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Abstract

The ability to synthetically create materials with desired properties has been greatly
enhanced by advances in biotechnology. One important application of biotechnology
is the design of synthetic proteins with the ability to fold in any configuration and
predict their folding in advance. However, the connection between sequence, struc-
ture, and function is not yet fully understood, and there are endless combinations
of amino acids that cannot be experimentally examined. Therefore, computational
tools such as machine learning techniques are needed to guide material development.

This thesis evaluates the accuracy of machine learning-based protein structure pre-
dictions by subjecting the predicted structures to molecular dynamics simulations
using Gromacs software. The focus of the study is on synthetically constructed per-
fect tandem repeat proteins, and the goal is to test the stability of the predicted
structures. The RMSD metric, often used to compare the structural similarity of
proteins during molecular dynamics simulations, has limitations in its interpreta-
tion. To address this, a new measure of structural similarity called ρsc is proposed
and used to assess the stability of the proteins.

The results of the simulations show that many of the proteins generated by the ma-
chine learning model are unstable, with significant conformational changes observed.
This suggests that the current model may not accurately predict the stability of all
proteins. The predicted proteins also contained nonphysical structures with over-
lapping atoms. The study highlights the importance of combining machine learning
approaches with other computational approaches to improve the accuracy of protein
structure prediction.

In conclusion, this study provides insights into the limitations of current machine
learning models for protein structure prediction, and suggests the need for further
research to better understand the underlying reasons for the observed instability.
These findings could lead to improvements in protein design and prediction, ul-
timately leading to the creation of more advanced and functional materials with
desired properties.
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Chapter 1

Introduction

As technology continues to advance, the ability to create synthetic materials with
precise and targeted properties is improving. Biotechnology, a field that enables
the creation of customized protein sequences with tailored structures, is focused on
designing synthetic proteins that can be folded in any desired configuration predicted
in advance. Protein structure is widely acknowledged as being critical in determining
biological interactions, and proteins can be used as building blocks to create materials
with tailored properties to meet various needs.

One area where protein structure prediction has significant potential is in the food
industry. Manufacturers can design protein-based foods with specific functional prop-
erties, such as texture, taste, and shelf life. This could lead to the development of
new and innovative protein-based foods that are healthier and more sustainable than
traditional options.

However, with endless combinations of amino acids, it is impossible to experimentally
examine all of them. Therefore, computational tools such as machine learning are
needed to guide material development in a faster and more cost-effective manner.
These tools can suggest novel protein sequences that have not been tested before.

The main objective of my thesis is to test the accuracy of a protein structure pre-
diction machine learning model on synthetically constructed perfect tandem repeat
proteins. By running the proteins through molecular dynamics stability simulations
using Gromacs software, my work will evaluate the structures predicted by the ma-
chine learning model, which will in turn give training data to the model.

Overall, the development of materials with specific properties has numerous applica-
tions in various industries, such as healthcare, electronics, and energy. By designing
and synthesizing proteins with specific structures and properties using machine learn-
ing, this research has the potential to contribute to the development of new materials
with targeted properties.
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1.1 What is a protein and why is structure pre-

diction important

Proteins are biomolecules essential for living matter. They are built of amino acids,
of which around 500 exist in nature, but only 20 of them are naturally present in the
body. Amino acids are built of one amino group (NH2), one carboxylic acid group
(COOH), and one functional group (R), which determines the amino acid type.
The shape and function of the protein are determined by these amino acids, which
combine to create polypeptide chains through peptide bonds, i.e., bonds between
the carboxylic acid group of one amino acid and the amino group of the neighboring
atom [1]. Figure 1.1 shows the chemical composition of an amino acid.

Figure 1.1: Chemical formula of amino acid.

The most important characteristics of proteins is their ability to fold into specific
three-dimensional structures, e.g., their native conformation. The folding is deter-
mined by the sequence of amino acids and the physical and chemical properties of
the surrounding environment. Proteins fold in a highly specific and efficient manner,
driven by the formation of non-covalent interactions between different parts of the
polypeptide chain [2]. Figure 1.2 shows a machine learning-predicted protein.

Figure 1.2: Machine learning predicted protein.
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The structure of a protein determines its function and stability. Many proteins
have multiple functions and therefore have evolved to adopt different conformations.
For example, enzymes are proteins that catalyze chemical reactions and their active
site is formed by the specific folding of the polypeptide chain. Similarly, structural
proteins such as actin and myosin provide mechanical support and movement to cells
and tissues [3].

Proper protein folding is crucial for the functioning of the protein, if proteins fail
to fold into their functional structure, they can become pathological or lose their
function all-together. Misfolded proteins in the body can cause a wide range of
diseases, including Alzheimer’s, Huntington’s, and cystic fibrosis. Understanding
the mechanisms of protein folding helps in the development of treatments for these
diseases [4].

Predicting protein structure is essential for understanding the relationship between
protein structure and function, as well as for the development of new therapeutics.
Machine learning models have been developed to predict protein structures with high
accuracy, providing insights into how proteins work and aiding in the design of drugs
that target specific proteins. This field is rapidly expanding and has the potential
to revolutionize our understanding of biochemistry and biomedical research [5].

1.2 Machine learning in biology

Machine learning is rapidly becoming a powerful tool in various fields of biology,
including protein structure prediction [6]. The ability to accurately predict pro-
tein structures is crucial for understanding their functions and potential applications
in medicine and biotechnology. The Critical Assessment of Structure Prediction
(CASP) competition, which has been held every two years since 1994, serves as a
benchmark for evaluating the progress and performance of different protein structure
prediction methods [7].

AlphaFold2, developed by DeepMind Technologies, was the clear winner of the 2020
CASP competition. This machine learning model was trained on a large dataset of
experimentally determined protein structures and is able to predict the structure of
proteins with high accuracy. It has also been used to predict structures for the human
proteome and other organic proteins. AlphaFold2 is better at predicting side chains
and identifying evolutionarily connected proteins, which can improve the predictions
[8].
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One of the key advantages of machine learning algorithms like AlphaFold is that they
can reduce human biases and lead to new discoveries that may not be logical to the
human mind. However, a limitation is that these algorithms rely on familiar data,
so there is always a possibility that the input data is too different from the existing
data for the model to know how to process it [9].

While AlphaFold and other machine learning models can be very helpful in predicting
initial protein structures, they still have large deviations compared to experimentally
determined structures and cannot currently replace experimental methods. There is
evidence to suggest that some machine learning-predicted protein structures may
not be stable during molecular dynamics simulations. Despite this limitation, ma-
chine learning in biology is a rapidly growing field with great potential for future
advancements [10].

The properties of proteins can be linked to the structure and order of the amino
acids. In sequence databases, it is possible to obtain a clear view of the function
of different amino acid sequences. It would still be beneficial to create a machine
learning model that can predict protein folding and stability by just looking at the
pattern of the amino acid, without any additional information. Many researchers
are curious about how much of a sequence must be preserved in order to maintain
functionality. Sometimes all that is required is the stability of the residues making
up the active site. Research also suggests that the number of different protein folds
existing in nature is limited; this knowledge is undoubtedly important in the field of
protein research and modeling. One question is whether structural similarity alone
can be proof of protein functionality. [11].

1.3 Limitations in machine learning-based protein

structure prediction

One of the main limitations of machine learning-based protein structure predictors
is prediction of regions of the protein that are flexible or have multiple conforma-
tions. These regions can include loops, disordered regions and flexible domains. The
structures of these regions are important for the function of the protein and their
accurate prediction is crucial for understanding the protein’s behavior [12].

Another limitation is that the models struggle to predict interactions between do-
mains. Proteins often have multiple domains that perform different functions and
these interactions can play a crucial role in the proteins activity. Additionally, these
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models are trained on a limited amount of data, which can lead to overfitting and
the models may not generalize well to unseen proteins [13].

It has been shown that including experimental information, such as electron density
maps and distances between residues, can improve the accuracy of predicting dis-
ordered regions in proteins. The AlphaFold predicted protein structures have been
compared to density maps of crystal structures and found to have both global and
local deviations, e.g., inaccurately predicted domain orientations, backbone and side
chains [14].

Despite these limitations, machine learning-based protein structure predictors have
improved the field of protein structure prediction, and researchers are constantly
working to improve their accuracy and generalizability. This includes the incorpora-
tion of experimental data, such as electron density maps, and the use of more diverse
training sets. Another approach is to use multiple models, such as combining differ-
ent machine learning techniques, or using a consensus of predictions from multiple
models [15].

The accuracy of AlphaFold has been determined based on the confidence interval
of atomic positional changes. The high accuracy of AlphaFold accounts for local
atomic precision, meaning that it can predict the precise location of individual atoms
in a protein structure with a high degree of accuracy. However, when researchers
looked closer at these high-accuracy predictions, they found that they still poorly
predicted certain regions of the protein, such as flexible or multi-conformational
regions. Studies have shown that AlphaFold can only predict 40 percent of the
human proteome accurately [16].

Though the structures are overall well predicted by machine learning-based protein
structure predictors, experimental data could help to improve predictions on a more
detailed level. For example, using experimental data such as electron density maps,
X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and electron
microscopy can provide a more accurate understanding of protein structure and
function [14].

An iterative correction process can be used to refine and correct the predictions
made by machine learning models, improving the accuracy of protein structure pre-
diction. This approach incorporates experimental data to correct errors on a local
level, leading to improved accuracy in other regions of the protein. The incorporation
of experimental data and iterative correction processes can provide a better under-
standing of the dynamic nature of proteins and the complexity of their interactions.
[17].
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Chapter 2

Theoretical basis for molecular dy-
namics simulations

Molecular dynamics (MD) is a computer simulation technique used to study the
movement of atoms in a system based on Newton’s equations of motion [18]. In MD
simulations, atoms are treated as point particles and interatomic interactions are
described with analytical potential functions. Interactions influencing a molecular
system include van der Waals, Coulombic, and hydrogen bonding, among others.
The forces acting on individual atoms are derived from these potential functions
[19].

Newton’s laws of motion state that the second derivative of an objects position with
respect to time is directly proportional to the net force acting on the object over its
mass, i.e:

d2ri
dt2

=
Fi

mi

, (2.1)

Equivalently, the velocity is:

dri
dt

= vi;
dvi

dt
=

Fi

mi

. (2.2)

The forces acting on a single atom in the system is based on its specific interactions
with other atoms and external potentials. The updated positions can be determined
by numerically integrating the net force at each time step. By repeating this process,
the trajectory of the atoms over time is obtained.
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MD simulations can provide valuable insights into protein folding, but it’s worth
noting that these simulations have limitations and are mere approximations of the
real dynamics. The accuracy of the results can be affected by factors such as the size
of the simulation box, the choice of force field parameters, and the simulation time.
While MD simulations can be a powerful tool in the study of a proteins behavior,
the results should be interpreted with caution and their limitations should be taken
into account in the design [20].

During MD simulations, proteins often experience minor conformational changes as
they are naturally flexible molecules. Thus, it is normal for protein structures to
not remain completely stable throughout the simulations. It is common to observe
some structural fluctuations, caused by various factors such as thermal motions,
interactions with solvent molecules, and interactions with other molecules in the
system [21].

However, the overall shape and stability of the protein molecule should be preserved
during the simulation, and it should not undergo any large-scale unfolding or major
structural rearrangements. The protein structure should remain within a reasonable
range of conformations that are consistent with its native state. Therefore, while
some degree of structural fluctuations is expected during MD simulations, the sta-
bility of the protein structure should be monitored and assessed to ensure that it
remains within acceptable limits [22].

