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Abstract

Serverless Computing is a form of cloud service where the cloud vendor offers
a platform with a simplified development and deployment environment, allowing
developers to focus primarily on implementing business logic. Moreover, the op-
eration burden is reduced as the cloud vendor manages all the inner workings of
the platform. The level of abstraction has also made the consumption-based billing-
model possible, in which the customer only pays for the computational resources
consumed by their applications.

This thesis explores the benefits and disadvantages of implementing business
solutions in the cloud using serverless platforms as opposed to more conventional
application development. Three example use cases are investigated, each having a
conventional implementation and serverless alternative. The serverless implemen-
tations were developed using cloud services available in Microsoft Azure, whilst
the conventional ones utilised Java combined with Spring Boot.

The serverless implementations demonstrated that the platforms made it effort-
less to implement certain features, as the complexity was managed by the vendor.
Moreover, the characteristics of the platforms made them particularly suitable for
applications featuring bursty workloads. However, there are drawbacks as well, a
considerable one being the hard dependencies to the platforms that the serverless
implementations featured. These dependencies create an effective vendor lock-in,
tying the customer to the cloud vendor.
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1. Introduction

Serverless Computing is an emerging technology which promises to simplify ap-
plication development and deployment. With advancements in cloud computing
and virtualisation techniques during the previous decade, cloud vendors have be-
gun introducing various serverless platforms. In these platforms, the cloud ven-
dors themselves manage the operational aspects of executing the applications in the
cloud. The inner workings of the platforms and the underlying infrastructure have
been abstracted away from the developers, allowing them to build applications us-
ing high-level abstractions instead. Therefore, developers can focus primarily on
implementing business logic [1].

This, combined with the consumption-based billing model, in which the cloud
vendor only bills the customers when the application is executed, makes server-
less platforms a lucrative alternative to conventional applications. However, server-
less technologies are still in their early stages. Although the platforms provide
many benefits, there are disadvantages as well, particularly regarding certain as-
pects. Therefore, when to utilise serverless technologies is not always clear.

1.1 Motive

This thesis aims to explore the benefits and disadvantages that serverless technolo-
gies provide, as well as how these compare against more conventional application
development methods. To make these comparisons, the author has implemented a
serverless and a conventional implementation for three example business use cases.
The use cases aim to demonstrate a set of scenarios which businesses may face.

The implementations and their development processes are then compared from
different perspectives to demonstrate the advantages and disadvantages of each ap-
proach. The serverless implementations presented in this thesis are developed using
Microsoft Azure’s serverless platforms, while the conventional counterparts are de-
veloped using Java in combination with Spring Boot.
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1.2 Structure

This first chapter introduced the concept of serverless computing along with the
purpose of this thesis. The topic of serverless computing is further expanded in
chapter 2. Moreover, the chapter presents other background information related
to the thesis and a literature review of the topic. Chapter 3 gives an overview of
the services in Azure which are used in the serverless implementations. The use
cases investigated in this thesis are presented in chapter 4. The conventional and
serverless implementations of these use cases are then presented in chapter 5. These
implementations and their development processes are then compared in chapter 6.
Chapter 7 discusses the benefits and disadvantages of serverless more broadly based
on the findings. Finally, chapter 8 presents some concluding remarks about the
work.
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2. Background and Related Work

2.1 Serverless Computing

With the introduction of cloud computing, new ways of deploying and developing
applications have emerged that fall under the umbrella of Serverless Computing,
also simply known as serverless. In the context of cloud computing, serverless does
not mean that there are no servers used to execute code, but rather that the servers
and other underlying infrastructure have been abstracted away. This allows devel-
opers to deploy and maintain applications without having to provision or manage
servers or other resources. The cloud vendor dynamically handles the provisioning
of computing resources as needed when the application is to be executed [2].

PaaS

SaaS

IaaS

Serverless

Figure 2.1: Serverless is said to sit between PaaS and SaaS, but the line is blurry

What exactly constitutes serverless can be challenging to define. According
to one definition [3], serverless sits somewhere in between Platform-as-a-Service
(PaaS) and Software-as-a-Service (SaaS). In PaaS, the servers and other underlying
infrastructure are also abstracted away, allowing applications to be deployed with-
out the developers having to maintain the environment the application runs within
[1]. However, serverless takes this a step further by having the developers focus
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on implementing business logic utilising higher-level abstractions, which can exe-
cute in the cloud independently. The execution of the business logic is triggered
in response to events defined by the developer. The cloud provider handles the op-
erational aspects of executing the business logic, such as allocating the required
computational resources and mapping the high-level abstractions to concrete under-
the-hood implementations. This reduces the operational burden on the developers
whilst also removing some control [1]. The amount of control removed varies de-
pending on the serverless platform and how the service provider has designed it.

The reduction of control brings serverless closer to SaaS, where the user has lit-
tle or no control over the inner workings of the software itself. In SaaS, the provider
is in charge of developing and maintaining a piece of software, which is then offered
to the end users as a service. The amount of control given to the users varies de-
pending on the configurability of the SaaS product. Some are provided as is, whilst
others may even allow the users to add custom functionality. However, this func-
tionality is ultimately limited by the domain of the SaaS product, as the execution
occurs within the application context. In serverless, these kinds of limitations do
not exist [3].

The most common type of serverless model is known as Function-as-a-Service
(FaaS) [2]. In FaaS, developers write pieces of code in the form of functions,
which can then independently be executed in the cloud. Multiple functions may
be grouped together to form a more extensive application, where each function con-
ducts a part of a larger workflow. In many cases, FaaS platforms support multiple
programming languages. This allows organisations and developers to create func-
tions utilising one or more programming languages most suitable for their needs
[2][3].

Amazon was the first major cloud vendor to offer the FaaS model with the intro-
duction of AWS Lambda [4] in November 2014 [5]. As the first serverless platform
on the market, it defined many of the development, operational, and resource aspects
that can be seen on other similar platforms today [3]. Other cloud vendors quickly
followed suit, with both Microsoft and Google releasing their own FaaS offerings
two years later, Azure Functions [6] and Google Cloud Functions [7], respectively.
Since then, cloud vendors have also introduced other serverless offerings that are
not FaaS based, such as Azure Logic Apps [8] from Microsoft.

Serverless platforms provide new ways of developing cloud-native applications.
For developers, one of the significant benefits of serverless platforms is that they
integrate well with the other services part of the cloud vendors’ ecosystem [3]. For
example, the platform may include built-in functionality to authenticate users or to
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retrieve and save files in the cloud vendor’s own storage service. This, combined
with the abstraction of the operational aspects of executing the code, makes the
overall development process easier and faster, thus allowing developers to focus
primarily on implementing the application’s business logic [9].

Serverless offerings are also characterised by a billing model which differs from
traditional cloud computing services. Unlike IaaS offerings, such as virtual ma-
chines, which are typically billed based on reserved capacity, serverless platforms
are generally billed based on usage. This means that the customer only pays for
the resources consumed during the execution of the code, which is measured by the
cloud provider. This type of billing model is possible as the cloud provider dynam-
ically allocates the computational resources as they are needed. The specifics of
how resources are billed vary depending on the serverless platform and cloud ven-
dor. However, at least in FaaS offerings, the billing model is commonly based on
the number of function executions, the execution time, and the amount of memory
consumed during the execution [10][11].

This consumption-based billing model can make serverless offerings incredibly
affordable. Not only does the customer avoid the need to set up any infrastructure
to run their application, but they also solely need to pay for whatever resources are
consumed whenever it is being executed. However, this type of billing model is
not necessarily always less expensive compared to reserved capacity. In scenarios
where the resource consumption on the serverless platform is high, the operational
costs may be more expensive. This may occur, for instance, if an application is
constantly being executed.

Another drawback of serverless platforms is a phenomenon known as cold starts.
Due to the serverless application having no reserved resources in the cloud, the
cloud provider has to set up and allocate resources from zero whenever the appli-
cation is executed after an idling period. This can result in a performance penalty
during the early stages of the execution [3].

Furthermore, serverless platforms suffer from certain resource limitations, mak-
ing them unsuitable for some applications. One major limitation is the maximum
execution time, which is often limited. The limit varies depending on the serverless
platform. For instance, in Azure Functions, the default timeout is after 5 minutes,
but this can be extended to a maximum of 10 minutes [11]. AWS Lambda offers a
slightly longer maximum timeout of 15 minutes [12]. Developers need to consider
this time limit when designing serverless solutions. For example, splitting larger
jobs into multiple smaller ones could allow for the serverless code to execute within
the time limit [1][2].
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From a service management perspective, one issue with most serverless plat-
forms is that they result in the applications being dependent on the specific platform
they are developed for. This is primarily due to cloud vendors having their own set
of features, tools, and requirements for their serverless platforms. The implication
is that applications designed for one platform cannot be transferred to another with-
out refactoring. For instance, a FaaS application developed for Azure Functions
cannot be deployed using AWS Lambda, even if both platforms would support the
same programming language. The problem is further amplified by each serverless
platform integrating well with the cloud vendors’ other services, many of which
are often proprietary. These services must also be replaced should the application
be deployed on another cloud vendor’s platform. Replacing these with alternative
services may result in high costs and require substantial effort [13].

This issue is known as vendor lock-in. Once a customer has begun using the
services of a particular vendor, it is difficult and expensive to stop using or transfer
the services to another provider. Furthermore, cloud vendors are often incentivised
to design their services with this in mind to reduce customer churn [14].

2.2 Literature Review of Serverless Computing

The field of serverless computing is relatively new, having had its adoption dur-
ing the latter half of the previous decade. Nonetheless, the field is actively being
studied, with the first relevant publications appearing in 2016 and a sharp increase
thereafter. According to a systematic mapping study on the topic conducted in 2019
[15], most publications focused on executional aspects of different FaaS platforms.
These mainly relate one way or another to the cold start problem and how it may be
mitigated. Although the FaaS model may be the most common type of serverless
computing, it is not the only form [16].

Security is another major topic in serverless literature. Many of the studies re-
late to how serverless applications may securely be executed in the public cloud.
The nature of serverless places more responsibility on the cloud vendor regarding
security, as they handle the operational and executional aspects of the applications.
As the execution and scaling of serverless applications occur in a multi-tenant envi-
ronment, it is vital that the cloud providers keep everything separate. Furthermore,
serverless applications commonly depend on other cloud services offered by the
same vendor. Communication between these different services often happens in-
ternally within the cloud infrastructure. As the infrastructure itself and many of
the technologies are proprietary, external security researchers and experts cannot
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adequately scrutinise the security of the platform [17].
Nevertheless, developers still have a prominent role in serverless application

security. One study notes that the event-driven nature of serverless may increase
the attack surface of applications implemented with the technology. As serverless
applications often consist of multiple functions, a misconfiguration in one function
trigger may compromise the application if the attacker can start to manipulate the
execution of the workflow [18].

Many open questions related to serverless technologies and their usage still ex-
ist, including best use cases and design patterns. A recent study systematically
collected and analysed several serverless applications from different sources to find
community consensus [19]. The study presented noteworthy findings about the cur-
rent state of serverless applications. One of their findings was that the primary
motivators for building serverless applications were reduced running costs when
IaaS resources are underutilised, reduced operational overhead, and seamless dy-
namic scaling of resources. Faster development speed was also noted as being one
motivator, although it was not as common. The study also noted that serverless
applications are not limited to specific application types but can be used for a wide
variety of tasks. However, most of the applications featured bursty workloads. Such
applications are idle most of the time but generate large bursts of activity whenever
they are executed.

Some also see that serverless technologies, at least in their current form, are a
step backwards. One study [20] argues that FaaS platforms are at odds with dom-
inant trends in modern computing, as they restrict the ability to work with data
and distributed computing resources efficiently. They see that the autoscaling char-
acteristic of serverless, which increases the number of computational resources as
needed, does have its benefits in some scenarios, such as independent tasks. How-
ever, as serverless functions are executed within separated, isolated containers, any
data they process must be “shipped to them” rather than having the functions oper-
ate on the data directly where it is being stored. Furthermore, the isolation prevents
fine-grained communication between different functions, which is needed for effi-
cient parallelism. The proprietary nature of serverless platforms also discourages
open-source innovation and results in further vendor lock-in.

The migration of serverless applications from one platform to another has also
been investigated [13]. The study experimented with migrating four different typi-
cal FaaS use case implementations from AWS Lambda to Azure Functions and IBM
Cloud Functions. During the migration process, the study identified multiple issues
related to vendor lock-in. Some of the issues could be mitigated by designing the
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initial solution in a certain way. Others would potentially result in a so-called dead
end, meaning that a new solution would have to be built from the ground up for the
new platform.

Most of the issues stemmed from the FaaS solutions being dependent on other
services offered by the cloud vendor, such as object storage. Even if the new vendor
has a corresponding service, it may not have the same features, such as a particular
trigger. If a function would depend on such a trigger, migrating it to the new cloud
vendor’s platform may require the business logic to be redesigned. Moreover, even
if the alternative service would have the same set of features, the way the FaaS plat-
form implements the various interactions may be completely different. The study
highlights AWS S3 and Azure Blob Storage, comparable object storage services, as
examples. AWS handles service-specific events from S3 and other services using a
separate library the vendor has developed. This made the function code of the initial
AWS implementation dependent on the data types featured in the library. Further-
more, the ways the FaaS platforms access objects from their corresponding object
storage services also differ. In AWS, the S3 events only contain a reference to the
object in the storage service. Thus, the function itself must include the logic to re-
trieve the object. Meanwhile, in Azure, an object may be directly accessed from the
event triggering the function as input [13].

It is possible to overcome these differences, but problems may occur during the
migration of more complex solutions. The study suggests that a possible solution to
mitigate the problem is to separate the business logic into a custom library. Cloud
vendor-specific code would then be written in functions handling the input and out-
puts to other services, while the business logic would be referenced from the custom
library [13].

2.3 Spring Boot

The serverless platforms presented in chapter 3 of this thesis are compared against
more conventional counterparts developed using Java in combination with Spring
Boot. This combination was chosen as a reference due to Java being one of the
most used programming languages in the software development industry [21], es-
pecially for enterprise application development [22]. Moreover, Spring is the most
used framework for Java, with Spring Boot prevalent in server-side applications
[23]. The Java programming language already contains many features that make
development easier. Nevertheless, frameworks like Spring reduce the need for de-
velopers to program standard functionalities, simplifying the code and speeding up
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the development process [24].
Spring [25] is an open-source project comprising multiple modules that aim

to support Java application development. Spring Framework is one of these mod-
ules. It provides a comprehensive library of prebuilt functionality and other fea-
tures which help developers create robust Java applications, making the framework
widespread in enterprise environments. The framework is incredibly flexible, al-
lowing developers to configure it precisely to support the needs of their application.
However, setting up the configurations using annotations or separate XML files can
be complicated and time-consuming [26][27].

Spring

Spring Boot

User

Data, Batch, Integration, Web, JDBC, Security

Figure 2.2: Spring Boot streamlines Spring development by making decisions for
the user, making the framework more approachable [28]

Spring Boot addresses this complexity. It is another module part of the Spring
project and can be seen as an extension to the Spring Framework. Spring Boot
streamlines the development process by automating much of the configuration, re-
sulting in the developers only needing to make minimal configurations or even elim-
inating the need altogether. This is done by having the Sprint Boot runtime make
decisions for the developers by defaulting to certain implementations based on the
classpath contents. This opinionated approach to configuration is known as auto-
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configuration [24][27].
This auto-configuration can be well seen in the conventional implementations

presented later in this thesis, which utilise Spring Boot. For example, in chapter
5.2.1, the implementation uses JPA for persistent storage. In the code itself, the
repositories are only defined as interfaces. The JPA implementation that will be
used during runtime is decided by Spring Boot, which automatically handles the
injection of all dependencies.
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3. Serverless in Azure

Azure is a cloud computing platform operated by Microsoft. Launched commer-
cially in 2010 as Windows Azure [29], it has since become one of the industry’s
most prominent cloud vendors, only surpassed by Amazon’s AWS [30]. Like other
major cloud vendors, Azure operates in multiple regions, where they offer many
different cloud computing services in several categories, such as Infrastructure-as-
a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS).
Azure’s first serverless offering, Azure Functions, was launched in 2016 [31].

The serverless solutions presented in this thesis are developed for and using
different serverless platforms offered by Azure. The used services are presented in
further detail in this chapter.

3.1 Azure Functions

Azure Functions is Microsoft’s Function-as-a-Service (FaaS) offering in Azure. As
with other FaaS offerings, Azure Functions allows for the deployment and execution
of pieces of code, known as functions, on their own without the need to consider the
underlying platform running the code. Azure handles the provisioning and scaling
of computing resources whenever needed as a function is executed [9][31].

Input binding(s)Additional inputs

Output binding(s)

Function

TriggerEvent Output(s)

Figure 3.1: The core concepts of a function

Azure Functions is an event-driven platform, meaning that the execution of a
function is always triggered in response to some event. The event itself often in-
cludes basic information, which acts as initial input for the function. Furthermore,
additional input data may be retrieved from other sources as well. The inputs are
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then used to produce one or more outputs [31].
Triggers, input bindings, and output bindings, which can be seen in figure 3.1,

form core concepts in Azure Functions. They define when a function is to be exe-
cuted, as well as how the data flows in and out of a function. Azure Functions con-
tains several premade triggers and bindings, many of which integrate with Azure’s
other services. For example, it is possible to create a function that executes each
time a new file is added to Blob storage, Azures object storage service. This is all
done by adding and configuring a Blob storage trigger for the function. The inner
workings of the trigger, which is responsible for detecting the added file and starting
the execution of the function, are handled by Azure [32].

Azure Functions supports several programming languages, including C#, Java,
JavaScript, and Python. Furthermore, package management systems, such as NuGet,
npm and Maven, may be used for dependency management [9][33].

1 public class Function {

2

3 @FunctionName("HttpExample")

4 public HttpResponseMessage run(

5 @HttpTrigger(

6 name = "req",

7 methods = {HttpMethod.GET , HttpMethod.POST},

8 authLevel = AuthorizationLevel.ANONYMOUS)

9 HttpRequestMessage <Optional <String >> request ,

10 @QueueOutput(

11 name = "msg",

12 queueName = "outqueue",

13 connection = "AzureWebJobsStorage")

14 OutputBinding <String > msg ,

15 final ExecutionContext context) {

16 context.getLogger ().info("Java HTTP trigger processed a request.");

17

18 // Parse query parameter

19 final String name = request.getQueryParameters ().get("name");

20

21 if (name == null) {

22 return request.createResponseBuilder(HttpStatus.BAD_REQUEST)

23 .body("Please pass a name on the query string")

24 .build();

25 }

26 else {

27 // Write message to message queue.

28 msg.setValue(name);

29

30 return request.createResponseBuilder(HttpStatus.OK)

31 .body("Hello , " + name)

32 .build();

33 }

34 }

35 }

Listing 3.1: An example of a function written in Java
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How triggers and bindings are defined in a function varies depending on the
programming language used. For compiled languages, such as Java, this is done
by decorating the method declaration using special Azure Functions-specific an-
notations. An example of these annotations can be seen in Listing 3.1, where the
first annotation defines the name of the function itself, the second the trigger of the
function, and the third the output binding. The function tries to parse the “name”
parameter from the request query provided by the trigger. A "Hello" message is
returned if the parameter is present. If not, then HTTP response four hundred is
returned [32].

In Azure Functions, individual functions are always deployed as part of a func-
tion app. A function app can be seen as a group of one or more related functions
which run in the same runtime context. Therefore, they also share the same pro-
gramming language, environment variables, and other application settings. Func-
tion apps are an important concept since they relate to how computational resources
are scaled in the cloud. As functions are executed within a Function app, more
computational resources will be allocated to the function app as a whole, not to in-
dividual functions. Consequently, functions within a Function app scale together,
as they share the same computational resources. This should be considered when
deciding which functions should be part of the same function app [31][34].

