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In this research, the graph data model challenges the well-known relational 

data model. The relational model, used by the relational data base, uses tables 

to present data and data relationships. The graph data model, used by the 

graph data base, explains the data as a connected graph. This fundamental 

structure makes the relational data model less dynamic and intuitive than the 

graph data model.  

 

In our experimental setup, the graph data model is more dynamic than the 

relational data model. An interesting finding is that when mapping the data 

model needs through data analysis, it is easier to build the relational data 

model than the graph data model. Building a well-functioning graph data 

model requires understanding on how the business stakeholders describe the 

problem and what type and questions they want to answer based on the data. 

To achieve the dynamic capability of a graph data model, the data modeler 

needs a mindset change from an analytical approach to a social one. The 

inputs from the business stakeholders are the key to success in graph data 

modeling.   

 

A company considering a change from a relational data base to a graph data 

base shall not follow hypes. Careful consideration and analysis are needed. 

The study shall show a clear indication of immediate and remarkable practical 

benefits in areas like query performance, flexibility, and agility.  

 

 

Language: English Keywords: data modeling, database, ERDPlus, 

arrows.app, Neo4j 

 

  



 

 

ABBREVIATIONS 

 
3NF Third normal form 

ACID Acronym for atomic, consistent, isolated, durable 

CPU Central Processing Unit 

CRUD Acronym for create, read, update, delete 

CTE Common Table Expressions 

DB Database 

DBMS Database Management System 

DBOP Delivery Bill of Process 

ER Entity-relationship 

GDBMS Graph Database Management System 

IM Information Management 

OSME Open Smart Manufacturing Ecosystems 

RAM Random Access Memory  

(The computer’s short-term memory where data is stored as 

the processor needs it.) 

RDBMS RDBMS management system 

RQ Research Question 

SQL Structured Query Language 

SSD Solid State Drive  

(A server storage device that retains data in flash memory 

instead of a magnetic-based system like a hard disk drive.) 

STH Sustainability Technology Hub  

(Wärtsilä’ s delivery center in Vaasa Finland.) 
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1. INTRODUCTION 

 

In the latter part of 2021, Wärtsilä and partners started a Business Finland-

funded project named Open Smart Manufacturing Ecosystems (OSME) [1]. The 

goal of the OSME project is to move from traditional linear value streams to a 

resilient collaborative network based on a digital foundation. This will enable 

proactive planning of activities, first time right, reduced lead times, traceability 

and feedback loops, optimized logistics, and better quality with less effort.  

 

Dynamic data models and an understanding of data flow have been recognized 

as one of many focus areas to achieve an efficient and value-creating resilient 

collaborative network. According to Riihimäki, Director for Delivery Management 

at Wärtsilä, this network “enables Wärtsilä and the other ecosystem partners to 

adapt and innovate to market needs” [1]. Riihimäki also highlights the purpose 

of “helping our customers continuously improve” [1]. 

 

Dynamic, defined as continuously changing or developing [2], fits well with the 

statements from Riihimäki. From his comments, it can be derived that the data 

and its requirements change due to dynamic market needs, and the data model 

needs to adapt to this. The purpose of a data model is to provide an 

understanding of data needs and requirements to be addressed when designing 

a database (DB) to fit the needs of an organization [3]. Data models that structure 

data into tables have a weak response to change and require expensive 

configurations to reflect changing business needs [4] [5]. The relational model, 

used by the relational DB, is an example where tables present the data and 

relationships among the data [6]. An alternative is the graph data model, used 

by the graph DB, which shows the data structure as a connected graph [7]. The 

graph data model enables easier data model changes [7].  

 

Another dynamic perspective are data models that allow processes to be 

carried out with different approaches while still managing the situation where 

the result will be combined and presented [4]. Wärtsilä has recognized that 

connecting and using data from various processes and systems is challenging. 

Especially use cases, with complex join queries for fetching data from relational 

DB, cause unacceptable query execution time [8]. This has made Wärtsilä 

interested in DBs that efficiently handle relationships between data elements. 

The graph DB, explicitly designed to handle and store relationships between 
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data elements [9], is considered an appealing choice. Of many alternative graph 

database management systems (GDBMS) in the market, Neo4j is selected by 

Wärtsilä due to its technical capabilities of being a native GDBMS, its easy-to-

learn Cypher query language, and its position of being a GDBMS market leader 

[10].  

 

Wärtsilä now seeks to extend its success from current implementations of Neo4j 

to use cases requiring dynamic data models with a particular focus on data 

relationships. This study focuses on understanding how data modeling for a 

relational DB differs from data modeling for a graph DB. Aim is to understand if 

one approach is more suitable for a dynamic environment and if relationships 

between data elements are easier to build and identify in a graph data model 

compared to a relational data model.  

 

The result of the study is based on a literature review and a case study where a 

limited scope of engine manufacturing process data is modeled as a relational 

data model and a graph data model. The graph data model is implemented in 

Neo4j to get practical experience and understand what knowledge and 

competencies are needed for graph data modeling and implementation in Neo4j. 

 

The study of data models and DB types is limited to graph and relational domains. 

The main reason for this limitation is Wärtsilä’s increased interest in Neo4j graph 

DB technology. The relational DB selection is supported by its popularity. It 

topped the DB-Engines ranking survey list of the database management systems 

(DBMS) most frequently referenced on websites, job offers, and experience 

listings in LinkedIn profiles [11]. Figure 1 shows statistics from June 2022, where 

seven out of the ten most popular DBMSs are relational DBs [11]. Neo4j ranks 

nineteenth and is the most popular graph DB [11]. Trends in Figure 2 indicate 

that the relational database management systems (RDBMS) Oracle, MySQL, and 

Microsoft SQL Server keep a relatively steady trend as the top three DBMSs 

between 2013 and 2022 [12]. 

 

Why would an enterprise move from the popular relational DB to a graph DB? 

Some arguments can be that: 

• The graph DB can be an alternative or an additional option if the relational 

DB does not manage well with an increased number of attributes, more 

data, higher speed requirements in business agility or data accessibility, 

and significantly more connections between data elements [9]. 
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• In the graph, it is easy to add new data elements to adapt to new business 

requirements [13]. 

• In contrast to the relational DB, the graph DB is explicitly designed to 

handle and store relationships between data elements [9]. 

 

 
Figure 1. DB-Engines ranking survey list of most popular DBMS in June 2022 (picture source [11]) 

 

 
Figure 2. DB-Engines ranking survey trend of most popular DBMS (picture source [12]) 
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This chapter continues by presenting the research questions in chapter 1.1. 

Chapter 1.2 defines the expected research contributions, approaches, and 

limitations. Chapter 1.3 describes the structure of this thesis. 

 

 

1.1. Research questions 

 

At Wärtsilä, the Neo4j GDBMS platform has successfully been used for some specific 

use cases. There is a desire to understand if this success can be extended to the 

manufacturing process data and later to value creation in internal and partner 

networks. This study focuses on finding solutions and answers to the following 

research questions (RQ): 

 

RQ1. How does data modeling for a relational DB differ from data modeling for 

a graph DB? 

RQ2. Can an experiment where the manufacturing process is modeled as a 

relational model versus a graph data model prove that the graph data 

model is more dynamic than the relational data model? 

RQ3. How to present the manufacturing process data in Neo4j?  

RQ4. What knowledge and competencies are needed for graph data modeling 

and implementation in Neo4j? 

 

 

1.2. Research contributions and limitations 

 

This chapter describes how the study results are produced and which limitations 

are set. The study is conducted in two sequential steps. A literature review is 

followed by a case study in an experimental set-up.  

 

The literature review aims for basic knowledge in data modeling and DB 

implementation with a limitation to relational and graph domains. Information 

was sought from online books, white papers, research articles, tutorials, and case 

studies to answer RQ1 and expressly understand: 

1. What is a data model, and how does a data model for a relational DB 

implementation differ from a data model for a graph DB implementation? 
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2. How to choose between a relational DB and a graph DB implementation? 

What are the benefits and drawbacks, and what are the current trends?  

3. Are graph data models and graph DB implementations dynamic? 

4. Is managing and handling relationships among data elements easier in a 

graph DB than in a relational DB? 

 

When searching for information, the focal point was to find answers to the above 

questions. Instead of conducting an exhaustive literature review, where all the 

material returned in the search engines is reviewed and further filtered based on 

specific criteria, the author’s judgement on what knowledge is needed to carry 

out the empirical study was used in selecting the material. Further, it was verified 

that the content in the chosen material is trustworthy by investigating the 

reference material and checking if the material has been cited in other literature 

and whether the publisher or site provider is well known. The age of the material 

plays a vital role in a domain evolving rapidly. Therefore, the oldest source 

information used was twelve years old and fifty percent of the information was 

less than five years old. 

 

The material was found through Google, Google Scholar, and abo.finna.fi search 

engines. Google Scholar is used for searching research articles, while Google is 

used for the rest. If the research article was not available for free in Google 

Scholar, it was fetched through the university library abo.finna.fi. If the article was 

not found in the university library, a corresponding research article was 

searched. Keywords utilized in the search are listed below, where each bullet 

represents an individual search criterion: 

• Neo4j 

• Data model 

• Conceptual data model 

• Logical data model 

• Physical data model 

• Flexible data model 

• Dynamic data model 

• Relational database 

• Graph database 

• RDBMS 

• GDBMS 

• Database 
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The knowledge gained from the literature review was utilized in a case study 

consisting of the following parts: 

1. Relational and graph data modeling experiment design and case study (to 

answer RQ2) 

2. Implementing the graph data model in the Neo4j standalone desktop 

version (to answer RQ3).  

 

The data model in the case study covers the data needs for a limited scope of 

manufacturing process data for an engine produced in the Wärtsilä STH delivery 

center in Vaasa, Finland. The manufacturing process data in the range of the 

research is the Delivery Bill of Process (DBOP). The DBOP describes the sequence 

of assembly steps needed to produce a specific customer engine. The 

implementation of the graph data model in Neo4j is limited to a standalone Neo4j 

desktop implementation with no integrations to systems and databases in 

Wärtsilä. Neither is any data imported to the model. 

 

To understand if the graph data model is more dynamic than the relational model, 

a small-scale case study with experimental set-up was carried out where the 

author modelled the identical data set as a relational data model and a graph data 

model. Initial idea was to run an experiment with ten to twenty Information 

Technology students as subject. However, due to time constraints of the thesis, 

the full-scale experiment was not possible. Instead, author performed own 

subjective case study, still following metrics of the experiment design. The 

experiment is designed to be possible to use in a later scenario where more 

subjects are available for the experiment. 

 

As the dynamic capability is an indirect measure, it was determined from the 

following data: 

• The time it took to understand the data needs for the model 

• The data modeling time 

• The number of data elements in the data model  

• The effectiveness and efficiency of the implementation of the data model 

 

In addition, the author made a qualitative and subjective analysis of the difficulty 

level of building the relational data model versus the graph data model.  
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Using only one subjective in the analysis causes the value of the evaluation to be 

statistically irrelevant. For a statistically relevant result the experiment design 

and analysis are recommended to be carried out with an entire class of 

Information Technology students. When this number of subjects would be 

available the experimental design and analysis planned for in in chapter 4.1would 

give a statistically relevant research result. 

 

The graph data model from the RQ2 result, is utilized for RQ3. In RQ3, the graph 

data model is implemented in Neo4j. A qualitative review by an independent 

domain expert at Wärtsilä was made to understand if the implementation meets 

the expectations of Wärtsilä. Quantitative measures, such as query execution 

times, are beyond the scope of this study.  

  

RQ4 is answered based on the experience gained from the case study and 

learnings from the literature review. 

 

Table 1 summarizes the methods used for answering the research questions. 

 

Table 1. Methods used to answer the research questions 

Research question Method 

RQ1 Literature review and case study 

RQ2 Case study 

RQ3 Case study 

RQ4 Own experience gained through the literature review 
and case study 

 

The high-level research plan is visualized in Figure 3. The thesis worker was 

responsible for executing the plan, implementation, and results. Guidance was 

expected from a Wärtsilä Information Management (IM) graph expert and the 

thesis supervisor. A Wärtsilä business stakeholder was utilized in requirement 

gathering and verification of the results. The study began with a literature review. 

The knowledge acquired in the literature review was used in the empirical study. 

The study was finalized with an evaluation of the results and defining the 

conclusions. The texts in blue visualize inputs. The black arrows indicate testing 

needs. For example, when the data model is built, it shall be verified against the 

requirements specified for the problem domain.  

 



8 

 

 
Figure 3. High-level research plan (author’s picture) 

 

 

1.3. Thesis structure 

 

The remaining part of this thesis is divided into six main chapters: 

 

• Chapter 2 presents fundamental concepts in the field of data models and 

DB implementation. The reader gets a basic understanding of what a data 
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model is and how a data model for a relational DB implementation differs 

from a data model for a graph DB implementation. 

• Chapter 3 investigates how to select the suitable DB type for a problem at 

hand and discusses the literature concerning the dynamic capability of the 

data model, handling of relationships between data elements, and query 

performance.  

• Chapter 4 describes the case study, which contains three sequential steps: 

experiment design, data modeling and the implementation of the graph 

data model in the Neo4j standalone desktop version. 

• Chapter 5 analyses the learnings and results of the research. A part of the 

analysis contains a suggestion for competencies and knowledge needed 

for graph data modeling in Neo4j. 

• Chapter 6 concludes the thesis by revisiting the research questions to 

understand if the research objective is met and provides suggestions for 

future study.  
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2. BACKGROUND 

 

This chapter presents fundamental concepts in data models and DB 

implementation. This knowledge supports the design and implementation 

decisions in the empirical study. The content of this chapter also serves as a good 

base for anyone starting a journey from relational DB to graph DB design and 

implementation. This chapter hence presents the findings from the analyzed 

literature for RQ1, and precisely: 

• What is a data model, and how does a data model for a relational DB 

implementation differ from a data model for a graph DB implementation? 

 

This chapter is divided into four main parts. Chapter 2.1 introduce DB and DBMS, 

focusing primarily on the differences between a relational DB and a NoSQL DB. 

Chapter 2.2 gives a brief introduction to Neo4j GDBMS. Chapter 2.3 covers the 

data model concept and explains the ER, the relational data, and the graph data 

models. Chapter 2.4 describes the process for designing data models for a 

relational DB versus a graph DB.  

 

 

2.1. Databases and database management systems 

 

The word data is the plural form of datum which means one piece of information 

or one numerical form [14]. Data can be stored on paper or in electronic form [15]. 

A frequently used electronic storage is a database (DB), an organized collection 

of stored data that can be easily accessed and managed [15]. The database 

management system (DBMS) is the software responsible for storing, retrieving, 

and running queries on the data in a DB [15]. The DBMS provides alternative user 

interfaces and services, such as data redundancy control, data sharing among 

multiple users, and data backup and recovery [15]. The DBMS is built for a specific 

type of DB [15]. The RDBMS is the software for the relational DB, and the GDBMS 

is the software for the graph DB.  

 

The logical structure of a database is described by its data model [16]. The 

relational model, chapter 2.3.2, is the logical structure of the relational DB, and 

the graph data model, chapter 2.3.3, is the logical structure of the graph DB [16]. 
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Figure 4 presents a principal sketch, in which users and applications use a DB 

through the DBMS. 

 

 
Figure 4. DBMS, DB, and Data Model (author’s picture) 

 

Figure 5 visualizes some examples of different DB types. Highlighted are the DB 

types covered in this research: relational DB, NoSQL DB, and graph DB. We 

notice that the graph DB is a type of NoSQL DB together with key-value pair DB, 

column-oriented DB, and document-oriented DB [15]. NoSQL has been 

developed as an alternative to the relational DB [17]. A concern of the relational 

DB in the age of big data with accelerating data volumes is that its performance 

degrades with increased data volume [17]. Big data refers to a large volume and 

wide variety of data captured from different sources with high speed [18].  

 

 
Figure 5. DB types (author’s picture, adopted from [19]) 
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Another concern of the relational DB is its rigid and pre-defined DB schemas that 

are hard to modify [17]. The relational DB schema contains the DB’s tables, 

attributes, primary keys, and foreign keys, but no data [6]. The NoSQL DB is 

developed to handle significant data amounts and has a dynamic DB schema, also 

called schemeless [17], which can be altered without downtime or disruption in 

the service [18].  

 

The NoSQL DB is not developed to replace the relational DB but rather to coexist 

with it [17] [18]. Depending on the needs of an application, it is even possible to 

define a hybrid data layer where the data from the application is stored in 

multiple DB types [17]. This approach can utilize the strengths of different DB 

types [17]. Table 2 summarizes a comparison made by Sahatqija et al. in a journal 

article published in 2018 [17]. It compares relational DB and NoSQL DB in terms 

of scalability and performance, data consistency, flexibility, query language, 

security, data management storage and accessibility. This comparison is generic 

for the DB type and does not consider a specific DBMS provider. 

 

Table 2. Comparison of features in a relational DB versus NoSQL DB (Created based on text in [17]) 

Feature Relational DB NoSQL DB 

Scalability and 
Performance 

Vertical scalability = 
when data volume grows, the 
data storage and computing 
power expand only for existing 
hardware components like CPU 
capacity, RAM, and SSD of the 
DB server.  
 
The overall implementation 
cost increases with data growth. 
 

Horizontal scalability = when 
data volume grows, the system 
expands by adding more 
hardware components for data 
storage and processing power. 
 
This is a cheaper alternative 
than vertical scalability, and by 
distributing data on different 
servers, the performance of the 
DB increases. 

Data 
consistency 
strategy 

The main priority is to fulfill the 
ACID properties of Atomicity, 
Consistency, Isolation, and 
Durability. 
ACID ensures higher data 
reliability and integrity than 
DBs using the BASE principle. 

Horizontal scalability makes it 
challenging to fulfill ACID. The 
BASE principle is used, and 
stands for Basically Available, 
Soft state, and Eventually 
consistent.  
 
The BASE is more flexible than 
ACID but has less consistency 
and reliability.  
 
Neo4j is entirely ACID 
compliant. (Chapter 2.2) 

Flexibility The DB schema is static and 
pre-defined before inserting 

The DB schema is dynamic and 
does not have to be predefined. 
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data. Making changes to a DB 
with data is challenging and can 
cause server failures and 
decreased performance. 
 
Only structured data is 
supported. 

This supports changes in 
structures and data types. 
Suitable for agile and scalable 
environments where 
continuous development and 
evolvement can be expected. 
 
Structured, semi-structured, 
and unstructured data are 
supported. 

Query 
Language 

A standard query language 
known as SQL is used. This 
powerful query language 
handles complex queries 
through a standardized 
interface. When knowing the 
SQL, a developer can write 
queries in any RDBMS.  

No standardized query 
language. The GDBMS provider 
can create its query languages. 
A DB developer faces challenges 
when getting tasks to 
understand or write queries in 
different GDBMS systems.  
 
Neo4j has its query language, 
Cypher. It is intuitive with 
inspiration from SQL. Neo4j 
also supports other query 
languages. (Chapter 2.2) 

Security The structured data and vertical 
scalability make the security 
more straightforward to 
manage than the NoSQL DB. 

A large amount of unstructured 
data distributed between 
multiple servers cause 
challenges for the security of 
the DB. If the NoSQL DBMS 
provider does not guarantee 
secure client-server 
communication, crucial factors 
like authentication, access 
control, secure configurations, 
data encryption, and auditing 
must be implemented by 
external methods. 

Data 
Management-
Storage and 
Access 

The data is stored in tables, is 
highly normalized, and is very 
clean. Data redundancy is 
avoided through normalization, 
which slices data into small 
logical tables.  
 
The normalized data model is 
sometimes denormalized to 
avoid joins and get better query 
performance. (Chapter 2.4.4) 
 
There are alternative ways of 
replicating a relational DB 
between sites in a distributed 
system:  

It can contain data redundancy 
as data is stored in collections 
without normalization. 
 
Data availability can be 
improved by replicating the DB 
between clustered servers. Two 
different approaches are 
utilized:  
1) master-slave, where the 
slave can only read data  
2) master-master, which gives 
the replicated master both read 
and write access to the data. 
This can cause inconsistency in 
the data. 
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1) entire DB is replicated to all 
sites in the distributed system  
2) no replication replicates only 
a fragment of the DB to one site  
3) partial replication replicates 
some fragments.  
 
The replication improves the 
data availability but consumes a 
lot of time and storage. 
Therefore, the DB’s 
performance declines. 

 

In short, the NoSQL DB focuses on high performance, availability, data replication, 

and scalability. At the same time, the relational DB shows an advantage in data 

consistency, powerful query language, structured data storage, and security [17].  

 

 

2.2. The GDBMS Neo4j 

 

The most popular GDBMS provider is Neo4j [11]. This chapter explains what 

Neo4j is. Some of the central elements and terminology are discussed, providing 

beneficial resources for learning Neo4j’s graph query language, Cypher. This 

chapter offers valuable information for anyone who will start implementing 

graphs in Neo4j. 

 

Neo4j’s history goes back to 2000, when the three founders of Neo4j encountered 

performance problems with RDBMS and initiated the first Neo4j prototype [20]. 

In 2007, the Neo4j company was founded in Sweden, and its first GDBMS was 

open-sourced [20]. In 2021 its open-source community had millions of 

downloads and hundreds of thousands of deployments [21]. The open-source 

version of Neo4j went under the name Neo4j Community Edition [22]. There is 

also an alternative for using the license-based Neo4j Enterprise Edition as a 

closed-source software application [22].  

 

In Neo4j, data are stored as graphs, processed as graphs, and presented as graphs 

[23]. It is hence a native GDBMS with graph processing and storage [5]. Native 

graph processing utilizes index-free adjacency, which means nodes maintain 

direct references to nearby nodes [5]. This is a cheaper alternative than using 

global indexes [5]. With this approach, the query times are independent of the 
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total graph size and are only affected by the part of the graph searched by the 

query [5]. Native graph storage means the DB is specifically built for storing and 

managing graphs, having a stack engineered for performance and scalability [5]. 