2.1 Dihedral angles

One critical step in setting up an MD simulation is selecting an initial structure
for the system. The initial structure determines the starting conformation of the
system and can greatly affect the behavior of the simulation. Therefore, accurately
predicting the initial structure is crucial for obtaining meaningful results. Predicting
dihedral angles with machine learning models can provide accurate estimates of the
initial structure of a molecule, allowing for more efficient and reliable simulations.

Moreover, dihedral angle prediction using machine learning models can be particu-
larly useful for simulating large and complex systems, where manual prediction of
dihedral angles may be impractical or time-consuming. The use of machine learning
models to predict dihedral angles can greatly benefit the setup of MD simulations..
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Dihedral angles provide data that can be utilized in molecular dynamics simulations
to examine change in protein conformation. These angles are computed, by moving
along the backbone of the peptide, which refers to the repeating sequence of N-Cα-C
atoms. The Cα is the atom that is connected to the functional group. The angles are
determined by considering the positions of four following atoms along the backbone.
Moving along the chain, all bond angles are determined. Dihedral angles provide
a more thorough understanding of the internal and overall motion of the molecule.
This knowledge is essential for comprehending the behavior of biomolecules in a
changing environment. The bond length and angles remain fairly consistent, making
the analysis of dihedral angles a more trustworthy method than merely measuring
the coordinates of the atoms [23].

In figure 2.1b, the dihedral angle ω is determined. The four atoms being observed
are labeled in figure 2.1a. The bond between the carbon atom (C) and the nitrogen
atom (N), i.e., the peptide bond axis, makes up the backbone. The dihedral angle is
defined by the angle between the first and third bond, which is shown in 2.1b.

The dihedral angle ϕ is defined by the rotation around the N−Cα bond axis and the
dihedral angle ψ is the rotation around the Cα −C bond axis. A rotation clockwise,
moving from left to right along the peptide, gives a positive angle, and a rotation to
the left gives a negative angle. Figure 2.2a show the dihedral angle ϕ and figure 2.2b
show the angle ψ.

(a) Selected atoms: Cα − C −N − Cα . (b) Dihedral angle, ω.

Figure 2.1: Molecular model used to demonstrate the dihedral angles of the selected
first four atoms (a) and the dihedral angle ω (b).
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(a) Dihedral angle, ϕ. (b) Dihedral angle, ψ.

Figure 2.2: Dihedral angles ϕ and ψ.

2.2 Forces

Molecular dynamics simulations use a force field to handle atomic interactions, which
are mathematical functions that describe the potential energy of a system based on
the positions and velocities of the atoms. The force field is a collection of poten-
tial energy functions that enable the calculation of forces between atoms based on
the specific interactions within the system. These functions captures essential in-
teractions between atoms and molecules, such as chemical bonds and electrostatic
forces.

The net force field on an atom can be used to determine the motion and behavior of
the system over time. The force acting on a single atom in a system can be expressed
as:

Fi = −∂V
∂ri

, (2.3)

where ri is the position vector of the ith atom, and V is the potential energy of the
system. The force acting on a single atom can also be expressed as the sum of all
pairwise forces between the atoms as:

Fi =
∑
j

Fij, (2.4)

where Fij is the force between the ith and jth atoms. This equation is known
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as Newton’s third law of motion, which states that every action has an equal and
opposite reaction. Therefore, the force acting on one atom due to all the other atoms
in the system is equal and opposite to the force acting on the other atoms due to the
ith atom.

In MD simulations, the interactions between atoms or molecules are described by
the chosen force field, which includes mathematical functions and parameters that
define how atoms interact with each other. By using a force field, molecular dynam-
ics simulations can predict the behavior of molecules and materials under different
conditions. The accuracy of the simulation results depends on the quality of the force
field parameters, which is related to the software used for the simulations. The force
field handles all of the specific interactions between atoms, including bonded and
non-bonded interactions, and determines the potential energy of the system. The
atomic interactions will be explained in detail in chapter 2.3.

2.3 Potential functions in MD simulations

By defining the pairwise potential energies between the atoms, the forces can be
derived using the negative gradient of the potential energy with respect to the atomic
positions, which was stated in equation 2.3. The net force on individual atoms is
obtained by summing up all forces influencing the atoms. In this way, MD simulations
can provide insight into the structural and dynamic properties of molecular systems.
The potential energy of a molecular system can equally be calculated as the sum of
the potential energies of all the individual atoms comprising the system:

V (r1, . . . rN) =
∑
i<j

Vij (rij) (2.5)

The interactions between particles are centro-symmetric because the potential only
depends on the scalar distance between them. We typically divide the interactions
into two general classes, bonded and nonbonded interactions. The bonded interac-
tions are strong and involve the sharing or transfer of electrons between atoms in a
molecule, while the nonbonded interactions are weaker and involve forces between
molecules or within a molecule.

The nonbonded interactions include a repulsion term, a dispersion term, and a
Coulomb term. The repulsion and dispersion term can be represented by either the
Lennard-Jones or Buckingham potential. Additionally, atoms with partial charges
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interact through the Coulomb term. Nonbonded interactions are pair additive; i.e.,
the total potential is the sum of the potential between pairs and can be written as:

Overall, the potentials used in MD simulations are crucial for determining the behav-
ior of molecular systems and the accuracy of the simulation results. The selection of
the appropriate potentials is therefore an important consideration in the development
and implementation of MD simulations.

2.3.1 Potential energy functions for nonbonded interactions

In molecular dynamics, nonbonded interactions refer to the interactions between
atoms that are not covalently bonded to each other, i.e., van der Waals forces,
electrostatic interactions, and repulsive forces [24]. These interactions are usually
modeled using empirical potential functions, such as the Lennard-Jones potential or
the Coulomb potential, which are used to calculate the energy and force between
atoms in a simulation. Nonbonded interactions play a crucial role in determining the
structure, stability, and behavior of molecular systems in MD simulations.

The Lennard-Jones potential can be separated into a repulsion term and a dispersion
term as follows:

VLJ (rij) =
C

(12)
ij

rij12
−
C

(6)
ij

rij6
, (2.6)

where C
(12)
ij and C

(6)
ij account for different atom type pairs.

The Buckingham potential is a combination of an exponential term and an inverse
power term, allowing it to represent both attractive and repulsive forces between
atoms, which is expressed:

Vbh (rij) = Aij exp (−Bijrij)−
Cij

rij
(2.7)

where Aij, Bij, and Cij are parameters specific to the particular atom pair being
modeled. These parameters can be determined from experimental data or from fitting
to a set of data. The exponential term, Aij exp(−Bijrij), represents the attractive
forces between atoms, while the inverse power term, −Cij/rij, represents the repulsive
forces.
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When two atoms with polar bonds are close together in the simulation, their partial
charges create an electrostatic interaction between them. This electrostatic inter-
action can be attractive or repulsive, depending on the sign of the partial charges,
and it can influence the behavior and properties of the system being studied. These
interactions are described with the Coulomb potential as:

Vc (rij) = f
qiqj
εrrij

, (2.8)

where f is the screening factor ( 1
4πε0

= 138.935458), qi and qj are the charges of
the two atoms being considered, and εr is the relative permittivity of the medium in
which the atoms are located. The Coulomb potential models the interaction between
two charged particles, and the magnitude of the potential depends on the distance
between the particles and the magnitude of their charges. This potential is essential
in describing the interactions between atoms in systems with polar bonds or charged
species. The interactions between polar bonds are typically described using the
partial charges assigned to atoms in the selected force field.

2.3.2 Potential energy functions for bonded interactions

Bonded interactions in MD simulations refer to the interactions between atoms that
are covalently bonded or connected by other strong chemical bonds. These interac-
tions lead to bond stretching, bond bending, and torsion angle interactions and they
are usually modeled using potential energy functions, such as the Harmonic bond
potential or Morse potential. These interactions are critical for accurate predictions
of molecular properties such as reactivity, stability, and thermodynamics.

The Harmonic bond potential is a simple quadratic equation used to model bond
stretching interactions, represented as:

Vb (rij) =
1

2
kbij (rij − bij)

2 , (2.9)

The equation describes the bond potential energy (Vb) between atoms i and j. It
is characterized by a spring constant (kbij) that describes the bond’s strength and a
bond length (rij) that represents the distance between atoms i and j. The equilibrium
bond length (bij) represents the bond length when the bond is at its most stable state.
Figure 2.3 shows an illustration of bond stretching.
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Figure 2.3: Harmonic bond stretching, at equilibrium

The Morse potential, in comparison to the harmonic bond potential, contains an
asymmetrical potential well and generates no force at an infinitely distant separation.
This is a way of modelling bond stretching interactions using a more complex non-
linear equation, represented as:

VMorse (rij) = Dij [1− exp (−βij (rij − bij))]
2 , (2.10)

where VMorse is the potential energy of a bond between atoms i and j in a molecule.
The well depth Dij describes the amount of energy required to dissociate the bond
between atoms i and j. The bond width parameter βij describes the steepness of the
bond potential energy, and the equilibrium bond length bij is the length at which
the bond potential energy is at a minimum.

The bond-angle vibration between a triplet of atoms is modeled using the harmonic
angle potential, which is represented by the following equation:

Va (θijk) =
1

2
kθijk

(
θijk − θ0ijk

)2
, (2.11)

where, Va is the potential energy, kθijk is the spring constant, θijk is the bond angle,
and θ0ijk is the equilibrium bond angle. The harmonic angle potential is used to model
the bond-angle vibration between a triplet of atoms, with the bond-angle vibration
represented as a harmonic potential, similar to the bond stretching, shown in figure
2.4:

These are just a few examples of the equations used to model bonded interactions
in MD simulations. The specific form of the equation will depend on the force field
being used and the specific interaction being modeled, which will be further explored
in the chapter about numerical implementation.
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Figure 2.4: Bond-angle vibration

2.4 Initial energy minimization and equilibration

MD energy minimization and equilibration are crucial steps in preparing a molecu-
lar dynamics simulation. By iteratively adjusting the positions of the atoms in the
system, energy minimization can help to eliminate any unfavorable contacts between
atoms and achieve a stable initial configuration with low potential energy. Equilibra-
tion is the process of bringing the system to an equilibrium state. Equilibration is
achieved in two steps, by first keeping the temperature and volume constant (NVT)
secondly the temperature and pressure constant (NPT).

In molecular dynamics, the total energy of a system is comprised of both potential
energy and kinetic energy. The potential energy have already been discussed in
chapter 2.3 and the kinetic energy of the system follows the formula of kinetic energy:

Ekin =
1

2

N∑
i=1

miv
2
i , (2.12)

from which the temperature can be calculated with the formula 1
2
NdfkT = Ekin,

whereNdf is the degrees of freedom, which can be received fromNdf = 3N−Nc−Ncom.

The variable Nc represents the total number of constraints applicable to a system. In
normal conditions, Ncom is derived by subtracting three from Nc, while in a vacuum
or unconstrained environment, Ncom is calculated by subtracting six from Nc. This
means that Ncom reflects the effective number of constraints acting on the system,
taking into account the specific conditions under which it is operating.

Energy minimization is important in determining the proper molecular arrangement
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in space. The potential energy of a molecule contains different components like
stretching, bending, and torsion. Energy minimization operations can find a local
minimum energy value, but it may not be the most stable conformer (global energy
minimum) [25]. One method to determine the local energy minima is the particle-
mesh Ewald method, which is presented in chapter 3.1. Figure 2.5 displays an energy
minimization curve that is approaching a plateau, but has not yet fully converged.