As of writing, function apps may be deployed in Azure using three types of
hosting plans. The consumption plan is the default plan that follows the pay-as-
you-go serverless model, as defined in the previous chapter. In this plan, function
apps are billed based on a combination of memory usage and execution time, as well
as the number of executions. The other two plans follow a different pricing model
where at least some of the computational capacity is reserved for the user. As the
user is paying for reserved capacity in these plans, they cannot be considered fully
serverless. Moreover, function apps hosted on the App Service plan are deployed
on a dedicated set of computing resources, removing the consumption aspect of
serverless completely [9][11].

3.1.1 Durable Functions

In Azure Functions and FaaS in general, functions are generally stateless. This
means that the functions will dissipate once they have performed their assigned
task. This is fine for performing computational tasks that scale as needed but can
make it difficult to implement more complex business logic, as this often requires
multiple steps to be executed in coordination. Durable Functions is an extension to
Azure Functions which solves this issue by making it possible to create orchestrated
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stateful workflows [35].
The extension expands Azure Functions with four new function types. At the

core is the Orchestrator function, which is responsible for the orchestration of the
business logic. Orchestrator functions themselves do not perform any computations,
as they solely define the steps that should be taken to perform the logic. These
steps are instead performed by Activity functions, which the Orchestrator function
calls. Activity functions are similar to regular Azure functions, which perform some
computational tasks. Once an activity function has finished executing, it may return
data to the orchestrator before dissipating. The orchestrator function may then pass
this data on to any following activity functions. An example of this kind of workflow
can be seen in figure 3.2. Note that the activity functions in the workflow may, using
input and output bindings, exchange data from outside the workflow, as depicted in
figure 3.1. The workflow is instigated by a so-called client function, which triggers
the orchestration function using a particular type of binding [35][36].

Triggers

Client function

Calls

Calls

Calls
Orchestrator function

Activity function 1

Activity function 2

Activity function 3

Event

Figure 3.2: An example of function orchestration using Durable Functions

The Durable Functions extension works by storing the state of the orchestrator
function in an Azure Storage account linked to the function app. The extension
handles the inner workings of saving, retaining, and restoring the state of the or-
chestrator. This allows the function to resume even after prolonged pauses, which
may occur in asynchronous processes [35].
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3.2 Azure Logic Apps

Logic Apps is a serverless workflow engine in Azure. Unlike Azure Functions,
which takes a “code-first” approach to implementing business logic, Logic Apps
instead features its own visual designer tool where workflows are created. This
“design-first” approach allows developers to create workflows that implement busi-
ness logic without the need to write any code. As in other serverless platforms, the
cloud provider handles the operative aspects of executing the workflow in the cloud
as needed [9][37].

Azure offers two different resource types for Logic Apps, which are known as
Consumption and Standard. The consumption type is the original version of Logic
Apps, which utilises the serverless model described in chapter 2. The standard re-
source type is a newer variant of Logic Apps that runs in single-tenant environments,
where the computational resources are reserved. As these two resource types have
distinct runtimes, there are some minor differences between the two [38]. There-
fore, as serverless is the subject of this thesis, the consumption type of Logic Apps
will be described in this chapter. This version of Logic Apps is also used in the
implementations described in the following chapters.

Logic Apps’ workflows are comprised of connectors, which act as the building
blocks of the business logic. Most connectors are essentially APIs that allow Logic
Apps to communicate with other services. However, the APIs have been abstracted
away from the users, leaving only a component that performs some specific opera-
tion. Workflows are created by adding and ordering connectors in a visual designer
available in the Azure Portal. Connectors in Logic Apps can be divided into two
types: triggers and actions [39].

Triggers are connectors that initiate the execution of a workflow. Therefore,
each workflow must contain at least one trigger. As Logic Apps is an event-driven
platform, each trigger is fired by some event. Triggers can be divided into two
categories, polling and push types—the former works by regularly polling some
endpoint at specific intervals for new pieces of data. If new data is available, the
trigger initiates the execution of the workflow. The latter type of trigger listens to
an endpoint and fires whenever an external source calls it. An example of a push
type of trigger is shown in figure 3.3, where the workflow execution is triggered in
response to an HTTP request [9][31][39].

Each trigger is followed by a set of actions. Actions are connectors of the work-
flow that are responsible for performing various tasks. Individual actions can, for
instance, send an HTTP request to some endpoint, compose a JSON file, or trigger
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Figure 3.3: An example of a workflow in Logic Apps, with Triggers and Actions
marked separately

a piece of code in Azure Functions to run. Logic Apps also contains a set of special
actions which are used to alter the execution of the workflow during runtime. These
are known as control flow actions. For instance, a control flow action may make
the workflow execute some branch if a specific condition is met. Figure 3.3 depicts
such a control flow action, where the following branch depends on the length of the
“name” parameter [9].

Connectors in Logic Apps can be grouped into two categories: built-in and
managed connectors. The former consists of connectors natively part of the work-
flow engine’s runtime. This includes all control flow actions and many other ba-
sic actions and triggers, such as composing a JSON or sending an HTTP request.
Some built-in connectors also allow for communication with other services within
Azure, although this is somewhat limited in the consumption version of Logic Apps
[39][40].

Managed connectors allow workflows to connect to other services within and
outside of Azure. This group includes most of the connectors available in Logic
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Apps, making it possible for workflows to respond and perform a wide variety of
operations [41]. For example, a workflow could be triggered whenever a new email
is received using a particular topic in Outlook [42], after which the contents of
the message would be posted on a channel in Slack [43]. As these connectors are
managed and maintained by the cloud provider, users do not have to consider the
inner workings, such as background APIs, that perform the operations. The user
only needs to configure the connectors and, depending on the connector, create
a connection to the corresponding service. In the previous example, creating the
connections means that the user only needs to sign in with their Outlook and Slack
accounts and give Logic Apps the required access permissions. The authorisation
tokens are managed and stored in Azure [39].

The differences between built-in and managed connectors are not that apparent
to the users when designing workflows, except that they are located under different
labels in the designer tool. However, they impact the workflow’s operating costs,
as they are priced differently. In the consumption plan, each connector execution
is metered whenever a workflow runs. The number of connector executions is then
multiplied by the unit price of that connector group. The unit cost of each group
varies depending on the region the workflow is deployed on [44].

Furthermore, in the consumption version of Logic Apps, managed connectors
are further divided into two groups: standard connectors and enterprise connectors.
The latter contains all connectors related to enterprise systems, such as SAP, whilst
the former contains all the rest. The only difference between the groups is the
pricing [41][44].

3.2.1 Differences with Microsoft Power Automate

Microsoft also offers another workflow engine tool called Power Automate, which
is similar to Logic Apps in many ways. Both allow for the orchestration of business
logic in a similar-looking visual designer, and many of the available components are
the same. Therefore, workflows in Power Automate and Logic Apps can, in some
circumstances, look almost, if not completely, identical. Although the tools have
many similarities, their intended use cases are somewhat different [45][46].

Power Automate was initially launched in 2016 with the name Microsoft Flow.
The remnants of this old name can still be seen in spots, such as in the web ad-
dress (flow.microsoft.com). The goal for Microsoft was to create a simple workflow
engine for business users to automate different tasks. This was done by creating a
lightweight version of Logic Apps, retaining much of the same design aspects of
the service while removing more advanced features used by developers. Therefore,
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it can be said that Power Automate is based on Logic Apps [31][47].
Some of the missing features in Power Automate that are available in Logic

Apps include the ability to view and modify the JSON schema of the workflow,
proper support for version control, and the availability of more advanced enterprise
connectors. Furthermore, there are also differences in granular control. Workflows
in Power automate are tied to and owned by individual users. Although multiple
users can cooperate on flows, they will still be tied to their original creators. Con-
versely, in Logic Apps, workflows are resources in Azure owned by the tenant.
This allows any user with the appropriate access rights to the resource to manage
and make changes to the workflow. This also applies to any connector connections,
which in Logic Apps are stored as resources in Azure. In Power Automate, connec-
tions are tied to the owner of the flow, or in the case of shared flows, the flow itself
[41][46][48][49].

A notable differentiator is that Power Automate is not part of Azure. It belongs
to Microsoft’s Power Platform, a separate line of services with ties to Microsoft
365. Nevertheless, this does not mean that workflows created in Power Automate
cannot interact with any services in Azure. On the contrary, it is even encouraged by
Microsoft. However, the management of billing of Power Automate is done through
different channels [50][51].

Power Automate being part of Microsoft’s Power Platform also means that the
service has different operating costs compared to Azure Logic Apps. Power Auto-
mate is a licence-based service, meaning that the user owning the workflow must
have a licence. Access to Power Automate is included in Microsoft 365, allowing
members of numerous organisations to utilise it to create workflows as part of that
licence. However, the Power Automate licence included as part of Microsoft 365
has some limitations, such as limiting the user to a certain number of standard con-
nectors. Access to more powerful premium connectors requires the user to acquire
a separate licence. Various types of licences are available, some of which include
more features, such as RPA functionality in desktop environments [50][51].

In summary, Power Automate targets end-users to help them automate their
business processes, whereas Logic Apps is aimed at developers to create more ad-
vanced integrations and business workflows. Therefore, Logic Apps is the workflow
engine used in the serverless implementation presented in chapter 5.
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3.3 Azure Cosmos DB

Cosmos DB is a NoSQL database service in Azure. While it may not be serverless
in the same way as defined in chapter 2, Cosmos DB works well with FaaS and
other serverless services for several reasons. The database service is fully managed,
meaning that the cloud provider is responsible for handling the operational aspects
of the databases, such as scaling and maintenance. Furthermore, Cosmos DB fea-
tures a consumption-based mode where throughput is scaled as needed, and the
user only pays whenever resources are consumed. This consumption-based mode
has therefore been dubbed serverless by Azure [52][53].

Cosmos DB provides different database APIs for working with the service. Re-
gardless of the API used, the service will internally store the data in the same format,
called Atom-Record-Sequence (ARS). However, the APIs allow applications to use
the service similarly to existing database technologies. The native API for Cosmos
DB is called Core and uses standard SQL syntax for database operations. Hence, it
is also frequently called the “SQL API” or “Core (SQL)”. This API allows many
database operations to be performed similarly to relational databases, although there
are some exceptions. While using the Core API, the data is stored as JSON doc-
uments. In addition to the Core API, Cosmos DB features compatibility APIs for
other database technologies, such as MongoDB. However, for the purposes of this
thesis, the Core API is utilised, as it is used by services such as Azure Functions
[54][55][56].

The database API utilised is selected on the Cosmos DB account level. A Cos-
mos DB account is on the highest level in the element hierarchy and is directly
created as a resource in Azure. Users can create one or more databases within an
account. A database essentially acts as a group of containers, which are the ele-
ments that store data in the form of items along with other properties. This hierar-
chy is depicted in figure 3.4. The various elements in the hierarchy are represented
differently depending on the database API used. For instance, the containers act
as collections in the MongoDB API, whereas in the Core API, the containers are
represented as is.

Resource usage in Cosmos DB is expressed in Request Units (RU), which is
Azure’s way of abstractly representing consumed computational resources. One
RU is the equivalent of a one-point read of a one-kilobyte item. Each database
operation has its own assigned RU cost, which varies depending on the database
API and the size of the item being handled [57]. RUs are essential to Cosmos DB
as they impact the performance and the costs associated with the service.
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Figure 3.4: Simplified hierarchy of elements within Cosmos DB

Cosmos DB features two different capacity modes, provisioned throughput and
serverless. In provisioned throughput, the user reserves a certain amount of through-
put capacity from the service, expressed in Request Units per second (RU/s). Through-
put capacity can be reserved for individual containers or the database as a whole.
In the case of the latter, the capacity will be evenly distributed between the con-
tainers. The reserved capacity cannot be transcended, as the service will reject
any exceeding database requests. Throughput capacity can either be provisioned
manually or set to scale automatically. In the auto-scale mode, the user assigns a
maximum throughput value for the database or container. The service will then,
for each hour, bill the user for the peak throughput that occurred during that hour.
However, this will always be at least 10% of the assigned maximum throughput,
even if no resources are consumed. Therefore, the user will be paying for some
reserved capacity even when using auto-scale. This is not an issue if the database
is constantly receiving requests. However, if there are periods when the database is
idle, the user will pay for reserved throughput capacity they are not using [57].

Serverless is Cosmos DB’s consumption-based mode. In this mode, throughput
cannot be provisioned. Instead, the user only pays for the number of RUs consumed
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during the course of the month. This mode works well for applications that re-
quire persistent storage but only have infrequent traffic, as the user does not have to
pay for unused reserved capacity. However, the serverless mode does feature some
limitations not present in the provisioned throughput mode, such as a 50 GB stor-
age limit and no geographical distribution. Furthermore, the serverless mode does
not offer the same performance guarantees included in the provisioned throughput
mode. Therefore, database operations may occasionally have higher latencies [53].

Both the provisioned throughput and serverless modes also feature costs for
consumed storage. As of August 2022, the price is 0.25 USD per month for each
gigabyte in the Europe-West region. In the case of provisioned throughput, the
price is multiplied by the number of regions if geographical replication is on [58].
Nevertheless, unless large amounts of data are stored in the service for extended
periods, the cost of consumed storage is negligible compared to reserved throughput
or consumed RUs.
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4. Presentation of the Use Cases

The use cases investigated in this thesis are presented in this chapter. Each use case
is presented from the perspective of a fictional organisation known as The Example

Organisation (TEO). TEO focuses on the business-to-business segment of the ICT
market and offers its customers various services. Some services are produced in-
house, while others are produced by a third party and resold to customers.

4.1 Use Case 1: Integration

TEO has decided to begin reselling a popular third-party software tool. The costs
of the software are covered by a user-based licence, meaning that customers must
have one licence for each individual user using the software. There are two types
of licences available: Standard and Pro. The latter contains more features and is,
consequently, more expensive. As the reseller, TEO is responsible for billing the
resale value of the licences from its customers. The licences are to be billed at the
beginning of each new month.

Retrieve licence
usage data from

Marketplace

Process each
company retrieved

License usage data

At the start of

each month

No

Yes

'Unknown companies' are present?

Licence usage data

of 'unknown companies'

Send notification
email to billing

department

Compute contents
of notification email

Attempt to retrieve corresponding
customer profile using company

VAT ID from ERP system

Customer profile

Corresponding customer

profile found in ERP?

Compute invoice
charge from usage

data
Yes

Store as 'unknown
company'

No

Insert invoice
charge into ERP

system

Invoice

charge

Figure 4.1: A BPMN diagram of Use Case 1
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The licences are acquired and managed through a marketplace operated by the
software vendor responsible for the tool. All licences within the marketplace must
be registered to a company profile, which TEO creates for the customer upon order-
ing a licence for the first time. The company profile, among other things, contains
the VAT ID of the customer. This acts as a reference between the customer’s com-
pany profile in the marketplace and the customer’s profile within the ERP system.
Notably, these profiles can exist without one another. However, this causes prob-
lems for billing the licences, as a profile must exist in the ERP system for it to be
possible to charge the customer.

The marketplace provides a REST API through which resellers may manage
the tool licences. One of the API endpoints returns a complete list of all company
profiles and the number of product licences they have been using during a particular
month. As seen from listing 4.1, the list is returned in JSON format.

1 [

2 {

3 "companyName": "Example1 Corp.",

4 "companyVatId": "FI1234567",

5 "products": [

6 {

7 "productName": "Tool Licence Standard",

8 "individualPrice": 5.50,

9 "amount": 5

10 },

11 {

12 "productName": "Tool Licence Pro",

13 "individualPrice": 9.50,

14 "amount": 2

15 }

16 ]

17 },

18 {

19 "companyName": "Example2 Corp.",

20 "companyVatId": "FI7654321",

21 "products": [

22 {

23 "productName": "Tool Licence Standard",

24 "individualPrice": 5.50,

25 "amount": 3

26 },

27 {

28 "productName": "Tool Licence Pro",

29 "individualPrice": 9.50,

30 "amount": 1

31 }

32 ]

33 }

34 ]

Listing 4.1: An example of licence usage data returned from the Marketplace
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The ERP system already contains functionality to create and send invoices to
customers. The invoice contents are based on invoice charges, which are records
that may be inserted into the ERP system through various means. Each invoice-
charge record contains the ID of the customer’s profile in the ERP system, which
acts as a reference. Additionally, the record also contains the total price, a descrip-
tion that appears on the invoice, and the period when the charge should be billed
from the customer.

1 {

2 "customerId": 12345,

3 "total": 46.50,

4 "description": "This is an description",

5 "period": "2022 -05"

6 }

Listing 4.2: An example of an invoice charge record

The ERP system features its own REST API, through which various operations
may be performed. One of these endpoints allows external applications to insert
new invoice charges into the system. The insertion is accomplished by sending an
HTTP request containing the invoice charge as a JSON part of the request body. An
example of such a JSON may be seen in listing 4.2.

For it to be possible for TEO to bill the product licences from the customers, a
system integration must be implemented. A high-level depiction of of the needed
integration may be seen in figure 4.2. Moreover, the process is covered in more
detail in the BPMN diagram seen in figure 4.1. At the start of each new month, the
integration should retrieve the total number of resold licences from the marketplace
along with the company profiles they are associated with. Then, the integration
should attempt to find the company’s corresponding customer profile from the ERP
system using the VAT ID retrieved from the marketplace. This is to check that the
company has a customer profile in the ERP system. Moreover, the customer profile
contains the customer ID of the company, which acts as a reference for the invoice
charges.

If a company’s corresponding profile is found in the ERP system, then the total
cost of the product licences should be calculated, after which an invoice charge
is to be generated and inserted into the ERP system. However, if no corresponding
customer profile is to be found using the VAT ID, then the billing department should
be notified of these companies by email. The email notification should contain the
details of the companies and the product licences they have been using so that the
billing department can take manual intervention to fix any possible issues.
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Figure 4.2: A high-level depiction of the integration and related systems

4.2 Use Case 2: Billing Engine

TEO has decided to start offering their in-house produced computing service. The
service consists of three virtual computing instance plans: Small, Medium, and
Large. The “bigger” the plan, the more computational resources it contains, thereby
being more expensive. In addition, customers may also choose to attach additional
storage to their plans for a premium. There are two storage options available: Slow

and Fast, with the latter being more expensive than the former. The cost of the
additional storage depends on the type of storage and the number of gigabytes the
customer reserves, with a base cost for each gigabyte.

The computing instances have two types of operating systems available, an
open-source variant and a proprietary version. The former OS is free and, as such,
does not result in added costs. However, the proprietary OS requires an additional
licence. The licence cost is added on top of the base price of the instance.

Computing instances and storage are both distinct types of resources. Both
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Figure 4.3: A BPMN diagram of Use Case 2

resource types are billed based on reserved capacity. Each resource has a base price,
which is defined as the price of reserving the resource for one hour. Nevertheless,
customers may create or delete computing instances and any attached storage at any
time. At the end of every month, each resource is to be billed based on the time they
have been reserved for the customer. The cost calculation is done by multiplying the
hourly base price by the seconds the resource has been reserved, divided by 3600.
Examples of this calculation for both resource types are shown in tables 4.1 and 4.2
respectively.

The base price for each resource is defined by a price list. By default, the base
prices will be taken from the price list presented on the company website. This is
known as the so-called default price list. However, customers may negotiate their
own price lists with different base prices. These are known as custom price lists.
Therefore, customers may be billed differently depending on the price list in use.
Price lists are maintained in a separate Pricing Service, from where they can be
retrieved as JSON objects. An example of such a JSON can be seen in listing 4.3.

On the computing platform, resources are always part of a project. A project
is a group of related resources managed by a customer. Thus, one customer can
have multiple projects. The platform itself is unaware of which project belongs to
which customer. Instead, this information is stored in the ERP system as part of
the customer’s order data, which is created whenever a customer starts using the
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Instance Example

Variant Medium
Base price C0.088/hr
Created at 2022-05-05 10:00:00
Deleted at 2022-05-15 10:00:00
OS Licence Yes
Licence Cost C0.032/hr

Cost calculation
Usage 10 days = 864 000 seconds

Cost
(C0.088+ C0.032)∗864000s

3600s
= C28.80

Table 4.1: Cost calculation example for an computing instance

Storage Example

Variant Fast
Base price/GB C0.0005/hr
Created at 2022-05-05 10:00:00
Deleted at 2022-05-15 10:00:00
Amount 100 GB

Cost calculation
Usage 10 days = 864 000 seconds

Cost
(C0.0005/GB∗100GB)∗864000s

3600s
= C12.00

Table 4.2: Cost calculation example for storage

service. The ERP system allows the retrieval of all project records through its API.
The records contain the IDs of the project and the associated customer. Moreover,
the custom price list ID is also included, if applicable.

