023 Number of pages: 151 Appendices: -

In this research, the graph data model challenges the well-known relational

data model. The relational model, used by the relational data base, uses tables

to present data and data relationships. The graph data model, used by the

graph data base, explains the data as a connected graph. This fundamental

structure makes the relational data model less dynamic and intuitive than the

graph data model.

In our experimental setup, the graph data model is more dynamic than the

relational data model. An interesting finding is that when mapping the data

model needs through data analysis, it is easier to build the relational data

model than the graph data model. Building a well-functioning graph data

model requires understanding on how the business stakeholders describe the

problem and what type and questions they want to answer based on the data.

To achieve the dynamic capability of a graph data model, the data modeler

needs a mindset change from an analytical approach to a social one. The

inputs from the business stakeholders are the key to success in graph data

modeling.

A company considering a change from a relational data base to a graph data

base shall not follow hypes. Careful consideration and analysis are needed.

The study shall show a clear indication of immediate and remarkable practical

benefits in areas like query performance, flexibility, and agility.

Language: English Keywords: data modeling, database, ERDPlus,

arrows.app, Neo4j

ABBREVIATIONS

3NF Third normal form

ACID Acronym for atomic, consistent, isolated, durable

CPU Central Processing Unit

CRUD Acronym for create, read, update, delete

CTE Common Table Expressions

DB Database

DBMS Database Management System

DBOP Delivery Bill of Process

ER Entity-relationship

GDBMS Graph Database Management System

IM Information Management

OSME Open Smart Manufacturing Ecosystems

RAM Random Access Memory

(The computer’s short-term memory where data is stored as

the processor needs it.)

RDBMS RDBMS management system

RQ Research Question

SQL Structured Query Language

SSD Solid State Drive

(A server storage device that retains data in flash memory

instead of a magnetic-based system like a hard disk drive.)

STH Sustainability Technology Hub

(Wärtsilä’ s delivery center in Vaasa Finland.)

1

1. INTRODUCTION

In the latter part of 2021, Wärtsilä and partners started a Business Finland-

funded project named Open Smart Manufacturing Ecosystems (OSME) [1]. The

goal of the OSME project is to move from traditional linear value streams to a

resilient collaborative network based on a digital foundation. This will enable

proactive planning of activities, first time right, reduced lead times, traceability

and feedback loops, optimized logistics, and better quality with less effort.

Dynamic data models and an understanding of data flow have been recognized

as one of many focus areas to achieve an efficient and value-creating resilient

collaborative network. According to Riihimäki, Director for Delivery Management

at Wärtsilä, this network “enables Wärtsilä and the other ecosystem partners to

adapt and innovate to market needs” [1]. Riihimäki also highlights the purpose

of “helping our customers continuously improve” [1].

Dynamic, defined as continuously changing or developing [2], fits well with the

statements from Riihimäki. From his comments, it can be derived that the data

and its requirements change due to dynamic market needs, and the data model

needs to adapt to this. The purpose of a data model is to provide an

understanding of data needs and requirements to be addressed when designing

a database (DB) to fit the needs of an organization [3]. Data models that structure

data into tables have a weak response to change and require expensive

configurations to reflect changing business needs [4] [5]. The relational model,

used by the relational DB, is an example where tables present the data and

relationships among the data [6]. An alternative is the graph data model, used

by the graph DB, which shows the data structure as a connected graph [7]. The

graph data model enables easier data model changes [7].

Another dynamic perspective are data models that allow processes to be

carried out with different approaches while still managing the situation where

the result will be combined and presented [4]. Wärtsilä has recognized that

connecting and using data from various processes and systems is challenging.

Especially use cases, with complex join queries for fetching data from relational

DB, cause unacceptable query execution time [8]. This has made Wärtsilä

interested in DBs that efficiently handle relationships between data elements.

The graph DB, explicitly designed to handle and store relationships between

2

data elements [9], is considered an appealing choice. Of many alternative graph

database management systems (GDBMS) in the market, Neo4j is selected by

Wärtsilä due to its technical capabilities of being a native GDBMS, its easy-to-

learn Cypher query language, and its position of being a GDBMS market leader

[10].

Wärtsilä now seeks to extend its success from current implementations of Neo4j

to use cases requiring dynamic data models with a particular focus on data

relationships. This study focuses on understanding how data modeling for a

relational DB differs from data modeling for a graph DB. Aim is to understand if

one approach is more suitable for a dynamic environment and if relationships

between data elements are easier to build and identify in a graph data model

compared to a relational data model.

The result of the study is based on a literature review and a case study where a

limited scope of engine manufacturing process data is modeled as a relational

data model and a graph data model. The graph data model is implemented in

Neo4j to get practical experience and understand what knowledge and

competencies are needed for graph data modeling and implementation in Neo4j.

The study of data models and DB types is limited to graph and relational domains.

The main reason for this limitation is Wärtsilä’s increased interest in Neo4j graph

DB technology. The relational DB selection is supported by its popularity. It

topped the DB-Engines ranking survey list of the database management systems

(DBMS) most frequently referenced on websites, job offers, and experience

listings in LinkedIn profiles [11]. Figure 1 shows statistics from June 2022, where

seven out of the ten most popular DBMSs are relational DBs [11]. Neo4j ranks

nineteenth and is the most popular graph DB [11]. Trends in Figure 2 indicate

that the relational database management systems (RDBMS) Oracle, MySQL, and

Microsoft SQL Server keep a relatively steady trend as the top three DBMSs

between 2013 and 2022 [12].

Why would an enterprise move from the popular relational DB to a graph DB?

Some arguments can be that:

• The graph DB can be an alternative or an additional option if the relational

DB does not manage well with an increased number of attributes, more

data, higher speed requirements in business agility or data accessibility,

and significantly more connections between data elements [9].

3

• In the graph, it is easy to add new data elements to adapt to new business

requirements [13].

• In contrast to the relational DB, the graph DB is explicitly designed to

handle and store relationships between data elements [9].

Figure 1. DB-Engines ranking survey list of most popular DBMS in June 2022 (picture source [11])

Figure 2. DB-Engines ranking survey trend of most popular DBMS (picture source [12])

4

This chapter continues by presenting the research questions in chapter 1.1.

Chapter 1.2 defines the expected research contributions, approaches, and

limitations. Chapter 1.3 describes the structure of this thesis.

1.1. Research questions

At Wärtsilä, the Neo4j GDBMS platform has successfully been used for some specific

use cases. There is a desire to understand if this success can be extended to the

manufacturing process data and later to value creation in internal and partner

networks. This study focuses on finding solutions and answers to the following

research questions (RQ):

RQ1. How does data modeling for a relational DB differ from data modeling for

a graph DB?

RQ2. Can an experiment where the manufacturing process is modeled as a

relational model versus a graph data model prove that the graph data

model is more dynamic than the relational data model?

RQ3. How to present the manufacturing process data in Neo4j?

RQ4. What knowledge and competencies are needed for graph data modeling

and implementation in Neo4j?

1.2. Research contributions and limitations

This chapter describes how the study results are produced and which limitations

are set. The study is conducted in two sequential steps. A literature review is

followed by a case study in an experimental set-up.

The literature review aims for basic knowledge in data modeling and DB

implementation with a limitation to relational and graph domains. Information

was sought from online books, white papers, research articles, tutorials, and case

studies to answer RQ1 and expressly understand:

1. What is a data model, and how does a data model for a relational DB

implementation differ from a data model for a graph DB implementation?

5

2. How to choose between a relational DB and a graph DB implementation?

What are the benefits and drawbacks, and what are the current trends?

3. Are graph data models and graph DB implementations dynamic?

4. Is managing and handling relationships among data elements easier in a

graph DB than in a relational DB?

When searching for information, the focal point was to find answers to the above

questions. Instead of conducting an exhaustive literature review, where all the

material returned in the search engines is reviewed and further filtered based on

specific criteria, the author’s judgement on what knowledge is needed to carry

out the empirical study was used in selecting the material. Further, it was verified

that the content in the chosen material is trustworthy by investigating the

reference material and checking if the material has been cited in other literature

and whether the publisher or site provider is well known. The age of the material

plays a vital role in a domain evolving rapidly. Therefore, the oldest source

information used was twelve years old and fifty percent of the information was

less than five years old.

The material was found through Google, Google Scholar, and abo.finna.fi search

engines. Google Scholar is used for searching research articles, while Google is

used for the rest. If the research article was not available for free in Google

Scholar, it was fetched through the university library abo.finna.fi. If the article was

not found in the university library, a corresponding research article was

searched. Keywords utilized in the search are listed below, where each bullet

represents an individual search criterion:

• Neo4j

• Data model

• Conceptual data model

• Logical data model

• Physical data model

• Flexible data model

• Dynamic data model

• Relational database

• Graph database

• RDBMS

• GDBMS

• Database

6

The knowledge gained from the literature review was utilized in a case study

consisting of the following parts:

1. Relational and graph data modeling experiment design and case study (to

answer RQ2)

2. Implementing the graph data model in the Neo4j standalone desktop

version (to answer RQ3).

The data model in the case study covers the data needs for a limited scope of

manufacturing process data for an engine produced in the Wärtsilä STH delivery

center in Vaasa, Finland. The manufacturing process data in the range of the

research is the Delivery Bill of Process (DBOP). The DBOP describes the sequence

of assembly steps needed to produce a specific customer engine. The

implementation of the graph data model in Neo4j is limited to a standalone Neo4j

desktop implementation with no integrations to systems and databases in

Wärtsilä. Neither is any data imported to the model.

To understand if the graph data model is more dynamic than the relational model,

a small-scale case study with experimental set-up was carried out where the

author modelled the identical data set as a relational data model and a graph data

model. Initial idea was to run an experiment with ten to twenty Information

Technology students as subject. However, due to time constraints of the thesis,

the full-scale experiment was not possible. Instead, author performed own

subjective case study, still following metrics of the experiment design. The

experiment is designed to be possible to use in a later scenario where more

subjects are available for the experiment.

As the dynamic capability is an indirect measure, it was determined from the

following data:

• The time it took to understand the data needs for the model

• The data modeling time

• The number of data elements in the data model

• The effectiveness and efficiency of the implementation of the data model

In addition, the author made a qualitative and subjective analysis of the difficulty

level of building the relational data model versus the graph data model.

7

Using only one subjective in the analysis causes the value of the evaluation to be

statistically irrelevant. For a statistically relevant result the experiment design

and analysis are recommended to be carried out with an entire class of

Information Technology students. When this number of subjects would be

available the experimental design and analysis planned for in in chapter 4.1would

give a statistically relevant research result.

The graph data model from the RQ2 result, is utilized for RQ3. In RQ3, the graph

data model is implemented in Neo4j. A qualitative review by an independent

domain expert at Wärtsilä was made to understand if the implementation meets

the expectations of Wärtsilä. Quantitative measures, such as query execution

times, are beyond the scope of this study.

RQ4 is answered based on the experience gained from the case study and

learnings from the literature review.

Table 1 summarizes the methods used for answering the research questions.

Table 1. Methods used to answer the research questions

Research question Method

RQ1 Literature review and case study

RQ2 Case study

RQ3 Case study

RQ4 Own experience gained through the literature review
and case study

The high-level research plan is visualized in Figure 3. The thesis worker was

responsible for executing the plan, implementation, and results. Guidance was

expected from a Wärtsilä Information Management (IM) graph expert and the

thesis supervisor. A Wärtsilä business stakeholder was utilized in requirement

gathering and verification of the results. The study began with a literature review.

The knowledge acquired in the literature review was used in the empirical study.

The study was finalized with an evaluation of the results and defining the

conclusions. The texts in blue visualize inputs. The black arrows indicate testing

needs. For example, when the data model is built, it shall be verified against the

requirements specified for the problem domain.

8

Figure 3. High-level research plan (author’s picture)

1.3. Thesis structure

The remaining part of this thesis is divided into six main chapters:

• Chapter 2 presents fundamental concepts in the field of data models and

DB implementation. The reader gets a basic understanding of what a data

9

model is and how a data model for a relational DB implementation differs

from a data model for a graph DB implementation.

• Chapter 3 investigates how to select the suitable DB type for a problem at

hand and discusses the literature concerning the dynamic capability of the

data model, handling of relationships between data elements, and query

performance.

• Chapter 4 describes the case study, which contains three sequential steps:

experiment design, data modeling and the implementation of the graph

data model in the Neo4j standalone desktop version.

• Chapter 5 analyses the learnings and results of the research. A part of the

analysis contains a suggestion for competencies and knowledge needed

for graph data modeling in Neo4j.

• Chapter 6 concludes the thesis by revisiting the research questions to

understand if the research objective is met and provides suggestions for

future study.

10

2. BACKGROUND

This chapter presents fundamental concepts in data models and DB

implementation. This knowledge supports the design and implementation

decisions in the empirical study. The content of this chapter also serves as a good

base for anyone starting a journey from relational DB to graph DB design and

implementation. This chapter hence presents the findings from the analyzed

literature for RQ1, and precisely:

• What is a data model, and how does a data model for a relational DB

implementation differ from a data model for a graph DB implementation?

This chapter is divided into four main parts. Chapter 2.1 introduce DB and DBMS,

focusing primarily on the differences between a relational DB and a NoSQL DB.

Chapter 2.2 gives a brief introduction to Neo4j GDBMS. Chapter 2.3 covers the

data model concept and explains the ER, the relational data, and the graph data

models. Chapter 2.4 describes the process for designing data models for a

relational DB versus a graph DB.

2.1. Databases and database management systems

The word data is the plural form of datum which means one piece of information

or one numerical form [14]. Data can be stored on paper or in electronic form [15].

A frequently used electronic storage is a database (DB), an organized collection

of stored data that can be easily accessed and managed [15]. The database

management system (DBMS) is the software responsible for storing, retrieving,

and running queries on the data in a DB [15]. The DBMS provides alternative user

interfaces and services, such as data redundancy control, data sharing among

multiple users, and data backup and recovery [15]. The DBMS is built for a specific

type of DB [15]. The RDBMS is the software for the relational DB, and the GDBMS

is the software for the graph DB.

The logical structure of a database is described by its data model [16]. The

relational model, chapter 2.3.2, is the logical structure of the relational DB, and

the graph data model, chapter 2.3.3, is the logical structure of the graph DB [16].

11

Figure 4 presents a principal sketch, in which users and applications use a DB

through the DBMS.

Figure 4. DBMS, DB, and Data Model (author’s picture)

Figure 5 visualizes some examples of different DB types. Highlighted are the DB

types covered in this research: relational DB, NoSQL DB, and graph DB. We

notice that the graph DB is a type of NoSQL DB together with key-value pair DB,

column-oriented DB, and document-oriented DB [15]. NoSQL has been

developed as an alternative to the relational DB [17]. A concern of the relational

DB in the age of big data with accelerating data volumes is that its performance

degrades with increased data volume [17]. Big data refers to a large volume and

wide variety of data captured from different sources with high speed [18].

Figure 5. DB types (author’s picture, adopted from [19])

12

Another concern of the relational DB is its rigid and pre-defined DB schemas that

are hard to modify [17]. The relational DB schema contains the DB’s tables,

attributes, primary keys, and foreign keys, but no data [6]. The NoSQL DB is

developed to handle significant data amounts and has a dynamic DB schema, also

called schemeless [17], which can be altered without downtime or disruption in

the service [18].

The NoSQL DB is not developed to replace the relational DB but rather to coexist

with it [17] [18]. Depending on the needs of an application, it is even possible to

define a hybrid data layer where the data from the application is stored in

multiple DB types [17]. This approach can utilize the strengths of different DB

types [17]. Table 2 summarizes a comparison made by Sahatqija et al. in a journal

article published in 2018 [17]. It compares relational DB and NoSQL DB in terms

of scalability and performance, data consistency, flexibility, query language,

security, data management storage and accessibility. This comparison is generic

for the DB type and does not consider a specific DBMS provider.

Table 2. Comparison of features in a relational DB versus NoSQL DB (Created based on text in [17])

Feature Relational DB NoSQL DB

Scalability and
Performance

Vertical scalability =
when data volume grows, the
data storage and computing
power expand only for existing
hardware components like CPU
capacity, RAM, and SSD of the
DB server.

The overall implementation
cost increases with data growth.

Horizontal scalability = when
data volume grows, the system
expands by adding more
hardware components for data
storage and processing power.

This is a cheaper alternative
than vertical scalability, and by
distributing data on different
servers, the performance of the
DB increases.

Data
consistency
strategy

The main priority is to fulfill the
ACID properties of Atomicity,
Consistency, Isolation, and
Durability.
ACID ensures higher data
reliability and integrity than
DBs using the BASE principle.

Horizontal scalability makes it
challenging to fulfill ACID. The
BASE principle is used, and
stands for Basically Available,
Soft state, and Eventually
consistent.

The BASE is more flexible than
ACID but has less consistency
and reliability.

Neo4j is entirely ACID
compliant. (Chapter 2.2)

Flexibility The DB schema is static and
pre-defined before inserting

The DB schema is dynamic and
does not have to be predefined.

13

data. Making changes to a DB
with data is challenging and can
cause server failures and
decreased performance.

Only structured data is
supported.

This supports changes in
structures and data types.
Suitable for agile and scalable
environments where
continuous development and
evolvement can be expected.

Structured, semi-structured,
and unstructured data are
supported.

Query
Language

A standard query language
known as SQL is used. This
powerful query language
handles complex queries
through a standardized
interface. When knowing the
SQL, a developer can write
queries in any RDBMS.

No standardized query
language. The GDBMS provider
can create its query languages.
A DB developer faces challenges
when getting tasks to
understand or write queries in
different GDBMS systems.

Neo4j has its query language,
Cypher. It is intuitive with
inspiration from SQL. Neo4j
also supports other query
languages. (Chapter 2.2)

Security The structured data and vertical
scalability make the security
more straightforward to
manage than the NoSQL DB.

A large amount of unstructured
data distributed between
multiple servers cause
challenges for the security of
the DB. If the NoSQL DBMS
provider does not guarantee
secure client-server
communication, crucial factors
like authentication, access
control, secure configurations,
data encryption, and auditing
must be implemented by
external methods.

Data
Management-
Storage and
Access

The data is stored in tables, is
highly normalized, and is very
clean. Data redundancy is
avoided through normalization,
which slices data into small
logical tables.

The normalized data model is
sometimes denormalized to
avoid joins and get better query
performance. (Chapter 2.4.4)

There are alternative ways of
replicating a relational DB
between sites in a distributed
system:

It can contain data redundancy
as data is stored in collections
without normalization.

Data availability can be
improved by replicating the DB
between clustered servers. Two
different approaches are
utilized:
1) master-slave, where the
slave can only read data
2) master-master, which gives
the replicated master both read
and write access to the data.
This can cause inconsistency in
the data.

14

1) entire DB is replicated to all
sites in the distributed system
2) no replication replicates only
a fragment of the DB to one site
3) partial replication replicates
some fragments.

The replication improves the
data availability but consumes a
lot of time and storage.
Therefore, the DB’s
performance declines.

In short, the NoSQL DB focuses on high performance, availability, data replication,

and scalability. At the same time, the relational DB shows an advantage in data

consistency, powerful query language, structured data storage, and security [17].

2.2. The GDBMS Neo4j

The most popular GDBMS provider is Neo4j [11]. This chapter explains what

Neo4j is. Some of the central elements and terminology are discussed, providing

beneficial resources for learning Neo4j’s graph query language, Cypher. This

chapter offers valuable information for anyone who will start implementing

graphs in Neo4j.

Neo4j’s history goes back to 2000, when the three founders of Neo4j encountered

performance problems with RDBMS and initiated the first Neo4j prototype [20].

In 2007, the Neo4j company was founded in Sweden, and its first GDBMS was

open-sourced [20]. In 2021 its open-source community had millions of

downloads and hundreds of thousands of deployments [21]. The open-source

version of Neo4j went under the name Neo4j Community Edition [22]. There is

also an alternative for using the license-based Neo4j Enterprise Edition as a

closed-source software application [22].

In Neo4j, data are stored as graphs, processed as graphs, and presented as graphs

[23]. It is hence a native GDBMS with graph processing and storage [5]. Native

graph processing utilizes index-free adjacency, which means nodes maintain

direct references to nearby nodes [5]. This is a cheaper alternative than using

global indexes [5]. With this approach, the query times are independent of the

15

total graph size and are only affected by the part of the graph searched by the

query [5]. Native graph storage means the DB is specifically built for storing and

managing graphs, having a stack engineered for performance and scalability [5].

In native graph storage, the relationship information is a primary data element

[21]. If graph data is stored in a non-native graph storage DB, the relationship

information can get lost, disconnected, or neglected, which are symptoms of data

corruption [21]. The graph data model Neo4j use is the labeled property graph,

which consists of the elements described in Figure 13 [5]. This is a variant of a

property graph model [5], further described in chapter 2.3.3.

The consistency model which Neo4j uses for data transactions is ACID. Hence

Neo4j reaches the same consistency levels as an RDBMS [24]. ACID stands for

[25]:

• Atomic = All operations in a transaction need to succeed, or every

operation is rolled back.

• Consistent = The DB is structurally intact when a transaction is completed.

• Isolated = Transactions do not compete with one another. The DB controls

the continuous data access to make transactions appear to run

sequentially for the users.

• Durable = The results of a completed transaction are permanent, ensuring

data remains in the DB no matter the failures.

The technical details of Neo4j will not be discussed more profoundly here.

Instead, the focus turns to Cypher, the query language of Neo4j [5]. Query

languages like SPARQL and Gremlin are also supported [5]. Cypher is an open-

source textual query language that utilizes ASCII art symbols in its syntax [26].

The inspiration for Cypher comes from the relational DB domain and the

Structured Query Language (SQL) [26]. All the standard DB CRUD (create, read,

update, and delete) operations are supported [26]. Cypher is the most intuitive

and effortless graph query language to learn [5]. It can be understood by

developers, DB professionals, and even business stakeholders [5]. Its ease of use

derives from its close resemblance to graphs, as presented in Figure 6 [26].

Figure 6 shows a MATCH clause followed by a RETURN clause [26]. The pattern

has been anchored to the node labeled Person, whose name property is Dan [26].

