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Abstract

Nonlinear Model Predictive Control (NMPC) is an advanced optimization-based

control method for both linear and nonlinear dynamical systems. In this thesis,

a NMPC software is developed in Matlab to control a Selective Catalytic Reduc-

tion (SCR) process, which is a process to reduce nitrogen oxide emissions from

diesel and gas engines using ammonia or a urea solution. The SCR model that is

used in this thesis is modeled as a state space model consisting of three nonlin-

ear ordinary differential equations. A simplified nonlinear version of this model

is used in the NMPC as a prediction model. State estimation is used to esti-

mate missing measurements from the SCR process; a Moving Horizon Estimator

(MHE) is implemented in Matlab for this purpose. Since no theory is available

for this kind of nonlinear output feedback MPC, the results of the control and es-

timation are presented through simulation. The simulations show that the SCR

can be controlled with only a few measurements using MHE and NMPC. A ma-

jor advantage with NMPC is that the ammonia slip can also be controlled. Some

mathematical results of NMPC combined with nonlinear MHE are discussed and

MHE convergence for a linear detectable plant is proved, slightly improving the

corresponding results in the research literature.
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Chapter 1

Introduction

The main aim of this work is to design a model predictive controller that controls

a Selective Catalytic Reduction (SCR) process efficiently. The SCR model that is

used in this thesis is developed by Milver Colmenares in his master’s thesis [11].

The model is nonlinear, and therefore, a nonlinear model predictive controller is

proposed. Model predictive control (MPC) is an advanced control process based

on optimization. The goal is to reduce emissions from the SCR process and keep

them beneath the emission regulations. MPC can handle constraints on states

and on the control signal, so the emission restrictions are easily implemented as

constraints for the controller.

In MPC the system behaviour is predicted, using a prediction model of the

real system or process. The future behaviour is then optimized, and the first

optimal control decision is used as input for the next time step.

Often, linearization is used for a nonlinear model, since linear MPC is compu-

tationally less demanding than NMPC. However, the SCR model is highly non-

linear, and linearization would be inaccurate. As hardware is becoming faster,

NMPC is gaining more popularity. Computers are now much faster than decades

ago, which could make nonlinear model predictive control cost-effective.

The book Nonlinear Model Predictive Control [1], written by Grüne and Pan-

nek is theoretical and mathematical, so it suits well as the primary source for the

NMPC theory. State estimation is required for the controller, since some states



CHAPTER 1. INTRODUCTION 5

are not measured, and all states are important for the MPC controller design.

In this thesis, moving horizon estimation is proposed, since it is suited for both

nonlinear models and linear models. The primary source for this chapter is the

book [2] by Rawlings, Mayne and Diehl, in particular Sections 1.4 and 4.3. The-

ory about nonlinear MHE is still difficult to find, since this area has not been

extensively researched. The material in Chapter 4 of [2] is, as the authors state,

up to date with the current literature and includes the latest research in the area.

Emission regulations keep becoming stricter and this puts pressure on the

industry, since new solutions for regulating emissions more efficiently must be

found quickly. One major contaminant is nitrogen oxides which are produced

in the combustion process of diesel and gas engines. A way to reduce emis-

sions in diesel and gas-powered engines is by a process called Selective Catalytic

Reduction.

The SCR is a process that reduces the nitrogen oxides in the exhaust gas to

nitrogen and water using a reducing agent. Ammonia or a urea-water solution is

usually used as the reducing agent. At first, this process was used in stationary

power plants and in industrial equipment, but now the process is widely used

in other applications, since the SCR process has developed tremendously [12].

Almost every new diesel-powered car relies on this process to reduce emissions

to match the Euro 6 standards. The AdBlue liquid that is added to a diesel-

powered car consists of a urea-water mixture which is used for the SCR process

[19].

The results presented in this thesis are generated by simulation. A simulator

is developed in Matlab to test the control and estimation of the SCR process.

The NMPC software developed in this thesis is an extensively developed version

of the NMPC routine by Grüne and Pannek, their NMPC algorithm can be found

on [18]. Figure 1.1 describes how the simulator is organized.
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Figure 1.1: Block diagram of the simulator

The plant describes the process that is controlled and measurements from the

plant yk, control signals uk and disturbance NOin are passed to the estimator

MHE, which estimate the plant state for the NMPC regulator. The NMPC

optimizes the future behaviour of the system, starting from the estimated state

x̂k. The NMPC determines the optimal control signal unew, which is then applied

to the plant and the process restarts. The Target selector determines a reference

value ur, which is used in the NMPC cost function.

In every block, a model is used. A detailed model is used to describe the

plant, and a simplified model is used by the estimator as an estimation model

and by the NMPC regulator as a prediction model. The target selector also use

the simplified model to determine the reference for the control signal. These

models are presented and discussed in detail in Chapter 6.

The contribution of this work is the simulator developed for the SCR control.

The modified NMPC software and the implementation of the MHE in Matlab is

the major progress in this thesis. The theory for the implementation is based on

[1] and [2]. Mathematical results of linear estimator convergence and uniqueness

of the linear setpoint tracking problem is also proved.



Chapter 2

Linear system theory

Some theory of linear systems is presented together with sampling and discretiza-

tion. The NMPC in this thesis uses discrete-time models, which is why discretiza-

tion is presented. Linear system theory is presented to help the reader understand

the concepts in the nonlinear case. This chapter is based on Sections 1.2 and 1.5

from [2].

2.1 Continuous-time systems

Usually, models describing real-life applications or processes are modeled in con-

tinuous time, as differential equations. Numerical simulation is usually faster

with discrete-time models, which is why sampling of the continuous-time systems

is desired. Sampling means that the states are determined on sample points. In

this thesis, the sampling intervals is chosen to be equidistant. Linear systems are

presented beneath together with some definitions.

Definition 2.1. A continuous time-invariant linear state-space system is defined

as ⎧⎪⎨⎪⎩
dx(t)

dt
= Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t), x(0) = x0 given,
(2.1)

7
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where A ∈ Rn×n is the transition matrix, B ∈ Rn×m is the input matrix, C ∈ Rp×n

is the output matrix and D ∈ Rp×m is the feedthrough matrix. The time is denoted

by t ∈ R, the state at time t is denoted by x(t) ∈ Rn, the input is denoted by

u(t) ∈ Rm and the output is denoted by y(t) ∈ Rp.

Linear systems can easily be solved explicitly, given an initial condition x0

and some input signal u. The system 2.1 is solved by multiplication with the

matrix exponential function and the calculations are

e−At

(︃
dx(t)

dt
− Ax(t)

)︃
= e−AtBu(t) ⇐⇒ d

dt

(︁
e−Atx(t)

)︁
= e−AtBu(t)

⇐⇒ e−Atx(t)− x0 =

∫︂ t

0

e−AsBu(s)ds

⇐⇒ x(t) = eAtx0 +

∫︂ t

0

eA(t−s)Bu(s)ds.

2.2 Discretization using sampling and Zero-Order

Hold

For the control and estimation in this thesis, discrete-time systems are used. A

linear discrete-time system can be derived from the continuous-time system using

sampling. The idea with sampling is to evaluate the system at the sample points

td := kT where T > 0 is the sampling time. The linear discrete-time system is

of the form

xs(k + 1) = Asxs(k) +Bsus(k)

ys(k) = Csxs(k) +Dsus(k), xs(0) = x0 given
(2.2)

where xs(k) := x(td). The matrices As, Bs, Cs and Ds can be derived exactly for

linear systems and these calculations are demonstrated beneath. For a sample

td = kT the state is defined as

x(td) = x(kT ) = eAkTx0 +

∫︂ kT

0

eA(kT−s)Bus(s)ds. (2.3)
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For the next sample k + 1 the state is defined as

xs(k + 1) = eA(k+1)Tx0 +

∫︂ (k+1)T

0

eA((k+1)T−s)Bus(s)ds

= eA(k+1)Tx0 +

∫︂ kT

0

eA((k+1)T−s)Bus(s)ds+

∫︂ kT+T

kT

eA((k+1)T−s)Bus(s)ds

= eAT

(︃
eAkTx0 +

∫︂ kT

0

eA(kT−s)Bus(s)ds

)︃
+

∫︂ kT+T

kT

eA((k+1)T−s)Bus(s)ds.

The parenthesis is exactly (2.3). For the second integral we assume that u is

constant between each sample time and then we use a variable substitution

v = (k + 1)T − s

x(k + 1) = eATx(k) +

∫︂ (k+1)T−kT−T

(k+1)T−kT

−eAvdv ·Bus(k)

= eATx(k) +

∫︂ 0

T

−eAvdv ·Bus(k)

= eATx(k) +

∫︂ T

0

eAvdv ·Bus(k).

For y we define y(k) := y(td) and obtain

y(k) = C(k) +Du(k)

From the calculations above we obtain

As = eAT , Bs =

∫︂ T

0

eAvdv ·B, Cs = C, Ds = D,

for k = 0,1,2, . . .

The lower index s from the matrices A,B,C and D is removed in further calcula-

tions and the notation x(k) is used for discrete-time systems. As can be seen it is

possible to derive explicit formulas for discrete-time models that match exactly

the continuous model at the sample instances, for linear sampled data systems.

This does not apply for nonlinear systems, but if the sampling period is chosen

properly and the system considered is suitable for sampling, the discrete-time

system should resemble the continuous-time system. In this thesis, discretiza-

tion of the nonlinear continuous-time plant is done with Zero Order Hold (ZOH).
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It is possible to sample the nonlinear system with an ordinary differential equa-

tion solver when the sampling points are chosen in advance. In the software that

Grüne and Pannek developed [18], sampling of a nonlinear system is done using

the Matlab function ODE45 between the sample points.

More information about discrete-time systems, sampling and discretization

can be found in [1, Chapter 2], where nonlinear discrete-time systems are pre-

sented together with results of stability. In [2, Section 1.2], linear discrete-time

systems are presented. Observability is required for some results in the following

sections, and it is next defined for linear systems.

Definition 2.2 (Observability). A discrete-time linear system (A,C) with zero

input is observable if for every x(0) there exists N > 0, such that the measure-

ments y(0),y(1), . . . ,y(N − 1) determine the initial state x(0) uniquely.

A weaker condition than observability is detectability, which is a property of

a system that describes state-to-output interaction [6].