Figure 2.5: Energy minimization curve.

Equilibration is a process used in molecular dynamics simulations to bring the system
to an appropriate temperature and pressure. This allows the simulation to accurately
represent the behavior of the system at these conditions. During equilibration, the
kinetic energy of the system will increase until it reaches an equilibrium value de-
termined by the temperature and pressure, which is maintained through the balance
between kinetic and potential energy.

There are two commonly used ensembles in molecular dynamics simulations: the
NVT and NPT ensembles. The NVT (Constant Number of Particles, Constant Vol-
ume, Constant Temperature) ensemble is a statistical ensemble in which the number
of particles in the system, the volume of the system, and the temperature are kept
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constant. A temperature-control algorithm, which is explained in chapter such as
a thermostat, is used to maintain the ensemble. The equation for this ensemble is
given by:

pV = NkBT , (2.13)

where p = Pressure, V = Volume, N = Number of Particles, kB = Boltzmann’s
constant, and T = Temperature.

The NPT (Constant Number of Particles, Constant Pressure, Constant Temperature)
ensemble is a statistical ensemble in which the number of particles in the system,
the pressure of the system, and the temperature are kept constant. This ensemble is
maintained using a pressure-control algorithm, such as a barostat. The procedures
for determining the NVT and NPT configurations are described in more detail in
chapters 3.3 and 3.4. The graphs in Figure 2.6 displays the behavior of both NVT
and NPT systems, with equilibrium being achieved rapidly.

(a) Temperature equilibration curve. (b) Pressure equilibration curve.

Figure 2.6: NVT and NPT curves.
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2.5 MD parameters

The extraction of structural parameters is vital in MD simulations, enabling char-
acterization of macromolecules’ conformational properties. They provide a reference
framework for comparing proteins and monitoring changes in their three-dimensional
structure over time. By accurately defining these parameters, researchers can quanti-
tatively analyze the behavior of proteins and their interactions with other molecules,
enabling a deeper understanding of key biological processes. The reliable determina-
tion of these parameters is critical to obtaining informative and trustworthy results
from MD simulations, as they form the foundation for the interpretation of simulation
outcomes.

The Root Mean Square Deviation (RMSD) is a widely used method to measure the
similarity between two sets of atomic coordinates. It calculates the square root of the
average sum of the distances between each pair of equivalent atoms. However, the
RMSD can be misleading because it is highly sensitive to the amplitude of errors. For
example, it may give a large RMSD value even when two structures are very similar
except for a small difference in a single loop or flexible terminus. This can affect
the accuracy of protein structure predictions based on the RMSD [26]. Therefore,
the RMSD should be used with caution and in conjunction with other measures to
accurately assess the similarity between protein structures. The RMSD is calculated
using the formula:

RMSD =

√√√√ 1

n

n∑
i=1

d2i (2.14)

where n is the number of atoms being compared between the two structures, and
di is the distance between atom i in the first structure and atom i in the second
structure.

The radius of gyration is a measure of the protein’s compactness, indicating the
distribution of the mass of the protein with respect to its center of mass. It is
defined as the root mean square distance of the atoms from the center of mass. The
formula for calculating the radius of gyration involves the masses and positions of all
atoms in the protein. A protein with a smaller radius of gyration is more compact
than one with a larger radius of gyration. Radius of gyration can be expressed with
the formula:
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R2
gyr =

1

M

N∑
i=1

mi (ri −R)2 (2.15)

where M =
∑N

i=1mi is the total mass and R = N−1
∑N

i=1 ri is the center of mass
of the protein. N is the number of atoms in the peptide. The changes in radius
of gyration over the simulation time correlate to conformational variations of the
protein [27].

The changes in the radius of gyration during molecular dynamics simulations can be
used to assess the conformational flexibility of the protein. Proteins that undergo
large conformational changes during simulation generally exhibit larger changes in
radius of gyration. Additionally, changes in the radius of gyration can be used to
study protein folding, binding, and stability. In general, the radius of gyration is a
useful metric for analyzing protein structure and dynamics.
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Chapter 3

Numerical Implementation and GRO-
MACS Workflow

The GROMACS workflow is a set of steps used to simulate molecular dynamics of
biomolecules such as proteins. The process typically includes the following steps:
preprocessing, energy minimization, solvent equilibration, production run and anal-
ysis.

Firstly, the protein is put in a box of water, and ions (Na+ and Cl-) are added to
neutralize the system . This can be seen in Figure 3.1.

(a) The system with water. (b) The system without water.

Figure 3.1: The protein contained in a box with added water and ions.

Secondly, the peptide is equilibrated with respect to temperature (NVT) and pres-
sure (NPT). During the production run, the coordinates and velocities of the atoms
are saved for further analysis. Finally, the saved data is used to calculate various
properties of the system and other tools are used to analyze the simulation.

Before the simulation can start, all initial parameters must be determined. The
time step is updated using the leapfrog algorithm (presented in chapter 3.2.1), which
requires known coordinate parameters at t = t0 and t = t0 − 1

2
∆t. If the velocities
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are unknown, they are estimated by GROMACS at a given temperature with the
Boltzmann-Maxwell distribution:

p (vi) =

√
mi

2πkT
exp

(
−miv

2
i

2kT

)
(3.1)

Only the forces between nonbonded atoms separated by a distance smaller than
the cut-off radius Rc are considered. GROMACS creates pair lists of all relevant
nonbonded pairs, including a displacement vector for atom i along with the neighbor
list of j atoms in its Rc range. The machine learning model predicts dihedral angles
from amino acid sequences, which are then processed and converted into a file format
compatible with GROMACS. The GROMACS software uses various algorithms and
techniques to simulate the motion of atoms and molecules based on the provided
sequence data, with the aim of generating accurate results.

The numerical implementation of molecular dynamics simulations is at the centre
in the study of molecular systems, and this chapter focuses on the algorithms and
methods involved in these simulations. It covers the processing of the proteins, as
well as the algorithms used by GROMACS. The choice of force fields and algorithms
is crucial to achieving accurate results, and this will be discussed in detail in this
chapter.

One key implementation in large system simulations is periodic boundary conditions
(PBC) [28]. PBC is used to prevent boundary effects in simulations, where the
protein does not stay in the same place and parts of the protein may move past
the boundaries of the simulation box. To solve this problem, PBC creates identical
boxes surrounded simulation box. This allows the particles in the system to appear
to move dynamically between the boxes, ensuring that the protein does not move
past the boundaries of the simulation box.

Under PBC, the system is effectively infinite, as there are an infinite number of
periodic images of the original cubic box. This means that the interaction between
particles in the system extends beyond the boundaries of the original cubic box and
into its periodic images. This is illustrated in Figure 3.3, where the simulation box
is shown in the center, surrounded by eight translational boxes.
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Figure 3.2: Visualization of periodic boundary conditions.

The vectors of the three-dimensional simulation box must satisfy the following bound-
ary conditions:

ay = az = bz = 0 (3.2)

ax > 0, by > 0, cz > 0 (3.3)

|bx| ≤
1

2
ax, |cx| ≤

1

2
ax, |cy| ≤

1

2
by (3.4)

The conditions in equation 3.2 and Rc < 1
2
min (ax, by, cz) give the translational

images inside the Rc cutoff, expressed with the rij vector:

r′′′ = rj − ri
r′′ = r′′′ − c ∗ round (r′′′z /cz)
r′ = r′′ − b ∗ round

(
r′′y/by

)
rij = r′ − a ∗ round (r′x/ax)

(3.5)
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Figure 3.3: Grid search with box vectors.

3.1 The Particle-Mesh Ewald method

The Particle-Mesh Ewald (PME) method is a technique used to accurately calculate
the Coulombic interactions in large biological systems. It combines real-space and
Fourier space calculations to determine the potential energy of the system at each
time step of a molecular dynamics simulation.

In PME, the electrostatic interactions are divided into two rapidly converging poten-
tial sums, a near-field term, which is calculated in real space using a direct summa-
tion, and a far-field term, which is calculated in Fourier space using the fast Fourier
transform [29]. The near-field term is used for close-range interactions, while the
far-field term is used for long-range interactions [30]. The Ewald sum can be written
as:

UEwald = U r + Um + U o, (3.6)

where U r is the real-space sum, Um is the reciprocal (i.e. Fourier) sum and U o is a
constant. The real-space and reciprocal-space terms are defined by:

U r =
1

2

N ′∑
i,j

∑
n

qiqj
erfc (αrij,n)

rij,n
, (3.7)
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and

Um =
1

2πV

N∑
i,j

qiqj
∑
m=0

exp (−(πm/α)2 + 2πim · (ri − rj))

m2
, (3.8)

where V is the volume of the simulation box, m = (l,j,k) is a reciprocal-space lattice
vector, which is used to calculate the far-field term of the electrostatic interactions in
Fourier space and n is the cell coordinate vector relative to the original cell, which is
located at n = (0,0,0). The quantity erfc(αrij,n) is the complementary error function
of αrij,n, where α is a parameter related to the screening length of the Coulomb
interaction between the charged particles.

The Coulomb energy of a system with N particles in a cubic box of size L and its
infinite replicas under periodic boundary conditions (PBC) is calculated as follows:

U =
1

2

′∑
n

N∑
i=1

N∑
j=1

qiqj
rij,n

(3.9)

In this expression, U is the total Coulomb energy of the system, qi and qj are the
charges of particles i and j, respectively, and rij,n is the distance between particles i
and j in the n-th periodic image of the system. The sum includes all periodic images
of the system, and the prime excludes the n = 0 image to avoid double-counting
interactions between particles in the original box.

When considering a charge-neutral system
∑N

i=1 qi = 0, the potential energy in equa-
tion 3.9 can be Ewald transformed into:

∑
n

1

|n|
F (n) +

∑
m

1

|m|
(1− F (m)) (3.10)

The first term quickly decays as n → ∞, and the second term is a smooth func-
tion, with a fast-converging Fourier transform. The physical meaning behind the
decomposition of the lattice sum can be interpreted as where each point charge in
the system is considered to be surrounded by an equal and opposite Gaussian charge
distribution with charge density:

ρi(r) = qiα
3 exp

(
−α2r2

)
/
√
π3 (3.11)
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The PME method is utilized during the energy minimization step, treating atoms as
having long-range electrostatic interactions. The selection of this interaction i types
beneficial for large biopolymers, because it ignores interactions with atoms far apart,
reducing the computational load [31].

PME has the advantage of being scalable and having a computational cost that
increases linearly with the size of the system. It also provides accurate results, even
in systems with strong electrostatic interactions. Overall, this method is widely used
in molecular dynamics simulations and is an essential component of many simulation
software packages, including GROMACS.

3.2 Integrators

In molecular dynamics simulations, integrators are used to numerically solve the
equations of motion that describe the behavior of the atoms and molecules in the
system. These equations of motion are based on classical mechanics and describe
how the position, velocity, and acceleration of each particle in the system change
over time in response to the forces acting upon them.

Integrators are necessary because these equations of motion cannot be solved an-
alytically for most molecular systems of interest. Instead, numerical methods are
used to approximate the solutions. Different integrators use different numerical al-
gorithms and techniques to solve these equations and advance the simulation time
step-by-step.

