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Abstract 

Despite great advances in tissue engineering and regenerative medicine, 
impaired wound healing is still a challenging clinical problem. Accumulating 
evidence demonstrates the ability of extracellular vesicles and specifically, 
exosomes in regenerative therapy and tissue engineering. Previous studies 
showed that adipose stem cell-derived exosomes have great potential in 
accelerating cutaneous wound healing by affecting fibroblast activities. It has 
been shown that vimentin serves as a coordinator of the healing process. 
Interestingly, vimentin has been reported to be detectable in exosomes from 
different cell types which we called exosomal vimentin. Therefore, we 
hypothesized that vimentin incorporated into the exosomes may contribute to 
mediating fibroblast activities in wound healing.  

During my Ph.D. thesis, we revealed the active and necessary role of exosomal 
vimentin in promoting wound healing. Our results revealed that exosomal 
vimentin from adipocyte progenitor cells acts as a promoter of fibroblast 
proliferation, migration, and ECM secretion. Our results suggested that exosomes 
can serve as an efficient transportation system to deliver and internalize 
vimentin into target cells, while vimentin could have an impact on exosome 
transportation, internalization, and cell communication. Furthermore, our 
findings revealed that during mechanical stress such as osmotic imbalance, 
exosomal vimentin can protect fibroblasts against stress and inhibit stress-
induced apoptosis. These data suggest that exosomes could be considered either 
as a stress modifier to restore the osmotic balance or as a conveyer of stress to 
induce osmotic stress-driven conditions. In conclusion, our in vitro and in vivo 
experiments provide evidence that exosomal vimentin shortens the healing time 
and reduces scar formation.  
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Abstrakt 

Trots stora framsteg inom vävnadsteknik och regenerativ medicin, så är 
försämrad sårläkning fortfarande ett stort problem inom klinisk medicin. Det 
finns allt starkare belägg för att extracellulära vesikler, särskilt exosomer, har 
sårläkande förmåga i samband med regenerativ terapi och vävnadsteknik. 
Tidigare studier har visat att exosomer som härrör sig från adipocyta stamceller 
har stort potential i påskyndandet av hudens sårläkning genom deras förmåga 
att påverka aktiviteten hos fibroblaster. Man har visat att vimentin fungerar som 
en koordinator för läkningsprocessen. Vi har kunnat påvisa närvaro av vimentin 
i exosomer från olika celltyper, som vi kallar exosomalt vimentin. Därmed antog 
vi att vimentin inkorporerat i exosomer kunde bidra till förmedlingen av 
fibroblastaktiviteten vid sårläkning. 

Under mitt doktorsarbete har vi påvisat exosomalt vimentin är nödvändigt 
för att främja sårläkning. Våra resultat visade att exosomalt vimentin från 
adipocyt-progenitorceller stimulerar fibroblastproliferation, migration och 
ECM-sekretion. Våra resultat antydde att exosomer kan fungera som ett effektivt 
system för att transportera och internalisera vimentin i målceller, medan 
vimentin i sin tur kan ha en inverkan på exosomtransport, internalisering och 
cellulär kommunikation. Dessutom visade våra resultat att exosomalt vimentin 
under mekanisk stress, såsom osmotisk obalans, kan skydda fibroblaster mot 
stress och hämma stressinducerad apoptos. Dessa data indikerar att exosomer 
kan betraktas antingen som stressmodifierare för att återställa osmotisk balans 
eller som en stressbärare för att inducera osmotiska stressdrivna tillstånd. 
Sammanfattningsvis visar våra experiment, både in vitro och in vivo, att 
exosomalt vimentin försnabbar sårläkning på ett signifikant vis och att det även 
minskar ärrbildning.   
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1. Introduction 

Chronic wounds have become a significant source of major mortality and 
morbidity, which lead to high medical costs and poor quality of life. Despite great 
progress in wound healing therapy, the traditional treatments mostly are 
ineffective and challenging. Exosomes with a size of 30-150 nm in diameter have 
the potential to promote tissue repair, due to their intrinsic features such as high 
stability, non-immune rejection, homing effect, easy control of dosage, and 
concentration (Hettich et al., 2020)(Cabral et al., 2018) (Yates et al., 2022). 
Exosomes as a sustained delivery method of growth factors, proteins, and nucleic 
acids are a promising strategy to promote wound healing and tissue 
regeneration (Ferreira & Gomes, 2019).  

Vimentin is a cytoskeleton protein that plays an important role in biological 
functions at the cellular and molecular levels. Vimentin is particularly important 
during the wound healing process and our laboratory has shown that mice 
lacking vimentin (Vim-/-) have severely impaired wound healing (Battaglia et al., 
2018). Interestingly, vimentin has been reported detectable in exosomes from 
different cell types which are called exosomal vimentin (Chen et al., 2016) 
(Sharma et al., 2018)(Adolf et al., 2019).  

During the first part of this project, we revealed the active and necessary role 
of exosomal vimentin from adipocyte progenitors in promoting fibroblast 
proliferation, migration, and ECM secretion. Our results from in vivo and in vitro 
experiments present strong evidence that exosomal vimentin has a critical role 
in shortening the healing time and reducing scar formation. These findings 
suggest a novel role for exosomes in mediating wound repair by transferring 
cytoskeletal proteins to the wound site.  

The composition, biogenesis, and secretion of exosomes are strongly 
influenced by environmental and cellular stress conditions (Liu & Su, 2019). In 
such an environment, exosomes can act as stress modifiers through changing 
gene expression and phenotypic behaviors of recipient cells. However, stress-
induced changes in the composition of exosomal cargo are an efficient adaptive 
mechanism that helps cells to modulate intracellular stress conditions and send 
signals to influence the response of distant cells (Villarroya-beltri et al., 2014). It 
has been shown that vimentin as a hyperelastic network could disperse the local 
mechanical stress to a larger region in the cytoplasm to protect cells against 
mechanical damage (Mendez et al., 2014).  

For the second part of the project, prompted by our previous findings, we 
investigated the role of exosomal vimentin in protecting cells against osmotic 
mechanical stress during wound healing. Our results showed that osmotic stress 
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increases the size and enhances the release of exosomes. More importantly, we 
realized that exosomal vimentin enhances wound healing by protecting 
fibroblasts against stress and inhibiting stress-induced apoptosis. This data 
could reveal exosomes either as a stress modifier to restore the osmotic balance 
or as a conveyer of stress to induce osmotic stress-driven conditions.  

According to previous studies, while mass production of exosomes is 
challenging, three-dimensional spheroid culture stimulates the secretion of in 
vivo-like extracellular vesicles (Thippabhotla et al., 2019a) and specifically 
increases exosome secretion from mesenchymal stem cells (MSCs) (Kim et al., 
2018)(Cha et al., 2018). Previously, it was reported that the production of EVs 
using bioreactors such as hollow-fiber bioreactors (Watson et al., 2016) and 
CELLine Adhere 1000 (CLAD1000) flask (Palviainen et al., 2019) (Mitchell et al., 
2008) maximizes EV yield in comparison to conventional 2D cell cultures (Patel 
et al., 2019). In the third part of this study, we aimed to develop a three-
dimensional (3D) experimental cell culture model using nanofibrillar cellulose 
(NFC) natural hydrogel in combination with CELLine Adhere 1000 (CLAD1000) 
flask to enhance exosomes production in an in vitro model. Our results showed 
that this method could significantly enhance exosome release while also 
increasing the delivery of exosomes to recipient cells.
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2. Review of the Literature 

2.1. Wound healing 
Despite great advances in tissue engineering and regenerative medicine, still 
impaired wound healing is a challenging clinical problem that imposes a 
significant economic and quality of life burden on both patients and society. It is 
estimated that at least 1% of people from high economy countries face a complex 
wound in their life. In the United States, almost 2% of the total population is 
affected by chronic wounds (Sen, 2021).  

Wound healing is a complex and dynamic biological process involving various 
cellular and molecular mechanisms. This process requires the synchronization 
of various cell types including systemic and local cells in the wound bed in 
sequential steps (Wilkinson & Hardman, 2020). The lack of a suitable animal 
model to precisely compare with the human condition is one of the difficulties in 
studying wound healing which hurdle translating data from experimental 
models to clinical trials. Currently, scientists try to gain better knowledge of 
mechanisms involved in wound healing by studying specific pathological 
pathways in animal models as well as analyzing data from human wound 
samples (Eming et al., 2014). 

Skin is the largest organ in the body that has three main layers: epidermis, 
dermis, and hypodermis. The epidermis is the outer layer that withstands the 
harsh external environment. Keratinocytes are the main cells in this layer that 
produce keratin. The dermis is located under the epidermis and provides 
strength, immunity, and optimal nourishment to the epidermis. The dermis is 
rich in extracellular matrix (ECM) such as collagen fibers, blood vessels, 
mechanoreceptors, and different types of cells such as fibroblasts. Hypodermis 
underlies the dermis and is made up of a large adipose tissue reservoir that acts 
as an energy source to protect internal structures (Fig. 1) (Takeo et al., 2015; 
Rodrigues et al., 2019). 
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Figure 1. Schematic illustration of skin layers. The epidermis is the outer layer of 
skin that protects the outside environment. The dermis is highly vascularized which 
supports the skin’s elasticity and strength. Hypodermis contains fat cells, blood 
vessels, and nerves. The image was created with BioRender.com.  

The successful healing process is achieved through four main sequential but 
overlapping phases including hemostasis, inflammation, proliferation, and 
remodeling (Fig. 2) (Jeong, 2010).  

The haemostasis phase is the first stage of wound healing that begins 
immediately after injury (Takeo et al., 2015). The haemostasis phase includes 
several stages including constriction of injured blood vessels to restrict the blood 
flow, platelet adhesion, degranulation, platelet aggregation, and fibrin clot 
formation. Platelets and ECM proteins are principal contributors to haemostasis. 
Platelets are activated to stop bleeding when interacting with ECM proteins such 
as fibronectin and collagen. Platelets recruit immune cells to the wound site and 
enhance cytokines and growth factor release (Wilkinson & Hardman, 2020). Pro-
inflammatory cytokines and growth factors such as transforming growth factor 
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(TGF)-β, platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), 
and epidermal growth factor (EGF) are released by the clot and surrounding 
wound tissues (Ferreira & Gomes, 2019). Platelets are necessary for a successful 
tissue reconstitution. Platelet-rich plasma has been used in clinical applications 
to enhance the healing process (Eming et al., 2014). 

The inflammatory phase begins in parallel with haemostasis and mobilizes 
local systemic defense response to the injury. The inflammatory phase is 
characterized by an increase in immune cell populations including sequential 
infiltration of neutrophils, macrophages, and lymphocytes to clear cell debris and 
microbes (Rodrigues et al., 2019). Continuous release of pro-inflammatory 
cytokines and growth factors by neutrophils, monocytes, and macrophages 
attracts leukocytes to the wound site and stimulates vasodilation (Wilkinson & 
Hardman, 2020b). In chronic wounds, the inflammation phase is prolonged and 
the healing process fails to progress. The prolonged inflammatory phase 
increases the infiltration of pro-inflammatory cells such as neutrophils and 
macrophages and deregulation of key proinflammatory cytokines, such as 
interleukin (IL)-1b and tumor necrosis factor (TNF)-α (Eming et al., 2014).  