In native graph storage, the relationship information is a primary data element 

[21]. If graph data is stored in a non-native graph storage DB, the relationship 

information can get lost, disconnected, or neglected, which are symptoms of data 

corruption [21]. The graph data model Neo4j use is the labeled property graph, 

which consists of the elements described in Figure 13 [5]. This is a variant of a 

property graph model [5], further described in chapter 2.3.3.  

 

The consistency model which Neo4j uses for data transactions is ACID. Hence 

Neo4j reaches the same consistency levels as an RDBMS [24]. ACID stands for 

[25]: 

• Atomic = All operations in a transaction need to succeed, or every 

operation is rolled back. 

• Consistent = The DB is structurally intact when a transaction is completed. 

• Isolated = Transactions do not compete with one another. The DB controls 

the continuous data access to make transactions appear to run 

sequentially for the users. 

• Durable = The results of a completed transaction are permanent, ensuring 

data remains in the DB no matter the failures. 

 

The technical details of Neo4j will not be discussed more profoundly here. 

Instead, the focus turns to Cypher, the query language of Neo4j [5]. Query 

languages like SPARQL and Gremlin are also supported [5]. Cypher is an open-

source textual query language that utilizes ASCII art symbols in its syntax [26]. 

The inspiration for Cypher comes from the relational DB domain and the 

Structured Query Language (SQL) [26]. All the standard DB CRUD (create, read, 

update, and delete) operations are supported [26]. Cypher is the most intuitive 

and effortless graph query language to learn [5]. It can be understood by 

developers, DB professionals, and even business stakeholders [5]. Its ease of use 

derives from its close resemblance to graphs, as presented in Figure 6 [26].  

 

Figure 6 shows a MATCH clause followed by a RETURN clause [26]. The pattern 

has been anchored to the node labeled Person, whose name property is Dan [26]. 

Cypher matches the remainder of the pattern to the nodes immediately 

surrounding this anchor point [26]. Hence, we can expect this MATCH pattern to 
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return various values for the whom variable while traversing through the graph 

[26].   

 

 
Figure 6. Cypher pattern example (Picture source: [26]) 

An alternative to anchoring a pattern to a specific node is to move the property 

lookup from the MATCH clause to a WHERE clause [5]. With guidelines in [5], the 

pattern in Figure 6 transforms to:  

 

MATCH (a:Person) –[:LOVES]-> (whom) 

WHERE a.name = ‘Dan’ 

RETURN whom 

 

Anyone familiar with SQL will find the resemblances when looking at the pattern 

above. Other customary clauses from SQL available in Cypher are ORDER BY, SKIP 

LIMIT, AND, and comparison possibilities like p.unitPrice > 10 [26]. For further 

guidance on Cypher, we recommend investigating the Cypher Developer Guide 

[26] and the relevant version of the Neo4j Cypher Manual [27]. The current 

Cypher Manual is 4.4. 

 
When starting the developer journey with Neo4j and Cypher, it is essential to 

remember to write a code that others quickly understand. This is enabled by 

following the guidelines in the Cypher style guide [28] and Cypher naming rules 

and recommendations [29]. An excellent approach is collecting hints from the 

Cypher query guidelines to ensure the written queries are optimized for 

execution performance [30].  
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2.3. Data models 

 

The purpose of a data model is to provide an understanding of data needs and 

requirements to be addressed when designing a DB to fit the needs of an 

organization [3]. The data model can hence be considered as the design drawing 

of the DB, describing the data structure and purpose of the data [31]. Correctly 

designed, it improves the quality of information used in decision-making in an 

organization [31]. The quality of information means that it fits the needs, is 

available when needed and is accurate enough [31]. Tuning a model already 

providing the expected information quality increases costs and is not worth the 

effort [31].  

 

The relational DB data model focuses on the objects, while the graph data model 

focuses on the objects’ relationships [7]. Hurlburt et al. suggest a direct 

dependency between the quality of the data in a graph DB and the quality of the 

relationships in the data model [32]. This chapter focuses on understanding how 

the models produced for a relational DB and a graph DB differ. We limit our guide 

to the ER and relational data model for the relational DB design. For the graph 

DB, we restrict our attention to the graph data model, further limited to 

hypergraphs and property graphs.  

 

 

2.3.1. ER model 

 

The ER model is not a data model for a specific DB type, but a high-level data 

model used to describe the system on a conceptual level [16]. The ER model maps 

different entities and how they relate [16]. It describes how users experience a 

real-world situation without technical or system details [33].  

 

The ER model is often used as the conceptual data model (chapter 2.4.2) when 

designing the relational DB, and after the relational DB is implemented, it is used 

in troubleshooting [34]. ER models can also be used in software engineering 

design to identify system elements and their relationships [34]. When moving 

from relational DB to graph DB, an ER model created for the relational DB is a 

valuable input when investigating the problem to model in the graph data model 

[7]. 
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The ER model represents the data requirements of future users and the structure 

that fulfills these requirements [6]. The ER model can be defined in textual, Figure 

7, or graphical form, Figure 8 [6]. The elements presented in Figure 8 are named 

in Figure 9, and the most relevant ones are further described below: 

 

Entity 

An entity is an object, such as a person, a place, an event, or an item. The entity 

may be concrete, such as a student or a classroom, or abstract, such as a course 

or a department [6]. The ER model names entities using singular nouns [34]. An 

entity set is a set of entities that share the same attributes [6]. For example, the 

student entity set contains all the student entities in a university [6].  

 

A weak entity set depends on the existence of another entity set [34]. Figure 9 

gives two alternative notations for presenting weak entities. Either with the 

double-lined box or the double-lined diamond shape [6]. In Figure 8, the section 

is an example of a weak entity set that depends on the course entity set [6].  

 

Attribute 

An attribute is a property or characteristic of an entity, a relationship, or another 

attribute [6, 34]. Each attribute is expected to hold a value in the DB 

implementation [6]. Figure 9 gives two alternative notations of visualizing 

attributes; either by listing the attributes within the entity set table or with oval 

shapes. When the attribute name is underlined, it symbolizes the entity’s unique 

identifier, the primary key [6].  

 

In Figure 8, the weak entity set section depends on the course entity set and has 

only a partial key [6]. The partial key for the section is {sec id, year, semester} and 

is used to distinguish the section entities from a course with the same course_id. 

The primary key in the course is course_id. The primary key for the section is a 

union of the primary key of the course and the partial key of the section: {course 

id, sec id, year, semester}. 

 

A composite attribute identifies other attributes [6, 34]. It can group associated 

attributes and make the ER model cleaner [6]. An example is a composite 

attribute address and its attributes: street, city, state, and zip_code [6].  
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A multivalued attribute is an attribute that can have more than one value [6, 

34]. In Figure 8, the entity set time_slot has the multivalued attribute day with 

both start_time and end_time [6].  

 

An attribute based on another attribute is called a derived attribute [6, 34]. This 

is seldom used but could, for example, be the area of a circle derived from the 

radius of the circle [34].  

 

Attributes can be left out if the ER model is modeled on a very high level [34]. 

When a relationship has an attribute, this attribute is specified as a descriptive 

attribute. In Figure 8, the grade is a descriptive attribute of the takes relation 

between student and section entity sets. In this example, the grade is utilized to 

specify the grade which the student gets from a specific course during a particular 

section.  

 

Relationship 

A relationship describes how entities interact [6, 34]. Examples are the teaches 

and takes relationships in Figure 8. Combining the relationship with the entities, 

we understand that the instructor teaches the section, and the student takes the 

section. Verbs are used when naming the relationships in the ER model [34].  

 

A relationship where the same entity participates more than once is called a 

recursive relationship [6, 34]. A recursive relationship named prereq for the 

course entity is presented in Figure 8. This example describes which course, 

identified with prereq_id, is a prerequisite for another course, specified with 

course_id.  

 

Mapping the cardinality or ordinality of the relationship sets a constraint on 

how many entities another entity can be associated with [6, 34]. Figure 9 

illustrates notations for the many-to-many, one-to-one, many-to-one, and one-to-

many. One alternative is to give the cardinality in number format, and another is 

to format the relationship line between the entities [6]. The doubled lines 

between entity sets in Figure 8 indicate the total participation of an entity in a 

relation. For example, between the entity instructor and inst_dept, the doubled 

line marks that an instructor must be associated with a department. In addition, 

the directed arrow from inst_dept to the department indicates that each instructor 

can have only one associated department. 
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Figure 7. University DB ER model in textual format (picture source: [6]) 

 

 
Figure 8. University DB ER model in graphical form (picture source: [6]) 
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Figure 9. ER notations. Figure 8 uses the left (←) (picture source: [6]) 

 

2.3.2. Relational model 

 

The relational DB is based on the relational model, which uses tables to present 

the data and relationships among the data [6]. Each table has a unique name [6] 

and a predefined set of columns [6]. The relational model structures the DB in 

fixed-format records of various types and is hence a record-based model [6]. 

Each table holds records of a specific kind, and each column in the table 

represents an attribute of that record type [6]. The table is also called a relation, 

and a row in the table can be called a tuple [6]. A constraint on the table is that 

each row needs to be unique [6].  

 

The uniqueness of a row is realized by identifying one or a set of attributes that 

contains unique values, the primary key [6]. The attribute value is null if a non-

primary key attribute on a specific row is unknown or does not exist [6]. 

References between tables in the DB are linked with foreign keys [6]. A table has 

only one primary key, while it can have several foreign keys [6]. A foreign key can 

contain null values, and its values do not need to be unique [6]. A specific set of 

rows in a table is referred to as a relation instance [6].  

Figure 10 is an example of relation instances for Instructor and Department in the 

university DB where the following elements are identified: 
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1. Unique table (relation) name 

2. Relation instance 

3. Column names (attributes) 

4. A row (tuple) 

5. Primary key in Instructor table 

6. Primary key in Department table 

7. Foreign key in Instructor table 

 

 
Figure 10. Elements in the relational model (author’s picture, adopted from [6]) 

 

A database instance is all the data in a DB at a particular time [6]. This differs 

from the database schema, Figure 11, which is the logical design of a DB [6]. Each 

row in Figure 11 is a schema of a specific table [6]. The database schema can 

also be described in graphical form, named schema diagram, Figure 12 [6]. The 

database schema or schema diagram contains the tables in a DB, their attributes, 

primary keys and foreign keys, but no data [6]. 

 

 
Figure 11. Database schema of a simple university DB (picture source: [6]) 
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Figure 12. Schema diagram of a simple university DB (picture source: [6]) 

 

 

2.3.3. Graph data model 

 

In the past decades, we have witnessed increased data volumes and rapid 

changes and variations in data structures [5]. Chapter 2.3.2 explained how the 

relational model captures data in rigid data structures that require high effort to 

modify once the relational DB implementation is done. To address the challenges 

faced in a rapidly changing data environment, the number of NoSQL alternatives 

have risen [5]. The NoSQL data models are argued to be less expressive than the 

relational model but more flexible and able to handle significant data volumes 

better [5]. The graph data model is of NoSQL type but still more explicit than the 

relational model [5].  

 

The graph data model is flexible and handles significant data volumes and rapidly 

changing demands well [5]. In the graph data model, it is easy to add, modify or 

delete data elements based on the needs of the business [5]. The graph DB is 

based on the graph data model [16]. In this chapter, we investigate the graph data 

model structure to understand better the benefits it brings. 
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Several different graph data models are available in the graph DB’s domain. These 

can be, for example, property graphs and hypergraphs [5]. The property graph 

is restricted to directed connections, with one start node and one end node [5]. 

The property graph is the most widely used graph model in GDBMS [5]. The 

property graph gives a straightforward and efficient modeling technique [5]. The 

labeled property graph is a property graph with the ability to use labels on the 

nodes for grouping and indicating specific roles of the nodes in a dataset. A 

labeled property graph consists of the elements described in Figure 13. 

 

 
Figure 13. Elements in a labeled property graph model (Author’s picture adopted from the text in [5]) 

 

The hypergraph is an alternative to the property graph that allows any number 

of start and end nodes for any relationship in the graph [5]. This graph model can 

be practical for capturing data with many-to-many relationships [5]. Figure 14 

shows the difference between a hypergraph versus a property graph in a case 

where we want to model who owns the cars Alice and Bob drive [5]. To describe 

this situation, only one relationship is needed in the hypergraph, while six 

relationships are required for the property graph [5]. When the multidimensional 

hypergraph is used, there is a risk of missing essential details [5].  

 

The property graph is more explicit and allows for fine-tuning the model by 

utilizing properties on the relationships [5]. Adding properties to the relationship 

in a hypergraph is not permitted [5]. With properties on the relationships, the 

primary owner of the car in Figure 15 can be identified using a property named 

primary on the OWNS relationship [5]. The primary property is true for the OWNS 

relationship between the car and the car owner [5]. Any use case can be modeled 
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with the multidimensional hypergraph or the property graph, and the builder of 

the data model or the type of application determines which is used [5].  

 

 
Figure 14. Hypergraph versus property graph (picture adapted from Figure A-7 and Figure A-8 in [5]) 

 

This study is limited to the labeled property graph as this is the graph data 

model used by the Neo4j GDBMS. Figure 15 shows a simple example of the labeled 

property graph model and how the different elements come into action [23].  

 

 
Figure 15. A simple example of a labeled property graph. (Picture source: [23]) 

Figure 15 contains: 

• Three nodes  

• Two different types of nodes with labels: Person or Car 

• Node properties as name-value pairs 

o Person node: name, born, twitter 

▪ The twitter property does not exist on the node with the 

name: ”Ann”. If a property is inapplicable for a node, it is left 

out instead, as in a relational database, set the value to null. 
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o Car node: brand, model 

• Four Relationships 

o Direction indicated with an arrow 

o Single name: LOVES (used twice), LIVES WITH, DRIVES, and OWNS 

▪ The LOVES relationship is needed in two directions, as we 

can have a case where Ann loves Dan, but Dan does not love 

Ann. LIVES WITH is required only in one direction because 

if Ann lives with Dan, it is explicitly understood that Dan 

also lives with Ann. 

o Start node where the arrow starts 

o End node where the arrow points 

• Relationship property as name-value pairs: ”since: Jan 10, 2011”. 

 

From this intuitive representation, we can see that Dan drives a Volvo V70 and 

has done this since Jan 10, 2021. However, Dan is not the owner of this car, as the 

only owner is Ann.  

 

We note that all the relationships in a graph model are drawn with edges in one 

direction. The graph data model requires no primary or foreign keys [5] [7]. 

Compared to the relational model, there is no requirement that all entities in an 

entity group need to share the same attributes. 

 

 

2.4. Data modeling in the DB design phase 

 

The design phase of a DB aims at translating specific real-world problems, 

considerations, and questions into technical terms to use as guidelines in the DB 

implementation [7]. Hence, it is essential to understand the user requirements 

and data needs first [6] [7].  

 

Reviewing the literature to understand how to perform design for a relational DB 

reveals a reoccurring pattern of producing a conceptual data model, a logical 

data model, and a physical data model [6]. We also recognize that the 

enterprise owning the DB decides on a specific notation and process to follow in 

data modeling [31]. The enterprise might also specify the modeling tools [31]. 
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There are no rules to follow in data modeling. The general practice is to create an 

ER model as the conceptual data model of a relational DB [6] [16].  

 

When searching for guidelines in the literature on how to perform data modeling 

for a graph DB, I noticed, as Roy-Hubara et al., that many articles describe the data 

modeling process for a specific use case but no data modeling rules to follow [35]. 

One reason is that data modeling for NoSQL DB is still maturing [36]. There is also 

a tendency to doubt the usefulness of data modeling for the schemeless NoSQL 

DB [36]. Schema or not, the importance of understanding and describing the data 

stored in the DB remains [36]. The best way to represent data structures is 

through data models [36].  It is not likely that there will be strict rules to follow 

for NoSQL design. It is my believe that, similarly as for the relational DB design, it 

will be up to the enterprise owning the DB to decide which design approach and 

tools to utilize [31].  

 

The design process for a graph DB follows mostly the same design process as that 

of the relational DB. The main difference is the transition from a conceptual to a 

logical data model. The ER model is translated into tables in relational data 

modeling, while the graph data model remains a graph [7]. In graph data 

modeling, the conceptual graph is only enhanced by utilizing the elements for a 

specific graph data model type [7]. The physical data model used for the relational 

DB is not created for the graph DB. It is directly linked to a DBMS provider and 

depends on the DB schema [7]. For the schemeless GDBMS, a physical data model 

is not needed [7]. Testing the model to ensure that no poor design decisions are 

made is frequently highlighted as the final step in graph data modeling [5] [7]. 
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2.4.1. Understanding the problem 

 

The first step in the DB design phase is to thoroughly understand the user 

requirements and data needs [6] [7]. These can be derived from user interviews 

and analysis carried out in the enterprise [6]. If a DB implementation is available, 

the DB schema, ER, and other models are beneficial for understanding data 

structures and terminology already used in the problem domain [7].  

 

According to Fernigrini [36], the data structure is essential in the relational DB 

design. When modeling a NoSQL DB, the type of queries to be executed on the 

data is the focal point. Robinson et al. agree that a graph data model shows how 

related issues are considered and communicates essential questions in the 

modeled domain [5]. Bechberger and Perryman confirm this and state that the 

physical data model is equal to the queries addressed in the problem domain [7].  

 

To reduce data model change needs, the queries should be defined before the 

modeling [7]. In addition, the questions need to be prioritized [37]. The 

prioritization is needed because no model will be perfect for everything, and 

there will always be a need for tradeoffs [37]. Identifying the queries that provide 

the most significant business value and need the highest performance is a critical 

step at this point [37].  

 

The output from the initial step is a textual description of how the problem is 

understood, written in a language understood by business stakeholders [7]. This 

forms the base for the conceptual design phase [6] [7].  

 

 

2.4.2. Conceptual data model 

 

The conceptual data model describes how the users experience real-world 

situations without technical or system details for a relational DB and graph DB. 

Therefore, it is an excellent tool for communicating requirements between 

business stakeholders and developers [7]. The conceptual data model can be as 

simple as a graph with entities and relations drawn on a whiteboard in a meeting 

between business stakeholders and developers [5] [7]. It is important to 

remember in this phase that this is a description of the understanding of the 
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system drawn from the business stakeholder’s point of view [7]. Hence, 

developers will not start solving the problem and not think about the actual DB 

implementation [7].  

 

For the graph DB design, I found guidelines for how to carry out the whiteboard 

drawing in two sequential steps, Table 3. The entities are first identified and 

grouped, and then the relationships between the entities are added [7] [37].  

 

Table 3. Guidance for the conceptual data modeling (own table created based on text in [7] [37]) 

What How 

Identify and 
group entities. 

• Identify entities and name them as singular nouns. Focus on 
understanding the “What” and “Who.” 

• Identify groups of entities by listening to business stakeholders 
and identify if some nouns are used interchangeably. For 
example, the user, employee, and client could form an entity 
group named Person. 

Identify 
relationships 
between the 
entities. 
 

• Identify the relationships by focusing on functional questions 
and understanding the “How.” 

• Verify that the model supports forming sentences: entity – 
relationship – entity. For example, Restaurant – Serves – Cuisine. 

• Properties for the entities and relationships do not need to be 
included in this model. If some are identified, it is good to list 
them separately to review again in the logical design phase. 

 

For the relational DB, no  guidelines for the whiteboard drawing were recognized, 

but I noticed an often-used approach to transform the whiteboard sketch into an 

ER model [6]  (see chapter 2.3.1). The guidelines for the ER model describe the 

entity as an object such as a person, a place, an event, or an item. The entity may 

be concrete, such as a student or a classroom, or abstract, such as a course or a 

department [6]. The ER model names the entities using singular nouns [34]. This 

description correlates with the graph data model's descriptions in [5] [7].  

 

However, spotting nouns in the domains through speech is a risk, as it can cause 

situations where all entities are not found [5]. The reason is that many technical 

and business jargon uses nouns instead of verbs [5]. For example, we say email 

one another instead of sending an email or google instead of searching Google [5]. 

This way of speaking also causes a risk for the relationships, which are named in 

the ER model and the graph data model with verbs [7] [34] or verbal phrases [6]. 

Instead of missing entities, the way we speak can cause falsely identified 

relationships [5]. 
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I also noted a correlation between the statement for the ER model regarding the 

entity set, which is a group of entities sharing the same attributes [6], and how 

[5] describes the possibility of grouping entities with labels in a graph data model. 

A clear difference between the ER model and the graph data model is that all the 

entities in a graph group do not need to have common attributes, Figure 15. 

 

Figure 16 shows an example output from the conceptual design phase for a graph 

DB [37]. In a meeting with business stakeholders, a whiteboard drawing is 

created to map entities and relationships for movies [37]. The whiteboard 

drawing is digitalized, and the syntax for the relationship labels, expected by 

Neo4j in the property graph, is introduced [37]. According to Bechberger and 

Perryman [7], the correct syntax can be left to the logical design phase.  

 

 
Figure 16. Conceptual data model as drawn in a meeting with business stakeholders and then digitalized 

(picture adapted from figures in [37]) 

 

The conceptual data model, having the form of a graph, both in the design process 

for a relational DB and a graph DB, is used as an input for the logical data model. 

Before moving to the logical design phase, it is an excellent practice for the 

relational DB to verify the model against transactions, which the future users will 

perform on the data [6]. Transactions mean the updating, searching, retrieving, 

inserting, and deleting of the data [6]. In graph DB design, the suggestion for 

testing comes after the logical design phase before implementing the model in a 

graph DB [5] [7]. 
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2.4.3. Logical data model 

 

The logical data model produced in the logical design phase defines how the DB 

should be implemented without specifying which DBMS should be used [33]. 

When designing the relational DB, the high-level ER model is mapped into tables 

to fulfill the expectations of the logical structure of the relational model [6]. For 

the graph DB, the conceptual data model remains a graph when considering the 

data model requirements of the graph data model [6]. This model adds further 

details to the conceptual data model and functions as the base for the physical 

data model design [33]. 

 

Chapters 2.3.1 and 2.3.2 presented an example of a university relational DB being 

designed by creating the ER and then the relational models. Involved in the 

creation of this model are usually data architects and business analysts [33]. 