GROMACS provides a range of integrators for simulating molecular dynamics, in-
cluding basic integrators such as the velocity Verlet and leapfrog, as well as advanced
integrators for more complex simulations. The choice of integrator will depend on the
specific requirements of the simulation, such as the time step size, accuracy, and the
type of forces involved. This chapter will present a comparison between the leapfrog
and Verlet integrators, including their performance with the Trotter decomposition.
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3.2.1 The leapfrog integrator

The leapfrog algorithm is used as the default MD integrator in GROMACS. Figure
3.4 shows how r and v jump over each other’s time-steps, where r corresponds to
time t and v with time t− 1

2
∆t.

Figure 3.4: Leapfrog integrator.

The integration steps are expressed below:

v
(
t+ 1

2
∆t
)

= v
(
t− 1

2
∆t
)
+ ∆t

m
F(t)

r(t+∆t) = r(t) + ∆tv
(
t+ 1

2
∆t
)
,

(3.12)

and the updated position time-step has relation:

r(t+∆t) = 2r(t)− r(t−∆t) +
1

m
F(t)∆t2 +O

(
∆t4
)

(3.13)

3.2.2 Verlet integrator

The velocity Verlet integrator is useful for accurate integration with temperature and
pressure coupling and can be expressed as:

v

(
t+

1

2
∆t

)
= v(t) +

∆t

2m
F(t)

r(t+∆t) = r(t) + ∆tv

(
t+

1

2
∆t

)
v(t+∆t) = v

(
t+

1

2
∆t

)
+

∆t

2m
F(t+∆t),

(3.14)

which equals:
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r(t+∆t) = r(t) + ∆tv + ∆t2

2m
F(t)

v(t+∆t) = v(t) + ∆t
2m

[F(t) + F(t+∆t)].
(3.15)

3.2.3 Trotter decomposition

In molecular dynamics simulations, the Trotter decomposition is used to approximate
the time evolution operator of the system. The time evolution operator describes how
the quantum state of the system changes over time, and is given by the exponential
of the Hamiltonian operator multiplied by the time step:

U(t) = exp(−iHt) (3.16)

However, this exponential is difficult to compute exactly for many systems of inter-
est. The Trotter decomposition provides a way to approximate this exponential as a
product of exponentials that are easier to compute. Specifically, the Trotter decom-
position involves splitting the Hamiltonian into two or more parts and applying each
part to the quantum state for half of the time step. This process is repeated multi-
ple times, with the time step being divided into smaller intervals, until the desired
simulation time is reached.

The Trotter decomposition is not an exact method, but it can be used to obtain
accurate results for many systems of interest. It is widely used in MD simulations
of quantum systems, such as molecules and materials, and is an important tool for
studying the properties and behavior of these systems.

The Trotter decomposition can also show the relations between the leapfrog integra-
tor and Verlet velocity integrator. Coupled first order differential equations can be
evaluated from t = 0 to t with the evolution operator:

Γ(t) = exp(iLt)Γ(0)

iL = Γ̇ · ∇Γ,
(3.17)

where L is the Liouville operator and Γ is the multidimensional vector of the velocities
and positions of the atoms. This short-time approximation can be used to evaluate
the behavior of the system over small time intervals, and is useful in the context of
molecular dynamics simulations.
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Γ(t) =
P∏
i=1

exp(iL∆t)Γ(0) (3.18)

at ∆t = t/P . The Liouville operator related to NVE dynamics (constant number of
particles, volume, and energy) is:

iL =
N∑
i=1

vi · ∇ri +
N∑
i=1

1

mi

F (ri) · ∇vi
, (3.19)

which can be split into:

iL1 =
N∑
i=1

1

mi

F (ri) · ∇vi

iL2 =
N∑
i=1

vi · ∇ri .

(3.20)

The short-time approximation of the dynamics can be expressed as:

exp(iL∆t) = exp

(
iL2

1

2
∆t

)
exp (iL1∆t) exp

(
iL2

1

2
∆t

)
+O

(
∆t3
)
, (3.21)

where ∆t equals the full velocity Verlet time step and 1
2
∆t the half step. For time

t = n∆t the dynamics approximation is equivalently:

exp(iLn∆t) ≈
(
exp

(
iL2

1
2
∆t
)
exp (iL1∆t) exp

(
iL2

1
2
∆t
))n

≈ exp
(
iL2

1
2
∆t
)
(exp (iL1∆t) exp (iL2∆t))

n−1

exp (iL1∆t) exp
(
iL2

1
2
∆t
) (3.22)

The leapfrog integrator starts with exp (iL1∆t) instead of the half-step and ranges
from t− 1

2
∆t to t+ 1

2
∆t, which gives:

exp(iLn∆t) = exp (iL1∆t) exp (iL2∆t) +O
(
∆t3
)

(3.23)

Subsequently, future times t = n∆t follows:
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exp(iLn∆t) ≈ (exp (iL1∆t) exp (iL2∆t))
n (3.24)

This shows that the resulting trajectories would be identical, except for the fact
that they would be shifted in time due to the different starting points used by each
method. The kinetic energy of the Verlet velocity algorithm is calculated from the
velocity at t and is summed over all particles:

KEfull (t) =
∑

i

(
1

2mi
vi(t)

)2
=

∑
i

1
2mi

(
1
2
vi

(
t− 1

2
∆t
)
+ 1

2
vi

(
t+ 1

2
∆t
))2 (3.25)

Using the leapfrog algorithm, the average kinetic energy at t+ 1
2
∆t and t− 1

2
∆t can

be calculated as:

KEaverage (t) =
∑
i

1

2mi

(
1

2
vi

(
t− 1

2
∆t

)2

+
1

2
vi

(
t+

1

2
∆t

)2
)

(3.26)

Equations 3.25 and 3.26 show that even though the trajectories of the Verlet and
leapfrog integrals are equal, the kinetic energies are not necessarily the same. GRO-
MACS has also added a non-standard Verlet algorithm that averages the kinetic
energies. The Verlet half-step-averaged kinetic energies are almost fully compara-
ble to the leapfrog kinetic energy, if there is no temperature or pressure coupling.
Still, the leapfrog integrator is preferred for large systems because it is the least
computationally expansive and will be used in the simulations of this thesis.

3.3 Temperature coupling

Temperature coupling refers to a technique used in molecular dynamics simulations
to regulate the temperature of a system. In molecular dynamics simulations, the tem-
perature of the system can change due to various factors, such as collisions between
molecules, and this can lead to fluctuations in the temperature that can affect the
accuracy of the simulation. To address this issue, temperature coupling algorithms
are employed to control the temperature of the system, ensuring that it remains at
a constant temperature throughout the simulation.

GROMACS offers a diverse set of temperature coupling algorithms, including Berend-
sen, Nosé-Hoover, and the Andersen Thermostat. This chapter will introduce these
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algorithms, which are designed to facilitate energy exchange between the system and
a thermal bath while continuously regulating the temperature to maintain a stable
value.

3.3.1 Berendsen temperature coupling

The Berendsen temperature coupling calculates the temperature relative to an ex-
ternal heat bath of temperature T0. The system temperature deviation is corrected
according to:

dT

dt
=
T0 − T

τ
(3.27)

T0 is the desired temperature and T is the instantaneous temperature at a given time
of the simulation. The heat flow is dependent on the velocity time-steps nTC of each
particle with a time-factor, which equals:

λ =

[
1 +

nTC∆t

τT

{
T0

T
(
t− 1

2
∆t
) − 1

}]1/2
(3.28)

In normal use λ is close to 1.0. The relationship between the time constant τ and
the temperature coupling constant τT is:

τ = 2CV τT/Ndfk, (3.29)

where CV is the heat capacity of the system, k is Boltzmann’s constant, and Ndf is
the degree of freedom of the system. The kinetic energy is modified for every step
to:

∆Ek = (λ− 1)2Ek (3.30)

3.3.2 Nosé-Hoover temperature coupling

The Berendsen weak-coupling algorithm quickly relaxes the system to the target
temperature, but an additional algorithm is needed to find the right canonical en-
semble. The Nosé-Hoover temperature coupling algorithm includes a friction term
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in the equation of motion. The equation of motion of each particle compared to 2.1
is:

d2ri
dt2

=
Fi

mi

− pξ
Q

dri
dt
, (3.31)

where pξ is the momentum of the heat bath variable ξ. Q is the mass parameter of
the reservoir and determines the coupling strength. The equation of motion of the
heat bath variable equals:

dpξ
dt

= (T − T0) (3.32)

The system Hamiltonian of the Nosé-Hoover equations is:

H =
N∑
i=1

pi

2mi

+ U (r1, r2, . . . , rN) +
p2ξ
2Q

+NfkTξ (3.33)

The mass parameter Q can be expressed in terms of the kinetic energy oscillation
period between the system and the reservoir τT as:

Q =
τ 2TT0
4π2

. (3.34)

The difference between weak coupling and Nosé-Hoover is that weak coupling involves
exponential relaxation, while Nosé-Hoover uses oscillatory relaxation. The default
number of thermostat chains is 10. A chain of temperature controlling particles can
be included by modifying the equations to:

d2ri
dt2

=
Fi

mi

− pξ1
Q1

dri
dt

dpξ1
dt

= (T − T0)− pξ1
pξ2
Q2

(3.35)
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dpξi−2.N

dt
=

(
p2ξi−1

Qi−1

− kT

)
− pξi

pξi+1

Qi+1

dpξN
dt

=

(
p2ξN−1

QN−1

− kT

) (3.36)

The conserved Nosé-Hoover quantity of the chain is:

H =
N∑
i=1

pi

2mi

+ U (r1, r2, . . . , rN) +
M∑
k=1

p2ξk
2Q′

k

+NfkTξ1 + kT
M∑
k=2

ξk (3.37)

The length of the chain in the leapfrog simulation is currently restricted to 1. The
Trotter decomposition can be used to show the difference between the constant-
temperature integrators. The Liouville operator related to Nosé-Hoover is:

iL = iL1 + iL2 + iLNHC, (3.38)

where

iL1 =
∑N

i=1

[
pi

mi

]
· ∂
∂ri

iL2 =
∑N

i=1 Fi · ∂
∂pi

iLNHC =
∑N

i=1 −
pξ
Q
vi · ∇vi

+
pξ
Q

∂
∂ξ

+ (T − T0)
∂

∂pξ
.

(3.39)

The standard velocity Verlet integrator with Nosé-Hoover temperature coupling be-
comes:

exp(iL∆t) = exp (iLNHC∆t/2) exp (iL2∆t/2)

exp (iL1∆t) exp (iL2∆t/2) exp (iLNHC∆t/2) +O
(
∆t3
) (3.40)

The half-step averaged velocity of the Verlet integrator can be decomposed into:

exp(iL∆t) = exp (iL2∆t/2) exp (iLNHC∆t/2) exp (iL1∆t)
exp (iLNHC∆t/2) exp (iL2∆t/2) +O (∆t3)

(3.41)

Choosing the starting point right before exp (iL1∆t) yields the leapfrog equivalent:
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exp(iL∆t) = exp (iL1∆t) exp (iLNHC∆t/2)

exp (iL2∆t) exp (iLNHC∆t/2) +O
(
∆t3
) (3.42)

3.3.3 Andersen thermostat

The Andersen Thermostat is a widely used temperature coupling algorithm that uti-
lizes the NVE integrator and randomizes particle velocities according to the Boltz-
mann distribution. This thermostat offers two versions: the Andersen-massive, which
randomizes velocities simultaneously every τT/∆t step, and the Andersen, which
randomizes velocities with a small probability every time-step ∆t/τ of each particle.
When dealing with systems with constraints, the Andersen-massive version must
be used due to parallelization issues. Moreover, this thermostat can only operate
with the velocity Verlet integrator because it operates on particle velocities at each
time-step [32].