The proliferation phase overlaps with the inflammatory phase and involves 
re-epithelialization, angiogenesis, collagen synthesis, and ECM formation. During 
re-epithelialization, the proliferation of unipotent epidermal stem cells from the 
basement membrane and de-differentiation of epidermal cells repair the 
epidermis. The proliferation phase is characterized by the great activation of 
different cells such as keratinocytes, fibroblasts, macrophages, and epithelial 
cells to close the wound (Wilkinson & Hardman, 2020). Activated cells including 
keratinocytes produce matrix metalloproteinases (MMPs) to help other cells 
migrate to cover the exposed connective tissue and reconstitute the basement 
membrane. MMPs are multifunctional proteases that contribute to membrane 
shedding, ECM degradation, and chemokine production and release (Löffek et al., 
2011). Keratinocytes as the major cellular component of the epidermis, undergo 
a partial epithelial-mesenchymal transition (EMT) to acquire a more invasive 
and migratory phenotype (Wilkinson & Hardman, 2020). Angiogenesis is 
triggered by hypoxia and occurs when endothelial cells proliferate and migrate 
to form new blood vessels. Macrophages support the migration of endothelial 
cells by producing MMPs to degrade the fibrin network and chemotactic factors 
such as TNF-α, and TGF-β (Wilkinson & Hardman, 2020). Simultaneously, 
fibroblasts proliferate and produce major components of ECM including 
collagen, glycosaminoglycans, and proteoglycans (Rybinski et al., 2014; 
Rodrigues et al., 2019).  
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The remodeling phase is the last stage of wound healing and is characterized 
by collagen remodeling, vascular maturation, and regression to restore normal 
tissue architecture which can last for several years (Guo & DiPietro, 2010; 
Rodrigues et al., 2019). This phase of wound healing determines whether 
scarring will occur or the wound will recur. As the remodeling of the wound 
progresses, reorganization of the ECM happens. During this process collagen III 
is lysed and partially replaces by stronger collagen I fibers (Rodrigues et al., 
2019). Successful remodeling requires a perfect balance between collagen 
synthesis and degradation which is regulated by MMPs (Wilkinson & Hardman, 
2020).  

The wound healing process is ended when involved cells such as fibroblasts, 
macrophages, and endothelial cells experience apoptosis and leave the wound 
site while forming a scar (Wilkinson & Hardman, 2020).  

 

Figure 2. Schematic illustration of a normal wound healing process. Normal 
wound healing generally takes 4 to 6 weeks and includes four main sequential but 
overlapping steps: haemostasis, inflammation, proliferation, and remodeling. The 
image was adapted from (Tartaglia et al., 2021) and created with BioRender.com. 
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The outcome of normal wound healing is the restoration of a functional 
epidermal barrier and tissue repair which normally takes about 7- 14 days. 
However, under clinical conditions such as diabetes, vascular disease, radiation 
injury, altered immune system, or aging, interruption in one or several healing 
phases could link to impaired wound healing (Rybinski et al., 2014; Rodrigues et 
al., 2019).  

Fibroblasts are spindle-shaped cells with a mesenchymal origin that are 
responsible for tissue haemostasis and wound healing. Under normal conditions, 
fibroblasts appear in the wound site at the end of the inflammatory phase and 
the beginning of the proliferative phase. Fibroblasts migrate to wound areas, 
proliferate, degrade fibrin clots, promote ECM production and mediate wound 
contraction (Bainbridge, 2013). When tissue is injured, surrounding fibroblasts 
differentiate into highly contractile cells called myofibroblasts. Myofibroblasts 
secret a high amount of ECM and reduce the size of the wound. On the other hand, 
excessive activity of myofibroblasts generates mechanical stress that leads to 
impaired wound healing and fibrosis (Darby & Hewitson, 2007).  

Tumors have been considered as non-healing wounds. The wound healing 
process shares similar characteristics with chronic fibrosis and tumor 
progression such as the mutual presence of the EMT process and myofibroblastic 
differentiation processes (Rybinski et al., 2014). EMT occurs during 
physiological or pathological processes such as embryogenesis, wound healing, 
and cancer development and is characterized by the transition of the cells from 
sedentary to the migratory state (Fig. 3). This process is mediated by 
inflammatory cells and fibroblasts which support the mesenchymal architecture 
during the re-epitalization phase in wound healing (Barriere et al., 2015). 
Myofibroblast differentiation and the EMT process determine the fate of the 
wound either towards the healing or fibrosis and tumor progression (Fig. 4) 
(Darby & Hewitson, 2007). 
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Figure 3. Epithelial-mesenchymal transition. During EMT, epithelial cells lose 
their cell membrane epithelial markers such as E-cadherin and cytokeratin and gain 
mesenchymal markers such as vimentin, fibronectin, and N-cadherin. The image was 
adapted from (Barriere et al., 2015) and created with BioRender.com. 

 

Figure 4. The fate of the injury in physiologic and pathological conditions. The 
outcome of a desirable wound healing process is tissue regeneration that restores 
normal tissue function. A prolonged, incomplete, and uncoordinated healing process 
result in impaired wound healing. An impaired or excessive wound healing process 
causes chronic inflammation and fibrosis which contribute to tumor formation and 
cancer. EMT: Epithelial-mesenchymal transition, ECM: extracellular matrix. The 
image was adapted from (Rybinski et al., 2014) and created with BioRender.com. 

The impaired healing process can lead to either an excess of scar formation 
(hypertrophic scar or keloid) or ulcerative skin (chronic wound) (Eming et al., 
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2014). Cutaneous wounds are classified into two categories; acute wounds which 
are caused by environmental factors and heal normally, and chronic wounds 
which are usually caused by metabolic disorders and do not heal normally (Fig. 
5) (Irfan-maqsood, 2018).   

 

Figure 5. Wound types include acute and chronic wounds. Cutaneous wounds 
are classified into acute and chronic wounds. Acute wounds usually are caused by 
environmental damage and heal normally. Chronic wounds can be the results of 
metabolic disorders. The image was adapted from (Irfan-maqsood, 2018) and 
created with BioRender.com. 

2.1.1. Current treatments for wound healing 

Wound healing therapies are categorized into traditional and modern therapies. 
Traditional therapies include herbal and animal-derived compounds, living 
organisms, silver, and traditional wound dressings. Traditional therapies are 
cost-effective and affordable approaches and mostly try to minimize the spread 
of microorganisms and accelerate healing time. Traditional wound dressing 
including products such as gauzes, cotton wool, and natural or synthetic 
bandages have been used frequently in wound care applications (Pereira & Ba, 
2016; Oliveira et al., 2020). However, there are limitations associated with 
traditional wound dressing such as failure to provide a moist environment and 
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the possibility of dryness and adhesion to the wound bed which damage the 
epidermis and causes trauma. To tackle these challenges, these products are 
commonly used as a secondary or in combination with other treatments (Pereira 
& Ba, 2016; Monika et al., 2022).  

With the continuous advancement in the field of regenerative medicine and 
biomaterial sciences, modern wound healing therapies have been developed to 
treat wounds more efficiently. The most common modern wound healing 
therapies are described in table 1. 

Table 1. The most common wound healing therapies. PDGF: platelet-derived 
growth factor, FGF: fibroblast growth factor, EGF: epidermal growth factor. 

Method Example Reference 
Advanced wound 
dressings 

Nanomaterial-based dressing 
Drug-containing dressing 
Skin substitutes 

(Boateng & 
Catanzano, 
2015) 

Wound physical 
therapies 

Oxygen wound therapy 
Negative pressure wound therapy 
Shock wave wound therapy 
Photobiomodulation 

(Oliveira et 
al., 2020) 

Exogenous growth 
factor-based therapy 

PDGF, FGF, and EGF (Oliveira et 
al., 2020) 

Cell-based therapy Embryonic stem cells Induced 
pluripotent stem cells 
Mesenchymal stem cells (MSCs) 
Adipose-derived stem cells (ASCs) 
Hematopoietic stem cells 

(Kanji & Das, 
2017) 

 

2.1.2. Stem cell therapeutics in wound healing 

Stem cells are undifferentiated cells that have the ability to self-renewal as well 
as differentiation into any cell type. Stem cells are classified into embryonic stem 
cells and adult stem cells. While adult stem cells can be isolated from almost all 
tissues, embryonic stem cells are isolated only from the inner cell mass of 
blastocytes. In the skin, epidermal stem cells are located in the bulge of the hair 
follicle, the base of the sebaceous gland, and the basal layer of the epidermis. 
Local adipocyte progenitor cells and melanocyte progenitors contribute also to 
wound repair (Eming et al., 2014). Previous studies showed that different phases 
of cutaneous wound healing are mediated by adult stem cells proliferation and 
signaling while non-healing wound conditions such as diabetes can affect the 
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functionality of stem cells (Coalson et al., 2019). Especially adipose-derived stem 
cells (ASCs) have attractive characteristics that make them suitable candidates 
for tissue regeneration such as abundant supply, ease of isolation, high yield, and 
extensive proliferative capacities. ASCs promote skin repair by two mechanisms, 
firstly by their ability to migrate and differentiate into skin cells to repopulate 
injured skin secondly by activating human dermal fibroblast proliferation by 
secretion of growth factors and signaling activation in the re-epithelialization 
phase of wound healing (Fig. 6) (Hassan et al., 2014). 

Various wound healing factors have been detected in the secretion profile of 
ASCs such as TGF-β, PDGF, FGF2, insulin-like growth factor (IGF), hepatocyte 
growth factor (HGF), vascular endothelial growth factor (VEGF), keratinocyte 
growth factor (KGF), fibronectin, and collagen (Hassan et al., 2014). It has been 
shown that these factors enhance the formation of new vasculature in the wound 
bed and stimulate the recruitment, migration, and proliferation of fibroblasts 
and keratinocytes. Therefore, ASCs accelerate angiogenesis, epithelialization, 
and wound remodeling through paracrine secretion during the wound repair 
process (Hassan et al., 2014).  

 

Figure 6. Mechanism of skin repair by adipose-derived stem cells (ASCs). ASCs 
accelerate wound healing through migrating and differentiating into the skin cells or 
activating the skin cells by secretion of growth factors through paracrine secretion. 
The image was adapted from (Hassan et al., 2014) and created with BioRender.com. 
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2.2. Extracellular vesicles 
There are two tightly connected vesicular transport systems in eukaryotic cells: 
intracellular vesicle transport and extracellular vesicle transport system. In the 
intracellular vesicular system, various endomembrane organelles such as Golgi 
apparatus, endoplasmic reticulum (ER), endosomes, and lysosomes, in 
connection with cytoskeletal proteins are responsible for cytoplasmic trafficking 
of biomolecules. The extracellular vesicle transport system mediates by the 
secretion of extracellular vesicles (Salimi et al., 2020; Yates et al., 2022).  

Extracellular vesicles (EVs) are lipid bilayer membrane-enclosed particles 
that are secreted by cells into the extracellular space (Salimi et al., 2020;  Yates 
et al., 2022). Previously, EVs have been considered just as garbage bags to 
dispose cellular waste. However, recent studies showed that EVs act as a highly 
regulated mode of communication between and among cells and tissues (Cabral 
et al., 2018). EVs interact and transport their cargo to the recipient cells and 
affect the status of the cells. The cargo of EVs is cell type-dependent and is 
modulated by the physiological or pathological state of the parental cells and 
their surrounding environmental stimuli (van Niel et al., 2018). It has been 
shown that the packaging of EVs cargo is selective and consists of different 
biomolecules such as proteins, lipids, DNA, mRNA, and miRNA (van Niel et al., 
2018). For example, ubiquitination is one of the mechanisms by which proteins 
are selectively targeted into the EV pathways (Stahl & Raposo, 2019). Also, it has 
been reported that some miRNAs contain a targeting sequence that may regulate 
the selective packaging of RNAs by selectively recruiting specific miRNAs into 
newly forming exosomes (Stahl & Raposo, 2019). EVs are enriched in different 
kinds of lipids including phosphatidylserine (PS), ganglioside, cholesterol, 
glycosphingolipids, and ceramide (Yates et al., 2022). EVs can be isolated from 
all body fluids such as urine and breast milk as well as dissociated tissues and 
cell culture supernatants (Doyle & Wang, 2019; Yates et al., 2022). 