Together, they develop a technical map of rules and data structures based on 

technical and performance requirements [33]. Attribute types are specified with 

exact precisions and lengths. To avoid duplicate data entries and to ensure only 

related data is stored in each table, normalization is usually applied until the third 

normal form (3NF) [33]. In the relational DB design, an attribute on a relationship 

or other attribute is allowed in the conceptual data model, but no longer in the 

logical data model, (see chapter 2.3.2). 

 

The conceptual data model for a graph DB is enriched by clarifying relevant roles 

and labels, attributes and properties, and relationships [5]. Figure 17 shows how 

the conceptual data model in Figure 16 has been transformed into a logical data 

model. Bechberger and Perryman highlight that the usual differences between 

the conceptual data model and logical data model are that something that was an 

entity in the conceptual data model is implemented as a property on a node in the 

logical data model [7]. In graph DB design, the logical data model is the final 

design step. Hence, it is emphasized to test this model before implementing it in 

a graph DB [5] [7]. In the testing phase, the questions identified in understanding 

the problem and the conceptual data model are utilized to verify if it is possible to 

traverse through the model to find answers to the questions [7]. 
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Figure 17. The logical data model for the same movie example as in Figure 16 (picture source [37]) 

 

2.4.4. Physical data model 

 

The logical data model needs refinement to a physical data model when the DB 

system requires the schema to be explicitly specified [7]. As the GDBMS are 

schemeless, this is seldom the case for a graph DB [5] [7]. For the relational DB 

with its rigid schema, the physical data model defines how the DB shall be 

implemented utilizing a specific RDBMS [33]. This model contains the 

specification of the physical features of the RDBMS [6].  

 

Physical features can decide the form of file organization as well as views and 

index structures [6] [33]. Naming conventions of the RDBMS need to be followed 

for naming the tables and attributes, actual data types need to be set for the 

attributes, and constraints, such as primary and foreign keys, need to be specified 

[33] [38]. For better performance in DB queries, the normalization made in the 

logical data model can be abandoned in the physical data model [5]. This is called 

denormalization [5]. A simple example of this is shown in Figure 18, where the 

upper frame shows normalized data and the lower frame shows denormalized 

data. Through denormalization, the email attribute has been inlined in the user 

table. This reduces the penalty of joining operations in queries but introduces 

data redundancy [5]. For the relational DB, the physical data model is used in the 

actual implementation of the DB [33]. Therefore, it is easy to transform into SQL 

scripts that are utilized in creating the DB schema [38]. 
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Figure 18. Example of 3NF normalized versus denormalized data (author’s picture) 
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3. LITERATURE REVIEW 

 

Chapter 1 mentioned Wärtsilä’ s increased interest in the graph DB. The graph 

data DB is assumed suitable for a dynamic business environment where it 

reduces query times and handles relationships between data better than a 

relational DB. In this chapter, a motivation pattern for a possible scenario when 

an enterprise considers shifting from the relational DB to graph DB, is followed. 

The aim is to understand if the graph DB is reasonable for enhancing 

manufacturing collaboration in internal and partner networks. 

 

Some weaknesses of the relational DB are listed in chapter 3.1. Chapter 3.2 

shows how the graph DB solves the most significant drawback. In chapter 3.3, 

the market is investigated, and it is realized that the market leaders use a graph 

DB. In chapter 3.4, a success story matching this study’s use case is searched for. 

In chapter 3.5, it is recognized that the problem at hand needs to be understood 

first and that an analytical approach needs to be used to guide the decision. 

Chapter 3.6 summarizes the findings with a specific focus on whether the graph 

DB is more dynamic, handles relationships better, and performs better in queries 

than the relational DB. 

 

This chapter thus presents the findings from the literature for RQ1, and more 

specifically, the answers to these questions: 

• How to choose between a relational DB and a graph DB implementation? 

What are the benefits and drawbacks, and what are the current trends?  

• Are graph data models and graph DB implementations dynamic? 

• Is managing and handling relationships among data elements easier in a 

graph DB than in a relational DB? 

 

 

3.1. The relational DB and its weaknesses 

 

The popularity of the relational DB goes back to 1980 [9]. It is still frequently 

used, and for some use cases, it is still the best option for storing and organizing 

data [9]. Hurlburt et al. suggest that just as the television did not replace the radio, 

the graph DB will not replace the relational DB [32]. The relational DB is excellent 

for data aggregations [32]. Its high data integrity and consistency make it well-
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suited for applications where the security of transactions needs to be ensured 

[17]. For example, extensive credit card processing systems that require reliable 

non-stop operation rely on the relational DB [32]. It is not suitable for use cases 

requiring frequent updates to the DB schema, [9] [32] [17] nor when data 

volumes proliferate [17].  

 

Introducing a structural change is risky and can take weeks or even months [5]. 

One reason for the high maintenance cost is that the relational DB stores 

structured data in tables with predefined columns [9]. Each row in the table 

represents a record, and the intersection between the row and the column 

represents a specific data value [17]. There cannot be duplicate rows in a table, 

as it would cause ambiguity when executing queries [18]. To prevent duplicate 

rows, each table has a primary key consisting of one or several columns with 

values unique for every row [18]. The table has another name, relation, and a 

column in a link is the attribute [6]. Each relation represents records of a specific 

type [6]. The name of the relational DB can hence be misleading, where one 

wrongly assumes that the relation is the link between data elements and not the 

actual tables [9]. 

 

Handling relationships is a significant weakness in the relational DB [9] [39]. 

Instead of storing relationships, they are computed through expensive join 

operations in query executions [17]. The join operations are costly due to the 

underlying relational model which, in a query, builds a set of all possible answers 

before filtering to arrive at the correct solution [5]. With today’s highly connected 

data needs, any enterprise failing to understand connections when making 

important data-driven decisions will lack crucial insight [9].  

 

Bechberger and Perryman highlight that for every hundred queries used in a 

modern application, the relational DB can handle only eighty-eight queries [7]. 

The remaining twelve queries deal with complex data links and connections [7]. 

Especially the queries requiring investigations deeper than three hierarchical 

levels, will show the degradation in performance in a relational DB compared to 

a graph DB [39]. Robinson et al. [5], bring up an example for query times between 

an RDBMS and the Neo4j GDBMS to be according Figure 19. Query times for Neo4j 

remain stable no matter the hierarchy dept, while the RDBMS cannot deliver a 

query result on the hierarchy dept level five [5]. 
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Figure 19. Comparison of execution times in a social network using RDBMS versus GDBMS (author’s picture 

adopted from values in [5]) 

 

Another weakness of the relational DB is that data mapping into tables is not 

how data exists in the real world [9]. In the real world, data exist as objects and 

as relationships between these objects [9]. Cao et al. [39] warn that some 

knowledge about the data is lost when data is stored in a relational DB. When 

product component data is stored in a relational DB, you only understand which 

components the product consists of [39]. Holding the same components and their 

relationships in a graph DB ensures that the entire product structure is known 

[39]. In this case, the graph enables the product to be represented in a 3D 

modeling environment as it can be seen in real life [39]. From this connected 

structure, design changes are easy to manage, as a change in one component 

could, in real-time, indicate which other parts are affected by the change [39]. The 

product component nodes can be further connected to supply chain data to 

understand the supplier and customer data [39], which gives an even further 

real-world perception, where claims concerning specific components are easy to 

track [39]. 

 

 

3.2. Graph DB addressing the weakness of relational DB 

 

The graph DB can be an alternative or an additional option if the relational DB 

does not manage well with increased attributes, more data, higher speed 

requirements in business agility or data accessibility, and significantly more 

connections between data elements [9]. The graph DB consists of two main 

elements, a node and an edge [9]. The node represents an entity, and the edge 

describes the relationship between two nodes [9]. When several nodes and edges 

are assembled, they form connected structures called graphs that define a specific 

problem domain [9]. In contrast to the relational DB, the graph DB is explicitly 
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designed to handle and store relationships between data elements [9]. In a 

graph DB, a relationship is seen as essential or even more important than the data 

element itself [7]. It is worth noting that the other NoSQL DB types visualized in 

Figure 5 are not explicitly designed to handle relationships [5].  

 

The graph makes adding new nodes and edges easy when adapting to new 

business requirements [13]. Additions do not require data migrations as the 

original data and the purpose remain intact [5]. Bechberger and Perryman 

disagree and indicate that changes in a graph DB can still cause data migration 

needs. Therefore, they note the importance of not making changes because of 

poor design decisions and only due to business changes [7]. 

 

 

3.3. Market leaders using graph DB 

 

LinkedIn, Google, Facebook, and PayPal are early adopters of graph DB, who today 

are market leaders who have formed their business value on data relationships 

[9] [17]. LinkedIn can be used as an example. They cover all their users with a 

graph. Hence, when browsing one’s LinkedIn account, all different connection-

level contacts and mutual connections can be seen in real-time [40]. Also, the 

giants in e-commerce, Amazon.com and Wish.com, utilize graphs to rapidly query 

information from a scattered and rapidly growing dynamic network of data to 

give users spot-on recommendations [40].  

 

A white paper from October 2021 states that more than seventy-five percent  of 

Fortune 500 companies use graph DB technology [21]. Among these are:  

1. Seven of the world’s top ten retailers 

2. Three of the top five aircraft manufacturers 

3. Eight of the top ten insurance companies 

4. All North America’s top twenty banks 

5. Eight of the top ten automakers 

6. Three of the world’s top five hotels 

7. Seven of the top ten telecommunications companies 

  

https://fortune.com/fortune500/2021/search/
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3.4. Use cases gaining success through graph DB 

 

Despite the growing trend of graph DB utilization, further investigation is needed 

to understand if this is a suitable choice for our problem area. Webber and 

Robinson provide a list of five generic use cases where a graph DB brings benefits 

to any enterprise [13]: 

1. Real-time fraud detection 

2. Real-time recommendations to users  

3. Master data management 

4. Network and Information Technology Operations 

5. Identity and accesses management 

 

Saarela agrees with this list and adds use cases for compliance with regulations, 

analytics, digital asset management, context-aware services, semantic search, 

and situational awareness [40].  

 

Reflecting on chapter 1 and Wärtsilä’ s desire to know if and how a GDBMS can 

enhance manufacturing collaboration in internal and partner networks, it could be 

assumed that all of the use cases mentioned above could be encountered in the 

requirements for these networks, making the graph DB appealing. For the scope 

of this study, only one use case is selected for further investigation. Master data 

management is chosen. This selection is based on the assumption that master 

data sharing for increased transparency, traceability, and quality improvements 

will be of vital interest in the manufacturing ecosystem. 

 

Master data usually consists of data concerning customers, products, accounts, 

vendors, and partners [41]. It is highly dynamic and sharable data that is difficult 

to fit into a static and generic data model [41]. It is also challenging to assume that 

all master data could be physically stored in one location and that one system 

could serve all the needs in master data management [41]. Therefore, enterprises 

end up with separate systems covering different needs of master data 

management [41]. This creates a risk for information silos, where the data needed 

for decisions is not available in real-time [41].  

 

Where data is stored is not relevant. Critical is the availability of consistent and 

meaningful views of master data, and that value can be derived from the data and 

its relationships [41]. Building relationships between the scattered master data 
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elements and achieving real-time query performance is seen as challenging and 

expensive in a relational DB [41]. The graph DB, with its characteristic of 

mastering relationships between data elements in a dynamic data structure, 

makes it an optimal choice for managing master data within an enterprise [41] 

[40] and beyond. 

 

 

3.5. Analytical approach for deciding DB type 

 

Choosing the graph DB over the relational DB based on reading success stories 

and use cases described on the Internet is, according to Bechberger and 

Perryman, not a good approach [7]. The risk is getting confused by drastic 

oversimplifications, such as, “everything is a graph problem” [7]. In contrast, 

there is a risk that the developers choose the familiar relational DB as a form of 

convenience or ignorance [7]. However, Robinson et al. note that moving from a 

well-established and well-known data platform to graph DB must indicate 

immediate and remarkable practical benefits in query performance, flexibility, 

and agility [5]. 

 

A graph DB is more elegant than a relational DB in problems needing recursive 

queries, different result types, or paths [7] [5]. An analytical approach is 

proposed to understand if the issue at hand holds these needs. The initial 

question in this analysis is: “What problem are we trying to solve?” [7]. Sorting 

this out creates an understanding of what data will be stored and how it will be 

retrieved [7]. Generalized, any problem fits into one of the following categories 

[7]: 

• Selection/search 

• Related or recursive data 

• Aggregation 

• Pattern matching 

• Centrality, clustering, and influence 

 

Figure 20 summarizes how Bechberger and Perryman describe these separate 

categories and how they are utilized for selecting between the relational DB and 

the graph DB.  
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Figure 20. By sorting out the questions that will be answered based on the data in the DB, the correct DB type 

can be chosen (author’s picture adopted from the text in [7]) 

 

If sorting out the category does not clarify which DB type to use, the decision tree 

created by Bechberger and Perryman, visualized in Figure 21, can be utilized [7]. 

Bechberger and Perryman have placed the most vital question first, and 

answering “yes” to this question directly indicates that the graph DB is the best 

choice [7]. Following this decision tree, the graph DB seems to be a good choice 

for manufacturing collaboration in internal and partner networks where the 

relations will play a vital part, and frequent evolvements in the systems can be 

expected. However, there is no clear indication of immediate and remarkable 

practical benefits in areas like query performance, flexibility, and agility. The 

specific problem in the domain of interest should according to Robinson et al. be 

sorted out before deciding to move from a familiar DB type to the graph DB [5]. 

 

https://en.wiktionary.org/wiki/%E2%80%9C
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Figure 21. Decision tree to decide between a relational DB or a graph DB (Picture source: [7]) 

 

 

3.6. Dynamic data model 

 

The data models used today need to be flexible and scalable to respond to the 

changing demands from within the company and beyond [4]. They need to be 

designed to handle complex data and enable rapid insight from data connections 

[7]. The data models must be dynamic, allowing the processes to be carried out 

with different approaches but still manage situations where the result is 

combined and presented [4]. This chapter investigates arguments to understand 

if the data models produced for the relational DB versus the graph DB are 

dynamic. 

 

The data models produced for a relational DB are rigid table constructions 

designed to reflect the data needs of a business at a certain point in time [4]. Their 

response to change is weak and requires expensive configurations to reflect 
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changes in business needs [4] [5]. When the data models are designed, there is 

usually a need to predict future needs and integrate these requirements into the 

models [4]. When the design process is performed, it is often wrongly assumed 

that the business is committed similarly throughout the company [4]. If 

differences exist, multiple data models may be required [4].  

 

The relational DB design approach is challenging in a world where change is 

constant and the future difficult to predict [4]. Robinson et al. [5] recommend 

using the graph data modeling approach instead of moving through the relational 

DB design process of translating a graph representation into tables, which is done 

when the ER model is transformed into the relational model. They claim that each 

step in the design process, conceptual data model –> logical data model –> physical 

data model, increases the gap between the conceptual world and the model 

understood by business stakeholders versus how the DB is implemented. This 

gap causes challenges when business needs are changed and must be translated 

into concrete actions for the DB implementation. The relational DB design phases 

are slow and cause the system to lag behind the evolution of the business. Figure 

22 visualizes the gap and the increased risk of misunderstandings between 

conceptual and DB implementation when performing data modeling for a 

relational DB versus a graph DB. 

 

The graph data model approach is simple, intuitive, and business stakeholder 

friendly [5]. The intuitive graph representation of the conceptual world remains 

as a graph no matter the design phase [5]. For Bechberger and Perryman [7], this 

approach is the solution to fewer design mistakes and easier data model changes. 

Adding new elements to the graph model and DB implementation is easy and 

straightforward [5] [7]. It remains unclear if data migrations are needed when a 

change is made in the data model. Robinson et al. states that no costly and risky 

data migrations are required [5]. At the same time, Bechberger et al. notes that 

changes in the graph model need changes in the DB implementation, leading to 

code changes and some data migration [7].  
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Figure 22. The gap between the conceptual world and the design steps for a relational DB versus a graph DB 

implementation (author’s picture) 

 

 

3.7. Conclusion 

 

Chapter 3 discussed different situations where the relational DB is suited and 

where the graph DB is a better choice. It became clear that this decision should 

not be taken based on developers’ preferred choice of DB type or by looking at 

success stories from use cases on the Internet. The problem at hand must be 

understood before selecting the DB type. Understanding which type of queries 

will be addressed on the data in the DB is vital. Mapping the questions according 

to the example in Figure 20 can help to choose the correct DB type. The DB type 

choice is not straightforward, and sometimes the optimal choice is a hybrid with 

several DB types. 

 

The interest in a graph DB existed in Wärtsilä before the agreement for this thesis 

work was made. Based on the literature review, the graph DB seems to be the 

correct choice for enhancing manufacturing collaboration in internal and partner 

networks. However, a hybrid approach is the most realistic scenario for this type 

of enterprise network. With the hybrid system, the optimal data for a relational 

DB are stored in a relational DB, and the optimal data for a graph DB is stored in 
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a graph DB. Everything depends on the enterprise network’s requirements and 

use cases. 

 

When going through the scenario for why an enterprise would move to a graph 

DB from a relational DB, the characteristics listed in   
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Table 4 are recognized. In the table, the happy smiley indicates a positive aspect, 

the sad smiley indicates a downside, and the meaning of the neutral smiley is 

clarified in the table. In chapter 1, the requirement for dynamic data models and 

data models excelling in data queries involving joins were mentioned as two 

essential elements.  

 

Based on the arguments in chapter 3.6, it is understood that the data model for a 

relational DB is not dynamic. The data model for a graph DB is dynamic and more 

intuitive than the relational data model. Hence, it is better understood by 

business stakeholders, making discussions and alignment with modification 

needs easier. The literature review did not find any investigations where it is 

measured how much more effort and time is required for relational versus graph 

data modeling. 

 

Based on the literature review, handling relationships is a significant weakness 

in the relational DB [9] [39]. Instead of storing relationships, they are computed 

through expensive join operations [17]. Join operations become costly due to the 

underlying relational model that, in a query, builds a set of all possible answers 

before filtering to arrive at the correct solution [5]. The graph DB stores 

relationships directly in the graph structure and quickly returns a result for 

queries that would require joins between tables in a relational DB [5].  
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Table 4. Recognized benefits and drawbacks of the characteristics described in chapter 3 

Characteristic Relational DB Graph DB 

High data integrity 
and consistency 

 

Relational DBs are known 

to be fully ACID compliant. 

 

Neo4j is entirely ACID 
compliant. However, this is 

not the case for all graph 
DBs. NoSQL DBs are 
generally only BASE 
compliant (Table 2).  

Handling 
relationships 

  

Maintenance cost 

  

Query execution time 

 

Depending on the size of 

the DB and how many 

hierarchical levels need to 

be searched. Performance 

decline when more than 

three hierarchical levels. 

 

Quite stable query execution 

time, no matter the 

hierarchical level. 

Intuitiveness (data 
mapping 
corresponds to how 
we perceive it in the 
real world) 

  

Handling the 
dynamic business 
environment and 
changing 
requirements 
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4. CASE STUDY 

 

This chapter presents the case study consisting of the following: 

1. Relational and graph data modeling experiment design and case study (to 

answer RQ2) 

2. Graph data model implementation in Neo4j standalone desktop version 

(to answer RQ3).  

 

The literature indicates that the relational data model’s response to change is 

weak and requires expensive configurations to reflect changes in business needs 

[4] [5]. In contrast, the graph data model is described to be dynamic. It is easy to 

add new data elements when adapting to new business requirements in the graph 

data model [13]. Despite the dynamic capability being highlighted as a benefit of 

the graph data model, we note that research comparing the relational domain to 

the graph domain mainly focuses on DB query execution times and handling 

relationships between data elements. The literature review did not find any 

experiments investigating the difference in effort and time needed to implement 

and modify a relational data model versus a graph data model.  

 

The data models implemented in this case study cover equal data needs. The case 

study is set up with an experimental design and analysis approach. The 

implementation level is the logical data model for a relational DB and a graph DB. 

The data modeling tools selected are the ERDPlus [42] for relational data 

modeling and the arrows.app [43] for graph data modeling. The data needs are 

understood from discussions with business stakeholders and an analysis of an 

engine’s DBOP. The DBOP is available in an Excel file with a table of 9210 rows 

and 38 columns. The content of the DBOP is further explained in chapter 4.2.1. 

 

To understand if the graph data model is more dynamic than the relational model, 

an experiment is planned and tested as a case study.  The exact data needs were 

modeled as a relational data model and a graph data model. In the case study the 

author represents the subject., The limitation of having only one subject available 

creates the limitation of nut running a statistically relevant experiment. In a 

future experiment ten to twenty Information Technology students would be a 

reasonable subject scope.  
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The dynamic capability is seen as an indirect measure. To calculate the dynamic 

capability, the following data is realistic to collect: 

• The time needed for data analysis and discussions with business 

stakeholders to understand the data needs 

• The data modeling time 

• The number of data elements in the data model 

 

In addition, the subjective qualitative and subjective analysis of the difficulty level 

of building the relational data model versus the graph data model gives valuable 

insight.  

 

In the case study an independent domain expert reviewed the models to 

understand if the implementation meets the expectations of Wärtsilä. 

Quantitative implementation measures, such as query execution times, are 

beyond the scope of this case study and has neither been planned for in the 

experiment design. 

 

The design of the experiment is described in chapter 4.1. Chapter 4.2 describes 

the data modeling process and the resulting data models. Chapter 4.3 describes 

the steps and results of the graph data model implementation in the Neo4j 

standalone desktop version. 

 

 

4.1. Experimental design 

 

This chapter describes the outcome of the experimental planning stage. The 

chapter covers the reporting structure suggested by Wohlin et al. [44], Figure 23.  
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Figure 23. The reporting structure for the experimental design (picture source: [44]) 

 

 

4.1.1. Goal definition 

 

The experiment is motivated by the lack of evidence for the claim that the graph 

data model is more dynamic than the relational data model. Dynamic is seen as 

equal to the effectiveness and efficiency of creating a data model and later 

implementing changes to this model. The time for analysis and data modeling, 

together with a qualitative review of challenges faced during the implementation, 

indicate the implementation's efficiency. Effectiveness is a measure of how well 

the model meets the expected result. The best option in a dynamic environment 

is a model that is easy to implement and adapts to changes easily. If both the data 

modeler and the business stakeholder understand the implemented model, it is 

easier to discuss and align on needed changes.  