Cypher matches the remainder of the pattern to the nodes immediately

surrounding this anchor point [26]. Hence, we can expect this MATCH pattern to

16

return various values for the whom variable while traversing through the graph

[26].

Figure 6. Cypher pattern example (Picture source: [26])

An alternative to anchoring a pattern to a specific node is to move the property

lookup from the MATCH clause to a WHERE clause [5]. With guidelines in [5], the

pattern in Figure 6 transforms to:

MATCH (a:Person) –[:LOVES]-> (whom)

WHERE a.name = ‘Dan’

RETURN whom

Anyone familiar with SQL will find the resemblances when looking at the pattern

above. Other customary clauses from SQL available in Cypher are ORDER BY, SKIP

LIMIT, AND, and comparison possibilities like p.unitPrice > 10 [26]. For further

guidance on Cypher, we recommend investigating the Cypher Developer Guide

[26] and the relevant version of the Neo4j Cypher Manual [27]. The current

Cypher Manual is 4.4.

When starting the developer journey with Neo4j and Cypher, it is essential to

remember to write a code that others quickly understand. This is enabled by

following the guidelines in the Cypher style guide [28] and Cypher naming rules

and recommendations [29]. An excellent approach is collecting hints from the

Cypher query guidelines to ensure the written queries are optimized for

execution performance [30].

17

2.3. Data models

The purpose of a data model is to provide an understanding of data needs and

requirements to be addressed when designing a DB to fit the needs of an

organization [3]. The data model can hence be considered as the design drawing

of the DB, describing the data structure and purpose of the data [31]. Correctly

designed, it improves the quality of information used in decision-making in an

organization [31]. The quality of information means that it fits the needs, is

available when needed and is accurate enough [31]. Tuning a model already

providing the expected information quality increases costs and is not worth the

effort [31].

The relational DB data model focuses on the objects, while the graph data model

focuses on the objects’ relationships [7]. Hurlburt et al. suggest a direct

dependency between the quality of the data in a graph DB and the quality of the

relationships in the data model [32]. This chapter focuses on understanding how

the models produced for a relational DB and a graph DB differ. We limit our guide

to the ER and relational data model for the relational DB design. For the graph

DB, we restrict our attention to the graph data model, further limited to

hypergraphs and property graphs.

2.3.1. ER model

The ER model is not a data model for a specific DB type, but a high-level data

model used to describe the system on a conceptual level [16]. The ER model maps

different entities and how they relate [16]. It describes how users experience a

real-world situation without technical or system details [33].

The ER model is often used as the conceptual data model (chapter 2.4.2) when

designing the relational DB, and after the relational DB is implemented, it is used

in troubleshooting [34]. ER models can also be used in software engineering

design to identify system elements and their relationships [34]. When moving

from relational DB to graph DB, an ER model created for the relational DB is a

valuable input when investigating the problem to model in the graph data model

[7].

18

The ER model represents the data requirements of future users and the structure

that fulfills these requirements [6]. The ER model can be defined in textual, Figure

7, or graphical form, Figure 8 [6]. The elements presented in Figure 8 are named

in Figure 9, and the most relevant ones are further described below:

Entity

An entity is an object, such as a person, a place, an event, or an item. The entity

may be concrete, such as a student or a classroom, or abstract, such as a course

or a department [6]. The ER model names entities using singular nouns [34]. An

entity set is a set of entities that share the same attributes [6]. For example, the

student entity set contains all the student entities in a university [6].

A weak entity set depends on the existence of another entity set [34]. Figure 9

gives two alternative notations for presenting weak entities. Either with the

double-lined box or the double-lined diamond shape [6]. In Figure 8, the section

is an example of a weak entity set that depends on the course entity set [6].

Attribute

An attribute is a property or characteristic of an entity, a relationship, or another

attribute [6, 34]. Each attribute is expected to hold a value in the DB

implementation [6]. Figure 9 gives two alternative notations of visualizing

attributes; either by listing the attributes within the entity set table or with oval

shapes. When the attribute name is underlined, it symbolizes the entity’s unique

identifier, the primary key [6].

In Figure 8, the weak entity set section depends on the course entity set and has

only a partial key [6]. The partial key for the section is {sec id, year, semester} and

is used to distinguish the section entities from a course with the same course_id.

The primary key in the course is course_id. The primary key for the section is a

union of the primary key of the course and the partial key of the section: {course

id, sec id, year, semester}.

A composite attribute identifies other attributes [6, 34]. It can group associated

attributes and make the ER model cleaner [6]. An example is a composite

attribute address and its attributes: street, city, state, and zip_code [6].

19

A multivalued attribute is an attribute that can have more than one value [6,

34]. In Figure 8, the entity set time_slot has the multivalued attribute day with

both start_time and end_time [6].

An attribute based on another attribute is called a derived attribute [6, 34]. This

is seldom used but could, for example, be the area of a circle derived from the

radius of the circle [34].

Attributes can be left out if the ER model is modeled on a very high level [34].

When a relationship has an attribute, this attribute is specified as a descriptive

attribute. In Figure 8, the grade is a descriptive attribute of the takes relation

between student and section entity sets. In this example, the grade is utilized to

specify the grade which the student gets from a specific course during a particular

section.

Relationship

A relationship describes how entities interact [6, 34]. Examples are the teaches

and takes relationships in Figure 8. Combining the relationship with the entities,

we understand that the instructor teaches the section, and the student takes the

section. Verbs are used when naming the relationships in the ER model [34].

A relationship where the same entity participates more than once is called a

recursive relationship [6, 34]. A recursive relationship named prereq for the

course entity is presented in Figure 8. This example describes which course,

identified with prereq_id, is a prerequisite for another course, specified with

course_id.

Mapping the cardinality or ordinality of the relationship sets a constraint on

how many entities another entity can be associated with [6, 34]. Figure 9

illustrates notations for the many-to-many, one-to-one, many-to-one, and one-to-

many. One alternative is to give the cardinality in number format, and another is

to format the relationship line between the entities [6]. The doubled lines

between entity sets in Figure 8 indicate the total participation of an entity in a

relation. For example, between the entity instructor and inst_dept, the doubled

line marks that an instructor must be associated with a department. In addition,

the directed arrow from inst_dept to the department indicates that each instructor

can have only one associated department.

20

Figure 7. University DB ER model in textual format (picture source: [6])

Figure 8. University DB ER model in graphical form (picture source: [6])

21

Figure 9. ER notations. Figure 8 uses the left (←) (picture source: [6])

2.3.2. Relational model

The relational DB is based on the relational model, which uses tables to present

the data and relationships among the data [6]. Each table has a unique name [6]

and a predefined set of columns [6]. The relational model structures the DB in

fixed-format records of various types and is hence a record-based model [6].

Each table holds records of a specific kind, and each column in the table

represents an attribute of that record type [6]. The table is also called a relation,

and a row in the table can be called a tuple [6]. A constraint on the table is that

each row needs to be unique [6].

The uniqueness of a row is realized by identifying one or a set of attributes that

contains unique values, the primary key [6]. The attribute value is null if a non-

primary key attribute on a specific row is unknown or does not exist [6].

References between tables in the DB are linked with foreign keys [6]. A table has

only one primary key, while it can have several foreign keys [6]. A foreign key can

contain null values, and its values do not need to be unique [6]. A specific set of

rows in a table is referred to as a relation instance [6].

Figure 10 is an example of relation instances for Instructor and Department in the

university DB where the following elements are identified:

22

1. Unique table (relation) name

2. Relation instance

3. Column names (attributes)

4. A row (tuple)

5. Primary key in Instructor table

6. Primary key in Department table

7. Foreign key in Instructor table

Figure 10. Elements in the relational model (author’s picture, adopted from [6])

A database instance is all the data in a DB at a particular time [6]. This differs

from the database schema, Figure 11, which is the logical design of a DB [6]. Each

row in Figure 11 is a schema of a specific table [6]. The database schema can

also be described in graphical form, named schema diagram, Figure 12 [6]. The

database schema or schema diagram contains the tables in a DB, their attributes,

primary keys and foreign keys, but no data [6].

Figure 11. Database schema of a simple university DB (picture source: [6])

23

Figure 12. Schema diagram of a simple university DB (picture source: [6])

2.3.3. Graph data model

In the past decades, we have witnessed increased data volumes and rapid

changes and variations in data structures [5]. Chapter 2.3.2 explained how the

relational model captures data in rigid data structures that require high effort to

modify once the relational DB implementation is done. To address the challenges

faced in a rapidly changing data environment, the number of NoSQL alternatives

have risen [5]. The NoSQL data models are argued to be less expressive than the

relational model but more flexible and able to handle significant data volumes

better [5]. The graph data model is of NoSQL type but still more explicit than the

relational model [5].

The graph data model is flexible and handles significant data volumes and rapidly

changing demands well [5]. In the graph data model, it is easy to add, modify or

delete data elements based on the needs of the business [5]. The graph DB is

based on the graph data model [16]. In this chapter, we investigate the graph data

model structure to understand better the benefits it brings.

24

Several different graph data models are available in the graph DB’s domain. These

can be, for example, property graphs and hypergraphs [5]. The property graph

is restricted to directed connections, with one start node and one end node [5].

The property graph is the most widely used graph model in GDBMS [5]. The

property graph gives a straightforward and efficient modeling technique [5]. The

labeled property graph is a property graph with the ability to use labels on the

nodes for grouping and indicating specific roles of the nodes in a dataset. A

labeled property graph consists of the elements described in Figure 13.

Figure 13. Elements in a labeled property graph model (Author’s picture adopted from the text in [5])

The hypergraph is an alternative to the property graph that allows any number

of start and end nodes for any relationship in the graph [5]. This graph model can

be practical for capturing data with many-to-many relationships [5]. Figure 14

shows the difference between a hypergraph versus a property graph in a case

where we want to model who owns the cars Alice and Bob drive [5]. To describe

this situation, only one relationship is needed in the hypergraph, while six

relationships are required for the property graph [5]. When the multidimensional

hypergraph is used, there is a risk of missing essential details [5].

The property graph is more explicit and allows for fine-tuning the model by

utilizing properties on the relationships [5]. Adding properties to the relationship

in a hypergraph is not permitted [5]. With properties on the relationships, the

primary owner of the car in Figure 15 can be identified using a property named

primary on the OWNS relationship [5]. The primary property is true for the OWNS

relationship between the car and the car owner [5]. Any use case can be modeled

25

with the multidimensional hypergraph or the property graph, and the builder of

the data model or the type of application determines which is used [5].

Figure 14. Hypergraph versus property graph (picture adapted from Figure A-7 and Figure A-8 in [5])

This study is limited to the labeled property graph as this is the graph data

model used by the Neo4j GDBMS. Figure 15 shows a simple example of the labeled

property graph model and how the different elements come into action [23].

Figure 15. A simple example of a labeled property graph. (Picture source: [23])

Figure 15 contains:

• Three nodes

• Two different types of nodes with labels: Person or Car

• Node properties as name-value pairs

o Person node: name, born, twitter

▪ The twitter property does not exist on the node with the

name: ”Ann”. If a property is inapplicable for a node, it is left

out instead, as in a relational database, set the value to null.

26

o Car node: brand, model

• Four Relationships

o Direction indicated with an arrow

o Single name: LOVES (used twice), LIVES WITH, DRIVES, and OWNS

▪ The LOVES relationship is needed in two directions, as we

can have a case where Ann loves Dan, but Dan does not love

Ann. LIVES WITH is required only in one direction because

if Ann lives with Dan, it is explicitly understood that Dan

also lives with Ann.

o Start node where the arrow starts

o End node where the arrow points

• Relationship property as name-value pairs: ”since: Jan 10, 2011”.

From this intuitive representation, we can see that Dan drives a Volvo V70 and

has done this since Jan 10, 2021. However, Dan is not the owner of this car, as the

only owner is Ann.

We note that all the relationships in a graph model are drawn with edges in one

direction. The graph data model requires no primary or foreign keys [5] [7].

Compared to the relational model, there is no requirement that all entities in an

entity group need to share the same attributes.

2.4. Data modeling in the DB design phase

The design phase of a DB aims at translating specific real-world problems,

considerations, and questions into technical terms to use as guidelines in the DB

implementation [7]. Hence, it is essential to understand the user requirements

and data needs first [6] [7].

Reviewing the literature to understand how to perform design for a relational DB

reveals a reoccurring pattern of producing a conceptual data model, a logical

data model, and a physical data model [6]. We also recognize that the

enterprise owning the DB decides on a specific notation and process to follow in

data modeling [31]. The enterprise might also specify the modeling tools [31].

27

There are no rules to follow in data modeling. The general practice is to create an

ER model as the conceptual data model of a relational DB [6] [16].

When searching for guidelines in the literature on how to perform data modeling

for a graph DB, I noticed, as Roy-Hubara et al., that many articles describe the data

modeling process for a specific use case but no data modeling rules to follow [35].

One reason is that data modeling for NoSQL DB is still maturing [36]. There is also

a tendency to doubt the usefulness of data modeling for the schemeless NoSQL

DB [36]. Schema or not, the importance of understanding and describing the data

stored in the DB remains [36]. The best way to represent data structures is

through data models [36]. It is not likely that there will be strict rules to follow

for NoSQL design. It is my believe that, similarly as for the relational DB design, it

will be up to the enterprise owning the DB to decide which design approach and

tools to utilize [31].

The design process for a graph DB follows mostly the same design process as that

of the relational DB. The main difference is the transition from a conceptual to a

logical data model. The ER model is translated into tables in relational data

modeling, while the graph data model remains a graph [7]. In graph data

modeling, the conceptual graph is only enhanced by utilizing the elements for a

specific graph data model type [7]. The physical data model used for the relational

DB is not created for the graph DB. It is directly linked to a DBMS provider and

depends on the DB schema [7]. For the schemeless GDBMS, a physical data model

is not needed [7]. Testing the model to ensure that no poor design decisions are

made is frequently highlighted as the final step in graph data modeling [5] [7].

28

2.4.1. Understanding the problem

The first step in the DB design phase is to thoroughly understand the user

requirements and data needs [6] [7]. These can be derived from user interviews

and analysis carried out in the enterprise [6]. If a DB implementation is available,

the DB schema, ER, and other models are beneficial for understanding data

structures and terminology already used in the problem domain [7].

According to Fernigrini [36], the data structure is essential in the relational DB

design. When modeling a NoSQL DB, the type of queries to be executed on the

data is the focal point. Robinson et al. agree that a graph data model shows how

related issues are considered and communicates essential questions in the

modeled domain [5]. Bechberger and Perryman confirm this and state that the

physical data model is equal to the queries addressed in the problem domain [7].

To reduce data model change needs, the queries should be defined before the

modeling [7]. In addition, the questions need to be prioritized [37]. The

prioritization is needed because no model will be perfect for everything, and

there will always be a need for tradeoffs [37]. Identifying the queries that provide

the most significant business value and need the highest performance is a critical

step at this point [37].

The output from the initial step is a textual description of how the problem is

understood, written in a language understood by business stakeholders [7]. This

forms the base for the conceptual design phase [6] [7].

2.4.2. Conceptual data model

The conceptual data model describes how the users experience real-world

situations without technical or system details for a relational DB and graph DB.

Therefore, it is an excellent tool for communicating requirements between

business stakeholders and developers [7]. The conceptual data model can be as

simple as a graph with entities and relations drawn on a whiteboard in a meeting

between business stakeholders and developers [5] [7]. It is important to

remember in this phase that this is a description of the understanding of the

29

system drawn from the business stakeholder’s point of view [7]. Hence,

developers will not start solving the problem and not think about the actual DB

implementation [7].

For the graph DB design, I found guidelines for how to carry out the whiteboard

drawing in two sequential steps, Table 3. The entities are first identified and

grouped, and then the relationships between the entities are added [7] [37].

Table 3. Guidance for the conceptual data modeling (own table created based on text in [7] [37])

What How

Identify and
group entities.

• Identify entities and name them as singular nouns. Focus on
understanding the “What” and “Who.”

• Identify groups of entities by listening to business stakeholders
and identify if some nouns are used interchangeably. For
example, the user, employee, and client could form an entity
group named Person.

Identify
relationships
between the
entities.

• Identify the relationships by focusing on functional questions
and understanding the “How.”

• Verify that the model supports forming sentences: entity –
relationship – entity. For example, Restaurant – Serves – Cuisine.

• Properties for the entities and relationships do not need to be
included in this model. If some are identified, it is good to list
them separately to review again in the logical design phase.

For the relational DB, no guidelines for the whiteboard drawing were recognized,

but I noticed an often-used approach to transform the whiteboard sketch into an

ER model [6] (see chapter 2.3.1). The guidelines for the ER model describe the

entity as an object such as a person, a place, an event, or an item. The entity may

be concrete, such as a student or a classroom, or abstract, such as a course or a

department [6]. The ER model names the entities using singular nouns [34]. This

description correlates with the graph data model's descriptions in [5] [7].

However, spotting nouns in the domains through speech is a risk, as it can cause

situations where all entities are not found [5]. The reason is that many technical

and business jargon uses nouns instead of verbs [5]. For example, we say email

one another instead of sending an email or google instead of searching Google [5].

This way of speaking also causes a risk for the relationships, which are named in

the ER model and the graph data model with verbs [7] [34] or verbal phrases [6].

Instead of missing entities, the way we speak can cause falsely identified

relationships [5].

30

I also noted a correlation between the statement for the ER model regarding the

entity set, which is a group of entities sharing the same attributes [6], and how

[5] describes the possibility of grouping entities with labels in a graph data model.

A clear difference between the ER model and the graph data model is that all the

entities in a graph group do not need to have common attributes, Figure 15.

Figure 16 shows an example output from the conceptual design phase for a graph

DB [37]. In a meeting with business stakeholders, a whiteboard drawing is

created to map entities and relationships for movies [37]. The whiteboard

drawing is digitalized, and the syntax for the relationship labels, expected by

Neo4j in the property graph, is introduced [37]. According to Bechberger and

Perryman [7], the correct syntax can be left to the logical design phase.

Figure 16. Conceptual data model as drawn in a meeting with business stakeholders and then digitalized

(picture adapted from figures in [37])

The conceptual data model, having the form of a graph, both in the design process

for a relational DB and a graph DB, is used as an input for the logical data model.

Before moving to the logical design phase, it is an excellent practice for the

relational DB to verify the model against transactions, which the future users will

perform on the data [6]. Transactions mean the updating, searching, retrieving,

inserting, and deleting of the data [6]. In graph DB design, the suggestion for

testing comes after the logical design phase before implementing the model in a

graph DB [5] [7].

31

2.4.3. Logical data model

The logical data model produced in the logical design phase defines how the DB

should be implemented without specifying which DBMS should be used [33].

When designing the relational DB, the high-level ER model is mapped into tables

to fulfill the expectations of the logical structure of the relational model [6]. For

the graph DB, the conceptual data model remains a graph when considering the

data model requirements of the graph data model [6]. This model adds further

details to the conceptual data model and functions as the base for the physical

data model design [33].

Chapters 2.3.1 and 2.3.2 presented an example of a university relational DB being

designed by creating the ER and then the relational models. Involved in the

creation of this model are usually data architects and business analysts [33].

Together, they develop a technical map of rules and data structures based on

technical and performance requirements [33]. Attribute types are specified with

exact precisions and lengths. To avoid duplicate data entries and to ensure only

related data is stored in each table, normalization is usually applied until the third

normal form (3NF) [33]. In the relational DB design, an attribute on a relationship

or other attribute is allowed in the conceptual data model, but no longer in the

logical data model, (see chapter 2.3.2).

The conceptual data model for a graph DB is enriched by clarifying relevant roles

and labels, attributes and properties, and relationships [5]. Figure 17 shows how

the conceptual data model in Figure 16 has been transformed into a logical data

model. Bechberger and Perryman highlight that the usual differences between

the conceptual data model and logical data model are that something that was an

entity in the conceptual data model is implemented as a property on a node in the

logical data model [7]. In graph DB design, the logical data model is the final

design step. Hence, it is emphasized to test this model before implementing it in

a graph DB [5] [7]. In the testing phase, the questions identified in understanding

the problem and the conceptual data model are utilized to verify if it is possible to

traverse through the model to find answers to the questions [7].

32

Figure 17. The logical data model for the same movie example as in Figure 16 (picture source [37])

2.4.4. Physical data model

The logical data model needs refinement to a physical data model when the DB

system requires the schema to be explicitly specified [7]. As the GDBMS are

schemeless, this is seldom the case for a graph DB [5] [7]. For the relational DB

with its rigid schema, the physical data model defines how the DB shall be

implemented utilizing a specific RDBMS [33]. This model contains the

specification of the physical features of the RDBMS [6].

Physical features can decide the form of file organization as well as views and

index structures [6] [33]. Naming conventions of the RDBMS need to be followed

for naming the tables and attributes, actual data types need to be set for the

attributes, and constraints, such as primary and foreign keys, need to be specified

[33] [38]. For better performance in DB queries, the normalization made in the

logical data model can be abandoned in the physical data model [5]. This is called

denormalization [5]. A simple example of this is shown in Figure 18, where the

upper frame shows normalized data and the lower frame shows denormalized

data. Through denormalization, the email attribute has been inlined in the user

table. This reduces the penalty of joining operations in queries but introduces

data redundancy [5]. For the relational DB, the physical data model is used in the

actual implementation of the DB [33]. Therefore, it is easy to transform into SQL

scripts that are utilized in creating the DB schema [38].

33

Figure 18. Example of 3NF normalized versus denormalized data (author’s picture)

34

3. LITERATURE REVIEW

Chapter 1 mentioned Wärtsilä’ s increased interest in the graph DB. The graph

data DB is assumed suitable for a dynamic business environment where it

reduces query times and handles relationships between data better than a

relational DB. In this chapter, a motivation pattern for a possible scenario when

an enterprise considers shifting from the relational DB to graph DB, is followed.

The aim is to understand if the graph DB is reasonable for enhancing

manufacturing collaboration in internal and partner networks.