3.4 Pressure coupling

In molecular dynamics simulations, pressure coupling is used to maintain a con-
stant pressure in the simulation box, as fluctuations can affect the accuracy of the
simulation. There are several algorithms available for pressure coupling, including
Berendsen, Parrinello-Rahman, and Velocity-rescale, each of which uses different
approaches to regulate pressure in the simulation.

One key aspect of pressure coupling in the software is the ability to control the
barostat, which determines the frequency with which the pressure is updated in the
simulation. This is important, as too frequent updates can slow down the simula-
tion, while too infrequent updates can result in large fluctuations in pressure. The
GROMACS software provides several options for controlling the barostat, including
coupling to a reference pressure or to a reference volume.

In addition to controlling the barostat, the program also allows for the use of mul-
tiple pressure-coupling groups in a simulation. By dividing the simulation box into
multiple regions and coupling each region to a different reference pressure or volume,
complex systems with varying pressures or volumes can be simulated. The use of
multiple pressure-coupling groups can help in achieving a more realistic and accurate
simulation of these systems.
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3.4.1 Berendsen pressure coupling

In Berendsen pressure coupling, the pressure relaxes towards a reference pressure P0

and can be expressed similarly to the temperature coupling in equation 3.27:

dP

dt
=

P0 −P

τp
, (3.43)

with the scaling matrix:

µij = δij −
nPC∆t

3τp
βij {P0ij − Pij(t)} , (3.44)

where β is the isothermal compressibility of the system. For anisotropic systems,
the scaling matrix must be rotated to obey the boundary conditions in equation 3.2,
which makes the real scaling matrix:

µ′ =

 µxx µxy + µyx µxz + µzx

0 µyy µyz + µzy

0 0 µzz

 . (3.45)

To account for the conservation of energy, the total energy must be subtracted from
the work applied by the barostat for each step.

−
∑
i,j

(µij − δij)PijV =
∑
i,j

2 (µij − δij) Ξij, (3.46)

where δij is the Kronecker delta and Ξij is the virial.

3.4.2 Parrinello-Rahman pressure coupling

In addition to the weak Berendsen pressure coupling, GROMACS provides Parrinello-
Rahman pressure coupling to achieve more well-defined NPT ensembles for constant-
pressure simulations. The equation of motion of the box vectors follows:

db2

dt2
= VW−1b′−1 (P−Pref ) , (3.47)
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where V is the volume of the box and W is the coupling strength. The modified
Hamiltonian for the Parrinello-Rahman coupling is:

Epot + Ekin +
∑
i

PiiV +
∑
i,j

1

2
Wij

(
dbij
dt

)2

, (3.48)

which gives the change in displacement of the atoms:

d2ri
dt2

= Fi

mi
−Mdri

dt
,

M = b−1
[
bdb′

dt
+ db

dt
b′]b′−1.

(3.49)

The inverse mass parameter matrix W−1 controls the deformation of the box and
can be expressed in terms of the pressure time-constant τp as:

(
W−1

)
ij
=

4π2βij
3τ 2pL

, (3.50)

where L is the largest box element. If the elements in W−1 are zero, the box re-
strictions in Equation 3.2 will automatically be fulfilled. The surface tension can
be calculated for systems with phase separation in the xy-plane. The average sur-
face tension can be calculated by subtracting the normal pressure from the lateral
pressure:

γ(t) =
1

n

∫ Lz

0

{
Pzz(z, t)−

Pxx(z, t) + Pyy(z, t)

2

}
dz

=
Lz

n

{
Pzz(t)−

Pxx(t) + Pyy(t)

2

}
,

(3.51)

where n is the number of surfaces and Lz is the height of the box. The height of the
box is scaled with µzz to correct the z-component of the pressure:

∆Pzz =
∆t

τp
{P0zz − Pzz(t)}

µzz = 1 + βzz∆Pzz

(3.52)
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The equivalent correction term for the box in the x/y direction is:

µx/y = 1 +
∆t

2τp
βx/y

(
nγ0
µzzLz

−
{
Pzz(t) + ∆Pzz −

Pxx(t) + Pyy(t)

2

})
(3.53)

3.4.3 MTTK pressure control algorithms

The MTTK equations are used to combine temperature and pressure coupling, where
ϵ = (1/3) ln (V/V0), vϵ = pϵ/W = ϵ̇ = V̇ /3V and α = 1 + 3/Ndof . The leapfrog
integrator is not optimal for constant pressure systems because it does not provide
information about the virial and the kinetic energy until after the time-step. The
isobaric equations are given by:

ṙi = pi

mi
+ pϵ

W
ri

ṗi

mi
= 1

mi
Fi − α pϵ

W
pi

mi

ϵ̇ = pϵ
W

ṗϵ
W

= 3V
W

(Pint − P ) + (α− 1)
(∑N

n=1
p2
i

mi

)
,

(3.54)

where

Pint = Pkin − Pvir =
1

3V

[
N∑
i=1

(
p2
i

2mi

− ri · Fi

)]
. (3.55)

The acceleration term of ϵ is given by:

ṗϵ
W

=
3V

W
(αPkin − Pvir − P ) (3.56)

The velocities can be derived and expressed as:
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ṙi = vi + vϵri

v̇i =
1

mi

Fi − αvϵvi

ϵ̇ =

v̇ϵ =
3V

W
(Pint − P ) + (α− 1)

(
N∑

n=1

1

2
miv

2
i

)

Pint = Pkin − Pvir =
1

3V

[
N∑
i=1

(
1

2
miv

2
i − ri · Fi

)]
(3.57)

The energy conservation Hamiltonian is:

H =
N∑
i=1

p2
i

2mi

+ U (r1, r2, . . . , rN) +
pϵ
2W

+ PV (3.58)

Adding Nosé-Hoover temperature control variables indexed η and Q′ thermostat
coupling gives:

ṙi =
pi

mi

+
pϵ
W

ri

ṗi

mi

=
1

mi

Fi − α
pϵ
W

pi

mi

− pξ1
Q1

pi

mi

ϵ̇ =
pϵ
W

ṗϵ
W

=
3V

W
(αPkin − Pvir − P )− pη1

Q′
1

pϵ

ξ̇k =
pξk
Qk

η̇k =
pηk
Q′

k

ṗξk = Gk −
pξk+1

Qk+1

k = 1, . . . ,M − 1

ṗηk = G′
k −

pηk+1

Q′
k+1

k = 1, . . . ,M − 1

ṗξM = GM

ṗηM = G′
M ,

(3.59)
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where

Pint = Pkin − Pvir =
1

3V

[
N∑
i=1

(
p2
i

2mi

− ri · Fi

)]

G1 =
N∑
i=1

p2
i

mi

−NfkT

Gk =
p2ξk−1

2Qk−1

− kTk = 2, . . . ,M

G′
1 =

pϵ
2

2W
− kT

G′
k =

p2ηk−1

2Q′
k−1

− kTk = 2, . . . ,M.

(3.60)

The related Hamiltonian is:

H =
∑N

i=1
pi

2mi
+ U (r1, r2, . . . , rN) +

p2ϵ
2W

+ PV+∑M
k=1

p2ξk
2Qk

+
∑M

k=1

p2ηk
2Q′

k
+NfkTξ1 + kT

∑M
i=2 ξk + kT

∑M
k=1 ηk.

(3.61)

The Trotter decomposition for temperature and pressure control gives the Liouville
operator:

iL = iL1 + iL2 + iLϵ,1 + iLϵ,2 + iLNHC− baro + iLNHC, (3.62)

The first term iL1 describes the evolution of the positions and momenta of the
particles in the system. The second term iL2 describes the evolution of the forces
acting on the particles. The third term iLϵ,1 describes the evolution of the momentum
of the temperature thermostat controlling the temperature of the system. Finally,
the fourth term iLϵ,2 describes the evolution of the momentum of the thermostat
controlling the pressure/volume of the system. NHC − baro is the Nosè-Hoover
chain of the barostat (which controls the pressure and volume of the system) and
NHC the Nosè-Hoover chain of the particles (which controls the temperature of the
system). The first four terms can be mathematically expressed as:
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iL1 =
N∑
i=1

[
pi

mi

+
pϵ
W

ri

]
· ∂

∂ri

iL2 =
N∑
i=1

Fi − α
pϵ
W

pi ·
∂

∂pi

iLϵ,1 =
pϵ
W

∂

∂ϵ

iLϵ,2 = Gϵ
∂

∂pϵ
,

(3.63)

where

Gϵ = 3V (αPkin − Pvir − P ) . (3.64)

The Trotter decomposition gives:

exp(iL∆t) =

exp (iLNHC− baro ∆t/2) exp (iLNHC∆t/2)
exp (iLϵ,2∆t/2) exp (iL2∆t/2)

exp (iLϵ,1∆t) exp (iL1∆t)
exp (iL2∆t/2) exp (iLϵ,2∆t/2)

exp (iLNHC∆t/2) exp (iLNHC− baro ∆t/2) +O (∆t3) .

(3.65)

exp (iL1∆t) comes from the solution of the differential equation ṙi = vi+vϵri, where
vi = pi/mi, with constant vϵ and initial condition ri(0), yielding:

ri(∆t) = ri(0)e
vϵ∆t +∆tvi(0)e

vϵ∆t/2 sinh (vϵ∆t/2)

vϵ∆t/2
. (3.66)

exp (iL2∆t/2) comes from solving the differential equation v̇i =
Fi

mi
−αvϵvi, yielding:

vi(∆t/2) = vi(0)e
−αvϵ∆t/2 +

∆t

2mi

Fi(0)e
−αvϵ∆t/4 sinh (αvϵ∆t/4)

αvϵ∆t/4
. (3.67)
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3.5 Energy error

In molecular dynamics simulations, a pair-list cutoff is the maximum distance be-
tween any two particles beyond which their interactions are not considered in the
simulation. To improve computational efficiency, pair lists are created that include
only particle pairs within this cutoff distance. A Verlet buffer size is a small addi-
tional distance added to the cutoff distance of the pair list. This additional buffer
distance is used to ensure that all particle pairs that interact with each other are
included in the simulation calculations, even if they are just outside the actual cutoff
distance. The average energy error after time t can be written as follows:

⟨∆V ⟩ =
∫ rc

0

∫ ∞

rℓ

4πr20ρ2V (rt)G

(
rt − r0
σ

)
dr0drt, (3.68)

where ρ2 is the density of atoms j surrounded by atom i. V (rt) can be approximated
around rc with Taylor series expansion, giving:

⟨∆V ⟩ ≈
∫ rc
−∞

∫∞
rℓ

4πr20ρ2 [V
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1
2
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2 +

V ′′′ (rc)
1
6
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3 +

O
(
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4)]G ( rt−r0
σ

)
dr0drt

(3.69)

Further replacing r20 with (rℓ + σ)2 gives a solution to the average energy error inte-
gral:

⟨∆V ⟩ ≈ (rℓ + σ)2 ρ2
∫ rc
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∫∞
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− (r4b + 6r2bσ
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,

(3.70)

where E(x) = 1
2
erfc(x/

√
2). The energy error needs to be further averaged and

weighted over all particle pair types. To obtain the average error per unit time the
expression is further devided by t = ( nstlist −1) × dt, e.g. the neighbor-list life
time. The energy error can be decreased by adding bond constraints that limit the
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degree of freedom of the particles. A particle with two degrees of freedom generates
the average energy error:

√
π

2
√
2σ

erfc

(
|r|√
2σ

)
, (3.71)

which cannot be solved analytically but can be converted to a scaled and shifted
Gaussian distribution to generate a tight upper bound.