The object of study is a relational data model and a graph data model. Often in 

DB design, three levels of data models are created. These levels are presented in 

chapter 2.4. This experiment is limited to the logical data model. With this 

selection, the specific requirements of DB providers are avoided, but it is still 

possible to identify a difference between the graph and the relational models.  

The purpose of the experiment is to understand the dynamic capability of the 

relational data model and the graph data model.  
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The perspective is from the point of view of the author. Seeking to understand if 

the literature describing the graph data model to be more dynamic than the 

relational data model can be verified. 

The quality focus for the dynamic capability is on the effectiveness and 

efficiency of implementing the selected data model types. The time it takes to 

understand the data needs and later implement the relational data model versus 

the graph data model is measured in minutes. Also, the number of elements in 

each model is counted. In the relational data model, the tables and relations 

between the tables are calculated. The number of nodes and edges for the graph 

data model is considered. The effectiveness and efficiency of the data modeling 

are computed by summing the time it takes for data analysis and modeling, and 

then dividing this total time by the number of elements in the data model.  

Context. When the experiment is carried out three sequential steps are 

recommended. The first step is the data analysis and discussion with business 

stakeholders. The second step is relational data modeling and the third is graph 

data modeling. The data analysis and modeling shall be carried out in a 

disturbance-free environment. A maximum length of 90 minutes per session shall 

be set to ensure proper focus during the analysis and modeling. The date and time 

used per session shall be recorded. In the calculations, only each data model's 

complete analysis and data modeling time shall be used. 

The goal summary was defined using the Wohlin et al. goal template, Figure 24. 

 

Figure 24. Wohlin et al. goal template (Picture source: [44]) 

 

Analyze the graph data model and relational data model dynamic capability  

for the purpose of evaluation  

with respect to their effectiveness and efficiency  

from the point of view of the author  

in the context of a subject, first analyzing the data needs and then modeling the 

relational and graph data model for an engine DBOP. 
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4.1.2. Hypothesis formulation 

 

The basis for the hypotheses is that the graph data model is assumed to be more 

dynamic than the relational data model. The null hypothesis defines the graph 

and relational data models as equally dynamic. The alternative hypothesis 

explains the graph data model as more dynamic than the relational data model.  

Table 5 presents the null and alternative hypotheses and measures needed in the 

experiment.  

 

Table 5. Null hypothesis and alternative hypothesis, together with their mathematical formulation and 

measures needed for understanding the dynamic capability of the data models 

The null hypothesis, H0: The alternative hypothesis, H1: 
H0_crete: Analyzing the data needs and 
implementing a graph data model 
requires as much effort and time as the 
corresponding relational data model. 

H1_crete: Analyzing the data needs and 
implementing a graph data model 
requires less effort and time than the 
corresponding relational data model. 

Mathematical formulation: 
H0_crete: (AnalysisTime(graph) + 
CreateTime(graph)) / Elements(graph) = 
(AnalysisTime(relational) + CreateTime 
(relational)) / Elements (relational) 
 
Simplified:  
H0_crete: CreateEff(graph) = CreateEff 
(relational) 

H1_crete: (AnalysisTime(graph) + 
CreateTime(graph)) / Elements(graph) > 
(AnalysisTime(relational) + CreateTime 
(relational)) / Elements (relational) 
 
Simplified:  
H1_crete: CreateEff(graph) > CreateEff 
(relational) 

Measures needed: 
When the data needs are understood: 
During analysis and discussion sessions, the time used is recorded in minutes. When 
the model is completed, all session times are summed and registered as, AnalysisTime.  
 
When the models are implemented: 
During the modeling sessions, the time used is recorded in minutes. When the model 
is completed, all session times are summed and registered as, CreateTime.  
 
After model implementation: 
The number of elements in the data model is calculated when the model is complete. 
For the relational data model, the number of tables and the relations between the 
tables are counted. The number of nodes and edges for the graph data model are 
measured. 
 
The effectiveness and efficiency of implementing the data model for a specific data 
model type, CreateEff, is calculated with the formula also used in the mathematical 
formulation of the hypothesis: 
CreateEff = (AnalysisTime(modelType) + CreateTime(modelType)) / 
Elements(modelType) 
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4.1.3. Variables 

 

The variables used in the experiment are summarized in Table 6. The data model 

type is the only independent variable. It has two nominal levels: a graph data 

model and a relational data model.  

 

The variables of the subject experience in graph data modeling and relational 

data modeling are controlled. The subject’s experience is mapped per modeling 

type and measured on an ordinal scale with the levels: 

1. No prior experience. 

2. Followed a course or read a book. 

3. Less than six months of industrial experience. 

4. More than six months of industrial experience.  

 

The dependent variables are related to the time spent on data analysis and 

modeling and the number of elements in each data model. The time measured is 

objective. The decision of whether the model is correctly implemented is 

subjective. Also, the number of elements can be considered subjective. The reason 

is that fulfilling specific data needs can be modeled in numerous ways. To 

minimize the bias in these measurements, the 3NF normalized form for the 

relational model and guidelines on building a labeled property graph for the 

graph data model are followed. In determining if the model is correct, a 

qualitative review is performed with an independent and experienced data 

modeling expert and a business stakeholder.  

 

The effectiveness and efficiency of the model are calculated as the summed data 

analysis and modeling time, divided by the number of elements in the data model. 

This measure gives an understanding of the dynamic capability of the data model 

type.  

  



53 

 

Table 6. Variables used in the experiment 

Name Values Description 
ModelType {graph, relational} The subject creates two alternative logical 

data model types: a graph data model and a 
relational data model.  

GraphExp Ordinal The subject’s experience with modeling 
graphs is measured on a four-level ordinal 
scale. 

RelationalExp Ordinal The subject’s experience with relational data 
modeling is measured on a four-level ordinal 
scale. 

AnalysisTime Integer The total time subject uses when analyzing the 
data needed for a data model. The unit is 
minutes. 

CreateTime Integer The total time subject uses when creating a 
data model. The unit is minutes. 

Elements Integer The number of elements in a data model.  
CreateEff (AnalysisTime + 

CreateTime) / 
Elements 

The effectiveness and efficiency of the 
implementation of the data model. The units 
are left out in the CreateEff calculation. 

 

 

 

4.1.4. Design 

 

When designing the experiment, the hypothesis was used as a starting point to 

understand which statistical analysis to perform to reject the null hypothesis 

[44]. The experiment was designed as a set of tests from which the data needed 

for the statistical analysis was collected. General design principles of 

randomization, blocking, and balancing were followed in the design [44].  

Randomization was used to fulfill the requirement of collecting the data for 

statistical analysis from independent random variables [44]. Randomization can 

be applied to the objects, subjects, and the order of the tests in the experiment 

[44].  

The subjects for the experiment are recommended to be a natural random 

selection of ten to twenty M.Sc. Information Technology students at Åbo Akademi. 

The subjects perform data analysis and discussions with business stakeholders 

to understand the problem and to create the data models. The order in which the 

models are created could be randomized. Instead, a conscious decision to create 

the data model for which the subject has better experience first. This balances the 
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subject performance possibilities when creating the two alternative data models. 

Starting data modeling on an unfamiliar data set takes time. It is hence considered 

fair to take the hit in ramp-up time when modeling the more familiar modeling 

type. This way, undertaking the more unfamiliar data modeling type will only 

cause ramp-up time in the modeling approach and not the data set. Due to the 

small size of the experiment, no blocking was applied.  

Wohlin et al. also present some frequently used experiment design types, which 

range from simple experiments with only one factor to more complex ones with 

many factors [44]: 

• One factor with two treatments. 

• One factor with more than two treatments. 

• Two factors with two treatments. 

• More than two factors, each with two treatments. 

The factor is the independent variable on which treatments are applied [44]. The 

only factor is the ModelType. There are two treatments: graph and relational. This 

experiment’s design type is one factor with two treatments. This type of 

experiment intends to compare two treatments against each other [44]. The 

dependent variables of this experiment are defined in chapter 4.1.3. The main 

interest is the CreateEff, which indicates the dynamic capability of the data model. 

The most used approach for the one factor with two treatments experiment 

design type is to have a completely randomized design where the subject uses 

only one treatment. In this experiment, the same subject uses both treatments. 

This design type is defined to be a paired comparison design or a crossover 

design. The risk in the paired comparison design is that the subject utilizes 

experience from treatment one when applying the second treatment. This risk is 

identified as an opportunity. In case where the relational is more familiar, the 

relational is selected to be used as the first treatment. The experience from 

relational data modeling can then be utilized when applying the graph treatment. 
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4.1.5. The subject 

The subjects for the experiment are recommended to be a natural random 

selection of ten to twenty M.Sc. Information Technology students at Åbo Akademi.  

In the case study the subject is the author, who is an M.Sc. Information 

Technology student at Åbo Akademi, Vaasa. The author has experience level 4, 

more than six months of industrial experience, in relational data model design. The 

graph data modeling experience level is 2, followed a course or read a book. Level 

2 in graph data modeling is acquired from the literature review made for this 

study.  

 

4.1.6. The object 

The objects of the study are a relational data model and a graph data model. 

Both are on a logical data model level and describe the same data scope. The data 

scope is the DBOP for an engine produced in the Wärtsilä STH delivery center in 

Vaasa, Finland.  

 

4.1.7. Instrumentation 

 

Wohlin et al. [44] recognize three types of instruments to be chosen in the 

planning phase of an experiment. These are objects, guidelines, and measurement 

instruments. The following are needed: 

• The exact data scope will be used for the graph and relational data models. 

• Mapping the experience level of the subject. 

• Basic understanding of data modeling concepts, chapter 2. 

• Selection of and familiarization with data modeling tools. 

• A timing watch for measuring the length of the data modeling sessions. 

 

The data modeling tools selected are ERDPlus [42] for relational data modeling 

and arrows.app [43] for graph data modeling. These were chosen because both 

are free web-based data modeling tools. Both are easy to use due to their 

graphical modeling capability which does not require specific data modeling 
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language skills. Both offer the possibility of exporting the created data models as 

query commands to be used when a DB is created. The query language used in 

the export by ERDPlus is SQL [42]. Arrows.app exports query commands as 

Cypher clauses [43]. 

 

 

4.1.8. Data collection 

The case study to evaluate the experiment design was carried out during the fall 

of 2022. The measurements needed and the data collection approach is defined 

in Table 6.  

 

4.1.9. Analysis procedure 

The mathematical analysis model is selected based on the experiment design 

type. The condition of the experiment hypothesis is accepted or rejected based 

on the observed p-values. The p-value is the lowest possible significance that can 

reject the null hypothesis. [44] 

In chapter 4.1.4, the design type was specified to be paired comparison design. 

Examples of analytical models suitable for the paired comparison design are a 

paired t-test, a sign test, and a Wilcoxon [44]. The paired t-test is a parametric 

test that requires some of the parameters involved in the test to be normally 

distributed and the values to be on an interval scale [44]. The sign test and the 

Wilcoxon are non-parametric tests that do not require a specific distribution of 

the involved parameters [44]. The analyzed parameters (time in minutes, 

number of elements, effectiveness, and efficiency) are on a ratio scale, and normal 

distributions are not guaranteed. Based on this, the Wilcoxon test was selected 

for the analysis. A significance level of 0.05 was chosen to consider the result 

significant. In other words, the probability of not getting a random result was 

95%.  
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4.1.10.  Evaluation of validity 

 

A valid result can be ensured by considering the experiment's validity already in 

the planning stage [44]. Wolin et al. [44] describe different types of threats to the 

validity of an experiment.  

 

Conclusion validity concerns correct conclusions concerning the relationship 

between the treatment and the experiment result [44]. Possible problems are 

choosing the wrong statistical analysis or performing mathematical calculations 

wrong [44]. The conclusion validity also highly depends on the data quality used 

in the calculations [44]. Internal validity addresses issues where some 

uncontrolled factors affect the result of the experiment [44]. Construct validity 

discusses problems with how the experiment is designed [44]. External validity 

concerns if we can generalize the experiment to other environments, subjects, 

and contexts [44]. 

 

Validity in the experiment can be ensured by: 

• Noting the importance of not searching for a specific experiment result.  

• Having an independent data modeling expert verify the correctness of the 

data models. 

• Including the time-consuming task of understanding the data needs as a 

measure in the experiment. 

• Understanding the basic concepts of relational data modeling and graph 

data modeling. This is ensured by performing the background study and 

literature review before the experiment. 

• Recognizing the need to map the experience of the subjects. This will help 

understand if the result is screwed due to unbalanced relational and graph 

data modeling skill levels. 

• Disturbances are eliminated by keeping the experiment in a quiet 

environment and not allowing more than 90 minutes for each data 

analysis or modeling session.  

 

The generalization of the result is limited to relational and graph data models. 

Understanding the dynamic capability of other data models needs separate 

investigation. Additionally, the limitation to the logical data model shall be noted. 

More data model levels, like conceptual and physical models, would be included 
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in an actual DB design and implementation scenario. An increased amount of data 

models increases the complexity and data modeling time.  

 

Generalizing the result to an industrial setting with more experienced subjects 

cause a situation where the time needed to carry out the data analysis and 

modeling is reduced. Also, the data scope and cooperation with business 

stakeholders affect the result of the experiment. The data analysis time is reduced 

if the business stakeholders communicate their needs. While more data analysis 

time is needed in case discussions with business stakeholders are minimal. It is 

expected that the ratio of the dynamic capabilities of the relational data model 

versus the graph data model remains the same no matter the data in the scope 

and the involvement of the business stakeholders. 

 

 

4.2. Data modeling 

 

In our case study an incremental data modeling process is used where the steps 

described in chapter 2.4 are followed. The design process starts with 

understanding the problem and business needs. This is done through discussions 

with business stakeholders and analyzing any relevant material. The second step 

is to create the conceptual data model. We do not create a conceptual model but 

utilize an existing Excel file with a table describing the hierarchical structure of 

an engine DBOP. The third step is to make the logical data model. As the aim is to 

implement the graph data model in Neo4j, the labeled property graph is selected 

as the graph model type. For the relational data model, no specific RDBMS 

provider needs are considered. Still, we decided on a 3NF-normalized relational 

data model. In the 3NF normalized data model, we aim to build tables with a 

realistic minimum of duplicated data. At the same time also reduces the number 

of null values. The data model correctness is verified against the data needs and 

through an evaluation by an independent data modeling expert and business 

stakeholder feedback. 

 

The remaining part of this chapter covers the result of the process in Figure 25. 

The black text describes what was done and the blue text the measurements 

collected from evaluating the experiment design. The variables are explained in 

chapter 4.1.3. The measures are explained in chapter 4.1.2. Chapter 4.2.1 

presents the data modeling needs. Chapter 4.2.2 presents the decisions made 
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when creating the relational and graph logical data models, including 

modifications to fulfill the expectations of the independent data modeling expert 

and business stakeholder.  

 

 
Figure 25. Data modeling process, including the measures and calculations needed for the experiment 

(Author’s picture) 

 

4.2.1. Understanding data modeling needs 

 

An ideal scenario for data modeling is where the data modeler and business 

stakeholders discuss and align on the data needs. Discussions with business 

stakeholders are minimal in this experiment. Instead, focus is put on 

understanding the data needs from the DBOP Excel file. The business stakeholder 

describes the DBOP as the manufacturing steps of an engine built at the Wärtsilä 

STH manufacturing site in Vaasa. The DBOP is engine configuration specific and 

matches the needs of a unique engine. Other variations in the DBOP are due to 

the layout of the manufacturing site.  

 

In Figure 26 to Figure 28, the 29 first rows of the DBOP can be seen. The data is 

obfuscated not to disclose company-sensitive data. According to the business 

stakeholder, the key column in the DBOP Excel file is the StrLevel. In contrast, the 

data modeling expert selected the TcType column. Further explanations of the 

DBOP were not given. Due to this minimal input that does not provide much 

guidance for the data modeling, only 10 minutes from the discussions with 

business stakeholders were recorded to the AnalysisTime variable for both the 

relational and graph treatment.  

 

The DBOP Excel file data analysis took place on the 17th – 20th of August 2022. 

The total analysis time was 597 minutes. During the analysis, it was not easy to 

distinguish which part was dedicated to the relational versus the graph data 

model needs. The data modeling phase, described in chapter 4.2.2, revealed that 

the data analysis is ninety percent focused on the requirements for the relational 
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data model.  The remaining ten percent focused on the needs for the graph data 

model, the investigation concerning the hierarchical structure of the DBOP. Based 

on this understanding, the 537 minutes were added to the 

AnalysisTime(relational) and 60 minutes to the AnalysisTime(graph). When 

adding the 10 minutes of discussion with the business stakeholder, the total 

AnalysisTime(relational) is 547 minutes, and AnalysisTime(graph) is 70 minutes. 
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Figure 26. The 29 first rows of the DBOP Excel file. Part 1 of 3. The data is obfuscated. (Author’s picture) 
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Figure 27. The 29 first rows of the DBOP Excel file. Part 2 of 3. The data is obfuscated. (Author’s picture) 
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Figure 28. The 29 first rows of the DBOP Excel file. Part 3 of 3. The data is obfuscated. (Author’s picture) 

 

In this chapter, the findings from the DBOP Excel analysis are presented. Due to 

company-specific and sensitive data, some data is obfuscated or hidden. Instead 

of focusing on specific data values, the aim is to: 

• Check and handle duplicate data. 

• Check and handle columns containing only null values. 

• Understand relationships between data elements and how the 

hierarchical structure of the DBOP is constructed. 

• Identify groups of data. The primary keys are mapped in the identified 

groups for the needs of the relational data model. 

 

The size of the DPOB is 9210 rows and 38 columns. This large Excel file requires 

structured and efficient data analysis. Python 3.6 was selected as the 

programming language. Jupyter Notebook’s version 4.5.6 web-based 

interactive computing platform was chosen as the programming environment. 
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This selection was made due to the author’s preference. Building the data analysis 

with a Python script also enables code to be reused for other engine DBOP 

analyses.  

 

Figure 29 shows the Python libraries used in the data analysis. Pandas is the most 

central library used. The data is stored in a Pandas data frame when reading the 

data from the Excel file. From the Pandas data frame, data is manipulated, viewed, 

and used. Pandas is an open-source data analysis and manipulation tool that is 

fast, powerful, and easy to use [45]. NumPy is used in Python array computations 

because it is fifty times faster than traditional Python lists [46]. NumPy also 

includes many supporting functions that make working with arrays easy [46]. 

Matplotlib, Seaborn, NetworkX, and Pydot are used to visualize data. Table 7 

summarizes the library versions used in the analysis.  

 

 
Figure 29. Libraries used in the data analysis (Author’s code) 

 

Table 7. Library versions used in the data analysis 

Library Version 
Numpy 1.19.5 
Pandas 0.25.3 
Matplotlib 3.2.2 
Seaborn 0.11.2 
NetworkX 2.5.1 
Pydot 1.4.2 

 

 

Figure 30 shows the code for viewing the DBOP data frame info. In the result, 

Figure 31, the number of rows and columns in the data frame and the name and 

datatype of each column can be seen. The number of non-null values per a specific 

column is also presented. Five columns in the data frame contain only null values. 

These columns are: 

• occpuid 

• Plant 

• CombidingParameter 
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• MfgProcessRevision 

• METargetItemID 

 

The columns without values do not bring value to the data analysis or the data 

model and are thus removed. Columns marked as irrelevant by the business 

stakeholders are also removed from the data frame. These are:  

• ParentRevUID 

• RevUID 

• ReleaseStatus 

• OccType 

 

 
Figure 30. The Pandas info method is utilized for viewing info about the DBOP data frame (Author’s code) 
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Figure 31. Info about the DBOP data frame (Author’s code) 

Before starting a more detailed data analysis, it was checked if the DBOP data 

frame has duplicate data rows. The code and result for this check are presented 
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in Figure 32. The result shows that there are no duplicate rows in the data frame 

that would need to be addressed.  

 

 
Figure 32. Code and result to check if duplicate data rows exist in the DBOP data frame. (Author’s code) 

 

A contradicting message concerning a pivotal column to use in the data analysis 

was received in the initial discussions with the business stakeholder and the data 

modeling expert. One of then marked the StrLevel as the essential column, while 

the other specified the TcType as important. Hence, it is relevant to understand if 

there is a direct relationship between these two columns.  

 

A relationship is confirmed if a unique value of TcType returns a unique value of 

StrLevel and if a unique value of StrLevel returns a unique value of TcType. Figure 

33 shows the code for a function plotting how many unique values of 

columnName each group value has. Figure 34 is the result of calling this function 

to understand how many TcType each StrLevel has. The result shows that there 

are values of StrLevel returning more than one TcType value. Hence, the TcType 

is not dependent on the StrLevel.  

 

 
Figure 33. Function for plotting how many values for the column given in the columnName argument exist for 

each column included in the group argument in the data frame given the in dataframeName argument. The 

graphTitle is the argument for the title of the plot. The rotationValue specifies which direction the x-axis ticks 

shall have. (Author’s code) 
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Figure 34. Number of unique values of TcType per StrLevel (Author’s code) 

 

Figure 35 shows how many unique values of StrLevel each TcType value has. The 

result indicates that five TcType values return more than one unique StrLevel 

value. Based on the outcome, it can be concluded that the StrLevel is not 

dependent on the TcType, and there is no direct relationship between the TcType 

and StrLevel. 

 

 
Figure 35. Number of unique values of StrLevel per TcType (Author’s code) 
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By looking at the column names, it was assumed that: 

• an OwningUser always belongs to the same OwningGroup 

• an OwningGroup has one or many OwningUsers 

 

Through investigation, this assumption was proved to be partly false. Figure 37 

shows that an OwningUser can belong to eight OwningGroups. Figure 38 confirms 

that an OwningGroup can have one or many OwningUsers. The function called 

when creating the graphs in Figure 37 and Figure 38 is visible in Figure 36. 