Definition 2.3 (Detectability). A linear discrete-time system with zero input

x(k + 1) = Ax(k)

y(k) = Cx(k)

is said to be detectable if there exists a matrix L such that A+ LC is stable, i.e

x(k + 1) = (A+ LC)x(k) =⇒ x(k) → 0

when k → ∞.

Sometimes a system is not observable and hence, detectability is important.

Detectability is used when proving estimator convergence in Chapter 3. The

steady state of a system is also an important concept in optimization, and it is

presented beneath.

Definition 2.4 (Steady state). If xs = f(xs,us), then we say that xs is a steady

state for u(k) := us.

This means that state of the system is held constant and not changing over

time.
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2.3 Setpoint tracking

In control problems, it is usually desired to steer the system output to some

specific setpoint; the control problem is known as setpoint tracking. In most

regulation problems, the target is to bring the state of the system to the origin,

and this is referred to as stabilization. Setpoint tracking can be reduced to

stabilization using a change of coordinates [2], as will be demonstrated next.

Setpoint tracking is demonstrated for linear systems, since it is possible to obtain

exact and unique solutions. For nonlinear plants, it is in general challenging

to obtain an exact unique solution and hence the theory of nonlinear setpoint

tracking is excluded from this work. This section is based on [2, Section 1.5].

Consider the linear unconstrained discrete-time system (2.2) and denote the

steady state as (xs,us). Another requirement for the steady state is that it

satisfies Cxs = ysp, where ysp is the setpoint. From (2.2) and using the Definition

of the steady state 2.4, one obtains that the steady state should satisfy⎡⎣I − A −B

C 0

⎤⎦⎡⎣xs

us

⎤⎦ =

⎡⎣ 0

ysp

⎤⎦ . (2.4)

If (2.4) has a solution, then deviation variables can be defined as

x̃ = x(k)− xs

ũ = u(k)− us,

that satisfy

x̃(k + 1) = x(k + 1)− xs = Ax(k) +Bu(k)− (Axs +Bus)

x̃(k + 1) = Ax̃(k) +Bũ(k).

Now we can find ũ(k) that takes x̃(k) to zero, which is equivalent to x(k) → xs,

so that at steady state, Cx(k) = Cxs = ysp, which is the setpoint.

The simplest assumption, which guarantees the solvability of (2.4) for all ysp,

is that the rows of the large matrix should be linearly independent. This requires

at least as many inputs as outputs of the system. In many applications, however,
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this is not the case. It is possible to have more measured outputs than inputs

that can be manipulated. For these cases, a matrix H is introduced and a new

variable is denoted r = Hy, which is the selection of linear combinations of the

measured output. In this case, setpoints are assigned to r and the setpoints are

denoted rsp.

The theory presented above is for unconstrained systems, but for constrained

systems we simply put constraints on the states xs and on the control signal

us. The steady state should also satisfy the setpoint rsp. Now an optimization

problem can be defined for the setpoint tracking problem.

Problem 2.5. The optimization problem is defined as

min
xs,us

1

2

(︁
|us − usp|2Rs

+ |Cxs − ysp|2Qs

)︁
, (2.5)

where Rs > 0 and Qs ≥ 0,

subject to ⎡⎣I − A −B

HC 0

⎤⎦⎡⎣xs

us

⎤⎦ =

⎡⎣ 0

rsp.

⎤⎦ (2.6)

Eus ≤ e (2.7)

Fxs ≤ f. (2.8)

The idea with Problem 2.5 is to have setpoints rsp that always must be

satisfied through (2.6). The objective function (2.5) penalizes the control variable

us from a soft setpoint usp for the control variable. The other term then penalizes

the states from a soft setpoint ysp, which holds the other states as close as possible

to this setpoint.

A result can be proved for Problem 2.5 that guarantees a solution and unique-

ness when Rs > 0 and Qs ≥ 0 hold. But first, a convex set and strictly convex

function are defined, these definitions are based on [7] and then a convex opti-

mization problem is defined based on [5].

Definition 2.6. A subset C of Rn is said to be a convex set if λx1+(1−λ)x2 ∈ C

for all x1 ∈ C, x2 ∈ C and 0 < λ < 1.



CHAPTER 2. LINEAR SYSTEM THEORY 13

Definition 2.7. A real-valued function f on a convex set C is said to be a strictly

convex function on C if

f(λx1 + (1− λ)x2) < λf(x1) + (1− λ)f(x2)

holds for 0 < λ < 1, x1 ∈ C, x2 ∈ C and x1 ̸= x2.

Definition 2.8. Consider the optimization problem

min f(x)

s.t x ∈ X.

The optimization problem is strictly convex if f : Rn → R is strictly convex on

X and X is a convex set.

A nice feature with strict convex optimization problems is that they have at

most one optimal solution [5].

Theorem 2.9. Consider Problem 2.5 with p controlled variables and m manip-

ulated variables u. For all setpoints rsp, the steady-state solution (xs,us) exists if

the inequality constraints (2.7) and (2.8) are absent and

rank

⎡⎣I − A −B

HC 0

⎤⎦ = n+ p. (2.9)

Any solution is unique if

rank

⎡⎣I − A

HC

⎤⎦ = n. (2.10)

Proof. By assumption ⎡⎣I − A −B

HC 0

⎤⎦ ∈ R(n+p)×(n+m)

has n + p independent rows, which means that the matrix is surjective. This

means that

∀rsp ∈ Rn+p ∃(x,u) ∈ Rn × Rm :

⎡⎣I − A −B

HC 0

⎤⎦⎡⎣xs

us

⎤⎦ =

⎡⎣ 0

rsp

⎤⎦ ,
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i.e. there exist a solution for every rsp ∈ Rp × Rm. Since the matrix in (2.10)

has full column rank, there exists a left inverse V =
[︂
V1 V2

]︂
with

V

⎡⎣I − A

HC

⎤⎦ = I ∈ Rn×n.

Now we have ⎡⎣I − A

HC

⎤⎦xs =

⎡⎣Bus

rsp

⎤⎦ =⇒ xs = V

⎡⎣Bus

rsp

⎤⎦ ,

which means that Bus and rsp determine xs uniquely. Now we need to prove

that us is uniquely determined by the optimization problem. The cost can be

rewritten as

f(us) :=
1

2

(︁
|us − usp|2Rs

+ |Cxs − ysp|2Qs

)︁
=
1

2
((us − usp)

TRs(us − usp)+

1

2

⎛⎝CV

⎡⎣Bus

rsp

⎤⎦− ysp

⎞⎠T

Qs

⎛⎝CV

⎡⎣Bus

rsp

⎤⎦− ysp

⎞⎠
=
1

2
(uT

s Rsus − 2uT
spRsus + uT

spRsusp

+
1

2
(CV1Bus + CV2rsp − ysp)

TQs(CV1Bus + CV2rsp − ysp)

=
1

2
(uT

s (Rs +BTV T
1 CTQsCV1B)us − 2ωTus + 2k),

where ω is a vector and k is a scalar, neither of which depends on us. Denoting

G :=
1

2
(Rs +BTV T

1 CTQsCV1B), (2.11)

which is positive definite, since Qs ≥ 0 and Rs is positive definite, we obtain

f(us) = uT
s Gus − ωTus + k. (2.12)

Using Definition 2.7 of a strictly convex function, we obtain for u, v and 0 < λ < 1
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that

f(λu+ (1− λ)v) < λf(u) + (1− λ)f(v)

⇐⇒ 0 <λf(u) + (1− λ)f(v)− f(λu+ (1− λ)v)

=λuTGu− λωTu+ λk + (1− λ)(vTGv − ωTv + k)

− (λu+ (1− λ)v)TG(λu+ (1− λ)v) + ωT (λu+ (1− λ)v)− k

=λuTGu− (λu+ (1− λ)v)TG(λu+ (1− λ)v)

+ (1− λ)(vTGv − ωTv) + ωT (1− λ)v

=λuTGu+ (1− λ)vTGv − λuTGλu− λuTG(1− λ)v

− (1− λ)vTGλu− (1− λ)vTG(1− λ)v

=(1− λ)(λuTGu+ vTGv − 2vTGλu− (1− λ)vTGv)

=(1− λ)(λuTGu− 2λvTGu+ λvTGv)

=λ(1− λ)(u− v)TG(u− v),

Now we have

0 < λ(1− λ)(u− v)TG(u− v),

which holds, since G is positive definite, u ̸= v and 0 < λ < 1. Now we still need

to prove that the set that we are optimizing over is convex. The set that has to

be convex is

C := {us ∈ Rm|∃xs ∈ Rn : (2.6),(2.7) and (2.8) hold}.

Now let u,v ∈ C and let x,z ∈ Rn be such that (2.6), (2.7) and (2.8) hold

with (us,xs) replaced by (u,x) or (v,z). According to Definition 2.6 of a convex

set, we need to verify that for all λ ∈ (0,1), there exists a w ∈ Rn such that

(λu+ (1− λ)v,w) ∈ C. For the inequality constraint (2.7) we have

E(λu+ (1− λ)v) = λEu+ (1− λ)Ev ≤ λe+ (1− λ)e = e,
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since u,v ∈ C and λ ∈ (0,1). For (2.6) we have, with w := λx+ (1− λ)z, that⎡⎣I − A −B

HC 0

⎤⎦⎡⎣ w

λu+ (1− λ)v

⎤⎦
= λ

⎡⎣I − A −B

HC 0

⎤⎦⎡⎣x
u

⎤⎦+ (1− λ)

⎡⎣I − A −B

HC 0

⎤⎦⎡⎣z
v

⎤⎦
= λ

⎡⎣ 0

rsp

⎤⎦+ (1− λ)

⎡⎣ 0

rsp

⎤⎦ =

⎡⎣ 0

rsp

⎤⎦ ,

which holds, since u,v ∈ C, x,z ∈ Rn and λ ∈ (0,1). For (2.8) we have

Fw = F (λx+ (1− λ)z) = λFx+ Fz − λFz ≤ λf + f − λf = f,

which holds, since x,z ∈ Rn and λ ∈ (0,1). This proves that the set is convex.

Hence, we have a strictly convex optimization problem, since the objective func-

tion is strictly convex, and the set is convex. This means that us is determined

uniquely by rsp, and then xs is also determined uniquely by rsp.

Two examples of how to solve the tracking Problem 2.5 are presented next.