For successful communication, EVs transport their content to the local or 
distant recipient cells through different mechanisms including direct membrane 
fusion which is followed by the activation of surface receptors and signaling 
pathways, clathrin-mediated or clathrin-independent endocytosis such as 
macropinocytosis and phagocytosis or endocytosis by caveolae and lipid rafts 
(Fig. 7) (van Niel et al., 2018; Ratajczak & Ratajczak, 2020).  



Review of the Literature 

26 

 

Figure 7. Schematic illustration of extracellular vesicle uptake mechanisms. 
EVs interact with their recipient cells through different mechanisms such as 
membrane fusion, clathrin-mediated endocytosis, macropinocytosis, and 
phagocytosis. The image was adapted from (Ann Mulcahy et al., 2014) and created 
with BioRender.com. 

The field of the extracellular vesicle is a fast-growing and fairly new field of 
study and our knowledge from the field is an ongoing process. There have been 
continuous changes in EVs nomenclature and classification, collection, 
separation, characterization, and functional assays. In 2014 the International 
Society for Extracellular Vesicles (ISEV) proposed a guideline for the Minimal 
Information for Studies Extracellular Vesicles (“MISEV”) (Lötvall et al., 2014). 
Although most of the MISEV2014 recommendations are still valid, with the 
discoveries and developments in the field, the guideline was updated in 2018 to 
provide more detailed protocols to study EVs (Théry et al., 2018). 

EV is a generic umbrella term for all the naturally released lipid bilayer 
particles from the cells which cannot replicate and according to MISEV 2018, the 
term EV should be used when the subpopulation of the EV type cannot be 
ascertained (Théry et al., 2018). However, according to MISEV 2018, with 
emerging other subtypes of extracellular vesicles and difficulties to assign EVs to 
a particular biogenesis pathway, EVs can be further categorized according to 
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their physical characteristics such as size or density, biochemical composition, 
and/or descriptions of conditions or cell of origin (Kowal et al., 2016; Théry et 
al., 2018). 

In the past, EVs were classified according to their route of formation and size 
into three subtypes: exosomes (30–150 nm), microvesicles (100–1000 nm), and 
apoptotic bodies (1000–5000 nm). Despite the unique biogenesis pathway for 
each subtype, there is a substantial overlap in the composition, density, and size 
of different subtypes which makes the study of the individual EV subsets highly 
challenging (Doyle & Wang, 2019). Recently, new subtypes of EVs have been 
introduced such as exomers, oncosomes, and migrasomes (Fig. 8) (Gurunathan 
et al., 2021). 

Microvesicles also known as ectosomes and microparticles formed by direct 
outward budding of the plasma membrane. Microvesicles contain cytosolic and 
plasma membrane-associated proteins including tetraspanins, cytoskeletal 
proteins, heat shock proteins, integrin, active proteases, and multiple small 
GTPases (Clancy et al., 2021; Ratajczak & Ratajczak, 2020).  

Apoptotic bodies are formed from the outwards blebbing of the plasma 
membrane when cells undergo apoptosis. Apoptotic bodies contain organelles 
and organelles fragments such as mitochondria, nucleus, Golgi apparatus, 
endoplasmic reticulum, chromatin, and some glycosylated proteins. In direct 
contrast with exosomes and microvesicles, the content of apoptotic bodies is 
quite similar to the cell lysate (Cabral et al., 2018). 

Exomers are protein complex with an average size of 35 nm. Exomers mediate 
the sorting of specific plasma membrane proteins into vesicles at the trans-Golgi 
network. Exomers facilitate the vesicle transport from the trans-Golgi network 
to the plasma membrane and its absence leads to the retention of a set of selected 
cargoes in trans-Golgi (Ramirez-Macias et al., 2018; Anand et al., 2021; Moro et 
al., 2021). 

Oncosomes are 100–400 nm membrane-derived extracellular vesicles that 
are secreted by cancer cells. However, in other cases, large oncosomes with a size 
of 1–10 μm can be formed. Oncosomes contain specific cargo relating to tumor 
formation and transferring oncogenic messages which can control tumor 
progression. Oncosomes are formed as byproducts of non-apoptotic cells by 
outward shedding of the cellular membrane (Ciardiello et al., 2020; Gurunathan 
et al., 2021). 

Migrasomes are 500-3000 nm pomegranate-like structures that produce by 
migrating cells. They play important roles as carriers of damaged mitochondria, 
releasing signaling molecules and lateral transfer of mRNA or proteins (Yu & Yu, 
2021; di Daniele et al., 2022). 
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According to MISEV 2018 (Théry et al., 2018), it is preferred to use the name 
“extracellular vesicles” over exosomes since it is challenging to ensure that a 
specific subtype of EVs such as exosomes is present in a sample without 
contamination with other EVs subtype. Since the guideline is achievable as of this 
writing, to be compliant with the MISEV 2018 guideline, the used term 
“exosome” in this thesis refers to the general term small extracellular vesicles 
(50-150 nm) isolated by the commonly accepted methods such as 
ultracentrifugation and ultrafiltration expressing specific markers such as 
tetraspanins.  

 

Figure 8. Schematic illustration of different subtypes of EVs. Exomeres are non-
membranous nanoparticles smaller than 50 nm. Exosomes are the smallest EV 
subtype that generate from the infusion of multivesicular bodies (MVBs) with the 
plasma membrane. Microvesicles are mid-sized EVs that form by the outward 
budding of the plasma membrane. Migrasomes are pomegranate-like structures that 
are released from the tip of retraction fibers of migrating cells. Apoptotic bodies are 
irregularly shaped structures formed from the outwards budding of plasma 
membrane when cells undergo apoptosis. Oncosomes are large-sized EV 
subpopulations that generate by large protrusions of the plasma membrane of 
cancer cells. The image was adapted from (di Daniele et al., 2022) and created with 
BioRender.com. 
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2.2.1. Exosomes 

EVs were first reported in chondrocytes (Anderson, 1967; Bonucci, 1969), 
platelets (Wolf, 1967) and gram-negative bacteria in the 1960s (Knox et al., 
1966; Work et al., 1966). In 1983, vesicles containing peptides were observed in 
sheep immature red blood cells (Pan & Johnstone, 1983), which were later in 
1987 called ‘exosomes’ (Johnstone et al., 1987). In 1996, Stoorvogel et al. 
discovered that exosomes may have a role in immune regulation and regulating 
extracellular microenvironment (Raposo et al., 1996). Later in 2007, scientists 
found that exosomes can mediate cell-cell communications by transferring and 
exchanging genetic information (van Niel et al., 2006; Valadi et al., 2007). Further 
investigations demonstrated that exosomes by carrying specific cargo are 
involved in cellular processes such as immune responses, cell migration and 
differentiation, tumor invasion, and autophagy (Baixauli et al., 2014; Kalluri & 
LeBleu, 2020; Xing et al., 2021).  

Exosomes are the smallest subpopulation of EVs that are formed via the 
endosomal route. They were originally considered a means of eliminating 
unwanted materials from the cells (Johnstone et al., 1987). However, it has been 
shown that EVs are the mediators of intracellular communication in 
physiological and pathological conditions such as pregnancy, cardiovascular 
diseases, cancer, immune responses, and tissue repair (Kalluri & LeBleu, 2020).  
The process of exosome biogenesis starts with the formation of early endosomes 
through inward budding of the plasma membrane and then their maturation to 
multivesicular bodies (MVBs). MVBs can either fuse with lysosomes for 
degradation or fuse with the plasma membrane to form and release exosomes 
into the extracellular space (Wauben, 2015). The mechanism behind MVB 
formation, cargo sorting, and finally exosome release is regulated by multiple 
pathways including endosomal sorting complexes required for transport 
(ESCRT)-dependent pathway and ESCRT independent pathway. Some proteins 
such as tumor susceptibility gene 101 (TSG101), programmed cell death 6 
interacting protein (Alix), and heat shock protein 70 (HSP70) are parts of the 
ESCRT pathway which are detected in exosomes regardless of the originated cell 
source. In ESCRT independent pathway, exosome release depends on the 
sphingomyelinase enzyme (Fig. 9). Even though the content of exosomes is 
highly dependent on the isolation method, tetraspanins including CD9, CD63, 
and CD81 are considered to be enriched in exosomes when isolation is based on 
size difference (Doyle & Wang, 2019).  

In addition to the proteins and nucleic acids, lipids are a critical component of 
all EVs. Lipids play important role in EVs structure, regulatory functions, 
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biogenesis, release, cellular targeting, and uptake (Donoso-Quezada et al., 2021; 
Yates et al., 2022). There is another pathway of EV biogenesis different from the 
ESCR-dependant and independent mechanisms. In this pathway, the 
composition of endosomal membrane lipid changes to form subdomains called 
lipid rafts. It has been shown that lipid rafts and ceramides induce exosome 
formation and release of exosome cargo into the extracellular space (Elsherbini 
& Bieberich, 2018; Skryabin et al., 2020). 

 

Figure 9. General representation of the exosome structure and content. 
Exosomes have a typical lipid bilayer membrane and carry nucleic acids including 
RNA and DNA, cell surface markers such as integrin, tetraspanins (CD63, CD9, and 
CD81), proteins including signaling proteins, enzymes, cytoskeletal proteins, and 
chaperones. The image was adapted from (Kalluri et al., 2020) and created with 
BioRender.com. 
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2.2.2. Exosomes and wound healing 

EVs, contribute not only to intercellular communication but also to other 
processes such as cell proliferation, apoptosis, migration, invasion, and 
differentiation. Some applications may harness the intrinsic properties of EVs 
such as regeneration, immune modulation and tumor, and pathogen 
suppressions (Nederveen et al., 2021; Yates et al., 2022). 

MSCs by having the ability to self-renewal and differentiate into different cell 
types are an attractive choice for clinical applications (Pittenger et al., 2019). 
Human MSCs promote cutaneous wound healing by affecting their neighbor cells 
through the endocrine signaling pathway (local signals between the similar cell 
type), paracrine signaling pathway (local signals between different cell types), 
and expression of different growth factors (Hu et al., 2019; Nikfarjam et al., 
2020). 

Increasing evidence suggests that MSC-derived exosomes (MSC-Exos) 
contribute to tissue regeneration and wound healing (Nikfarjam et al., 2020). The 
application of MSC-Exos has several advantages over MSCs including stability, 
safety, and easy formulation (Hu et al., 2019). MSCs-derived exosomes 
contribute to different phases of wound healing (Hettich et al., 2020). In 
haemostasis phase, in an in vitro model, MSC-EVs have been shown to induce 
blood coagulation (Silachev et al., 2019; Zeng & Liu, 2021). In the inflammation 
phase, MSC-Exos significantly regulate immunomodulatory response by 
affecting inflammatory cells, cytokines, and enzymes through their cargo (Lo 
Sicco et al., 2017). In the proliferation phase, MSC-Exos activate neoangiogenesis 
and promote re-epithelialization, proliferation, and migration of the skin cells 
(Shabbir et al., 2015). In the remodeling phase, MSC-Exos regulate ECM re-
synthesis by regulating collagen I and III production in the early and late stages 
of wound healing (Zhang et al., 2016; Wang et al., 2017). Furthermore, it has been 
shown that local autocrine secretion of exosomes significantly enhances cell 
migration by delivering the ECM cargo and promoting cell adhesion (Sung et al., 
2015).  

As we discussed earlier, ASCs promote angiogenesis, epithelialization, and 
wound remodeling through paracrine secretion (Hassan et al., 2014). It has been 
shown that cutaneous wounds with fat layers heal faster than wounds without 
fat due to the presence of fat and higher distribution of exosomes (Hassan et al., 
2014; Hu et al., 2016). Specifically, in the cutaneous wound, ASC-derived 
exosomes (ASC-Exos) are internalized by fibroblasts and modify their functions 
such as proliferation, migration, and ECM production towards faster healing (Hu 
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et al., 2016). These findings suggest that MSC-Exos and particularly ASC-Exos can 
be considered a promising novel therapeutic tool for soft tissue wound healing. 