 

The OwningUser and OwningGroup values are hidden for confidentiality reasons. 

The OwningUser values represent the user identification in the Surname, 

Forename format, or as a code like grpadm. For the relational data model, where 

normalization rules are followed, consideration to split the forename and 

surname into separate columns is needed. The OwningGroup is a company 

organizational code in text format.  

 

 
Figure 36. Function for plotting how many values for the column in the columnName argument exist for each 

column included in the group argument in the data frame in the dataframeName argument. The graphTitle 

argument specifies the title of the plot. (Author’s code) 
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Figure 37. The number of unique values of OwningGroup per OwningUser (Author’s code) 

 

 
Figure 38. The number of unique values of OwningUser per OwningGroup (Author’s code) 

 

By looking at the column names and order of the columns, it is assumed that: 

• ParentRevID is the revision of the ParentID 

• RevID is the revision of the ID 

• RealizationRevisionID is the revision of the RealizationID 

 

Storing a revision value for the id calls for the understanding that an id can have 

several revisions. Figure 39 shows that the DBOP data frame has 2395 unique 

ParentID values and 11 unique ParentRevID values. The function in Figure 36 

checks the number of unique values of ParentRevIDs for each ParentID. Figure 40 

shows that most of the ParentID values have one ParentRevID. Looking carefully 
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at the graph in Figure 40, a line drop to Count level 0 can be seen on the right 

edge. This drop is for the ParentID value equal to the root. The root is the first row 

in the DBOP Excel file and the only ParentID without a revision value. 

  

 
Figure 39. The number of unique values of ParentID and ParentRevID in the DBOP data frame (Author’s code) 

 

 
Figure 40. The number of unique values of ParentRevID per ParentID (Author’s code) 

 

In the DBOP data frame, there are 5225 unique ID values and 18 unique RevID 

values, Figure 41. By calling the function in Figure 36, it is checked how many 

unique values of RevID each value of ID has. Figure 42 shows that most of the ID 

values have one RevID. Some ID values also have two, three, or six different RevID 

values.  

 

 
Figure 41. The number of unique values of ID and RevID in the DBOP data frame (Author’s code) 
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Figure 42. The number of unique values of RevID per ID (Author’s code) 

 

In the DBOP data frame, there are 21 unique RealizationID values and two unique 

RealizationRevisionID values, Figure 43. The function in Figure 36 is used to check 

how many unique values of RealizationRevisionID each value of RealizationID has. 

The result in Figure 44 shows that each RealizationID has one unique 

RealizationRevisionID.  

 

 
Figure 43. The number of unique values of RealizationID and RealizationRevisionID in the DBOP data frame 

(Author’s code) 

 

 
Figure 44. The number of unique values of RealizationRevisionID per RealizationID (Author’s code) 
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From the analysis result of the three different id columns and their respective 

revision columns, it is recognized that each value of ParentID and RealizationID 

has one unique revision. It can be dangerous to assume that each id will always 

have one revision. Instead, it is believed that having decided to include the id and 

its revision in the DBOP, these columns will be considered as a pair. The situation 

with the ID and the RevID pair is a likely scenario for the ParentID and the 

ParentRevID pair and the RealizationID and the RealizationRevisionID pair. 

 

The Id and the revision pairs are also recognized in the Ma9_ParentItem column. 

In this column, the id and the revision values are combined and separated with a 

/ character. This column has one or many ids and revision pairs in one value. Each 

pair is split with the | character. This column is hence multivalued. An example of 

values in the Ma9_ParentItem column can be seen in Figure 45. 

 

 
Figure 45. Ma9_ParentItem example values in the DBOP Excel file. The data has been obfuscated. (Author’s 

picture) 

 

A separate data frame is created from the DBOP data frame to investigate the 

Ma9_ParentItem. Only rows with a Ma9_ParentItem value are selected for the new 

data frame. Additionally, all columns containing only null values for the selected 

rows are dropped. The code and information about the new data frame are 

presented in Figure 46. The new data frame is named dfMa9_ParentItem and 

contains 4072 rows and 15 columns.  

 

Ma9_ParentItem

PABA191919/A|PABA181818/A

PABA252525/A

PABA077777/-|PABA055555/A|PAAF666666/A
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Figure 46. The data frame where every row has a Ma9_ParentItem value, and none of the columns contain 

only null values (Author’s code) 

 

For investigating the Ma9_ParentItem id and the revision pairs, a dedicated data 

frame containing only the Ma9_ParentItem column is created. In this data frame, 

the Ma9_ParentItem id and revision pairs are separated into pairwise rows, and 

the id and revision values are split into separate columns. The code for this is 

visible in Figure 47. The code rows with a comment sign (#) in front of the 

table_Ma9_ParentItem have been used to output intermediate results during 

coding.  
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Figure 47. The code for creating a separate data frame where the Ma9_ParentItem id and the revision pairs are 

split into individual rows, and the id and the revision values are separated into columns. 

 

Figure 48 shows an example of running the code in Figure 47. The 

Ma9_ParentItem column contains the original value. Comparing the split data to 

its initial value indicates how the data is split. Figure 49 shows the principle for 

the Ma9_ParentItem data splitting. 

 

 
Figure 48. Example result where the Ma9_ParentItem id revision pairs are split into their own rows and 

separate columns are created for the id and the revision. The data has been obfuscated. (Author’s picture) 

 

Ma9_ParentItem Ma9_ParentItemID Ma9_ParentItemRevID

PABA198198/A|PABA183183/A PABA198198 A

PABA198198/A|PABA183183/A PABA183183 A

PABA251251/A PABA251251 A

PAAF811811/- PAAF811811 -

PAAF812812/C PAAF812812 C

PABA777775/-|PABA777755/A|PAAF666666/A PABA777775 -

PABA777775/-|PABA777755/A|PAAF666666/A PABA777755 A

PABA777775/-|PABA777755/A|PAAF666666/A PAAF666666 A

PABA215215/A|PAAF667667/A PABA215215 A

PABA215215/A|PAAF667667/A PAAF667667 A
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Figure 49. The principle for splitting the Ma9_ParentItem values (Author’s picture) 

 

Figure 50 shows that there are 225 unique Ma9_ParentItemID values and seven 

unique Ma9_ParentItemRevID values in the DBOP data frame.  

 

 
Figure 50. The number of unique values of Ma9_ParentItemID and Ma9_ParentItemRevID in the DBOP data 

frame (Author’s code) 

 

The function in Figure 36 is used to check how many unique 

Ma9_ParentItemRevID values each Ma9_ParentItemID value has. Figure 51 shows 

that each Ma9_ ParentItemID value has one Ma9_ParentItemRevID. With the same 

arguments as for the previous id and revision pairs, it can be concluded that an id 

and its revision need to be considered as a pair. 

 

 
Figure 51. The number of unique values of Ma9_ParentItemRevID per Ma9_ParentItemID (Author’s code) 
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A pattern between ID and RevID pairs and ParentID and ParentRevID pairs are 

recognized when outputting the first ten rows of the DBOP. Figure 52 shows the 

principle for the identified pattern. Where the ID and RevID pair at row zero 

becomes the ParentID and ParentRevID pair at row one. The ID and RevID in row 

one become the ParentID and ParentRevID pair in rows two, three, and four. This 

pattern is assumed to form the hierarchical structure in the DBOP. If the same 

ParentID and ParentRevID pair exists on several rows with the same StrLevel 

values, the Seq_Nr value differs. From the Ma9_ParentItem column name, a 

possible connection to the ParentID and ParentRevID pair is also assumed. The 

recognized hierarchical structure and possible relation to Ma9_ParentItem values 

are investigated to understand the following: 

• Does the hierarchical structure exist throughout the DBOP? 

• Is the Ma9_ParentItem involved in forming the hierarchical structure of 

the DBOP? 

 

 
Figure 52. Principal sketch of the hierarchical structure in the DBOP. The gray area from row 5 forward 

contains ID and RevID pairs for which there are rows further down in the DBOP with matching ParentID and 

ParentRevID pairs. (Author’s picture) 

 

Figure 53 presents the code for creating two separate data frames from the DBOP 

data frame. One of them contains unique values of ParentID and ParentRevID 
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pairs. The other has unique values of ID and RevID pairs. These data frames are 

merged with the Pandas merge function, which automatically adds a column 

named _merge. The _merge column identifies if the id and revision pair are found 

in both original data frames, or only in one of these data frames. If the _merge 

value is left_only, the id and rev pair are only found in the dfParentIDandRev data 

frame, and if the _merge value is right_only, the id and rev pair are only found in 

the dfIDandRev data frame. The id and revision pairs where the _merge value is 

both indicate that the id and revision pair is found in both data frames. When 

found in both data frames, it equals an identified link between the ID and RevID 

pair to the ParentID and ParentRevID pair. What the link means in this context 

can be seen in Figure 52.  

 

 
Figure 53. The code for investigating if an id, revision pair is found in both ParentID and ParentRevID column 

pair and ID and RevID column pair or only in either one of these column pairs (Author’s code) 

 

Figure 54 presents an example result of running the code in Figure 53. The id 

values in Figure 54 are obfuscated. If the _merge value is right_only, the particular 

ID and RevID pair form an end node in the hierarchical structure. This means that 

no further links to lower levels in the hierarchical structure exist from that 

specific ID and RevID pair. If the _merge value is left_only, it implies that the 

ParentID and ParentRevID pair has been linked from another column other than 

the ID and RevID pair. The rows whit left_only require further investigation to 

identify another pattern in the hierarchical structure that, in addition to the ID 

and RevID pair, forms links to the ParentID and ParentRevID pair.  
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Figure 54. An example of a result of investigating if the id and revision pair is found in both the ParentID and 

ParentRevID pair and the ID and RevID pair. The id values are obfuscated. (Author’s picture) 

 

With the code in Figure 55, the ParentID and ParentRevID pairs with no link from 

the ID and RevID pair are copied into a separate data frame. This data frame is 

named dfParentIDandRevMissingIDandRev and modified to exclude the _merge 

column. Its id and rev column names are changed to ParentID and ParentRevID. 

The reason for changing the column names back to their original form is that 

Pandas merge requires that the column names in the comparison are equal in 

both data frames. The Pandas merge operation is now performed on the 

dfParentIDandRevMissingIDandRev and a copy of the original DBOP data frame.  

 

 
Figure 55. Creating a data frame containing only the ParentID and ParentRevID column pairs with no link from 

the ID and RevID column pairs. (Author’s code) 

 

The code for the second merge operation is shown in Figure 56. In this merge 

operation, the _merge values equal to both are in focus. These are the DBOP rows 

where the ParentID and ParentRevID pair do not have a link from the ID and RevID 

pair. The rows with _merge value both are stored in a data frame named 

dfRowsWithNoLink_IDandRevID_ParentIDandParentRevID. The row with 

ParentID equal to the root is dropped. This is the first node in the hierarchical 

structure for which no link from any previous node is expected. Also, the _merge 

column and columns with only null values are dropped. The remaining size of the 

id rev _merge

root left_only

XAAC749690 A both

XAAC749627 A both

XAAC749628 - both

XAAC749648 - both

DAAF521031 B right_only

DAAF523346 B right_only

DAAF527352 - right_only

XAAC399556 - right_only

XAAC539259 AB right_only
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dfRowsWithNoLink_IDandRevID_ParentIDandParentRevID is 153 rows and 14 

columns, Figure 57. The following investigates if the remaining 153 rows are 

linked from the Ma9_ParentItem column. 

 

 
Figure 56. The code for selecting the rows in the DBOP data frame with no link from the ID and RevID column 

pair to the ParentID and ParentRevID column pair. The resulting data frame is named 

dfRowsWithNoLink_IDandRevID_ParentIDandParentRevID (Author’s code) 

 

 
Figure 57. The dfRowsWithNoLink_the IDandRevID_the ParentID and the ParentRevID contain 153 rows and 

14 columns. (Author’s code) 

 

Figure 58 presents the code where a third merge operation is performed. This 

time the merge is performed on copies of the data frame created in Figure 47 for 

the Ma9_ParentItem investigation and the data frame made in Figure 56. Only 
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columns containing an id and a revision are kept in the copied data frames. 

Duplicated values of the id and revision pairs are dropped before performing the 

Pandas merge operation.  

  

 
Figure 58. The code for creating a merged column of the Ma9_ParentItem id and revision pairs and the 

ParentID and ParentRevID pairs that are missing links from the ID and RevID columns (Author’s code) 

 

Figure 59 presents the result of the merge operation. It can be seen that all the 

ParentID and ParentRevID pairs that did not have a connection from the ID and 

RevID pairs have a relationship from the Ma9_ParentItem. Additionally, there are 

no remaining ParentID and ParentRevID pairs with a missing link from either the 

ID and RevID pair or the Ma9_ParentItem. The investigation also reveals that 
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values with no link forward exists in the Ma9_ParentItem column. As for the ID 

and RevID pairs, these form the so-called end nodes in the hierarchical structure. 

 

 
Figure 59. Investigating the links from Ma9_ParentItem to ParentID and ParentRevID shows that there are 

141 unique id and revision pairs with links from the Ma9_ParentItemID and Ma9_ParentItemRevID column 

pair to the ParentID and ParentRevID column pair. In the DBOP structure, there are no ParentID and 

ParentRevID pairs that are not linked from either the ID and RevID pair or the Ma9_ParentItem. In the DBOP, 

84 unique Ma9_ParentItemID and Ma9_ParentItemRevID pairs have no link forward in the hierarchical 

structure. (Author’s code) 

 

The investigation of the hierarchical structure shows that a ParentID and a 

ParentRevID pair is linked from a higher hierarchical level of an ID and a RevID 

pair or an id and a revision pair in the Ma9_ParentItem column. Figure 60 shows 

a simplified sketch of the recognized hierarchical structure. 

 

 
Figure 60. Simplified sketch of the principle of links to the ParentID and ParentRevID pairs. This forms the 

hierarchical structure of the DBOP. (Author’s picture) 

 



83 

 

The entire hierarchical structure of the DBOP can be visualized with the 

NetworkX library. A graph with the dependencies between ID and RevID pairs 

and ParentID and ParentRevID pairs is first created. Then a graph with the 

dependencies between Ma9_ParentItem and ParentID and ParentRevID pairs 

follows. These NetworkX graphs are then merged.  

 

A copy of the DBOP data frame is created to prepare for the visualization. The 

code in Figure 61 creates a column connecting the ID and RevID pairs and a 

column combining the ParentID and ParentRevID pairs. Figure 62 shows how 

these new columns are utilized when creating the NetworkX graph of the DBOP 

hierarchical structure formed between the ID and RevID pairs and the ParentID 

and ParentRevID pairs. The result in Figure 63 shows a gap in the DBOP 

hierarchical structure.  

 

 
Figure 61. The code for creating a data frame of the DBOP data where the id and revision pairs are combined 

in a separate column for both ID and RevID pairs and the ParentID and ParentRevID pairs (Author’s code) 

 

 
Figure 62. T code for creating a graph with edges connected from the combined ID and Rev ID (IDandRev) 

node to the combined ParentID and ParentRevID node (ParentIDandRev) (Author’s code) 
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Figure 63. A NetworkX graph visualization of the DBOP hierarchical structure formed between ID and RevID 

pairs and ParentID and ParentRevID pairs (Author’s code) 

 

The gap in Figure 63 can be filled by knowing that some data points are connected 

from the Ma9_ParentItem column to ParentID and ParentRevID pairs. When 

preparing for the second graph, a copy of the data frame created in Figure 61 is 

made to reuse the combined ParentID and ParentRevID column. The new data 

frame is then modified to contain dedicated rows for each Ma9_ParentItem id and 

revision pairs initially stored in the same value. The knowledge that the |-sign 

separates each pair is utilized in the split. The code for creating this data frame is 

presented in Figure 64.  
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Figure 64. The code where the data frame created in Figure 61 is copied to a new data frame where the 

Ma9_ParentItem id and revision pairs are split into individual rows. (Author’s code) 

 

Figure 65 presents the code for creating the second NetworkX graph of the DBOP 

data, utilizing the connection between Ma9_ParentItem and ParentID and 

ParentRevID pairs. Figure 66 presents the result. There is a dense data cluster 

forming in the middle and some data points surrounding it.  

 

 
Figure 65. The code for creating a graph with edges connected from the Ma9_ParentItem id and revision pair 

(Ma9_ParentItemIDandRev) node to the combined ParentID and ParentRevID node (ParentIDandRev) 

(Author’s code) 
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Figure 66. A NetworkX graph visualization of the DBOP hierarchical structure formed between 

Ma9_ParentItem id and revision pairs and ParentID and ParentRevID pairs (Author’s code) 

 

The two separate graphs are combined into one with the NetworkX compose 

functionality. The code is presented in Figure 67. The node colors are kept as in 

Figure 63 and Figure 66. The result of the combined graph is presented in Figure 

68. The result shows a dense data cluster with no disconnected data points. A 

meticulous reader may even spot the first node in the hierarchical structure, the 

root colored in green. 
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Figure 67. Creating a graph visualizing the complete DBOP hierarchical structure (Author’s code) 
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Figure 68. A NetworkX graph visualization of the DBOP hierarchical structure formed between ID and RevID 

pairs and ParentID and ParentRevID pairs (Author’s code) 

 

Identifying the hierarchical structure in the graph visualizations with over 9000 

data points is problematic. A couple of alternative visualizations with a reduced 

number of data points are shown in Figure 70 and Figure 72. Figure 69 presents 

the code where the selection of data points is made. The data points are limited 

based on their StrLevel value, which can be considered as a level in the 

hierarchical structure. In the starting node, the root has StrLevel 0 value. The 

nodes on the next level have values StrLevel 1, 1100, and 1200. The nodes after 

StrLevel 1 have StrLevel 2 value. The nodes after StrLevel 2 have StrLevel 3 value 

etc. The selection of data points is limited to include StrLevel values from 0 to 5. 

As all the data points in this selection are connected from the ID and RevID pair 

to the ParentID and ParentRevID pair, a copy of the data frame created in Figure 
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61 is used as a base when creating the data frame with limited data points. Figure 

69 presents the limited data frame, which covers 435 data points.  

 

After selecting the data points, Figure 69 presents how the NetworkX graph is 

created. The desired node color and size are set for the graph, and the NetworkX 

graphviz_layout of type dot is used to visualize the graph, as seen in Figure 70. 

 

 
Figure 69. The code for limiting the DBOP data frame to contain only five first levels in the DBOP hierarchical 

structure and for visualizing this as a NetworkX graph with graphviz_layout of type dot. (Author’s code)  
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Figure 70. The five first levels in the DBOP hierarchical structure are visualized as a NetworkX graph with 

graphviz_layout of type dot. (Author’s code)  

 

Figure 71 presents the code for changing the graphviz_layout to another type. In 

this example, the layout algorithm dot is changed to sfdp. The result is presented 

in Figure 72. 

 

 

 
Figure 71. The code for an alternative NetworkX graphviz_layout. This time of type sfdp. The five first levels in 

the DBOP hierarchical structure are visualized. (Author’s code) 
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Figure 72. The five first levels in the DBOP hierarchical structure are visualized as a NetworkX graph with 

graphviz_layout of type sfdp. (Author’s code)  

 

The idea of using the number of non-null values as an indicator for possible data 

groups is derived from Figure 31. This chapter continues with the investigation 

of likely data groups.  

 

The columns EngineNumber, EngineAbbreviation, and EngineDescription, have 

three non-null objects each. From the author’s own Wärtsilä experience, it is 

known that the EngineNumber is a unique identifier. This means that there cannot 

be more than one engine with a specific EngineNumber. The business 

stakeholders further clarify that a DBOP always belongs to one specific 

EngineNumber. And an EngineNumber can only have one EngineAbbreviation 



92 

 

value and one EngineDescription value in the DBOP. These statements are 

confirmed with the code and result in Figure 73.  

 

 
Figure 73. A specific EngineNumber has one specific EngineAbbreviation value and one specific 

EngineDescription value. The EngineNumber is hidden in this picture. (Author’s code) 

 

The EngineNumber, EngineAbbreviation, and EngineDescription columns have 

values in text format. The actual values are irrelevant for this study. Creating a 

separate table for these columns with the EngineNumber as the primary key is 

relevant for the relational data model design. It is considered beneficial to 

highlight that the DBOP belongs to a specific engine with EngineNumber, 

EngineAbbreviation, and EngineDescription properties in the graph data model. 

 

In the DBOP data frame, columns RealizationID and RealizationRevisionID each 

have 21 non-null row values. In Figure 74, the rows with a RealizationID value 

are selected from the DBOP data frame. This selection is stored in the 

dfDBOPWithRealizationID data frame. All columns containing only null values are 

dropped from this data frame. Fifteen columns remain.   
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Figure 74. The code for creating a data frame with rows containing a RealizationID and a 

RealizationRevisionID. (Author’s code) 

 

It is interesting to understand how the RealizationID and RealizationRevisionID 

relate to the DBOP hierarchical structure. According to Figure 60, central 

elements in the hierarchical structure are ID and RevID pairs, ParentID and 

ParentRevID pairs, and Ma9_ParentItem. In the dfDBOPWithRealizationID data 

frame, there is no Ma9_ParentItem value, and we can conclude that there is no 

direct relationship between the RealizationID and RealizationRevisionID pair and 

Ma9_ParentItem. ID, RevID, ParentID, and ParentRevID columns exist and are 

further investigated.  

 

Figure 75 presents a function for plotting the number of unique values of columns 

in a columnList argument per column combination in a group argument.  
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Figure 75. A function for plotting how many values for the columns given in the columnList argument exist for 

the columns in the group argument. The calculation is performed on the data in the data frame specified in 

the dataframeName argument. The graphTitle argument specifies the title of the plot. (Author’s code) 

 

Figure 76 presents the result of calling the function in Figure 75 for plotting the 

number of unique values of RealizationID and RealizationRevisionID per ID and 

RevID pair. As each ID and RevID pair has one unique RealizationID and 

RealizationRevisionID, we can determine that the RealizationID and 

RealizationRevisionID depend on the ID and RevID pair.  