In NVT equilibration, the energy error caused by the periodic boundary conditions
is calculated from the displacement of the atoms and the potential at the cut-off.
The average energy error is caused by particles that over time move from outside the
pair-list cut-off rl inside the interaction cut-off rc. A free particle in one dimension
follows the Gaussian G(x) displacement distribution, with mean µ = 0 and variance

σ2 = σ2
12 = t2kBT (1/m1 + 1/m2). The variance in distance between two atoms is,

σ2 = σ2
12 = t2kBT (1/m1 + 1/m2). In practice, particles encounter other particles

easily, which makes the displacement distribution narrower in reality. In each di-
rection, the box has three images (-1, 0, 1 ) and at most one image will see the j
particle.

When multiple temperature-coupling groups are used, the degrees of freedom for
group i is:

N i
df =

(
3N i −N i

c

) 3N −Nc −Ncom

3N −Nc

. (3.72)

The kinetic energy written as a tensor is:

Ekin =
1

2

N∑
i

mivi ⊗ vi. (3.73)

The pressure tensor P can be calculated with the formula:

P =
2

V
(Ekin −Ξ) , (3.74)

where V is the volume of the box and Ξ is the virial, which equals:
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Ξ = −1

2

∑
i<j

rij ⊗ Fij (3.75)

The virial measures the total amount of work done by the inter-particle forces in the
system, and is directly related to the pressure. The scalar pressure for an isotropic
system can be written from equation 3.74 as:

P = trace(P)/3 (3.76)

The velocity-rescaling temperature coupling is similar to the Berendsen thermostat,
with an additional kinetic energy-correcting term:

dK = (K0 −K)
dt

τT
+ 2

√
KK0

Nf

dW
√
τT
, (3.77)

where dW is a Wiener process, i.e., a stochastic process used to model random move-
ments or fluctuations in a system. The velocity-rescaling thermostat has advantages
over the Berendsen thermostat, because it has no oscillations and first-order temper-
ature deviation decay.

3.6 GROMACS Simulation Parameters: Choos-

ing Force Field, Solvent Model, and Integra-

tion Settings

GROMACS requires the specification of numerical parameters to carry out the sim-
ulation. These parameters include force field, solvent model, integration time step,
temperature, pressure, and others, and are chosen based on the specific system being
studied and the desired level of accuracy in the simulation results. It is important to
carefully choose these parameters to ensure that the simulation accurately represents
the physical behavior of the system being studied.

The GROMACS parameters chosen can be divided into three sections based on the
simulation type: energy minimization, NVT equilibration, and NPT equilibration.
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For energy minimization, the steepest descent algorithm was used with a maximum
force tolerance of 1000 kJ/mol/nm, an energy step size of 0.01, and a maximum
of 50,000 minimization steps. The neighbor list was updated every step using the
Verlet cutoff scheme and grid method with periodic boundary conditions in all three
dimensions. The treatment of long-range electrostatic interactions was performed
using the PME method, and the cutoff distances for short-range electrostatic and
van der Waals interactions were set to 1.0 nm.

For NVT equilibration, a leap-frog integrator was used with a time step of 2 fs, and
velocities were assigned from a Maxwell distribution at 300 K. Temperature coupling
was applied using the V-rescale thermostat, a modified Berendsen thermostat, with
two coupling groups (protein and non-protein) and a time constant of 0.1 ps. Periodic
boundary conditions were applied in all three dimensions, and a dispersion correction
was used to account for the cut-off van der Waals scheme.

For NPT equilibration, the same parameters were used as for NVT equilibration with
the addition of a Parrinello-Rahman barostat to maintain a constant pressure of 1
atm.

For this project the forcefield CHARMM27 and the water model TIP3P were used.
CHARMM27 is a classical force field for molecular dynamics simulations that is
commonly used in biomolecular simulations. It is a united atom force field, meaning
that some of the hydrogen atoms are merged with their parent carbon or nitrogen
atoms to simplify the simulation. TIP3P (Transferable Intermolecular Potential with
3 Points) is a popular water model used in molecular simulations that represents
water molecules as three point charges (one oxygen and two hydrogens) interacting
through pairwise Lennard-Jones and Coulombic potentials.

CHARMM27 force field parameters include bond lengths, angles, torsions, and non-
bonded interactions such as van der Waals and electrostatic forces. The force field
includes parameters for amino acids, nucleic acids, lipids, and other small molecules
commonly found in biological systems. The force field can be implemented by us-
ing the appropriate force field files and topology files, which contain the necessary
parameters and instructions for running the simulation. [33].

The TIP3P water model was developed by Jorgensen and co-workers in the early
1980s and has been extensively used in various biomolecular simulations. One of
the advantages of this water model is that it accurately reproduces the experimental
value of the heat of vaporization of water. However, TIP3P has some limitations,
such as an overestimation of the hydrogen bond angle and a slightly underestimated
density compared to experimental values [34].
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Chapter 4

Results

The peptides analyzed in this thesis were synthesized from repeating short amino
acid motifs. Due to the large computational workload, the peptides were initially re-
duced to shorter sequences to gain an understanding of their behavior. The original
sequences were 250–300 AA long (amino acids), but for analysis they were short-
ened to 50, 100, and 200 AA, to test differences in simulation success for shorter
and longer peptides. Some proteins could not achieve a proper energy-minimizing
structure, which caused problems during the NVT equilibration. Problems with over-
lapping atoms were caused by inadequate initial structure parameters. This problem
could be solved with a soft-core potential that separated the overlapping atoms from
each other. Some proteins were still too entangled after the soft-core step and were
consequently excluded from the analysis.

MD simulation results

This section presents the results obtained from the molecular dynamics simulations
of the proteins under investigation. The analysis of the simulations revealed a range
of behaviors among the simulated proteins, with some exhibiting high stability while
others underwent significant conformational changes. Representative cases of both
types will be presented in this section. Additionally, this section will include plots of
the distribution of average RMSD values for the last 10 simulation points for each
protein and the distribution of radius of gyration, providing further insights into
the dynamics and stability of the proteins. Furthermore, visualizations of selected
proteins that could not be fixed during the simulation will be presented. These
examples provide insight into the limitations and challenges of molecular dynamics
simulations. Some of the predicted proteins were folded into almost perfect alpha
helices, which can be seen in Figures 4.1, 4.2 and 4.3. These structures also accounted
for the structures with the smallest average RMSD during the stabilization. In
comparison, the proteins with the largest RMSD can be seen in figures 4.4, 5.6 and
4.6.
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(a) Machine learning-predicted initial struc-
ture.

(b) Structure after 20 ns MD simulation.

Figure 4.1: Sequence nr 157, 50 AA.

(a) Machine learning-predicted initial struc-
ture.

(b) Structure after 20 ns MD simulation.

Figure 4.2: Sequence nr 155, 50 AA.

(a) Machine learning-predicted initial struc-
ture.

(b) Structure after 20 ns MD simulation.

Figure 4.3: Sequence nr 40, 50 AA.
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(a) Machine learning-predicted initial struc-
ture.

(b) Structure after 20 ns MD simulation.

Figure 4.4: Sequence nr 145, 50 AA.

(a) Machine learning-predicted initial struc-
ture.

(b) Structure after 20 ns MD simulation.

Figure 4.5: Sequence nr 33, 50 AA.

(a) Machine learning-predicted initial struc-
ture.

(b) Structure after 20 ns MD simulation.

Figure 4.6: Sequence nr 165, 50 AA.
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All simulations were not run successfully due to overlapping atoms and a cluster-like
initial machine learning predicted structure. The majority of the cases with parts of
overlapping structures could be fixed with a soft-core potential energy minimization
step. This additional step separated overlapping atoms, which allowed the simula-
tions to run. The action of the soft-core potential step can be seen in figure 4.7.

Figure 4.7: Overlapping protein before and after soft-core potential.

Some cases were so entangled that they could not be fixed with a soft-core potential.
These nonphysical structures were left outside of the analysis and examples can be
seen in figure 4.8:

(a) Machine learning-predicted structure, nr.
59.

(b) Machine learning-predicted structure,
nr. 162.

Figure 4.8: Nonphysical original structures (not fixable).
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Figure 4.9 shows the distribution of RMSD for proteins of amino acid lengths 50,
100, 200 and larger proteins. Due to extremely overlapping atoms, 1/178 of the 200
AA proteins, and 3/178 of the original sequences could not be simulated. As a result,
the x-axis in Figure 4.9 was normalized to allow for a fair comparison between the
simulated proteins. The normalization was done by scaling the x-axis to a range of
0 to 1, where 1 represents the maximum value of the remaining data points.

Figure 4.9: RMSD, normalized distribution.

As can be seen in figure 4.9, it seems that the distribution for 200 AA and the original
structure follows an almost identical distribution for both shorter (10 ns) and longer
simulation time (20 ns). The longest sequences seems to have the largest RMSD,
which agrees with previous studies [35]. To compare the sequences independent of
length aspects, the ρsc values will be compared in the next chapter.
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Figure 4.10 shows the distribution of radius of gyration for the proteins.

Figure 4.10: Radius of Gyration, normalized distribution.

The distribution of radius of gyration follows a clear trend, whereby the longest se-
quences with the shortest simulation time exhibit the largest conformational changes
and have the broadest distribution of radii. Conversely, the shortest sequences with
the longest simulation time exhibit minimal changes in compactness and have a
narrower distribution of radii. This trend can be attributed to the fact that the
longer sequences have a greater degree of conformational freedom and can adopt a
wider range of conformations in response to the simulated environment. Conversely,
the shortest sequences with the longest simulation time exhibit minimal changes in
compactness and have a narrower distribution of radii. This observation can be ex-
plained by the fact that the shorter sequences have fewer degrees of freedom and are
more constrained in their conformational space, resulting in a more limited range of
possible conformations [36].
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4.1 Estimating the accuracy of machine learning

model

The goal of this project is to assess the accuracy of protein structures predicted by
a machine learning model, equivalent to AlphaFold, using molecular dynamics simu-
lations. This thesis utilizes molecular dynamics simulations to evaluate the stability
of structures predicted by a machine learning model, to determine if they can be
considered to be in their native state. If the structure of the proteins deviate signif-
icantly from their initial state, the machine learning model has not found a stable
conformation, if one exists. Additionally, anomalous behavior of the proteins during
the simulation may indicate that the prediction does not align with the objectives of
the study.

The RMSD metric is often used to compare the structural similarity of proteins dur-
ing molecular dynamics simulations. However, the interpretation of RMSD values
can be challenging, particularly above a certain arbitrary cutoff value for significant
similarity. A lower RMSD value generally indicates a better fit between two struc-
tures, but there is no universally agreed upon cutoff value for significant dissimilarity.
The cutoff value considered significant can vary depending on several factors, such
as the size and complexity of the molecules being compared and the research ques-
tion. To address this limitation, a new measure of structural similarity called ρsc has
been proposed. Unlike RMSD, ρsc is independent of the sizes of the molecules being
compared.