Some weaknesses of the relational DB are listed in chapter 3.1. Chapter 3.2

shows how the graph DB solves the most significant drawback. In chapter 3.3,

the market is investigated, and it is realized that the market leaders use a graph

DB. In chapter 3.4, a success story matching this study’s use case is searched for.

In chapter 3.5, it is recognized that the problem at hand needs to be understood

first and that an analytical approach needs to be used to guide the decision.

Chapter 3.6 summarizes the findings with a specific focus on whether the graph

DB is more dynamic, handles relationships better, and performs better in queries

than the relational DB.

This chapter thus presents the findings from the literature for RQ1, and more

specifically, the answers to these questions:

• How to choose between a relational DB and a graph DB implementation?

What are the benefits and drawbacks, and what are the current trends?

• Are graph data models and graph DB implementations dynamic?

• Is managing and handling relationships among data elements easier in a

graph DB than in a relational DB?

3.1. The relational DB and its weaknesses

The popularity of the relational DB goes back to 1980 [9]. It is still frequently

used, and for some use cases, it is still the best option for storing and organizing

data [9]. Hurlburt et al. suggest that just as the television did not replace the radio,

the graph DB will not replace the relational DB [32]. The relational DB is excellent

for data aggregations [32]. Its high data integrity and consistency make it well-

35

suited for applications where the security of transactions needs to be ensured

[17]. For example, extensive credit card processing systems that require reliable

non-stop operation rely on the relational DB [32]. It is not suitable for use cases

requiring frequent updates to the DB schema, [9] [32] [17] nor when data

volumes proliferate [17].

Introducing a structural change is risky and can take weeks or even months [5].

One reason for the high maintenance cost is that the relational DB stores

structured data in tables with predefined columns [9]. Each row in the table

represents a record, and the intersection between the row and the column

represents a specific data value [17]. There cannot be duplicate rows in a table,

as it would cause ambiguity when executing queries [18]. To prevent duplicate

rows, each table has a primary key consisting of one or several columns with

values unique for every row [18]. The table has another name, relation, and a

column in a link is the attribute [6]. Each relation represents records of a specific

type [6]. The name of the relational DB can hence be misleading, where one

wrongly assumes that the relation is the link between data elements and not the

actual tables [9].

Handling relationships is a significant weakness in the relational DB [9] [39].

Instead of storing relationships, they are computed through expensive join

operations in query executions [17]. The join operations are costly due to the

underlying relational model which, in a query, builds a set of all possible answers

before filtering to arrive at the correct solution [5]. With today’s highly connected

data needs, any enterprise failing to understand connections when making

important data-driven decisions will lack crucial insight [9].

Bechberger and Perryman highlight that for every hundred queries used in a

modern application, the relational DB can handle only eighty-eight queries [7].

The remaining twelve queries deal with complex data links and connections [7].

Especially the queries requiring investigations deeper than three hierarchical

levels, will show the degradation in performance in a relational DB compared to

a graph DB [39]. Robinson et al. [5], bring up an example for query times between

an RDBMS and the Neo4j GDBMS to be according Figure 19. Query times for Neo4j

remain stable no matter the hierarchy dept, while the RDBMS cannot deliver a

query result on the hierarchy dept level five [5].

36

Figure 19. Comparison of execution times in a social network using RDBMS versus GDBMS (author’s picture

adopted from values in [5])

Another weakness of the relational DB is that data mapping into tables is not

how data exists in the real world [9]. In the real world, data exist as objects and

as relationships between these objects [9]. Cao et al. [39] warn that some

knowledge about the data is lost when data is stored in a relational DB. When

product component data is stored in a relational DB, you only understand which

components the product consists of [39]. Holding the same components and their

relationships in a graph DB ensures that the entire product structure is known

[39]. In this case, the graph enables the product to be represented in a 3D

modeling environment as it can be seen in real life [39]. From this connected

structure, design changes are easy to manage, as a change in one component

could, in real-time, indicate which other parts are affected by the change [39]. The

product component nodes can be further connected to supply chain data to

understand the supplier and customer data [39], which gives an even further

real-world perception, where claims concerning specific components are easy to

track [39].

3.2. Graph DB addressing the weakness of relational DB

The graph DB can be an alternative or an additional option if the relational DB

does not manage well with increased attributes, more data, higher speed

requirements in business agility or data accessibility, and significantly more

connections between data elements [9]. The graph DB consists of two main

elements, a node and an edge [9]. The node represents an entity, and the edge

describes the relationship between two nodes [9]. When several nodes and edges

are assembled, they form connected structures called graphs that define a specific

problem domain [9]. In contrast to the relational DB, the graph DB is explicitly

37

designed to handle and store relationships between data elements [9]. In a

graph DB, a relationship is seen as essential or even more important than the data

element itself [7]. It is worth noting that the other NoSQL DB types visualized in

Figure 5 are not explicitly designed to handle relationships [5].

The graph makes adding new nodes and edges easy when adapting to new

business requirements [13]. Additions do not require data migrations as the

original data and the purpose remain intact [5]. Bechberger and Perryman

disagree and indicate that changes in a graph DB can still cause data migration

needs. Therefore, they note the importance of not making changes because of

poor design decisions and only due to business changes [7].

3.3. Market leaders using graph DB

LinkedIn, Google, Facebook, and PayPal are early adopters of graph DB, who today

are market leaders who have formed their business value on data relationships

[9] [17]. LinkedIn can be used as an example. They cover all their users with a

graph. Hence, when browsing one’s LinkedIn account, all different connection-

level contacts and mutual connections can be seen in real-time [40]. Also, the

giants in e-commerce, Amazon.com and Wish.com, utilize graphs to rapidly query

information from a scattered and rapidly growing dynamic network of data to

give users spot-on recommendations [40].

A white paper from October 2021 states that more than seventy-five percent of

Fortune 500 companies use graph DB technology [21]. Among these are:

1. Seven of the world’s top ten retailers

2. Three of the top five aircraft manufacturers

3. Eight of the top ten insurance companies

4. All North America’s top twenty banks

5. Eight of the top ten automakers

6. Three of the world’s top five hotels

7. Seven of the top ten telecommunications companies

https://fortune.com/fortune500/2021/search/

38

3.4. Use cases gaining success through graph DB

Despite the growing trend of graph DB utilization, further investigation is needed

to understand if this is a suitable choice for our problem area. Webber and

Robinson provide a list of five generic use cases where a graph DB brings benefits

to any enterprise [13]:

1. Real-time fraud detection

2. Real-time recommendations to users

3. Master data management

4. Network and Information Technology Operations

5. Identity and accesses management

Saarela agrees with this list and adds use cases for compliance with regulations,

analytics, digital asset management, context-aware services, semantic search,

and situational awareness [40].

Reflecting on chapter 1 and Wärtsilä’ s desire to know if and how a GDBMS can

enhance manufacturing collaboration in internal and partner networks, it could be

assumed that all of the use cases mentioned above could be encountered in the

requirements for these networks, making the graph DB appealing. For the scope

of this study, only one use case is selected for further investigation. Master data

management is chosen. This selection is based on the assumption that master

data sharing for increased transparency, traceability, and quality improvements

will be of vital interest in the manufacturing ecosystem.

Master data usually consists of data concerning customers, products, accounts,

vendors, and partners [41]. It is highly dynamic and sharable data that is difficult

to fit into a static and generic data model [41]. It is also challenging to assume that

all master data could be physically stored in one location and that one system

could serve all the needs in master data management [41]. Therefore, enterprises

end up with separate systems covering different needs of master data

management [41]. This creates a risk for information silos, where the data needed

for decisions is not available in real-time [41].

Where data is stored is not relevant. Critical is the availability of consistent and

meaningful views of master data, and that value can be derived from the data and

its relationships [41]. Building relationships between the scattered master data

39

elements and achieving real-time query performance is seen as challenging and

expensive in a relational DB [41]. The graph DB, with its characteristic of

mastering relationships between data elements in a dynamic data structure,

makes it an optimal choice for managing master data within an enterprise [41]

[40] and beyond.

3.5. Analytical approach for deciding DB type

Choosing the graph DB over the relational DB based on reading success stories

and use cases described on the Internet is, according to Bechberger and

Perryman, not a good approach [7]. The risk is getting confused by drastic

oversimplifications, such as, “everything is a graph problem” [7]. In contrast,

there is a risk that the developers choose the familiar relational DB as a form of

convenience or ignorance [7]. However, Robinson et al. note that moving from a

well-established and well-known data platform to graph DB must indicate

immediate and remarkable practical benefits in query performance, flexibility,

and agility [5].

A graph DB is more elegant than a relational DB in problems needing recursive

queries, different result types, or paths [7] [5]. An analytical approach is

proposed to understand if the issue at hand holds these needs. The initial

question in this analysis is: “What problem are we trying to solve?” [7]. Sorting

this out creates an understanding of what data will be stored and how it will be

retrieved [7]. Generalized, any problem fits into one of the following categories

[7]:

• Selection/search

• Related or recursive data

• Aggregation

• Pattern matching

• Centrality, clustering, and influence

Figure 20 summarizes how Bechberger and Perryman describe these separate

categories and how they are utilized for selecting between the relational DB and

the graph DB.

40

Figure 20. By sorting out the questions that will be answered based on the data in the DB, the correct DB type

can be chosen (author’s picture adopted from the text in [7])

If sorting out the category does not clarify which DB type to use, the decision tree

created by Bechberger and Perryman, visualized in Figure 21, can be utilized [7].

Bechberger and Perryman have placed the most vital question first, and

answering “yes” to this question directly indicates that the graph DB is the best

choice [7]. Following this decision tree, the graph DB seems to be a good choice

for manufacturing collaboration in internal and partner networks where the

relations will play a vital part, and frequent evolvements in the systems can be

expected. However, there is no clear indication of immediate and remarkable

practical benefits in areas like query performance, flexibility, and agility. The

specific problem in the domain of interest should according to Robinson et al. be

sorted out before deciding to move from a familiar DB type to the graph DB [5].

https://en.wiktionary.org/wiki/%E2%80%9C

41

Figure 21. Decision tree to decide between a relational DB or a graph DB (Picture source: [7])

3.6. Dynamic data model

The data models used today need to be flexible and scalable to respond to the

changing demands from within the company and beyond [4]. They need to be

designed to handle complex data and enable rapid insight from data connections

[7]. The data models must be dynamic, allowing the processes to be carried out

with different approaches but still manage situations where the result is

combined and presented [4]. This chapter investigates arguments to understand

if the data models produced for the relational DB versus the graph DB are

dynamic.

The data models produced for a relational DB are rigid table constructions

designed to reflect the data needs of a business at a certain point in time [4]. Their

response to change is weak and requires expensive configurations to reflect

42

changes in business needs [4] [5]. When the data models are designed, there is

usually a need to predict future needs and integrate these requirements into the

models [4]. When the design process is performed, it is often wrongly assumed

that the business is committed similarly throughout the company [4]. If

differences exist, multiple data models may be required [4].

The relational DB design approach is challenging in a world where change is

constant and the future difficult to predict [4]. Robinson et al. [5] recommend

using the graph data modeling approach instead of moving through the relational

DB design process of translating a graph representation into tables, which is done

when the ER model is transformed into the relational model. They claim that each

step in the design process, conceptual data model –> logical data model –> physical

data model, increases the gap between the conceptual world and the model

understood by business stakeholders versus how the DB is implemented. This

gap causes challenges when business needs are changed and must be translated

into concrete actions for the DB implementation. The relational DB design phases

are slow and cause the system to lag behind the evolution of the business. Figure

22 visualizes the gap and the increased risk of misunderstandings between

conceptual and DB implementation when performing data modeling for a

relational DB versus a graph DB.

The graph data model approach is simple, intuitive, and business stakeholder

friendly [5]. The intuitive graph representation of the conceptual world remains

as a graph no matter the design phase [5]. For Bechberger and Perryman [7], this

approach is the solution to fewer design mistakes and easier data model changes.

Adding new elements to the graph model and DB implementation is easy and

straightforward [5] [7]. It remains unclear if data migrations are needed when a

change is made in the data model. Robinson et al. states that no costly and risky

data migrations are required [5]. At the same time, Bechberger et al. notes that

changes in the graph model need changes in the DB implementation, leading to

code changes and some data migration [7].

43

Figure 22. The gap between the conceptual world and the design steps for a relational DB versus a graph DB

implementation (author’s picture)

3.7. Conclusion

Chapter 3 discussed different situations where the relational DB is suited and

where the graph DB is a better choice. It became clear that this decision should

not be taken based on developers’ preferred choice of DB type or by looking at

success stories from use cases on the Internet. The problem at hand must be

understood before selecting the DB type. Understanding which type of queries

will be addressed on the data in the DB is vital. Mapping the questions according

to the example in Figure 20 can help to choose the correct DB type. The DB type

choice is not straightforward, and sometimes the optimal choice is a hybrid with

several DB types.

The interest in a graph DB existed in Wärtsilä before the agreement for this thesis

work was made. Based on the literature review, the graph DB seems to be the

correct choice for enhancing manufacturing collaboration in internal and partner

networks. However, a hybrid approach is the most realistic scenario for this type

of enterprise network. With the hybrid system, the optimal data for a relational

DB are stored in a relational DB, and the optimal data for a graph DB is stored in

44

a graph DB. Everything depends on the enterprise network’s requirements and

use cases.

When going through the scenario for why an enterprise would move to a graph

DB from a relational DB, the characteristics listed in

45

Table 4 are recognized. In the table, the happy smiley indicates a positive aspect,

the sad smiley indicates a downside, and the meaning of the neutral smiley is

clarified in the table. In chapter 1, the requirement for dynamic data models and

data models excelling in data queries involving joins were mentioned as two

essential elements.

Based on the arguments in chapter 3.6, it is understood that the data model for a

relational DB is not dynamic. The data model for a graph DB is dynamic and more

intuitive than the relational data model. Hence, it is better understood by

business stakeholders, making discussions and alignment with modification

needs easier. The literature review did not find any investigations where it is

measured how much more effort and time is required for relational versus graph

data modeling.

Based on the literature review, handling relationships is a significant weakness

in the relational DB [9] [39]. Instead of storing relationships, they are computed

through expensive join operations [17]. Join operations become costly due to the

underlying relational model that, in a query, builds a set of all possible answers

before filtering to arrive at the correct solution [5]. The graph DB stores

relationships directly in the graph structure and quickly returns a result for

queries that would require joins between tables in a relational DB [5].

46

Table 4. Recognized benefits and drawbacks of the characteristics described in chapter 3

Characteristic Relational DB Graph DB

High data integrity
and consistency

Relational DBs are known

to be fully ACID compliant.

Neo4j is entirely ACID
compliant. However, this is

not the case for all graph
DBs. NoSQL DBs are
generally only BASE
compliant (Table 2).

Handling
relationships

Maintenance cost

Query execution time

Depending on the size of

the DB and how many

hierarchical levels need to

be searched. Performance

decline when more than

three hierarchical levels.

Quite stable query execution

time, no matter the

hierarchical level.

Intuitiveness (data
mapping
corresponds to how
we perceive it in the
real world)

Handling the
dynamic business
environment and
changing
requirements

47

4. CASE STUDY

This chapter presents the case study consisting of the following:

1. Relational and graph data modeling experiment design and case study (to

answer RQ2)

2. Graph data model implementation in Neo4j standalone desktop version

(to answer RQ3).

The literature indicates that the relational data model’s response to change is

weak and requires expensive configurations to reflect changes in business needs

[4] [5]. In contrast, the graph data model is described to be dynamic. It is easy to

add new data elements when adapting to new business requirements in the graph

data model [13]. Despite the dynamic capability being highlighted as a benefit of

the graph data model, we note that research comparing the relational domain to

the graph domain mainly focuses on DB query execution times and handling

relationships between data elements. The literature review did not find any

experiments investigating the difference in effort and time needed to implement

and modify a relational data model versus a graph data model.

The data models implemented in this case study cover equal data needs. The case

study is set up with an experimental design and analysis approach. The

implementation level is the logical data model for a relational DB and a graph DB.

The data modeling tools selected are the ERDPlus [42] for relational data

modeling and the arrows.app [43] for graph data modeling. The data needs are

understood from discussions with business stakeholders and an analysis of an

engine’s DBOP. The DBOP is available in an Excel file with a table of 9210 rows

and 38 columns. The content of the DBOP is further explained in chapter 4.2.1.

To understand if the graph data model is more dynamic than the relational model,

an experiment is planned and tested as a case study. The exact data needs were

modeled as a relational data model and a graph data model. In the case study the

author represents the subject., The limitation of having only one subject available

creates the limitation of nut running a statistically relevant experiment. In a

future experiment ten to twenty Information Technology students would be a

reasonable subject scope.

48

The dynamic capability is seen as an indirect measure. To calculate the dynamic

capability, the following data is realistic to collect:

• The time needed for data analysis and discussions with business

stakeholders to understand the data needs

• The data modeling time

• The number of data elements in the data model

In addition, the subjective qualitative and subjective analysis of the difficulty level

of building the relational data model versus the graph data model gives valuable

insight.

In the case study an independent domain expert reviewed the models to

understand if the implementation meets the expectations of Wärtsilä.

Quantitative implementation measures, such as query execution times, are

beyond the scope of this case study and has neither been planned for in the

experiment design.

The design of the experiment is described in chapter 4.1. Chapter 4.2 describes

the data modeling process and the resulting data models. Chapter 4.3 describes

the steps and results of the graph data model implementation in the Neo4j

standalone desktop version.

4.1. Experimental design

This chapter describes the outcome of the experimental planning stage. The

chapter covers the reporting structure suggested by Wohlin et al. [44], Figure 23.

49

Figure 23. The reporting structure for the experimental design (picture source: [44])

4.1.1. Goal definition

The experiment is motivated by the lack of evidence for the claim that the graph

data model is more dynamic than the relational data model. Dynamic is seen as

equal to the effectiveness and efficiency of creating a data model and later

implementing changes to this model. The time for analysis and data modeling,

together with a qualitative review of challenges faced during the implementation,

indicate the implementation's efficiency. Effectiveness is a measure of how well

the model meets the expected result. The best option in a dynamic environment

is a model that is easy to implement and adapts to changes easily. If both the data

modeler and the business stakeholder understand the implemented model, it is

easier to discuss and align on needed changes.

The object of study is a relational data model and a graph data model. Often in

DB design, three levels of data models are created. These levels are presented in

chapter 2.4. This experiment is limited to the logical data model. With this

selection, the specific requirements of DB providers are avoided, but it is still

possible to identify a difference between the graph and the relational models.

The purpose of the experiment is to understand the dynamic capability of the

relational data model and the graph data model.

50

The perspective is from the point of view of the author. Seeking to understand if

the literature describing the graph data model to be more dynamic than the

relational data model can be verified.

The quality focus for the dynamic capability is on the effectiveness and

efficiency of implementing the selected data model types. The time it takes to

understand the data needs and later implement the relational data model versus

the graph data model is measured in minutes. Also, the number of elements in

each model is counted. In the relational data model, the tables and relations

between the tables are calculated. The number of nodes and edges for the graph

data model is considered. The effectiveness and efficiency of the data modeling

are computed by summing the time it takes for data analysis and modeling, and

then dividing this total time by the number of elements in the data model.

Context. When the experiment is carried out three sequential steps are

recommended. The first step is the data analysis and discussion with business

stakeholders. The second step is relational data modeling and the third is graph

data modeling. The data analysis and modeling shall be carried out in a

disturbance-free environment. A maximum length of 90 minutes per session shall

be set to ensure proper focus during the analysis and modeling. The date and time

used per session shall be recorded. In the calculations, only each data model's

complete analysis and data modeling time shall be used.

The goal summary was defined using the Wohlin et al. goal template, Figure 24.

Figure 24. Wohlin et al. goal template (Picture source: [44])

Analyze the graph data model and relational data model dynamic capability

for the purpose of evaluation

with respect to their effectiveness and efficiency

from the point of view of the author

in the context of a subject, first analyzing the data needs and then modeling the

relational and graph data model for an engine DBOP.

51

4.1.2. Hypothesis formulation

The basis for the hypotheses is that the graph data model is assumed to be more

dynamic than the relational data model. The null hypothesis defines the graph

and relational data models as equally dynamic. The alternative hypothesis

explains the graph data model as more dynamic than the relational data model.

Table 5 presents the null and alternative hypotheses and measures needed in the

experiment.

Table 5. Null hypothesis and alternative hypothesis, together with their mathematical formulation and

measures needed for understanding the dynamic capability of the data models

The null hypothesis, H0: The alternative hypothesis, H1:
H0_crete: Analyzing the data needs and
implementing a graph data model
requires as much effort and time as the
corresponding relational data model.

H1_crete: Analyzing the data needs and
implementing a graph data model
requires less effort and time than the
corresponding relational data model.

Mathematical formulation:
H0_crete: (AnalysisTime(graph) +
CreateTime(graph)) / Elements(graph) =
(AnalysisTime(relational) + CreateTime
(relational)) / Elements (relational)

Simplified:
H0_crete: CreateEff(graph) = CreateEff
(relational)

H1_crete: (AnalysisTime(graph) +
CreateTime(graph)) / Elements(graph) >
(AnalysisTime(relational) + CreateTime
(relational)) / Elements (relational)

Simplified:
H1_crete: CreateEff(graph) > CreateEff
(relational)

Measures needed:
When the data needs are understood:
During analysis and discussion sessions, the time used is recorded in minutes. When
the model is completed, all session times are summed and registered as, AnalysisTime.

When the models are implemented:
During the modeling sessions, the time used is recorded in minutes. When the model
is completed, all session times are summed and registered as, CreateTime.

After model implementation:
The number of elements in the data model is calculated when the model is complete.
For the relational data model, the number of tables and the relations between the
tables are counted. The number of nodes and edges for the graph data model are
measured.

The effectiveness and efficiency of implementing the data model for a specific data
model type, CreateEff, is calculated with the formula also used in the mathematical
formulation of the hypothesis:
CreateEff = (AnalysisTime(modelType) + CreateTime(modelType)) /
Elements(modelType)

52

4.1.3. Variables

The variables used in the experiment are summarized in Table 6. The data model

type is the only independent variable. It has two nominal levels: a graph data

model and a relational data model.