1 {

2 "id": 1,

3 "products":[

4 {

5 "productCode": "small",

6 "price": 0.036

7 },

8 {

9 "productCode": "medium",

10 "price": 0.088

11 },

12 {

13 "productCode": "large",

14 "price": 0.145
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15 },

16 {

17 "productCode": "osLicence",

18 "price": 0.032

19 },

20 {

21 "productCode": "slow",

22 "price": 0.0002

23 },

24 {

25 "productCode": "fast",

26 "price": 0.0005

27 }

28 ]

29 }

Listing 4.3: An example JSON price list from Pricing Service

The usage data of the different resources can be retrieved from a separate service
called Data Collector. As the name suggests, the service gathers and stores data
from the computing platform. One of the key pieces of data that Data Collector
stores are the creation and deletion times of resources for each project. These are
stored in the service as resource events, which may be retrieved using an API. The
retrieved events are sorted based on the point in time at which they occurred.

1 [

2 {

3 "resourceId": 1000,

4 "resourceType": "instance",

5 "resourceVariant": "small",

6 "eventType": "create",

7 "happenedAt": "2022 -05 -05 T10 :00:10",

8 "osLicence": false

9 },

10 {

11 "resourceId": 1001,

12 "resourceType": "storage",

13 "resourceVariant": "fast",

14 "eventType": "delete",

15 "happenedAt": "2022 -05 -15 T10 :00:10",

16 "units": 100

17 }

18 ]

Listing 4.4: An example of resource events retrieved from Data Collector

As seen in listing 4.4, the data stored in a resource event varies depending on
the type of resource in question. However, standard parameters for each event are
the resource ID, the resource type, the resource variant, the type of event in question
(creation or deletion of a resource), and the point in time the event happened. Re-
source events for instances also contain a parameter on whether the created resource
also requires a licence of the proprietary OS, while resource events for storage con-
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tain the number of reserved gigabytes.
The resources are to be billed based on the events retrieved from Data Collector

once a month. If a resource is created but not deleted during the billing period, it
should be billed until the end of the period. Similarly, if a resource was deleted but
not created during the billing period, it can be assumed to have been created during
an earlier period. Therefore, it should be billed as if it was created during the start
of the billing period.

Resource events

Invoice charge(s)

Billing Engine

Data Collector

Project information

ERP

Calculate resource
usage from events

Calculate billing data
from resource usage

Price lists

Pricing Service

Generate invoice
charges(s)

Figure 4.4: A high-level depiction of the Billing Engine and related systems

In production, the billing engine should automatically run once a month. A
high-level depiction of the engine and the systems it is to interact with can be seen
in figure 4.4. The billing engine should retrieve the required data from the three
sources: the ERP system, Data Collector and Pricing Service, after which it should
calculate the resource consumption and their charges. Finally, the results should be
inserted into the ERP system as invoice charges. The invoice charge is the same as
in Use Case 1, depicted in listing 4.2.

29



4.3 Use Case 3: API

Various teams within TEO create new customer profiles in the ERP system on a
daily basis. The process involves entering numerous different details about a com-
pany into the profile in the ERP system, such as names, addresses, and phone num-
bers. This process can be somewhat tedious, as the user manually has to enter these
details into the system to create the customer profile. Therefore, TEO has identified
this as a possible case for automation.

The company details used to create the customer profiles in the ERP system
are already publicly available. These are obtainable from the Business Information

System (BIS), a public registry of companies maintained by a government agency.
Furthermore, the system offers a public API through which the data may be re-
trieved. The API accepts the business ID of a company as a parameter and, if valid,
returns all company information available in the system in the form of XML. Listing
4.5 contains an example of such a response.

1 <?xml version="1.0" encoding="UTF -8" ?>

2 <business id="1234567 -8">

3 <name>The Example Organization </name>

4 <registrationDate >1970 -01 -01</registrationDate >

5 <companyForm >Limited company </companyForm >

6 <address >

7 <street >Esimerkkitie 1</street >

8 <postalCode >00000</postalCode >

9 <city>Helsinki </city>

10 <country >Finland </country >

11 </address >

12 <phone>+358 123456789 </phone>

13 <fax>+358 987654321 </fax>

14 <email>example@example.com</email>

15 </business >

Listing 4.5: An example of a response from the BIS API

The ERP system also contains its own API, which may be used by external ap-
plications to create new customer profiles in the system. The API accepts a JSON
payload containing all the necessary company details required to create a new cus-
tomer profile. If the operation is successful, the ERP system returns the customer
ID of the new profile.

To automate the customer profile creation in the ERP system, TEO needs to
implement a new internal API. The business process of the API is depicted in the
BPMN diagram in figure 4.5. The new API should accept a business ID as a param-
eter. This ID should then be used to attempt to retrieve the details of the company
from the Business Information System. If successful, the details should be mapped
to the format accepted by the ERP system, after which it should be inserted. The

30



Parse Business ID

API Call

Yes

No

Valid?

Generate and return
error response

Attempt to retrieve
company details

from BIS

Transform XML to
JSON format

accepted by ERP

Customer profile details

Insert details into
ERP system to

create new
company profile

Yes

No

Details recieved?

Company details

Recieve customer
ID as response

Customer ID of new profile

Generate and

return response

with customer ID

Figure 4.5: A BPMN diagram of Use Case 3

Customer

profile

details

API

Customer ID

ERP

Retrieve company
information from

BIS

Map to customer
profile Save to ERP

Business ID Company

details

BIS

Business ID Customer ID

Caller

Return Customer
ID

Figure 4.6: A high-level depiction of the API and related systems

31



new API should return the customer ID of the new profile in the ERP system if the
operation is successful. The API would later be utilised by an internal tool suite
used by various teams within TEO. However, this tool suite is not covered in this
use case. Figure 4.6 shows a high-level depiction of the new API and the systems it
is to interact with.
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5. Implementations

This chapter presents implemented solutions for the three different example busi-
ness use cases described in the previous chapter. The thesis presents two solutions
for each use case. The first solution is implemented as a Spring Boot application
programmed using Java, called the conventional implementation. The second solu-
tion is implemented using one or more serverless platforms in Azure, which were
described in chapter 3. This is known as the serverless implementation. Both imple-
mentations and their respective development processes are later compared in chap-
ter 6.

5.1 Use Case 1

5.1.1 Conventional Implementation

The application follows a design typical for Spring Boot applications. A complete
class diagram of the solution can be seen in figure 5.1. The implementation primar-
ily utilises Springs’s own dependencies, along with Jackson for JSON operations.
For logging, SLF4J is used together with Logback.

The primary business logic of the application is orchestrated in the MarketPla-

ceIntegrationService class. This logic is triggered by a scheduler method, depicted
in listing 5.1. The method utilises Spring’s scheduling functionality, which executes
the method periodically on a specified date and time based on a cron expression.
The expression is, in turn, fetched from a configuration file, making it possible to
change the run intervals without modifying the application code itself. In addition to
the scheduler, the business logic may be manually triggered using an HTTP request.

1 @Scheduled(cron = "${marketplace.cron.billing}", zone = "UTC")

2 public void runScheduledBilling () {

3 LOGGER.info("Running scheduled marketplace billing");

4 processMarketplaceBilling ();

5 }

Listing 5.1: The scheduler method that initiates the business logic

The method processMarketplaceBilling() is responsible for executing the main
business logic of the application. The method, which is depicted in listing 5.2, ini-
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BillingController

+ runBilling(): ResponseEntity<String>

EmailService

+ sendEmailNotificationForCompaniesNotFoundInErp(List<UsageData>): void
- createEmailTextFromUsageData(List<UsageData>): String


ErpInvoiceCharge

- customerId: String

- billingPeriod: YearMonth

- totalPrice: double

- description: String

ErpClient

+ getCompanyByVatId(String): ErpCompany

+ createInvoiceCharge(ErpInvoiceCharge): ErpInvoiceCharge
- createHeaders(String, String): HttpHeaders


ErpClientConfig

+ erpClient(): ErpClient

ErpCompany

- companyName: String

- vatId: String

- customerId: String

- companyId: String

MarketplaceClient

+ getUsageData(Year, Month): List<UsageData>

+ sendUsageDataGetRequest(YearMonth): List<UsageData>

- createHeaders(String, String): HttpHeaders


MarketplaceClientConfig

+ marketplaceClient(): MarketplaceClient

MarketplaceIntegrationService

+ manualBilling(): void

+ runScheduledBilling(): void
- createDescription(UsageData): String

- calculateTotalUsage(UsageData): double

- processMarketplaceBilling(): void


ProductOrderData

- amount: int

- individualPrice: double

- productName: String

Application

+ main(String[]): void

UsageData

- companyName: String

- companyVatId: String

- products: List<ProductOrderData>
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Figure 5.1: A class diagram of the conventional implementation of Use Case 1

tially attempts to retrieve the licence usage information from the Marketplace for
the given period. If successful, the application then attempts to find the customer
in the ERP system for each usage-data entry using the company’s VAT ID. In case
the company is found in the ERP system, then an invoice charge is generated and
inserted into the ERP system for that customer. The total cost and description of the
invoice charge are computed using support methods located in the MarketPlaceIn-
tegrationService class. If the customer cannot be found using the given VAT ID in
the ERP system, that entry is saved in a separate list. This list of so-called unknown

companies is handled later at the end of the process.
Data exchange between the application, the Marketplace, and the ERP system is

conducted through their respective clients. The clients contain methods that create
the required HTTP requests to send and receive data in the form of JSON objects.
Authorisation in the form of Basic authentication is also added as part of the re-
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quest headers. This is all accomplished using a variety of web-related dependencies
provided by Spring. The serialisation and deserialisation of the JSON objects are
performed using Jackson.

1 private void processMarketplaceBilling(Year year , Month month) {

2 try {

3 List <UsageData > usageDataList = marketplaceClient.getUsageData(year , month

);

4 if (usageDataList.size() == 0) {

5 LOGGER.warn("No usage data was found in marketplace");

6 return;

7 }

8 LOGGER.info("Managed to retrieve {} data entries from marketplace",

9 usageDataList.size());

10 LOGGER.info("Starting usage data processing ...");

11 List <UsageData > entriesCustomerNotFoundInErp = new ArrayList <>();

12 for (UsageData entry : usageDataList) {

13 LOGGER.debug("Entry: {}, {}", entry.getCompanyName (), entry.

getCompanyVatId ());

14 ErpCompany erpCompany = erpClient.getCompanyByVatId(entry.

getCompanyVatId ());

15 if (erpCompany != null) {

16 LOGGER.debug("Entry found in ERP using VatId: {}", entry.

getCompanyVatId ());

17 createInvoiceCharge(entry , erpCompany);

18 }

19 else {

20 LOGGER.info("Entry {} not found in ERP using VarId: {}",

21 entry.getCompanyName (),

22 entry.getCompanyVatId ());

23 entriesCustomerNotFoundInErp.add(entry);

24 }

25 }

26 if (! entriesCustomerNotFoundInErp.isEmpty ()) {

27 emailService.sendEmailNotification(entriesCustomerNotFoundInErp);

28 }

29 LOGGER.info("Marketplace billing complete");

30 } catch (Exception e) {

31 LOGGER.error("Marketplace billing failure: {}", e.getMessage ());

32 }

33 }

Listing 5.2: The main processing logic of the conventional implementation in Use
Case 1

The Spring beans for the clients are defined in their respective configuration
classes, thereby allowing the Spring Inversion of Control (IoC) container to manage
the creation and injection of these dependencies into other beans. Furthermore,
the configuration classes insert the URL, username and password values from a
separate configuration file. This makes it straightforward to deploy the application
in different environments, such as testing or quality assurance.

At the end of the process, if one or several unknown companies are encountered,
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then a notification email will be generated and sent to the billing department for
them to be able to intervene manually. The email functionality is located in the
EmailService class. The class contains logic to generate the contents of the email
and send it to a list of recipients, which is defined in a configuration file. The
email is sent using Spring’s JavaMailSender class, which executes the sending via
an SMTP server whose details are provided in the application configurations. This
effectively allows for any mail server to be used, as long as all authorisation details
are in order.

5.1.2 Serverless Implementation

Logic Apps was chosen as the primary development platform in Azure for the
serverless implementation. One of the reasons for this choice was that Logic Apps
is part of Azure Integration Services, a set of cloud services that Microsoft consid-
ers to address the core requirements of application integration [37]. As this use case
aims to integrate a third-party marketplace and an ERP system, the development
platform seems designed for this niche. Furthermore, the business logic in the use
case itself is relatively straightforward, making it feasible to be orchestrated using
a workflow engine in addition to more conventional programming methods. The
workflow of the implemented Logic App is described below, along with figures.

Figure 5.2: The trigger and initial actions of the workflow

The built-in Recurrence trigger initiates the execution of the workflow. The
trigger accepts a few parameters, as seen in Figure 5.2. For this Logic App, the
trigger is set to execute once at the start of each month at midnight UTC. Two
variable-initialisation actions follow the trigger. These variables are primarily used
later in the workflow’s execution, but they are initialised at the beginning. This is
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due to Logic Apps requiring variables to be initialised at the top level before any
branching.

The former action initialises the current billing period, which is expressed as
an ISO-8601 value containing the year and month of the period. The latter action
initialises an empty JSON array, which will store licence usage data for unknown
companies. Unknown companies are companies whose associated customer pro-
files cannot be found in the ERP system using the given VAT ID provided by the
Marketplace.

Figure 5.3: The retrieval and parsing of licence usage data from the Marketplace

After the variables have been initialised, the next step of the workflow retrieves
the licence usage data from the Marketplace. The raw JSON data is first retrieved
using the built-in HTTP action, which invokes the REST API of the Marketplace.
Most of the parameters of the HTTP action, including the authentication credentials,
are taken from the workflow’s parameter section. How workflow-specific parame-
ters are referenced can be seen in figure 5.3. These parameters may be set during
deployment, allowing the Logic App to be deployed within different environments.

The raw JSON is parsed using the Data Operation action. The action allows
for specific data values to be referenced later in the workflow’s execution. Both the
retrieval and parsing actions are performed within the same scope. This is to ensure
that both actions pass successfully before proceeding to the following stage.

If at least one action within the scope fails, then the scope as a whole will also
fail. Whether or not the scope succeeded is directly afterwards evaluated by a Con-
ditional action, which can be seen in figure 5.4. If the scope fails, the Logic App will
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Figure 5.4: The results of the previous scope are evaluated

terminate using the built-in status code Failed. A monitoring alert may be created
within Azure to notify of such failures.

If there are no failures in the scope, the workflow will enter a processing loop,
depicted in figure 5.5. The loop processes each company in the retrieved licence
usage data. First, the Logic App attempts to retrieve the company’s customer profile
from the ERP system using its VAT ID. The HTTP action, which invokes the REST
API in the ERP system, is configured similarly to the action previously depicted in
figure 5.3, only with different parameters. The Conditional action then evaluates
the response of the HTTP request. The Logic App will parse the resulting JSON
response if a customer profile is found in the ERP system. The parsing allows
the values of the object to be individually referenced later. However, should no
customer profile be found using the given VAT ID, then the company licence usage
data will be appended to the array for unknown companies, which was initialised at
the beginning of the workflow in figure 5.2.

The total cost and the description of the invoice charge are computed using
Azure Functions. This is because the Logic Apps runtime can only perform rather
simplistic computational operations using built-in actions and workflow definition
expressions. The platform is unsuitable for conducting more advanced computa-
tions on data, or the operation will result in the workflow becoming overly com-
plicated. Furthermore, this would result in an increased number of actions in the
workflow, which increases the operational costs of running the Logic App. The
topic of operational costs is covered in further detail in chapter 6.

The Logic App calls the custom Azure function and passes on the product infor-
mation of the usage data to it as input parameters. The function then computes the
total cost and description of the invoice charge, which is then returned as a JSON
object to the workflow. The code is written in JavaScript as the Function App uses
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Figure 5.5: The main processing loop
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Figure 5.6: How the JSON of the invoice charge is constructed

the Node.js runtime. The invoice charge is saved to the ERP system using an HTTP
action. The JSON object sent in the request’s body is constructed within the HTTP
action by referencing previous actions, as seen in figure 5.6. Notably, the values
returned by the custom function are directly referenced using workflow definition
expressions.

Once the main processing loop has ended, the workflow proceeds to one final
conditional action, depicted in figure 5.7. The conditional action evaluates whether
the array for unknown companies is empty or not. If the array is empty, the condi-
tion will evaluate to false, resulting in the Logic App terminating, as there are no
more actions to follow. Otherwise, the workflow will continue, and an HTML table
containing all the unknown companies and their licence usage data will be created.
The Data-Operation action, which creates the HTML table, takes the JSON array
initialised at the start of the workflow as input. The action can automatically detect
the different properties of the JSON objects in the array and generate a table. This
action is practical when data should be presented in a user-friendly format, such as
in an email.

Figure 5.7: The final optional stage of sending a notification email

The email notification to the billing department is sent using the Outlook con-
nector, a managed connector part of the Standard group. To utilise the action, the
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developer must first create a connection between Logic Apps and the account from
which the message is to be sent. Fortunately, this is a simple process, as the devel-
oper must only sign in with the account to be used and give the proper authorisa-
tions. The rest of the procedure, such as configuring the connection endpoints and
storing the authorisation tokens, is handled by Azure.

The parameters of the Outlook connector may be entered into the designer once
the connection has been established. As can be seen from figure 5.7, the recipients
are configured to the connector as workflow parameters. This allows the list of
recipients to be configured during deployment. The body of the email contains a
hardcoded piece of text in addition to the HTML table created dynamically by the
previous action. The Logic App will terminate once the Outlook connector has sent
the email, as there are no further actions in the workflow.

41



5.2 Use Case 2

5.2.1 Conventional Implementation

Compared to the Spring application presented for the previous use case, this imple-
mentation is, in many ways, more complicated due to the more complex business
logic. Nonetheless, there are many similarities in the design and the dependen-
cies used. One significant addition is the introduction of persistence control with
Jakarta Persistence API (JPA) and Spring Data JPA. A complete class diagram of
the conventional implementation can is depicted in figure 5.8.

BillableInstanceEntity

- osLicence: boolean

+ hasOsLicence(): boolean

<<interface>>

BillableInstanceRepository

+ findByResourceId(String): Optional<BillableInstanceEntity>

+ findByProjectId(String): List<BillableInstanceEntity>

BillableResourceEntity

- deletedAt: LocalDateTime
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- resourceId: String


BillableStorageEntity
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StorageProcessor
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Figure 5.8: A class diagram of the conventional implementation of Use Case 2

The application utilises a context-based design pattern, in which the parameters
and shared data of a billing run, such as the start and end dates and the default price
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list, are stored in a specific context object. The object is then passed on to different
stages in the billing process. The main business logic in the implementation is
orchestrated within the RunService class using the runBilling() method. As seen in
listing 5.3, the method itself is relatively simple, as the various stages of the billing
process are delegated to separate classes. The start and completion of every stage
in the process are logged and timed. The total duration of the billing run is also
measured.