The ρ value is a measure between two arbitrary configurations A and B, based on
the ratio of the radii of gyration (equation 2.15) for the difference and sum struc-
tures. R(s) is the radius of gyration of the sum structure, which is a measure of the
overall size of the two molecules when combined. R(d) is a measure of the structural
differences between the two molecules. Mathematically, it is expressed as:

ρ(A,B) =
2R(d)

R(s)
=

2D(A,B)

[2R2(A) + R2(B)−D2(A,B)]1/2
(4.1)

Here, R2(A) and R2(B) are the radii of gyration for structures A and B. The de-
nominator is calculated using the Euclidean distance formula for three-dimensional
space, D(A,B) =

√
(xA − xB)2 + (yA − yB)2 + (zA − zB)2, where (xA, yA, zA) and

(xB, yB, zB) are the coordinates of the corresponding atoms in molecules A and B,
respectively. The common expression between the structures A and B is:
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D2(A,B) = n−1
∑
i

(ai − bi)
2 , (4.2)

where n is the total number of atoms in the structures, and ai and bi are the positions
of the ith atom in molecules A and B, respectively.

The ρsc values are obtained by first spherically scaling the structures. The scal-
ing factor is chosen so that the sizes, overall shapes, and numbers of points in the
structures are independent. These can be compared to certain threshold values to
determine the degree of structural similarity between the structures being compared.

When ρsc is less than 0.3-0.5, proteins are visually recognized as having obvious
similarity, while a cutoff of ρsc < 1.0 corresponds to an overall similarity in folding
motif. The ρsc value intervals and their interpretation can be seen in table 4.1.
Importantly, the intrinsic cutoff is independent of the number of amino acids or
points being compared. It is worth noting that for proteins with fewer than 100
amino acids, geometrically significant similarity can often occur by chance [37].

In cases where the sizes of proteins being compared differ significantly, ρsc can provide
a more reliable metric than RMSD for assessing structural similarity. Moreover,
the intrinsic cutoff value of ρsc can offer a standardized and objective measure for
determining the overall similarity of protein folding motifs. Given these advantages,
the analysis of the systems in this thesis will primarily rely on the ρsc value as the
main comparison metric.

0 Identical structures
< 0.3-0.5 Visually recognizable similarity
< 0.894 Antisimilarity impossible
< 1 Structural commonality exceeds difference

Table 4.1: Interpretation of ρsc values.

Nonphysical behavior in proteins during MD simulations can also indicate inaccu-
rate predictions by the machine learning model. Overlapping atoms were not an
uncommon issue during energy minimization and temperature equilibration. Typi-
cally Gromacs handles such issues through a special procedure called soft-core po-
tential that means the overlapping atoms are separated from each other, making the
structures manageable for the MD simulation program. These fixes could improve
the accuracy of the machine learning model and provide information on unwanted
behavior, although they do not guarantee accurate structures.
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Figure 4.11 displays the distribution of ρsc among the various protein systems of
different lengths. The proteins are divided into two groups based on their ρsc values.
Those with values lower than or equal to 1 are located on the left side of the corre-
sponding vertical dashed red line, while those with values greater than 1 are located
on the right side of the line.

Figure 4.11: ρsc summation normalized.

The majority of the proteins in this study experienced a significant conformational
change, as reflected by their ρsc values greater than 1, with many final structures
differing significantly from the initial structures. Evidently, the machine learning
model appears to have generated proteins that are unstable during MD simulations.
Investigating the underlying reasons for this trend would be beneficial for improving
protein structure prediction. The ρsc distribution of each protein system for 10 ns
and 20 ns simulations is plotted in Figure 4.12, 4.14, 4.14 and 4.15.
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(a) ρsc after 10 ns simulation.

(b) ρsc after 20 ns simulation.

Figure 4.12: Proteins built of 50 amino acids.
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(a) ρsc after 10 ns simulation.

(b) ρsc after 20 ns simulation.

Figure 4.13: Proteins built of 100 amino acids.
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(a) ρsc after 10 ns simulation.

(b) ρsc after 20 ns simulation.

Figure 4.14: Proteins built of 200 amino acids.
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(a) ρsc after 10 ns simulation.

(b) ρsc after 20 ns simulation.

Figure 4.15: Proteins built of 250-300 amino acids.
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The analysis showed that shorter protein sequences demonstrated greater stability,
with approximately 36% of proteins having a ρsc value below 1 after 20ns. In contrast,
longer sequences were associated with larger conformational changes, indicating lower
prediction accuracy. Table 4.2 shows the performance of proteins of different lengths
and on different time frames.

10 ns 20 ns
50 AA 41.0 % 36.0 %
100 AA 9.6 % 22.5 %
200 AA 14.1 % 10.2 %
Original 10.9 % 8.6 %

Table 4.2: Percentage of proteins with ρsc ≤ 1

Notably, only about 10% of the proteins in their original form displayed near stable
structures during the MD simulation, indicating that the initial structures were not
at their native state. Due to their synthetic nature, the machine learning model may
have had difficulty generating stable conformations for these proteins. Synthetic
peptides may exhibit different behavior than those found in vivo, which could limit
the quality of the input data used in the model. For all sets of sequences except 100
AA, the number of peptides of adequate ρsc value decreased with increased simulation
time.

Another way to determine the success of the machine learning prediction was by look-
ing at the nonphysical behavior of some proteins, such as overlapping proteins. Un-
wanted behavior in the MD simulations implies that the machine learning model fails
to predict the protein structure accurately. Problems during the energy-minimization
step and temperature equilibration step mainly occurred due to overlapping atoms.

Instead of completely out-ruling these proteins, a soft-core potential step was added
to keep the initial protein as close to the prediction as possible, but with separated
overlaps to run them through the simulation. These steps could be important when
feeding data back to the machine learning model. These fixes do not necessarily give
accurate structures either, but they could help tweak the machine learning model
towards more accurate predictions and give information on unwanted behavior.

For proteins of length 200 AA, 1 protein was unfixable, i.e., the protein structure
could not be resolved with soft-core potential, and for the original sequences 3 were
not fixable. These cases are missing from the analyses.
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4.1.1 Conclusion

The field of protein structure prediction using machine learning models is rapidly
advancing, but it still faces several limitations. One of the main challenges is the
complexity of proteins, which can make it difficult to accurately predict their struc-
ture. In addition, the limited diversity of the training dataset can also hinder ac-
curate predictions. These limitations highlight the need for continued research and
innovation in the field. Furthermore, synthetic proteins may present even greater
challenges for machine learning predictions.

Despite these challenges, there have been some promising advancements in the field.
There are models that have been proven to produce highly accurate predictions for
some types of proteins. However, these predictions may not be applicable to all types
of proteins.

Overall, the study of protein structure prediction using machine learning models is
a promising field that holds great potential for advancements in medicine, biotech-
nology, and food science. With continued innovation and collaboration, there is no
doubt that this field will continue to grow and make significant contributions to our
understanding of protein behavior and its applications.

60



Chapter 5

Future outlooks

Liquid-liquid phase separation (LLPS) is a phenomenon that controls the conden-
sation of cell structures, allowing membraneless organelles, such as the nucleoli, to
organize into compartments inside the cell. The function of cells depends on their
ability to restrict biochemical processes to specific areas inside the cell. LLPS is
present in various biological reactions, such as RNA metabolism, gene expression,
and cell signaling. Furthermore, unregulated LLPS is believed to be the root cause
of many diseases [38]. LLPSDB is a database that gives information about phase
separation conditions confirmed by in vitro studies, such as protein sequence, amino
acid modifications, and biological functions, along with external factors such as tem-
perature, salt concentration, and pH.

Liquids are states of matter in which components rearrange easily, striving towards
a state of higher entropy. This is crucial in biochemical processes, but it needs to be
kept in a contained environment. The cell consists of cytoplasm, which is a liquid
that is kept inside the cell because of the cell membrane. However, several liquid-like
organelles exist inside the cell, which leads to the conclusion that these liquids must
have characteristics that separate them from the surrounding liquid. An example
of liquids that separate into two phases is oil and vinegar. Maximal entropy is still
conserved because vinegar and oil are made up of many different chemical compounds
that interact strongly with parts of the same liquid [39].

Intrinsically disordered proteins are known to undergo phase separation in cells.
Phase separation behavior occurs when macromolecules are separated into a different
phase than their surrounding liquid. The two phases differ in concentration but
consist of similar components [40].

Proteins are often positively charged and interact with negatively charged RNA
sequences. When RNA is low, it will bind to the protein and phase separate, but large
quantities of RNA will dissociate. The RNA-binding protein FUS phase separates
through its amino-terminal prion-like domain (PrLD). FUS should be malleable in
healthy cells, and unregulated accumulation of FUS has been linked to variants of
neurodegenerative diseases, e.g., Amyotrophic Lateral Sclerosis (ALS) [41]).
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Cell compartments that undergo phase separation are stress granules (SGs), nucleoli,
Cajal bodies, and P bodies. When SGs are subjected to pressure, they converge into
phase-separated droplets, and when the pressure is removed, the proteins can move
more freely again. A study found that the concentration of RNA inside the SGs
could be partly responsible for the condensation. G3BP1 is a protein in the SG that
binds to free-floating RNA, which leads to conformational changes. Additionally, it is
known that the concentration of RNA outside the nucleus is much lower than inside,
and a study found that the shape of transcription complexes can be regulated by a
feedback loop that controls the existence of free RNA. The primary cause of phase
separation is forces between the atoms in the protein, i.e., electrostatic cation-pi and
pi-pi interactions [42].

Studies have shown that transcription factors create phase-separated structures through
the interaction between a low complexity domain (LCD) and a carboxy-terminal do-
main (CTD), which is a tandem repeat sequence of RNA polymerase II [43]. Tran-
scription factors also create high-density compartments for RNA transcription.

The sequences analyzed in this thesis were synthetically produced perfect tandem
repeats, with the majority of them consisting of five amino acid units repeated about
50–60 times (original length). Minisatellites are DNA structures made up of repeti-
tions of 10–60 short nucleotide sequence motifs, and microsatellites are even fewer;
however, perfect tandem repeat proteins are unlikely to be found in vivo. The ma-
jority of the simulated proteins could be compared to microsatellites in DNA. The
protein with the longest motif was built of 27 amino acid units. Figure 5.1 shows an
example of the synthetically constructed sequences:

Figure 5.1: Example of original protein chain. (This protein consists of repetitions
of the sequence motif VAPVG)

Tandem repeats in DNA are known to be unstable and susceptible to mutation as
a result of polymorphism. Polymorphism refers to the occurrence of variations in
DNA sequences among individuals or populations, which can result in instability and
mutations in tandem repeats. They experience a 10–100,000-fold higher mutation
rate than the rest, which can have pathological consequences. The benefits are that

62



they contribute to fast adaptation and accelerated changes in gene expression [44].
Microsatellites are made of both coding and non-coding DNA, with the majority
being non-coding. Non-coding DNA is thought to exist primarily for gene activity
control [45].

The phenomenon of LLPS is a topic of increasing interest in biophysics and bio-
engineering. While it is well-established that LLPS occurs in solutions containing
polymers and that all proteins are capable of undergoing LLPS under certain con-
ditions, the specific factors that drive phase separation in cellular environments are
not yet fully understood. Nevertheless, LLPS has potential in the creation of syn-
thetic materials, including proteins with perfect tandem repeats, by encouraging
the formation of desired structures. This could open up possibilities for developing
synthetic proteins with unique functions for biomedical applications, such as drug
delivery or tissue engineering. Additionally, studying LLPS can provide insights into
creating novel biomaterials, as has been demonstrated by recent advancements in
the development of LLPS-based technologies for cell culture and drug discovery [46].
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Appendix

The workflow is shown in Figure 5.2:

Figure 5.2: Workflow.