Example 2.10. Consider the two-input, two-output system

x(k + 1) = Ax(k) +Bx(k)

y(k) = Cx(k),

and A,B,C presented beneath, with the output setpoint ysp = rsp =
[︂
1 −1

]︂T
and input setpoint usp =

[︂
0 0

]︂T
. Calculate xs and us. Is it possible to reach

the setpoint ysp for Qs = I, Rs = I,

A =

⎡⎢⎢⎢⎢⎢⎢⎣
0.5 0 0 0

0 0.6 0 0

0 0 0.5 0

0 0 0 0.6

⎤⎥⎥⎥⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎢⎢⎢⎣
0.5 0

0 0.4

0.25 0

0 0.6

⎤⎥⎥⎥⎥⎥⎥⎦ , C =

⎡⎣1 1 0 0

0 0 1 1

⎤⎦ , H = I?
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Equation (2.6), is equivalent to⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦−

⎡⎢⎢⎢⎢⎢⎢⎣
0.5 0 0 0

0 0.6 0 0

0 0 0.5 0

0 0 0 0.6

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠xs =

⎡⎢⎢⎢⎢⎢⎢⎣
0.5 0

0 0.4

0.25 0

0 0.6

⎤⎥⎥⎥⎥⎥⎥⎦us (2.13)

and

⎡⎣1 1 0 0

0 0 1 1

⎤⎦xs =

⎡⎣ 1

−1

⎤⎦ . (2.14)

Multiplying (2.13) with (I − A)−1 we obtain

xs =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0

0 1

0.5 0

0 1.5

⎤⎥⎥⎥⎥⎥⎥⎦us.

Inserting this in (2.14), we obtain⎡⎣ 1 1

0.5 1.5

⎤⎦us =

⎡⎣ 1

−1

⎤⎦ ⇐⇒ us =

⎡⎣ 2.5

−1.5

⎤⎦ .

Now, since us is determined uniquely, xs can be determined and ysp is satisfied

exactly with xs =

⎡⎢⎢⎢⎢⎢⎢⎣
2.5

−1.5

1.25

−2.25

⎤⎥⎥⎥⎥⎥⎥⎦ and us =

⎡⎣ 2.5

−1.5

⎤⎦. Only one admissible pair (xs,us)

exists, since all conditions hold in Theorem 2.9. The conditions (2.9) and (2.10)

hold, since both matrices have full rank.

Example 2.11. Consider the same system as in Example 2.10, but now only

the first output has a setpoint ysp1 = 1. What is the solution to the tracking

problem, if it exists, for Rs = I, ysp = rsp, Qs = 0 and usp = 0?

Now the H matrix is required, since we only have one output setpoint, denote
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H =
[︂
1 0

]︂
. The result from Example 2.10 Equation (2.13) can be used to

obtain an expression for us. Now we only have one setpoint for the output and

thus us cannot be determined uniquely from the system (2.6).

[︂
1 0

]︂⎡⎣1 1 0 0

0 0 1 1

⎤⎦
⎡⎢⎢⎢⎢⎢⎢⎣

1 0

0 1

0.5 0

0 1.5

⎤⎥⎥⎥⎥⎥⎥⎦us = 1 ⇐⇒
[︂
1 1

]︂
us = 1

⇐⇒ us,1 + us,2 = 1 ⇐⇒ us,2 = 1− us,1.

Now optimization is required, since it is unknown which combination of us is the

most optimal. Using (2.5), we obtain

min
xs,us,1

1

2

⎛⎝[︂us,1 1− us,1

]︂
Rs

⎡⎣ us,1

1− us,1

⎤⎦⎞⎠ = min
xs,us

1

2

(︁
u2
s,1 + (1− us,1)(1− us,1)

)︁
= min

xs,us

1

2

(︁
2u2

1 − 2us,1 + 1
)︁

= min
xs,us

1

2

(︄
2

(︃
us,1 −

1

2

)︃2

+
1

2

)︄
,

which is minimized at us,1 = us,2 = 1
2
. This means that the most optimal

way to reach the setpoint ysp is with us =
[︂
1
2

1
2
,
]︂T

, which determines xs =[︂
1
2

1
2

1
4

3
4

]︂T
.
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Chapter 3

State estimation

State estimation is a method to estimate states of the plant that cannot be

measured. Measurements are usually expensive, and some states are physically

impossible to measure. Concentrations are in particular difficult to measure, but

they are in fact important for the NMPC in this thesis, since the constraints are

on the concentrations. There are many different ways to do state estimations

the most famous being the Kalman filter. The Kalman filter is used for linear

systems and the extended Kalman filter (EKF) is used for nonlinear systems.

The EKF uses linearization of the nonlinear model, which is sometimes usable

for plants that are almost linear [2]. The estimation model used in this thesis is

highly nonlinear. For nonlinear models [2], proposes other estimation algorithms.

To control the SCR, state estimation is required, since the prediction model

relies on the ammonia coverage in the catalyzer. Ammonia coverage cannot be

measured and, hence, state estimation is required. In [2], Moving Horizon Esti-

mation (MHE) is proposed, especially combined with MPC and also for nonlinear

plants. This is one reason why MHE is considered in this thesis.

The research in nonlinear MHE is still quite thin and complicated; hence,

theory for nonlinear MHE remains for further work. The idea of nonlinear MHE

is quite similar to linear MHE and hence some theory and results are presented

for linear plants. Nonlinear MHE is discussed in Chapter 5 and some simulations

are presented in Chapter 7.
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3.1 Moving horizon estimation

Moving horizon estimation is useful, for instance, if one wants to apply con-

straints on the estimates or when using a nonlinear model. Since MHE is an

optimization-based estimator, one can use constraints to obtain more accurate

estimates. The moving horizon idea is presented in Figure 3.1.

Figure 3.1: The moving horizon estimation problem [2].

The moving horizon idea emerged from full information estimation, i.e. es-

timation using every available measurement. Full information estimation is im-

practical, since it is computationally intractable in case of a nonlinear system or

when considering constraints, which is why the idea of moving horizon estimation

arose. For long horizons the optimization problem might become too extensive

in full information estimation. In MHE, the idea is to use a fixed amount of mea-

surements y(T −N), . . . , y(T ), which makes the MHE problem computationally

tractable, see Figure 3.1.

Problem 3.1. The linear MHE problem can be stated as an optimization problem

for T > N :

min
X̂N (T )

V̂T (X̂N(T )), (3.1)
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where

X̂N(T ) =

⎡⎢⎢⎢⎢⎢⎢⎣
x̂(T −N)

x̂(T −N + 1)
...

x̂(T )

⎤⎥⎥⎥⎥⎥⎥⎦ (3.2)

and the cost is defined as

V̂T (X̂N(T )) =
1

2

(︃
|x̂(T −N)− x̄(T −N)|2P+

T−1∑︂
k=T−N

|x̂(k + 1)− Ax̂(k)−Bu(k)|2Q +
T∑︂

k=T−N

|y(k)− Cx̂(k)|2R
)︃
.

(3.3)

In (3.3), x̂(k) is the estimated state at time k, y(k) the measurement at time

k and P, Q and R are weighting matrices. The plant dynamics are approximated

with the estimation model and A and B are the matrices from the model. The C

matrix gives the estimated outputs, which are compared to the measurements.

The idea with the cost function is to penalize the estimates from the measure-

ments and to penalize the estimates from the plant dynamics. The prior weight-

ing term penalize the estimates from the prior estimation. The prior weighting

term is chosen as the second estimate from the previous estimation, i.e.

x̄(T −N) = x̂∗(T −N + 1), (3.4)

where x̂∗ is the result from the prior estimation. It is possible to choose the weight

P = 0 and then the problem reduces to zero prior weighting. For T ≤ N , the

MHE problem is usually assumed to be a full information estimation problem,

see Figure 3.1 [2].

For nonlinear systems it is difficult to retrieve any explicit results. The non-

linear MHE is still under research and there does not exist many results. Some

results about nonlinear MHE (NMHE) stability are presented in [2] in Section

4.3. Results about moving horizon estimator convergence are presented beneath

for linear plants. First estimator convergence is proved for a detectable system

and then for an observable system. These results are stronger than those proved
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in [2], since in these results the control variable is considered. In [2], MHE

estimator convergence is not proved for detectable plants.

For the next result, the observable canonical form of the system is required.

The detectable plant can be written in the observable canonical form⎡⎣x1(k + 1)

x2(k + 1)

⎤⎦ =

⎡⎣A11 0

A21 A22

⎤⎦⎡⎣x1(k)

x2(k)

⎤⎦+

⎡⎣B1

B2

⎤⎦u(k) (3.5)

y(k) =
[︂
C1 0

]︂⎡⎣x1(k)

x2(k)

⎤⎦ , (3.6)

where (A11,C1) is observable and A22 is stable due to detectability [6].

Theorem 3.2. An optimal moving horizon estimator with a perfect estimation

model, perfect measurements, prior (3.4) weighting P =

⎡⎣0 0

0 P22

⎤⎦ ≥ 0, Q and

R positive definite, and N = dim X, is a convergent estimator for a linear de-

tectable plant, and the optimal cost is V̂ 0
T = 0.

Proof. Now the goal is to make the cost function (3.3) zero. The sums in the

cost function can be rewritten as

1

2

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓

⎡⎢⎢⎢⎢⎢⎢⎣
−A I 0 . . . 0

0 −A I . . . 0
...

... . . . . . . ...

0 0 . . . −A I

⎤⎥⎥⎥⎥⎥⎥⎦ X̂N(T )−

⎡⎢⎢⎢⎢⎢⎢⎣
B 0 . . . 0

0 B 0
...

... . . . ...

0 0 . . . B

⎤⎥⎥⎥⎥⎥⎥⎦UN(T )

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
2

Q̃

+
1

2

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓

⎡⎢⎢⎢⎢⎢⎢⎣
C 0 . . . 0

0 C 0
...

... . . . ...

0 0 . . . C

⎤⎥⎥⎥⎥⎥⎥⎦ X̂N(T )−

⎡⎢⎢⎢⎢⎢⎢⎣
y(T −N)

y(T −N + 1)
...

y(T )

⎤⎥⎥⎥⎥⎥⎥⎦

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
2

R̃

,

(3.7)

where X̂N(T ) and UN(T ) is defined in the same way as (3.2) and Q̃ := Q⊕· · ·⊕Q,

N orthogonal, copies and R̃ := R⊕· · ·⊕R, N+1 orthogonal copies. Since Q̃ > 0,

the first term in (3.7) is zero if and only if

x̂(k + 1) = Ax̂(k) +Bu(k) for k = T −N, . . . ,T − 1, (3.8)



CHAPTER 3. STATE ESTIMATION 23

which is equivalent to the statement that x̂ follows the dynamics of (3.5) exactly

on [T −N,T ]. Now since R̃ > 0 and the estimation model is perfect, the second

term in (3.7) is equal to zero if and only if⎡⎢⎢⎢⎢⎢⎢⎣
C 0 . . . 0

0 C 0
...

... . . . ...