The variables of the subject experience in graph data modeling and relational

data modeling are controlled. The subject’s experience is mapped per modeling

type and measured on an ordinal scale with the levels:

1. No prior experience.

2. Followed a course or read a book.

3. Less than six months of industrial experience.

4. More than six months of industrial experience.

The dependent variables are related to the time spent on data analysis and

modeling and the number of elements in each data model. The time measured is

objective. The decision of whether the model is correctly implemented is

subjective. Also, the number of elements can be considered subjective. The reason

is that fulfilling specific data needs can be modeled in numerous ways. To

minimize the bias in these measurements, the 3NF normalized form for the

relational model and guidelines on building a labeled property graph for the

graph data model are followed. In determining if the model is correct, a

qualitative review is performed with an independent and experienced data

modeling expert and a business stakeholder.

The effectiveness and efficiency of the model are calculated as the summed data

analysis and modeling time, divided by the number of elements in the data model.

This measure gives an understanding of the dynamic capability of the data model

type.

53

Table 6. Variables used in the experiment

Name Values Description
ModelType {graph, relational} The subject creates two alternative logical

data model types: a graph data model and a
relational data model.

GraphExp Ordinal The subject’s experience with modeling
graphs is measured on a four-level ordinal
scale.

RelationalExp Ordinal The subject’s experience with relational data
modeling is measured on a four-level ordinal
scale.

AnalysisTime Integer The total time subject uses when analyzing the
data needed for a data model. The unit is
minutes.

CreateTime Integer The total time subject uses when creating a
data model. The unit is minutes.

Elements Integer The number of elements in a data model.
CreateEff (AnalysisTime +

CreateTime) /
Elements

The effectiveness and efficiency of the
implementation of the data model. The units
are left out in the CreateEff calculation.

4.1.4. Design

When designing the experiment, the hypothesis was used as a starting point to

understand which statistical analysis to perform to reject the null hypothesis

[44]. The experiment was designed as a set of tests from which the data needed

for the statistical analysis was collected. General design principles of

randomization, blocking, and balancing were followed in the design [44].

Randomization was used to fulfill the requirement of collecting the data for

statistical analysis from independent random variables [44]. Randomization can

be applied to the objects, subjects, and the order of the tests in the experiment

[44].

The subjects for the experiment are recommended to be a natural random

selection of ten to twenty M.Sc. Information Technology students at Åbo Akademi.

The subjects perform data analysis and discussions with business stakeholders

to understand the problem and to create the data models. The order in which the

models are created could be randomized. Instead, a conscious decision to create

the data model for which the subject has better experience first. This balances the

54

subject performance possibilities when creating the two alternative data models.

Starting data modeling on an unfamiliar data set takes time. It is hence considered

fair to take the hit in ramp-up time when modeling the more familiar modeling

type. This way, undertaking the more unfamiliar data modeling type will only

cause ramp-up time in the modeling approach and not the data set. Due to the

small size of the experiment, no blocking was applied.

Wohlin et al. also present some frequently used experiment design types, which

range from simple experiments with only one factor to more complex ones with

many factors [44]:

• One factor with two treatments.

• One factor with more than two treatments.

• Two factors with two treatments.

• More than two factors, each with two treatments.

The factor is the independent variable on which treatments are applied [44]. The

only factor is the ModelType. There are two treatments: graph and relational. This

experiment’s design type is one factor with two treatments. This type of

experiment intends to compare two treatments against each other [44]. The

dependent variables of this experiment are defined in chapter 4.1.3. The main

interest is the CreateEff, which indicates the dynamic capability of the data model.

The most used approach for the one factor with two treatments experiment

design type is to have a completely randomized design where the subject uses

only one treatment. In this experiment, the same subject uses both treatments.

This design type is defined to be a paired comparison design or a crossover

design. The risk in the paired comparison design is that the subject utilizes

experience from treatment one when applying the second treatment. This risk is

identified as an opportunity. In case where the relational is more familiar, the

relational is selected to be used as the first treatment. The experience from

relational data modeling can then be utilized when applying the graph treatment.

55

4.1.5. The subject

The subjects for the experiment are recommended to be a natural random

selection of ten to twenty M.Sc. Information Technology students at Åbo Akademi.

In the case study the subject is the author, who is an M.Sc. Information

Technology student at Åbo Akademi, Vaasa. The author has experience level 4,

more than six months of industrial experience, in relational data model design. The

graph data modeling experience level is 2, followed a course or read a book. Level

2 in graph data modeling is acquired from the literature review made for this

study.

4.1.6. The object

The objects of the study are a relational data model and a graph data model.

Both are on a logical data model level and describe the same data scope. The data

scope is the DBOP for an engine produced in the Wärtsilä STH delivery center in

Vaasa, Finland.

4.1.7. Instrumentation

Wohlin et al. [44] recognize three types of instruments to be chosen in the

planning phase of an experiment. These are objects, guidelines, and measurement

instruments. The following are needed:

• The exact data scope will be used for the graph and relational data models.

• Mapping the experience level of the subject.

• Basic understanding of data modeling concepts, chapter 2.

• Selection of and familiarization with data modeling tools.

• A timing watch for measuring the length of the data modeling sessions.

The data modeling tools selected are ERDPlus [42] for relational data modeling

and arrows.app [43] for graph data modeling. These were chosen because both

are free web-based data modeling tools. Both are easy to use due to their

graphical modeling capability which does not require specific data modeling

56

language skills. Both offer the possibility of exporting the created data models as

query commands to be used when a DB is created. The query language used in

the export by ERDPlus is SQL [42]. Arrows.app exports query commands as

Cypher clauses [43].

4.1.8. Data collection

The case study to evaluate the experiment design was carried out during the fall

of 2022. The measurements needed and the data collection approach is defined

in Table 6.

4.1.9. Analysis procedure

The mathematical analysis model is selected based on the experiment design

type. The condition of the experiment hypothesis is accepted or rejected based

on the observed p-values. The p-value is the lowest possible significance that can

reject the null hypothesis. [44]

In chapter 4.1.4, the design type was specified to be paired comparison design.

Examples of analytical models suitable for the paired comparison design are a

paired t-test, a sign test, and a Wilcoxon [44]. The paired t-test is a parametric

test that requires some of the parameters involved in the test to be normally

distributed and the values to be on an interval scale [44]. The sign test and the

Wilcoxon are non-parametric tests that do not require a specific distribution of

the involved parameters [44]. The analyzed parameters (time in minutes,

number of elements, effectiveness, and efficiency) are on a ratio scale, and normal

distributions are not guaranteed. Based on this, the Wilcoxon test was selected

for the analysis. A significance level of 0.05 was chosen to consider the result

significant. In other words, the probability of not getting a random result was

95%.

57

4.1.10. Evaluation of validity

A valid result can be ensured by considering the experiment's validity already in

the planning stage [44]. Wolin et al. [44] describe different types of threats to the

validity of an experiment.

Conclusion validity concerns correct conclusions concerning the relationship

between the treatment and the experiment result [44]. Possible problems are

choosing the wrong statistical analysis or performing mathematical calculations

wrong [44]. The conclusion validity also highly depends on the data quality used

in the calculations [44]. Internal validity addresses issues where some

uncontrolled factors affect the result of the experiment [44]. Construct validity

discusses problems with how the experiment is designed [44]. External validity

concerns if we can generalize the experiment to other environments, subjects,

and contexts [44].

Validity in the experiment can be ensured by:

• Noting the importance of not searching for a specific experiment result.

• Having an independent data modeling expert verify the correctness of the

data models.

• Including the time-consuming task of understanding the data needs as a

measure in the experiment.

• Understanding the basic concepts of relational data modeling and graph

data modeling. This is ensured by performing the background study and

literature review before the experiment.

• Recognizing the need to map the experience of the subjects. This will help

understand if the result is screwed due to unbalanced relational and graph

data modeling skill levels.

• Disturbances are eliminated by keeping the experiment in a quiet

environment and not allowing more than 90 minutes for each data

analysis or modeling session.

The generalization of the result is limited to relational and graph data models.

Understanding the dynamic capability of other data models needs separate

investigation. Additionally, the limitation to the logical data model shall be noted.

More data model levels, like conceptual and physical models, would be included

58

in an actual DB design and implementation scenario. An increased amount of data

models increases the complexity and data modeling time.

Generalizing the result to an industrial setting with more experienced subjects

cause a situation where the time needed to carry out the data analysis and

modeling is reduced. Also, the data scope and cooperation with business

stakeholders affect the result of the experiment. The data analysis time is reduced

if the business stakeholders communicate their needs. While more data analysis

time is needed in case discussions with business stakeholders are minimal. It is

expected that the ratio of the dynamic capabilities of the relational data model

versus the graph data model remains the same no matter the data in the scope

and the involvement of the business stakeholders.

4.2. Data modeling

In our case study an incremental data modeling process is used where the steps

described in chapter 2.4 are followed. The design process starts with

understanding the problem and business needs. This is done through discussions

with business stakeholders and analyzing any relevant material. The second step

is to create the conceptual data model. We do not create a conceptual model but

utilize an existing Excel file with a table describing the hierarchical structure of

an engine DBOP. The third step is to make the logical data model. As the aim is to

implement the graph data model in Neo4j, the labeled property graph is selected

as the graph model type. For the relational data model, no specific RDBMS

provider needs are considered. Still, we decided on a 3NF-normalized relational

data model. In the 3NF normalized data model, we aim to build tables with a

realistic minimum of duplicated data. At the same time also reduces the number

of null values. The data model correctness is verified against the data needs and

through an evaluation by an independent data modeling expert and business

stakeholder feedback.

The remaining part of this chapter covers the result of the process in Figure 25.

The black text describes what was done and the blue text the measurements

collected from evaluating the experiment design. The variables are explained in

chapter 4.1.3. The measures are explained in chapter 4.1.2. Chapter 4.2.1

presents the data modeling needs. Chapter 4.2.2 presents the decisions made

59

when creating the relational and graph logical data models, including

modifications to fulfill the expectations of the independent data modeling expert

and business stakeholder.

Figure 25. Data modeling process, including the measures and calculations needed for the experiment

(Author’s picture)

4.2.1. Understanding data modeling needs

An ideal scenario for data modeling is where the data modeler and business

stakeholders discuss and align on the data needs. Discussions with business

stakeholders are minimal in this experiment. Instead, focus is put on

understanding the data needs from the DBOP Excel file. The business stakeholder

describes the DBOP as the manufacturing steps of an engine built at the Wärtsilä

STH manufacturing site in Vaasa. The DBOP is engine configuration specific and

matches the needs of a unique engine. Other variations in the DBOP are due to

the layout of the manufacturing site.

In Figure 26 to Figure 28, the 29 first rows of the DBOP can be seen. The data is

obfuscated not to disclose company-sensitive data. According to the business

stakeholder, the key column in the DBOP Excel file is the StrLevel. In contrast, the

data modeling expert selected the TcType column. Further explanations of the

DBOP were not given. Due to this minimal input that does not provide much

guidance for the data modeling, only 10 minutes from the discussions with

business stakeholders were recorded to the AnalysisTime variable for both the

relational and graph treatment.

The DBOP Excel file data analysis took place on the 17th – 20th of August 2022.

The total analysis time was 597 minutes. During the analysis, it was not easy to

distinguish which part was dedicated to the relational versus the graph data

model needs. The data modeling phase, described in chapter 4.2.2, revealed that

the data analysis is ninety percent focused on the requirements for the relational

60

data model. The remaining ten percent focused on the needs for the graph data

model, the investigation concerning the hierarchical structure of the DBOP. Based

on this understanding, the 537 minutes were added to the

AnalysisTime(relational) and 60 minutes to the AnalysisTime(graph). When

adding the 10 minutes of discussion with the business stakeholder, the total

AnalysisTime(relational) is 547 minutes, and AnalysisTime(graph) is 70 minutes.

61

Figure 26. The 29 first rows of the DBOP Excel file. Part 1 of 3. The data is obfuscated. (Author’s picture)

62

Figure 27. The 29 first rows of the DBOP Excel file. Part 2 of 3. The data is obfuscated. (Author’s picture)

63

Figure 28. The 29 first rows of the DBOP Excel file. Part 3 of 3. The data is obfuscated. (Author’s picture)

In this chapter, the findings from the DBOP Excel analysis are presented. Due to

company-specific and sensitive data, some data is obfuscated or hidden. Instead

of focusing on specific data values, the aim is to:

• Check and handle duplicate data.

• Check and handle columns containing only null values.

• Understand relationships between data elements and how the

hierarchical structure of the DBOP is constructed.

• Identify groups of data. The primary keys are mapped in the identified

groups for the needs of the relational data model.

The size of the DPOB is 9210 rows and 38 columns. This large Excel file requires

structured and efficient data analysis. Python 3.6 was selected as the

programming language. Jupyter Notebook’s version 4.5.6 web-based

interactive computing platform was chosen as the programming environment.

64

This selection was made due to the author’s preference. Building the data analysis

with a Python script also enables code to be reused for other engine DBOP

analyses.

Figure 29 shows the Python libraries used in the data analysis. Pandas is the most

central library used. The data is stored in a Pandas data frame when reading the

data from the Excel file. From the Pandas data frame, data is manipulated, viewed,

and used. Pandas is an open-source data analysis and manipulation tool that is

fast, powerful, and easy to use [45]. NumPy is used in Python array computations

because it is fifty times faster than traditional Python lists [46]. NumPy also

includes many supporting functions that make working with arrays easy [46].

Matplotlib, Seaborn, NetworkX, and Pydot are used to visualize data. Table 7

summarizes the library versions used in the analysis.

Figure 29. Libraries used in the data analysis (Author’s code)

Table 7. Library versions used in the data analysis

Library Version
Numpy 1.19.5
Pandas 0.25.3
Matplotlib 3.2.2
Seaborn 0.11.2
NetworkX 2.5.1
Pydot 1.4.2

Figure 30 shows the code for viewing the DBOP data frame info. In the result,

Figure 31, the number of rows and columns in the data frame and the name and

datatype of each column can be seen. The number of non-null values per a specific

column is also presented. Five columns in the data frame contain only null values.

These columns are:

• occpuid

• Plant

• CombidingParameter

65

• MfgProcessRevision

• METargetItemID

The columns without values do not bring value to the data analysis or the data

model and are thus removed. Columns marked as irrelevant by the business

stakeholders are also removed from the data frame. These are:

• ParentRevUID

• RevUID

• ReleaseStatus

• OccType

Figure 30. The Pandas info method is utilized for viewing info about the DBOP data frame (Author’s code)

66

Figure 31. Info about the DBOP data frame (Author’s code)

Before starting a more detailed data analysis, it was checked if the DBOP data

frame has duplicate data rows. The code and result for this check are presented

67

in Figure 32. The result shows that there are no duplicate rows in the data frame

that would need to be addressed.

Figure 32. Code and result to check if duplicate data rows exist in the DBOP data frame. (Author’s code)

A contradicting message concerning a pivotal column to use in the data analysis

was received in the initial discussions with the business stakeholder and the data

modeling expert. One of then marked the StrLevel as the essential column, while

the other specified the TcType as important. Hence, it is relevant to understand if

there is a direct relationship between these two columns.

A relationship is confirmed if a unique value of TcType returns a unique value of

StrLevel and if a unique value of StrLevel returns a unique value of TcType. Figure

33 shows the code for a function plotting how many unique values of

columnName each group value has. Figure 34 is the result of calling this function

to understand how many TcType each StrLevel has. The result shows that there

are values of StrLevel returning more than one TcType value. Hence, the TcType

is not dependent on the StrLevel.

Figure 33. Function for plotting how many values for the column given in the columnName argument exist for

each column included in the group argument in the data frame given the in dataframeName argument. The

graphTitle is the argument for the title of the plot. The rotationValue specifies which direction the x-axis ticks

shall have. (Author’s code)

68

Figure 34. Number of unique values of TcType per StrLevel (Author’s code)

Figure 35 shows how many unique values of StrLevel each TcType value has. The

result indicates that five TcType values return more than one unique StrLevel

value. Based on the outcome, it can be concluded that the StrLevel is not

dependent on the TcType, and there is no direct relationship between the TcType

and StrLevel.

Figure 35. Number of unique values of StrLevel per TcType (Author’s code)

69

By looking at the column names, it was assumed that:

• an OwningUser always belongs to the same OwningGroup

• an OwningGroup has one or many OwningUsers

Through investigation, this assumption was proved to be partly false. Figure 37

shows that an OwningUser can belong to eight OwningGroups. Figure 38 confirms

that an OwningGroup can have one or many OwningUsers. The function called

when creating the graphs in Figure 37 and Figure 38 is visible in Figure 36.

The OwningUser and OwningGroup values are hidden for confidentiality reasons.

The OwningUser values represent the user identification in the Surname,

Forename format, or as a code like grpadm. For the relational data model, where

normalization rules are followed, consideration to split the forename and

surname into separate columns is needed. The OwningGroup is a company

organizational code in text format.

Figure 36. Function for plotting how many values for the column in the columnName argument exist for each

column included in the group argument in the data frame in the dataframeName argument. The graphTitle

argument specifies the title of the plot. (Author’s code)

70

Figure 37. The number of unique values of OwningGroup per OwningUser (Author’s code)

Figure 38. The number of unique values of OwningUser per OwningGroup (Author’s code)

By looking at the column names and order of the columns, it is assumed that:

• ParentRevID is the revision of the ParentID

• RevID is the revision of the ID

• RealizationRevisionID is the revision of the RealizationID

Storing a revision value for the id calls for the understanding that an id can have

several revisions. Figure 39 shows that the DBOP data frame has 2395 unique

ParentID values and 11 unique ParentRevID values. The function in Figure 36

checks the number of unique values of ParentRevIDs for each ParentID. Figure 40

shows that most of the ParentID values have one ParentRevID. Looking carefully

71

at the graph in Figure 40, a line drop to Count level 0 can be seen on the right

edge. This drop is for the ParentID value equal to the root. The root is the first row

in the DBOP Excel file and the only ParentID without a revision value.

Figure 39. The number of unique values of ParentID and ParentRevID in the DBOP data frame (Author’s code)

Figure 40. The number of unique values of ParentRevID per ParentID (Author’s code)

In the DBOP data frame, there are 5225 unique ID values and 18 unique RevID

values, Figure 41. By calling the function in Figure 36, it is checked how many

unique values of RevID each value of ID has. Figure 42 shows that most of the ID

values have one RevID. Some ID values also have two, three, or six different RevID

values.

Figure 41. The number of unique values of ID and RevID in the DBOP data frame (Author’s code)

72

Figure 42. The number of unique values of RevID per ID (Author’s code)

In the DBOP data frame, there are 21 unique RealizationID values and two unique

RealizationRevisionID values, Figure 43. The function in Figure 36 is used to check

how many unique values of RealizationRevisionID each value of RealizationID has.

The result in Figure 44 shows that each RealizationID has one unique

RealizationRevisionID.

Figure 43. The number of unique values of RealizationID and RealizationRevisionID in the DBOP data frame

(Author’s code)

Figure 44. The number of unique values of RealizationRevisionID per RealizationID (Author’s code)

73

From the analysis result of the three different id columns and their respective

revision columns, it is recognized that each value of ParentID and RealizationID

has one unique revision. It can be dangerous to assume that each id will always

have one revision. Instead, it is believed that having decided to include the id and

its revision in the DBOP, these columns will be considered as a pair. The situation

with the ID and the RevID pair is a likely scenario for the ParentID and the

ParentRevID pair and the RealizationID and the RealizationRevisionID pair.

The Id and the revision pairs are also recognized in the Ma9_ParentItem column.

In this column, the id and the revision values are combined and separated with a

/ character. This column has one or many ids and revision pairs in one value. Each

pair is split with the | character. This column is hence multivalued. An example of

values in the Ma9_ParentItem column can be seen in Figure 45.

Figure 45. Ma9_ParentItem example values in the DBOP Excel file. The data has been obfuscated. (Author’s

picture)

A separate data frame is created from the DBOP data frame to investigate the

Ma9_ParentItem. Only rows with a Ma9_ParentItem value are selected for the new

data frame. Additionally, all columns containing only null values for the selected

rows are dropped. The code and information about the new data frame are

presented in Figure 46. The new data frame is named dfMa9_ParentItem and

contains 4072 rows and 15 columns.

Ma9_ParentItem

PABA191919/A|PABA181818/A

PABA252525/A

PABA077777/-|PABA055555/A|PAAF666666/A

74

Figure 46. The data frame where every row has a Ma9_ParentItem value, and none of the columns contain

only null values (Author’s code)

For investigating the Ma9_ParentItem id and the revision pairs, a dedicated data

frame containing only the Ma9_ParentItem column is created. In this data frame,

the Ma9_ParentItem id and revision pairs are separated into pairwise rows, and

the id and revision values are split into separate columns. The code for this is

visible in Figure 47. The code rows with a comment sign (#) in front of the

table_Ma9_ParentItem have been used to output intermediate results during

coding.

75

Figure 47. The code for creating a separate data frame where the Ma9_ParentItem id and the revision pairs are

split into individual rows, and the id and the revision values are separated into columns.

Figure 48 shows an example of running the code in Figure 47. The

Ma9_ParentItem column contains the original value. Comparing the split data to

its initial value indicates how the data is split. Figure 49 shows the principle for

the Ma9_ParentItem data splitting.

Figure 48. Example result where the Ma9_ParentItem id revision pairs are split into their own rows and

separate columns are created for the id and the revision. The data has been obfuscated. (Author’s picture)

Ma9_ParentItem Ma9_ParentItemID Ma9_ParentItemRevID

PABA198198/A|PABA183183/A PABA198198 A

PABA198198/A|PABA183183/A PABA183183 A

PABA251251/A PABA251251 A

PAAF811811/- PAAF811811 -

PAAF812812/C PAAF812812 C

PABA777775/-|PABA777755/A|PAAF666666/A PABA777775 -

PABA777775/-|PABA777755/A|PAAF666666/A PABA777755 A

PABA777775/-|PABA777755/A|PAAF666666/A PAAF666666 A

PABA215215/A|PAAF667667/A PABA215215 A

PABA215215/A|PAAF667667/A PAAF667667 A

76

Figure 49. The principle for splitting the Ma9_ParentItem values (Author’s picture)

Figure 50 shows that there are 225 unique Ma9_ParentItemID values and seven

unique Ma9_ParentItemRevID values in the DBOP data frame.