The process of predicting protein structure starts with FASTA files, strings of amino
acid names. A machine learning model is used to predict the ϕ and ψ angles for each
residue in the protein sequence. The output is processed with PyMOL software,
which converts it into a PDB file format compatible with GROMACS simulations.
These PDB files are used to analyze the conformational stability of the proteins, with
the steps explained in the following chapter. The simulations were conducted on the
supercomputer LUMI, allocating one node per protein (2 GPUs and 64 CPU cores)
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The GROMACS commands are specified below:

The command -ignh ignores hydrogens. As the output file is obtained, a .gro file in
Gromos87 format is generated, from which the trajectory can be extracted. In this
simulation, the water models used were tip3p and forcefield charmm27.

gmx_mpi pdb2gmx -f protein.pdb -o protein.gro

tip3p -ff charmm27 -ignh

The protein is contained in a box filled with solvent. The command editconf defines
the box dimensions. The unit cell chosen is cubic (-bt cubic), and the protein is
placed in the center (-c), 1 nm from the edges of the box (-d 1.0):

gmx_mpi editconf -f protein.gro

-o protein_newbox.gro -c -d 1.0 -bt cubic

The box containing the protein is created and filled with solvate. The solvate chosen
is spc216, which is a three-point solvant model. The solvate keeps track of the number
of water molecules added and updates the topology file:

gmx_mpi solvate -cp protein_newbox.gro

-cs spc216.gro -o protein_solv.gro -p topol.top

In the next step, ions are added to the system because living organisms strive for
a net charge of zero. A molecular dynamics parameter file (.mdp) together with
the coordinates and topology create a .tpr file, which contains all the coordinate
parameters in the system on an atomic level.

gmx_mpi grompp -f ions.mdp -c protein_solv.gro

-p topol.top -o ions.tpr

The geniom module replaces watermolecules with ions in the topology file according
to the .tpr file. SOL is chosen for embedding ions. The output file is a .gro file of
the system with added ions. Once again, the topology file is processed and updated
according to the ions added. Positive (-pname) and negative (-nname) ions are
specified, and the command geniom is told to only add the ions needed to neutralize
the system (-neutral):

echo SOL | gmx_mpi -quiet genion -s ions.tpr -o

protein_solv_ions.gro -p topol.top -pname NA -nname CL

-neutral

When the system is setup, energy minimization is performed. The grompp module is
once again used to create a .tpr file, assembling topology, structure, and simulation
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parameters. Energy minimization is obtained by running the em.tpr file through
mdrun. Files obtained from mdrun are em.log (ASCII-text log file of the EM process),
em.edr (a binary energy file), em.trr (a binary full-precision trajectory), and em.gro
(an energy-minimized structure):

gmx_mpi grompp -f em.mdp -c protein_solv_ions.gro

-p topol.top -o em.tpr

gmx_mpi -mdrun -deffnm em

Before the molecular dynamics simulation can begin, the solvent and ions must be
equilibrated around the protein. The orientation of the solvent and ions around
the protein is optimized, by bringing the system to a temperature suitable for the
simulation. The temperature is equilibrated based on kinetic energy, processed under
isothermal-isochoric conditions (NVT, where N = number of particles, V = volume,
and T = temperature):

gmx_mpi grompp -f nvt.mdp -c em.gro -r em.gro -p topol.top

-o nvt.tpr

gmx_mpi mdrun -deffnm nvt

When the temperature is equilibrated, pressure is applied to the system to reach the
right density.

gmx_mpi grompp -f npt.mdp -c nvt.gro -r nvt.gro -t nvt.cpt

-p topol.top -o npt.tpr

gmx_mpi mdrun -deffnm npt

After equilibration, the restraints on the system can be released to start the simula-
tion. The simulation time is specified in the md.mdp file:

gmx_mpi grompp -f md.mdp -c npt.gro -t npt.cpt -p topol.top

-o MD_run_name.tpr

gmx_mpi mdrun -deffnm MD_run_name

A convenient post-processing module is trjconv, which manages periodicity in the
simulation and smooths out irregularities. The simulation will ask which group to
center and which one to put in the output file. In this simulation, group number one
is chosen, which is the protein:

echo 1 1 | gmx_mpi trjconv -s MD_run_name.tpr -f MD_run_name.xtc

-o MD_run_name_noPBC.xtc -pbc mol -center
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When all of the preceding steps have been completed, the GROMACS rms-command
can be used to calculate structure stability. Backbone (group number 4) is chosen
for the RMDS calculation. For convenience, the simulation time scale is changed
from ps to ns (-tu ns):

echo 4 4 | gmx_mpi rms -s MD_run_name.tpr

-f MD_run_name_noPBC.xtc -o MD_run_name_rmsd.xvg -tu ns

The results for RMSD will be presented one by one on the next page:
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(a) RMSD after 10 ns simulation.

(b) Structure after 20 ns simulation.

Figure 5.3: Proteins built of 50 amino acids.
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(a) RMSD after 10 ns simulation.

(b) Structure after 20 ns simulation.

Figure 5.4: Proteins built of 100 amino acids.
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(a) RMSD after 10 ns simulation.

(b) Structure after 20 ns simulation.

Figure 5.5: Proteins built of 200 amino acids.

75



(a) RMSD after 10 ns simulation.

(b) Structure after 20 ns simulation.

Figure 5.6: Proteins built of 250-300 amino acids.

76



Svensk sammanfattning

Med dagens teknik är det möjligt att syntetiskt skapa material med önskade egen-
skaper. Kärnan i den här avhandlingen är digital design av material. Med hjälp
av bioteknik är det möjligt att bygga godtyckliga proteiner med önskad aminosyra-
uppsättning. För forskningsvärlden är det önskvärt att kunna förutsäga hur ett
slumpmässigt utvalt protein kommer att vika sig samt skapa nya syntetiska pro-
teiner med valfri tredimensionell struktur. Med kunskap om godtyckliga protein-
ers egenskaper är det möjligt att skapa syntetiska material enligt endamål. Målet
med avhandlingen är att testa noggrannheten hos en AlphaFold-ekvivalent mask-
ininlärningsmodell p̊a syntetiskt konstruerade ideala tandemupprepningsproteiner
genom att köra dem genom molekylärdynamiksimuleringar i Gromacs.

Det har länge varit känt att strukturen är kritisk för att ett protein ska kunna fungera
som det ska, men det finns ännu mycket som behöver utvecklas för att först̊a samban-
det mellan sekvens, struktur och funktion. Databaserade beräkningsverktyg behövs
som stöd för materialutveckling, eftersom det finns oändligt många kombinationer
av aminosyror och det är omöjligt att experimentellt undersöka dem alla. Mask-
ininlärningstekniker är snabbare och mer kostnadseffektiva. Maskininlärningsmodel-
len kan ocks̊a föresl̊a nya sekvenser som inte har testats. Mitt arbete undersöker
stabiliteten hos de strukturer som har förutsp̊atts, vilket senare kan användas som
data tillbaka till maskininlärningsmodellen.

År 2020 vann DeepMind Technologies överlägset med AlphaFold2, vilket var ett
stort steg för maskininlärningsbaserad förutsägelse av proteinstrukturer. DeepMind
tävlade först med AlphaFold1 i CASP13, men AlphaFold2 var en betydande upp-
gradering. Strukturerna för proteinerna i proteindatabanken PDB bestäms exper-
imentellt med röntgenkristallografi, kärnmagnetisk resonansspektroskopi eller elek-
tronmikroskopi. AlphaFold tränades att hitta mönster bland dessa proteiner och
kunde inte ha gjorts utan existerande experimentella data. AlphaFold är bättre p̊a
att förutsäga sidokedjor och letar även efter evolutionära kopplingar till proteinerna
i sina förutsägelser.

Maskininlärningsalgoritmer matas med befintliga data och använder de för att hitta
mönster och förutsäga resultat för godtyckliga indata, dvs. ju mer kända data
maskininlärningsmodellen har, desto bättre kommer förutsägelserna att bli. Mask-
ininlärningsmodeller minskar mänskliga p̊averkningar, vilket kan leda till nya upptäck-
ter. En nackdel med maskininlärningsmodeller är att de förlitar sig p̊a bekanta data,
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vilket innebär att det alltid finns en möjlighet att indata är för obekanta för att
maskininlärningsmodellen ska kunna bearbeta dem.

AlphaFold har bidragit till att lägga till förutsp̊adda strukturer för det mänskliga
proteomet och andra organiska proteiner. Den höga noggrannheten hos AlphaFold
baseras p̊a lokal atomprecision med l̊ag standardavvikelse. När man undersöker
närmare, uppvisade även dessa d̊aligt förutsp̊adda regioner. Studier visar att Al-
phaFold endast kan förutsäga 40 % av det mänskliga proteomet med ett högt konfi-
densintervall.

Studier visar att AlphaFold-modellen har sv̊arigheter att förutsäga delar som kan
bilda alternativa konformationer samt förh̊allandet mellan olika domäner. Det finns
forskning som tyder p̊a att komplettering av experimentell information, t.ex. elek-
trondensitetskartor och avst̊and mellan sidokedjor, ökar prediktionsnoggrannheten.
En densitetskarta kan skapas med kristallografiska data fr̊an PDB och jämföras med
en densitetskarta som erh̊alls genom att itererade AlphaFold-predicerade struktur-
erna. Jämförelserna visar att proteiner som ansetts ha en korrekt struktur i m̊anga
fall best̊ar av felaktigt förutsagda domänorienteringar p̊a global niv̊a och fel i ryggrad
och sidokedjor p̊a lokal niv̊a.

Maskininlärningsmodellen som strukturstabilitetsanalyserna baseras p̊a är jämförbar
med AlphaFold. Dessa maskininlärningsförutsägelser är användbara för att förutsäga
den initiala strukturen, baserat p̊a dihedriska vinklar, men har fortfarande stora
avvikelser jämfört med experimentellt bestämda strukturer och kan för närvarande
inte ersätta experiment. Resultaten av denna avhandling visar att de flesta av
de maskininlärning förutsagda strukturerna som undersöktes inte är stabila under
molekyldynamiksimuleringar.

Gromacs är ett simuleringsprogram för molekylär dynamik som är användbart vid
undersökningen av proteinstabilisering. Simuleringarna är baserade p̊a peptider som
best̊ar av upprepade aminosyraenheter. De ursprungliga peptiderna var 210–300
aminosyror l̊anga. P̊a grund av den stora beräkningsbelastningen reducerades pep-
tiderna initialt till kortare sekvenser för att f̊a en först̊aelse för deras beteende.

Oönskat beteende i MD-simuleringarna innebär att ML-modellen misslyckas med att
förutsäga proteinstrukturen korrekt. Ett sätt att bestämma framg̊angen med mask-
ininlärningsförutsägelsen är att titta p̊a icke-fysiskt beteende i proteinerna. Problem
under simuleringarna uppstod huvudsakligen av överlappande atomer. Istället för
att utesluta dessa proteiner helt och h̊allet tillämpades ett extra steg i simulerin-
gen för att separera atomerna fr̊an varandra. Dessa steg kan vara användbara i
inlärningen av maskininlärningsmodellen. De korrigerade strukturerna är initialt
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icke-fysikaliska, men kan hjälpa till att justera maskininlärningsmodellen mot mer
exakta förutsägelser och ge information om oönskat beteende. Upptäckterna i denna
avhandling tyder p̊a att det finns utrymme för förbättringar i ML-modellen. Även
om strukturerna överlag är väl förutsp̊adda, kan experimentella data hjälpa till att
justera proteinet p̊a en mer detaljerad niv̊a. När en region är fixerad korrigeras även
resten av proteinet, vilket utnyttjas i en iterativ korrigeringsprocess.
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