0 0 . . . C

⎤⎥⎥⎥⎥⎥⎥⎦ X̂N(T )−

⎡⎢⎢⎢⎢⎢⎢⎣
y(T −N)

y(T −N + 1)
...

y(T )

⎤⎥⎥⎥⎥⎥⎥⎦ = 0 ⇐⇒

⎡⎢⎢⎢⎢⎢⎢⎣
C 0 . . . 0

0 C 0
...

... . . . ...

0 0 . . . C

⎤⎥⎥⎥⎥⎥⎥⎦ X̂N(T )−

⎡⎢⎢⎢⎢⎢⎢⎣
C 0 . . . 0

0 C 0
...

... . . . ...

0 0 . . . C

⎤⎥⎥⎥⎥⎥⎥⎦XN(T ) = 0 ⇐⇒

⎡⎢⎢⎢⎢⎢⎢⎣
C 0 . . . 0

0 C 0
...

... . . . ...

0 0 . . . C

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
I

A
...

AN

⎤⎥⎥⎥⎥⎥⎥⎦ (x̂(T −N)− x(T −N)) = 0

⇐⇒ ON(x̂(T −N)− x(T −N)) = 0, (3.9)

where O is the observability matrix, which is defined in [2] on page 42. The

observability matrix can be calculated for the detectable system

ON =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1 0

CA11 0

CA2
11 0

...
...

CAN−1
11 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
[︂
ON,1 0

]︂
,

where ON,1 is injective for N = dim X, since (C1,A11) is observable. Now apply-

ing this to (3.9) we get[︂
ON,1 0

]︂
(x̂(T −N)− x(T −N)) = ON,1(x̂1(T −N)− x1(T −N)) = 0.
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The injectivity of ON,1 implies

x̂1(T −N)− x1(T −N) = 0 ⇐⇒ x̂1(T −N) = x1(T −N), (3.10)

and

x̂1(k) = x1(k) for T −N ≤ k ≤ T, (3.11)

since the estimate x̂ follows the dynamics of (3.5) exactly on the interval.

Now forcing the prior weighting factor to zero remains:

|x̂(T −N)− x̄(T −N)|2P =

⃓⃓⃓⃓
⃓⃓
⎡⎣x̂1(T −N)− x̄1(T −N)

x̂2(T −N)− x̄2(T −N)

⎤⎦⃓⃓⃓⃓⃓⃓
2

P

= |x̂2(T −N)− x̂2(T −N)|2P22
.

The second component x̂2 is still free and we can simply choose

x̂2(T −N) := x̄2(T −N), (3.12)

to make the MHE cost function (3.3) with prior weighting equal to zero. Thus,

MHE achieves (3.11), and we use this to prove that the estimation error satisfies

e(k + 1) =

⎡⎣0 0

0 A22

⎤⎦ e(k); (3.13)

then, since A22 is stable, e(k) → 0 when k → ∞.

Indeed, the estimation error at time T is

e(T ) = x̂∗(T )− x(T ),

where the optimal estimate is defined as x̂∗. The optimal estimate and the plant

have the dynamics (3.5) and (3.8), and hence

e(T ) = x̂∗(T )− x(T ) = AN(x̂∗(T −N)− x(T −N)).
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The estimate is exact for the first component when N = dim X, A =

⎡⎣A11 0

A21 A22

⎤⎦
and x̂∗,2(T −N) = x̄2(T −N) from (3.12). We now obtain

e(T ) =

⎡⎣A11 0

A21 A22

⎤⎦N ⎡⎣ 0

x̄2(T −N)− x2(T −N)

⎤⎦
=

⎡⎣0 0

0 AN
22

⎤⎦⎡⎣ 0

x̄2(T −N)− x2(T −N)

⎤⎦
=

⎡⎣0 0

0 AN
22

⎤⎦ (x̄(T −N)− x(T −N)).

(3.14)

Using (3.4) and the plant dynamics (3.5) we obtain

e(T ) =

⎡⎣0 0

0 AN
22

⎤⎦A

⎛⎝⎡⎣x1(T −N − 1)

x̄2(T −N − 1)

⎤⎦−

⎡⎣x1(T −N − 1)

x2(T −N − 1)

⎤⎦⎞⎠
=

⎡⎣0 0

0 AN
22

⎤⎦⎡⎣0 0

0 A22

⎤⎦⎡⎣ 0

x̄2(T −N − 1)− x2(T −N − 1)

⎤⎦
=

⎡⎣0 0

0 A22

⎤⎦ e(T − 1),

which holds since (3.14) holds. Now the estimation error satisfies (3.13) and

MHE estimator convergence for a linear detectable plant is obtained.

For the next result, convergence is proved for an observable system. For this

result, the penalty on the prior estimation can be set to zero. The corollary

follows from Theorem 3.2.

Corollary 3.3. A moving horizon estimator with no prior weighting, Q and R

positive definite and N sufficiently large is a convergent estimator for a linear

observable plant

x(k + 1) = Ax(k) +Bu(k) (3.15)

y(k) = Cx(k), (3.16)
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with exact measurements. The optimal cost is V̂ 0
T = 0 and x̂(k) = x(k) for

T −N ≤ k ≤ T , i.e., the estimates are exact, rather than only convergent.

Proof. The result follows from the proof of Theorem 3.2, for the special case that

the observable part of the detectable system is the entire system.
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Chapter 4

Nonlinear Model Predictive Control

Model Predictive Control (MPC) is proposed to solve the infinite horizon opti-

mal control problem, which is defined in this chapter. In this chapter MPC is

presented, and the primary sources for this chapter are Chapters 1 and 3 from

Grüne and Pannek [1] and Chapter 1 from Rawlings et al. [2]. In the sequel,

nonlinear systems are now considered.

4.1 Historical background

Model Predictive Control, also known as receding horizon control, was developed

in the late 1970s. The article by Richalet, Rault, Testud and Paponi [8] is one of

the first articles that cover model predictive control, and they achieved successful

results in industry at the time. They managed to control different processes

more accurately and lower limits of different outputs, which resulted in economic

advantages. Another early article about MPC is by Cutler and Ramaker, who

wrote about Dynamic Matrix Control (DMC) [9]. Since then, MPC has gained

increasingly more popularity in industry. The strength of MPC is that it deals

with constrained control problems, which arise frequently in industry.

Computers have developed fast during the last decade. Model predictive

control benefits from this development, since MPC is computationally demand-

ing. New MPC methods are developed constantly, and the algorithms are made
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more effective. It is possible to implement the demanding MPC control problem

discussed in this thesis on a standard computer today.

Nonlinear model predictive control generated from linear MPC and many

of the techniques used in linear MPC were transferred to NMPC [1]. In the

article by Chen and Shaw [10], receding horizon feedback control was used on

a nonlinear system in 1982. This article can be seen as one of the first steps

towards NMPC [1].

4.2 Constraints

The ability to deal efficiently with constraints distinguishes MPC from other

control methods. In this thesis, constraints are considered both on the control

variable and on the states of the system. A nonempty state constraint set X ⊆ X

is introduced and for each x ∈ X a nonempty control constraint set U(x) ⊆

U is introduced. These sets are used to construct a general definition for the

constraints. The constraints are defined as admissibility in the definition beneath.

Definition 4.1 (Admissibility). Consider the control constraint set U(x) ⊆ U ,

the state constraint set X ⊆ X and the control system (4.1).

1. The states of the system x ∈ X are called admissible states and the control

variables u ∈ U(x) are called admissible control values for x. The elements

of the set Y = {(x,u) ∈ X × U |x ∈ X, u ∈ U(x)} are called admissible

pairs.

2. For an initial value x(n) ∈ X and for N ∈ N, a control sequence u(·) ∈ UN ,

which corresponds to the trajectory xp(·), is called admissible for x(n) up

to time N , if

(xp(k),u(k)) ∈ Y where xp(0) = x(n), for all

k = 0, . . . ,N − 1

holds. The set of admissible control sequences for x(n) up to time N is

denoted by UN(x(n)).
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3. A control sequence u(·) ∈ U∞ and the corresponding trajectory xp(·) are

called admissible for x(n) if they are admissible for x(n) up to every time

N ∈ N. The set of admissible control sequences for x(n) is denoted by

U∞(x(n)).

4. A feedback law µ : N0 ×X ↦→ U is called admissible if µ(x) ∈ U(x) holds

for all x ∈ X and all n ∈ N0.

4.3 Introduction to NMPC

The idea with MPC is to optimize a cost function to obtain the optimal control

signal that satisfies the constraints given the dynamics of the model. This is

done in every MPC iteration at every sampling time. Constraints are easily

implemented in the optimization and in this thesis, constraints are used on the

control signal and on the states of the prediction model. A major advantage

compared to other control methods is that MPC also manages control problems

with multiple input and multiple output (MIMO).

The basic features of NMPC are the same as for MPC. The difference is that a

nonlinear model is used in NMPC, which can result in non-convex optimization.

In NMPC and MPC, a process behaviour is predicted and optimized, hence, a

model is required to describe the process. The system that is controlled in this

thesis is a nonlinear discrete-time system of the form:

x(k + 1) = f(x(k),u(k)), (4.1)

where x(k+1) is the state of the system at the next time instant, x(k) is the state

at time k and u(k) the control variable at time k. It is possible to approximate

the infinite horizon optimal control problem with MPC and it is defined as:

Problem 4.2 (OPC∞). Find u(·) that minimizes

J∞(x0,u(·)) :=
∞∑︂
n=0

l(x(n),u(n)), (4.2)
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such that x(n+ 1) = f(x(n),u(n)), x(0) = x0 and x(n) ∈ X, u(n) ∈ U(x(n)) for

all n = 0,1, . . .

For a nonlinear model the Problem 4.2 does not have any explicit solu-

tions, and hence NMPC is considered. The NMPC idea is now introduced.