2.3. Cytoskeletal proteins 
The cytoskeleton is an interconnected network consisting of filamentous 
polymers and regulatory proteins that play a key role in cell content 
arrangement, cell shape, movement, attachment to other cells or extracellular 
matrices, and transporting intracellular cargo (Fletcher & Dyche Mullins, 2010; 
Pegoraro et al., 2017; Pollard & Goldman, 2018; Mogessie et al., 2019; Mactaggart 
& Kashina, 2021; Chuang & Chen, 2022; Ndiaye et al., 2022). Cytoskeleton 
proteins consist of three major components: microfilaments (actin 
cytoskeleton), microtubules (tubulin cytoskeleton), and intermediate filaments 
(IF) (Fig. 10)  (Fletcher & Dyche Mullins, 2010; Pegoraro et al., 2017; Pollard & 
Goldman, 2018; Mogessie et al., 2019; Mactaggart & Kashina, 2021; Chuang & 
Chen, 2022; Ndiaye et al., 2022). 

 

Figure 10. Schematic illustration of cytoskeletal proteins. The cytoskeleton 
maintains the location of internal cellular structures such as the nucleus and cell 
organelles. It provides structural stability and cell movement. The image was created 
with BioRender.com.  

2.3.1. Intermediate filaments 

Intermediate filaments are strong but highly flexible polymers that are 
distinguished by their size with a diameter between 10 to 12 nm from actin 
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microfilaments (6–8 nm) and microtubules (25 nm). IFs are composed of 
homologous proteins with a size between 40 to 240 kDa (Chang & Goldman, 
2004; Depianto & Coulombe, 2004; Eriksson et al., 2009; Goldman, 2018; Dutour-
Provenzano & Etienne-Manneville, 2021; Redmond & Coulombe, 2021). In 
contrast to microfilaments and microtubules, which are evolutionarily highly 
conserved, IFs are cell-type specific and share just 20% sequence identity. Self-
assembly is the main characteristic feature of all IF proteins that is determined 
by a central α-helical domain comprised of 310 and 350 amino acids (Fuchs & 
Weber, 1994).  

IFs play important role in regulating cell shape and mechanical integrity. IFs 
are encoded by more than 70 genes in humans and apart from lamins (type V) 
that can be found in the nucleus, the rest of IFs are located in the cytoplasm. IFs 
are classified according to their gene structure and nucleotide homology of their 
central alpha-helical domain (Herrmann & Aebi, 2016). According to this 
classification, there are five groups of IFs including type I (acidic keratin), type II 
(basic keratin), type III (vimentin, desmin, glial fibrillary acidic protein, 
peripherin, syncoilin), type IV (neurofilament and alpha-Internexin) and type V 
(Lamins) (Table 2) (Herrmann & Aebi, 2016; Goldman, 2018; Dutour-
Provenzano & Etienne-Manneville, 2021; Redmond & Coulombe, 2021). 

Generally, IFs are composed of a conserved central alpha-helical rod domain 
consisting of three sub-helices including coil 1A, 1B, and coil 2. Coil 1A and 1B 
are connected by linker L1 and coil 1B is connected to coil 2 by linker L2 (Fig. 
11). The rod domain is flanked by a non-alpha-helical amino head and carboxyl-
terminal domains. During filament formation, the parallel assembly of two rod 
domains forms a coiled-coil dimer. Then two dimers associate laterally in 
opposite directions to each other and form a tetramer. The lateral arrangement 
of eight tetramers forms unit-length filaments (ULFs) which then assemble in an 
end-to-end fusion format and form the filaments (Lowery et al., 2015; Pollard & 
Goldman, 2018). Contrary to actin and microtubules which normally are 
polarized, the antiparallel arrangement of IFs results in non-polar filaments 
(Lowery et al., 2015). IFs play important roles in protecting cells against cellular 
stress and regulating cell death, growth, proliferation, and migration (Chang & 
Goldman, 2004; Depianto & Coulombe, 2004; Eriksson et al., 2009; Goldman, 
2018; Dutour-Provenzano & Etienne-Manneville, 2021; Redmond & Coulombe, 
2021). 
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Table 2. Five main classes of intermediate filaments and their location. CNS: 
central nervous system; GFAP: glial fibrillary acidic protein; NF-H: neurofilament 
heavy; NF-L: neurofilament light; NF-M: neurofilament medium. 

Class Type Distribution 
I Acidic keratin Epithelial cells 
II Basic keratin Epithelial cells 
III Vimentin Mesenchymal cells 

Desmin Muscle cells 
GFAP Glial cells 
Peripherin Peripheral neurons 
Syncoilin Muscle cells 

IV NF-L CNS neurons 
 NF-M 

NF-H 
a-Internexin 

V Lamins Nucleus 

2.3.2. Microfilaments (Actin Cytoskeleton) 

The actin cytoskeleton is a dynamic network composed of actin polymers and 
actin-binding proteins. The actin cytoskeleton is responsible for cell structural 
organization, cell motility and contractility, vesicle and organelle movement, and 
phagocytosis (Fletcher & Dyche Mullins, 2010; Pegoraro et al., 2017; Pollard & 
Goldman, 2018; Mogessie et al., 2019; Mactaggart & Kashina, 2021; Chuang & 
Chen, 2022; Ndiaye et al., 2022). Besides its structural role, actin can move to the 
nucleus and regulates gene expression as a component of chromatin-remodeling 
complexes and core histone complexes. The dynamic structure of the actin 
cytoskeleton including assembly and disassembly of actin filaments is regulated 
by signaling pathways and actin-associated proteins (Fletcher & Dyche Mullins, 
2010; Pegoraro et al., 2017; Pollard & Goldman, 2018; Mogessie et al., 2019; 
Mactaggart & Kashina, 2021; Chuang & Chen, 2022; Ndiaye et al., 2022).  

2.3.3. Microtubules (tubulin cytoskeleton) 

Microtubules are the stiffest cytoskeletal proteins that facilitate all important 
events leading to cell proliferation, cell migration and cell resist compression 
through their role in cell mechanics, intracellular trafficking, and signaling 
(Fletcher & Mullins, 2010). Moreover, microtubules make up the internal structure 
of fundamental units of motion in living cells such as cilia and flagella. 
Furthermore, microtubule dynamics can regulate different cellular processes such 
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as chromosome movement during cell division, intracellular macromolecular 
assemblies, and movement of vesicles and organelles (Pollard & Goldman, 2018).  

2.3.4. Vimentin 

Vimentin is a 54 kDa, 466 amino acid type III intermediate filament protein 
(UniProtKB-P08670) encoded by the vimentin gene (VIM) (Ostrowska-
Podhorodecka et al., 2022; Ridge et al., 2022). Vimentin is an evolutionarily 
highly conservative protein among vertebrates and is generally expressed in 
cells of mesenchymal and ectodermal origin (Ridge et al., 2022; Paulin et al., 
2022). Vimentin is initially broadly expressed in the embryonic development 
phase. In adult tissues, vimentin expression is restricted in certain cell types 
including fibroblasts, endothelial and hematopoietic cells (Paulin et al., 2022).  

Vimentin cytoskeletal network consists of stress-resistance filaments. In the 
cells, these filaments extend in the cytoplasm from the nuclear periphery to the 
cell membrane (Pérez-Sala et al., 2015; Ridge et al., 2022). However, vimentin 
can also be found in the extracellular space in smaller and non-filamentous 
forms. Extracellular vimentin is localized at the surface of the plasma membrane 
or released in the extracellular environment under different physiological and 
pathological conditions (Shigyo et al., 2015; Shigyo & Tohda, 2016; Fasipe et al., 
2018; Yu et al., 2018; Patteson et al., 2020; Huijbers et al., 2021; Suprewicz et al., 
2021; Paulin et al., 2022; van Beijnum et al.,2022). 

Similar to other IFs, vimentin monomers assemble into parallel dimers and 
then turn into antiparallel tetramers as the structural units for vimentin 
polymerization which form eight tetramers, ULFs, and finally 10 nm mature 
filament (Fig. 12) (Pérez-Sala et al., 2015). In physiological conditions, vimentin 
spontaneously assembles into 10 nm diameter filaments (Ostrowska-
Podhorodecka et al., 2022).  

The assembly/disassembly of vimentin regulates its biochemical and 
structural properties which is a requirement for vimentin cellular functions such 
as cell migration and cell division (Paulin et al., 2022). Vimentin expression is 
controlled both at the promoter level through interacting with a set of activating 
and inhibiting elements and epigenetic level through DNA and histone 
methylation, chromatin modifications, microRNAs, and long noncoding RNAs. In 
cell culture models, vimentin expression is regulated by the cell cycle, growth 
factors such as TGFβ1, PDGF and FGF, and INF-γ cytokine (Paulin et al., 2022). 
Moreover, the function, structure, and localization of the vimentin network are 
regulated by post-translational modifications (PTMs) such as citrullination, 
phosphorylation, ADP ribosylation, SUMOylation, and O-GlcNAcylation (Pérez-
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Sala et al., 2015) (Kraxner et al., 2021; Paulin et al., 2022). Specifically, vimentin 
can exist in both non-phosphorylated and phosphorylated forms while 
phosphorylation at specific sites by various kinases causes filament disassembly 
and depolymerization. Phosphorylation regulates the dynamic reorganization of 
the vimentin network under different conditions such as cell spreading, cell 
division, and motility (Inagaki et al., 1989; Robert et al., 2015).  

 

Figure 11. Illustration of the domain organization of vimentin. The central 
alpha-helical rod domain consists of three sub-helices including coil 1A, 1B, and coil 
2. Coil 1A and 1B are connected by linker L1 and coil 1B is connected to coil 2 by 
linker L2. Each monomer has an amino-terminal head and a carboxyl-terminal tail.  

 

Figure 12. Schematic illustration of the molecular structure of vimentin (not to 
scale). Parallel alignment of two IF monomers form a coiled-coil dimer. Antiparallel 
alignment of two dimers forms tetramer. Unit length filaments (ULFs) are formed by 
the lateral arrangement of eight tetramers which then form a filament by the end-to-
end elongation. The image was adapted from (Hohmann & Dehghani, 2019).  
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According to Human Protein Atlas database 
(https://www.proteinatlas.org/ENSG00000026025-VIM/tissue), vimentin is 
expressed in the majority of the tissues such as lung, brain, skin, bone marrow, 
and lymph nodes (Fig. 13) (Denielsson et al., 2018). 

 

Figure 13. Examples of tissues identified with vimentin. The image was adapted 
from (Denielsson et al., 2018) and created with BioRender.com. 

Single vimentin filaments are extremely extensible with the ability to be 
elongated up to at least 4.5-fold (Kraxner et al., 2021). Apart from the structural 
role of vimentin in regulating cell mechanics and stress resistance, more recent 
studies indicated that vimentin control gene regulation by interacting with 
signaling molecules and cell kinases (Paulin et al., 2022). Vimentin network is 
required to coordinate essential cellular functions such as mechanosensing, 
transduction, signaling pathways, motility, and inflammatory responses 
(Battaglia et al., 2018; Kraxner et al., 2021; Ostrowska-Podhorodecka et al., 2022; 
Paulin et al., 2022; van Beijnum et al.,2022). This network is especially important 
in physiologic and pathophysiologic functions related to wound healing and 

https://www.proteinatlas.org/ENSG00000026025-VIM/tissue
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tissue repair, fibrosis, angiogenesis, tumorigenesis, digestive diseases including 
Crohn’s disease and colitis, inflammatory functions, and host response to 
infections (Wang & Stamenovic, 2002; Danielsson et al., 2018; Pandita et al., 
2021; van Beijnum et al.,2022). Although previously mice lacking vimentin (Vim-
/-mice) were reported to develop and reproduce normally without a clear 
phenotype, recently lack of vimentin is shown to be associated with phenotypes 
in various diseases (Table 3) (Ridge et al., 2022).  