 

 
Figure 76. The number of unique values of RealizationID and RealizationRevisionID per ID and RevID pair 

(Author’s code) 

 

Figure 77 presents the result of calling the function in Figure 75 to plot the 

number of unique values of RealizationID and RealizationRevisionID per ParentID 

and ParentRevID pair. The RealizationID and RealizationRevisionID are not 

dependent on ParentID and ParentRevID pairs as a unique ParentID and 

ParentRevID pair can have up to 19 different RealizationID values and 2 

RealizationRevisionID values. 
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Figure 77. The number of unique values of RealizationID and RealizationRevisionID per ParentID and 

ParentRevID pair (Author’s code) 

 

A direct relationship is confirmed between the RealizationID and 

RealizationRevisionID and ID and RevID pairs. The RealizationID values are 

similar to those in ID, ParentID, and Ma9_ParentItem. Hence, it is decided to 

investigate if the RealizationID and RealizationRevisionID pairs are involved in 

forming the DBOP hierarchical structure. Figure 78 presents the code for 

checking if values of the RealizationID are found in the ID, ParentID, or 

Ma9_ParentItem columns. The result shows that the RealizationID is not found in 

these columns. Hence, we can conclude that the RealizationID and 

RealizationRevisionID pair do not contribute to the DBOP hierarchical structure. 
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Figure 78. The code for verifying that the RealizationID and RealizationRevisionID do not contribute to the 

hierarchical structure of the DBOP (Author’s code) 

 

From Figure 31, reveals that the DrawingRelation has 257 occurrences with non-

null values. The possible values for DrawingRelation are presented in Figure 79. 

The remaining columns in a data frame when extracting the rows with a 

DrawingRelation and then removing columns with only null values are presented 

in Figure 80. In this data frame, there are 257 rows and 17 columns. Among these 

columns are the ParentID and ParentRevID pair and the ID and RevID pair. As 

these are central elements in the DBOP hierarchical structure, it needs to be 

investigated if there is a relation between these pairs and the DrawingRelation.  

 

 
Figure 79. DrawingRelation values (Author’s code) 
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Figure 80. The code and result when selecting the rows in the DBOP where a DrawingRelation value exists. 

After the row selection, the columns with only null values are removed. (Author’s code) 

 

The function in Figure 36 plots the number of unique DrawingRelation values per 

ID and RevID pair. Figure 81 presents the result. The result shows that there are 

three ID and RevID pairs with two different values of DrawingRelation. The 

remaining 254 ID and RevID pairs have a unique DrawingRelation value. Figure 

82 presents the result of calling the function in Figure 36 to understand how 

many DrawingRelation values exist for each ParentID and ParentRevID pair. The 

result returns 12 ParentID and ParentRevID pairs with two DrawingRelation 

values (Figure 82). Calling the function in Figure 36 with the group argument 

extended to ParentID and ParentRevID, StrLevel, ID, and RevID columns, shows 

that two occurrences with two different DrawingRelation values are still returned 

(Figure 83). 
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Figure 81. The number of unique DrawingRelation values per ID and RevID pair (Author’s code) 

 

 
Figure 82. The number of unique DrawingRelation values per ParentID and ParentRevID pair (Author’s code) 
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Figure 83. The number of unique DrawingRelation values per ParentID and ParentRevID, StreLevel, ID, and 

RevID combination (Author’s code) 

 

Based on the author’s Wärtsilä experience, the expectation is that each ID and 

RevID pair returns a unique value of DrawingRelation. The reason why this does 

not happen is investigated by outputting the data rows with ID and RevID pair 

duplicates. The code for this is visible in Figure 84. The result is not made visible 

in this report. With a visual inspection of the result, it is noticed that two data 

rows require all the available columns to be used to identify a unique 

DrawingRelation value. The author assumes this is a data quality error and that  

each ID and RevID pair will have a unique value of DrawingRelation.  

 

 
Figure 84. The code for investigating the rows with an ID and RevID pair occurring on several rows. Aiming to 

understand what the DrawingRelation values on these rows are. (Author’s code) 

 

It is investigated next if the columns with a non-null value above 7000 could form 

a data group with the ID and RevID column pair as a primary key. The 

investigation is performed by checking if each ID and RevID pair returns a unique 

column value for each of the following columns: 

• StrLevel (9210 non-null values) 

• Seq_Nr (9210 non-null values) 

• Qty (9210 non-null values) 

• ID (9210 non-null values) 

• RevID (9210 non-null values) 

• Name (9210 non-null values) 

• TcType (9210 non-null values) 
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• ReleaseDate (8187 non-null values) 

• Description (7030 non-null values) 

• OwningUser (9208 non-null values) 

• OwningGroup (9208 non-null values) 

 

The uniqueValueGraph function in Figure 36 is called to plot the number of unique 

values for each column per ID and RevID pair. Each ID and RevID pair is expected 

to return one unique column value to identify a dependence between a column. 

 

Figure 85 reveals that an ID and RevID pair return one or two unique StrLevel 

values. This means that StrLevel is not dependent on ID and RevID pairs.  

 

 
Figure 85. The number of unique values of StrLevel per ID and RevID pair (Author’s code) 

 

Figure 86 reveals that an ID and RevID pair return either one or many unique 

Seq_Nr values. This means that Seq_Nr is not dependent on ID and RevID pairs.  
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Figure 86. The number of unique values of Seq_Nr per ID and RevID pair (Author’s code) 

 

Figure 87 reveals that an ID and RevID pair return either one or many unique Qty 

values. This means that Qty is not dependent on ID and RevID pairs.  

 

 
Figure 87. The number of unique values of Qty per ID and RevID pair (Author’s code) 

 

Figure 88 reveals that all ID and RevID pairs return a unique Name value. This 

means that Name is dependent on ID and RevID pairs.  
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Figure 88. The number of unique values of Name per ID and RevID pair (Author’s code) 

 

Figure 89 reveals that all ID and RevID pairs return a unique TcType value. This 

means that TcType is dependent on ID and RevID pairs.  

 

 
Figure 89. The number of unique values of TcType per ID and RevID pair (Author’s code) 

 

As 8187 of the 9210 rows in the DBOP data frame have a ReleaseDate value, it was 

decided to filter out these rows to a different data frame to get a cleaner plot. The 

code for creating a separate data frame is visible in Figure 90. Figure 91 reveals 

that all rows with a ReleaseDate have a unique ReleaseDate for each ID and RevID 

pair. This means that the ReleaseDate is dependent on ID and RevID pairs.  
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Figure 90. The code for creating a data frame for the rows with a ReleaseDate value. After the row selection, 

the columns with only null values are dropped from the data frame. (Author’s code) 

 

 
Figure 91. The number of unique values of ReleaseDate per ID and RevID pair (Author’s code) 

 

As 7030 of the 9210 rows in the DBOP data frame have a Description value, it was 

decided to filter out these rows to a different data frame to get a cleaner plot. The 

code for creating a separate data frame is visible in Figure 92. Figure 93 reveals 

that all rows with a Description value return a unique Description value for each 

ID and RevID pair. This means that the Description is dependent on ID and RevID 

pairs.  
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Figure 92. The code for creating a data frame for the rows with a Description value. After the row selection, the 

columns with only null values are dropped from the data frame. (Author’s code) 

 

 
Figure 93. The number of unique values of Description per ID and RevID pair (Author’s code) 

 

The plots in Figure 94 and Figure 95 show that all ID and RevID pairs return a 

unique OwningUser and OwningGroup value. This means that both the 

OwningUser and the OwningGroup depend on ID and RevID pairs. The drop to 

count level 0 represents two data rows in the DBOP with missing OwningUser and 

OwningGroup values.  
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Figure 94. The number of unique values of OwningUser per ID and RevID pair (Author’s code) 

 

 
Figure 95. The number of unique values of OwningGroup per ID and RevID pair (Author’s code) 

 

The investigation of the columns with non-null values above 7000 reveals that 

Name, TcType, ReleaseDate, Description, OwningUser, and OwningGroup depend 

on the ID and RevID column pair. StrLevel, Seq_Nr, and Qty are not dependent on 

the ID and RevID column pair. Based on the data frame content in Figure 52, the 

StrLevel and Seq_Nr are assumed to be directly involved in forming the DBOP 

process steps together with ParentID and ParentRevID. Qty is interpreted to 

indicate how many repetitions of a specific process step are needed. 
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The following columns have around 300 non-null values in the DBOP data frame: 

• PhaseLevel (370 non-null values) 

• PlantLevel (331 non-null values) 

• Process Type (331 non-null values) 

• AlternateProcess (331 non-null values) 

• PSA (331 non-null values) 

• SortString (333 non-null values) 

 

The function in Figure 96 is utilized for plotting the number of unique values for 

the columns included in the columnList argument per the column or columns 

included in the group argument. It is first assumed that all these columns belong 

to the same group. If this is true, and one of the columns is selected as the primary 

key, there is only one alternative column to choose as the primary key. This is the 

column with the highest number of non-null values, the PhaseLevel with 370 non-

null values. None of the other columns can be the primary key, as a primary key 

cannot have null values. For example, the PlantLevel column requires 370 – 331 

= 39 null values in a table to cover the 370 non-null values of the PhaseLevel 

column. 

 

 
Figure 96. The function for plotting the number of unique values of XXXXX. (Author’s code) 

 

Figure 97 reveals that the only column possibly dependent on PhaseLevel is the 

AlternateProcess. All other columns have several unique values per PhaseLevel. 

Figure 98 confirms that every distinctive value of PhaseLevel returns a unique 

AlternateProcess value. 
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Figure 97. The number of unique SortString, PlantLevel, ProcessType, AlternateProcess, and PSA, values per 

PhaseLevel. (Author’s code) 

 

 
Figure 98. The number of unique AlternateProcess values per PhaseLevel value (Author’s code) 

 

SortString is the column with the following highest number of non-null values. 

When selecting SortString as the primary key, the PhaseLevel no longer fits in the 

group. The reason is that PhaseLevel has more rows than SortString. When 

SortString is the primary key, only 333 rows with non-null values for SortString 

are included in the group. The code and result for this selection are visible in 

Figure 99. When looking at the PhaseLevel non-null value, it is noted that this 

value has dropped from 370 to 331. This confirms that the PhaseLevel cannot be 

in a group with the SortString as the primary key, because it loses 39 PhaseLevel 

values. 
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Figure 99. The code for creating a data frame for the rows with a SortString value. (Author’s code) 

 

Figure 100 reveals that PlantLevel, ProcessType, AlternateProcess, and PSA are 

suited in a group where the SortString is selected as the primary key. Each non-

primary key column will have a null value on two of the 333 rows. This is 

identified from the drop to count level 0 in Figure 100 and the indicated number 

of non-null values per column in Figure 99. 
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Figure 100. The number of unique PlantLevel, ProcessType, AlternateProcess, and PSA values per SortString. 

(Author’s code) 

 

Figure 101 verifies that selecting the ID and RevID pair as the key for this group 

is impossible. The main reason for this is that the number of unique SortString 

values per ID and RevID is more than one.  

 

 
Figure 101. Verifying that the ID and RevID par is not possible as the primary key in the group of PlantLevel, 

SortString, ProcessType, AlternateProcess, and PSA. (Author’s code) 

 

As PhaseLevel does not suit the PlantLevel, SortString, ProcessType, 

AlternateProcess and PSA group, it was next investigated if the PhaseLevel is 

dependent on the central elements in the DBOP hierarchical structure: 
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• ID and RevID pair 

• ParentID and ParentRevID pair 

 

Investigating PhaseLevel dependencies on Ma9_ParentItem, the third column 

involved in forming the DBOP hierarchical structure is unnecessary. This decision 

was made based on Figure 102, where it can be noted that Ma9_ParentItem is not 

included in the data frame containing the rows with a PhaseLevel value. 

 

 
Figure 102. The code for creating a data frame for the rows with a PhaseLevel value. (Author’s code) 

 

The result presented in Figure 103, Figure 104, and Figure 105 reveals that 

PhaseLevel is dependent on the ID and RevID pair. As ParentID and ParentRevID 

pairs can return several unique PhaseLevel values, the PhaseLevel is not reliant on 

this pair. When extending the ParentID and ParentRevID pair with StrLevel, and 

Seq_Nr, it is noted that this combination returns unique PhaseLevel values and is 

dependent on this combination. 
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Figure 103. The number of unique PhaseLevel values per ID and RevID pair. (Author’s code) 

 

 
Figure 104. The number of unique PhaseLevel values per ParentID and ParentRevID pair. (Author’s code) 
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Figure 105. The number of unique PhaseLevel values per ParentID and ParentRevID. StrLevel, and Seq_Nr 

combination. (Author’s code) 

 

When examining the similar number of non-null values for the columns in the 

DBOP in Figure 31, no data groups are identified for QualityKey. Therefore, it was 

investigated if the QualityKey depends on the central elements in the DBOP 

hierarchical structure, or on some previously identified groups. A separate data 

frame containing the rows with a QualityKey value was created with the code in 

Figure 106. From this data frame, the columns with only null values were 

dropped. When looking at the result in Figure 106, it was decided to check the 

dependency on the following columns: 

• ID and RevID pair 

• ParentID and ParentRevID pair 

• ParentID, ParentRevID, StrLevel, and Seq_Nr combination 

• SortString 

 

The result in Figure 107, Figure 108, Figure 109, and Figure 110 reveals that the 

QualityKey is dependent on one of the following: 

• ID and RevID pair 

• ParentID and ParentRevID, StrLevel, and Seq_Nr combination 

• SortString 

  

The dependency on ParentID and ParentRevID pairs does not exist, as a pair can 

return several unique QualityKey values. 
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Figure 106. The code for creating a data frame for the rows with a QualityKey value (Author’s code) 

 

 
Figure 107 The number of unique QualityKey values per ID and ID pair (Author’s code) 
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Figure 108. The number of unique QualityKey values per ParentID and ParentRevID pair. (Author’s code) 

 

 
Figure 109. The number of unique QualityKey values per ParentID and ParentRevID. StrLevel, and Seq_Nr 

combination. (Author’s code) 
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Figure 110. The number of unique QualityKey values per SortString. (Author’s code) 

 

When examining the similar number of non-null values for the columns in the 

DBOP in Figure 31, no data groups were identified for ConsumedAssembly. 

Therefore, it was investigated if the ConsumedAssembly depends on the central 

elements in the DBOP hierarchical structure, or on some previously identified 

groups. A separate data frame containing the rows with a ConsumedAssembly 

value was created in the code in Figure 111. From this data frame, the columns 

with only null values were dropped. When looking at the result in Figure 111, it 

was decided to check the dependency on the following columns: 

• ID and RevID pair 

• ParentID and ParentRevID pair 

• ParentID and ParentRevID, StrLevel, and Seq_Nr combination 

 

The result in Figure 112, Figure 113, and Figure 114 indicates that 

ConsumedAssembly is dependent on one of the following: 

• ID and RevID pair 

• ParentID and ParentRevID, StrLevel, and Seq_Nr combination 

 

The dependency on ParentID and ParentRevID pairs does not exist, as pairs return 

several unique ConsumedAssembly values. 
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Figure 111. The code for creating a data frame for the rows with a ConsumedAssembly value. (Author’s code) 

 

 
Figure 112. The number of unique ConsumedAssembly values per ID and RevID pairs. (Author’s code) 

 



117 

 

 
Figure 113. The number of unique ConsumedAssembly values per ParentID and ParentRevID pairs. (Author’s 

code) 

 

 
Figure 114. The number of unique ConsumedAssembly values per ParentID and ParentRevID. StrLevel, and 

Seq_Nr combination. (Author’s code) 

 

When examining the similar number of non-null values for the columns in the 

DBOP in Figure 31, no data groups were identified for PurchaseCode. Therefore, 

it was investigated if the PurchaseCode depends on the central elements in the 

DBOP hierarchical structure, or on some previously identified groups. A separate 

data frame containing the rows with a PurchaseCode value was created in Figure 

115. From this data frame, the columns with only null values were dropped. When 

looking at the result in Figure 115, it was decided to check the dependency on the 

following columns: 

• ID and RevID pair 
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• ParentID and ParentRevID pair 

• ParentID and ParentRevID, StrLevel, and Seq_Nr combination 

 

The results in Figure 112 and Figure 113 indicate that PurchaseCode is dependent 

on one of the following: 

• ID and RevID pair 

• ParentID and ParentRevID 

 

The dependency on ParentID and ParentRevID, StrLevel, and Seq_Nr combination 

exists, as a part of this column combination was already proved to have a 

dependence on PurchaseCode (see Figure 113). Extending an identified key to an 

additional column did not bring any benefits. 

 

 
Figure 115. The code for creating a data frame for the rows with a PurchaseCode value. (Author’s code) 
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Figure 116. The number of unique PurchaseCode values per ID and RevID pair. (Author’s code) 

 

 
Figure 117. The number of unique ConsumedAssembly values per ParentID and ParentRevID pair. (Author’s 

code) 
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4.2.1.1. Summary 

 

The following is a summary of the findings from the investigation: 

• There is no direct relation between StrLevel and TcType 

• There is a group for engine-specific columns where the EngineNumber is 

the key, identifying the EngineAbbreviation and EngineDescription of this 

engine. A DBOP will always cover only one specific EngineNumber.  

• There is no direct relation between OwningUser and OwningGroup.  The 

graphs reveal that an OwningUser can have as many as 8 OwningGroup, 

and in an OwningGroup, there can be over 175 OwningUsers. These 

numbers will vary depending on the DBOP investigated. 

• Each id type has its own revision.  

o RevID is the revision of the ID 

o ParentRevID is the revision of ParentID 

o RealizationRevisionID is the revision of RealizationID 

• The Ma9_ParentItem column also contains ids and revisions. The 

Ma9_ParentItem is a multivalued attribute in which the id and revision 

pairs are separated with the |-character, and the revision for the id is split 

with the /-character. 

• The ID and RevID pair’s link to ParentID and ParentRevID pair does not 

exist throughout the DBOP structure. Also, the Ma9_ParentItem’s link to 

the ParentID and ParentRevID pair needs to be considered. 

• The RealizationID and RealizationRevisionID pairs depend on the ID and 

RevID combination. To understand if the RealizationID and 

RealizationRevisionID pairs are involved in forming the hierarchical 

structure, it was investigated if some of the RealizationIDs can be found in 

the ID, ParentID, or Ma9_ParentItem columns. The RealizationID values 

were not found in any of the investigated columns. Hence, it was 

confirmed that it is not involved in creating the hierarchical structure. 

• When investigating what DrawingRelation depends on, a possible data 

quality error was noticed for three ID and RevID pairs. The ID and RevID 

combination can identify a unique DrawingRelation value if the possible 

data quality error can be corrected. 

• A group with ID and RevID pair as a key for columns with approx. 9000 

non-null values were found. The following columns fit into that group: ID, 

RevID, Name, TcType, ReleaseDate, Description, OwningUser, and 

OwningGroup. 
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• StrLevel, Seq_Nr, and Qty are not dependent on the ID and RevID pair. 

Instead, StrLevel and Seq_Nr are assumed to form the DBOP process steps 

together with ParentID and ParentRevID. Qty is taken to indicate how 

many repetitions of a specific process step are needed. 

• A group of SortString, PlantLevel, ProcessType, AlternateProcess, and PSA 

was identified. In this group, SortString is the key. PhaseLevel cannot be 

part of this group. 

• PhaseLevel is dependent on ID and RevID pair or a combination of 

ParentID, ParentRevID, StrLevel, and Seq_Nr. 

• Three possible dependencies were recognized for QualityKey:  

o ID and RevID pair 

o ParentID, ParentRevID, StrLevel and Seq_Nr combination 

o SortString 

• ConsumedAssembly depends on the ID and RevID pair, or a combination of 

ParentID, ParentRevID, StrLevel and Seq_Nr.  

• PurchaseCode depends on the ID and RevID pair, or the ParentID and 

ParentRevID pair.  

 

 

4.2.2. Logical data models 

 

This chapter presents the design decisions made during the data model creation, 

and the data collected for the experiment. The logical data models were created 

based on the findings from the data analysis in chapter 4.2.1. The normalization 

guidelines up to the 3NF form are followed for the relational data model. The 

general principle of normalization is to reduce data redundancy [47]. Table 8 

summarizes what was considered for the normalization. The graph type used for 

the graph data model is the labeled property graph. The labeled property graph 

was selected for the final aim of implementing the graph data model in Neo4j. The 

elements of the labeled property graph are explained in chapter 2.3.3. Technical 

and performance requirements are not considered in these logical data models. 

 

Table 8. Guidelines to reach 3NF normalization for the relational data model 

1NF  All attributes have a unique name. None of the attributes are composite or 
multivalued. [47] 

2NF No partial dependencies on a primary key exist in the tables. This means that 
in a table where the primary key consists of two or more attributes, the non-
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primary key attribute must depend on the complete primary key and not part 
of it. [48] 

3NF No transitive dependencies on the primary key exist in the tables. For example, 
if A is dependent on B, B is dependent on C. Hence, A is dependent on C, is a 
transitive dependency. [49] 

 

In addition to data model creation, the experiment follows the experiment design 

in chapter 4.1. For the experiment, the data modeling time is measured in 

minutes. The relational data model is created first. After that, the same data 

modeler creates the graph data model. The reason for the selected data modeling 

order is elaborated in chapter 4.1.4.  

 

 

4.2.2.1. Relational data model 

The creation of the relational data model took place on 24th of August 2022. The 

data modeling was carried out in a single session of 74 minutes without 

disruptions. The result is presented in Figure 118. This chapter explains how this 

result was reached. 
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Figure 118. The DBOP relational data model (author’s picture) 

 

The data analysis and the summary presented in chapter 4.2.1.1 are an excellent 

bases for the relational data model. Data dependencies and possible data groups 

with primary keys are available in the analysis result. Building the relational data 

model starts with creating tables of the identified data groups. Table 9 

summarizes how the data analysis finding is translated into data model design 

decisions. The intermediate result of the relational data model after the 

considerations in Table 9 is presented in Figure 119.  
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Table 9. How the identified data groups are utilized in the relational data model design 

Data analysis finding Data model design decision 

There is a group for 
engine-specific columns 
where the 
EngineNumber is the 
key, identifying the 
EngineAbbreviation and 
EngineDescription of 
this engine.  