For the current state x(n), we can iterate the system for any control sequence

u(0), . . . ,u(N − 1) and construct a prediction trajectory xp defined by

xp(0) = x(n), xp(k + 1) = f(xp(k),up(k)) for k = 0, . . . ,N − 1, (4.3)

where N ≥ 2. The control variables for the prediction trajectory are defined as

up(k). At every time instant, the future behaviour of the system is obtained for

the chosen control sequence up(0), . . . up(N − 1), on a discrete-time interval, N

steps into the future. N is called the prediction horizon.

The idea with MPC is to optimize the control sequence up(0), . . . up(N − 1),

such that the predicted behaviour of the system is close to a reference value

xr. The optimization is done by measuring the distance between the state xp(k)

and xr through a function l(xp(k),up(k)). The optimal control is achieved when

the distance between xp(k) and the reference xr is equal to zero. When this is

achieved, the optimizer should hold the state near the reference. It is also possible

to penalize the distance between the control variable up(k) and a reference ur.

Usually, a quadratic function is chosen; a popular choice according to [1] is

l(xp(k),up(k)) = |xp(k)|2 + w|up(k)|2,

where | · | represents the Euclidean norm and w is a weighting constant that is

chosen w ≥ 0. In this cost function, the reference values xr and ur are chosen

zero. The optimal control problem is now stated as

Problem 4.3.

minimize J(x(n),up) =
N−1∑︂
k=0

l(xp(k),up(k))

with respect to u ∈ UN(x(n)), subject to

xp(0) = x(n), xp(k + 1) = f(xp(k),up(k))
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The optimization problem is solved at every time instant. Now assume that

Problem 4.3 has a solution, i.e. there exists a control sequence u∗
p(0), . . . u

∗
p(N−1)

that minimizes (4.3). The first optimal control variable u∗
p(0) is used as a feedback

control value, at the next time instant, together with the new measurements

x(k + 1), and the algorithm restarts. In the next section we summarize this as

an algorithm.

4.3.1 The NMPC algorithm

Algorithm 4.4. For a constant reference, the NMPC algorithm can be defined

for each sampling time Tn and n = 0,1,2, . . . , in three steps:

1. Measure the state x(n) of the system at the current sampling time Tn.

2. Solve the optimal control problem (4.3) for the measured state:

Minimize J(x(n),up) =
N−1∑︂
k=0

l(xp(k),up(k)),

with respect to u ∈ UN(x(n)), subject to

xp(0) = x(n), xp(k + 1) = f(xp(k),up(k)),

and denote the obtained optimal control sequence by u∗
p(·).

3. Apply the first optimal control value u∗
p(0) as control decision for the next

sampling time Tn.

In Algorithm 4.4, it is assumed that an optimal control sequence u∗
p(·) exists.

Now an example of how to use the Algorithm 4.4 is presented.

Example 4.5. Consider the nonlinear discrete-time system and the cost

x(k + 1) = x(k)2 − u(k) (4.4)

l(x(k),u(k)) = x(k)2 + u(k)2, (4.5)

with the initial value x(0) = 1, optimization horizon N = 2 and a constraint for

the control signal u ≥ 0. In this example, both xref and uref are 0 and not time

varying for all k. Now using Algorithm 4.4 we control the system to zero.
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NMPC iteration 1

In step 1, we measure the state x(0) = 1 and solve the optimal control problem

in step 2 of Algorithm 4.4.

Minimize J(x(0),u) =
1∑︂

k=0

x(k)2 + u(k)2,

with respect to u ∈ UN(x(n)), subject to

xp(0) = x(0) = 1, xp(k + 1) = xp(k)
2 − up(k).

minxp(0)
2 + up(0)

2 + x2
p(1) + up(1)

2 = min 12 + up(0)
2 + (12 − up(0))

2 + up(1)
2

= min 2up(0)
2 − 2up(0) + 2 + up(1)

2

= min 2

(︃
up(0)−

1

2

)︃2

+
3

2
+ up(1)

2,

Which is minimized at u∗
p(0) = 1

2
and u∗

p(1) = 0. In step 3, we apply the first

optimal control value u∗
p(0) = 1

2
as input for the system and obtain x(1) =

12 − 1
2
= 1

2
.

NMPC iteration 2

For the next sample time we start with step 1 and measure the new initial value

x(1) = 1
2
. Now using step 2 from the algorithm,

minxp(0)
2 + up(0)

2 + xp(1)
2 + up(1)

2

= min

(︃
1

2

)︃2

+ up(0)
2 +

(︄(︃
1

2

)︃2

− up(0)

)︄2

+ up(1)
2

= min 2up(0)
2 − up(0)

2
+

5

16
+ up(1)

2

= min 2

(︃
up(0)−

1

8

)︃2

+
9

32
+ up(1)

2,

Wwich is minimized at u∗
p(0) =

1
8

and u∗
p(1) = 0. In step 3, we apply the first

optimal control value u∗
p(0) as input for the system and obtain x(2) = 1

2

2− 1
8
= 1

8
.
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NMPC iteration 3

For the next sample time we start with step 1 and measure the new initial value

x(2) = 1
8
. Now, using step 2 from the algorithm,

minxp(0)
2 + up(0)

2 + xp(1)
2 + up(1)

2

= min

(︃
1

8

)︃2

+ up(0)
2 +

(︄(︃
1

8

)︃2

− up(0)

)︄2

+ up(1)
2

= min 2up(0)
2 − up(0)

32
+

65

4096
+ up(1)

2

= min 2

(︃
up(0)−

1

128

)︃2

+
129

8192
+ up(1)

2,

which is minimized at u∗
p(0) = 1

128
and u∗

p(1) = 0. In step 3, we apply the

first optimal control value u∗
p(0) as input for the system which results in x(3) =

1
8

2 − 1
128

= 1
128

.

NMPC iteration 4

For the next sample time we start with step 1 and measure the new initial value

x(3) = 1
128

. Now, using step 2 from the algorithm,

minxp(0)
2 + up(0)

2 + xp(1)
2 + up(1)

2

= min

(︃
1

128

)︃2

+ up(0)
2 +

(︄(︃
1

128

)︃2

− up(0)

)︄2

+ up(1)
2

= min 2up(0)
2 − up(0)

8192
+

16385

268435456
+ up(1)

2

= min 2

(︃
up(0)−

1

32768

)︃2

+ · · ·+ up(1)
2,

which is minimized at u∗
p(0) = 1

32768
and u∗

p(1) = 0. In step 3, we apply the

first optimal control value u∗
p(0) as input for the system and obtain x(3) =(︁

1
128

)︁2 − 1
32768

= 0.000031 . . . . The state x(3) is close to zero and we stop the

NMPC algorithm.

As can be seen, the optimization problem can be solved easily, since the

horizon N is short. If one increase N to 3 the problem becomes more difficult to

solve by hand.
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There are different ways to solve the optimal control problem, but these meth-

ods are not covered in this thesis. In [1, Section 3.4], the dynamic programming

principle is proposed and proved for the optimal control problem. Other algo-

rithms such as the Interior-Point method, Active Set SQP methods and Multiple

Shooting are discussed in [1, Chapter 12].

In the software that Grüne and Pannek developed, the optimal control prob-

lem is solved with the Matlab function fmincon. The function is a nonlinear

programming solver that can handle nonlinear constrained multivariable opti-

mization problems. The default optimization algorithm used in fmincon is the

interior-point method. More information about fmincon can be found on the

Mathworks website [20].

The constraints in Algorithm 4.4 are hard and the controller cannot violate

the constraints, which is why constraints are usually set on a critical level in

real applications. In practice, it would be desirable to keep the output at a safe

level away from the constraints. A way to do that is by setpoint tracking, which

was covered in the previous chapter. Nonlinear setpoint tracking combined with

NMPC is discussed briefly in Chapter 5. State estimation is usually required for

NMPC, since all the states of the model might not be measurable.



Chapter 5

Nonlinear tracking, NMHE and

NMPC

In this chapter, nonlinear setpoint tracking and nonlinear MHE are covered

briefly before they are combined with nonlinear MPC. See Figure 1.1 for how

the components are combined.

5.1 Nonlinear setpoint tracking

The theory of nonlinear setpoint tracking is complicated and it is in general diffi-

cult to obtain exact and unique solutions for nonlinear setpoint tracking. Hence,

in this section, a nonlinear tracking problem is presented and the implementation

for the NMPC is discussed in the next section.

Problem 5.1 (nonlinear tracking problem).

min
xs,us

1

2

(︁
|us − usp|2Rs

+ |Cxs − ysp|2Qs

)︁
(5.1)

35
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subject to

xs − f(xs,us) = 0 (5.2)

HCxs = rsp (5.3)

Eus ≤ e (5.4)

Gxs ≤ g. (5.5)

In Problem 5.1, the objective function (5.1) is exactly the same as in the linear

case (2.5). The only difference is that the system is replaced with a nonlinear

system and for the system, the steady state assumption must hold. The setpoint

rsp is determined through an equality constraint. Constraints are available for

the steady state xs and for the control variable us. For the nonlinear and linear

tracking problem there is no guarantee for feasibility of the solution.

5.1.1 Nonlinear setpoint tracking combined with NMPC

The idea with setpoint tracking, is to find a reference value for the NMPC cost

function. In this thesis, a reference value is determined for the control variable.

This reference value for the control signal is calculated with Problem 5.1, and

the reference is used in the NMPC cost function to penalize the control, when

it is far from the reference. In Problem 5.1, the discrete-time simplified model

is the function f . The reference value identifies the steady state that satisfies

the setpoint, and when used in the NMPC cost function, the NMPC is expected

to steer the system to this steady state. The problem with nonlinear setpoint

tracking is, that if a solution does not exist, the NMPC regulator cannot achieve

optimal control decisions, since it relies on the reference.

The tracking problem is implemented in Matlab and solved using fmincon.

The code for the setpoint tracking problem can be found in A.5. A practical

example on the benefits of setpoint tracking in NMPC is presented through

simulation below.
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Figure 5.1: Unstable control. Figure 5.2: Stable control.

In both figures the red curve describes the disturbance and the blue curve

describes the control decision made by the NMPC. In Figure 5.1, a quadratic

cost-function with reference ur = 0 is chosen for the NMPC and one can observe

that when the system reaches steady state, the NMPC does not find steady state.