According to the Human Intermediate Filament database 
(http://www.interfil.org/), so far 119 distinct diseases have been associated 
with the IFs family (Omary, 2009; Sapra & Medalia, 2021). Regarding vimentin, 
a mutation in the human vimentin gene causes a rare multisystem disorder 
associated with premature aging (Cogné et al., 2020). Moreover, vimentin 
mutations have been identified in individuals diagnosed with cataracts (Mü Ller 
et al., 2009; Ma et al., 2016).  

Recently, vimentin has emerged as a promising potential target in cancer 
therapy. Targeting vimentin organization and function using small molecules, 
antibodies, and compounds such as fluvastatin and simvastatin could reduce 
migration and invasion of highly motile metastatic cancer cells (Sjöqvist et al., 
2021). 

Table 3. Phenotypes associated with vimentin-null (Vim-/-) mice. The table 
is adapted from (Ridge et al., 2022). 

Function Examples 
Cell proliferation, 
differentiation, 
migration, and 
tissue remodeling 

• Impaired wound healing: embryonic cells, fibroblasts 
• Impaired differentiation and transdifferentiation: 

endothelial cells, hepatic cells, keratinocytes 

Vascular 
Functions 

• Impaired multilayer communication and structural 
haemostasis of arterial wall  

• Impaired cell rigidity and cell adhesion: circulating 
lymphocytes  

• Poor vascularization 
Renal functions • Impaired Na–glucose co-transportation and recovery 
Metabolism and 
fat accumulation 

• Impaired lipid accumulation 
• Impaired lipolysis 

Viral and bacterial 
infections 

• Impaired pathogen entry  
• Impaired viral replication 
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2.3.5. Vimentin and wound healing 

Different studies showed that vimentin plays important role in the wound 
healing process (Ridge et al., 2022). Vim-/- cells display slow scab formation, 
defective fibroblast functions, impaired inflammatory and immune responses, 
and faulty angiogenesis which lead to impaired wound healing (Ridge et al., 
2022). It has been shown that motile cells express higher levels of vimentin and 
lack of vimentin dramatically delays fibroblast migration and subsequent 
contraction of the wound (Battaglia et al., 2018). Besides the defects in fibroblast 
functions, lack of vimentin is associated with delayed appearance of 
myofibroblasts and defects in TGF-β signaling and the EMT process (Cheng et al., 
2016). Furthermore, vimentin modulates the dynamics of cytoskeletal networks 
which generates sufficient force for wound contraction. It is well studied that the 
integrity of different cytoskeletal networks is dependent on one another. 
Specifically, the lack of structural support provided by vimentin leads to the 
impaired organization of non-intermediate filament cytoskeletal elements, 
reduced mechanical stability, and motility (Eckes et al., 2000; Challa & 
Stefanovic, 2011; Gladilin et al., 2014; Mendez et al., 2014; Boraas & Ahsan, 2016; 
Battaglia et al., 2018; Sharma et al., 2018; Hu et al., 2019; Patteson et al., 2019; 
Surolia et al., 2019; Vakhrusheva et al., 2019; Wilhelmsson et al., 2019; Schaedel 
et al., 2021; Ostrowska-Podhorodecka et al., 2022; Ridge et al., 2022). 

2.4. Mechanical stress in wound healing 
After the injury, cells in the wound site deal with serious changes in the 
mechanical forces which are produced by the injury itself or by the perturbation 
of epithelial sheet force balance. Human skin can convert environmental 
mechanical forces to biochemical signals which can affect wound healing 
outcomes. Previous studies showed that mechanical stress can alter the 
microenvironment of a healing wound by regulating cellular functions such as 
collagen fiber thickness, microvascular blood flow, inflammation, and signaling 
pathways (Cremers et al., 2015; Hastings & Shapiro, 2016; Fu et al., 2021; Kimura 
et al., 2021; Zhang et al., 2021; Jan et al., 2022; Monika et al., 2022; Sangwon et 
al., 2022; Xiaojie et al., 2022). Cells such as fibroblasts experience severe 
deformations during mechanical interactions and physiological processes such 
as EMT. In wound healing, fibroblasts undergo phenotypic changes during the 
EMT process and transition to myofibroblast (D’Urso & Kurniawan, 2020).  

There are four main mechanical stresses that cells may experience during the 
wound healing process including tension, compression, shear, and osmotic 
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stress (Fig. 14) (Barnes et al., 2018). Although some mechanical forces such as 
stretching can be clinically used as wound healing mechanotherapy, increasing 
mechanical stress can directly be correlated with increasing dermal fibrosis and 
scar formation (Urschel & Williams, 1988).  

Particularly, osmotic stress including hyper-osmotic and hypo-osmotic 
stresses can contribute to impaired wound healing. Generally, while hyper-
osmolarity triggers cell shrinkage, hypo-osmolarity increases the cell volume 
(Brocker et al., 2012). It has been shown that signaling in cell proliferation, cell 
migration, and apoptosis is significantly affected by osmotic stress and changes 
in cell volume (Nielsen et al., 2008). Osmotic imbalance happens in different 
pathological conditions such as systemic hyperglycemia or prolonged edema in 
diabetes (Brocker et al., 2012).  

During the wound healing process imbalance of osmotic conditions induces 
significant changes in signal transduction, gene expression, and metabolic 
activity of the cells which could cause impaired wound healing (Dascalu et al., 
2000; Kruse et al., 2016; Jingi et al., 2017).  

 

Figure 14. Schematic illustration of different types of cell mechanical forces 
and subsequent cellular responses. Four mechanical forces affect a cell's 
mechanical state: tension, compression, shear, and osmotic stress. Stimuli are 
transmitted to the cell via specific mechanoreceptors that trigger different cellular 
responses. The image was adapted from (Barnes et al., 2017).  

2.4.1. Role of vimentin in cell mechanical stress 

As we discussed in section 2.3, cytoskeletal proteins help cells to maintain 
mechanical integrity under large deformations. While actin and microtubule 
structures disassemble at moderate strains, IFs including vimentin are critical 
components to maintaining cellular strength, and stretchability at even higher 
strains (Eckes et al., 2000; Challa & Stefanovic, 2011; Gladilin et al., 2014; Mendez 
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et al., 2014; Boraas & Ahsan, 2016; Battaglia et al., 2018; Sharma et al., 2018; Hu 
et al., 2019; Patteson et al., 2019; Surolia et al., 2019; Vakhrusheva et al., 2019; 
Wilhelmsson et al., 2019; Schaedel et al., 2021; Ostrowska-Podhorodecka et al., 
2022; Ridge et al., 2022). Vimentin is a hyper-elastic network that interacts with 
other cytoskeletal networks to disperse the local mechanical stress to a larger 
region in the cytoplasm and protects cells against mechanical damage (Mendez 
et al., 2014; Hu et al., 2019). It has been shown that osmotic stress regulates 
cytoskeletal protein expression and organization. (Mendez et al., 2014; Hu et al., 
2019). Vimentin structural reorganization mediates resistance to osmotic stress 
by re-arrangement of different forms of vimentin with different molecular 
weights under varying conditions of osmolarity (Buchmaier et al., 2013).  

Hypo-osmotic stress makes a rapid cytoplasmic extension by partially 
depolymerization and redistribution of vimentin in the cytoplasm. While lack of 
vimentin causes a dramatic decrease in cell survival rate during osmotic stress 
which indicates the critical contribution of vimentin to the defense mechanisms 
and osmotic endurance (Li et al., 2019).  

2.4.2. Role of EVs in cell mechanical stress 

In multicellular organisms, cells work together to perform complex 
physiological processes such as cell growth, differentiation, and response to 
environmental stress (Hedlund et al., 2011). It has been shown that besides 
acting as efficient intercellular communicators, EVs are powerful signal 
transductors to coordinate environmental stimuli. Environmental stressors 
such as thermal and oxidative stress (Hedlund et al., 2011), radiation, 
photodynamic treatment, and chemotherapy (Aubertin et al., 2016), low pH 
condition (Parolini et al., 2009), nutrient deficiency (Gao et al., 2016), anoxia, 
and hypoxia (King et al., 2012) and cytoskeletal rearrangements (Liu & Su, 
2019) affect EVs release, distribution, compositions and function which 
eventually influence the physiological and pathological states of the cells (Qin, 
2020). In this manner, EVs can be considered either as a stress modifier to 
restore the normal physiological condition or as a conveyer of stress to induce 
stress-driven conditions. For example, EVs are involved in mediating 
environmental stress in different reproductive cells by activating rescue 
molecular signals during stress (Gebremedhn et al., 2020; Chan et al., 2020). In 
cancer therapy, EVs are considered an emerging therapeutic nanoplatform (Ma 
et al., 2021) and can transmit survival messages in the tumor 
microenvironment to support resistance to therapy (Neill & Gilligan, 2019).  
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2.5. Extracellular vimentin 
Vimentin was previously considered an intracellular protein with a structural 
role, however, recent evidence showed that vimentin can also be detected 
outside the cells (Patteson et al., 2020). The shorter and non-filamentous form of 
vimentin can be found on the cell surface or secreted in the extracellular 
environment either as a soluble form or as a vesicle-transported protein (Fig. 
15). Phosphorylation of vimentin affects its intracellular localization and 
promotes its secretion into the extracellular space. This process is regulated by 
protein kinase C (PKC) and signaling by pro-and anti-inflammatory cytokines 
(Patteson et al., 2020). Extracellular vimentin has been shown to release during 
inflammation, cell activation, senescence, apoptosis, stress, and injury (Yu et al., 
2018). Cell surface vimentin acts both as a receptor for different types of ligands 
such as carbohydrate chains and CD44 (Päll et al., 2011; Komura et al., 2012) and 
as a ligand for various receptors such as P-selectin (Lam et al., 2018). After 
vimentin is localized on the cell surface, the rod II domain of vimentin binds to 
GlcNAc-bearing polymers (Komura et al., 2012). 

Upon injury, extracellular vimentin is distributed along the ECM substrate 
beneath the cells mostly on the surface of filopodia/lamellipodial (Yu et al., 
2018). Extracellular vimentin promotes platelet adhesion (Da et al., 2014), 
angiogenesis (Lin et al., 2018), and fibroblast migration (Walker et al., 2018). In the 
wound healing process, extracellular vimentin could bind to the cell surface 
receptors such as CD44 and carbohydrate chains and transmits 
mechanotransduction signals to determine the cell fate (Päll et al., 2011; Komura 
et al., 2012). Activated macrophages secret extracellular vimentin as a 
proinflammatory factor and to remove the infection (Mor-Vaknin et al., 2003; 
Moisan & Girard, 2006). Furthermore, in spinal cord injury, vimentin is 
expressed by astrocytes and interacts with insulin-like growth factor 1 receptor to 
promote axonal growth and functional recovery (Jang et al., 2020; Shigyo et al., 
2015). Transient senescence has been shown to enhance fibroblasts’ activity and 
differentiation to prevent excessive fibrosis (Resnik et al., 2020; Wilkinson & 
Hardman, 2020). The expression of vimentin on the surface of fibroblasts could 
mediate the senescence process (Frescas et al., 2017). Interestingly, extracellular 
vimentin can act as a double-edged sword where it can promote the normal 
healing process or activate mesenchymal cells' transition to myofibroblasts and 
direct cell fate to fibrosis (Walker et al., 2018). 