Implement an Engine_Details table with three attributes: 
• EngineNumber 
• EngineAbbreviation 
• EngineDescription 

Of which EngineNumber is the primary key. 

A group with ID and 
RevID pair as key, 
where the following 
columns are included: 
Name, TcType, 
ReleaseDate, 
Description, 
OwningUser, and 
OwningGroup. 

Implement an ID_Details table with the following 
attributes: 

• ID  
• RevID  
• Name  
• TcType 
• ReleaseDate 
• Description 
• OwningUser 
• OwningGroup 

Of which the ID and RevID pair is the primary key. 
 
The OwningUser is a multivalued attribute. To fulfill 1NF, 
the multivalued attribute needs to be split. In the 
investigation in chapter 4.2.1, it was noticed that the 
OwningUser values represent the user identification in 
the Surname, Forename format, or a code like grpadm. As 
the OwningUser contains a diverse set of Surname, 
Forename values, and codes, it was decided to treat all 
the values as codes. 
 
An alternative solution that fulfills the 1NF is to create a 
User_Details table with Surname and Forename 
attributes. This table would use a synthetic primary key 
or the employee number if it could be included in the 
DBOP. The primary key would be named UserID and 
linked to the OwningUser attribute in the ID_Details table. 
With this approach, the Surname, Forename values in 
OwningUser is replaced by the UserID for that specific 
user.  

StrLevel, Seq_Nr, and Qty 
are not dependent on 
the ID and RevID pair. 
Instead, StrLevel and 
Seq_Nr are assumed to 
form the DBOP process 
steps together with 
ParentID and 
ParentRevID. Qty is 
assumed to indicate 
how many repetitions 

Implement a BOP_Structure table with the following 
attributes: 

• ParentID  
• ParentRevID 
• StrLevel 
• Seq_Nr 
• Qty 

The primary key is the combination of ParentID, 
ParentRevID, StrLevel, and Seq_Nr. 
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of a specific process 
step are needed. 
A group of SortString, 
PlantLevel, ProcessType, 
AlternateProcess, and 
PSA is identified. In this 
group, SortString is the 
key. 

Implement a Process_Details table with the following 
attributes: 

• SortString  
• PlantLevel 
• ProcessType 
• AlternateProcess 
• PSA 

Of which the SortString is the primary key. 

 

 

 
Figure 119. The first intermediate result of the DBOP relational data model (author’s picture) 

 

The data dependencies recognized in chapter 4.2.1 were utilized in the next step 

of the relational data model design. The identified data dependencies are 

summarized in Table 10. The intermediate result of the relational data model 

after the considerations in Table 9 and Table 10 is presented in Figure 120.  

 

Table 10. How the identified data dependencies are utilized in the relational data model design 

Data analysis finding Data model design decision 

The Ma9_ParentItem 
is a multivalued 
attribute consisting of 
one or several ids and 
revisions. 

Implement a Ma9_ParentItem table with the 
following attributes: 

• Ma9_ParentItemID  
• Ma9_ParentItemRevID 

Of which the Ma9_ParentItemID and 
Ma9_ParentItemRevID pair is the primary key. 
 
The decision to split the Ma9_ParentItem 
multivalued attribute into rows per id and rev pair 
and separate the id and revision into dedicated 
attributes supports the 1NF guideline. Additionally, 
it makes working with the data in the DBOP easier. 
For example, the need for string manipulation 
when linking the Ma9_ParentItem id and revision 
pair to the ParentID and ParentRevID pair is 
removed with this design decision.  

RealizationID and 
RealizationRevisionID 

Implement a Realization table with the following 
attributes: 
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pairs are dependent 
on the ID and RevID 
combination.  

• ID 
• RevID 
• RealizationID 
• RealizationRevisionID 

Of which the ID and RevID pair is the primary key. 
A possible data 
quality error in the 
DrawingRelation 
attribute for three ID 
and RevID pairs was 
noticed in the data 
analysis. If this is 
confirmed to be an 
error, the ID and 
RevID combination 
can be used to identify 
a unique 
DrawingRelation 
value.  

Implement a Drawing_Relation table with the 
following attributes: 

• ID 
• RevID 
• DrawingRelation 

Of which the ID and RevID pair is the primary key. 
 
The suspected data quality error is confirmed to be 
an error, which means that a unique ID and RevID 
pair can only have one DrawingRelation value.  

PhaseLevel is 
dependent on the ID 
and RevID pair or a 
combination of 
ParentID, 
ParentRevID, StrLevel, 
and Seq_Nr 

Implement a Phase_Level table with the following 
attributes: 

• ParentID 
• ParentRevID 
• StrLevel 
• Seq_Nr 
• PhaseLevel 

ParentID, ParentRevID, StrLevel, and Seq_Nr 
combination is the primary key.  
 
This primary key selection over the ID and RevID 
pair assumes that the PhaseLevel attribute clarifies a 
specific process step.  

Three possible 
dependencies are 
recognized for the 
QualityKey:  

• ID and RevID 
pair 

• ParentID, 
ParentRevID, 
StrLevel, and 
Seq_Nr 
combination 

• SortString 

Implement a Quality_Process table with the 
following attributes: 

• SortString 
• QualityKey 

SortString is selected as the primary key, based on 
an explanation from business stakeholders that the 
SortString is a unique identifier for a process step 
that requires a quality check or some other quality 
measure. 

 

ConsumedAssembly 
depends on the ID and 
RevID pair or a 
combination of 

Implement a Consumed_Assembly table with the 
following attributes: 

• ParentID 
• ParentRevID 
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ParentID, 
ParentRevID, StrLevel, 
and Seq_Nr.  

• StrLevel 
• Seq_Nr 
• ConsumedAssembly 

ParentID, ParentRevID, StrLevel, and Seq_Nr 
combination is the primary key.  
Any strong reasoning behind designing a table with 
the ParentID, ParentRevID, StrLevel, and Seq_Nr 
attributes instead of ID and RevID attributes does 
not exist.  

PurchaseCode is 
dependent on the ID 
and RevID pair or 
ParentID and 
ParentRevID pair 

Implement a Purchase_Code table with the 
following attributes: 

• ID 
• RevID 
• PurchaseCode 

For which the ID and RevID pair is the primary key.  
 
The primary key selection assumes that a purchase 
is related to an activity (ID_Details table) and not to 
a particular DBOP step (BOP_Structure table). 

 

 

 
Figure 120. The second intermediate result of the DBOP relational data model (author’s picture) 

 

The tables in the relational data model, Figure 120, cover a storage location for 

each of the DBOP attributes in focus. The relationships between the tables are still 

missing when compared to the result presented in Figure 118. The relational data 

model identifies relationships with foreign keys (chapter 2.3.2). Different 

relationship notations exist depending on the tool used when creating the model.  
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ERDPlus specifically lists the attributes of the foreign key. The list is automatically 

created when dragging a relationship line between two tables. If the attributes 

forming the foreign key already exist in the table with the foreign key, it can be 

incorrectly assumed that the attributes are duplicated. The Purchase_Code table 

in Figure 118 is an excellent example of this. When foreign key attributes are not 

previously identified as attributes in a table, ERDPlus indicates the need when 

dragging the relationship line between tables. The MA9_ParentItem table in 

Figure 118 is an excellent example of this. 

 

When creating the relationships in the DBOP model, the ID_Details table and the 

BOP_Structure table were considered to be the core tables. All other tables in the 

DBOP are connected to one or both. Based on the data analysis in chapter 4.2.1, it 

is understood that the BOP_Structure table describes the process structure, and 

the ID_Details table describes the activity performed at that specific process step. 

An action can be completed in multiple DBOP process steps.  

 

The Ma9_ParentItem table is another core table. Ma9_ParentItem is directly 

involved in forming the DBOP hierarchical structure. The most important 

relationship this table has is to the BOP_Structure. To understand the details of 

the activity performed, a relationship to the ID_Details is also needed.  

 

Based on the data analysis result in chapter 4.2.1, it is known that: 

• A RealizationID and RealizationRevisionID pair only depend on the ID and 

RevID pair. Hence, the only relationship to the Realization table is from the 

ID_Details table. 

• DrawingRelation is only dependent on the ID and RevID pair. Hence, the 

only relationship to the DrawingRelation table is from the ID_Details table. 

 

The data analysis results in chapter 4.2.1 reveal that the PhaseLevel and the 

ConsumedAssembly have a data dependency on both the ParentID, ParentRevID, 

StrLevel, and Seq_Nr combination and the ID and RevID pair. It is assumed that 

these dependencies are essential and create relationships for the Phase_Level and 

Consumed_Assembly tables to BOP_Structure and ID_Details tables. 

 

The PurchaseCode attribute is identified to have a data dependency on the ID and 

RevID pair and the ParentID and ParentRevID pair. Table 10  elaborates that a 

purchase is related to a specific activity (ID_Details table) and not to a particular 
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DBOP step (BOP_Structure table). Based on this, only a relationship from the 

ID_Details table to the Purchase_Code table is created.  

In Figure 120, two tables with SortString as the primary key can be identified: 

• Process_Details table 

• Quality_Process table 

The SortString attribute is used when creating a relationship between the data in 

these two tables. The data in these tables are assumed to give details to the DBOP 

step, and relation to the BOP_Structure is needed. Considering the possible future 

query needs on the data in the data model, a separate join table is created. The 

join table is named BOPhasProcessDetails, and it has relationships to both the 

Process_Details table and the Quality_Process table. With this join table, the 

SortString attribute is not needed in the BOP_Structure table. Including the 

SortString attribute in the BOP_Structure table would cause only 333 of the 9210 

rows to have a SortString value. The number of rows is derived from the number 

of non-null values per column in Figure 31. 

 

The Engine_Details table is the final table without a relationship. This table 

contains the data for the engine owning the DBOP. The data analysis result, 

discussed in chapter 4.2.1, revealed that the same engine information is repeated 

on three rows in the DBOP. To reduce the data redundancy, a join table named 

IDhasEngine is created between the ID_Details and Engine_Details tables. This 

table contains three attributes: ID, RevID, and EngineNumber. As the DBOP covers 

only one EngineNumber, the same EngineNumber is repeated as many times as 

there are ID and RevID pairs relating to the engine data. The Engine_Details table 

will only have one row. This row specifies the EngineAbbreviation and 

EngineDescription for a specific EngineNumber. 

 

All the design decisions made when creating the DBOP relational data model are 

described in Figure 118. The aim was to create a data model that reaches 3NF. 

Based on the data analysis, discussed in chapter 4.2.1, it is understood which 

tables are needed in the data model to reduce data redundancy, to avoid partial 

dependencies, and not to have any transitive dependencies in the data tables. 

With one exception, the guidelines to reach 3NF were fulfilled, as listed in Table 

8. The exception made is for the partly multivalued attribute: OwningUser. The 

reasoning behind this decision is elaborated in Table 9. In short, all the data in 

OwningUser is considered as a code.  
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4.2.2.2. Graph data model 

 

The graph data model is created as the second step. The inputs used for the graph 

data model are the result of the data analysis, described in chapter 4.2.1, and the 

DBOP relational data model, presented in Figure 118. Discussions with business 

stakeholders or data modeling experts were not held between the data modeling 

sessions for the relational and graph data models.  

 

The creation of the graph data model took place on 30th of August 2022. The 

data modeling was carried out in a single session of 48 minutes. The resulting 

graph data model is presented in Figure 121. This DBOP graph data model and 

the process used to reach the result was very much disliked by the graph data 

model expert at Wärtsilä. The business stakeholders did not give any comments 

on the model.  

 

 
Figure 121. The first DBOP graph data model. The graph data model expert did not accept this version 

(Author’s picture) 

 

The process followed to reach the result in Figure 121 is the Neo4j advice on how 

to move from a relational data model to a graph data model [50]. The guidance 

suggests analyzing the relational data model with the following sequential steps: 

1. Locate all foreign keys 

2. Drop all foreign keys 

3. Name relations 

4. Locate join tables 
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5. Change join tables to relations 

 

Figure 122 presents the result of the analysis made on the DBOP relational data 

model. This result is then translated into the graph presented in Figure 121. In 

the graph data model, the tables are nodes. The attributes in the tables are 

properties on the node. The relationships are named as planned in Figure 122. All 

the table attributes were defined as node properties for the simplicity of the first 

model. If this approach would have been continued, keeping the properties on the 

nodes, moving some of them to the edges or even separating them as separate 

nodes would have been considered.  

 

 
Figure 122. The result of the relational data model analysis (Author’s picture) 

 

The graph data model expert at Wärtsilä commented that carrying out the 

systematic relational data model analysis gives some insight into the data. 

However, it is not enough to make a well-functioning graph data model. Aligned 

with the suggestions in chapter 2.4, he marks the importance of discussing with 

business stakeholders to understand the actual business process and needs. He 

also emphasizes the art of designing an intuitive graph data model for the people 

using it. And that the DBOP model should withstand changes in the 
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manufacturing process and have the flexibility to cover the DBOP for different 

products. 

 

To reach a better DBOP graph data model, the graph data model expert suggests 

focusing on TcType. The TcType values give an indication of which nodes are 

needed. The suggestion of creating separate nodes for properties assumed to be 

good link points between different engine DBOPs was immediately turned down. 

A concrete example of this is presented in Figure 123, which suggests creating a 

node for the engine-type data. The idea is that this node links all DBOPs with a 

specific engine type. Based on the data graph data modeling expert’s experience, 

this causes so-called "super nodes" with millions of edges that reduce the 

performance of the graph database. A better approach is to keep the attributes 

from the relational data model as properties on nodes or edges.  

 

 
Figure 123. The suggestion of breaking out properties assumed to be good linking points between different 

engine’s DBOP is not a good idea (Author’s picture)  

 

The second graph data model was created on the 1st of September 2022, with a 

total modeling time of 180 minutes from two separate sessions. The inputs used 

for the modeling are the feedback and advice from the graph data modeling 

expert and the DBOP Excel file. The only information taken from the data analysis 

in chapter 4.2.1 is the knowledge of how the hierarchical structure is built with 

the principle in Figure 60. The resulting graph data model is presented in Figure 

124. 
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Figure 124. The second DBOP graph data model. The graph data model expert did not accept this version 

(Author’s picture) 

 

 

The node name is a simplification of the TcType value. The properties on the 

nodes are the column names of the columns with non-null values for the specific 

TcType. The labels on the nodes are a further simplification of the node name and 

the StrLevel value the specific TcType value has. The edges are named utilizing the 
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node name, the direction to which the arrow points to. An alternative naming 

approach would have been simply to use “HAS” for each edge. A more 

complicated naming approach was selected to later distinguish the edges in 

Neo4j. 

 

Figure 125 presents the first part of Figure 124. This part of the created graph 

data model is aligned with how the graph data model expert and business 

stakeholder see the DBOP graph data model. The second part, Figure 126, was 

disliked by both parties. The second part is too complicated and focuses too much 

on the DBOP data structure.  

 

The simplification of the second part was done in two steps. First, the different 

material type nodes at StrLevel 7 were combined into one Material node. This also 

reduces the number of needed edges. The result of the first simplification step is 

presented in Figure 125. Next, the Material node at StrLevel 7 and the Material 

node at StrLevel 8 are combined, and the duplicates of DocumentSet nodes and 

DrawingSet nodes are removed. The result of the second simplification step is 

presented in Figure 128. The simplification of the graph data model took place on 

the 2nd of September 2022, with a modeling time of 25 minutes. The complete 

final DBOP graph data model is presented in Figure 129. By simplifying the graph 

data model from 26 to 16 nodes and from 41 to 17 edges, a result aligned with 

the expectations of the business stakeholder and graph data model expert was 

reached. Twenty minutes was included to the AnalysisTime(graph) variable from 

the additional discussions with the graph data modeling expert and business 

stakeholder 
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Figure 125. The first part of the second DBOP graph data model. This part was accepted by the graph data 

model expert and the business stakeholder (Author’s picture) 
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Figure 126. The second part of the second DBOP graph data model. This part was not accepted by the graph 

data model expert or the business stakeholder (Author’s picture) 
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Figure 127. Different material nodes are combined in the second part of the second DBOP graph data model. 

(Author’s picture) 
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Figure 128. Material nodes are combined and duplicates of Drawing Set nodes and Document Set nodes are 

removed. (Author’s picture) 
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Figure 129. The final DBOP graph data model (Author’s picture) 
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4.3. Graph data model implementation in Neo4j 

 

This chapter presents the steps to bring a graph data model created in 

arrows.app [43] to the Neo4j desktop version.  

 

A new project is created in Neo4j, and within this project a new DBMS is added. 

The project is named as DBOP_experiment, and the DBMS is DBOP Graph DBMS, 

as presented in Figure 130. The DBMS is started and opened in the Neo4j 

Browser.   

 

 
Figure 130. The Neo4j Desktop with the DBOP Graph DBMS running (Author’s picture) 

 

The arrows.app export functionality is utilized to copy the Cypher CREATE 

statement (Figure 132), from the arrows.app to the Neo4j. 

 



141 

 

 
Figure 131. Using the arrows.app export functionality to copy the Cypher CREATE statement (Author’s 

picture) 

 

The Neo4j Browser is opened from the Neo4j Desktop and pasted into the Cypher 

CREATE statement, as presented in Figure 132. After pressing the play icon in 

blue, the statement is executed, and the graph is created in 261 ms, as presented 

in Figure 133.  

 

 
Figure 132. The Cypher CREATE statement is pasted to the Neo4j Browser window (Author’s picture) 
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Figure 133. The DBOP graph created in Neo4j in 261 ms (Author’s picture) 

 

Figure 134 demonstrates that the graph that was created in the arrows.app is 

now available in Neo4j. Properties and labels are visible by pressing a specific 

node, as presented in Figure 135.  

 

 
Figure 134. The DBOP graph model in Neo4j (Author’s picture) 
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Figure 135. Viewing the label and properties of the Engine node in Neo4j (Author’s picture) 

 

With these few simple steps, the graph data model created in the arrows.app can 

be imported to Neo4j.  
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5. ANALYSIS 

 

This chapter analyses the lessons and results of the research. Competencies and 

knowledge needed for graph data modeling in Neo4j are also suggested. 

 

 

5.1. Case study result 

 

In the experiment design phase, discussed in chapter 4.1, the alternative 

hypothesis defines the graph data model as more dynamic than the relational 

data model. The case study indicates the graph data model to be more dynamic 

than the relational data model. The availability of only one subject for the case 

study restrict us to give a statistically relevant result. Despite this fact the result 

of the case study is calculated according to the planned experiment analysis 

procedure. This provides an example for how we suggest the result of an future 

experiment to be analyzed. 

 

The data collected in the experiment are summarized in Table 11. The alternative 

hypothesis, H1_crete: CreateEff(graph) > CreateEff (relational), is formed by 

inserting the values: 21.4 > 10.4.  

 

Table 11. The experiment result  

Name Value Description 
GraphExp 2 Followed a course or read a book 

RelationalExp 4 More than six months of industrial 

experience.  

AnalysisTime(relational) 547 
min 

Total time from the initial analysis. No 
additional research is needed during data 
model implementation. 

AnalysisTime(graph) 90 
min 

70 minutes of initial analysis + 20 minutes 
during data modeling. 

CreateTime(relational) 74 
min 

Figure 118 was created in one single session. 

CreateTime(graph) 253 
min 

48 minutes for the first version, Figure 121. 
180 minutes for the second version, Figure 
124. 
25 minutes of simplification to reach the final 
model in Figure 129. 

Elements(relational) 29 13 tables 
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16 relations 
Elements(graph) 33 16 nodes 

17 edges 
CreateEff(graph) 21.4 (547 + 74) / 29 = 21.4137931 
CreateEff(graph) 10.4 (90 + 253) / 33 = 10.394  

 

The Wilcoxon test was used for analysis. The significance level of 0.05 was used 

to consider the result significant. R-Studio [51], the open-source and 

professional software for data analysis, is used for the Wilcoxon test. The code 

created in R-Studio is presented in Figure 136, and the result is given in Figure 

137.  

 

 
Figure 136. The code in R-Studio for Wilcoxon (Author’s code) 

 

 
Figure 137. The result of Wilcoxon analysis in R-Studio (Author’s picture) 

 

A key finding in the case study was that a change of mindset of the data modeler 

is needed when moving from the relational domain to the graph domain. As 

suggested in chapter 2.4.1, the questions to ask from the model need to be 

understood already when forming the understanding of the data model needs. It 

is not enough to use an analytical approach to translate a relational data model 

to a graph data model. Instead, the policy must be to hold discussions and to align 

with business stakeholders. Hence, the approach used in this experiment was 

wrong. It was too focused on the data and lacked the understanding of the 

conceptual world of the data at hand.   
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The analysis time needed for the relational data model versus the graph data 

model indicates the effort required when change needs arise due to changing 

business needs. The relational data model analysis took six times longer than the 

graph data model analysis.  

 

When designing the experiment, it was expected that the ratio of the dynamic 

capabilities of the relational data model versus the graph data model would 

remain the same no matter the data in the scope and the involvement of the 

business stakeholders. After the experiment, this assumption was recognized to 

be wrong. Producing a 3NF relational data model based on a data analysis result 

is relatively easy. The data analysis did not benefit the graph data model creation 

greatly. Creating a well-functioning and intuitive graph data model requires more 

time sorting out the problem with the business stakeholders.  

 

When discussing the data models with the business stakeholder and the data 

modeling expert, it was noted that neither of them provided any comments 

regarding the relational model result. For the graph data model, criticism that the 

first attempts were not aligned with their expectations was received 

immediately. This indicates that the graph data model is easier to discuss and 

align with business stakeholders and other data modelers. This confirms that the 

graph data model is more intuitive than the relational data model and reduces 

the gap between the conceptual world and the model implemented in a DB. This 

gap was discussed in chapter 3.6  and visualized in Figure 22. 

 

 

5.2. Competencies and knowledge 

 

This chapter answers RQ4: 

• What knowledge and competencies are needed for graph data modeling 

and implementation in Neo4j?  

 

The question is answered based on experience gained through the literature 

review and case study.  