1 private void runBilling(RunContext context) {

2 final Instant start = Instant.now();

3 LOGGER.info("Beginning new billing run starting at {}, context is: {}",

start , context);

4

5 LOGGER.info("START - Retrieve customer projects from ERP");

6 erpManager.retrieveCustomerProjects ();

7 LOGGER.info("COMPLETE - Retrieve customer projects from ERP");

8

9 LOGGER.info("START - Retrieve and process resource events");

10 eventManager.retrieveAndProcessEventsForProjects(context);

11 LOGGER.info("COMPLETE - Retrieve and process resource events");

12

13 LOGGER.info("START - Calculate prices for billables");

14 billingManager.calculatePricesForBillables(context);

15 LOGGER.info("COMPLETE - Calculate prices for billables");

16

17 LOGGER.info("START - Save billables to ERP");

18 erpManager.saveBillablesToErp(context);

19 LOGGER.info("COMPLETE - Save billables to ERP");

20

21 final Instant end = Instant.now();

22 final long duration = Duration.between(start , end).toMillis ();

23 LOGGER.info("Billing run with contextId {} complete , duration {} seconds",

context.getId(), duration /1000.0);

24 }

Listing 5.3: The method that orchestrates the main business logic of the billing-run,
including the four stages

The billing process is divided into four stages, handled by three distinct manager
classes: ErpManager, EventManager, and BillingManager. The ErpManager class
is responsible for retrieving and inserting data to and from the ERP system. The
EventManager class handles the retrieval and processing of all resource events from
Data Collector. The BillingManager class is responsible for calculating the total
cost of each resource. Common for all managers is that they process and store data
in repositories. The primary reason is to save memory, as the number of resource
events for each project can be substantial. Moreover, storing the data in a repository
allows it to be retrieved both during the billing run and after it has finished.

In the first stage of the billing run, all current projects are retrieved from the
ERP system using the ErpClient class. Each retrieved project is then mapped to a

43



ProjectEntity, which is then inserted into the ProjectEntityRepository. In the code
itself, all repositories are only interfaces that extend the JpaRepository interface
provided by Spring Data JPA. Spring Boot automatically configures and injects the
actual database implementations based on dependencies in use by the application.

In the second stage, the DataCollectorClient class attempts to retrieve all re-
source events from Data Collector for the period defined by the context. This is
repeated for each project in the ProjectEntityRepository. If the retrieval is success-
ful, the list of events is passed on to the EventProcessor class. As the event data
varies depending on the resource type in question, the events are further delegated
to their respective processors, InstanceProcessor or StorageProcessor, as seen in
listing 5.4.

1 public void processEvents(List <ResourceEvent > resourceEvents , ProjectEntity

project) {

2 resourceEvents.forEach(resource -> process(resource , project));

3 }

4

5 private void process(ResourceEvent event , ProjectEntity project) {

6 LOGGER.debug("Processing event: {}", event.toString ());

7 switch (event.getResourceType ()) {

8 case INSTANCE:

9 instanceProcessor.process(event , project);

10 break;

11 case STORAGE:

12 storageProcessor.process(event , project);

13 break;

14 default:

15 LOGGER.error("Event {} for resource is of unknown resource type , could

not be processed", event.getResourceId ());

16 }

17 }

Listing 5.4: The processor used depends on the resource type

The event processing logic in the InstanceProcessor and StorageProcessor classes
is similar, although there are slight variations. A snippet of the logic in the Instance-
Processor class is shown in listing 5.5. The handler method utilised for processing
varies depending on the type of event. Regardless of the event type, the result is
inserted into the repository as a billable. A billable is essentially a resource that is
to be billed from the customer. For events with the type create, the handler method
checks the repository if a resource with the same ID already exists. If none is found,
a new billable will be created using the event data before saving it in the repository.
At this point, the billable only contains a creation date. If a delete event is later pro-
cessed for the same resource, then the handleDelete() method will save the deletion
time to the billable.
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1 public void process(ResourceEvent event , ProjectEntity project) {

2 if (! event.getResourceType ().equals(ResourceType.INSTANCE)) {

3 LOGGER.error("Resource event with id {} is not of INSTANCE type!", event.

getResourceId ());

4 }

5 switch (event.getEventType ()) {

6 case CREATE:

7 handleCreate(event , project);

8 break;

9 case DELETE:

10 handleDelete(event , project);

11 break;

12 default:

13 LOGGER.error("Could not handle event of of type {} from resource {}",

event.getEventType (), event.getResourceId ());

14 break;

15 }

16 }

17

18 private void handleCreate(ResourceEvent event , ProjectEntity project) {

19 Optional <BillableInstanceEntity > existingInstance = instanceRepository.

findByResourceId(event.getResourceId ());

20 if (existingInstance.isPresent ()) {

21 LOGGER.error("Already found existing resource with same id: {}", event.

getResourceId ());

22 return;

23 }

24 BillableInstanceEntity instance = new BillableInstanceEntity ();

25 instance.setCreatedAt(event.getHappenedAt ());

26 instance.setVariant(event.getResourceVariant ());

27 instance.setProjectId(project.getId());

28 instance.setResourceId(event.getResourceId ());

29 instance.setOsLicence(event.hasOsLicence ());

30 LOGGER.debug("Saving new billable instance to repository: {}", instance);

31 instanceRepository.save(instance);

32 }

Listing 5.5: Part of the event processing logic in the InstanceProcessor class

Once all the events have been processed for each project, the repositories should
contain billables for all resources to be billed during this run. However, the billables
at this stage are still missing one crucial parameter, the total charge. This is calcu-
lated and updated for each billable in the third stage of the billing run, performed
by the BillingManager class.

The method processBillablesForProject(), shown in listing 5.6, processes each
project individually. Firstly, the method checks whether the project uses a custom

price list. If such a price list is not defined or cannot be retrieved, the default price
list will be used instead. All billables for the project will then be retrieved from
the repositories and processed by resource-type-specific processing methods. If an
error occurs during the cost calculation process, the project’s status in the repository
will be set to failed.

45



1 private void processBillablesForProject(ProjectEntity project , RunContext

context) {

2 LOGGER.debug("Starting to process billables for project {}", project.getId ()

);

3 Optional <PriceList > priceListOptional = Optional.empty();

4 if (project.getPriceListId () != null) {

5 priceListOptional = pricingServiceClient.getCustomPricelist(project.

getPriceListId ());

6 if (! priceListOptional.isPresent ()) {

7 LOGGER.warn("Custom price list for project {} not found using given

price list id {}, using default price list instead.",

8 project.getId(), project.getPriceListId ());

9 }

10 }

11 PriceList projectPricelist = priceListOptional.orElseGet(context ::

getDefaultPricelist);

12

13 List <BillableInstanceEntity > instances = instanceRepository.findByProjectId(

project.getId());

14 List <BillableStorageEntity > storages = storageRepository.findByProjectId(

project.getId());

15

16 instances.forEach(instance -> {

17 try {

18 processInstance(instance , projectPricelist);

19 } catch (BillingException e) {

20 LOGGER.error("Failed to process instance {}, setting project {} to

FAILED state. Exception: {}",

21 instance.getResourceId (), project.getId (), e.getMessage ());

22 project.setProjectStatus(ProjectStatus.FAILED);

23 projectRepository.save(project);

24 }

25 });

26 storages.forEach(storage -> {

27 try {

28 processStorage(storage , projectPricelist);

29 } catch (BillingException e) {

30 LOGGER.error("Failed to process storage {}, setting project {} to FAILED

state. Exception: {}",

31 storage.getResourceId (), project.getId(), e);

32 project.setProjectStatus(ProjectStatus.FAILED);

33 projectRepository.save(project);

34 }

35 });

36 }

Listing 5.6: The processing logic in the BillingManager class

As in the event processing stage, the cost calculation varies depending on the
resource type of the billable. However, the base cost and usage calculations, shown
in listing 5.7, are the same for both. Resource usage is calculated by measuring the
duration between the resource’s creation time and deletion time. If the billable only
has a creation time set, then the resource is assumed to have been created before
the current billing period. Therefore, usage will be measured as if the resource was
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created at the start of the month. Likewise, if the deletion time is missing, usage
will be measured as if the resource was deleted at the end of the month.

The base cost for a billable is calculated by multiplying the total usage seconds
by the hourly base price of the resource, divided by the number of seconds in an
hour. The sum is then rounded up to the nearest cent using the scaling functionality
of Java’s BigDecimal class. In the case of instances, the total charge of the billable
is the base cost plus the cost of any licensed OS. In the case of storage, the total
charge is the base cost multiplied by the number of gigabytes reserved. Once the
total charge has been calculated for a billable, it is inserted into the repository.

1 private double calculateCost(long totalUsageSeconds , Product product) {

2 final BigDecimal bd = BigDecimal.valueOf ((( totalUsageSeconds * product.

getPricePerHour ()) / 3600));

3 return bd.setScale(2, RoundingMode.HALF_UP).doubleValue ();

4 }

5

6 private long calculateUsageSeconds(BillableResourceEntity resource) throws

BillingException {

7 if (resource.getCreatedAt () == null && resource.getDeletedAt () == null) {

8 throw new BillingException("Creation and deletion times are missing for

resource with id".concat(resource.getResourceId ()));

9 }

10 if (resource.getCreatedAt () == null && resource.getDeletedAt () != null) {

11 LocalDateTime creationTime = YearMonth.from(resource.getDeletedAt ()).atDay

(1).atTime (0,0,0);

12 LOGGER.debug("Resource {} creation time missing , calculating usage from

start of month at {}", resource.getResourceId (), creationTime);

13 resource.setCreatedAt(creationTime);

14 }

15 else if (resource.getCreatedAt () != null && resource.getDeletedAt () == null)

{

16 LocalDateTime deletionTime = YearMonth.from(resource.getCreatedAt ()).

atEndOfMonth ().atTime (23 ,59 ,59);

17 LOGGER.debug("Resource {} deleting time missing , calculating usage

stopping at end of month at {}", resource.getResourceId (), deletionTime);

18 resource.setDeletedAt(deletionTime);

19 }

20 long totalUsageMillis = Duration.between(resource.getCreatedAt (),resource.

getDeletedAt ()).toMillis ();

21 return (totalUsageMillis /1000);

22 }

Listing 5.7: The base cost calculation for billables in the BillingManager class

Once the costs have been calculated for all billables in each project, then the
fourth and final stage of the billing run will commence. In this stage, the ErpMan-
ager class uses the billables to generate an invoice charge for every project, which
is subsequently inserted into the ERP system. This stage is skipped if the project’s
state is set to failed. The invoice charge is the same record as in the previous use
case. Once the invoice charge has been successfully inserted into the ERP system,
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the project status will be set to processed. After the final stage has been completed,
the billing run will conclude. A total execution time is also calculated for reference.

There are two ways to initiate a billing run. The first is to schedule the execution
using a cron expression, similarly to the previous use case. This is intended to be
used in production, with the billing engine scheduled to run at the start of each
month. The alternative method is to initiate the execution manually by invoking the
HTTP-trigger method located in the RunController class. Custom billing-context
parameters may be given this way. If none are given, a default billing context will
be used instead. In the default context, the start and end date of the billing run will
be the first and last day of the previous month.

5.2.2 Serverless Implementation

Azure Functions combined with the Durable Functions extension was chosen as
the primary development platform for the serverless implementation. As this use
case features the processing of a large number of projects along with their resource
events, the computations were most straightforward to implement using a FaaS plat-
form. Azure Functions by itself is well equipped to perform the required compu-
tations of the billing engine. However, as the use case features somewhat complex
business logic, the Durable Functions extension had to be added for it to be possible
to create the required orchestrations, as many functions had to be performed in a
specific order.

In addition to Azure Functions, Cosmos DB is used to store the billables both
during and after the billing run. As in the conventional implementation, this was
done for it to be possible to access the data afterwards in case manual intervention
is needed. Cosmos DB was chosen as the database platform as it integrates well
with Azure Functions. Moreover, Cosmos DB’s consumption-based mode suits this
use case well.

The functions have been written in the C# programming language. Initially,
the author had intended to develop the functions using Java, as this language is
also used in the conventional implementation. However, at the time of writing this
thesis, Durable Functions had only just received support for Java. Therefore, some
features were still in development. One of these missing features was the bindings
for Cosmos DB. As the author wanted this database platform to be featured in the
serverless implementation, the programming language had to be changed.

Fortunately, C# features a syntax similar to that of Java. Furthermore, Azure
Functions-specific bindings are defined similarly in both languages by decorating
the methods and parameters. In C#, attributes are used for decoration, whilst Java
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uses annotations. These similarities were why the author decided on C# as the pro-
gramming language of the serverless implementation. Nevertheless, the program-
ming language is of little relevance, as any supported language could have theoreti-
cally been used, with the end solution being the same, apart from language-specific
differences.

OrchestratorHttpManualStarter

OrchestratorSchdeuledStarter

1..1

1..1

1..1

1..*

1..*

1..*

BillingOrchestrator

CosmosDBSetupper

DefaultPriceListRetriever

CostCalculator

InvoiceChargeCreator

BillingDB

Data Collector

ERP

Client functions

Activity functions

Orcherstrator

function

Pricing

Service

ProjectRetriever

EventProcessor

Figure 5.9: A diagram of the serverless implementation of Use Case 2

The solution consists of one orchestrator function and six activity functions. A
high-level depiction of the implementation can be seen in figure 5.9. Each activity
function is responsible for performing a particular step in the workflow. The name
of the activity function gives a general idea of its role. The order in which the
activity functions are executed in the orchestration can be seen from the arrow in the
figure, with CosmosDBSetupper executing first. Furthermore, the implementation
contains two client functions to control the orchestrator function.

The orchestrator function itself is relatively straightforward, as it mainly consists
of activity function calls. As seen from listing 5.8, the orchestrator initially reads the

49



input and stores it in a variable billingRunParameters. This variable is then given
to the activity functions in subsequent function calls. The variable is a RunParams

type of object, which acts as a container for basic parameters used during the billing
run.

1 [FunctionName("BillingOrchestrator")]

2 public static async Task <RunOutput > RunOrchestrator(

3 [OrchestrationTrigger] IDurableOrchestrationContext context)

4 {

5 var billingRunParameters = context.GetInput <RunParams >();

6

7 /*

8 Creates the database and containers in CosmosDB

9 */

10 context.SetCustomStatus("Setting up Cosmos DB for billing run");

11 await context.CallActivityAsync("CosmosDBSetupper", billingRunParameters);

12

13 /*

14 Retrieves the current default price list from Pricing Service

15 */

16 context.SetCustomStatus("Retrieving default price list");

17 var defaultPriceList = await context.CallActivityAsync <PriceList >("

DefaultPriceListRetriever", billingRunParameters);

18

19 /*

20 Retrieves all Projects from ERP

21 */

22 context.SetCustomStatus("Retrieving project information");

23 var projects = await context.CallActivityAsync <Project []>("ProjectRetriever"

, billingRunParameters);

Listing 5.8: The orchestrator function with the three first activity function calls

The first activity function to be called in the orchestration is CosmosDBSetup-
per. The function performs basic operations in Cosmos DB in preparation for the
billing run. These operations include the creation of a new database along with the
containers. As in the conventional implementation, the database is used to store all
projects and billables.

Once the database has been set up, the following activity function to be called is
DefaultPriceListRetriever. The function sends an HTTP request to Pricing Service
to retrieve the current default price list. If successful, the function will return the
price list to the orchestrator function to be stored in a variable. This variable is then
later used during the cost calculation.

The third activity function invokes the API of the ERP system to retrieve all
projects and their associated customer relationships, hence the name ProjectRe-

triever. These are then stored in their assigned container in Cosmos DB, similarly
to how they are inserted into the repository in the conventional implementation.
However, unlike the conventional implementation, the list of retrieved projects is
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also returned to the orchestration as an array. This is because the following activity
functions each process projects separately by taking the project to be processed as
input. The orchestrator is responsible for assigning the projects to the activity func-
tions. This allows for the parallel processing of the projects, which is one of the
notable differences compared to the conventional implementation.

1 /*

2 Retrieves and processes resource events to create billables in parallel

3 */

4 context.SetCustomStatus("Retrieving and processing resource events");

5 var parallelEventProcessorTasks = new List <Task <Project >>();

6 foreach (var project in projects) {

7 var eventProcessorTask = context.CallActivityAsync <Project >("EventProcessor"

, (project , billingRunParameters));

8 parallelEventProcessorTasks.Add(eventProcessorTask);

9 }

10 projects = await Task.WhenAll(parallelEventProcessorTasks);

11

12 /*

13 Calculate costs for all billables in parallel

14 */

15 context.SetCustomStatus("Calculating costs for billables");

16 var parallelCostCalculatorTasks = new List <Task <Project >>();

17 foreach (var project in projects) {

18 var costCalculatorTask = context.CallActivityAsync <Project >("CostCalculator"

, (project , billingRunParameters , defaultPriceList));

19 parallelCostCalculatorTasks.Add(costCalculatorTask);

20 }

21 projects = await Task.WhenAll(parallelCostCalculatorTasks);

22

23 /*

24 Create invoice charges and insert into ERP in parallel

25 */

26 context.SetCustomStatus("Creating invoice charges");

27 var invoiceChargeCreatorTasks = new List <Task <Project >>();

28 foreach (var project in projects) {

29 var invoiceChargeCreatorTask = context.CallActivityAsync <Project >("

InvoiceChargeCreator", (project , billingRunParameters));

30 invoiceChargeCreatorTasks.Add(invoiceChargeCreatorTask);

31 }

32 projects = await Task.WhenAll(invoiceChargeCreatorTasks);

33

34 var runOutput = GenerateOutput(projects);

35 context.SetCustomStatus("Billing run complete");

36 return runOutput;

37 }

Listing 5.9: The three following activity function calls of the orchestrator, which
are executed in parallel

The start of the parallel processing of the projects occurs with the final three
activity functions, seen in listing 5.9. For each step in the billing process, the or-
chestrator loops through the array of projects. Then, for each project, the orches-
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trator calls the activity function with a tuple containing the project to be processed
along with other parameters. These parameters vary slightly depending on the ac-
tivity function in question. This type of function calling results in multiple activity
functions being executed simultaneously, thereby improving performance.

The first parallel activity function to be executed is EventProcessor. The func-
tion is responsible for handling all tasks related to resource events. This includes
the retrieval of all resource events for the project from Data Collector, in addition
to the creation of the billables. The code of the EventProcessor function, shown
in listing 5.10, follows a similar logic to that of the conventional implementation,
apart from platform and programming language-specific differences. The function
terminates by returning the existing project back to the orchestrator function. If
something goes wrong while retrieving the resource events, the function will set the
project’s status to failed. The status will be updated to the Cosmos DB container
before the project is returned to the orchestrator.

1 [FunctionName("EventProcessor")]

2 public async Task <Project > Run(

3 [ActivityTrigger] (Project project , RunParams runParams) inputs ,

4 [CosmosDB(

5 Connection = "CosmosDBConnection")]

6 CosmosClient client ,

7 ILogger logger)

8 {

9

10 Container projectContainer = client.GetDatabase(databaseName).GetContainer(

projectsContainerName);

11 Container instanceContainer = client.GetDatabase(databaseName).GetContainer(

billableInstancesContainerName);

12 Container storageContainer = client.GetDatabase(databaseName).GetContainer(

billableStoragesContainerName);

13

14 /*

15 Retrieve resource events

16 */

17 List <ResourceEvent > resourceEvents;

18 try

19 {

20 resourceEvents = await RetrieveEvents(inputs.project.Id , inputs.runParams.

StartDate.Value , inputs.runParams.EndDate.Value);

21 }

22 catch (Exception e)

23 {

24 logger.LogError($"Failed to retrieve resource events for project with id {

inputs.project.Id}, setting status to FAILED. Exception: {e.Message}");

25 var project = inputs.project;

26 project.Status = ProjectStatus.FAILED;

27 await projectContainer.UpsertItemAsync <Project >( project);

28 return project;

29 }

30
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31 /*

32 Process resource events

33 */

34 foreach (ResourceEvent e in resourceEvents) {

35 switch (e.ResourceType) {

36 case "instance":

37 await ProcessInstanceEvent(e, inputs.project.Id, instanceContainer ,

logger);

38 break;

39 case "storage":

40 await ProcessStorageEvent(e, inputs.project.Id, storageContainer ,

logger);

41 break;

42 default:

43 logger.LogError($"Could not handle resource event of type {e.

ResourceType} from resource with ID {e.ResourceId}");

44 break;

45 }

46 }

47 return inputs.project;

48 }

Listing 5.10: The main body of the EventProcessor activity function

As seen from listing 5.10, the function uses a Cosmos DB binding to conduct
database operations with the service. The binding is defined as a CosmosClient

object in the function parameters. The parameter can be seen decorated with the
CosmosDB-attribute, which also defines the connection string. In this case, that
connection string is “CosmosDBConnection”. The Azure Functions runtime’s IoC-
mechanism handles the injection of the CosmosClient and the logger whenever a
new instance of the function is created.