Figure 50. The number of unique values of Ma9_ParentItemID and Ma9_ParentItemRevID in the DBOP data

frame (Author’s code)

The function in Figure 36 is used to check how many unique

Ma9_ParentItemRevID values each Ma9_ParentItemID value has. Figure 51 shows

that each Ma9_ ParentItemID value has one Ma9_ParentItemRevID. With the same

arguments as for the previous id and revision pairs, it can be concluded that an id

and its revision need to be considered as a pair.

Figure 51. The number of unique values of Ma9_ParentItemRevID per Ma9_ParentItemID (Author’s code)

77

A pattern between ID and RevID pairs and ParentID and ParentRevID pairs are

recognized when outputting the first ten rows of the DBOP. Figure 52 shows the

principle for the identified pattern. Where the ID and RevID pair at row zero

becomes the ParentID and ParentRevID pair at row one. The ID and RevID in row

one become the ParentID and ParentRevID pair in rows two, three, and four. This

pattern is assumed to form the hierarchical structure in the DBOP. If the same

ParentID and ParentRevID pair exists on several rows with the same StrLevel

values, the Seq_Nr value differs. From the Ma9_ParentItem column name, a

possible connection to the ParentID and ParentRevID pair is also assumed. The

recognized hierarchical structure and possible relation to Ma9_ParentItem values

are investigated to understand the following:

• Does the hierarchical structure exist throughout the DBOP?

• Is the Ma9_ParentItem involved in forming the hierarchical structure of

the DBOP?

Figure 52. Principal sketch of the hierarchical structure in the DBOP. The gray area from row 5 forward

contains ID and RevID pairs for which there are rows further down in the DBOP with matching ParentID and

ParentRevID pairs. (Author’s picture)

Figure 53 presents the code for creating two separate data frames from the DBOP

data frame. One of them contains unique values of ParentID and ParentRevID

78

pairs. The other has unique values of ID and RevID pairs. These data frames are

merged with the Pandas merge function, which automatically adds a column

named _merge. The _merge column identifies if the id and revision pair are found

in both original data frames, or only in one of these data frames. If the _merge

value is left_only, the id and rev pair are only found in the dfParentIDandRev data

frame, and if the _merge value is right_only, the id and rev pair are only found in

the dfIDandRev data frame. The id and revision pairs where the _merge value is

both indicate that the id and revision pair is found in both data frames. When

found in both data frames, it equals an identified link between the ID and RevID

pair to the ParentID and ParentRevID pair. What the link means in this context

can be seen in Figure 52.

Figure 53. The code for investigating if an id, revision pair is found in both ParentID and ParentRevID column

pair and ID and RevID column pair or only in either one of these column pairs (Author’s code)

Figure 54 presents an example result of running the code in Figure 53. The id

values in Figure 54 are obfuscated. If the _merge value is right_only, the particular

ID and RevID pair form an end node in the hierarchical structure. This means that

no further links to lower levels in the hierarchical structure exist from that

specific ID and RevID pair. If the _merge value is left_only, it implies that the

ParentID and ParentRevID pair has been linked from another column other than

the ID and RevID pair. The rows whit left_only require further investigation to

identify another pattern in the hierarchical structure that, in addition to the ID

and RevID pair, forms links to the ParentID and ParentRevID pair.

79

Figure 54. An example of a result of investigating if the id and revision pair is found in both the ParentID and

ParentRevID pair and the ID and RevID pair. The id values are obfuscated. (Author’s picture)

With the code in Figure 55, the ParentID and ParentRevID pairs with no link from

the ID and RevID pair are copied into a separate data frame. This data frame is

named dfParentIDandRevMissingIDandRev and modified to exclude the _merge

column. Its id and rev column names are changed to ParentID and ParentRevID.

The reason for changing the column names back to their original form is that

Pandas merge requires that the column names in the comparison are equal in

both data frames. The Pandas merge operation is now performed on the

dfParentIDandRevMissingIDandRev and a copy of the original DBOP data frame.

Figure 55. Creating a data frame containing only the ParentID and ParentRevID column pairs with no link from

the ID and RevID column pairs. (Author’s code)

The code for the second merge operation is shown in Figure 56. In this merge

operation, the _merge values equal to both are in focus. These are the DBOP rows

where the ParentID and ParentRevID pair do not have a link from the ID and RevID

pair. The rows with _merge value both are stored in a data frame named

dfRowsWithNoLink_IDandRevID_ParentIDandParentRevID. The row with

ParentID equal to the root is dropped. This is the first node in the hierarchical

structure for which no link from any previous node is expected. Also, the _merge

column and columns with only null values are dropped. The remaining size of the

id rev _merge

root left_only

XAAC749690 A both

XAAC749627 A both

XAAC749628 - both

XAAC749648 - both

DAAF521031 B right_only

DAAF523346 B right_only

DAAF527352 - right_only

XAAC399556 - right_only

XAAC539259 AB right_only

80

dfRowsWithNoLink_IDandRevID_ParentIDandParentRevID is 153 rows and 14

columns, Figure 57. The following investigates if the remaining 153 rows are

linked from the Ma9_ParentItem column.

Figure 56. The code for selecting the rows in the DBOP data frame with no link from the ID and RevID column

pair to the ParentID and ParentRevID column pair. The resulting data frame is named

dfRowsWithNoLink_IDandRevID_ParentIDandParentRevID (Author’s code)

Figure 57. The dfRowsWithNoLink_the IDandRevID_the ParentID and the ParentRevID contain 153 rows and

14 columns. (Author’s code)

Figure 58 presents the code where a third merge operation is performed. This

time the merge is performed on copies of the data frame created in Figure 47 for

the Ma9_ParentItem investigation and the data frame made in Figure 56. Only

81

columns containing an id and a revision are kept in the copied data frames.

Duplicated values of the id and revision pairs are dropped before performing the

Pandas merge operation.

Figure 58. The code for creating a merged column of the Ma9_ParentItem id and revision pairs and the

ParentID and ParentRevID pairs that are missing links from the ID and RevID columns (Author’s code)

Figure 59 presents the result of the merge operation. It can be seen that all the

ParentID and ParentRevID pairs that did not have a connection from the ID and

RevID pairs have a relationship from the Ma9_ParentItem. Additionally, there are

no remaining ParentID and ParentRevID pairs with a missing link from either the

ID and RevID pair or the Ma9_ParentItem. The investigation also reveals that

82

values with no link forward exists in the Ma9_ParentItem column. As for the ID

and RevID pairs, these form the so-called end nodes in the hierarchical structure.

Figure 59. Investigating the links from Ma9_ParentItem to ParentID and ParentRevID shows that there are

141 unique id and revision pairs with links from the Ma9_ParentItemID and Ma9_ParentItemRevID column

pair to the ParentID and ParentRevID column pair. In the DBOP structure, there are no ParentID and

ParentRevID pairs that are not linked from either the ID and RevID pair or the Ma9_ParentItem. In the DBOP,

84 unique Ma9_ParentItemID and Ma9_ParentItemRevID pairs have no link forward in the hierarchical

structure. (Author’s code)

The investigation of the hierarchical structure shows that a ParentID and a

ParentRevID pair is linked from a higher hierarchical level of an ID and a RevID

pair or an id and a revision pair in the Ma9_ParentItem column. Figure 60 shows

a simplified sketch of the recognized hierarchical structure.

Figure 60. Simplified sketch of the principle of links to the ParentID and ParentRevID pairs. This forms the

hierarchical structure of the DBOP. (Author’s picture)

83

The entire hierarchical structure of the DBOP can be visualized with the

NetworkX library. A graph with the dependencies between ID and RevID pairs

and ParentID and ParentRevID pairs is first created. Then a graph with the

dependencies between Ma9_ParentItem and ParentID and ParentRevID pairs

follows. These NetworkX graphs are then merged.

A copy of the DBOP data frame is created to prepare for the visualization. The

code in Figure 61 creates a column connecting the ID and RevID pairs and a

column combining the ParentID and ParentRevID pairs. Figure 62 shows how

these new columns are utilized when creating the NetworkX graph of the DBOP

hierarchical structure formed between the ID and RevID pairs and the ParentID

and ParentRevID pairs. The result in Figure 63 shows a gap in the DBOP

hierarchical structure.

Figure 61. The code for creating a data frame of the DBOP data where the id and revision pairs are combined

in a separate column for both ID and RevID pairs and the ParentID and ParentRevID pairs (Author’s code)

Figure 62. T code for creating a graph with edges connected from the combined ID and Rev ID (IDandRev)

node to the combined ParentID and ParentRevID node (ParentIDandRev) (Author’s code)

84

Figure 63. A NetworkX graph visualization of the DBOP hierarchical structure formed between ID and RevID

pairs and ParentID and ParentRevID pairs (Author’s code)

The gap in Figure 63 can be filled by knowing that some data points are connected

from the Ma9_ParentItem column to ParentID and ParentRevID pairs. When

preparing for the second graph, a copy of the data frame created in Figure 61 is

made to reuse the combined ParentID and ParentRevID column. The new data

frame is then modified to contain dedicated rows for each Ma9_ParentItem id and

revision pairs initially stored in the same value. The knowledge that the |-sign

separates each pair is utilized in the split. The code for creating this data frame is

presented in Figure 64.

85

Figure 64. The code where the data frame created in Figure 61 is copied to a new data frame where the

Ma9_ParentItem id and revision pairs are split into individual rows. (Author’s code)

Figure 65 presents the code for creating the second NetworkX graph of the DBOP

data, utilizing the connection between Ma9_ParentItem and ParentID and

ParentRevID pairs. Figure 66 presents the result. There is a dense data cluster

forming in the middle and some data points surrounding it.

Figure 65. The code for creating a graph with edges connected from the Ma9_ParentItem id and revision pair

(Ma9_ParentItemIDandRev) node to the combined ParentID and ParentRevID node (ParentIDandRev)

(Author’s code)

86

Figure 66. A NetworkX graph visualization of the DBOP hierarchical structure formed between

Ma9_ParentItem id and revision pairs and ParentID and ParentRevID pairs (Author’s code)

The two separate graphs are combined into one with the NetworkX compose

functionality. The code is presented in Figure 67. The node colors are kept as in

Figure 63 and Figure 66. The result of the combined graph is presented in Figure

68. The result shows a dense data cluster with no disconnected data points. A

meticulous reader may even spot the first node in the hierarchical structure, the

root colored in green.

87

Figure 67. Creating a graph visualizing the complete DBOP hierarchical structure (Author’s code)

88

Figure 68. A NetworkX graph visualization of the DBOP hierarchical structure formed between ID and RevID

pairs and ParentID and ParentRevID pairs (Author’s code)

Identifying the hierarchical structure in the graph visualizations with over 9000

data points is problematic. A couple of alternative visualizations with a reduced

number of data points are shown in Figure 70 and Figure 72. Figure 69 presents

the code where the selection of data points is made. The data points are limited

based on their StrLevel value, which can be considered as a level in the

hierarchical structure. In the starting node, the root has StrLevel 0 value. The

nodes on the next level have values StrLevel 1, 1100, and 1200. The nodes after

StrLevel 1 have StrLevel 2 value. The nodes after StrLevel 2 have StrLevel 3 value

etc. The selection of data points is limited to include StrLevel values from 0 to 5.

As all the data points in this selection are connected from the ID and RevID pair

to the ParentID and ParentRevID pair, a copy of the data frame created in Figure

89

61 is used as a base when creating the data frame with limited data points. Figure

69 presents the limited data frame, which covers 435 data points.

After selecting the data points, Figure 69 presents how the NetworkX graph is

created. The desired node color and size are set for the graph, and the NetworkX

graphviz_layout of type dot is used to visualize the graph, as seen in Figure 70.

Figure 69. The code for limiting the DBOP data frame to contain only five first levels in the DBOP hierarchical

structure and for visualizing this as a NetworkX graph with graphviz_layout of type dot. (Author’s code)

90

Figure 70. The five first levels in the DBOP hierarchical structure are visualized as a NetworkX graph with

graphviz_layout of type dot. (Author’s code)

Figure 71 presents the code for changing the graphviz_layout to another type. In

this example, the layout algorithm dot is changed to sfdp. The result is presented

in Figure 72.

Figure 71. The code for an alternative NetworkX graphviz_layout. This time of type sfdp. The five first levels in

the DBOP hierarchical structure are visualized. (Author’s code)

91

Figure 72. The five first levels in the DBOP hierarchical structure are visualized as a NetworkX graph with

graphviz_layout of type sfdp. (Author’s code)

The idea of using the number of non-null values as an indicator for possible data

groups is derived from Figure 31. This chapter continues with the investigation

of likely data groups.

The columns EngineNumber, EngineAbbreviation, and EngineDescription, have

three non-null objects each. From the author’s own Wärtsilä experience, it is

known that the EngineNumber is a unique identifier. This means that there cannot

be more than one engine with a specific EngineNumber. The business

stakeholders further clarify that a DBOP always belongs to one specific

EngineNumber. And an EngineNumber can only have one EngineAbbreviation

92

value and one EngineDescription value in the DBOP. These statements are

confirmed with the code and result in Figure 73.

Figure 73. A specific EngineNumber has one specific EngineAbbreviation value and one specific

EngineDescription value. The EngineNumber is hidden in this picture. (Author’s code)

The EngineNumber, EngineAbbreviation, and EngineDescription columns have

values in text format. The actual values are irrelevant for this study. Creating a

separate table for these columns with the EngineNumber as the primary key is

relevant for the relational data model design. It is considered beneficial to

highlight that the DBOP belongs to a specific engine with EngineNumber,

EngineAbbreviation, and EngineDescription properties in the graph data model.

In the DBOP data frame, columns RealizationID and RealizationRevisionID each

have 21 non-null row values. In Figure 74, the rows with a RealizationID value

are selected from the DBOP data frame. This selection is stored in the

dfDBOPWithRealizationID data frame. All columns containing only null values are

dropped from this data frame. Fifteen columns remain.

93

Figure 74. The code for creating a data frame with rows containing a RealizationID and a

RealizationRevisionID. (Author’s code)

It is interesting to understand how the RealizationID and RealizationRevisionID

relate to the DBOP hierarchical structure. According to Figure 60, central

elements in the hierarchical structure are ID and RevID pairs, ParentID and

ParentRevID pairs, and Ma9_ParentItem. In the dfDBOPWithRealizationID data

frame, there is no Ma9_ParentItem value, and we can conclude that there is no

direct relationship between the RealizationID and RealizationRevisionID pair and

Ma9_ParentItem. ID, RevID, ParentID, and ParentRevID columns exist and are

further investigated.

Figure 75 presents a function for plotting the number of unique values of columns

in a columnList argument per column combination in a group argument.

94

Figure 75. A function for plotting how many values for the columns given in the columnList argument exist for

the columns in the group argument. The calculation is performed on the data in the data frame specified in

the dataframeName argument. The graphTitle argument specifies the title of the plot. (Author’s code)

Figure 76 presents the result of calling the function in Figure 75 for plotting the

number of unique values of RealizationID and RealizationRevisionID per ID and

RevID pair. As each ID and RevID pair has one unique RealizationID and

RealizationRevisionID, we can determine that the RealizationID and

RealizationRevisionID depend on the ID and RevID pair.

Figure 76. The number of unique values of RealizationID and RealizationRevisionID per ID and RevID pair

(Author’s code)

Figure 77 presents the result of calling the function in Figure 75 to plot the

number of unique values of RealizationID and RealizationRevisionID per ParentID

and ParentRevID pair. The RealizationID and RealizationRevisionID are not

dependent on ParentID and ParentRevID pairs as a unique ParentID and

ParentRevID pair can have up to 19 different RealizationID values and 2

RealizationRevisionID values.

95

Figure 77. The number of unique values of RealizationID and RealizationRevisionID per ParentID and

ParentRevID pair (Author’s code)

A direct relationship is confirmed between the RealizationID and

RealizationRevisionID and ID and RevID pairs. The RealizationID values are

similar to those in ID, ParentID, and Ma9_ParentItem. Hence, it is decided to

investigate if the RealizationID and RealizationRevisionID pairs are involved in

forming the DBOP hierarchical structure. Figure 78 presents the code for

checking if values of the RealizationID are found in the ID, ParentID, or

Ma9_ParentItem columns. The result shows that the RealizationID is not found in

these columns. Hence, we can conclude that the RealizationID and

RealizationRevisionID pair do not contribute to the DBOP hierarchical structure.

96

Figure 78. The code for verifying that the RealizationID and RealizationRevisionID do not contribute to the

hierarchical structure of the DBOP (Author’s code)

From Figure 31, reveals that the DrawingRelation has 257 occurrences with non-

null values. The possible values for DrawingRelation are presented in Figure 79.

The remaining columns in a data frame when extracting the rows with a

DrawingRelation and then removing columns with only null values are presented

in Figure 80. In this data frame, there are 257 rows and 17 columns. Among these

columns are the ParentID and ParentRevID pair and the ID and RevID pair. As

these are central elements in the DBOP hierarchical structure, it needs to be

investigated if there is a relation between these pairs and the DrawingRelation.

Figure 79. DrawingRelation values (Author’s code)

97

Figure 80. The code and result when selecting the rows in the DBOP where a DrawingRelation value exists.

After the row selection, the columns with only null values are removed. (Author’s code)

The function in Figure 36 plots the number of unique DrawingRelation values per

ID and RevID pair. Figure 81 presents the result. The result shows that there are

three ID and RevID pairs with two different values of DrawingRelation. The

remaining 254 ID and RevID pairs have a unique DrawingRelation value. Figure

82 presents the result of calling the function in Figure 36 to understand how

many DrawingRelation values exist for each ParentID and ParentRevID pair. The

result returns 12 ParentID and ParentRevID pairs with two DrawingRelation

values (Figure 82). Calling the function in Figure 36 with the group argument

extended to ParentID and ParentRevID, StrLevel, ID, and RevID columns, shows

that two occurrences with two different DrawingRelation values are still returned

(Figure 83).

98

Figure 81. The number of unique DrawingRelation values per ID and RevID pair (Author’s code)

Figure 82. The number of unique DrawingRelation values per ParentID and ParentRevID pair (Author’s code)

99

Figure 83. The number of unique DrawingRelation values per ParentID and ParentRevID, StreLevel, ID, and

RevID combination (Author’s code)

Based on the author’s Wärtsilä experience, the expectation is that each ID and

RevID pair returns a unique value of DrawingRelation. The reason why this does

not happen is investigated by outputting the data rows with ID and RevID pair

duplicates. The code for this is visible in Figure 84. The result is not made visible

in this report. With a visual inspection of the result, it is noticed that two data

rows require all the available columns to be used to identify a unique

DrawingRelation value. The author assumes this is a data quality error and that

each ID and RevID pair will have a unique value of DrawingRelation.

Figure 84. The code for investigating the rows with an ID and RevID pair occurring on several rows. Aiming to

understand what the DrawingRelation values on these rows are. (Author’s code)

It is investigated next if the columns with a non-null value above 7000 could form

a data group with the ID and RevID column pair as a primary key. The

investigation is performed by checking if each ID and RevID pair returns a unique

column value for each of the following columns:

• StrLevel (9210 non-null values)

• Seq_Nr (9210 non-null values)

• Qty (9210 non-null values)

• ID (9210 non-null values)

• RevID (9210 non-null values)

• Name (9210 non-null values)

• TcType (9210 non-null values)

100

• ReleaseDate (8187 non-null values)

• Description (7030 non-null values)

• OwningUser (9208 non-null values)

• OwningGroup (9208 non-null values)

The uniqueValueGraph function in Figure 36 is called to plot the number of unique

values for each column per ID and RevID pair. Each ID and RevID pair is expected

to return one unique column value to identify a dependence between a column.

Figure 85 reveals that an ID and RevID pair return one or two unique StrLevel

values. This means that StrLevel is not dependent on ID and RevID pairs.

Figure 85. The number of unique values of StrLevel per ID and RevID pair (Author’s code)

Figure 86 reveals that an ID and RevID pair return either one or many unique

Seq_Nr values. This means that Seq_Nr is not dependent on ID and RevID pairs.

101

Figure 86. The number of unique values of Seq_Nr per ID and RevID pair (Author’s code)

Figure 87 reveals that an ID and RevID pair return either one or many unique Qty

values. This means that Qty is not dependent on ID and RevID pairs.

Figure 87. The number of unique values of Qty per ID and RevID pair (Author’s code)

Figure 88 reveals that all ID and RevID pairs return a unique Name value. This

means that Name is dependent on ID and RevID pairs.

102

Figure 88. The number of unique values of Name per ID and RevID pair (Author’s code)

Figure 89 reveals that all ID and RevID pairs return a unique TcType value. This

means that TcType is dependent on ID and RevID pairs.

Figure 89. The number of unique values of TcType per ID and RevID pair (Author’s code)

As 8187 of the 9210 rows in the DBOP data frame have a ReleaseDate value, it was

decided to filter out these rows to a different data frame to get a cleaner plot. The

code for creating a separate data frame is visible in Figure 90. Figure 91 reveals

that all rows with a ReleaseDate have a unique ReleaseDate for each ID and RevID

pair. This means that the ReleaseDate is dependent on ID and RevID pairs.

103

Figure 90. The code for creating a data frame for the rows with a ReleaseDate value. After the row selection,

the columns with only null values are dropped from the data frame. (Author’s code)

Figure 91. The number of unique values of ReleaseDate per ID and RevID pair (Author’s code)

As 7030 of the 9210 rows in the DBOP data frame have a Description value, it was

decided to filter out these rows to a different data frame to get a cleaner plot. The

code for creating a separate data frame is visible in Figure 92. Figure 93 reveals

that all rows with a Description value return a unique Description value for each

ID and RevID pair. This means that the Description is dependent on ID and RevID

pairs.