 

The literature review revealed that the graph data model is often described as 

more dynamic and intuitive than the relational data model. From the experiment 

described in chapter 4.2.2, it can be noticed that an engineer from the relational 



147 

 

domain focuses too much on data structures and specific details, which makes the 

graph data model too complex and difficult to understand.  

 

Creating a simple and intuitive graph data model requires discussions with 

business stakeholders over extensive data analysis. This can be a challenge from 

two different angles: 

• Time and commitment from business stakeholders 

• Social skills and attitude of the data modeler 

 

From the experience gained in this study, it was noticed that a 30-minute session 

with business stakeholders could be enough to draw the graph whiteboard model 

that can be further enhanced by either the data modeler alone or with business 

stakeholders. This study's almost 10-hour long data analysis benefits the 

relational data model but not the graph data model. Hence, the attitude of making 

it alone needs to be forgotten, and the engineer needs to engage in discussions 

with business stakeholders. 

 

The engineer starting graph data modeling needs a basic understanding of graph 

data modeling, tools, and practices, and a willingness to continuously study and 

learn more. The engineer should also have enough experience to determine if 

there will be a benefit in moving from the existing DB to the graph DB. This 

decision should not be made without analysis and careful consideration.  
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6. CONCLUSION AND FUTURE RESEARCH 

 

This chapter concludes the thesis by revisiting the research questions to 

understand if the research objective is met and provides suggestions for future 

research. 

 

 

6.1. Answer to research questions 

 

The research was initiated by Wärtsilä’s desire to understand if its experienced 

success with graph data models and Neo4j GDBMS could be extended to the 

manufacturing process data and later to value creation in internal and partner 

networks. The literature review revealed that the graph DB seems to be a good 

choice for manufacturing collaboration in internal and partner networks where the 

relations will play a vital part and frequent evolvements in the systems can be 

expected. However, there are no clear indications of immediate and remarkable 

practical benefits in areas like query performance, flexibility, and agility. The 

suggestion from Robinson et al. [5] is to sort out what the specific problems to 

solve is, before deciding to move from a familiar DB type to the graph DB.  

 

Modeling the DBOP as a graph data model shows that the data structure has 

eleven dept levels, Figure 129. The literature review revealed an indication that 

when there are more than four dept levels, the graph DB will show remarkably 

better query performance than the relational DB, as presented in Figure 19. Based 

on this, it is understood that if the DBOP is the core data in the manufacturing 

collaboration in the internal and partner network, the graph DB is a suitable choice. 

 

From the case study of implementing the DBOP relational and graph data model it 

was noticed that the graph data model seems more dynamic than the relational data 

model. It is also more intuitive and easier to align with business stakeholders and 

other data modelers. A good measure of intuitiveness is how easy the model is to 

discuss with other stakeholders. From the two alternative models created, there was 

no feedback on the relational data model. At the same time, the business stakeholder 

and the graph data modeling expert could give their opinions on the graph data 

model. It was also noticed that the business stakeholder cannot comment on a 

graph data model that is too data-focused and complex.  
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This research focused on finding solutions and answers to the following research 

questions (RQ): 

RQ1. How do data modeling for a relational DB differ from data modeling for a 

graph DB? 

RQ2. Can an experiment where the manufacturing process is modeled as a 

relational model versus a graph data model prove that the graph data 

model is more dynamic than the relational data model? 

RQ3. How to present the manufacturing process data in Neo4j?  

RQ4. What knowledge and competencies are needed for graph data modeling 

and implementation in Neo4j? 

 

RQ1 is answered based on a literature review and the practical implementation 

of relational and graph data models. Chapter 2 and chapter 3 collects the finding 

from the literature review on a level that anyone interested in data modeling will 

find easy to understand. Especially business stakeholders without experience in 

data modeling and data modelers moving from the relational domain to the graph 

domain will benefit from reading these chapters.  

 

A key finding in the literature review is that a company considering a switch to 

the graph domain should not only follow the hype of moving to graphs. A 

careful analysis of their specific needs is recommended. In case a company faces 

the challenge of choosing between a relational DB or graph DB, it is suggested to 

use the recommendations in chapter 3.5, where the Bechberger and Perryman 

decision tree is presented in Figure 21. 

 

For RQ2 an experiment has been designed. The experiment is not carried out due 

to resource issues. A case study to evaluate the experiment design however 

indicate that the graph data model is more dynamic than the relational data 

model. The data being modeled in the case study is the DBOP of an engine 

manufactured in Wärtsilä STH. Chapter 5 provides an analysis of the experiment 

result together with an answer to RQ4. The result shows a clear difference in the 

mindset needed from the data modeler when focusing on a relational DB versus 

a graph DB. According to Fernigrini [36], the data structure is essential in the 

relational DB design. When modeling a NoSQL DB, the type of queries to be 

executed on the data is the focal point. Robinson et al. agree that a graph data 

model not only shows how we consider things to be related but also clearly 

communicates the kinds of questions that are important in the modeled domain 

[5]. 
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The input for the data modeling was mainly an Excel file consisting of a table of 

9210 rows and 38 columns. To understand the data, an almost 10-hour long data 

analysis was performed. The strategy set up for the analysis was later in the 

modeling phase recognized to be a heavy focus on the needs for the relational 

database. The data relationships and groups identified through the data 

analysis focused on data structures and not the questions that are 

important in the DBOP domain.  

 

Figure 118 presents the resulting relational data model. It is in 3NF, and it 

manages the current DBOP data scope. it is recognized that if the model needs to 

be kept in 3NF, a change request would require data analysis to be performed 

again. When looking at the relational data model, a set of connected tables can be 

identified. The visibility of the process flow is missing, and no comments were 

received when showing it to the business stakeholder. The silence is 

interpreted to mean that the model is not intuitive. 

 

Neither did the business stakeholder comment on the first graph data model, 

presented in Figure 121. This also indicates that if business needs were changed, 

the business stakeholders could not explain how this change affects the data 

model. The graph data modeling expert disliked this result and gave the 

impression that the art of graph data modeling is not only to translate tables 

from a relational data model into nodes and attributes into properties. The 

graph data model should be intuitive and flexible to withstand changes in 

the business.  

 

it was recognized to be a challenge to drop the detailed data focus and create a 

graph data model that is simple and intuitive for the business stakeholder. There 

were no questions to ask about the data and no discussions with the business 

stakeholders. It was recognized that a 30-minute-long session with business 

stakeholders describing the DBOP and listing the questions they are interested in 

would have produced a better graph data model. After several modifications, a 

graph data model was formed, which was aligned with how the business 

stakeholder and the graph data modeling expert understands the DBOP, 

presented in Figure 129. 

 

The key finding is that a graph data model is not a translation of relational 

model tables and attributes into graph nodes and properties. Discussions 

with business stakeholders produce an intuitive and dynamic graph data 
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model. Therefore, the data modelers need to understand the importance of 

conversations and drop the attitude of managing alone.  

 

The graph data model was implemented in Neo4j to answer RQ3. This is 

recognized to be an easy step thanks to the arrows.app that provided a Cypher 

statement to be run in Neo4j. The decision to use a modeling tool over the 

possibility of creating the graph data model directly in Neo4j did not create 

additional work. Importing the data to Neo4j is outside the scope of this study. 

Importing the data and performing queries on the data would indicate how 

efficient the graph data model is. 

 

Based on this study, a possibility of extending Wärtsilä’ s success with graph data 

models and Neo4j GDBMS to the manufacturing process data and later to value 

creation in internal and partner networks is recognized. However, a clear yes or 

no answer cannot be given based on this study. 

 

 

6.2. Recommendations for future research 

 

The logical data models created in the experimental setup would require further 

testing and discussions with business stakeholders before being used.  

 

There is an indication that the graph data model would be suited for DBOP. Before 

Wärtsilä decides on a graph DB implementation for the DBOP, importing data to 

the Neo4j implementation and testing how this implementation performs 

compared to the current DB implementation is recommended. The performance 

can be measured by performing queries designed based on the questions 

business stakeholders define to be necessary. 

 

An interesting future research would be an experiment where the DBOP graph 

data model created from the data structure perspective, presented in Figure 121, 

is compared to the graph data model aligned with business stakeholder 

understanding, presented in Figure 129. The test could be performed by 

implementing both in Neo4j, importing the DBOP data, and running performance 

tests on questions that are interesting to the business stakeholders. This would 

give an interesting result of how the difference in viewpoint and data 
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understanding affects the quality of the data model and, hence, the DB’s 

performance.  

 

From the literature review was found indications that the relational data model’s 

response to change is weak and requires expensive configurations to reflect 

changes in business needs [4] [5]. In contrast, the graph data model is described 

to be dynamic. It is easy to add new data elements when adapting to new business 

requirements in the graph data model [13]. Despite the dynamic capability being 

highlighted as a benefit of the graph data model, we note that research comparing 

the relational domain to the graph domain mainly focuses on DB query execution 

times and handling relationships between data elements. The literature review 

did not find any experiments investigating the difference in effort and time 

needed to implement and modify a relational data model versus a graph data 

model. 

 

We designed an experiment to get statistical fact that the graph data model is 

more dynamic than the relational model. With limit the of only one subject 

participating in our experiment, we cannot say that our result is statistically 

relevant. We however, recognized the experiment design and analysis planned to 

be valid. To get a statistically relevant result we recommend the experiment to be 

carried out with ten to twenty subjects. 
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SWEDISH SUMMARY 

 

En fallstudie om en övergång från en relationsdatamodell till en 

grafdatamodell i ett industriellt sammanhang 

 

Den populära relationsdatamodellen är i det här arbetet utmanad av 

grafdatamodellen. Relationsdatamodellen är en beskrivning av datastrukturen 

för en relationsdatabas och grafdatamodellen är en beskrivning av 

datastrukturen för en grafdatabas. Arbetet tar upp grundbegrepp i 

datamodelleringsprocessen samt beskriver skillnader mellan relations- och 

grafdatamodellen. Huvudfokusen i litteraturgranskningen är att få en förståelse 

av när och hur det lönar sig för en firma att ta steget från relations- till 

grafdatabas. Wärtsilä, som är uppdragsgivare till arbetet är speciellt intresserat 

av den dynamiska egenskapen av grafdatamodellen. I litteraturen hittas inget 

bevis på att grafdatamodellen är mer dynamisk än relationsdatamodellen. Det 

här arbetet innehåller därför ett experiment där den dynamiska egenskapen av 

en relations- och grafdatamodell mäts. Eftersom endast en person deltog i 

experimentet kan resultatet dock inte tolkas som statistiskt relevant. 

 

Forskningsfrågorna i fokus i detta arbete är: 

RQ1. Hur skiljer sig datamodellering för en grafdatabasimplementering 

jämfört med en relationsdatabasimplementering? 

RQ2. Kan man genom ett experiment bevisa att grafdatamodellen är mer 

dynamisk än relationsdatamodellen? 

RQ3. Hur kan en motors tillverkningsprocess modelleras i Neo4j? 

RQ4. Vilka kunskaper och kompetenser behövs för grafdatamodellering och 

vidare implementation i Neo4j? 

 

En grundförståelse för datamodellering och databaser, samt får förståelse när och 

hur en firma bör byta från en relationsdatabas till en grafdatabas bildas genom 

att studera virtuella böcker, fallstudier, forskningsresultat och rapporter. 

Källmaterialet som används är till största del mellan noll till fem år gammalt och 

hittas genom Google, Google Scolar och Åbo Akademis virtuella 

biblioteksdatabas.  

 

Relationsdatamodellen som används för att beskriva strukturen i en 

relationsdatabas beskriver både data och kopplingar mellan data i tabellformat. 
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Grafdatamodellen beskriver datastrukturen som en graf. Denna fundamentala 

skillnad gör att det är lättare att göra ändringar i grafdatamodellen än i 

relationsdatamodellen. 

 

Datamodelleringsprocessen för en relations- samt grafdatamodell utgår från att 

förstå problemet som ska modelleras. Detta arbete sker i samförståelse med 

affärsintressenter. Enligt Fernigrini [36] är det viktigt att få en förståelse för 

datastrukturen om man modellerar för en relationsdatabas. Däremot är det 

viktigt att skapa en förståelse för vilken typ av frågor man är intresserat av att få 

svar på utifrån data om man designar en grafdatabas [36]. Robinson med flera 

anser också att grafdatamodellen beskriver hur saker är relaterade och vilka de 

essentiella frågorna är [5]. Då problemet är förstått och dokumenterat i 

textformat övergår man till det konceptuella modelleringsskedet.  

 

 

Tekniska eller systemdetaljer ingår inte i denna datamodell. En ofta använd 

teknik i relations data modelleringen är att skapa en ER-modell. En ER-modell 

kan antingen uttryckas som graf- eller textformat. I grafmodellering skapar man 

också en graf som kan vara så enkel som en skiss på en whiteboardtavla 

framtagen i ett möte med affärsintressenter. Viktigt i detta skede är att förstå att 

den konceptuella modellen beskriver problemet från affärsintressenternas 

synvinkel [7]. Databasutvecklare ska därför vara försiktiga med att inte redan i 

detta skede lösa problemet och tänka på den verkliga databasimplementeringen 

[7]. 

 

Efter den konceptuella datamodelleringen följer det logiska 

datamodelleringsskedet. I detta skede definieras hur databasen ska 

implementeras. Man tar fortfarande inte in detaljer från specifika 

databassystemleverantörer. För en relationsdatabas översätts ER-modellen till 

en relationsdatamodell, vilket innebär att en grafrepresentation översätts till 

tabellformat. Datatabellerna normaliseras ofta till tredje grad. För en grafdatabas 

förblir modellen i grafformat. Skillnader man kan se då man övergår från 

konceptuell till logisk datamodell för en grafdatamodell är att sådant som var en 

entitet blir en egenskap för en nod i den raffinerade modellen [7].  

 

I grafdatabasdesign är den logiska datamodellen den sista modellen som skapas 

före databasimplementeringen. För en relationsdatabas skapas en fysisk 

datamodell som går in på detaljer och krav från en specifik databasleverantör. 
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Datastrukturen kan även modifieras och det som man normaliserat i det 

föregående skedet kan de-normaliseras för bättre frågeprestanda. 

 

Relationsdatabasen är trots sin robusta tabellstruktur fortfarande populär och 

passar utmärkt för dataaggregation. Relationsdatabasen med hög dataintegritet 

och konsistens används ofta i användarfall som kräver hög garanti för 

datatransaktioner. Ett exempel är banktransaktioner.  Relationsdatabasen har 

dock sina nackdelar. En som lyfts fram i litteraturen är dess höga 

underhållskostnad. Den höga underhållskostnaden är direkt beroende av 

databasens tabellstruktur med fördefinierade kolumner och krav på att varje rad 

i tabellen ska vara unik. Dessutom är mappningen av data i tabellformat inte 

hur data existerar i verkligheten. I verkligheten existerar data som objekt och 

relationer mellan dessa objekt.  

 

En relationsdatabas sparar inte relationer, utan dessa kalkyleras vid behov med 

hjälp av kopplingsförfrågningar mellan tabeller. Dessa kalkyler är kostsamma, 

eftersom relationsmodellen först tar fram en mängd möjliga svar och från dessa 

sedan filtrerar ut det rätta svaret. Med dagens extensiva datakopplingar kan 

relationsdatabasen orsaka situationer där ett företag går miste om värdefull 

förståelse av data och dess kopplingar på grund av att en relationsdatabas inte 

klarar av att leverera svar på frågor som går djupare än fyra hierarkiska nivåer.  

 

Grafdatabasen kan i motsats till relationsdatabasen prestera väl i situationer där 

antal attribut, data samt kopplingar mellan data är stora, det finns höga krav på 

affärsflexibilitet och hur snabbt man får tillgång till data. I motsats till 

relationsdatabasen är grafdatabasen direkt framtagen för att spara data och 

kopplingar mellan data. I en grafdatabas är kopplingen mellan data lika viktig 

som dataelementet, om inte ännu viktigare. Grafdatabasens struktur som 

utgörs av noder samt kopplingar mellan dessa noder gör det lätt att utöka 

strukturen för att svara på ändrade affärsbehov. Exempel på världsledande 

företag som skapat sitt värde utgående från datakopplingar är Facebook, Google, 

LinkedIn samt Paypal. Alla dessa är tidiga adoptanter av grafdatabasen. 

 

Grafdatabasen har visat sig förträfflig i situationer som: 
• Bedrägeriupptäckt i realtid 
• Realtidsrekommendationer till användare 
• Masterdata  
• Nätverks- och informationsteknikverksamhet 
• Identitets- och åtkomsthantering 
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• Uppfyllande av regelverk 
• Analyser 
• Digital tillgångshantering 
• Kontextmedvetna tjänster 
• Semantisk sökning 
• Situationsmedvetenhet 

 

Trots att man på internet kan läsa om många förträffliga implementeringar av 

grafdatabasen i olika typer av företag, ska man inte bli förbryllad och välja 

databastyp utgående från något man läst om. Viktigt är i stället att förstå sitt eget 

problem och använda sig av ett analytiskt förfarande då typ av databas väljs. En 

tydlig indikering på bättre svarsprestanda, flexibilitet och smidighet behövs för 

att överväga ett byte från en väletablerad och lättförstådd databas till en 

grafdatabas.  

 

I ett analytiskt förfarande för att välja typ av databas utgår man från vilket typ av 

problem man försöker lösa. Man bildar en förståelse av vilken typ av data man 

kommer lagra samt hur data ska hämtas. På en generell nivå anses alla problem 

passa i någon av dessa kategorier: 

1. Urval/sökning 

2. Aggregation 

3. Relaterade eller rekursiva data 

4. Mönstermatchning 

5. Centralitet, bildning av kluster och inflytande 

Kategori ett och två anses vara bättre ämnade för en relationsdatabas, medan 

kategori tre till fem är lämpade för en grafdatabas. Om man efter 

kategoriseringen fortfarande känner osäkerhet kan man använda sig av 

beslutsträdet i Figure 21.  

 

Uppdragsgivaren, Wärtsilä, var speciellt intresserat av den dynamiska 

kapabiliteten av grafdatabasen. I litteraturen fanns inget bevis på att 

grafdatamodellen är mer dynamisk än relationsdatamodellen. För att få ett svar 

gjordes en fallstudie där den dynamiska egenskapen av en relations- och 

grafdatamodell mäts. En dynamisk egenskap anses i detta arbete vara detsamma 

som effektiviteten av att skapa och därefter modifiera datamodellen.  I 

experimentet modelleras en logisk relationsdatamodell samt en grafdatamodell. 

Data som modelleras är DBOP för en motor som produceras vid Wärtsilä STH i 

Vaasa, Finland. 

 



157 

 

Trots utmaningar att bygga en grafmodell som godkändes av en 

grafmodelleringsexpert på Wärtsilä, visar fallstudien att grafdatamodellen visar 

indikation på att vara mer dynamisk än relationsdatamodellen. Resultatet kan 

dock inte tolkas som statistiskt relevant på grund av att endast en person utförde 

fallstudien. Största tiden av fallstudien gick åt till att analysera och förstå data 

som skulle modelleras. Utgående från analysen var det med tidigare erfarenheter 

av en relationsdatabas relativt enkelt att bygga en relationsdatamodell enligt 

tredje gradens normalisering.  

 

Att bygga grafmodellen utgående från samma dataanalys och översätta tabeller 

och attribut i relationsdatamodellen till noder och egenskaper i grafdatamodellen 

visade sig vara ett dåligt val. Att vara för analytisk i grafdatamodellering är en 

nackdel. I stället för att datamodelleraren ensam analyserar data, bör hen 

uppsöka de som förstår sig på problemet i fråga och tillsammans med dem ta fram 

en konceptuell lösning till problemområdet. Endast genom diskussion kan 

konsten med att skapa en intuitiv, välfungerande och dynamisk grafdatamodell 

uppnås. Är grafdatamodellen en översättning från relationsdatamodellen saknas 

intuitivitet och affärsintressenter kommer inte förstå modellen, vilket i sin tur 

leder till problematik i diskussioner då en eventuell ändring ska överenskommas 

och implementeras. Vilket verktyg som används i datamodelleringsskedet är 

också viktigt att tänka på. I det här arbetet användes arrows.app. Arrows.app 

genererar ett Cypher-skript som kan köras i Neo4j vid en 

databasimplementering. Detta sparar tid och dubbelarbete undviks.  

 

Genom fallstudien bildades även förståelsen av att ett eventuellt 

modifieringsbehov av datamodellen skulle vara mer tidskrävande för 

relationsdatamodellen än för grafdatamodellen. Detta baserar sig delvis på att 

dataanalysen för att skapa relationsmodellen var sex gånger längre jämfört med 

grafdatamodellen. En annan orsak är att affärsintressenterna hade lättare att 

kommentera grafdatamodellen jämfört med relationsdatamodellen. Flera 

kommentarer visar att grafdatamodellen är lättare att förstå och det är därmed 

lättare att diskutera och uppnå konsensus om vilka ändringar som behövs när 

affärskraven ändras.  

 

Genom en litteraturgranskning samt en fallstudiehar i detta arbete uppnåtts en 

förståelse av datamodelleringsprocessen för en relationsdatamodell samt 

grafdatamodell. Relationsmodellen med sin robusta tabellstruktur kan anses 

vara mindre dynamisk än grafdatamodellen i en värld med ständiga förändringar. 
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Dock ska beslutet av att övergå till en grafdatamodell inte fattas okritiskt eller 

utgående från trender. I stället ska en noggrann analys på basen av det egna 

problemområdet göras. Problemområdet i fokus i detta arbete var en motors 

tillverkningsprocess och en eventuell utvidgning till partnernätverk. Från 

dataanalysen som visar att DBOP har elva hierarkiska nivåer kan man anta att 

grafdatabasen skulle uppvisa sin fördel i frågeprestanda jämfört med 

relationsdatabasen. Detta understöds av resultatet av litteraturgranskningen 

som visar att en relationsdatabas har svårigheter att leverera resultat i frågor 

som sträcker sig djupare än fyra nivåer. För Wärtsilä rekommenderas dock 

fortsatta studier i problemområdet innan ett slutgiltigt beslut görs. 
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