Different studies showed that EVs and specifically exosomes are one of the 
potential pools for extracellular vimentin which we have named it here 
“exosomal vimentin”. Exosomal vimentin was reported to be detectable in 
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exosomes from different cell types. For example in colorectal cancer cells, 
exosomes act as a functional unit to efficiently transport functional vimentin to 
the target cells (Chen et al., 2016; Rahman et al., 2016).  

 

Figure 15. Extracellular vimentin pool and its roles. Extracellular vimentin can 
be found on the cell surface or secreted in the extracellular environment either as a 
soluble form or as a vesicle-transported protein. Extracellular vimentin mediates 
important biological functions such as cell proliferation, migration, senescence, 
inflammation, apoptosis, cell-cell interactions, and cell- pathogens interactions. The 
image was created with BioRender.com. 

2.6. Mass production of extracellular vesicles 
Due to the complexity of EVs cargo, small sizes, limited quantities, high 
variability in isolation and purification methods, and poor reproducibility, 
studying EVs is still challenging (Ramirez et al., 2018; Sharma et al., 2020). One 
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of the prerequisites for investigating the clinical application of EVs on an 
industrial scale is the reproducible large-scale production of EVs (Ramirez et al., 
2018; Sharma et al., 2020). Hence consistent and effective mass production of 
EVs is one of the most important factors in their therapeutic application. It has 
been shown that the metabolic signature of EVs depends on the cell culture 
conditions of their parental cells (Palviainen et al., 2019) and preconditioning of 
cell culture can improve the production and clinical use of isolated EVs (Kim et 
al., 2018). This could happen using various methods such as genetic 
manipulation, exposure to hypoxia, increasing intracellular calcium, and 
treatment with bioactive molecules (Kim et al., 2018).  

However, all of these modifications are approved in a traditional mono-layer 
culture which has a limited expansion, possibility of phenotypic changes, and 
loss of therapeutic activity during long-term passaging (Kim et al., 2018). Due to 
the significantly different microenvironment in tissue architecture, 2D cell 
monolayer by the traditional cell culture method is not capable to represent the 
physiology of in vivo 3D tissues or organs (Kim et al., 2018; Thippabhotla et al. 
2019). It has been shown that 3D culture can improve paracrine function while 
producing more exosomes (Kim et al., 2018). According to previous studies, 3D 
spheroid culture stimulates the secretion of more in vivo like EVs and specifically 
increases exosome secretion from mesenchymal stem cells with higher 
therapeutic potential (Kim et al., 2018; Cha et al., 2018). Also, it has been 
reported that the production of EVs in bioreactors such as hollow-fiber 
bioreactors (Watson et al., 2016) (Patel et al., 2019) and CELLine Adhere 1000 
(CLAD1000) flask (Mitchell et al., 2008; Palviainen et al., 2019) can maximize the 
EV yield in comparison to conventional cell cultures.  
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3. Outline and Key Aims of the Thesis 

Vimentin is a cytoskeletal protein important for many cellular processes 
including wound healing. While its functions are usually related to vimentin as 
an intracellular protein, vimentin also can be exposed at the cell surface in an 
oligomeric form or secreted to the extracellular environment in soluble and 
vesicle-bound forms. Vimentin has been reported to be detectable in exosomes 
from different cell types. However, the role of exosomal vimentin in mediating 
wound healing had not been studied.  

Prompted by previous findings underlying the involvement of extracellular 
vimentin in mediating tissue regeneration and wound healing, we hypothesized 
that extracellular vimentin in the vesicle form might have a role in wound 
healing. The key aim of my thesis was to elucidate the role of exosomal vimentin 
in promoting fibroblasts’ functions in wound healing. Hence, I have isolated EVs 
from wild-type (WT) and Vim-/-ASCs and used human skin fibroblasts (HDFs) 
as a model to study the potential effect of exosomal vimentin on the healing 
process. Furthermore, I have studied the effect of osmotic stress on the 
vesiculation rate and specifically on exosome production, morphology, and 
function during wound healing. The results from in vitro studies were confirmed 
in in vivo models using mice skin injury. Moreover, I have developed a protocol 
to enhance exosome production using NFC in combination with the CELLine AD 
bioreactor. 
 
Specifically, we aimed: 

I. To investigate the existence and effect of exosomal vimentin from ASCs 
on fibroblasts’ function in wound healing. (I) 

II. To investigate how mechanical cell stresses such as osmotic stress affect 
exosome mediating wound healing. (II) 

III. To develop an easy and efficient method to enhance EVs production from 
ASCs. (III) 
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4. Materials and Methods 

The experimental procedures used in this thesis are presented in table 4. 
Detailed experimental procedures and used materials can be found in the 
original publications and the patent draft, at the end of the thesis. 

Table 4. An overview of the experimental procedures used in this thesis. 
*Experiments performed in collaboration with colleagues 

Experimental procedure Study 
3D cell culture using nanofibrillar cellulose III 
BCA assay I, II, III 
Cell culture (APCs) I, II, III 
Cell culture (HDFs) I, II, III 
Cell culture using CELLine AD bioreactor I, III 
Cell-derived matrices (CDMs) I, II 
Cell proliferation by MTT assay I, II, III 
Cell transfection I 
Cell Apoptosis and Analysis II 
Directional cell migration assay I, II 
Dynamic Light Scattering (DLS) I, II 
Exosome isolation using ultracentrifugation I, II, III 
Exosome isolation using ultrafiltration I 
Exosome Labeling and Quantification I, II, III 
Fluorescent microscopy I, II, III 
Hematoxylin and eosin staining and quantification I, II 
Immunofluorescence staining (IF) I, II, III 
In vitro tracking (uptake assay) I, II, III 
Image analysis* I, II, III 
Mass spectrometry* I 
Mouse skin injury model and treatment I, II 
Nanoparticle Tracking Analysis (NTA)* I, II, III 
Osmotic stress induction II 
RNA isolation and qPCR analysis I, II 
Scratch closure assay I, II 
Statistical analysis I, II, III 
STED microscopy* I 
Transmission electron microscopy (TEM) I, II, III 
Western blot analysis (WB) I, II, III 
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4.1. Cell culture 
3T3L1 adipocyte progenitor cells (APCs) were used for exosome isolation. 
Human dermal fibroblasts were cultured as an in vitro model to study the effect 
of isolated exosomes (I, II, III) on fibroblasts’ functions during wound healing. 
Cell culture media supplemented with EV depleted serum was used to isolate 
exosomes. APCs or preadipocytes are a small population of immature cells within 
the adipose tissue. The main function of APCs is to differentiate into fat cells 
(Pyrina et al., 2020).  

While APCs commonly stand for antigen-presenting cells, during this thesis, 
APCs present adipocyte progenitor cells. 

Table 5. List of the cell lines used in the thesis.  

Cell line Type Study 
3T3 L1 WT and Vim -/- Adipocyte progenitors (APCs) I, II, III 
HDF WT and Vim -/- Human dermal fibroblast I, II, III 

 
CELLine AD (Adhere) 1000 flask was used in some experiments to promote the 
production of EVs (I, III). For 3D culture in publication III, NFC called GrowDex® 
was used to form spheroids. According to the producer – UPM Biomedicals – 
GrowDex® is an animal-free, ready-to-use hydrogel that simulates and supports 
cell growth and differentiation.  

4.2. Exosome isolation and labeling (I, II, III) 
APCs-derived exosomes (APC-Exos) were isolated using differential 
ultracentrifugation (I, II, III). However, in study I, besides differential 
ultracentrifugation, the ultrafiltration method was used to maximize capturing 
of exosomal vimentin especially those that are incorporated into the surface of 
exosomes.  

In study II, to investigate the role of exosomal vimentin in mediating osmotic 
stress conditions, exosomes were isolated from six conditioned media which are 
summarized in table 5. 
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Table 6. Conditioned media are used in the studies of this thesis. H-: hypo-
osmotic stressed, H+: hyper-osmotic stressed. 

Cell source Abbreviation 

1 Exosomes from wild-type adipocyte progenitor cells WT-Exo 

2 Exosomes from vimentin knockout adipocyte progenitor 
cells 

Vim-/-Exo 

3 Exosomes from wild-type hypo-osmotic stressed adipocyte 
progenitor cells  

WT-H-Exo 

4 Exosomes from vimentin knockout hypo-osmotic stressed 
adipocyte progenitor cells 

Vim-/-H-Exo 

5 Exosomes from wild-type hyper- osmotic stressed adipocyte 
progenitor cells 

WT-H+Exo 

6 Exosomes from vimentin knockout hyper-osmotic stressed 
adipocyte progenitor cells 

Vim-/-H+Exo 

4.3. Exosomes characterization (I, II, III) 
After exosome isolation and before any further analysis, the protein content of 
isolated exosomes was measured using the Pierce BCA protein assay kit. The 
optimal dose of APC-Exos to affect the proliferation and migration of HDFs was 
tested in a wound scratch assay. Exosomes were characterized using western 
blot (WB), NTA, and TEM microscopy (I, II, III). In study I, DLS analysis was used 
to measure the size of the exosomes, and STED microscopy was used to confirm 
the incorporation of vimentin into the isolated exosomes. In studies II and III, 
fluorescent microscopy was used to measure the number of fluorescently labeled 
exosomes.  

4.4. Protein expression (I, II, III) 
In this thesis, WB was used to detect exosomal markers (CD9, CD63, CD 81, and 
Hsp70), apoptosis marker (PARP-1), vimentin, and ECM proteins such as 
collagen I. The architecture of Cell-derived matrices (CDMs) was visualized by 
immunofluorescence staining for collagen I and fibronectin. Vimentin and CD9 
antibodies were used in ImmunoEM to characterize isolated exosomes. A 
vimentin antibody was also used in STED microscopy to detect the localization 
of vimentin and fluorescently labeled exosomes. The list of the antibodies used 
in this thesis is presented in table 6. 
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Table 7. Primary antibodies are used in the studies of this thesis and their 
applications. WB: western blot, IF: immunofluorescence, ImmunoEM: immune-
electron microscopy. 

Antibody Company Application Study 

β-actin Cell Signaling WB II 

CD9 Novus biological ImmunoEM II 

CD9 System Biosciences WB I, II, III 

CD63 System Biosciences WB I, II 

CD81 System Biosciences WB I, II, III 

Collagen I  Novus  IF I, II 

Fibronectin  Sigma-Aldrich IF I 

GAPDH System Biosciences WB I, II 

Hsp70 System Biosciences WB I, II, III 

PARP-1 (clone F2) SantaCruz  WB II 

Vimentin (clone O91D3) Biolegend WB I, II 

Vimentin (clone RV203) Novus ImmunoEM II 

4.5. Mouse skin injury model (I, II) 
For in vivo wound healing model, 5–8 weeks old male mice were anesthetized, 
wounded, and then treated with isolated exosomes. In study I, mice bare skin 
was treated with WT and Vim-/-Exos, and in study II, treatments were done 
using WT, Vim-/-, WT-H+, WT-H-, Vim-/- H+, and Vim-/-H-Exos. For histology 
analysis, mice were sacrificed by cervical dislocation and their wound tissue 
samples were biopsied, fixed, and stained with hematoxylin and eosin. 
Furthermore, total RNA from skin tissue and spleen was isolated and gene 
expression of the following genes was measured by quantitative polymerase 
chain reaction (qPCR). 
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Table 8. List of genes and their primers for qPCR analysis.  