104

Figure 92. The code for creating a data frame for the rows with a Description value. After the row selection, the

columns with only null values are dropped from the data frame. (Author’s code)

Figure 93. The number of unique values of Description per ID and RevID pair (Author’s code)

The plots in Figure 94 and Figure 95 show that all ID and RevID pairs return a

unique OwningUser and OwningGroup value. This means that both the

OwningUser and the OwningGroup depend on ID and RevID pairs. The drop to

count level 0 represents two data rows in the DBOP with missing OwningUser and

OwningGroup values.

105

Figure 94. The number of unique values of OwningUser per ID and RevID pair (Author’s code)

Figure 95. The number of unique values of OwningGroup per ID and RevID pair (Author’s code)

The investigation of the columns with non-null values above 7000 reveals that

Name, TcType, ReleaseDate, Description, OwningUser, and OwningGroup depend

on the ID and RevID column pair. StrLevel, Seq_Nr, and Qty are not dependent on

the ID and RevID column pair. Based on the data frame content in Figure 52, the

StrLevel and Seq_Nr are assumed to be directly involved in forming the DBOP

process steps together with ParentID and ParentRevID. Qty is interpreted to

indicate how many repetitions of a specific process step are needed.

106

The following columns have around 300 non-null values in the DBOP data frame:

• PhaseLevel (370 non-null values)

• PlantLevel (331 non-null values)

• Process Type (331 non-null values)

• AlternateProcess (331 non-null values)

• PSA (331 non-null values)

• SortString (333 non-null values)

The function in Figure 96 is utilized for plotting the number of unique values for

the columns included in the columnList argument per the column or columns

included in the group argument. It is first assumed that all these columns belong

to the same group. If this is true, and one of the columns is selected as the primary

key, there is only one alternative column to choose as the primary key. This is the

column with the highest number of non-null values, the PhaseLevel with 370 non-

null values. None of the other columns can be the primary key, as a primary key

cannot have null values. For example, the PlantLevel column requires 370 – 331

= 39 null values in a table to cover the 370 non-null values of the PhaseLevel

column.

Figure 96. The function for plotting the number of unique values of XXXXX. (Author’s code)

Figure 97 reveals that the only column possibly dependent on PhaseLevel is the

AlternateProcess. All other columns have several unique values per PhaseLevel.

Figure 98 confirms that every distinctive value of PhaseLevel returns a unique

AlternateProcess value.

107

Figure 97. The number of unique SortString, PlantLevel, ProcessType, AlternateProcess, and PSA, values per

PhaseLevel. (Author’s code)

Figure 98. The number of unique AlternateProcess values per PhaseLevel value (Author’s code)

SortString is the column with the following highest number of non-null values.

When selecting SortString as the primary key, the PhaseLevel no longer fits in the

group. The reason is that PhaseLevel has more rows than SortString. When

SortString is the primary key, only 333 rows with non-null values for SortString

are included in the group. The code and result for this selection are visible in

Figure 99. When looking at the PhaseLevel non-null value, it is noted that this

value has dropped from 370 to 331. This confirms that the PhaseLevel cannot be

in a group with the SortString as the primary key, because it loses 39 PhaseLevel

values.

108

Figure 99. The code for creating a data frame for the rows with a SortString value. (Author’s code)

Figure 100 reveals that PlantLevel, ProcessType, AlternateProcess, and PSA are

suited in a group where the SortString is selected as the primary key. Each non-

primary key column will have a null value on two of the 333 rows. This is

identified from the drop to count level 0 in Figure 100 and the indicated number

of non-null values per column in Figure 99.

109

Figure 100. The number of unique PlantLevel, ProcessType, AlternateProcess, and PSA values per SortString.

(Author’s code)

Figure 101 verifies that selecting the ID and RevID pair as the key for this group

is impossible. The main reason for this is that the number of unique SortString

values per ID and RevID is more than one.

Figure 101. Verifying that the ID and RevID par is not possible as the primary key in the group of PlantLevel,

SortString, ProcessType, AlternateProcess, and PSA. (Author’s code)

As PhaseLevel does not suit the PlantLevel, SortString, ProcessType,

AlternateProcess and PSA group, it was next investigated if the PhaseLevel is

dependent on the central elements in the DBOP hierarchical structure:

110

• ID and RevID pair

• ParentID and ParentRevID pair

Investigating PhaseLevel dependencies on Ma9_ParentItem, the third column

involved in forming the DBOP hierarchical structure is unnecessary. This decision

was made based on Figure 102, where it can be noted that Ma9_ParentItem is not

included in the data frame containing the rows with a PhaseLevel value.

Figure 102. The code for creating a data frame for the rows with a PhaseLevel value. (Author’s code)

The result presented in Figure 103, Figure 104, and Figure 105 reveals that

PhaseLevel is dependent on the ID and RevID pair. As ParentID and ParentRevID

pairs can return several unique PhaseLevel values, the PhaseLevel is not reliant on

this pair. When extending the ParentID and ParentRevID pair with StrLevel, and

Seq_Nr, it is noted that this combination returns unique PhaseLevel values and is

dependent on this combination.

111

Figure 103. The number of unique PhaseLevel values per ID and RevID pair. (Author’s code)

Figure 104. The number of unique PhaseLevel values per ParentID and ParentRevID pair. (Author’s code)

112

Figure 105. The number of unique PhaseLevel values per ParentID and ParentRevID. StrLevel, and Seq_Nr

combination. (Author’s code)

When examining the similar number of non-null values for the columns in the

DBOP in Figure 31, no data groups are identified for QualityKey. Therefore, it was

investigated if the QualityKey depends on the central elements in the DBOP

hierarchical structure, or on some previously identified groups. A separate data

frame containing the rows with a QualityKey value was created with the code in

Figure 106. From this data frame, the columns with only null values were

dropped. When looking at the result in Figure 106, it was decided to check the

dependency on the following columns:

• ID and RevID pair

• ParentID and ParentRevID pair

• ParentID, ParentRevID, StrLevel, and Seq_Nr combination

• SortString

The result in Figure 107, Figure 108, Figure 109, and Figure 110 reveals that the

QualityKey is dependent on one of the following:

• ID and RevID pair

• ParentID and ParentRevID, StrLevel, and Seq_Nr combination

• SortString

The dependency on ParentID and ParentRevID pairs does not exist, as a pair can

return several unique QualityKey values.

113

Figure 106. The code for creating a data frame for the rows with a QualityKey value (Author’s code)

Figure 107 The number of unique QualityKey values per ID and ID pair (Author’s code)

114

Figure 108. The number of unique QualityKey values per ParentID and ParentRevID pair. (Author’s code)

Figure 109. The number of unique QualityKey values per ParentID and ParentRevID. StrLevel, and Seq_Nr

combination. (Author’s code)

115

Figure 110. The number of unique QualityKey values per SortString. (Author’s code)

When examining the similar number of non-null values for the columns in the

DBOP in Figure 31, no data groups were identified for ConsumedAssembly.

Therefore, it was investigated if the ConsumedAssembly depends on the central

elements in the DBOP hierarchical structure, or on some previously identified

groups. A separate data frame containing the rows with a ConsumedAssembly

value was created in the code in Figure 111. From this data frame, the columns

with only null values were dropped. When looking at the result in Figure 111, it

was decided to check the dependency on the following columns:

• ID and RevID pair

• ParentID and ParentRevID pair

• ParentID and ParentRevID, StrLevel, and Seq_Nr combination

The result in Figure 112, Figure 113, and Figure 114 indicates that

ConsumedAssembly is dependent on one of the following:

• ID and RevID pair

• ParentID and ParentRevID, StrLevel, and Seq_Nr combination

The dependency on ParentID and ParentRevID pairs does not exist, as pairs return

several unique ConsumedAssembly values.

116

Figure 111. The code for creating a data frame for the rows with a ConsumedAssembly value. (Author’s code)

Figure 112. The number of unique ConsumedAssembly values per ID and RevID pairs. (Author’s code)

117

Figure 113. The number of unique ConsumedAssembly values per ParentID and ParentRevID pairs. (Author’s

code)

Figure 114. The number of unique ConsumedAssembly values per ParentID and ParentRevID. StrLevel, and

Seq_Nr combination. (Author’s code)

When examining the similar number of non-null values for the columns in the

DBOP in Figure 31, no data groups were identified for PurchaseCode. Therefore,

it was investigated if the PurchaseCode depends on the central elements in the

DBOP hierarchical structure, or on some previously identified groups. A separate

data frame containing the rows with a PurchaseCode value was created in Figure

115. From this data frame, the columns with only null values were dropped. When

looking at the result in Figure 115, it was decided to check the dependency on the

following columns:

• ID and RevID pair

118

• ParentID and ParentRevID pair

• ParentID and ParentRevID, StrLevel, and Seq_Nr combination

The results in Figure 112 and Figure 113 indicate that PurchaseCode is dependent

on one of the following:

• ID and RevID pair

• ParentID and ParentRevID

The dependency on ParentID and ParentRevID, StrLevel, and Seq_Nr combination

exists, as a part of this column combination was already proved to have a

dependence on PurchaseCode (see Figure 113). Extending an identified key to an

additional column did not bring any benefits.

Figure 115. The code for creating a data frame for the rows with a PurchaseCode value. (Author’s code)

119

Figure 116. The number of unique PurchaseCode values per ID and RevID pair. (Author’s code)

Figure 117. The number of unique ConsumedAssembly values per ParentID and ParentRevID pair. (Author’s

code)

120

4.2.1.1. Summary

The following is a summary of the findings from the investigation:

• There is no direct relation between StrLevel and TcType

• There is a group for engine-specific columns where the EngineNumber is

the key, identifying the EngineAbbreviation and EngineDescription of this

engine. A DBOP will always cover only one specific EngineNumber.

• There is no direct relation between OwningUser and OwningGroup. The

graphs reveal that an OwningUser can have as many as 8 OwningGroup,

and in an OwningGroup, there can be over 175 OwningUsers. These

numbers will vary depending on the DBOP investigated.

• Each id type has its own revision.

o RevID is the revision of the ID

o ParentRevID is the revision of ParentID

o RealizationRevisionID is the revision of RealizationID

• The Ma9_ParentItem column also contains ids and revisions. The

Ma9_ParentItem is a multivalued attribute in which the id and revision

pairs are separated with the |-character, and the revision for the id is split

with the /-character.

• The ID and RevID pair’s link to ParentID and ParentRevID pair does not

exist throughout the DBOP structure. Also, the Ma9_ParentItem’s link to

the ParentID and ParentRevID pair needs to be considered.

• The RealizationID and RealizationRevisionID pairs depend on the ID and

RevID combination. To understand if the RealizationID and

RealizationRevisionID pairs are involved in forming the hierarchical

structure, it was investigated if some of the RealizationIDs can be found in

the ID, ParentID, or Ma9_ParentItem columns. The RealizationID values

were not found in any of the investigated columns. Hence, it was

confirmed that it is not involved in creating the hierarchical structure.

• When investigating what DrawingRelation depends on, a possible data

quality error was noticed for three ID and RevID pairs. The ID and RevID

combination can identify a unique DrawingRelation value if the possible

data quality error can be corrected.

• A group with ID and RevID pair as a key for columns with approx. 9000

non-null values were found. The following columns fit into that group: ID,

RevID, Name, TcType, ReleaseDate, Description, OwningUser, and

OwningGroup.

121

• StrLevel, Seq_Nr, and Qty are not dependent on the ID and RevID pair.

Instead, StrLevel and Seq_Nr are assumed to form the DBOP process steps

together with ParentID and ParentRevID. Qty is taken to indicate how

many repetitions of a specific process step are needed.

• A group of SortString, PlantLevel, ProcessType, AlternateProcess, and PSA

was identified. In this group, SortString is the key. PhaseLevel cannot be

part of this group.

• PhaseLevel is dependent on ID and RevID pair or a combination of

ParentID, ParentRevID, StrLevel, and Seq_Nr.

• Three possible dependencies were recognized for QualityKey:

o ID and RevID pair

o ParentID, ParentRevID, StrLevel and Seq_Nr combination

o SortString

• ConsumedAssembly depends on the ID and RevID pair, or a combination of

ParentID, ParentRevID, StrLevel and Seq_Nr.

• PurchaseCode depends on the ID and RevID pair, or the ParentID and

ParentRevID pair.

4.2.2. Logical data models

This chapter presents the design decisions made during the data model creation,

and the data collected for the experiment. The logical data models were created

based on the findings from the data analysis in chapter 4.2.1. The normalization

guidelines up to the 3NF form are followed for the relational data model. The

general principle of normalization is to reduce data redundancy [47]. Table 8

summarizes what was considered for the normalization. The graph type used for

the graph data model is the labeled property graph. The labeled property graph

was selected for the final aim of implementing the graph data model in Neo4j. The

elements of the labeled property graph are explained in chapter 2.3.3. Technical

and performance requirements are not considered in these logical data models.

Table 8. Guidelines to reach 3NF normalization for the relational data model

1NF All attributes have a unique name. None of the attributes are composite or
multivalued. [47]

2NF No partial dependencies on a primary key exist in the tables. This means that
in a table where the primary key consists of two or more attributes, the non-

122

primary key attribute must depend on the complete primary key and not part
of it. [48]

3NF No transitive dependencies on the primary key exist in the tables. For example,
if A is dependent on B, B is dependent on C. Hence, A is dependent on C, is a
transitive dependency. [49]

In addition to data model creation, the experiment follows the experiment design

in chapter 4.1. For the experiment, the data modeling time is measured in

minutes. The relational data model is created first. After that, the same data

modeler creates the graph data model. The reason for the selected data modeling

order is elaborated in chapter 4.1.4.

4.2.2.1. Relational data model

The creation of the relational data model took place on 24th of August 2022. The

data modeling was carried out in a single session of 74 minutes without

disruptions. The result is presented in Figure 118. This chapter explains how this

result was reached.

123

Figure 118. The DBOP relational data model (author’s picture)

The data analysis and the summary presented in chapter 4.2.1.1 are an excellent

bases for the relational data model. Data dependencies and possible data groups

with primary keys are available in the analysis result. Building the relational data

model starts with creating tables of the identified data groups. Table 9

summarizes how the data analysis finding is translated into data model design

decisions. The intermediate result of the relational data model after the

considerations in Table 9 is presented in Figure 119.

124

Table 9. How the identified data groups are utilized in the relational data model design

Data analysis finding Data model design decision

There is a group for
engine-specific columns
where the
EngineNumber is the
key, identifying the
EngineAbbreviation and
EngineDescription of
this engine.

Implement an Engine_Details table with three attributes:
• EngineNumber
• EngineAbbreviation
• EngineDescription

Of which EngineNumber is the primary key.

A group with ID and
RevID pair as key,
where the following
columns are included:
Name, TcType,
ReleaseDate,
Description,
OwningUser, and
OwningGroup.

Implement an ID_Details table with the following
attributes:

• ID
• RevID
• Name
• TcType
• ReleaseDate
• Description
• OwningUser
• OwningGroup

Of which the ID and RevID pair is the primary key.

The OwningUser is a multivalued attribute. To fulfill 1NF,
the multivalued attribute needs to be split. In the
investigation in chapter 4.2.1, it was noticed that the
OwningUser values represent the user identification in
the Surname, Forename format, or a code like grpadm. As
the OwningUser contains a diverse set of Surname,
Forename values, and codes, it was decided to treat all
the values as codes.

An alternative solution that fulfills the 1NF is to create a
User_Details table with Surname and Forename
attributes. This table would use a synthetic primary key
or the employee number if it could be included in the
DBOP. The primary key would be named UserID and
linked to the OwningUser attribute in the ID_Details table.
With this approach, the Surname, Forename values in
OwningUser is replaced by the UserID for that specific
user.

StrLevel, Seq_Nr, and Qty
are not dependent on
the ID and RevID pair.
Instead, StrLevel and
Seq_Nr are assumed to
form the DBOP process
steps together with
ParentID and
ParentRevID. Qty is
assumed to indicate
how many repetitions

Implement a BOP_Structure table with the following
attributes:

• ParentID
• ParentRevID
• StrLevel
• Seq_Nr
• Qty

The primary key is the combination of ParentID,
ParentRevID, StrLevel, and Seq_Nr.

125

of a specific process
step are needed.
A group of SortString,
PlantLevel, ProcessType,
AlternateProcess, and
PSA is identified. In this
group, SortString is the
key.

Implement a Process_Details table with the following
attributes:

• SortString
• PlantLevel
• ProcessType
• AlternateProcess
• PSA

Of which the SortString is the primary key.

Figure 119. The first intermediate result of the DBOP relational data model (author’s picture)

The data dependencies recognized in chapter 4.2.1 were utilized in the next step

of the relational data model design. The identified data dependencies are

summarized in Table 10. The intermediate result of the relational data model

after the considerations in Table 9 and Table 10 is presented in Figure 120.

Table 10. How the identified data dependencies are utilized in the relational data model design

Data analysis finding Data model design decision

The Ma9_ParentItem
is a multivalued
attribute consisting of
one or several ids and
revisions.

Implement a Ma9_ParentItem table with the
following attributes:

• Ma9_ParentItemID
• Ma9_ParentItemRevID

Of which the Ma9_ParentItemID and
Ma9_ParentItemRevID pair is the primary key.

The decision to split the Ma9_ParentItem
multivalued attribute into rows per id and rev pair
and separate the id and revision into dedicated
attributes supports the 1NF guideline. Additionally,
it makes working with the data in the DBOP easier.
For example, the need for string manipulation
when linking the Ma9_ParentItem id and revision
pair to the ParentID and ParentRevID pair is
removed with this design decision.

RealizationID and
RealizationRevisionID

Implement a Realization table with the following
attributes:

126

pairs are dependent
on the ID and RevID
combination.

• ID
• RevID
• RealizationID
• RealizationRevisionID

Of which the ID and RevID pair is the primary key.
A possible data
quality error in the
DrawingRelation
attribute for three ID
and RevID pairs was
noticed in the data
analysis. If this is
confirmed to be an
error, the ID and
RevID combination
can be used to identify
a unique
DrawingRelation
value.

Implement a Drawing_Relation table with the
following attributes:

• ID
• RevID
• DrawingRelation

Of which the ID and RevID pair is the primary key.

The suspected data quality error is confirmed to be
an error, which means that a unique ID and RevID
pair can only have one DrawingRelation value.

PhaseLevel is
dependent on the ID
and RevID pair or a
combination of
ParentID,
ParentRevID, StrLevel,
and Seq_Nr

Implement a Phase_Level table with the following
attributes:

• ParentID
• ParentRevID
• StrLevel
• Seq_Nr
• PhaseLevel

ParentID, ParentRevID, StrLevel, and Seq_Nr
combination is the primary key.

This primary key selection over the ID and RevID
pair assumes that the PhaseLevel attribute clarifies a
specific process step.

Three possible
dependencies are
recognized for the
QualityKey:

• ID and RevID
pair

• ParentID,
ParentRevID,
StrLevel, and
Seq_Nr
combination

• SortString

Implement a Quality_Process table with the
following attributes:

• SortString
• QualityKey

SortString is selected as the primary key, based on
an explanation from business stakeholders that the
SortString is a unique identifier for a process step
that requires a quality check or some other quality
measure.

ConsumedAssembly
depends on the ID and
RevID pair or a
combination of

Implement a Consumed_Assembly table with the
following attributes:

• ParentID
• ParentRevID

127

ParentID,
ParentRevID, StrLevel,
and Seq_Nr.

• StrLevel
• Seq_Nr
• ConsumedAssembly

ParentID, ParentRevID, StrLevel, and Seq_Nr
combination is the primary key.
Any strong reasoning behind designing a table with
the ParentID, ParentRevID, StrLevel, and Seq_Nr
attributes instead of ID and RevID attributes does
not exist.

PurchaseCode is
dependent on the ID
and RevID pair or
ParentID and
ParentRevID pair

Implement a Purchase_Code table with the
following attributes:

• ID
• RevID
• PurchaseCode

For which the ID and RevID pair is the primary key.

The primary key selection assumes that a purchase
is related to an activity (ID_Details table) and not to
a particular DBOP step (BOP_Structure table).

Figure 120. The second intermediate result of the DBOP relational data model (author’s picture)

The tables in the relational data model, Figure 120, cover a storage location for

each of the DBOP attributes in focus. The relationships between the tables are still

missing when compared to the result presented in Figure 118. The relational data

model identifies relationships with foreign keys (chapter 2.3.2). Different

relationship notations exist depending on the tool used when creating the model.

128

ERDPlus specifically lists the attributes of the foreign key. The list is automatically

created when dragging a relationship line between two tables. If the attributes

forming the foreign key already exist in the table with the foreign key, it can be

incorrectly assumed that the attributes are duplicated. The Purchase_Code table

in Figure 118 is an excellent example of this. When foreign key attributes are not

previously identified as attributes in a table, ERDPlus indicates the need when

dragging the relationship line between tables. The MA9_ParentItem table in

Figure 118 is an excellent example of this.

When creating the relationships in the DBOP model, the ID_Details table and the

BOP_Structure table were considered to be the core tables. All other tables in the

DBOP are connected to one or both. Based on the data analysis in chapter 4.2.1, it

is understood that the BOP_Structure table describes the process structure, and

the ID_Details table describes the activity performed at that specific process step.

An action can be completed in multiple DBOP process steps.

The Ma9_ParentItem table is another core table. Ma9_ParentItem is directly

involved in forming the DBOP hierarchical structure. The most important

relationship this table has is to the BOP_Structure. To understand the details of

the activity performed, a relationship to the ID_Details is also needed.

Based on the data analysis result in chapter 4.2.1, it is known that:

• A RealizationID and RealizationRevisionID pair only depend on the ID and

RevID pair. Hence, the only relationship to the Realization table is from the

ID_Details table.

• DrawingRelation is only dependent on the ID and RevID pair. Hence, the

only relationship to the DrawingRelation table is from the ID_Details table.

The data analysis results in chapter 4.2.1 reveal that the PhaseLevel and the

ConsumedAssembly have a data dependency on both the ParentID, ParentRevID,

StrLevel, and Seq_Nr combination and the ID and RevID pair. It is assumed that

these dependencies are essential and create relationships for the Phase_Level and

Consumed_Assembly tables to BOP_Structure and ID_Details tables.