Once all instances of the EventProcessor function have finished executing, the
orchestrator function collects the returned projects as an array. The new array re-
places the existing one, as seen previously in listing 5.9. This array is then used
when the following CostCalculator functions are called. As the name suggests, the
task of this activity function is to calculate the total cost of billables.

The CostCalculator function is responsible for calculating the total charges for
the billables of a project. The initial stages of the function include a status check
of the current project. If the status is anything but unprocessed, the function will
instantly terminate, as there is no point in processing a project which encountered
an exception during the previous stage in the billing process. As in EventProcessor,
the function follows a similar logic to that of the conventional implementation, apart
from platform and programming language-specific differences.

An example of a database query using the Core API of Cosmos DB is shown
in listing 5.11. Although the Cosmos DB is a NoSQL database service, queries
using the Core API are conducted using SQL. However, the iterators used to go
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through the results of the query are specific to Cosmos DB, as they keep track of
the continuation token specific to the service.

1 private async Task <List <T>> GetBillablesFromContainer <T>( string projectId ,

Container container) where T : BillableResource

2 {

3 List <T> resources = new List <T>();

4

5 QueryDefinition queryDefinition = new QueryDefinition(

6 "SELECT * FROM items i where i.projectId = @searchterm")

7 .WithParameter("@searchterm", projectId);

8

9 using (FeedIterator <T> iterator = container.GetItemQueryIterator <T>(

queryDefinition))

10 {

11 while (iterator.HasMoreResults)

12 {

13 FeedResponse <T> response = await iterator.ReadNextAsync ();

14 foreach (T resource in response)

15 {

16 resources.Add(resource);

17 }

18 }

19 }

20 return resources;

21 }

Listing 5.11: The logic to retrieve all billables from a container for a particular
project

The final activity function of the orchestration is InvoiceChargeCreator. As
the name suggests, the function is responsible for creating an invoice charge out
of the billables for a project and inserting it into the ERP system. As seen from
listing 5.12, the function initially checks the project’s status and terminates unless
the status is correct, similarly to the previous functions. After that, the function
retrieves all billables for the project from Cosmos DB. The subsequent logic is
similar to that of the conventional implementation. Once the invoice charge has
been inserted into the ERP system, the project status will be set to processed before
being returned to the orchestrator. In case of an exception, the status will be set to
"failed".

1 [FunctionName("InvoiceChargeCreator")]

2 public async Task <Project > Run(

3 [ActivityTrigger] (Project project , RunParams runParams) inputs ,

4 [CosmosDB(

5 Connection = "CosmosDBConnection")]

6 CosmosClient client ,

7 ILogger logger)

8 {

9 var project = inputs.project;

10 if (project.Status != ProjectStatus.UNPROCESSED)

11 {
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12 logger.LogWarning($"Project with id {project.Id} is in {project.Status}

state and will be skipped");

13 return project;

14 }

15

16 Container projectsContainer = client.GetDatabase(databaseName).GetContainer(

projectsContainerName);

17 Container instanceContainer = client.GetDatabase(databaseName).GetContainer(

billableInstancesContainerName);

18 Container storageContainer = client.GetDatabase(databaseName).GetContainer(

billableStoragesContainerName);

19

20 // Create and insert new invoice charge into ERP system

21 try

22 {

23 var instances = await GetBillablesFromContainer <BillableInstance >( project.

Id, instanceContainer);

24 var storages = await GetBillablesFromContainer <BillableStorage >( project.Id

, storageContainer);

25

26 ErpInvoiceCharge invoiceCharge = CreateInvoiceCharge(project , inputs.

runParams.Period.Value , instances , storages);

27 await SaveInvoiceChargeToErp(invoiceCharge);

28

29 project.Status = ProjectStatus.PROCESSED;

30 await projectsContainer.UpsertItemAsync <Project >( project);

31 logger.LogInformation($"Project {project.Id} complete , status set as

PROCSSED");

32 }

33 catch (Exception e)

34 {

35 logger.LogError($"Something went wrong creating invoice charge for project

{project.Id}, setting project status to FAILED. Exception: {e.Message}");

36 project.Status = ProjectStatus.FAILED;

37 await projectsContainer.UpsertItemAsync <Project >( project);

38 }

39 return project;

40 }

Listing 5.12: The main body of the InvoiceChargeCreator function

Once the final instance of the InvoiceChargeCreator function activity function
has finished executing, the orchestrator function will call the GenerateOutput()

method, as seen in listing 5.9. The method returns a container object that includes
the total number of projects retrieved and their current statuses. The orchestrator
function then returns this object, thereby terminating. The termination of the or-
chestrator function thereby means that the workflow has come to an end.

A billing run may be started by triggering the orchestration, which can be done
in two different ways. The client functions handle both of these methods. The
first and primary method, which is intended to be used in production, is the one
performed by OrchestratorSchdeuledStarter, depicted in listing 5.13. The function
uses a timer trigger provided by Azure Functions, which starts the execution of the
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function at a specific point in time, defined using a cron expression. The function
triggers the orchestration function to run using a set of default parameters.

1 [FunctionName("OrchestratorSchdeuledStarter")]

2 public static async Task ScheduledStart(

3 [TimerTrigger("%TimerSchedule%")] TimerInfo timer ,

4 [DurableClient] IDurableOrchestrationClient client ,

5 ILogger logger)

6 {

7 var inputParams = GetDefaultParams ();

8

9 var id = await client.StartNewAsync("BillingOrchestrator", inputParams);

10 logger.LogInformation($"Started orchestration with ID = '{id}'.");

11 }

Listing 5.13: The scheduled starter method

The alternative method is to start the orchestration manually using the Orches-

tratorHttpManualStarter function. This function exposes an API endpoint, which
may be invoked with an HTTP Post-request. The request may include a JSON pay-
load specifying the parameters of the billing run. If the request does not contain any
parameters, then the default parameters will be used, which are the same as in the
previous method.

The Durable Functions extension contains functionality to manage orchestra-
tions using a built-in HTTP API [59]. One of the APIs may be used to retrieve the
current status of an orchestration instance using its ID. The API returns a JSON
response payload containing various information about the orchestration, such as
input, output, and different timestamps. Listings 5.14 and 5.15 both show examples
of such responses for this implementation. The orchestrator function changes the
customStatus value whenever it proceeds to the next stage in the orchestrations, as
seen in previous listings 5.8 and 5.9. In listing 5.15, the output is the object created
by the GenerateOutput() method before the orchestrator function terminates.

1 {

2 "name": "BillingOrchestrator",

3 "instanceId": "add269d14efe46d9b94fb97da8f31d2a",

4 "runtimeStatus": "Running",

5 "input": {

6 "start": "2022 -07 -01",

7 "end": "2022 -07 -31",

8 "period": "2022 -08",

9 "clearDatabase": true

10 },

11 "customStatus": "Retrieving and processing resource events",

12 "output": null ,

13 "createdTime": "2022 -08 -02 T11 :32:29Z",

14 "lastUpdatedTime": "2022 -08 -02 T11 :32:32Z"

15 }

Listing 5.14: An example of a status response while the orchestrator is running
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1 {

2 "name": "BillingOrchestrator",

3 "instanceId": "add269d14efe46d9b94fb97da8f31d2a",

4 "runtimeStatus": "Completed",

5 "input": {

6 "start": "2022 -07 -01",

7 "end": "2022 -07 -31",

8 "period": "2022 -08",

9 "clearDatabase": true

10 },

11 "customStatus": "Billing run complete",

12 "output": {

13 "projectsRetrieved": 1000,

14 "processed": 1000,

15 "failed": 0

16 },

17 "createdTime": "2022 -08 -02 T11 :32:29Z",

18 "lastUpdatedTime": "2022 -08 -02 T11 :33:35Z"

19 }

Listing 5.15: An example of a status response once the orchestration has finished
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5.3 Use Case 3

5.3.1 Conventional Implementation

The application follows a structure similar to the conventional solutions of the pre-
vious two use cases. In addition to many dependencies described in the previous use
cases, this implementation features the use of Spring Security to add authorisation
for the API. The application also features the use of JAXB to parse the retrieved
XML data. A class diagram of the application is shown in figure 5.10.

BisAddress

- city: String

- country: String

- street: String

- postalCode: String

BisClient

+ getCompanyDetails(String): BisCompanyDetails

BisClientConfig

+ bisClient(): BisClient

BisCompanyDetails

- id: String

- address: BisAddress

- companyForm: String

- companyName: String

- phone: String

- fax: String

- email: String

- registrationDate: String

CustomerCreateController

+ createCustomer(String): ResponseEntity<ErpCustomer>
- handleException(Exception, HttpServletRequest): ResponseEntity<String>
- handleBisException(BisException): ResponseEntity<String>

- handleErpException(ErpException, HttpServletRequest): ResponseEntity<String>


CustomerCreateService

+ createCustomerProfile(String): ErpCustomer

- mapBisDetailsToErpCustomer(BisCompanyDetails): ErpCustomer

ErpAddress

- country: String

- postalCode: String

- streetName: String

- city: String

ErpClient

+ createCustomer(ErpCustomer): ErpCustomer

- createHeaders(String, String): HttpHeaders


ErpClientConfig

+ erpClient(): ErpClient


ErpCustomer
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- customerName: String

- businessId: String

- address: ErpAddress
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Figure 5.10: A class diagram of the conventional implementation of Use Case 3

The endpoint of the API is defined in the CustomerCreateController class. The
class contains the method createCustomerProfile(), which defines the specifications
of the endpoint. As seen from listing 5.16, this is done by annotations provided by
Spring MVC. The method itself is simple, as it only passes on the given businessId

parameter. The response returned varies depending on the result of the operation.
If the operation is successful, the method will return an HTTP 201 response along
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with the newly created customer profile as a JSON payload. However, an HTTP
404 response will be returned instead if no company details are found from the BIS
using the given business ID. Separate exception handlers manage other responses
in the same class.

1 @RequestMapping(value = "/createCustomer", method = RequestMethod.PUT , params

= {"businessId"})

2 public ResponseEntity <ErpCustomer > createCustomer(@RequestParam(name = "

businessId", required = true) String businessId) throws BisException ,

ErpException {

3 LOGGER.debug("Called with business id: {}", businessId);

4 Optional <ErpCustomer > response = customerCreateService.createCustomerProfile

(businessId);

5 return response.isPresent ()

6 ? new ResponseEntity <>(response.get(), HttpStatus.CREATED)

7 : new ResponseEntity <>( HttpStatus.NOT_FOUND);

8 }

Listing 5.16: The method defining the endpoint of the API

The CustomerCreateService class manages the rather simplistic business logic
of the application. This is accomplished using the createCustomerProfile() method,
which is called by the controller whenever the endpoint is triggered. As with the
previous implementations, client classes are used for handling the data exchange
between the application and other services. As seen from listing 5.17, the method
first uses the BisClient to attempt to retrieve the company details. The details are
returned in the form of a BisCompanyDetails object, which is modelled after the
BIS response, as seen in listing 4.5. As the response is in the form of XML, the
BisCompanyDetails class is decorated with JAXB-specific annotations for unmar-
shalling.

1 public Optional <ErpCustomer > createCustomerProfile(String businessId) throws

BisException , ErpException {

2 Optional <BisCompanyDetails > bisCompanyDetails = bisClient.getCompanyDetails(

businessId);

3 if (bisCompanyDetails.isPresent ()) {

4 ErpCustomer erpCustomerProfile = mapBisDetailsToErpCustomer(

bisCompanyDetails.get());

5 return erpClient.createCustomer(erpCustomerProfile);

6 }

7 return Optional.empty();

8 }

Listing 5.17: The createCustomerProfile() method in the CustomerCreateService
class

If the company details are found for the given business ID in the BIS, then the
relevant values of the BisCompanyDetails object are mapped to the format sup-
ported by the ERP system. The ErpCustomer class represents this format. As the
object needs to be serialised into JSON to be inserted into the ERP system, the
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class is decorated with Jackson-specific annotations. The insertion is performed by
the ErpClient, which returns the created profile along with its customer ID upon
successful insertion.

If either BisClient or ErpClient receives a response from their respective service,
which is classified as an HTTP client or server error, then a custom exception will
be thrown. These custom exceptions can be seen in the class diagram depicted in
figure 5.10. The exceptions are thrown by the createCustomerProfile() method as
well, as the exceptions are handled in the controller.

The controller features three exception-handler methods. These methods catch
the thrown exception and create an appropriate response to be returned by the API.
Examples of such handler methods can be seen in listing 5.18. As seen from the list-
ing, the methods are decorated using the @ExceptionHandler annotation provided
by Spring Web. The annotation states that the method should catch and handle the
type of exception declared in the annotation. The HTTP status and message of the
response returned vary depending on the values in the exception. The exception
contains information about what caused the client to throw the exception.

1 @ExceptionHandler(BisException.class)

2 private ResponseEntity <String > handleBisException(BisException e) {

3 LOGGER.error("Failed to retrieve business info from BIS , status {}, message:

{}", e.getHttpStatusCode (), e.getMessage ());

4 return ResponseEntity.status(e.getHttpStatusCode ().is4xxClientError () ?

HttpStatus.INTERNAL_SERVER_ERROR : HttpStatus.BAD_GATEWAY).body("Failed to

create customer profile , could not retrieve business info from BIS");

5 }

6 @ExceptionHandler(ErpException.class)

7 private ResponseEntity <String > handleErpException(ErpException e,

HttpServletRequest request) {

8 if (e.getHttpStatusCode ().equals(HttpStatus.CONFLICT)) {

9 LOGGER.info("Existing customer found in ERP with same business ID, no new

profile created. {}", request.getQueryString ());

10 return ResponseEntity.status(HttpStatus.CONFLICT).body("Existing customer

profile already exists in ERP for given business id");

11 }

12 LOGGER.error("Failed to create new customer profile in ERP , status {},

message: {}", e.getHttpStatusCode (), e.getMessage ());

13 return ResponseEntity.status(e.getHttpStatusCode ().is4xxClientError () ?

HttpStatus.INTERNAL_SERVER_ERROR : HttpStatus.BAD_GATEWAY).body("Failed to

create customer profile , could not save to ERP");

14 }

Listing 5.18: Two exception handlers in the in controller

The API is secured using Spring Security. Spring Boot automatically configures
Spring Security as soon as the dependency has been added to the project. However,
the auto-configurations by Spring Boot were not suitable for this solution and there-
fore had to be disabled. Thus, a separate SecurityConfig class had to be created,
which contains the needed Spring Security configurations to secure the API.
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5.3.2 Serverless Implementation

The serverless implementation solely uses Azure Function as the development plat-
form. The FaaS platform meets the prerequisites for implementing a simple API.
As the required business logic is somewhat straightforward means that the solution
could be implemented using a single function.

BisClient

ErpClientCustomerCreator

BIS

ERP

HttpTrigger

API Consumer

Figure 5.11: A diagram of the serverless implementation of Use Case 3

Moreover, this function was created using Java, the same programming lan-
guage as the conventional implementation. This meant that considerable amounts
of code from the conventional implementation could be reused in the serverless
implementation, along with some of the dependencies. Nonetheless, parts of the
reused code required refactoring to suit the demands of the Azure Functions plat-
form.

For instance, the model classes are identical to the respective ones in the conven-
tional implementation. Furthermore, the client classes, which are used for commu-
nicating with the BIS and the ERP, could also be reused in the serverless implemen-
tation without any significant changes. The only step needed was to add the required
Spring Framework module dependencies into Maven, the dependency manager used
in the implementation. In the conventional implementation, these dependencies are
included in so-called Spring Boot starters, resulting in easier dependency manage-
ment. However, this had to be done manually in the serverless implementation, as
Spring Boot is not used. Moreover, this meant that the IoC mechanism or autocon-
figuration provided by Spring Boot could not be utilised. Therefore, the clients had
to be created and configured manually.
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1 @FunctionName("CustomerCreator")

2 public HttpResponseMessage run(

3 @HttpTrigger(

4 name = "req",

5 methods = {HttpMethod.PUT},

6 authLevel = AuthorizationLevel.FUNCTION ,

7 route = "v1/createCustomer")

8 HttpRequestMessage <Optional <String >> request ,

9 final ExecutionContext context) {

10

11 final String businessId = request.getQueryParameters ().get("businessId");

12 if (businessId == null) {

13 return request.createResponseBuilder(HttpStatus.BAD_REQUEST).body("Please

pass the business id on the query string").build ();

14 }

15 try {

16 Optional <ErpCustomer > response = createCustomerProfile(businessId);

17 return response.isPresent ()

18 ? request.createResponseBuilder(HttpStatus.CREATED).body(response).

build()

19 : request.createResponseBuilder(HttpStatus.NOT_FOUND).build ();

20 }

21 catch (BisException e) {

22 context.getLogger ().warning(String.format("Failed to retrieve business

info from BIS , status %s, message: %s", e.getHttpStatusCode (), e.

getMessage ()));

23 return request.createResponseBuilder(e.is4xx() ? HttpStatus.

INTERNAL_SERVER_ERROR : HttpStatus.BAD_GATEWAY).body("Failed to create

customer profile , could not retrieve business info from BIS").build();

24 }

25 catch (ErpException e) {

26 if (e.getHttpStatusCode ().equals(HttpStatus.CONFLICT)) {

27 context.getLogger ().info(String.format("Existing customer found in ERP

with same business ID, no new profile created. businessId =%s", businessId)

);

28 return request.createResponseBuilder(HttpStatus.CONFLICT).body("Existing

customer profile already exists in ERP for given business id").build();

29 }

30 context.getLogger ().warning(String.format("Failed to create new customer

profile in ERP , status %s, message: %s", e.getHttpStatusCode (), e.

getMessage ()));

31 return request.createResponseBuilder(e.is4xx() ? HttpStatus.

INTERNAL_SERVER_ERROR : HttpStatus.BAD_GATEWAY).body("Failed to create

customer profile , could not save to ERP").build();

32 }

33 catch (Exception e) {

34 context.getLogger ().severe(String.format("Exception occurred during the

operation with businessId =%s, message: %s", businessId , e.getMessage ()));

35 }

36 return request.createResponseBuilder(HttpStatus.INTERNAL_SERVER_ERROR).body(

"Failed to create new customer profile in ERP , something went wrong during

the operation").build();

37 }

Listing 5.19: The main body of the CustomerCreator function

The serverless implementation differs primarily from the conventional solution
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in the controller aspect. As the serverless implementation is a function, there is no
separate controller class to handle the API endpoints. Instead, the function features
an HTTP trigger that initiates the execution of the function. The main body of the
function CustomerCreator is depicted in listing 5.19.

Listing 5.19 shows that the endpoint is configured using the Azure Functions-
specific @HttpTrigger annotation. This annotation includes the HTTP request type,
whether authorisation is required, and the route of the request. When the function
is triggered, it first tries to read the given business ID of the request. An HTTP 400
response will be returned if one is not given. Otherwise, the function will call the
createCustomerProfile() method with the given business ID as input. This method
is the same as in the conventional implementation, which was previously depicted
in 5.17.

The way the responses are returned is also similar to the conventional imple-
mentation. The logic within the try-block in listing 5.19 is nearly identical to the
controller’s logic in the conventional implementation, which was previously de-
picted in listing 5.16. The difference is in how the responses are created. The
serverless implantation must use the createResponseBuilder() method provided by
Azure Functions, as the platform requires this. Conversely, the conventional imple-
mentation uses ResponseEntity objects provided by Spring, which are created and
returned.

The serverless implementation also performs the exception handling within the
main body of the CustomerCreator function using basic try-catch blocks, as seen in
listing 5.19. The exception handling was implemented in this manner because the
function must return the response itself. Nevertheless, the logic within the catch-
blocks is nearly identical to the handler methods of the conventional implementa-
tion. The custom exceptions, BisException and ErpException, are the same as in
the conventional implementation, apart from some platform-specific differences.