Gene  Forward Primer Sequence5′ 
→3′ 

Reverse Primer Sequence 5′ 
→3′  

Study 

Mouse-β-
Actin 

GGCTGTATTCCCCTCCATCG CCAGTTGGTAACAATGCCATGT I, II 

Mouse- 
Col-I 

GAGCGGAGAGTACTGGATCG TACTCGAACGGGAATCCATC I 

Mouse-
Granzyme 
B 

TCGACCCTACATGGCCTTAC TGGGGAATGCATTTTACCAT II 

Mouse-IL-
6 

GTTCTCTGGGAAATCGTGGA TGTACTCCAGGTAGCTATGG I 

Mouse-IL-
10 

CGGGAAGACAATAACTGCACCC CGGTTAGCAGTATGTTGTCCAGC I 

Mouse-IL-
12 

CAGCATGTGTCAATCACGCTAC TGTGGTCTTCAGCAGGTTTC II 

Mouse- 
TGFβ1 

CTCCCGTGGCTTCTAGTGC GCCTTAGTTTGGACAGGATCTG I 

Mouse-
TNF-α 

TCTCATCAGTTCTATGGCCC GGGAGTAGACAAGGTACAAC I, II 



 

51 

5. Results and Discussion 

5.1. Exosomal vimentin accelerates wound healing by 
affecting fibroblasts’ functions 

5.1.1. WT-APC-Exos enhance the proliferation of HDFs in vitro (I, II) 

ASC-Exos have been previously shown to carry various bioactive factors that 
biologically benefit fibroblasts’ functions in wound healing. ASC-Exos restore the 
epidermal barrier and enhance skin elasticity by downregulating the expression 
of inflammatory cytokines such as interleukins (IL-1β, IL-4, IL-5, IL-6, IL-8, IL-
13), TNF-α, and interferon-gamma (IFN-γ) and upregulating TGF-β, MMP-1, 
ceramides, and procollagen type I (Hassan, Greiser, and Wang 2014) (Zgheib et 
al., 2014). Furthermore, ASC-Exos enhance the re-epithelization by reducing the 
production of reactive oxygen species (ROS) and oxidative stress-related 
proteins such as NADPH oxidase 1/4 (NOX1/4) and increasing the expression of 
MMP-9 and vascular endothelial growth factor (VEGF). Moreover, ASC-Exos have 
been reported to increase tissue thickness by enhancing tube formation of 
vascular endothelial cells and decreasing infiltration of inflammatory cells and 
apoptosis (Xiong et al. 2020).  

Basic fibroblast growth factor (bFGF) is a cytokine that is clinically widely 
used in accelerating the outcome of wound healing. The bFGF enhances the 
quality of scar and regeneration by inducing fibroblasts proliferation, 
angiogenesis, and recruiting leukocytes to the inflammation sites (Akita et al., 
2013). During our study, bFGF was used as a positive control to enhance HDFs’ 
behavior toward healing such as proliferation and migration. 

In this thesis, isolated exosomes were characterized for their morphology, 
size, and expression of the surface markers by different methods (I, II, and III). 
To find the optimal concentration of APC-Exos, three different doses (10, 100, 
and 200 µg/ml) were tested in a wound scratch assay. The results showed that 
100 µg/ml of WT-APC-Exo was the optimal concentration to enhance wound 
closure (I, Fig. 2 (a-d)). In study I, the effect of WT and Vim-/-APC-Exos on HDFs’ 
proliferation was measured by MTT assay and microscopy images (I, Fig. 3). The 
results showed that while both Exos promote HDFs’ proliferation compared to 
the negative control (DM), a higher proliferation rate was observed for treatment 
with WT-APC-Exos. In study II, when we measured the effect of WT and Vim-/-
APC-Exos on HDFs proliferation in osmotic stress conditions, the same results 
were obtained (II, Fig. 3 (c)).  
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5.1.2. WT-APC-Exos enhance the migration of HDFs in vitro (I, II) 

Exosomes have been previously reported to promote cell directional migration 
in two ways: firstly, exosomes as a carrier of ECM components, simulate 
extracellular receptor signaling and enhance matrix attachment and cell 
migration. Secondly, exosomes carry a cargo of several necessary molecules that 
promote cell motility including proteinases, chemokines, and growth factors 
(Sung et al., 2015). Also, it has been frequently reported that vimentin plays a 
crucial role in the determination of fibroblast directional migration (Margiotta & 
Bucci, 2016).  

In Study I, our results confirmed that WT-APC-Exos significantly drive 
directional cell motility towards the same y-coordinate in a linear path to close 
the wound. Interestingly, despite an increase in cell velocity, Vim-/-APC-Exo 
imposed a directionless path of a zigzag' pattern to close the wound (I, Fig. 2 (e-
g)). Furthermore, in the line with these results, in study II, we observed a random 
cell orientation for non-treated (controls) and treated HDFs with Vim-/-Exos, 
while HDFs treated with WT-Exos were aligned in a certain direction (II, Fig.5 (a 
and b)). 

5.1.3. WT-APC-Exos promote ECM production by HDFs in vitro (I, II) 

ECM components such as collagen and fibronectin are critical for wound healing. 
Vim-/- fibroblasts have been shown a reduction in ECM production which leads 
to delayed wound healing (Cheng et al., 2016). Furthermore, exosomes have 
been reported to promote the healing process by regulating ECM remodeling 
(Wang et al., 2017).  

CDMs are decellularized extracellular matrices that recapitulate the 
composition and organization of native ECM microenvironments. CDMs could 
provide a better physiologically relevant alternative to studying in vivo-like cell 
behavior in an in vitro model (Fitzpatricka, 2008). CDMs consist of a complex 
mixture of fibrillar proteins, matrix macromolecules, and growth factors 
(Kaukonen et al., 2017). Hence, in this thesis to study ECM production, CDMs 
secreted by HDFs were used to mimic in vivo microenvironment. 

In studies I and II, we observed that WT-APC-Exo could significantly enhance 
the production of CDMs by HDFs when compared to Vim-/-APC-Exo (I, Fig. 5 and 
II, Fig. 5 (c and d)). These results could suggest that exosomal vimentin as one of 
the extracellular vimentin pools plays a key role in the reconstruction and 
organization of the ECM components.  
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5.1.4. WT-APC-Exos promote wound healing in vivo (I) 

As mentioned earlier, growth factors and cytokines such as ILs are essential 
mediators in regulating inflammatory cells and the healing process. For example, 
the downregulation of IL-6, IL-8, and TNFα and upregulation of anti-
inflammatory cytokines such as IL-10 and TGF-β are crucial for successful wound 
healing (Zgheib et al., 2014). Impaired wound healing has been linked to 
increased levels of TNF-α and IL-6 and decreased levels of anti-inflammatory IL-
10 (Xu et al., 2013). TGF-β is a cytokine with powerful anti-inflammatory 
functions that is crucial for epidermal haemostasis, re-epithelialization, and 
angiogenesis (Ramirez et al., 2014). TNFα is a proinflammatory cytokine that 
quickly releases and initiates inflammation at wound sites. IL-6 is produced at 
the site of inflammation and mediates the transition from acute to chronic 
inflammation (Gabay, 2006).  

Our results from in vivo experiments confirmed the in vitro data and showed 
that wounds treated with WT-APC-Exos significantly healed faster compared to 
Vim-/-APC-Exos and control groups (I, Fig. 6 (a and b)). Moreover, histological 
analysis revealed that WT-APC-Exo treatments reduce inflammation and 
immune cell infiltration by downregulating pro-inflammatory cytokines such as 
IL-6 and TNF-α and up-regulating anti-inflammatory cytokines such as IL-10 (I, 
Fig. 6 (c)). Furthermore, RT-qPCR analysis showed that TGFβ and collagen I were 
significantly higher in the WT-APC-Exos group while IL-6 and TNFα were lower 
(I, Fig. 6 (d-g)).  

5.1.5. Vimentin carried by exosomes is internalized by HDFs (I) 

Previously, it has been shown that the biogenesis, secretion, and uptake of EVs 
require the remodeling of cytoskeletal proteins (Mulcahy et al., 2014; Margiotta 
& Bucci, 2016). Furthermore, surface interactions of EVs with their recipient 
cells are regulated by cytoskeleton components which participate in the fusion 
and transport of intracellular membranes (Théry et al., 2002; Buzás et al., 2018).  

Intracellular vimentin has been reported to attach to the nucleus, 
endoplasmic reticulum, and mitochondria (Challa & Stefanovic, 2011). Upon 
injury, vimentin can be localized to the cell surface in an oligomeric form or 
released to the extracellular space in soluble and vesicle-bound (Yu et al., 2018). 
According to previous studies, cytoskeleton proteins including vimentin are 
detectable in extracellular vesicles and specifically in exosomes (Kumari et al., 
2015; Rahman et al., 2016; Dozio & Sanchez, 2017; Tucher et al., 2018; Adolf et 
al., 2019). 
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To confirm the observed effects of exosomal vimentin on fibroblasts’ 
proliferation, migration, and ECM production, both WT and Vim-/-APCs were 
transfected with pEGFP-VIM plasmid. Our results confirmed the incorporation of 
pEGFP-VIM in both cell lines as well as their isolated exosomes. Figure 15 (a) 
shows the successful transfection of pEGFP-VIM in Vim-/- APCs. Figure 15 (b) 
demonstrates the uptake of exosomes isolated from transfected Vim-/- APCs by 
HDFs. 

 

Figure 16. (a) Representative images of successful transfection of Vim−/-APCs with 
pEGFP-VIM plasmid 24-hour post-treatment. (b) Representative images of 
internalization of exosomes isolated from transfected Vim-/- APCs with pEGFP-VIM 
plasmid by HDFs 24-hour post-treatment. Scale bar: 10 μm. 

Furthermore, our result from the exosome uptake assay showed that while 
both WT and Vim-/- Exos were taken up by HDFs, a higher uptake percentage 
was achieved for WT-APC-Exo (I, Fig. 5 (a-d)). This data suggest that vimentin 
might play a role in exosome uptake and internalization. We then confirmed the 
incorporation of vimentin into the WT-APC-Exos using STED microscopy (I, Fig. 
5 (e)) and mass spectrometry (I, table 2). The results of both experiments 
confirmed that vimentin is incorporated into the WT-APC-Exos but not Vim-/-
APC-Exos. Specifically, the results from STED microscopy showed that vimentin 
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could be found either on the surface or inside the exosomes. Nevertheless, 
further experiments are needed to clarify the packing process and structural 
organization of exosomal vimentin.  

5.2. Exosomal vimentin protects fibroblasts against 
osmotic stress  

5.2.1. WT-APCs tolerate osmotic stress better than Vim−/−APCs (II) 

Osmotic stress cause changes in cell volume, cell viability, and proliferation by 
affecting different signaling pathways (Eduardsen et al., 2011; Sachs & 
Sivaselvan, 2015; Chen & Li, 2017). In osmotic stress conditions, vimentin forms 
a sponge-like interior cage to the membrane that distributes osmotic stress 
throughout the cell volume (Buchmaier et al., 2013; Li et al., 2019).  

Our findings from culturing WT and Vim-/- APCs under osmotic stress 
conditions indicated that hypo-osmotic stress media increase and hyper-osmotic 
stress media decrease the cell volume, and these changes are higher in Vim-/- 
APCs (II, Fig.1). Furthermore, these results showed that WT-APCs can tolerate 
osmotic stress better than Vim-/-APCs and lack of vimentin makes cells 
significantly vulnerable to environmental stress, which could point out the role 
of vimentin in supporting cells against osmotic stress.  

5.2.2. Osmotic stress increases exosome size and production (II) 

The composition of exosome cargo is significantly influenced by environmental 
changes that affect the outcome of communication between the exosome-
producer and the recipient cells (Villarroya-Beltri et al., 2014). Besides the role 
of exosomes in cell-cell communication, exosomes are considered an alternative 
way to eliminate waste products. Exosomes containing cell waste materials have 
been shown to communicate with neighboring cells about intracellular stress. In 
this manner, the larger size and number of exosomes could be explained by two 
mechanisms: firstly as an efficient route to dispose of cellular waste, and 
secondly as a communicator carrier of signaling, toxic, and regulatory molecules 
to modify other cells’ functions (Fader et al., 2008; de Jong et al., 2012; Soria et 
al., 2017). 