The PurchaseCode attribute is identified to have a data dependency on the ID and

RevID pair and the ParentID and ParentRevID pair. Table 10 elaborates that a

purchase is related to a specific activity (ID_Details table) and not to a particular

129

DBOP step (BOP_Structure table). Based on this, only a relationship from the

ID_Details table to the Purchase_Code table is created.

In Figure 120, two tables with SortString as the primary key can be identified:

• Process_Details table

• Quality_Process table

The SortString attribute is used when creating a relationship between the data in

these two tables. The data in these tables are assumed to give details to the DBOP

step, and relation to the BOP_Structure is needed. Considering the possible future

query needs on the data in the data model, a separate join table is created. The

join table is named BOPhasProcessDetails, and it has relationships to both the

Process_Details table and the Quality_Process table. With this join table, the

SortString attribute is not needed in the BOP_Structure table. Including the

SortString attribute in the BOP_Structure table would cause only 333 of the 9210

rows to have a SortString value. The number of rows is derived from the number

of non-null values per column in Figure 31.

The Engine_Details table is the final table without a relationship. This table

contains the data for the engine owning the DBOP. The data analysis result,

discussed in chapter 4.2.1, revealed that the same engine information is repeated

on three rows in the DBOP. To reduce the data redundancy, a join table named

IDhasEngine is created between the ID_Details and Engine_Details tables. This

table contains three attributes: ID, RevID, and EngineNumber. As the DBOP covers

only one EngineNumber, the same EngineNumber is repeated as many times as

there are ID and RevID pairs relating to the engine data. The Engine_Details table

will only have one row. This row specifies the EngineAbbreviation and

EngineDescription for a specific EngineNumber.

All the design decisions made when creating the DBOP relational data model are

described in Figure 118. The aim was to create a data model that reaches 3NF.

Based on the data analysis, discussed in chapter 4.2.1, it is understood which

tables are needed in the data model to reduce data redundancy, to avoid partial

dependencies, and not to have any transitive dependencies in the data tables.

With one exception, the guidelines to reach 3NF were fulfilled, as listed in Table

8. The exception made is for the partly multivalued attribute: OwningUser. The

reasoning behind this decision is elaborated in Table 9. In short, all the data in

OwningUser is considered as a code.

130

4.2.2.2. Graph data model

The graph data model is created as the second step. The inputs used for the graph

data model are the result of the data analysis, described in chapter 4.2.1, and the

DBOP relational data model, presented in Figure 118. Discussions with business

stakeholders or data modeling experts were not held between the data modeling

sessions for the relational and graph data models.

The creation of the graph data model took place on 30th of August 2022. The

data modeling was carried out in a single session of 48 minutes. The resulting

graph data model is presented in Figure 121. This DBOP graph data model and

the process used to reach the result was very much disliked by the graph data

model expert at Wärtsilä. The business stakeholders did not give any comments

on the model.

Figure 121. The first DBOP graph data model. The graph data model expert did not accept this version

(Author’s picture)

The process followed to reach the result in Figure 121 is the Neo4j advice on how

to move from a relational data model to a graph data model [50]. The guidance

suggests analyzing the relational data model with the following sequential steps:

1. Locate all foreign keys

2. Drop all foreign keys

3. Name relations

4. Locate join tables

131

5. Change join tables to relations

Figure 122 presents the result of the analysis made on the DBOP relational data

model. This result is then translated into the graph presented in Figure 121. In

the graph data model, the tables are nodes. The attributes in the tables are

properties on the node. The relationships are named as planned in Figure 122. All

the table attributes were defined as node properties for the simplicity of the first

model. If this approach would have been continued, keeping the properties on the

nodes, moving some of them to the edges or even separating them as separate

nodes would have been considered.

Figure 122. The result of the relational data model analysis (Author’s picture)

The graph data model expert at Wärtsilä commented that carrying out the

systematic relational data model analysis gives some insight into the data.

However, it is not enough to make a well-functioning graph data model. Aligned

with the suggestions in chapter 2.4, he marks the importance of discussing with

business stakeholders to understand the actual business process and needs. He

also emphasizes the art of designing an intuitive graph data model for the people

using it. And that the DBOP model should withstand changes in the

132

manufacturing process and have the flexibility to cover the DBOP for different

products.

To reach a better DBOP graph data model, the graph data model expert suggests

focusing on TcType. The TcType values give an indication of which nodes are

needed. The suggestion of creating separate nodes for properties assumed to be

good link points between different engine DBOPs was immediately turned down.

A concrete example of this is presented in Figure 123, which suggests creating a

node for the engine-type data. The idea is that this node links all DBOPs with a

specific engine type. Based on the data graph data modeling expert’s experience,

this causes so-called "super nodes" with millions of edges that reduce the

performance of the graph database. A better approach is to keep the attributes

from the relational data model as properties on nodes or edges.

Figure 123. The suggestion of breaking out properties assumed to be good linking points between different

engine’s DBOP is not a good idea (Author’s picture)

The second graph data model was created on the 1st of September 2022, with a

total modeling time of 180 minutes from two separate sessions. The inputs used

for the modeling are the feedback and advice from the graph data modeling

expert and the DBOP Excel file. The only information taken from the data analysis

in chapter 4.2.1 is the knowledge of how the hierarchical structure is built with

the principle in Figure 60. The resulting graph data model is presented in Figure

124.

133

Figure 124. The second DBOP graph data model. The graph data model expert did not accept this version

(Author’s picture)

The node name is a simplification of the TcType value. The properties on the

nodes are the column names of the columns with non-null values for the specific

TcType. The labels on the nodes are a further simplification of the node name and

the StrLevel value the specific TcType value has. The edges are named utilizing the

134

node name, the direction to which the arrow points to. An alternative naming

approach would have been simply to use “HAS” for each edge. A more

complicated naming approach was selected to later distinguish the edges in

Neo4j.

Figure 125 presents the first part of Figure 124. This part of the created graph

data model is aligned with how the graph data model expert and business

stakeholder see the DBOP graph data model. The second part, Figure 126, was

disliked by both parties. The second part is too complicated and focuses too much

on the DBOP data structure.

The simplification of the second part was done in two steps. First, the different

material type nodes at StrLevel 7 were combined into one Material node. This also

reduces the number of needed edges. The result of the first simplification step is

presented in Figure 125. Next, the Material node at StrLevel 7 and the Material

node at StrLevel 8 are combined, and the duplicates of DocumentSet nodes and

DrawingSet nodes are removed. The result of the second simplification step is

presented in Figure 128. The simplification of the graph data model took place on

the 2nd of September 2022, with a modeling time of 25 minutes. The complete

final DBOP graph data model is presented in Figure 129. By simplifying the graph

data model from 26 to 16 nodes and from 41 to 17 edges, a result aligned with

the expectations of the business stakeholder and graph data model expert was

reached. Twenty minutes was included to the AnalysisTime(graph) variable from

the additional discussions with the graph data modeling expert and business

stakeholder

135

Figure 125. The first part of the second DBOP graph data model. This part was accepted by the graph data

model expert and the business stakeholder (Author’s picture)

136

Figure 126. The second part of the second DBOP graph data model. This part was not accepted by the graph

data model expert or the business stakeholder (Author’s picture)

137

Figure 127. Different material nodes are combined in the second part of the second DBOP graph data model.

(Author’s picture)

138

Figure 128. Material nodes are combined and duplicates of Drawing Set nodes and Document Set nodes are

removed. (Author’s picture)

139

Figure 129. The final DBOP graph data model (Author’s picture)

140

4.3. Graph data model implementation in Neo4j

This chapter presents the steps to bring a graph data model created in

arrows.app [43] to the Neo4j desktop version.

A new project is created in Neo4j, and within this project a new DBMS is added.

The project is named as DBOP_experiment, and the DBMS is DBOP Graph DBMS,

as presented in Figure 130. The DBMS is started and opened in the Neo4j

Browser.

Figure 130. The Neo4j Desktop with the DBOP Graph DBMS running (Author’s picture)

The arrows.app export functionality is utilized to copy the Cypher CREATE

statement (Figure 132), from the arrows.app to the Neo4j.

141

Figure 131. Using the arrows.app export functionality to copy the Cypher CREATE statement (Author’s

picture)

The Neo4j Browser is opened from the Neo4j Desktop and pasted into the Cypher

CREATE statement, as presented in Figure 132. After pressing the play icon in

blue, the statement is executed, and the graph is created in 261 ms, as presented

in Figure 133.

Figure 132. The Cypher CREATE statement is pasted to the Neo4j Browser window (Author’s picture)

142

Figure 133. The DBOP graph created in Neo4j in 261 ms (Author’s picture)

Figure 134 demonstrates that the graph that was created in the arrows.app is

now available in Neo4j. Properties and labels are visible by pressing a specific

node, as presented in Figure 135.

Figure 134. The DBOP graph model in Neo4j (Author’s picture)

143

Figure 135. Viewing the label and properties of the Engine node in Neo4j (Author’s picture)

With these few simple steps, the graph data model created in the arrows.app can

be imported to Neo4j.

144

5. ANALYSIS

This chapter analyses the lessons and results of the research. Competencies and

knowledge needed for graph data modeling in Neo4j are also suggested.

5.1. Case study result

In the experiment design phase, discussed in chapter 4.1, the alternative

hypothesis defines the graph data model as more dynamic than the relational

data model. The case study indicates the graph data model to be more dynamic

than the relational data model. The availability of only one subject for the case

study restrict us to give a statistically relevant result. Despite this fact the result

of the case study is calculated according to the planned experiment analysis

procedure. This provides an example for how we suggest the result of an future

experiment to be analyzed.

The data collected in the experiment are summarized in Table 11. The alternative

hypothesis, H1_crete: CreateEff(graph) > CreateEff (relational), is formed by

inserting the values: 21.4 > 10.4.

Table 11. The experiment result

Name Value Description
GraphExp 2 Followed a course or read a book

RelationalExp 4 More than six months of industrial

experience.

AnalysisTime(relational) 547
min

Total time from the initial analysis. No
additional research is needed during data
model implementation.

AnalysisTime(graph) 90
min

70 minutes of initial analysis + 20 minutes
during data modeling.

CreateTime(relational) 74
min

Figure 118 was created in one single session.

CreateTime(graph) 253
min

48 minutes for the first version, Figure 121.
180 minutes for the second version, Figure
124.
25 minutes of simplification to reach the final
model in Figure 129.

Elements(relational) 29 13 tables

145

16 relations
Elements(graph) 33 16 nodes

17 edges
CreateEff(graph) 21.4 (547 + 74) / 29 = 21.4137931
CreateEff(graph) 10.4 (90 + 253) / 33 = 10.394

The Wilcoxon test was used for analysis. The significance level of 0.05 was used

to consider the result significant. R-Studio [51], the open-source and

professional software for data analysis, is used for the Wilcoxon test. The code

created in R-Studio is presented in Figure 136, and the result is given in Figure

137.

Figure 136. The code in R-Studio for Wilcoxon (Author’s code)

Figure 137. The result of Wilcoxon analysis in R-Studio (Author’s picture)

A key finding in the case study was that a change of mindset of the data modeler

is needed when moving from the relational domain to the graph domain. As

suggested in chapter 2.4.1, the questions to ask from the model need to be

understood already when forming the understanding of the data model needs. It

is not enough to use an analytical approach to translate a relational data model

to a graph data model. Instead, the policy must be to hold discussions and to align

with business stakeholders. Hence, the approach used in this experiment was

wrong. It was too focused on the data and lacked the understanding of the

conceptual world of the data at hand.

146

The analysis time needed for the relational data model versus the graph data

model indicates the effort required when change needs arise due to changing

business needs. The relational data model analysis took six times longer than the

graph data model analysis.

When designing the experiment, it was expected that the ratio of the dynamic

capabilities of the relational data model versus the graph data model would

remain the same no matter the data in the scope and the involvement of the

business stakeholders. After the experiment, this assumption was recognized to

be wrong. Producing a 3NF relational data model based on a data analysis result

is relatively easy. The data analysis did not benefit the graph data model creation

greatly. Creating a well-functioning and intuitive graph data model requires more

time sorting out the problem with the business stakeholders.

When discussing the data models with the business stakeholder and the data

modeling expert, it was noted that neither of them provided any comments

regarding the relational model result. For the graph data model, criticism that the

first attempts were not aligned with their expectations was received

immediately. This indicates that the graph data model is easier to discuss and

align with business stakeholders and other data modelers. This confirms that the

graph data model is more intuitive than the relational data model and reduces

the gap between the conceptual world and the model implemented in a DB. This

gap was discussed in chapter 3.6 and visualized in Figure 22.

5.2. Competencies and knowledge

This chapter answers RQ4:

• What knowledge and competencies are needed for graph data modeling

and implementation in Neo4j?

The question is answered based on experience gained through the literature

review and case study.

The literature review revealed that the graph data model is often described as

more dynamic and intuitive than the relational data model. From the experiment

described in chapter 4.2.2, it can be noticed that an engineer from the relational

147

domain focuses too much on data structures and specific details, which makes the

graph data model too complex and difficult to understand.

Creating a simple and intuitive graph data model requires discussions with

business stakeholders over extensive data analysis. This can be a challenge from

two different angles:

• Time and commitment from business stakeholders

• Social skills and attitude of the data modeler

From the experience gained in this study, it was noticed that a 30-minute session

with business stakeholders could be enough to draw the graph whiteboard model

that can be further enhanced by either the data modeler alone or with business

stakeholders. This study's almost 10-hour long data analysis benefits the

relational data model but not the graph data model. Hence, the attitude of making

it alone needs to be forgotten, and the engineer needs to engage in discussions

with business stakeholders.

The engineer starting graph data modeling needs a basic understanding of graph

data modeling, tools, and practices, and a willingness to continuously study and

learn more. The engineer should also have enough experience to determine if

there will be a benefit in moving from the existing DB to the graph DB. This

decision should not be made without analysis and careful consideration.

148

6. CONCLUSION AND FUTURE RESEARCH

This chapter concludes the thesis by revisiting the research questions to

understand if the research objective is met and provides suggestions for future

research.

6.1. Answer to research questions

The research was initiated by Wärtsilä’s desire to understand if its experienced

success with graph data models and Neo4j GDBMS could be extended to the

manufacturing process data and later to value creation in internal and partner

networks. The literature review revealed that the graph DB seems to be a good

choice for manufacturing collaboration in internal and partner networks where the

relations will play a vital part and frequent evolvements in the systems can be

expected. However, there are no clear indications of immediate and remarkable

practical benefits in areas like query performance, flexibility, and agility. The

suggestion from Robinson et al. [5] is to sort out what the specific problems to

solve is, before deciding to move from a familiar DB type to the graph DB.

Modeling the DBOP as a graph data model shows that the data structure has

eleven dept levels, Figure 129. The literature review revealed an indication that

when there are more than four dept levels, the graph DB will show remarkably

better query performance than the relational DB, as presented in Figure 19. Based

on this, it is understood that if the DBOP is the core data in the manufacturing

collaboration in the internal and partner network, the graph DB is a suitable choice.

From the case study of implementing the DBOP relational and graph data model it

was noticed that the graph data model seems more dynamic than the relational data

model. It is also more intuitive and easier to align with business stakeholders and

other data modelers. A good measure of intuitiveness is how easy the model is to

discuss with other stakeholders. From the two alternative models created, there was

no feedback on the relational data model. At the same time, the business stakeholder

and the graph data modeling expert could give their opinions on the graph data

model. It was also noticed that the business stakeholder cannot comment on a

graph data model that is too data-focused and complex.

149

This research focused on finding solutions and answers to the following research

questions (RQ):

RQ1. How do data modeling for a relational DB differ from data modeling for a

graph DB?

RQ2. Can an experiment where the manufacturing process is modeled as a

relational model versus a graph data model prove that the graph data

model is more dynamic than the relational data model?

RQ3. How to present the manufacturing process data in Neo4j?

RQ4. What knowledge and competencies are needed for graph data modeling

and implementation in Neo4j?

RQ1 is answered based on a literature review and the practical implementation

of relational and graph data models. Chapter 2 and chapter 3 collects the finding

from the literature review on a level that anyone interested in data modeling will

find easy to understand. Especially business stakeholders without experience in

data modeling and data modelers moving from the relational domain to the graph

domain will benefit from reading these chapters.

A key finding in the literature review is that a company considering a switch to

the graph domain should not only follow the hype of moving to graphs. A

careful analysis of their specific needs is recommended. In case a company faces

the challenge of choosing between a relational DB or graph DB, it is suggested to

use the recommendations in chapter 3.5, where the Bechberger and Perryman

decision tree is presented in Figure 21.

For RQ2 an experiment has been designed. The experiment is not carried out due

to resource issues. A case study to evaluate the experiment design however

indicate that the graph data model is more dynamic than the relational data

model. The data being modeled in the case study is the DBOP of an engine

manufactured in Wärtsilä STH. Chapter 5 provides an analysis of the experiment

result together with an answer to RQ4. The result shows a clear difference in the

mindset needed from the data modeler when focusing on a relational DB versus

a graph DB. According to Fernigrini [36], the data structure is essential in the

relational DB design. When modeling a NoSQL DB, the type of queries to be

executed on the data is the focal point. Robinson et al. agree that a graph data

model not only shows how we consider things to be related but also clearly

communicates the kinds of questions that are important in the modeled domain

[5].

150

The input for the data modeling was mainly an Excel file consisting of a table of

9210 rows and 38 columns. To understand the data, an almost 10-hour long data

analysis was performed. The strategy set up for the analysis was later in the

modeling phase recognized to be a heavy focus on the needs for the relational

database. The data relationships and groups identified through the data

analysis focused on data structures and not the questions that are

important in the DBOP domain.

Figure 118 presents the resulting relational data model. It is in 3NF, and it

manages the current DBOP data scope. it is recognized that if the model needs to

be kept in 3NF, a change request would require data analysis to be performed

again. When looking at the relational data model, a set of connected tables can be

identified. The visibility of the process flow is missing, and no comments were

received when showing it to the business stakeholder. The silence is

interpreted to mean that the model is not intuitive.

Neither did the business stakeholder comment on the first graph data model,

presented in Figure 121. This also indicates that if business needs were changed,

the business stakeholders could not explain how this change affects the data

model. The graph data modeling expert disliked this result and gave the

impression that the art of graph data modeling is not only to translate tables

from a relational data model into nodes and attributes into properties. The

graph data model should be intuitive and flexible to withstand changes in

the business.

it was recognized to be a challenge to drop the detailed data focus and create a

graph data model that is simple and intuitive for the business stakeholder. There

were no questions to ask about the data and no discussions with the business

stakeholders. It was recognized that a 30-minute-long session with business

stakeholders describing the DBOP and listing the questions they are interested in

would have produced a better graph data model. After several modifications, a

graph data model was formed, which was aligned with how the business

stakeholder and the graph data modeling expert understands the DBOP,

presented in Figure 129.

The key finding is that a graph data model is not a translation of relational

model tables and attributes into graph nodes and properties. Discussions

with business stakeholders produce an intuitive and dynamic graph data

151

model. Therefore, the data modelers need to understand the importance of

conversations and drop the attitude of managing alone.

The graph data model was implemented in Neo4j to answer RQ3. This is

recognized to be an easy step thanks to the arrows.app that provided a Cypher

statement to be run in Neo4j. The decision to use a modeling tool over the

possibility of creating the graph data model directly in Neo4j did not create

additional work. Importing the data to Neo4j is outside the scope of this study.

Importing the data and performing queries on the data would indicate how

efficient the graph data model is.

Based on this study, a possibility of extending Wärtsilä’ s success with graph data

models and Neo4j GDBMS to the manufacturing process data and later to value

creation in internal and partner networks is recognized. However, a clear yes or

no answer cannot be given based on this study.

6.2. Recommendations for future research

The logical data models created in the experimental setup would require further

testing and discussions with business stakeholders before being used.

There is an indication that the graph data model would be suited for DBOP. Before

Wärtsilä decides on a graph DB implementation for the DBOP, importing data to

the Neo4j implementation and testing how this implementation performs

compared to the current DB implementation is recommended. The performance

can be measured by performing queries designed based on the questions

business stakeholders define to be necessary.

An interesting future research would be an experiment where the DBOP graph

data model created from the data structure perspective, presented in Figure 121,

is compared to the graph data model aligned with business stakeholder

understanding, presented in Figure 129. The test could be performed by

implementing both in Neo4j, importing the DBOP data, and running performance

tests on questions that are interesting to the business stakeholders. This would

give an interesting result of how the difference in viewpoint and data

152

understanding affects the quality of the data model and, hence, the DB’s

performance.

From the literature review was found indications that the relational data model’s

response to change is weak and requires expensive configurations to reflect

changes in business needs [4] [5]. In contrast, the graph data model is described

to be dynamic. It is easy to add new data elements when adapting to new business

requirements in the graph data model [13]. Despite the dynamic capability being

highlighted as a benefit of the graph data model, we note that research comparing

the relational domain to the graph domain mainly focuses on DB query execution

times and handling relationships between data elements. The literature review

did not find any experiments investigating the difference in effort and time

needed to implement and modify a relational data model versus a graph data

model.

We designed an experiment to get statistical fact that the graph data model is

more dynamic than the relational model. With limit the of only one subject

participating in our experiment, we cannot say that our result is statistically

relevant. We however, recognized the experiment design and analysis planned to

be valid. To get a statistically relevant result we recommend the experiment to be

carried out with ten to twenty subjects.

153

SWEDISH SUMMARY

En fallstudie om en övergång från en relationsdatamodell till en

grafdatamodell i ett industriellt sammanhang

Den populära relationsdatamodellen är i det här arbetet utmanad av

grafdatamodellen. Relationsdatamodellen är en beskrivning av datastrukturen

för en relationsdatabas och grafdatamodellen är en beskrivning av

datastrukturen för en grafdatabas. Arbetet tar upp grundbegrepp i

datamodelleringsprocessen samt beskriver skillnader mellan relations- och

grafdatamodellen. Huvudfokusen i litteraturgranskningen är att få en förståelse

av när och hur det lönar sig för en firma att ta steget från relations- till

grafdatabas. Wärtsilä, som är uppdragsgivare till arbetet är speciellt intresserat

av den dynamiska egenskapen av grafdatamodellen. I litteraturen hittas inget

bevis på att grafdatamodellen är mer dynamisk än relationsdatamodellen. Det

här arbetet innehåller därför ett experiment där den dynamiska egenskapen av

en relations- och grafdatamodell mäts. Eftersom endast en person deltog i

experimentet kan resultatet dock inte tolkas som statistiskt relevant.