As previously described, the HTTP trigger of the function requires authorisation
for it to be initiated. The authorisation options are configured in the @HttpTrigger
annotation in the authLevel parameter. As the parameter is set to function, a valid
authorisation key must be attached to the HTTP request for the function to be trig-
gered. The function will return an HTTP 401 response if the authorisation key is
missing or invalid. Once deployed in the cloud, the authorisation keys may be re-
trieved from the Azure portal. The Azure Functions platform handles the keys’
validation when the endpoint is called.
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6. Comparisons

In this chapter, the conventional and serverless implementations covered in the pre-
vious chapter are compared against each other. This thesis aims to compare different
aspects of the development process in addition to the implementations themselves.
Moreover, some operational aspects are considered as well.

6.1 Use Case 1

The development process of the serverless implementation, which was predomi-
nantly done using Azure Logic Apps, differed noticeably from the development
process of the Spring Boot Application. Instead of programming an application in
a conventional sense using programming language and a framework, the developer
uses a designer tool to create a linear workflow consisting of connectors, the build-
ing blocks of the business logic. The end results are two vastly different solutions
which perform the same task.

Development time-wise, both implementations took a similar amount of time
for the author to plan and implement. With the serverless solution in Azure Logic
Apps, a considerable portion of time was spent understanding the designer itself,
as it requires the developer to take a different approach and way of thinking to
implement the solution. The designer works well when creating simple workflows
utilising multiple managed connectors. However, some more complex operations,
which a developer could express in code without issues, may require more effort to
implement if they are not accustomed to the designer.

Furthermore, the designer features some aspects that feel unintuitive. For ex-
ample, the evaluation of whether a scope succeeded or not, an operation previously
seen in figure 5.4, requires the use of an expression function to return the status of
the scope during runtime. This expression function is used in the subsequent con-
ditional action, the settings of which are shown in figure 6.1. Moreover, the con-
ditional action must also be separately configured to run regardless of the scope’s
status so that the result may be evaluated. A guide on how to accomplish this is
described in the Logic Apps documentation [60]. However, this is unclear from the
designer itself. The whole operation of adding an expression function to retrieve
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the scope’s status feels somewhat gimmicky and not something which is supported
by design.

Figure 6.1: The evaluation of the scope’s status in the serverless implementation

Nonetheless, once one becomes accustomed to Logic Apps and its designer, it
may be used to implement certain operations quickly. This may be most apparent in
the final stages of the serverless workflow, depicted previously in figure 5.7, where
an email notification is sent to the billing department in case unknown companies
are found. A built-in connector is initially used to parse and create an HTML table
from the JSON containing the company licence usage data. Then, the table is sent
as part of a message using the Outlook connector, which is connected to an email
account within Office 365.

Compare this to the email-sending process in the conventional implementation.
The email functionality is contained in a separate EmailService class, which uses
JavaMailSender provided by Spring to send the email. JavaMailSender, in turn,
sends the email through a custom SMTP server configured into the application con-
figurations. Moreover, the text of the email is generated using a custom method in
the EmailService class. The method takes a list of licence usage data as input and
utilises it to generate a message.

Although Spring Boot’s autoconfiguration can automatically read the SMTP-
configuration data end setup the connection to the server, setting up the entire
EmailService class still took considerably longer than adding two connectors to
the serverless workflow in Logic Apps. Furthermore, the serverless implementation
does not require a custom SMTP server to send the email, as this is accomplished
using the connected email account instead. Logic Apps also contains a separate
SMTP connector, which may be used when emails need to be sent using a custom
server [61].
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An important detail about the serverless implementation is that the connectors
used in the workflow are predominantly built-in actions, with the Outlook connector
being the only managed connector. One of the main advantages of Logic Apps is
that the managed connectors allow developers to easily add powerful operations
to workflows by abstracting away the inner workings. The Outlook connector, for
instance, handles all the behind-the-scenes steps with the Outlook server to send the
email. Moreover, the credentials used for the email account are also stored within
Azure. As the service provider handles these steps, managed connectors leave more
time for developers to design the business logic.

This is not to say that built-in connectors do not offer any benefits. As they
are part of the Logic Apps runtime, it can be assumed that the service provider
has ensured that they work correctly. This, in turn, does save some time during
the testing phase. For instance, the author had to spend additional time writing
unit tests for the conventional implementation to ensure that the code worked as
intended. This also applied to the client classes responsible for sending the HTTP
requests. On the other hand, in the serverless implementation, all HTTP requests are
sent using the built-in HTTP action. As the built-in connectors can be assumed to
work as intended, developers may instantly start testing that the actions are correctly
configured and ensure that the implemented business logic functions as intended.

However, as the serverless implementation predominantly consists of built-in
connectors, this result results in a considerable amount of custom logic being im-
plemented using the designer. As this type of logic could easily be expressed in
code, implementing it with the Logic Apps designer may not be efficient, consider-
ing that Logic Apps is better at orchestrating logic than executing it during runtime.
Consequently, the generation of the data for the invoice charges is performed by
Azure Functions.

The number of connectors used in the serverless implementation also means that
the workflow is somewhat lengthy. Therefore, expanding it afterwards with more
business logic may be challenging if the need arises. Moreover, the linear nature
of workflows in Logic Apps may also be restrictive. Hence, it may be necessary to
create new workflows to cover the new aspects of the required business logic.

The conventional implementation, in turn, required more effort to develop. The
programming language Java combined with Spring can sometimes result in rather
verbose code, requiring many lines to be written to perform relatively uncompli-
cated operations. Examples of this are the client classes responsible for commu-
nication with the Marketplace and ERP systems, as well as the email notification
functionality. However, once the conventional solution was implemented and tested,
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the result was a fully-fledged Spring Boot application. Consequently, the applica-
tion may be more easily customised and expanded in the future compared to the
Logic Apps workflow of the serverless solution.

From an operational aspect, the two implementations also differ. The conven-
tional Spring Boot application does not feature any specific ties to Azure. Therefore,
it may be deployed in practically any environment, in the cloud or on-premises. The
operating costs will vary depending on the environment. In the case of on-premises,
the operational costs of the application will be tied to the maintenance cost of the
server. In the cloud, the vendor charges for reserved capacity.

The serverless implementation can, conversely, only be deployed on Azure
Logic Apps, as it is developed for that platform. As is characteristic of server-
less platforms, the operational costs of the workflow will be based on consumption.
This, in turn, is highly dependent on the number of companies and licences re-
trieved from the Marketplace, in addition to the number of workflow executions. In
production, the solution should run only once a month unless some error occurs.

As previously described in chapter 3.2, the consumption plan in Logic Apps
meters each connector execution. The unit price for one execution varies depending
on which group the connector is part of. The connector groups and their associated
prices can be seen in table 6.1.

Connector type Price in USD

Built-in
Action

0.000025 Per Execution
Trigger

Managed
Standard 0.000125

Per Call1
Enterprise 0.001

Table 6.1: The connector execution prices in Azure Logic Apps for the Europe-
West region as of August 2022 [44][62]

The workflow of the serverless implementation contains in total of seventeen
actions and one trigger. All of these belong to the built-in group, with the Outlook
connector being the only exception. During a typical run, the nine built-in connec-
tors will always be executed. In addition, for each company in the Marketplace,
the loop will execute five built-in connectors if a corresponding customer profile
is found. Assuming a profile is found for each company, the cost of running the
workflow once can be calculated using the following formula, where x represents
the number of companies in the Marketplace:

1Certain managed connectors may require multiple API calls to perform some operation. In these
connectors, each API call is billed separately.
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$0.000025∗ (9+5x)

For example, if the Marketplace would contain 1 000 companies, then the total
cost of running the workflow once would be:

$0.000025∗ (9+5∗1000) = $0.125225

However, if a company’s corresponding customer profile is not found, then only
three built-in connectors will execute within the loop instead. Moreover, this would
result in the email notification being sent using the Outlook connector. This in-
creases the base number of connector executions by one built-in and one managed
standard connector. The Outlook connector requires one API call to send a single
email [63]. Overall, this results in the following formula:

$0.000025∗ (10+5x+3y)+$0.000125

In the formula above, x represents the number of known companies (with cor-
responding customer profiles in the ERP system) and y the number of unknown
companies. For example, assuming the Marketplace has 1 000 companies, out of
which 20 are unknown, the total cost of running the workflow once would be:

$0.000025∗ (10+5∗980+3∗20)+$0.000125 = $0.124375

The total prices given in the calculations only include the costs associated with
the Azure Logic Apps. The serverless implementation also uses Azure Functions to
generate the data for the invoice charge. The costs associated with Azure Functions
cannot be estimated precisely, as the number of execution units (GB-s) consumed
varies depending on multiple factors. This includes the number of companies, the
number of products, and the state of the memory working set of the function app.
However, assuming the Marketplace contains 1 000 companies, the author estimates
the execution cost to be less than 1 cent per workflow execution. Overall, this sum
is negligible in comparison to the costs associated with Logic Apps.

6.2 Use Case 2

The serverless solution was developed using Azure Functions in combination with
the Durable Functions extension. Moreover, Azure Cosmos DB was used for per-
sistent storage. Compared to the previous use case, the development process of the
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serverless solution overall felt more familiar to the author, as the business logic was
implemented using code. This resulted in many similarities between the serverless
and the conventional implementations, with some lines of code being more or less
identical. However, there are still significant differences between the two imple-
mentations in multiple areas.

The conventional and the serverless implementations took approximately the
same time to implement, though the serverless took slightly longer. This was pri-
marily due to two reasons. Firstly, the author had less experience in C# development
compared to Java. Although the programming languages are similar in many ways,
C# still features its own .NET-related dependencies, which differ from those used in
Java. Secondly, the author was not previously familiar with Azure Functions or the
Durable Functions extension. Therefore, understanding the details of the platform
and how the business logic should be structured required some familiarisation.

Moreover, it takes time to comprehend the bindings and how they should be
utilised. The Azure Functions platform features multiple bindings for the same ser-
vice, resulting in various ways to implement the same logic. For instance, Cosmos
DB features at least seven alternative ways to retrieve data from the service using
different bindings [64]. However, once one begins to understand the bindings, they
allow the developer to perform a variety of operations within Azure. Microsoft
also has on their docs.microsoft.com website featuring comprehensive documen-
tation of all the available bindings, including examples in different programming
languages supported by Azure Functions. Similar documentation is also available
for the Durable Functions extension.

In the serverless implementation, the bindings are primarily used for exchanging
data with Cosmos DB. This is comparable to how Spring Data JPA repositories
are used in the conventional implementation. Both are straightforward to use and
abstract much of the complexity for the developer, allowing database operations to
be conducted with ease. Both also feature their distinct objects for representing
data. In the conventional implementation, these are in the form of JPA entities.
Conversely, the serverless implementation uses DTOs, as the Core API of Cosmos
DB stores data in the form of JSON documents.

Both implementations orchestrate their business logic in a structured manner. In
the conventional application, the runBilling() method within the RunService class
is responsible for the orchestration, whilst the serverless implementation features a
separate orchestrator function. However, due to the nature of the serverless plat-
form, the business logic is more clearly structured in the serverless implementation.
The solution consists of six activity functions, each with its own assigned task in the

69



workflow. Each activity function’s task can be directly interpreted from their names.
For instance, the ProjectRetriever function is responsible for retrieving all projects.
In the conventional implementation, one has to delve deeper into the classes and
their respective methods to understand how the logic is structured.

A considerable difference between the two implementations is that the server-
less version features parallel processing of the projects. This was included because
the Durable Functions extension made adding such functionality straightforward.
The developer only needs to instantiate new function instances in the orchestrator.
Meanwhile, the platform handles the creation of the new function instances and
their resource allocation in the cloud. Moreover, the platform makes the orches-
trator function wait as long as needed until all the function instances have finished
executing before continuing. Overall, this results in performance benefits when
processing a large number of projects.

Implementing multi-threading in the conventional implementation is by no means
impossible. However, this would require more effort compared to the serverless
implementation, as the developers must implement such functionality themselves
rather than relying on the platform to do it for them. The time required varies de-
pending on the developers’ experience. However, by manually implementing paral-
lelisation, the developers gain more control regarding the threads, which may allow
for more efficient processing.

Nevertheless, all the parallelisation in the conventional implementation would
still happen within the context of the Spring Boot application. Thus, the perfor-
mance would ultimately be tied to the hardware the application is deployed on.
Moreover, the database used may impose performance restrictions if it is unable to
keep up with the requests.

The serverless implementation does not suffer from similar restrictions as the
cloud offers virtually unlimited access to computational resources. Therefore, an
individual function app can have hundreds of functions executing simultaneously.
The serverless mode of Cosmos DB also does not have any throughput limitations,
allowing a substantial amount of database operations every second. However, as
previously mentioned in chapter 3.3, the performance in the serverless mode does
not feature performance guarantees.

Another helpful feature provided by the Durable Functions extension is the abil-
ity to retrieve the status of the orchestration through the built-in API. This can be
done both during and after the orchestrator has finished executing, as statuses are
retained in the Azure Storage account even after the execution has ended. The
conventional implementation only features logging to report on the status of the
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execution. Of course, as with multi-threading, the developers could implement cus-
tomised status reporting themselves. However, this requires more time and effort.
The added benefit would be that the functionality could be better customised to fit
the needs of stakeholders.

Both solutions utilise databases to store billing data during the billing run. The
format and methods differ even if the data stored in both solutions are identical.
The conventional implementation uses Spring Data JPA to store data in a relational
database, while the serverless implementation uses Cosmos DB, a NoSQL database.
The type of database used is in itself not relevant to the functionality of the imple-
mentations. However, a noteworthy difference is that the serverless version is tied
directly to a specific type of database, whilst Spring Data JPA acts as an abstraction
in the conventional implementation. This abstraction means it is possible to alter
the type of database used in the conventional implementation without the need to
modify the application code. Meanwhile, the serverless implementation is directly
dependent on Cosmos DB, as the code contains bindings and other elements specific
to the service.

Spring Data JPA and Cosmos DB both feature learning curves. The former is
widely used within Java development. Consequently, the author already had some
previous knowledge of using it. On the other hand, Cosmos DB is a more recent
proprietary database service. Thus, it features some aspects many developers may
not be familiar with, such as containers and partition keys. Partition keys, in par-
ticular, are essential to the service, as they impact how data is stored and retrieved
from containers. Moreover, partition keys must be included when performing some
database procedures.

In the conventional implementation, all database operations are managed by
Spring Data JPA. Basic CRUD operations are supported by default. For more spe-
cific operations, such as finding a billable associated with a particular project, the
developers only need to create a method in the repository interface that follows
the given naming convention. Spring Data JPA can then derive the database query
needed to retrieve the data from the method names. Moreover, developers may
generate these methods using tools such as JPA Buddy. Cosmos DB also supports
basic CRUD operations, although some require the partition key to be included in
the procedure. However, more specific operations may require the database query
to be manually written in addition to logic to iterate on the data, as seen in listing
5.11.

Common for both implementations is that local development works well. Al-
though Azure Functions and Cosmos DB are both cloud services, each features
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tools that support local development. For Azure Functions, a local version of the
runtime is included as part of Azure Functions Core Tools, which allows devel-
opers to test their functions on their personal computers. The Durable Functions
extension requires a connection to an Azure Storage account, which can also be
emulated locally using Azurite. Likewise, Cosmos DB also features an emulator
for local development.

From an operational aspect, the two implementations differ in many ways. The
conventional implementation must be deployed on a dedicated set of computational
resources. However, as the Spring Boot application is not tied to Azure, it may
be deployed in practically any environment, whether in the cloud or on-premises.
Similarly, the required database can be located in any environment. The database
type is irrelevant as long as Spring Data JPA supports it.

Conversely, the serverless implementation can only be deployed within Azure.
In the consumption-based serverless plan, costs only accumulate when computa-
tional resources are consumed. Similarly to the previous use case, this depends
on the number of times the orchestration will be executed and the amount of data
processed. Furthermore, additional costs will be associated with consumed storage
in the Azure Storage account and Cosmos DB. However, as the data generated is
only in the scale of megabytes and is only stored for short periods, the costs are
negligible compared to the execution costs. Thus, they will be overlooked.

In Azure Functions, the number of consumed resources is measured in gigabyte-
seconds (GB-s). To measure the GB-s consumed by the serverless implementation,
the author deployed the solution on Azure’s Europe-West region and performed
test runs. During each test run, the billing engine retrieved and processed 1000
projects, with each project containing 10 resources. The resources were all created
and deleted during the billing period. This meant that the billing engine processed
20 resource events for each project. The results of the test runs are displayed in
tables 6.2, and 6.3. Table 6.2 contains the execution metrics for Azure Functions,
whilst table 6.3 includes metrics for Cosmos DB. Furthermore, the former table also
contains the execution time of the test runs.

The cost calculations are based on the prices for the West-Europe region as of
August 2022. As seen from the tables, the execution cost of a single run is approxi-
mately 0.10 USD on average. Only a marginal portion of this cost comes from the
computation process in Azure Function. The serverless implementation consumed
around 150 GB-s per billing run. As the cost of one GB-s is only 0.000016 USD
[65], the cost mounted up to less than a quarter of a cent per billing run.

Nearly all of the costs associated with the test runs resulted from the database
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Run # Execution time
(in seconds)

MB-ms
(in millions) GB-s

Cost in Azure
Functions
(in USD)

Function
Execution

Count

Run 1 89 150.81 147.275 $0.00236 3120
Run 2 139 149.20 145.703 $0.00233 3140
Run 3 103 153.18 149.590 $0.00239 3090
Run 4 101 151.50 147.949 $0.00237 3090
Run 5 121 157.10 153.418 $0.00245 3040

Average 110.6 152.36 148.787 $0.00238 3096

Table 6.2: The test run metrics from Azure Functions

Run # Peak Server-Side Latency
(in milliseconds)

RUs consumed
(in thousands)

Cost in Cosmos DB
(in USD)

Run 1 12.91 339.57 $0.1036
Run 2 7.48 339.66 $0.1036
Run 3 34.70 339.84 $0.1037
Run 4 38.57 339.74 $0.1036
Run 5 35.16 339.87 $0.1037

Average 25.76 339.74 $0.1036

Table 6.3: The test run metrics from Azure Cosmos DB

operations in Cosmos DB, with each run consistently consuming almost 340 000
request units (RUs). As the cost of 1 million RUs is 0.305 USD in the serverless
mode of Cosmos DB [58], the total ends up being slightly over 10 cents per test run.

There is a slight variation in the number of resources consumed, more so on the
computational side in Azure Functions than in Cosmos DB. The differences are pre-
sumably due to the FaaS platform having to provision the computational resources
and perform the computations in a shared cloud environment, causing some vari-
ance. Moreover, there is also some variation in the number of function executions.
This is due to the orchestrator function executing several times during each run.
The Durable Functions extension stores and restores the state of the orchestrator
function repeatedly as activity functions are executed. The number of times this is
done is not constant.

Furthermore, there is some variance in the peak server-side latency in Cosmos
DB. As mentioned in Chapter 3.3, Azure does not offer similar performance guar-
antees for the serverless mode of Cosmos DB as for the provisioned throughput
mode [53]. Therefore, at the beginning of the run, the peak latency may be slightly
higher. For comparison, in provisioned throughput mode, the latency is by the SLA
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set be less than ten milliseconds [66]. Nonetheless, after the initial peak, the latency
drops to less than five milliseconds for the rest of the run, as seen in figure 6.2.

Figure 6.2: The server-side latency in Cosmos DB of Test Run # 5

The total execution time of the test runs in the serverless implementation was
less than two minutes on average. The orchestrator function distributes the multiple
activity functions to reduce the overall execution time. To see if this parallelisation
brought any performance benefits, the author ran the conventional solution locally
using the same test data of 1000 projects. The results of these test runs are shown
in table 6.4.