In this example, setpoint tracking is not used. In Figure 5.2, the steady state

is determined for a specific output and a reference value for the control signal

u is calculated with the nonlinear tracking Problem 5.1 using the Matlab code

A.5. The reference value is then used in the NMPC cost function to penalize

the control signal when it is far from the reference. Now the control signal is

constant, and no oscillations occur, since it is possible to make the NMPC cost

function zero. The simulation time is three times faster when using the reference

value in the cost function. More information about the simulations can be found

in Chapter 7.

Some problems might arise when using nonlinear setpoint tracking. There is

no guarantee that the setpoint is feasible for the nonlinear system. Infeasibility

might arise when the disturbance changes drastically. For the nonlinear system

considered in this thesis, the nonlinear setpoint tracking problem becomes un-

feasible when the disturbance goes to zero. When the setpoint tracking problem

becomes infeasible, the NMPC cannot make optimal control decisions, since it

relies on the reference that the tracking problem provides.
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5.2 Nonlinear MHE

In this thesis, nonlinear plant states are estimated with the NMHE cost

V̂T (X̂N(T )) =
1

2

(︃
|x̂(T −N)− x̄(T −N)|2P+

T−1∑︂
k=T−N

|x̂(k + 1)− f(x̂(k),u(k))|2Q +
T∑︂

k=T−N

|y(k)− h(x̂(k))|2R
)︃
,

(5.6)

where the weight for the prior weighting term is set to zero. The difference to the

linear case is, that a general function f is used to estimate the plant dynamics,

where f is the estimation model, and a function h returns the estimates that are

compared to the measurements. The cost function uses the simplified nonlinear

discrete-time model as f , which should resemble the plant.

In our implementation, the measurements are assumed to be zero before the

measurement window is full, i.e., at the first sampling instant the measurement

window consists of N zeros. At the next sampling instant, the measurement

window consists of N − 1 zeros and the first measurement, i.e. 0, . . . ,0,y1. This

procedure proceeds until the measurement window is filled. This can be seen as

full information estimation until the measurement window is full, since all the

available measurements are used.

The results from Theorem 3.2 and 3.3 are not usable for nonlinear plants, since

both theorems require linear plants. In [2, Chapter 4], some results of nonlinear

estimator stability are proved for nonlinear plants, these results, however, do not

consider the control signal in the cost function. In [2, Section 4.3.3] for instance,

Theorem 4.37 guarantees estimator stability for moving horizon estimation for a

horizon length N , but for this result to hold, five assumptions must hold. The

first assumption states that the cost function should be zero when the estimates

and the measurements are zero. The assumption does not consider the control

variable and hence, for the plant in this thesis, it is possible that the cost is not

zero.

In general, most of the results for nonlinear estimation in [2] require many

assumptions. This is usually the case when dealing with nonlinear systems, since
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it is difficult to obtain explicit solutions.

5.2.1 NMHE compared to other estimation methods

In [2], a comparison between MHE, EKF and the Unscented Kalman Filter

(UKF) is done. The EKF and UKF are computationally more effective, since

the equations update recursively. For nonlinear MHE, the estimation is more

demanding, because numerical optimization for long horizons N cause a high

workload for the computer. Short horizons on the other hand, might produce

inaccurate estimates.

In [2, Section 4.4.4], the comparison is made for the estimation of the states

of a nonlinear model using MHE, EKF and UKF. Their results show that MHE

produce the most accurate estimates. In the example, some states converge to

negative concentrations when using the EKF. This affects the regulation signifi-

cantly and quite likely results in an unstable regulator. A modified version of the

UKF produces slightly more accurate estimates, but the convergence to the plant

state is slow. The MHE produces the most accurate estimates, and the estimates

converge quickly to the plant state. In the MHE, constraints are available, which

can prevent that the estimates converge to negative values.

In a much cited article [14], Haseltine and Rawlings compare the EKF with

MHE, for a nonlinear model. They show that MHE produces much more accurate

estimates than the EKF, but they also conclude that it comes with a cost in

computational efficiency. In their Table 4, the average CPU time per time step

(s) is presented and one can see that the EKF is faster to compute.

In another article [13] written by Ubare et al., NMPC is combined with dif-

ferent state estimation methods and the performance is compared. In the article,

NMPC is combined with EKF, UKF and nonlinear MHE. The performance be-

tween the estimation methods is analysed and they conclude for their example

that NMPC combined with nonlinear MHE outperforms both NMPC combined

with EKF and NMPC combined with UKF. They conclude that NMHE with
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horizon 5 is comparable to the other methods in performance, but if one can

ignore the computation cost, the NMHE with longer horizon produce even more

accurate estimates. Figure 3 in their article illustrate the estimation and Fig-

ure 6 illustrate the estimation time, NMPC combined with nonlinear MHE with

horizon 5 has the shortest estimation time.

5.2.2 Nonlinear MHE combined with NMPC

In [2, Section 4.5], MHE combined with MPC is discussed. The section is focused

on the effect of the estimation error in the MHE when combining control and

estimation. Results about the NMPC performance is not covered. They conclude

the section with a result (Theorem 4.46) that MHE combined with MPC is

robustly asymptotically stable, which means that it is input-to-state stable on a

robustly positive invariant set.

For this result to hold many assumptions must hold for the MPC regulator

and for the MHE. The first two assumptions for the regulator might be easy to

prove. They deal with continuity of the system and cost, and with properties of

the constraint set, but the third assumption, which deals with basic stability is

more difficult to prove. As for nonlinear MHE stability, the result regarding MPC

and MHE combined, also require many assumptions, since nonlinear systems are

considered. For more details see Section 4.5 in [2].

In [16], some conditions are proposed to achieve stable control in NMPC based

on estimation. In the article, MHE is considered briefly and the main condition

to achieve stable control is that the estimate converges fast to the exact plant

value. In this article, a mathematical approach is used.
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5.3 NMPC, Nonlinear setpoint tracking and non-

linear MHE

In [2], nonlinear setpoint tracking is not covered, even though, linear setpoint

tracking is covered in Section 1.5. In [2, Section 5.6], it is only noted that stability

of output MPC, when considering a nonlinear system, has not gained much

attention, with output MPC meaning MPC combined with state estimation.

In [2, Section 5.7], some articles are presented where the tracking problem is

discussed and for an interested reader, this section is recommended.

In [15], NMPC, MHE and target tracking is combined in a similar way as in

this thesis. Their results are based on simulation and no mathematical results

are presented. In their study, a solid oxide fuel cell is controlled based on the

estimates. They conclude that the estimator provides good estimates and that it

is possible to control the process using NMPC, target tracking and MHE. They

also conclude that for a practical implementation, the computational time causes

problems, since it requires much time to solve the optimization problems.

To conclude this section, it can be said that there does not exist many results

of nonlinear tracking, NMPC and nonlinear MHE combined, and more research

in this area is required.

5.4 Conclusion

There exist many results for linear plants considering MPC, MHE and Setpoint

tracking separately, since explicit solutions are more easily obtained. For nonlin-

ear plants, the theory becomes much more complicated and results considering

stability for instance, require a great deal of work, since it is impossible to obtain

explicit solutions.

In [1, Section 2.3], stabilization of discrete-time systems to a reference is

presented. In Section 4.1, stability to a reference for the infinite horizon optimal

control problem is presented. One result that deals with finite horizon NMPC
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stabilization to a reference is Theorem 7.41 in [1]. The Theorem does not cover

estimation or how the reference is calculated, hence the Theorem is not applicable

for this thesis. More information about NMPC feasibility and stabilization can

be found in [1, Chapter 7].

Even though many of these applications are used in the industry in the non-

linear case, the theory for different combinations of nonlinear estimation and

NMPC is deficient. More research in this area is required to obtain solutions and

understanding for these problems.
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Chapter 6

Selective catalytic reduction

6.1 The full SCR model

The model that is used to describe the Selective Catalytic Reduction is presented

beneath. The model is developed by Milver Colmenares in his Master’s thesis

[11]. The SCR can be modeled in detail as a partial differential equation. To

avoid this, perfect mixture in the catalyst is assumed and the SCR can be mod-

eled as several cells connected in series, which results in a system of nonlinear

first order ordinary differential equations:

dθ

dt
= kadscNH3(1− θ)− (kdes + kredcNO + koxco2)θ (6.1)

dcNO

dt
=

V̇

V
(cNO,in − cNO)− kredcNOθccatmax (6.2)

dcNH3

dt
=

V̇

V
(cNH3,in − cNH3)− kadscNH3(1− θ)ccatmax + kdesθccatmax (6.3)

and this model represents one cell. The SCR model consists of three chemical

reactions, (6.1) describes NH3 adsorption and θ is the ammonia coverage ratio.

Equation (6.2) describes NO reduction, where cNO is the concentration of NO.

Equation (6.3) describes NH3 oxidation, where cNH3 is the concentration of NH3.

The constant kads describes the adsorption rate, kdes the desorption rate, kred

the reduction rate and kox describes the oxidation rate. The oxidation rate is
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assumed to be zero in this thesis, which is why it is removed from the model in

further calculations. The NH3 adsorption capacity of the catalyst is described

by ccatmax, V̇ is the exhaust gas flow and V is the reactor volume. The SCR

model is controlled by an ammonia injection cNH3,in and disturbed by cNO,in,

which describes the NO, coming from the engine.

To obtain a more realistic model that describes a real catalyst, a sequence

of these cells is connected, and the model consists of several systems connected

in series. The concentrations in Equations (6.2) and (6.3) are used as input for

the next cell, as cNO,in and cNH3in. In this expanded model, the ammonia cNH3in

injected to the first cell is the only thing that can be regulated.

The full SCR model is highly nonlinear, which is why a nonlinear model

predictive controller is used to control the process. In most simulations done

in this thesis, a four-cell structure is used to describe the plant, and it consists

of four SCR cell models connected in series, which results in 12 states. In the

beginning of this project, it was proposed to use the continuous-time full SCR

model as prediction model for the NMPC, but it resulted in slow control.

To achieve faster control a discrete-time prediction model is proposed, since

discrete-time models are more suitable for numerical calculations. The Zero

Order Hold (ZOH) discretization method is implemented in the software, but

the control of the full SCR model is slow compared to if the full SCR model

would be discretized in advance.

The full continuous-time SCR model was transferred to discrete time using

other discretization methods as well. The methods that were tested were the

Euler method and the Heun method, but they resulted in unstable control. The

discrete-time models have problems capturing the fast dynamics of the Equations

(6.2) and (6.3).