Forskningsfrågorna i fokus i detta arbete är:

RQ1. Hur skiljer sig datamodellering för en grafdatabasimplementering

jämfört med en relationsdatabasimplementering?

RQ2. Kan man genom ett experiment bevisa att grafdatamodellen är mer

dynamisk än relationsdatamodellen?

RQ3. Hur kan en motors tillverkningsprocess modelleras i Neo4j?

RQ4. Vilka kunskaper och kompetenser behövs för grafdatamodellering och

vidare implementation i Neo4j?

En grundförståelse för datamodellering och databaser, samt får förståelse när och

hur en firma bör byta från en relationsdatabas till en grafdatabas bildas genom

att studera virtuella böcker, fallstudier, forskningsresultat och rapporter.

Källmaterialet som används är till största del mellan noll till fem år gammalt och

hittas genom Google, Google Scolar och Åbo Akademis virtuella

biblioteksdatabas.

Relationsdatamodellen som används för att beskriva strukturen i en

relationsdatabas beskriver både data och kopplingar mellan data i tabellformat.

154

Grafdatamodellen beskriver datastrukturen som en graf. Denna fundamentala

skillnad gör att det är lättare att göra ändringar i grafdatamodellen än i

relationsdatamodellen.

Datamodelleringsprocessen för en relations- samt grafdatamodell utgår från att

förstå problemet som ska modelleras. Detta arbete sker i samförståelse med

affärsintressenter. Enligt Fernigrini [36] är det viktigt att få en förståelse för

datastrukturen om man modellerar för en relationsdatabas. Däremot är det

viktigt att skapa en förståelse för vilken typ av frågor man är intresserat av att få

svar på utifrån data om man designar en grafdatabas [36]. Robinson med flera

anser också att grafdatamodellen beskriver hur saker är relaterade och vilka de

essentiella frågorna är [5]. Då problemet är förstått och dokumenterat i

textformat övergår man till det konceptuella modelleringsskedet.

Tekniska eller systemdetaljer ingår inte i denna datamodell. En ofta använd

teknik i relations data modelleringen är att skapa en ER-modell. En ER-modell

kan antingen uttryckas som graf- eller textformat. I grafmodellering skapar man

också en graf som kan vara så enkel som en skiss på en whiteboardtavla

framtagen i ett möte med affärsintressenter. Viktigt i detta skede är att förstå att

den konceptuella modellen beskriver problemet från affärsintressenternas

synvinkel [7]. Databasutvecklare ska därför vara försiktiga med att inte redan i

detta skede lösa problemet och tänka på den verkliga databasimplementeringen

[7].

Efter den konceptuella datamodelleringen följer det logiska

datamodelleringsskedet. I detta skede definieras hur databasen ska

implementeras. Man tar fortfarande inte in detaljer från specifika

databassystemleverantörer. För en relationsdatabas översätts ER-modellen till

en relationsdatamodell, vilket innebär att en grafrepresentation översätts till

tabellformat. Datatabellerna normaliseras ofta till tredje grad. För en grafdatabas

förblir modellen i grafformat. Skillnader man kan se då man övergår från

konceptuell till logisk datamodell för en grafdatamodell är att sådant som var en

entitet blir en egenskap för en nod i den raffinerade modellen [7].

I grafdatabasdesign är den logiska datamodellen den sista modellen som skapas

före databasimplementeringen. För en relationsdatabas skapas en fysisk

datamodell som går in på detaljer och krav från en specifik databasleverantör.

155

Datastrukturen kan även modifieras och det som man normaliserat i det

föregående skedet kan de-normaliseras för bättre frågeprestanda.

Relationsdatabasen är trots sin robusta tabellstruktur fortfarande populär och

passar utmärkt för dataaggregation. Relationsdatabasen med hög dataintegritet

och konsistens används ofta i användarfall som kräver hög garanti för

datatransaktioner. Ett exempel är banktransaktioner. Relationsdatabasen har

dock sina nackdelar. En som lyfts fram i litteraturen är dess höga

underhållskostnad. Den höga underhållskostnaden är direkt beroende av

databasens tabellstruktur med fördefinierade kolumner och krav på att varje rad

i tabellen ska vara unik. Dessutom är mappningen av data i tabellformat inte

hur data existerar i verkligheten. I verkligheten existerar data som objekt och

relationer mellan dessa objekt.

En relationsdatabas sparar inte relationer, utan dessa kalkyleras vid behov med

hjälp av kopplingsförfrågningar mellan tabeller. Dessa kalkyler är kostsamma,

eftersom relationsmodellen först tar fram en mängd möjliga svar och från dessa

sedan filtrerar ut det rätta svaret. Med dagens extensiva datakopplingar kan

relationsdatabasen orsaka situationer där ett företag går miste om värdefull

förståelse av data och dess kopplingar på grund av att en relationsdatabas inte

klarar av att leverera svar på frågor som går djupare än fyra hierarkiska nivåer.

Grafdatabasen kan i motsats till relationsdatabasen prestera väl i situationer där

antal attribut, data samt kopplingar mellan data är stora, det finns höga krav på

affärsflexibilitet och hur snabbt man får tillgång till data. I motsats till

relationsdatabasen är grafdatabasen direkt framtagen för att spara data och

kopplingar mellan data. I en grafdatabas är kopplingen mellan data lika viktig

som dataelementet, om inte ännu viktigare. Grafdatabasens struktur som

utgörs av noder samt kopplingar mellan dessa noder gör det lätt att utöka

strukturen för att svara på ändrade affärsbehov. Exempel på världsledande

företag som skapat sitt värde utgående från datakopplingar är Facebook, Google,

LinkedIn samt Paypal. Alla dessa är tidiga adoptanter av grafdatabasen.

Grafdatabasen har visat sig förträfflig i situationer som:
• Bedrägeriupptäckt i realtid
• Realtidsrekommendationer till användare
• Masterdata
• Nätverks- och informationsteknikverksamhet
• Identitets- och åtkomsthantering

156

• Uppfyllande av regelverk
• Analyser
• Digital tillgångshantering
• Kontextmedvetna tjänster
• Semantisk sökning
• Situationsmedvetenhet

Trots att man på internet kan läsa om många förträffliga implementeringar av

grafdatabasen i olika typer av företag, ska man inte bli förbryllad och välja

databastyp utgående från något man läst om. Viktigt är i stället att förstå sitt eget

problem och använda sig av ett analytiskt förfarande då typ av databas väljs. En

tydlig indikering på bättre svarsprestanda, flexibilitet och smidighet behövs för

att överväga ett byte från en väletablerad och lättförstådd databas till en

grafdatabas.

I ett analytiskt förfarande för att välja typ av databas utgår man från vilket typ av

problem man försöker lösa. Man bildar en förståelse av vilken typ av data man

kommer lagra samt hur data ska hämtas. På en generell nivå anses alla problem

passa i någon av dessa kategorier:

1. Urval/sökning

2. Aggregation

3. Relaterade eller rekursiva data

4. Mönstermatchning

5. Centralitet, bildning av kluster och inflytande

Kategori ett och två anses vara bättre ämnade för en relationsdatabas, medan

kategori tre till fem är lämpade för en grafdatabas. Om man efter

kategoriseringen fortfarande känner osäkerhet kan man använda sig av

beslutsträdet i Figure 21.

Uppdragsgivaren, Wärtsilä, var speciellt intresserat av den dynamiska

kapabiliteten av grafdatabasen. I litteraturen fanns inget bevis på att

grafdatamodellen är mer dynamisk än relationsdatamodellen. För att få ett svar

gjordes en fallstudie där den dynamiska egenskapen av en relations- och

grafdatamodell mäts. En dynamisk egenskap anses i detta arbete vara detsamma

som effektiviteten av att skapa och därefter modifiera datamodellen. I

experimentet modelleras en logisk relationsdatamodell samt en grafdatamodell.

Data som modelleras är DBOP för en motor som produceras vid Wärtsilä STH i

Vaasa, Finland.

157

Trots utmaningar att bygga en grafmodell som godkändes av en

grafmodelleringsexpert på Wärtsilä, visar fallstudien att grafdatamodellen visar

indikation på att vara mer dynamisk än relationsdatamodellen. Resultatet kan

dock inte tolkas som statistiskt relevant på grund av att endast en person utförde

fallstudien. Största tiden av fallstudien gick åt till att analysera och förstå data

som skulle modelleras. Utgående från analysen var det med tidigare erfarenheter

av en relationsdatabas relativt enkelt att bygga en relationsdatamodell enligt

tredje gradens normalisering.

Att bygga grafmodellen utgående från samma dataanalys och översätta tabeller

och attribut i relationsdatamodellen till noder och egenskaper i grafdatamodellen

visade sig vara ett dåligt val. Att vara för analytisk i grafdatamodellering är en

nackdel. I stället för att datamodelleraren ensam analyserar data, bör hen

uppsöka de som förstår sig på problemet i fråga och tillsammans med dem ta fram

en konceptuell lösning till problemområdet. Endast genom diskussion kan

konsten med att skapa en intuitiv, välfungerande och dynamisk grafdatamodell

uppnås. Är grafdatamodellen en översättning från relationsdatamodellen saknas

intuitivitet och affärsintressenter kommer inte förstå modellen, vilket i sin tur

leder till problematik i diskussioner då en eventuell ändring ska överenskommas

och implementeras. Vilket verktyg som används i datamodelleringsskedet är

också viktigt att tänka på. I det här arbetet användes arrows.app. Arrows.app

genererar ett Cypher-skript som kan köras i Neo4j vid en

databasimplementering. Detta sparar tid och dubbelarbete undviks.

Genom fallstudien bildades även förståelsen av att ett eventuellt

modifieringsbehov av datamodellen skulle vara mer tidskrävande för

relationsdatamodellen än för grafdatamodellen. Detta baserar sig delvis på att

dataanalysen för att skapa relationsmodellen var sex gånger längre jämfört med

grafdatamodellen. En annan orsak är att affärsintressenterna hade lättare att

kommentera grafdatamodellen jämfört med relationsdatamodellen. Flera

kommentarer visar att grafdatamodellen är lättare att förstå och det är därmed

lättare att diskutera och uppnå konsensus om vilka ändringar som behövs när

affärskraven ändras.

Genom en litteraturgranskning samt en fallstudiehar i detta arbete uppnåtts en

förståelse av datamodelleringsprocessen för en relationsdatamodell samt

grafdatamodell. Relationsmodellen med sin robusta tabellstruktur kan anses

vara mindre dynamisk än grafdatamodellen i en värld med ständiga förändringar.

158

Dock ska beslutet av att övergå till en grafdatamodell inte fattas okritiskt eller

utgående från trender. I stället ska en noggrann analys på basen av det egna

problemområdet göras. Problemområdet i fokus i detta arbete var en motors

tillverkningsprocess och en eventuell utvidgning till partnernätverk. Från

dataanalysen som visar att DBOP har elva hierarkiska nivåer kan man anta att

grafdatabasen skulle uppvisa sin fördel i frågeprestanda jämfört med

relationsdatabasen. Detta understöds av resultatet av litteraturgranskningen

som visar att en relationsdatabas har svårigheter att leverera resultat i frågor

som sträcker sig djupare än fyra nivåer. För Wärtsilä rekommenderas dock

fortsatta studier i problemområdet innan ett slutgiltigt beslut görs.

159

REFERENCES

[1] Wärtsilä, "New Open Smart Manufacturing Ecosystem aims at

transforming manufacturing collaboration," Wärtsilä, 26 1 2022. [Online].

Available: https://www.smarttechnologyhub.com/new-open-smart-

manufacturing-ecosystem-aims-at-transforming-manufacturing-

collaboration/.

[Accessed 16 5 2022].

[2] "Cambridge Dictionary," [Online]. Available:

https://dictionary.cambridge.org/dictionary/english/dynamic.

[Accessed 24 5 2022].

[3] R. Kumar, "Flexible Data Modeling is Key for Product Information

Management Strategy," 4 2 2020. [Online]. Available:

https://pimcore.com/en/resources/blog/flexible-data-modeling-is-key-

for-product-information-management-strategy_a44814.

[Accessed 23 5 2022].

[4] M. Kunkel, "The Rise of the Flexible Data Model," 6 5 2019. [Online].

Available: https://www.logicgate.com/blog/the-rise-of-the-flexible-data-

model/.

[Accessed 23 5 2022].

[5] I. Robinson, J. Webber and E. Eifrem, Graph Database New Opportunities

for Connected Data, Sebastopol, USA: O'Reilly Media Inc, 2015.

[6] A. e. a. Silberschatz, Database System Concepts, McGraw-Hill Companies,

2010.

[7] D. Bechberger and J. Perryman, Graph Databases in Action, Shelter Island:

Manning, 2020.

[8] H. Piili, "Comparing EDW and PLMGraph (Wärtsilä internal

documentation)," 13 10 2021. [Online]. Available:

https://confluence.devops.wartsila.com/display/PLMB/Comparing+EDW

+and+PLMGraph. [Accessed 7 6 2022].

[9] M. Hunger, R. Boyd and W. Lyon, The Definitive Guide to Graph Databases,

Neo Technology, 2021.

[10] H. Piili, "Graph Database Selection (Wärtsilä internal documentation)," 14

5 2022. [Online]. Available:

160

https://confluence.devops.wartsila.com/display/PLMB/Graph+Database

+Selection.

[Accessed 7 6 2022].

[11] "DB-Engines Ranking," DB-Engines, 6 2022. [Online]. Available:

https://db-engines.com/en/ranking. [Accessed 8 6 2022].

[12] "DB-Engines Ranking - Trend Popularity," DB-Engines Ranking, 6 2022.

[Online]. Available: https://db-engines.com/en/ranking_trend.

[Accessed 8 6 2022].

[13] J. Webber and I. Robinson, "The Top 5 Use Cases of Graph Databases," 8 5

2017. [Online]. Available: https://go.neo4j.com/rs/710-RRC-

335/images/Neo4j_Top5_UseCases_Graph%20Databases.pdf?_gl=1*1n48

pdm*_ga*NDM2NDcxODk3LjE2NDc1OTY2NDY.*_ga_DL38Q8KGQC*MTY1

MjMzOTM0Ni43LjEuMTY1MjMzOTQ4MC4w&_ga=2.100916361.9655070

18.1652339346-436471897.1647596646&_gac=1.586691.

[Accessed 23 5 2022].

[14] "datum/data," The Mayfield Handbook of Technical & Scientific Writing,

[Online]. Available:

https://web.mit.edu/course/21/21.guide/data.htm#:~:text=Datum%20i

s%20singular%2C%20meaning%20%22one,used%20as%20a%20singul

ar%20noun..

[Accessed 23 6 2022].

[15] "Database," javatpoint, [Online]. Available:

https://www.javatpoint.com/what-is-database. [Accessed 10 6 2022].

[16] "What is a Database Model," Lucidachart, [Online]. Available:

https://www.lucidchart.com/pages/database-diagram/database-models.

[Accessed 9 6 2022].

[17] K. Sahatqija, J. Ajdari, X. Zenuni, B. Raufi and F. Ismaili, "Comparison

between relational and NoSQL databases," International Convention on

Information and Communication Technology, Electronics and

Microelectronics (MIPRO), 2018.

[18] J. Bhogal and I. Choksi, "Handling Big Data Using NoSQL," International

Conference on Advanced Information Networking and Applications

Workshops, 2015.

[19] "Types of Databases," Javatpoint, [Online]. Available:

https://www.javatpoint.com/types-of-databases.

[Accessed 10 6 2022].

161

[20] "Neo4j – The Leader in Graph Technology," Neo4j, 2022. [Online].

Available: https://neo4j.com/company/.

[Accessed 2 6 2022].

[21] "The Graph Technology Buyer's Guide - What You Should Know Before

Selecting a Graph Technology Solution," 28 10 2021. [Online]. Available:

https://neo4j.com/whitepapers/graph-database-buyers-guide/.

[Accessed 27 5 2022].

[22] "Neo4j Licensing," Neo4j, 2022. [Online]. Available:

https://neo4j.com/licensing/.

[Accessed 27 6 2022].

[23] J. Depeau, "Graphs in Automotive and Manufacturing: Unlock New Value

from Your Data," neo4j, 27 5 2020. [Online]. Available:

https://neo4j.com/blog/graphs-in-automotive-and-manufacturing/.

[Accessed 31 5 2022].

[24] A. Vucotic, N. Watt, T. D. F. Avedrabbo and J. Partner, Neo4j in Action,

Shelter Island, NY: Manning Publications Co., 2014.

[25] B. M. Sasaki, "Graph Databases for Beginners: ACID vs. BASE Explained,"

Neo4j, 13 11 2018. [Online]. Available: https://neo4j.com/blog/acid-vs-

base-consistency-models-explained/?ref=blog.

[Accessed 2 6 2022].

[26] "Neo4j Developer Guide - Cypher Query Language," Neo4j, [Online].

Available: https://neo4j.com/developer/cypher/.

[Accessed 1 6 2022].

[27] "The Neo4j Cypher Manual v4.4," Neo4j, 2022. [Online]. Available:

https://neo4j.com/docs/cypher-manual/current/.

[Accessed 2 6 2022].

[28] "Neo4j Cypher Manual - Cypher styleguide," Neo4j, [Online]. Available:

https://neo4j.com/docs/cypher-manual/current/styleguide/.

[Accessed 2 6 2022].

[29] "Neo4j Cypher Manual - Naming rules and recommendations," Neo4j,

[Online]. Available: https://neo4j.com/docs/cypher-

manual/current/syntax/naming/.

[Accessed 2 6 2022].

[30] "Neo4j Cypher Manual - Query tuning," Neo4j, [Online]. Available:

https://neo4j.com/docs/cypher-manual/current/query-tuning/.

[Accessed 2 6 2022].

162

[31] M. West, Developing high quality data models, Burlington, USA: Elsevier

Inc., 2011.

[32] G. F. Hurlburt, G. K. Thiruvathukal and M. R. Lee, "The Graph Database

Jack of All Trades or Just Not SQL?," IT Pro / IEEE Computer Society, no.

November/December 2017, 2017.

[33] D. Taylor, "Data Modelling: Conceptual, Logical, Physical Data Model

Types," 23 4 2022. [Online]. Available: https://www.guru99.com/data-

modelling-conceptual-logical.html.

[Accessed 25 5 2022].

[34] "Ultimate Entity Relationship Diagram Tutorial (ER Diagrams)," Creately,

25 4 2022. [Online]. Available: https://creately.com/blog/diagrams/er-

diagrams-tutorial/.

[Accessed 10 6 2022].

[35] N. Roy-Hubara, L. Rokach, B. Shapira and P. Shoval, "Modeling Graph

Database Schema," IT Professional, vol. vol. 19, no. no. 6, pp. pp. 34-43,

2017.

[36] K. Kaur and R. Rani, "Modeling and Querying Data in NoSQL Databases,"

IEEE International Conference on Big Data, 2013.

[37] "Neo4j Developer Guide - Graph Data Modeling," Neo4j, [Online].

Available: https://neo4j.com/developer/data-modeling/. [Accessed 16 6

2022].

[38] L. Fernigrini, "What Are Conceptual, Logical, and Physical Data Models?,"

Vertabelo, 9 2 2021. [Online]. Available:

https://vertabelo.com/blog/conceptual-logical-physical-data-model/.

[Accessed 11 6 2022].

[39] J. Cao, D. F. Bucher, D. M. Hall and M. Eggers, "A graph-based approach for

module library development in industrialized construction," Elsevier, 15 3

2022.

[40] J. Saarela, "Graph Database Use Cases (10 examples)," 7 2 2020. [Online].

Available: https://www.profium.com/en/blog/graph-database-use-

cases/.

[Accessed 24 5 2022].

[41] ActiveWizard, "Graph Databases Use Cases," [Online]. Available:

https://activewizards.com/blog/graph-databases-use-cases/.

[Accessed 24 5 2022].

163

[42] "ERDPlus," [Online]. Available: https://erdplus.com/. [Accessed 10 8

2022].

[43] "Arrows.app," [Online]. Available: https://arrows.app/. [Accessed 10 8

2022].

[44] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, R. B. and A. Wesslén,

Experimentation in Software Engineering, Springer, 2012.

[45] "Pandas," [Online]. Available: https://pandas.pydata.org/.

[Accessed 11 9 2022].

[46] ”NumPy Introduction,” w3schools, [Online]. Available:

https://www.w3schools.com/python/numpy/numpy_intro.asp#:~:text=

NumPy%20aims%20to%20provide%20an,and%20resources%20are%2

0very%20important..

[Accessed 11 9 2022].

[47] "First Normal Form (1NF)," Geeks for Geeks, 15 7 2022. [Online].

Available: https://www.geeksforgeeks.org/first-normal-form-

1nf/?ref=lbp. [Accessed 1 10 2022].

[48] "Second Normal Form (2NF)," Geeks for Geeks, 25 11 2019. [Online].

Available: https://www.geeksforgeeks.org/second-normal-form-

2nf/?ref=lbp.

[Accessed 1 10 2022].

[49] "Third Normal Form (3NF)," Geeks for Geeks, 31 7 2019. [Online].

Available: https://www.geeksforgeeks.org/third-normal-form-

3nf/?ref=lbp.

[Accessed 1 10 2022].

[50] "Intro to Graph Databases Episode #4 - (RDBMS+SQL) to

(Graphs+Cypher)," Neo4j, 22 3 2016. [Online]. Available:

https://www.youtube.com/watch?v=NO3C-CWykkY&t=294s.

[Accessed 2022 8 1].

[51] "R-Studio," [Online]. Available: https://www.rstudio.com/.

[Accessed 10 14 2022].