Run # Execution Time
(in seconds)

Run 1 249.732
Run 2 305.926
Run 3 276.870
Run 4 270.704
Run 5 241.945

Average 269.354

Table 6.4: The execution times of the test runs for the conventional implementation

As seen from table 6.4, the execution time of the conventional implementation
was, on average, almost 270 seconds. Although a production-grade server may
provide a more capable execution environment, this is somewhat offset by the ap-
plication having a local database available for the test runs, which resulted in no
additional network delays.
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6.3 Use Case 3

The third use case differs from the two previous ones in that both the conventional
and the serverless implementations are written in the same programming language,
Java. This shared language resulted in many similarities between the two solutions,
with some methods and classes being identical. Nevertheless, there are distinctions
between the two solutions, which result in various impacts.

The business logic of the relatively simplistic third use case meant that the so-
lutions did not take a long time to implement. The serverless version, in particular,
was implemented in a concise time frame. Primarily, this was because code written
for the conventional implementation could be refactored to be used in the serverless
version. The possibility to use the same dependencies as the conventional version
meant that the client classes, which are used for communication with the BIS and
ERP system, could be reused by only making small changes. Moreover, the rest
of the business logic could easily be adapted to fit the requirements of the Azure
Functions platform.

Another reason for the brief development time was the overall simplicity of the
serverless implementation, as Azure Functions manages the inner workings of trig-
gering and securing the endpoint. The developer merely needs to set the appropriate
values in the @HttpTrigger annotation, after which they can start implementing the
business logic. The same applies partly to Spring Boot as well, as the opinion-
ated autoconfiguration handles much of the complexity. This can well be seen in
the controller of the conventional implementation, where similarly to the server-
less version, only some annotations need to be added to inform the Spring runtime
which classes and methods should handle HTTP requests.

However, even some manual configuration may be required even if Spring Boot
is used. For instance, in the conventional implementation, the default autoconfigu-
ration for Spring Security was unsuitable since it, among other things, resulted in
the application featuring its own login page. This was not intended and had to be
disabled along with some other features, whilst others had to be modified. Over-
all, this is not an issue, but it does result in more work. Moreover, if a developer
makes a mistake while creating the security configurations, it may have serious
consequences. However, manually creating some or all configurations gives the de-
velopers more control, allowing the solution to be customised in a way that cannot
be done using a platform such as Azure Functions.

The implementations also differ regarding how their functionality may be ex-
panded in the future. As the conventional implementation is a fully-fledged Spring
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Boot application, the API could easily be expanded by adding new methods to the
existing controller class. The new endpoints could take full advantage of the exist-
ing exception handlers in the controller and the functionality offered by the service
class. Moreover, if the need arises to create entirely new controllers, the existing
exception handlers could be moved to a separate ControllerAdvice class. Thus, the
same exception handlers could handle the exceptions for the entire Spring Boot ap-
plication. Overall, this would result in less duplicated code that would be easier to
manage.

On the other hand, the serverless implementation cannot similarly be expanded
with new functionality. Adding a new endpoint to the API would require creating
an entirely new function. Nevertheless, the new function could be part of the same
function app, allowing it to utilise some classes and methods of already existing
functions. However, sharing functionality in the same manner as in Spring Boot
applications is impossible. For example, each function requires its own exception
handling, which could result in some duplicated code. However, some exception-
handling logic could theoretically be shared by placing it in a separate class.

Performance-wise, there are also differences between the two implementations.
As described in chapter 2, serverless is affected by a phenomenon known as cold
starts, caused when the cloud provider has to allocate new computational resources
from zero. How impactful this is varies depending on the use case of the application.
In the case of APIs, cold starts can be particularly noticeable, as it may take longer
than expected for the application to serve a response.

To test the occurrence of the cold start problem in the serverless implementa-
tion, the author deployed the solution to Azure’s Europe-West region and ran some
benchmarks. When calling the endpoint after the application had been inactive, an
additional delay of around two to four seconds occurred on average. The applica-
tion responded within a few milliseconds for subsequent requests made after the
cold start delay. The shortness of the delay is likely due to the application being
lightweight. Thus, the application can instantly execute once the cloud provider has
provisioned the container.

A delay of a few seconds is likely not to be a dealbreaker for APIs such as
the one in Use Case 3. As the API is intended only to be used internally, a slight
reduction in response time is unlikely to have a considerable impact. Moreover, if
the API is subsequently called, responses following the initial call will be delivered
without additional delay.

The conventional implementation does not feature similar delays as the applica-
tion is constantly running. Consequently, the solution requires dedicated computa-
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tional capacity in the cloud or on-premises. Reserved capacity in the cloud means
that the operational costs will be the same regardless of how often the API is con-
sumed. In the case of on-premises, the operational costs will be tied to the server it
is deployed on.

The operational costs of the serverless implementation vary depending on us-
age. In Azure Functions, consumed resources are measured in units of gigabyte-
seconds (GB-s). Tests were performed to measure the number of GB-s consumed
by the serverless implementation. The author performed tests while the solution
was deployed on Azure’s Europe-West region. During each test run, the applica-
tion performed one regular operation: retrieving company details from the BIS and
inserting the customer profile into the ERP system.

The execution costs, depicted in tables 6.5 and 6.6, varied depending on the
present memory working set of the function app. As seen from the tables, the exe-
cution cost was over three times higher when the API was called when the function
app was idle. Therefore, the cloud vendor has to start the application and allocate
resources, which raises execution costs.

Test # GB-s Cost in USD
(0.000016/GB-s)

Test 1 2.207 $0.00003531
Test 2 2.256 $0.00003609
Test 3 2.539 $0.00004063
Test 4 2.666 $0.00004266
Test 5 2.178 $0.00003484

Average 2.369 $0.00003791

Table 6.5: The execution cost when starting from idle

Test # GB-s Cost in USD
(0.000016/GB-s)

Test 1 0.691 $0.00001106
Test 2 0.592 $0.00000946
Test 3 0.758 $0.00001214
Test 4 0.727 $0.00001162
Test 5 0.649 $0.00001038

Average 0.683 $0.00001093

Table 6.6: The execution cost of the function with existing memory working set

In addition to the GB-s consumed by the function executions, tables 6.5 and 6.6
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also contain the price in USD. The costs are calculated based on the prices for the
Europe-West region as of August 2022. As seen from the tables, the cost of a single
execution is marginal, regardless of the state of the memory working set.

Nevertheless, even small costs can mount up to more considerable sums if the
function is repeatedly executed. This can be relevant especially for APIs, as they
can be consumed in large numbers within a short period. However, considering
the use case of the implementation, which is an internal API, it is unlikely that the
number of function executions would surpass a significant amount. Even then, in
a worst-case scenario, the cost of one million function executions would amount to
approximately 38 USD when using the average price displayed in table 6.5.
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7. Discussion

This chapter broadly discusses different advantages and drawbacks noted during the
implementation and comparison phases. The future implications of each alternative
are also touched upon.

7.1 Noted Benefits of Serverless

The serverless implementations of the use cases demonstrate that serverless plat-
forms offer some unique benefits. The level of abstraction decreases complexity,
allowing developers to focus more on implementing the business logic itself. This
was most apparent in the serverless implementation of Use Case 1, which used
Azure Logic Apps as the development platform. The visual designer allows for the
creation of linear workflows consisting of connectors acting as building blocks. As
such, it is possible to implement business logic without the need to write any code.

However, the platform works best for implementing use cases that can benefit
from the existing set of managed connectors available in the designer. Managed
connectors can trigger the execution of a workflow in response to something more
intricate or perform some powerful procedure, both within and outside of Azure.
For instance, managed connectors could be used to transfer a file using SFTP when
uploaded to a particular Azure Storage account or notify a developer in Slack when-
ever a work item is assigned to them in Azure DevOps.

The built-in connectors, used primarily for more basic operations, can still be
valuable. However, when a use case mandates custom logic that results in a lengthy
workflow with numerous connectors, the question arises whether using code would
be more efficient. Creating comprehensive workflows with conditional loops and
scopes requires a more profound understanding of the designer, which many devel-
opers may not be familiar with beforehand. Moreover, with the billing model of
Logic Apps, repeatedly executing a workflow consisting of numerous connectors
may cause high operational costs.

The serverless implementation of Use Case 1 is an excellent example of this.
The workflow only utilises one managed connector, leading to the business logic
largely being assembled using the built-in connectors. Although the solution is
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only intended to be executed monthly, the loop it contains leads to higher operating
costs compared to other alternative serverless platforms, such as Azure Functions.
Therefore, such platforms should be considered in future similar use cases.

The serverless implementations of Use Cases 2 and 3 utilise Azure Functions as
their primary development platform. Compared to Logic Apps, the FaaS platform
feels more familiar to most developers, as the logic is implemented using code.
Nevertheless, even Azure Functions require some familiarisation. This primarily
applies to the various bindings used to exchange data in and out of functions. More-
over, the Durable Functions extension introduces new features related to function
orchestration.

However, once one gains an understanding of these features, Azure Functions
may be used to perform various types of computations. The serverless implementa-
tion in Use Case 2 demonstrates that the FaaS platform combined with the Durable
Functions extension can even be used to perform tasks mandating more complex
orchestration. Furthermore, the extension made it effortless to introduce paralleli-
sation to the processing, which improved the overall performance compared to the
conventional implementation.

Use Case 2 also demonstrated that serverless is well fit to handle bursty appli-
cations. During a billing run, the solution processes a large number of projects at
once. However, as this is performed infrequently, reserving dedicated computa-
tional capacity may not be cost-effective. The consumption-based service model
of serverless platforms means that the user only pays for consumed computational
resources. This means no additional costs will be associated with the serverless
implementation while it is inactive.

Moreover, when a serverless application is executed, the cloud provider allo-
cates and scales computational resources as needed. In the case of Use Case 2, the
implementation could also take advantage of the serverless mode of Cosmos DB.
The serverless mode is well suited for situations where a high amount of throughput
is occasionally needed, such as in bursty applications.

7.2 Noted Disadvantages of Serverless

Although serverless offers many advantages, there are drawbacks as well. One of
the most apparent is the cold start phenomenon, which introduces a slight delay
whenever the execution of a serverless application is initiated from idle. How im-
pactful this delay is varies depending on the application’s use case. In Use Case
2, the delay does not impact the overall performance. However, in Use Case 3,
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the cold start introduced an additional delay of around two to three seconds to the
response time.

For an internal API such as the one in Use Case 3, such a delay should not cause
considerable disturbances. Nonetheless, cold starts may rule out use cases that re-
quire almost instantaneous responses, such as real-time applications. Furthermore,
in the case of APIs meant for external consumers, whether such a delay is acceptable
or not, is up for debate.

The delay caused by cold starts may also be amplified in micro-service environ-
ments. In such environments, one operation may require multiple distinct micro-
services to be called consecutively. If each service is deployed separately on a
serverless platform, then every service call would introduce a new cold start delay
in case the service is idle. Suddenly, only a two-second delay in one service be-
comes a six-second delay for an entire operation involving three separate services.

From a non-functional perspective, a significant drawback with serverless plat-
forms is that they introduce hard dependencies to the platforms themselves and the
cloud vendor more broadly. This can cause concerns, as applications would then be
relying on the services of a specific cloud provider, thus preventing them from be-
ing deployed elsewhere. This type of vendor lock-in is immediately apparent in the
serverless implementation of Use Case 1, which was created using a designer tool
specific to Azure Logic Apps. Consequently, the implemented workflow can only
be deployed on Logic Apps. Deploying an equivalent solution elsewhere would
require a complete reimplementation of the business logic.

Similarly, the serverless implementations of Use Cases 2 and 3 can only be de-
ployed on Azure Functions. Although Java code is universal, the code of the server-
less implementations contains dependencies specific to the FaaS platform, such as
input and output bindings. This is most apparent in the serverless implementation
of Use Case 2, which utilises the Cosmos DB bindings for communication with the
service. Moreover, the business logic is orchestrated using the Durable Functions
extension. Consequently, the solution also depends on an Azure Storage account in
addition to the Azure Functions runtime itself.

Refactoring the logic of FaaS applications to fit other platforms, serverless or
not, is not impossible. However, depending on the type of dependencies used in
the application, doing so could require substantial effort. One way to mitigate this
problem, suggested by a study [13], is to package the business logic into custom
libraries. The logic specific to the FaaS platform, such as the bindings in the case of
Azure Functions, could then be implemented around the custom library. However,
as the study pointed out, this does not work in all circumstances.
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7.3 What About the Conventional Implementations?

The conventional implementations for all three use cases are unaffected by such
vendor-lock-related issues, as they are not restricted to a specific platform. The
Spring Boot applications can be deployed in practically any environment, in the
cloud or on-premises. Furthermore, Spring Boot introduces abstractions around
many concrete dependencies. For instance, in Use Case 2, all database operations
are handled by Spring Data JPA. This type of abstraction makes it possible to use
nearly any type of database along with the application, as long as Spring supports it.
Conversely, the serverless implementation has a hardcoded dependency on Cosmos
DB. Therefore, the database cannot similarly be changed by merely modifying the
application configurations, but major code refactoring is needed instead.

Another benefit of the conventional implementations is that they allow for more
customisability. By simplifying the development process, serverless platforms also
reduce the amount of control. When creating a Spring Boot application from the
ground up, all features of the application can be customised to fit virtually any
business need. The drawback is that this may require more effort than serverless
platforms, where the cloud vendor manages at least some of the complexity. The
parallelisation performed by the serverless implementation of Use Case 2 is an ex-
cellent example of this. However, the effort required to implement any feature in
any application ultimately depends on the skills of the available developers.

Spring has the benefit of being already well established within the Java devel-
opment scene. With the first milestone version of Spring released in 2004 [26], it is
today the most popular framework for Java backend applications [23]. Therefore,
the number of developers familiar with the technology should be higher than emerg-
ing technologies, such as serverless. For instance, Azure Functions was launched
in 2016, the latter half of the previous decade. However, Azure Functions and other
FaaS platforms have the advantage of supporting multiple programming languages,
making the technology more approachable. Although multiple languages are sup-
ported, some features of the FaaS platform may be lacking. For example, this year,
the Java version of Azure Functions finally gained support for the Durable Func-
tions extension. Regardless, due to the Cosmos DB binding still lacking support,
the serverless implementation of Use Case 2 had to be programmed using the C#
language.
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7.4 The Cloud – Less Upkeep by Renouncing Control

The conventional implementations, although more customisable, also require more
upkeep. The dependencies used by Spring Boot applications should be kept up to
date. Unless updated, the dependencies may later result in security vulnerabilities.
For zero-day vulnerabilities, it is vital that mitigating measures are instantly taken.
A recent example of this is the Log4Shell vulnerability, discovered last year [67].

In serverless platforms, the level of abstraction means that the cloud provider
handles much of this upkeep. This is best seen in Logic Apps, where everything,
including the designer, is managed by Microsoft. In Azure Functions, Microsoft is
similarly in charge of maintaining the Functions runtime and the different bindings.
However, if a function includes additional dependencies not part of the platform,
these need to be updated manually. Nevertheless, the bindings and other features
included by the FaaS platform may remove the need to add some dependencies in
the first place, such as loggers.

Moreover, in the conventional implementations, another significant possible
source of upkeep is the maintenance of the different layers of the computing stack,
which are depicted in figure 7.1. The colours illustrate the different aspects of the
stack. Which areas are managed by whom varies depending on where the appli-
cation has been deployed. The green colour represents the applications themselves
and any associated data. When deploying on-premises, each of these layers re-
quires some upkeep. In IaaS, the cloud vendor manages the infrastructure portion
of the stack, coloured in blue. Although IaaS delegates a considerable portion of
the responsibility to the cloud provider, the yellow-coloured portion of the stack, the
runtime environment, remains to be maintained. The runtime environment includes
various pieces of software, stretching from the operating system itself to application
containers, database engines and language runtimes. As maintaining the runtime
environment can be tedious, cloud vendors have introduced different PaaS offerings
where they also manage this layer. Serverless can be seen as an extension to PaaS,
where the level of abstraction is taken one step further, and the user only pays for
the consumed computational resources.

The serverless implementations do not feature similar deployment flexibility.
Instead, they can only be deployed within Azure’s cloud services. Although the
cloud provides many benefits, some characteristics may make it unsuitable in cer-
tain circumstances. One of these is that users share the cloud with other cus-
tomers. Shared computational resources are one of the key factors that enable cloud
providers to offer serverless platforms in the first place. However, this also places
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Figure 7.1: The different layers of the computing stack

a great deal of responsibility on the cloud provider to keep the data of different
customers separate [17][68].

Even if the data is kept separate, the location of the data might still be an issue.
For instance, as of August 2022, there is currently no Azure data centre located
in Finland. Therefore, Finnish customers have no choice but to transfer their data
abroad to use Azure’s cloud services. Although data transfer within the European
Union is generally acceptable, the cloud may not be a viable option if some data
mandates domestic processing or retention. Moreover, even if a cloud provider’s
data centre is located domestically, there may still be a risk that sensitive data is
accessible by foreign authorities [69].

The sharing of computational resources also means cloud providers cannot pro-
vide dedicated IP addresses for all services. This is particularly relevant for many
serverless platforms, as the computational resources will be assigned from a shared
resource pool upon execution. Not having a dedicated IP address is not always an
issue. However, there are use cases where it is mandated.
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However, the dependency aspect may be the biggest hindrance to serverless
adoption. In the case of business-critical applications, it may not be feasible to
create them using technologies tied to a specific cloud vendor. As previously dis-
cussed, serverless, in particular, suffers from the vendor lock-in problem. If the
need arises to deploy the serverless application elsewhere, it may not be possible
without considerable effort. Therefore, deciding whether or not to utilise serverless
technologies is always a business decision, and the drawbacks of the technology
should always be considered before committing to it.
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8. Conclusion

Serverless platforms aim to simplify application development, deployment, and op-
eration. By abstracting away the complex inner workings, the platforms allow de-
velopers to focus primarily on implementing the application’s business logic. The
purpose of this thesis was to investigate how serverless platforms may be utilised
in a number of use cases. Moreover, the thesis compared the serverless implemen-
tations against conventional counterparts, which were implemented as Spring Boot
applications.

The serverless implementations benefitted from many of the characteristics pro-
vided by the serverless platforms. Once the developer has familiarised themselves
with the different elements of the platform, they can be used to add more complex
features to the applications effortlessly. In addition, other characteristics, such as
consumption-based billing models and resource scaling, made the solutions par-
ticularly suitable for bursty applications. The conventional implementations were
more intricate than their serverless counterparts, particularly regarding some fea-
tures. However, as the end results were proper Spring Boot applications meant that
they could better be expanded with new functionality in the future, should the need
arise.

The serverless platforms did not feature any limitations from a functional aspect
concerning the investigated use cases. The cold start phenomenon may be a limiting
factor in scenarios where short response times are mandated, such as real-time ap-
plications. Furthermore, if multiple serverless applications are consecutively called
from idle, the delay caused by cold starts may accumulate.

As the functional limitations are few, the main deciding factors concerning the
use of serverless platforms are the non-functional aspects. Although serverless ab-
stracts much of the complexity, it consequently ties the application to the cloud
vendor’s platform, causing vendor lock-in. Moreover, this problem is amplified
due to the serverless platforms integrating well with other services within the ven-
dor’s ecosystem. Moving serverless applications elsewhere is not straightforward
and may even require a complete reimplementation of the business logic. The con-
ventional implementations do not have similar restrictions and may be deployed
practically in any environment.
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Therefore, the decision of whether to utilise serverless platforms should be taken
with care. The level of abstraction brought by the platform can help reduce the
development time and operational burden. However, firmly tying an application to
a specific cloud provider might pose a business risk.

8.1 Limitations

The findings presented in this thesis are based on the implementations of the exam-
ple use cases described in chapter 4. Although most findings can be applied more
broadly, they are unable to cover every scenario. Therefore, it is to be expected that
other use cases exist containing aspects not considered in this thesis.

The implementations presented in chapter 5 were also created using a specific
technology set. Notably, the serverless implementations only utilised cloud services
provided by one cloud vendor. Consequently, even if serverless platforms generally
feature similar characteristics, the findings may not be applicable to every platform.
Moreover, the comparisons may yield different results should the technologies used
for either implementation change.

8.2 Future Work

One of the noted benefits of the conventional implementations was that the tech-
nologies utilised are well established. Spring is the most used framework for Java
backend development and, as such, is widely known among developers. There-
fore, businesses and other organisations should find it easier to hire developers with
previous experience of such technologies in the labour market.