In the next section, a simplified version of the full SCR model is determined

that is used both as prediction model and estimation model, the simplified model

is also used in the setpoint tracking problem. The new prediction model is then

used for the control in discrete time. The continuous-time full SCR model is
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used to simulate the plant in the simulations.

6.2 A simplified SCR model

The Equations (6.2) and (6.3) reach steady state much faster than (6.1). A way

to derive a good prediction model for the NMPC is to approximate that the fast

reactions reach steady state immediately, i.e. to set the derivatives of cNO and

cNH3 equal to 0 in the Equations (6.2) and (6.3). The simplified model that

is used in both NMPC, MHE and setpoint tracking is derived in the following

calculations.

From (6.2), one easily obtains:

0 =
V̇

V
(cNO,in − cNO)− kredcNOθccatmax ⇐⇒

V̇

V
cNO,in =

(︄
V̇

V
+ kredθccatmax

)︄
cNO

and we obtain,

cNO =
cNO,in

1 + kredθ
ccatmaxV

V̇

. (6.4)

From (6.3), one can again calculate:

0 =
V̇

V
(cNH3,in − cNH3)− kadscNH3(1− θ)ccatmax + kdesθccatmax ⇐⇒

V̇

V
cNH3,in + kdesθccatmax = cNH3

(︄
V̇

V
+ kads(1− θ)ccatmax

)︄
and we obtain,

cNH3 =
cNH3,in + kdesθ

ccatmaxV
V̇

1 + kads(1− θ) ccatmaxV
V̇

. (6.5)

In both (6.4) and (6.5) it is assumed that V̇ ̸= 0. The first Equation (6.1) stays

the same but can now be rewritten using (6.4) and (6.5).

θ

dt
= kadscNH3(1− θ)− (kdes + kredcNO)θ. (6.6)
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The model (6.6) where cNO is replaced with (6.4) and cNH3 is replaced with (6.5),

is now used as the prediction model for the NMPC and estimation model for the

MHE and as a model for the setpoint tracking. In the new simplified model (6.6)

it is assumed that the states for cNH3 and cNO reach steady state immediately.

These states are important, since they describe the emissions that we want to

control.

We next propose to approximate both states with an exponential moving

average value in discrete time, which is calculated by

ca(k + 1) =

(︃
1− 1

W

)︃
ca(k) +

1

W
c, (6.7)

where V > 0 is an appropriately chosen weighting factor. The constraints for the

NMPC are set on the long-term average value of cNH3a
and cNOa calculated by

the formula (6.7) and the constraints are set to match the emission regulations.

More information about the exponential moving average value can be found in

[17, Section 8.1].

The NMPC used in this thesis, use the prediction model in discrete time.

To transform the model to discrete time, the Euler method is used. The Euler

method can be derived in many different ways, and it is excluded from this thesis.

The Euler method is defined as

xs(k + 1) ≈ xs(k) + T · f(xs(k),us(k)), (6.8)

where T is the sampling time. The simplified model (6.6) in continuous time is

transformed to discrete time using the Euler method. The simplified discretized

model with the average values is presented beneath

θ(k + 1) = θ(k) + T (kadscNH3(k)(1− θ(k))− (kdes + kredcNO(k))θ(k)) (6.9)

cNOa(k + 1) = cNOa(k) +

(︃
1

W
cNO(k)−

1

W
cNOa(k)

)︃
(6.10)

cNH3a
(k + 1) = cNH3a

(k) +

(︃
1

W
cNH3(k)−

1

W
cNH3a

(k)

)︃
. (6.11)

Equation (6.9) describes the ammonia coverage in the catalyzer, (6.10) describes

the moving average value of the NO concentration and (6.11) describes the mov-
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ing average value of the NH3 concentration. In the simulations W = w
T

where w

is a constant and T the sample time.
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Chapter 7

Simulation results

All simulations are done in Matlab version R2021b and graphs with results from

the simulations are presented in this chapter.

7.1 Prediction model validation

At first, the prediction model (6.6) and the full SCR model are compared to see

if the prediction model captures the behaviour of the original model. This is

important, since MPC relies heavily on the prediction model. If there is a clear

difference between the models, the control actions of the NMPC are inaccurate.

Simulations on the simplified prediction model show that it describes the

original SCR model well, this simulation is done using the code from A.1. The

simplified model is compared both in discrete and continuous time to the original

model in continuous time. As can be seen from Figure 7.1, the simplified model

follows the θ curve almost exactly in the figure that describes θ. Both discrete and

continuous time models capture the behaviour of θ. In the upper right figure one

can see that the average value of NO converge to the nominal value. The same

behaviour can be observed for NH3 in the bottom left figure. In the bottom

right figure one can observe the control variable NH3in and the disturbance

NOin. The parameters used in the simulations are; kads = 10, kred = 300,

kdes = 0, ccat,max,NH3 = 0.1 and V̇
V

= 2/4, the same parameters are used in all
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the following simulations. For this specific simulation the disturbance was set to

cNO,in = 0.001 and the control signal was set to cNH3,in = 0.0008. The sampling

period for the discrete-time simplified prediction model was set to T = 5 seconds.

The simplified model is also controlled in both continuous time and discrete

time with NMPC. The important observation from this test is that the discrete

time model is much faster to evaluate. This simulation is not illustrated in this

thesis, since it is quite obvious that the discrete model is faster to evaluate. The

interested reader can test this using [18]. In all the NMPC simulations beneath,

the discrete time model is used as the prediction model.

Figure 7.1: Simulations on the simplified model in continuous time and discrete

time, compared to Colmenares’s model in continuous time.

7.2 NMPC simulation setup

There are many parameters in the NMPC simulator that can be tuned and the

most important are presented in the table beneath:
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ysp Soft setpoint for the states

rsp Hard setpoint for the control variable

usp Soft setpoint for the control variable

nMHE NMHE horizon

mpciterations NMPC iterations

N Optimization horizon

T Sample time

In the simulations the standard values are ysp = 0, rsp = 0.0002 (rsp is the

setpoint for the NOout), usp = 0, nMHE = 13, mpciterations = 180, N = 40

and T = 5. If these values change it is mentioned in the section.

To keep the NMPC feasible a slack variable is introduced for the NO con-

straint. It can be found in the NMPC cost function and in the constraint section.

The slack variable has a large weight, and it is activated only in critical situa-

tions. All these parameters can be found in A.3 and the simulation is launched

from this file.

7.3 Validation of the NMHE

In this section, the nonlinear Moving Horizon Estimation is tested. The code for

the NMHE can be found in A.4. An NMPC simulation is done and the NMHE

is executed at the same time, at every NMPC iteration. The code for the NMPC

algorithm can be found in A.6. In this simulation, the NMPC and NMHE work

separately, which means that no control actions are affected by the estimation.

Two simulations are done, one with perfect measurement of NOout and one with

a measurement that consists of a mixture of NO and NH3, as well as noise. The

formula for the disturbed measurement is

NO + 0.5×NH3 + (−1× 10−5 + (1× 10−5 + 1× 10−5)× c), (7.1)

where c is a random number generated with the Matlab function randn. This

formula can be found in A.6 but it is manipulated from A.3 on row 96 and
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97. In the simulation, the NMHE uses 13 measurements. Before the window

of measurements is fulfilled, the measurements that are given to the NMHE are

zero and updates with the most recent measurement for every sampling instant.

Figure 7.2: NMPC simulation and NMHE done simultaneously. Perfect mea-

surement of NOout and the reference values in the NMPC cost are zero.
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Figure 7.3: NMPC simulation and NMHE done simultaneously. Disturbed mea-

surement of NOout and the reference values in the NMPC cost are zero.

From Figure 7.2, where we have the perfect measurement, can be seen that

the exact states and the estimates are almost exactly the same, except from the

beginning, where the measurement window is not fulfilled. When noise is added

to the NOout measurement, the NO estimate moves around the real measure-

ment. The reason to this is that the NMHE does not know about the noise and

estimates the noise exactly. This might be solved by choosing different weights

in the MHE cost function. This should not affect the control, since the control

is done on the average value of NO. The other estimates remain the same.

For Figures 7.2 and 7.3 a quadratic cost function is used with zero reference

for the control variable. The target selector is not in use in these figures. This

results in slow control. When using a reference value for the control signal in the

NMPC, the control actions become more aggressive and the estimation is not as

accurate in the beginning. The ammonia coverage estimates are slightly ahead of

the plant values. The results can be seen in Figure 7.4, where the target selector

is used to determine the reference for the control signal. The code for the target
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selector can be found in A.5.

Figure 7.4: NMPC simulation and NMHE done simultaneously. Disturbed mea-

surement of NOout and a reference value for the control signal is calculated using

the target selector.

The NOin measurement is vital for the prediction and estimation model,

hence the measurement of NOin is assumed perfect in all simulations. Some

major changes are required if one wants to conduct simulations, where the NOin

measurement has noise. Some estimation might be required for this part.

With these results promising results from the NMHE, a simulator is assem-

bled, where Colmenares’s model is used to model the plant and the simplified

model is used as the prediction model and estimation model. In the next section,

results of NMPC, nonlinear setpoint tracking and NMHE combined are presented

and some comparison between NMPC and PI control is also presented. In all

simulations with NMPC, the disturbed NOout measurement and a perfect mea-

surement of NOin is used.
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7.4 NMPC combined with setpoint tracking and

NMHE

Nonlinear model predictive control is dependent on the model of the process.

The simplified model has four states of ammonia coverage that the NMPC relies

on. As mentioned earlier, the ammonia coverage cannot be measured, which is

why the MHE is used to estimate these states. Before every NMPC step, state

estimation is done to obtain the missing states. In the simulation beneath, a

quadratic cost function is chosen and a reference for the control signal is calcu-

lated with the target selector using 5.1. The setpoint rsp is set to 200ppm NO

and the reference is calculated such that the ammonia slip is minimized, and the

control signal is as low as possible, i.e. usp = 0 and ysp = 0. The constraints for

the NMPC are set on 11ppm for the average value of ammonia and 250ppm for

the average value of NO. The mpciterations is set to 600.

Figure 7.5: NMPC, nonlinear tracking and MHE combined.