Our results from DLS, NTA, WB, TEM, and immunofluorescence microscopy 
showed that osmotic stress increases the size and the number of secreted 
exosomes by both WT and Vim-/-APCs (II, Fig. 2).  
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5.2.3. WT-Exos enhance proliferation and prevent apoptosis of 
osmotic-stressed HDFs (II) 

Autophagy is an intracellular vesicular-related process that promotes cell 
survival and maintains intracellular haemostasis during stress conditions. 
Autophagy can happen before the programmed cell death process called 
apoptosis (Baixauli et al., 2014; Chen et al., 2018; Salimi et al., 2020). Apoptosis 
is mediated by proteolytic enzymes called caspases. The caspase cascade 
including caspase-3 and caspase-7 is responsible for executing cell death by 
proteolytic cleavages of several substrates such as structural components of the 
cytoskeleton and nucleus, as well as numerous proteins involved in signaling 
pathways (Lakhani et al., 2006). Poly ADP (adenosine diphosphate)-ribose 
polymerase (PARP-1) is a chromatin-associated protein that is involved in 
maintaining DNA stability and repair. PARP-1 is one of the critical substrates that 
is cleaved by caspases which could be considered an indicator of functional 
caspase activation (Puig et al., 2001). To study apoptosis, we measured the 
expression of cleaved caspase-3, cleaved caspase-7 as well as cleaved PARP-1 in 
cells undergoing apoptosis. 

Exosomes have been previously shown as cellular waste disposal 
compartments when the transport through the degradative or lysosomal 
pathway is hindered due to stress (Fader et al., 2008). It has been reported that 
in stress and pathological conditions exosomal and cell death pathways such as 
autophagy are cross regulated. MSC-Exos have been shown to protect cells 
against stress-induced apoptosis (Z. Liu et al., 2019). 
Vimentin is a highly stable and stress-resistant cytoskeleton protein. Vimentin 
has been shown to mediate autophagy by regulating organelles distribution (Id 
et al., 2019). As mentioned earlier, upon injury, vimentin releases into the 
extracellular space and binds to the cell surface of repair-modulating cells 
(Buchmaier et al., 2013; Li et al., 2019). Vimentin-containing vesicles are one of 
the potential sources of extracellular vimentin pool (Shigyo & Tohda, 2016; 
Patteson et al., 2020).  

Prompted by our previous findings underlying the involvement of exosomal 
vimentin in promoting cell proliferation, migration, and ECM production, we 
explored whether exosomal vimentin plays a role in cell resistance to osmotic 
stress and cell protection against apoptosis. Our results showed that the co-
culture of osmotic-stressed HDFs with WT-Exos considerably suppressed both 
hypo and hyper osmotic-induced apoptosis compared to non-treated osmotic-
stressed HDFs (II, Fig. 4 (a, b, e, f, and h)). 
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5.2.4. Osmotic-stress-induced exosomes influence HDFs proliferation 
and apoptosis (II) 

As we discussed in section 5.2.2, the composition, biogenesis, and secretion of 
exosomes are greatly affected by cellular stress conditions (Parolini et al., 2009; 
Hedlund et al., 2011; King et al., 2012;  Aubertin et al., 2016 ; Liu & Su, 2019). We 
have also separately discussed the importance of exosomes and vimentin in 
protecting cells against apoptosis in section 5.2.3.  

We then studied the effect of exosomes from osmotic-stressed APCs on HDFs’ 
proliferation and apoptosis. HDFs were co-cultured with WT-H-Exos, Vim-/-H-

Exos, WT-H+Exos, and Vim-/-H+ Exos, and proliferation and apoptosis rates 
were measured using WB and microscopy. It appeared that HDFs’ proliferation 
was slowed down (II, Fig. 3 (d)) and the apoptosis rate was increased after 
treatment of normal HDFs with hypo and hyper osmotic-stressed exosomes (II, 
Fig. 4 (c, d, e, g and i)). Taken together, our data showed that WT-Exos 
significantly suppressed osmotic-induced apoptosis, whereas exosomes from 
osmotic-stressed APCs can induce apoptosis. This data indicated exosomes 
either as stress modifiers to maintain the osmotic balance or as a conveyer of 
stress to induce osmotic stress-driven conditions. 

5.2.5. WT-APC-Exos promote wound healing in an osmotic-stressed in 
vivo model (II) 

To confirm our results obtained from in vitro experiments, we tested the 
involvement of exosomal vimentin in wound healing in an in vivo osmotic-
stressed mouse model. The results demonstrated that wounds treated with WT-
APC-Exos healed faster with a minimum scar size than mice treated with Vim-/-
APC-Exos (II, Fig. 6 (a-c)). IL-12 is an endogenous inhibitor of re-vascularization 
and our RT-qPCR analysis showed that IL-12 was significantly higher in the Vim-
/- Exo group or control group when compared to the WT-APC-Exos group (II, Fig. 
6 d). Our results may suggest that WT-APC-Exos can modify osmotic stress-
induced apoptosis in fibroblasts while exosomal vimentin plays a vital role in this 
process. 

5.2.6. WT-APC-Exos affect collagen fiber orientation and promote ECM 
production by osmotic stressed HDFs (II) 

As we previously discussed in section 5.1.2, exosomes can mediate efficient cell 
directional migration by carrying ECM components and necessary molecules for 
cell motility such as proteinases, chemokines, and growth factors (Sung et al., 
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2015). Moreover, we discussed that vimentin is crucial in the determination of 
fibroblast directional migration (Margiotta & Bucci, 2016).  

Encouraged by our results from section 5.1.2, we studied the effect of WT and 
Vim-/-APC-Exos on the orientation of ECM fibers using CDMs secreted by 
osmotic stressed HDFs. Our results showed that the directionality of collagen 
fibers was similar to the direction of their original cells (II, Fig. 6 (a and b)). 
Furthermore, the fibers from CDMs secreted by WT-Exos treated HDFs were 
aligned in a certain direction. But there was a random fiber orientation for non-
treated HDFs (controls) and treated HDFs with Vim-/-Exos, (II, Fig. 6 (c-f)). 

Our results from studies I and II showed that exosomal vimentin played a 
significant role in mediating wound healing by affecting fibroblasts’ functions. 
Besides the mechanical and structural functions of vimentin in regulating cell 
mechanics, vimentin has non-mechanical functions in both filamentous and non-
filamentous forms. Vimentin controls important cellular functions such as 
cancer, traumatic tissue injury, bacterial or viral infection, rheumatoid arthritis, 
multiple sclerosis, aging and senescence, innate and adaptive immune responses, 
and thrombosis via interactions with other cytoplasmic intermediate filaments 
and cellular signaling molecules (Messica et al., 2017; Hu et al., 2019; Patteson et 
al., 2019; Kraxner et al., 2021; Schaedel et al., 2021; Ostrowska-Podhorodecka et 
al., 2022; Paulin et al., 2022; Ridge et al., 2022). Our results from HDFs treated 
with WT and Vim-/-APCs-Exos showed that lack of extracellular vimentin in a 
vesicle form could adversely affect fibroblasts’ function and delay the healing 
process. In our experimental setup, lack of vimentin was the only difference 
between treatments. However, the observed effect from Vim-/-APCS-Exos 
treatments might be due to the loss of other cellular and molecular interactions 
mediated by vimentin such as interactions with other cytoskeleton proteins and 
signaling molecules. Furthermore, comparing HDfs treated with both WT and 
Vim-/-Exos with negative control (depleted media after exosome isolation) 
demonstrated that regardless of having exosomal vimentin, both Exos could 
significantly enhance fibroblasts’ functions. These data indicate the importance 
of exosomal cargo such as growth factors, lipids, DNA, and RNA in optimizing the 
functions of recipient cells. 
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5.3. Efficient production and enhanced delivery of 
exosome using nanofibrillar cellulose- bioreactor cell 
culture method  

5.3.1. 3D cell culture using nanofibrillar cellulose stimulates the 
secretion of in vivo-like exosomes (III) 

It has been shown that MSCs in the 3D spheroid form released more IL-1 and 
proangiogenic cytokines such as VEGF, bFGF, and angiogenin (Kim et al., 2018). 
3D spheroid culture has been previously shown to enhance paracrine function 
and stimulate the secretion of in vivo-like extracellular vesicles compared to 
conventional monolayer culture (2D) (Kim et al., 2018; Cha et al., 2018). The 
increased secretion of MSC-Exos is caused by the changes in the morphology of 
spheroids to non-adherent round shapes (Kim et al., 2018).  

In study III, we first optimized the optimal concentration of NFC for both HDFs 
and APCs. Our results showed that 0.2% and 0.4% NFC in cell culture media were 
the optimal concentrations to obtain spheroids by APCs and HDFs, respectively 
(III, Fig. 1). We then measured the production of APC-Exos using NFC 3D cell 
culture by NTA, WB, and microscopy. Our data showed that this cell culture 
method stimulates the secretion of exosomes by APCs spheroids compared to 2D 
culture (III, Fig. 2, 3, and 4). We then tested the functionality of APCs-Exo isolated 
from 2D and 3D cultures in an uptake assay. To do that four uptake experiments 
were performed including 2D HDFs + 2D Exo, 2D HDFs + 3D Exo, 3D HDFs + 2D 
Exo and 3D HDFs + 3D Exo. The results showed that 3D HDFs treated with APC-
Exos from 3D culture present the highest uptake efficiency (III, Fig. 5).  

5.3.2. Cell culture using a Bioreactor in combination with 
nanofibrillar cellulose enhances the production and delivery of 
exosomes (III) 

Studies showed that the production of EVs in bioreactors such CELLine Adhere 
1000 (CLAD1000) flask significantly enhances the cell culture period and 
consequently the EV yield in comparison to conventional cell cultures (Mitchell 
et al., 2008; Palviainen et al., 2019; Patel et al., 2019).  

Encouraging by our results from the previous section, we tested if the 
combination of Bioreactor and NFC could enhance exosome production even 
more. Since the cell compartment in CELLine Adhere 1000 flask is designed for 
adherent cells, we first optimized the surface of the bioreactor for 3D culture 
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using 0.5% agarose. Then APCs spheroids were cultured in the bioreactor. 
Proliferation and exosome production were measured after 5, 7, 10, and 14 days 
of culture. Our results showed that compared to 2D culture, 3D culture using 
NFC, and bioreactor culture, by this method, cell culture can continue for a longer 
time (up to 30 days). Furthermore, the results showed that this method 
compared to the other mentioned methods promotes cell proliferation (III, Fig. 
9) and exosome production (III, Fig. 10). 
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6. Conclusions 

Altogether, our findings indicated that exosomal vimentin by promoting the 
function of fibroblasts contributes to the wound healing process. Furthermore, 
the results of this study showed that in osmotic stress, exosomal vimentin 
protects cells against stress-induced apoptosis (Fig. 15). This observation raises 
the possibility that cytoskeleton disruption could have an impact on exosome 
transportation, internalization, and, finally, cell communication mediated by 
exosomes. However, future investigations are necessary to investigate the 
mechanisms behind the packaging of vimentin into the exosomes, the secretion 
and organization of exosomal vimentin, its delivery to recipient cells, and related 
signaling pathways and PTMs. Advances in exosome isolation and purification 
techniques, imaging, and single-cell exosomics may help to characterize 
exosomal vimentin further. Such studies could significantly broaden our 
understanding of exosomes as novel cell-free agents in mediating wound healing 
and cellular stress. 

 

Figure 17. Schematic illustration of the role of exosomal vimentin in mediating 
wound healing in osmotic stress fibroblasts. The image was created with 
BioRender.com.  
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