As serverless platforms are still relatively new, it is unclear how well known
they are in the developer community. How well established a technology is may be
a contributing factor to whether organisations decide to invest in it or not. Therefore,
the level of knowledge and awareness of serverless technologies among developers
could be an area worth exploring.
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Summary in Swedish – Svensk sammanfattning

Fördelar och nackdelar med serverslösa tillämpningar

Inledning och bakgrund

I samband med utvecklingen av molntjänster och virtualiseringstekniker har nya sätt
att distribuera och utveckla applikationer dykt upp som faller under begreppet ser-
verlös databehandling. Trots att begreppet serverlös får det att låta som några servrar
inte längre skulle alls behövas, så stämmer detta inte i det aktuella sammanhanget.
Snarare betyder begreppet att servrarna och annan underliggande infrastruktur har
abstraherats bort från användarna. Detta gör det möjligt för utvecklare att driftsätta
och underhålla programvara i molnet utan att behöva tänka på hur det egentligen
körs. Molnleverantören tar i stället hand om de operativa aspekterna genom att dy-
namiskt allokera datorresurser vid behov när programmet ska exekveras [1][2].

Serverlösa teknologier påminner på vissa sätt om olika Platform-as-a-Service-
tjänster (PaaS), där molnleverantören också sköter de operativa aspekterna av den
underliggande infrastrukturen. Skillnaden är dock att serverlösa teknologier tar det-
ta ett steg vidare genom att ha utvecklarna att implementera affärslogik med hjälp
av abstraheringar på högre nivå. Affärslogiken kan köras direkt i molnet utan behov
att inpacka det som en del av en större applikation. Exekveringen av affärslogiken
utlöses som svar på händelser som utvecklaren har definierat [1][3].

Det finns olika sorters serverlösa plattformar, som dessa program kan utvecklas
för. Den allmännaste modellen kallas för Function-as-a-Service (FaaS), där utveck-
lare skapar funktioner bestående av kod. Dessa funktioner kan sedan självständigt
köras i molnet. Flera funktioner kan även grupperas ihop för att skapa ett program,
där varje enskild funktion utför en del av ett större arbetsflöde. Oftast stöder de olika
FaaS-tjänsterna flera programmeringsspråk, vilket gör det möjligt för organisationer
och utvecklare att välja mellan ett eller flera språk som är bäst anpassade för deras
behov [2][3]. Molnleverantörer har även kommit ut med icke-FaaS-baserade ser-
verlösa plattformar där affärslogik kan implementeras utan någon kod, som Azure
Logic Apps från Microsoft [8].

Serverlösa plattformar har också en faktureringsmodell som skiljer sig från tra-
ditionella molntjänster, som vanligtvis faktureras baserat på reserverad kapacitet.
Inom serverlösa tjänster betalar användaren däremot enbart för de resurser som för-
brukats under exekveringen av ett program, vilket mäts av molnleverantören. Denna
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typ av faktureringsmodell är möjlig eftersom inga datorresurser är särskilt reserve-
rade för enskilda program, utan molnleverantören tilldelar dessa dynamiskt när de
behövs.

Denna bruksbaserade faktureringsmodell kan göra serverlösa tjänster enormt
förmånliga. Kunden undviker inte bara att behöva ställa upp någon infrastruktur
för att sätta programmet i drift, utan behöver dessutom enbart betala för de resur-
ser som förbrukas när programmet körs. Den här typen av faktureringsmodell är
dock inte alltid billigare jämfört med reserverad kapacitet. Till exempel i situationer
där resursförbrukningen av ett program är mycket hög under en längre period kan
driftskostnaderna faktiskt vara dyrare.

Serverlösa plattformar har också vissa funktionella nackdelar. En av de mest
märkbara är ett problem som kallas för kallstart. Eftersom serverlösa program inte
har några särskilt reserverade datorresurser i molnet, måste molnleverantören varje
gång allokera dessa från noll när programmet ska exekveras efter en stillestånds-
period. Detta kan leda till en fördröjd start och försämrad prestanda i början av
programmets exekvering [3].

En annan nackdel med serverlösa plattformar är att program som har utvecklas
för en särskild plattform inte enkelt kan överföras till en annan. Detta beror huvud-
sakligen på att alla molnleverantörer har egna specifikationer, verktyg och krav för
sina serverlösa plattformar. Problemet förvärras ytterligare av att serverlösa plattfor-
mar fungerar väl tillsammans med molnleverantörernas andra tjänster. Detta leder
ofta till att även dessa tjänster utnyttjas av serverlösa program. Att ersätta dessa
tjänster med alternativ kan vara ansträngande och leda till höga kostnader [13].

Mål

Målet med den här avhandlingen är att jämföra hur programvaruutveckling med
serverlösa teknologier skiljer sig från traditionell programvaruutveckling. För att
göra dessa jämförelser har en serverlös implementering och en konventionell im-
plementering utvecklats för tre olika exempel användningsfall. Användningsfallen
är utformade för att förevisa en uppsättning av situationer som IT-organisationer kan
ställas inför. Implementeringarna och deras utvecklingsprocesser jämförs sedan för
att demonstrera olika för- och nackdelar med båda alternativen. De serverlösa im-
plementeringarna som presenteras i denna avhandling har utvecklats med hjälp av
serverlösa plattformar som erbjuds av Microsoft Azure. De konventionella imple-
menteringarna utnyttjar däremot Spring Boot, vilket är ett ramverk för Javaapplika-
tioner.
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Serverlösa plattformar inom Azure

Azure är Microsofts molntjänst som lanserades kommersiellt 2010. Sedan dess har
Azure blivit en av de största molntjänsterna inom branschen. De serverlösa im-
plementeringarna till de tre användningsfallen är utvecklade med hjälp av följande
serverlösa plattformar som är tillgängliga i Azure.

Azure Functions

Functions är Microsofts FaaS-tjänst inom Azure. Tjänsten gör det möjligt för ut-
vecklare att tillämpa affärslogik i form av funktioner, som sedan kan självständigt
sättas i drift och exekveras i molnet. Liksom i andra motsvarande tjänster, ansva-
rar Azure för de operativa aspekterna för att exekvera koden. Functions stöder flera
programmeringsspråk, bland annat C#, Java, JavaScript och Python.

Azure Logic Apps

Logic Apps är en serverlös plattform för arbetsflöden inom Azure. Till skillnad från
Azure Functions, där affärslogik tillämpas med hjälp av kod, innehåller Logic Apps
i stället ett eget designverktyg för att skapa arbetsflöden. Dessa arbetsflöden byggs
upp av komponenter som utvecklaren lägger till med hjälp av verktyget. Denna
så kallade ”design first”-strategin gör det möjligt att tillämpa affärslogik utan att
behöva skriva någon kod. Precis som i andra serverlösa plattformar hanterar moln-
leverantören de operativa aspekterna av att exekvera arbetsflödet.

Azure Cosmos DB

Cosmos DB är en NoSQL-databastjänst inom Azure. Även om tjänsten inte upp-
fyller samma definitioner för serverlösa plattformar som beskrivits i inledningen,
fungerar Cosmos DB bra tillsammans med FaaS och andra serverlösa tjänster av
flera skäl. På samma sätt som i serverlösa tjänster sköter Azure de operativa aspek-
terna av databaserna. Dessutom är det möjligt att i tjänsten skapa databaser i ett så
kallat förbrukningsbaserat läge. I detta läge behöver användaren inte i förväg es-
timera eller binda sig till en viss mängd kapacitet för databasen. I stället betalar
användaren enbart för de resurser som förbrukats av databasoperationerna. Azure
kallar därför detta läge för serverlöst.
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Användingsfallen

Användningsfallen som undersökts i denna avhandling presenteras i det följande
kort sammanfattat. De tre fallen beskrivs från synvinkeln av en fiktiv exempelorga-
nisation med namnet The Example Organisation, förkortningsvis bara TEO.

Användningsfall 1: Integration

TEO har besultat att börja återförsälja licenser till en populär programvara. Licen-
serna är användarbaserade och de förvärvas samt förvaltas via en särskild mark-
nadsplats. Varje företag som använder programvaran har en egen profil inom mark-
nadsplatsen, där produktlicenserna finns införda för varje användare. För att TEO
ska kunna fakturera sina kunder för produktlicenserna, måste en systemintegration
skapas mellan marknadsplatsen och TEOs affärssystem.

I början av varje månad ska tillämpningen hämta alla licenser som använts un-
der föregående månad från marknadsplatsen genom dess API. Den totala kostanden
för licenserna ska sedan beräknas för varje kund, varefter informationen ska spa-
ras i affärssystemet i form av en debitering. Kundens profil i marknadsplatsen och
affärssystemet kopplas ihop med hjälp av företagets VAT-nummer. Ifall företagets
profil inte hittas i affärssystemet med VAT-numret, ska informationen om produktli-
censerna skickas till faktureringsavdelningen med e-post. Processen finns avbildad
detaljerat i figur 4.1.

Användningsfall 2: Faktureringsmotor

TEO har beslutat att börja erbjuda en egen servertjänst. Tjänsten gör det möjligt för
kunder att hyra dator- och lagringsresurser av olika varianter. Båda resurstyperna
faktureras utifrån reserverad kapacitet. Varje resurs har ett baspris, vilket motsvarar
priset för att reservera resursen för en timme. Baspriset för varje typ av resurs anges
i en prislista. Standardprislistan används i normala fall, men vissa kunder har för-
handlat fram egna prislistor med andra baspriser. Alla prislistor hanteras av tjänsten
Pricing Service och kan hämtas därifrån via dess API.

Användningsdata för de olika resurserna hanteras av en separat tjänst som kal-
las för Data Collector. Dessa användningsdata består av olika typer av händelser
för resurserna, vart bland annat tillhör tidpunkterna när de skapades och raderades.
Dessa så kallade resurshändelser lagras i tjänsten och kan hämtas med hjälp av dess
API.

För att TEO ska kunna fakturera sina kunder för dessa, måste de implemen-
tera an faktureringsmotor. Motorn bör först hämta alla resurshändelser från Data
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Collector, vilka används för att sedan beräkna användningstiden av resurserna. An-
vändningstiden ska sedan multipliceras med baspriset på resursen för att bilda dess
totala kostnad. Exempel på hur dessa kostnadsberäkningar sker kan ses i tabellerna
4.1 och 4.2. Dessa kostnader ska sedan sättas in i affärssystemet i form av debi-
teringar, liksom i förra användningsfallet. Processen finns avbildad i högre detalj i
figur 4.3.

Användningsfall 3: API

Olika team inom TEO skapar dagligen nya kundprofiler i affärssystemet. Processen
innebär att flera olika uppgifter om ett företag ska föras in i systemet, bland annat
namn, adresser och telefonnummer. Denna process kan vara rätt jobbig, eftersom
användaren för hand måste hämta och mata in dessa uppgifter i systemet för att
skapa kundprofilen. TEO har därför identifierat detta som ett potentiellt område
som kan automatiseras.

De företagsuppgifter som används för att skapa kundprofiler är allmänt tillgäng-
liga i företagsinformationssystemet, ett offentligt register över företag som upprätt-
hålls av en statlig myndighet. Företagsinformationssystemet har ett API som re-
turnerar företagsuppgifter i XML-format. Affärssystemet innehåller också ett eget
API, som kan användas för att skapa en ny kundprofil i systemet. API:et accepterar
en JSON-fil som innehåller alla nödvändiga företagsuppgifter som behövs för att
skapa en kundprofil.

För att automatisera skapandet av kundprofiler i affärssystemet måste TEO im-
plementera ett nytt API, som senare kommer att utnyttjas av ett internt verktyg.
API:et ska acceptera ett FO-nummer som parameter. Detta FO-nummer ska se-
dan användas för att försöka hämta information om företaget från företagsinfor-
mationssystemet. Ifall detta lyckas ska uppgifterna omvandlas från XML-formatet
till JSON-formatet som accepteras av affärssystemet, varefter de ska sättas in i sy-
stemet. Processen finns avbildad i högre detalj i figur 4.5.

Implementeringar

Inom ramen för arbetet med denna avhandling skapades en konventionell och en ser-
verlös implementering för de tre användningsfallen. Implementeringarna beskrivs i
det följande kort sammanfattat.
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Användningsfall 1

Den konventionella implementeringen följer en struktur som är allmän bland Spring
Boot-applikationer. Klassdiagrammet för programmet finns avbildat i figur 5.1. Da-
tautbyte mellan applikationen, marknadsplatsen och affärssystemet sker via deras
respektive klientklasser. Dessutom innehåller implementeringen en egen klass för
att skapa och skicka e-post via en särskild SMTP-server.

Den servelösa implementeringen utnyttjar huvudsakligen Azure Logic Apps.
Anledningen till detta val var huvudsakligen användningsfallets relativt enkla af-
färslogik, vilket gjorde det möjligt att utnyttja en arbetsflödesmotor utöver tradi-
tionella programmeringsmetoder. Azure Functions utnyttjas dock också för skapa
informationen för debiteringen, eftersom Logic Apps endast kan utföra enkla be-
räkningsoperationer. Arbetsflödet finns avbildat i flera figurer i kapitel 5.1.2.

Användningsfall 2

Den konventionella implementeringen för detta användningsfall är på många sätt
mera komplicerad jämfört med den föregående på grund av den mer invecklade
affärslogiken. Utmärkande för detta användningsfall är bland annat införandet av
persistenskontroll med Spring Data JPA. Ett fullständigt klassdiagram för den kon-
ventionella implementeringen är avbildat i figur 5.8. Affärslogiken är indelad i flera
olika klasser, där varje klass ansvarar för ett visst område av faktureringsprocessen.

Den serverlösa implementeringen utnyttjar Azure Functions för att utföra beräk-
ningarna. Dessutom utnyttjas även Durable Funcions, ett insticksprogram för Azure
Functions som gör det möjligt att skapa invecklade arbetsflöden bestående av flera
funktioner. För persistenskontroll används även Azure Cosmos DB. Själva imple-
menteringen består av nio funktioner, vilka är avbildade på hög nivå i figur 5.9.
Varje funktion har en egen roll i faktureringsprocessen. Rollen kan rätt enkelt tol-
kas direkt utifrån funktionens namn. En av de betydande skillnaderna jämfört med
den konventionella implementeringen är införandet av parallella beräkningar, vilket
möjliggjorts med hjälp av insticksprogrammet Durable Functions.

Användningsfall 3

Det tredje användningsfallet hade den enklaste affärslogiken, vilket syns tydligt
också i den konventionella implementeringens klassdiagram, avbildat i figur 5.10.
Unikt för just denna implementering är användningen av bland annat Spring Secu-
rity, som utnyttjas för att försäkra API:n från utomstående enheter.

Den serverlösa implementeringen använder sig enbart av en tjänst, Azure Func-
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tions. Trots detta påminner den serverlösa implementeringen om den konventionella
på flera sätt, eftersom båda är utvecklade med programmeringsspråket Java. Detta
gjorde det möjligt att delvis återanvända kod från den konventionella implemente-
ringen i den serverlösa, vilket gjorde själva utvecklingsprocessen kort. Ett diagram
över den serverlösa implementeringen finns avbildat på hög nivå i figur 5.11.

Fördelar

De serverlösa plattformarna har alla olika särdrag som utvecklaren måste bekanta
sig med för att kunna använda dem ordentligt. Efter att detta har skett, kan platt-
formarnas egenskaper dock användas till nytta. Bästa exemplet på detta är parallel-
liseringen av beräkningarna i den serverlösa implementeringen av användningsfall
2. Där behövde utvecklaren endast skriva kod för att starta exekveringen av akti-
vitetsfunktionerna, medan plattformen tog hand om resten. Att utveckla liknande
funktionalitet i den konventionella implementeringen är inte omöjligt, men skulle
kräva betydligt större insats.

Ett annat bra exempel finns även i användningsfall 1, där implementeringarna
skapar och skickar ett e-post till faktureringsavdelningen ifall undantag sker. Den
konventionella implementeringen kräver att en särskild SMTP-server konfigureras
i programkonfigurationerna för att skicka e-post. Den serverlösa implementeringen
skickar däremot e-postmeddelande med hjälp av ett Outlook-konto, som användaren
bara måste logga in med. Logic Apps tar hand om själva skickandet av e-posten i
bakgrunden.

Särdragen hos de serverlösa plattformarna gör dem även väl lämpade för pro-
gram med hög skuröverföringsgrad. Sådana program är i huvudsak inaktiva, men
producerar mycket aktivitet när exekveringen sker. Användningsfallen 1 och 2 är
båda bra exempel detta. Eftersom faktureringsmodellen av serverlösa tjänster ba-
serar sig på bruk, betyder det att de serverlösa implementeringarna inte resulterar
i några som helst operativa kostnader när de är inaktiva. Dessutom är själva ex-
ekveringskostnaderna också relativt låga. Till exempel kostar exekveringen av den
serverlösa implementeringen av användningsfall 1 lite över 0,10 amerikanska dollar
då tusen kunders licenser ska behandlas.

Nackdelar

Den bruksbaserade faktureringsmodellen av serverlösa plattformar kan dock resul-
tera i betydande kostnader ifall exekveringen sker tillräckligt ofta. Även mindre
summor, som 10 cent per exekvering, kan växa till en avsevärd kostnad ifall pro-
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grammet körs flera gånger i timmen. I sådana fall kan det vara förmånligare att välja
reserverad kapacitet i stället.

En annan nackdel med serverlösa plattformar är att implementeringarna kan
sättas i drift endast inom plattformen de är skapade för i molnet. Ofta är detta inte
ett problem, men det finns fall där det kan vara nödvändigt att sätta programvara i
drift på egna servrar, till exempel på grund av dataskyddskrav. De konventionella
implementeringarna har inga liknande restriktioner, utan kan däremot driftsättas i
praktiken i vilken miljö som helst.

De konventionella implementeringarna har också vissa andra fördelar. Även om
utvecklingsprocessen av själva programmet kräver en större insats jämfört med det
serverlösa alternativet, är det slutliga resultatet en fullständig Spring Boot-applikation.
Detta gör det lättare att utvidga programmets funktionalitet i framtiden ifall beho-
vet uppstår. I de serverlösa implementeringarna kan funktionaliteten också utvidgas,
men det sker nödvändigtvis inte lika enkelt. Tydligast märks detta i användningsfall
1, där den serverlösa implementeringen är ett lineärt arbetsflöde i Logic Apps. Ar-
betsflödet går det svårare att utvidga funktionaliteten utan att behöva lägga till ett
helt nytt flöde. Samma problem märks även delvis i användningsfall 3, där den ser-
verlösa implementeringen är skapad med hjälp av Azure Functions. Även om flera
funktioner kan dela klasser, måste en del funktionalitet implementeras separat för
varje funktion.

Den största nackdelen med serverlösa tjänster är dock att de gör programmen
stark kopplade till plattformen som de är skapade för, och därmed även molnleve-
rantören som erbjuder tjänsten. Problemet förvärras av att de serverlösa plattfor-
marna ofta medför ytterligare kopplingar till andra tjänster inom molnleverantörens
ekosystem. Dessa kopplingar gör det svårt och dyrt att överföra programmet till en
annan miljö i framtiden ifall detta av en orsak eller annan krävs. I vissa situationer,
som i användningsfall 1, går det inte alls att flytta programmet, utan affärslogiken
måste implementeras på nytt från början. De konventionella implementeringarna
innehåller inte motsvarande kopplingar.

Slutsats

Beslutet om huruvida man ska använda serverlösa plattformar eller inte bör därför
fattas noggrant. Abstraheringen som plattformarna medför kan bidra till att mins-
ka utvecklingstiden och den operativa bördan. De serverlösa plattformarnas särdrag
gör dem dessutom väl anpassade bland annat för program med hög skuröverfö-
ringsgrad. De starka kopplingarna som plattformarna medför kan däremot utgöra
en affärsrisk, eftersom de gör programmen helt beroende av en viss molnleverantör.
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Detta är ytterst viktigt att ta i beaktande ifall programmet är kritiskt för företagets
verksamhet.
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