From Figure 7.5 can be seen that the control action is constant. The target

selector manages to find the reference for the control signal that steer the SCR
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to steady state with 200ppm NO coming out. The estimate of ammonia slip is

also accurate, since the ammonia slip from the plant is kept beneath the limit,

which was set to 11ppm. The average values are also plotted and it can be seen

that they converge to the plant values. The constraints for the controller are

on the average values, which eliminates the oscillations that occur in the NO

measurement. Another benefit from the average values is that the controller is

more flexible to fast changes in the disturbance.

In the next simulation, the NMPC, nonlinear tracking and MHE are tested

with a varying NOin, to see how the controller responds to change, mpciterations

is set to 1200.

Figure 7.6: NMPC NOin varying.

From Figure 7.6 can be seen that the controller responds quickly to a varying

NOin. A hard constraint is set on the average value of NH3 concentration at

11ppm and one can see that the constraints hold for the average value. The

setpoint for NOout is still at 200ppm, which is kept when possible. When the

NOin rise, the controller injects the maximum amount of ammonia that hold the

NH3 out constraint. Since the controller cannot inject more ammonia, the NOout
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levels rise above the setpoint, which can be seen between 30 and 40 minutes.

When this happens the control value is far from the reference and the control is

slow.

7.5 PI-control

A proportional-integral-derivative controller (PID-controller) is a frequently used

controller in industry. PID-control is popular, since it is easy to implement and

use [4]. In this thesis, NMPC is compared to PI-control, which is a PID controller

without the derivative term. The P term describes the proportional error value,

and the integral term corrects the controller for steady offset from the reference

value. The PI-controller compares the measured output to a reference value and

then produces a control signal, based on the error. The PI-controller is derived

from a continuous-time PID-controller

u(t) = Kc

(︃
(r − y(t)) +

1

Ti

∫︂ t

0

(r − y(s))ds+ Td
d(r − y(t))

dt

)︃
.

The parameters are explained in the table.

u Control variable

Kc Proportional gain

e Control error

Ti Integration time

h Sample time

r Reference value

y Measurement

Now by approximating the integral with a rectangular approximation and by

setting Td = 0, we obtain by discretization the formula for the PI-controller that

is used in the simulation. The formula for the PI-controller is presented beneath,
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where e(k) = r − ys(k) and the lower index s indicates a discrete signal

us(k) = Kc

(︄
e(k) +

h

Ti

k∑︂
n=1

e(n)

)︄

us(k)− us(k − 1) = Kc

(︄
e(k) +

h

Ti

k∑︂
n=1

e(n)

)︄
−Kc

(︄
e(k − 1) +

h

Ti

k−1∑︂
n=1

e(n)

)︄

us(k) = us(k − 1) +Kc

(︃
e(k)− e(k − 1) +

h

T i
· e(k)

)︃
. (7.2)

In this particular PI-controller, the proportional gain is determined by λ-

tuning, i.e. Kc =
T
Kλ

, where T = Ti. The new parameter λ determines the pace

of the regulation [3].

The parameters for the PI-controller are tuned with trial and error and the

regulator works toward a long-term average value of NOx. The long-term av-

erage value is calculated with the moving exponential average value (6.7). The

constants are set to Kc = −0.9 and Ti = 1.9 · 60 for the simulation. The code

for the PI-controller can be found in A.2.

Figure 7.7: PI-control.

From Figure 7.7 can be seen that the PI-controller controls the SCR to steady
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state. The setpoint for NO was set to an average value of NO, at 200ppm. The

simulation took 0.24 seconds, which is much faster than the NMPC which took 35

seconds. There are some situations where the PI-controller struggles and where

NMPC work properly. These results are presented in the next section.

7.5.1 NMPC compared to PI-control

The PI-controller is a feedback controller and determines the control signal based

on measurements. The NO concentration is the only thing that is measured

and hence, the control is based on this measurement. The PI-controller has

no information about the ammonia concentration and does not know how much

ammonia is coming out. The benefit with NMPC is that the controller is aware of

the ammonia slip and it possible to control both ammonia slip and NO emissions.

In the simulation mpciterations is set to 600.

Figure 7.8: PI-control.
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Figure 7.9: NMPC hard constraint on NH3 at 20ppm.

Figure 7.10: NMPC hard constraint on NH3 at 11ppm.

In the simulations presented in Figures 7.8, 7.9 and 7.10, one would like to

keep the NO below 200ppm and NH3 below 11ppm. In Figures 7.8 and 7.9, one
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can see that the NO limit hold but the NH3 limit is exceeded. In PI-control,

it is impossible to control the NH3, since there is no measurement of the state.

With NMPC it is possible, since the estimate of ammonia is obtained, and one

can put a constraint at 11ppm. In Figure 7.10, can be seen that the NH3 limit

hold, but the NO limit is exceeded. The controller works against the long-term

average value of NH3, which is also plotted. One can see that the NH3 value rise

above the constraint, but quickly converge to the constraint. This does not result

in infeasibility, since the controller does not know about it. In real applications,

one would hold the NH3 limit instead, since it is much more toxic than NO.

In some applications, one would like to control low NOout levels. In the next

simulation, the NOout setpoint is set to 10ppm i.e. rsp = 0.00001. The number

of iterations is increased to mpciterations = 2160. In this simulation, cross

sensitivity in the NOout measurement is present, and it is increased to 0.8 from

0.5, which means that we have some NH3 in the NO measurement as well. It is

again calculated with the formula (7.1).

Figure 7.11: PI-control, cross sensitivity in the NOout measurement, note the

alarming ammonia slip.
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Figure 7.12: NMPC, cross sensitivity in the NOout measurement.

The cross-sensitivity in the measurement causes problems for the PI-controller.

When NO concentrations rise, the controller injects more NH3 to the SCR, which

results in a higher NOout measurement, since NH3 is also present in the mea-

surement. This results in a maximum injection of ammonia and a very high

ammonia slip. This is alarming, since high loads of toxics are released. The

PI-controller does not know anything about it, since NH3 is not measured, and

the PI-controller can only control the SCR using the measurements that are

available.

The NMPC can control multiple outputs and, since there exists an estimate

of NH3, it can be controlled. The cross-sensitivity in the measurement does

not affect the estimate of NH3 noticeably, and hence, a constraint can be set

on the NH3 concentration. The constraint is set at 20ppm and this constraint

is satisfied at all times. This is a major advantage with NMPC compared to

PI-control. The NMPC does not cause major ammonia slip by blindly injecting

ammonia excessively.
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7.6 Conclusion

The simulation study shows that it is possible to control the SCR process with

NMPC with the assumption that the SCR behave in the same way as the full

SCR model. For the control, state estimation is required and the nonlinear MHE

provides accurate estimates of the states that cannot be measured. Setpoint

tracking is not strictly necessary for the control, but it makes the control much

faster, and the controller reach steady state faster, which is why it is used. The

major advantage with NMPC is the ability to deal with constraints, which is of

critical importance for SCR control governed by emission regulations. NMPC

also manages multiple inputs and outputs, which is an advantage in SCR control,

since it is possible to control both NOout and NH3out . The results can be seen

in Figures 7.6, 7.10 and 7.12.

The NMPC control combined with estimation and setpoint tracking is much

slower than the PI-control. The PI-control simulation time for in Figure 7.11

was 2 seconds while the simulation time for the simulation in Figure 7.12 was

330 seconds. The PI-controller determines the control signal much faster than

the NMPC.

SCR is a process with slow dynamics, which is why the NMPC can manage

the control in a real-time application. The time required to calculate one control

decision for one sample time varied depending on the NOin, the optimization

horizon and estimation horizon, but on average, it was kept around 0.5 seconds

on a standard computer. The time to calculate the control decision could be

improved by lowering the optimization horizon and estimation horizon and for a

physical application, the optimal horizons should be studied.

For a hardware implementation there are still many open questions that

should be studied in detail.

1. A study on the effects of measurement error in the NOin measurement is

required. The NOin measurement is present in the control, estimation and

setpoint tracking, and it plays a critically important role in the control
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design. Measurement errors probably affect the control drastically and

hence accurate estimation of the NOin measurement might be required.

2. The ammonia injection reaches the catalyst with a time delay. This phe-

nomenon is not captured in the simulations, but it should be studied before

a commercial implementation is done.

3. Feasibility problems in the NMPC, MHE and setpoint tracking should also

be studied more. Feasibility problems arise e.g. when the control is near

the constraints. When one of the problems become infeasible, the control

is affected and might become infeasible as well.

4. Model mismatch is a central problem in MPC, since MPC requires an ac-

curate model. The model plays a crucial role in MPC, MHE and setpoint

tracking and if the model is inaccurate the control actions become inaccu-

rate. Model accuracy should be studied in detail with experiments.

5. The computation time in the simulator could be improved.
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Swedish summary

Olinjär modellprediktiv reglering och estimering

tillämpat på selektiv katalytisk reduktion

Modellprediktiv reglering (eng. model predictive control MPC) är en avancerad

reglermetod för system som går att reglera. Metoden är baserad på optimer-

ing vilket möjliggör att man beaktar fysikaliska begränsningar på tillstånd eller

styrsignal. Begränsningarna är den stora fördelen med MPC jämfört med andra

reglermetoder. Metoden för olinjär modellprediktiv reglering (NMPC) är mycket

lik MPC, skillnaden är att i NMPC är modellen olinjär [1] och optimeringsprob-

lemet kan bli icke-konvext.

I MPC förutses ett systems framtida beteende och det optimeras med avseende

på styrsignalen, vilket kräver en modell av systemet. I avhandlingen beaktas sys-

tem av formen

x(k + 1) = f(x(k),u(k)),

där x(k) är systemets tillstånd vid tidpunkt k och u(k) är styrsignalen vid tid-

punkt k. Vid varje tidpunkt k optimeras alltså en följd av styrsignaler up(0), . . . ,

up(N − 1) för N ≥ 2, där horisonten N är antalet diskreta tidssteg i framtiden.

Med optimeringen minimeras en kostnadsfunktion så att gränser för tillstånd

64
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eller styrsignal tas i beaktande. Den första optimala styrsignalen u∗
p(0) används

sedan för nästa tidssteg k+1, tillsammans med de nästa tillstånden x(k+1) och

algoritmen omstartas.

Estimering används tillsammans med regulatorn eftersom alla tillstånd x(k)

inte kan mätas i modellen. Tillstånden är viktiga för prediktionsmodellen i MPC.

Det finns olika sätt att estimera tillstånd och Kalmanfiltret är den vanligaste

estimatorn för linjära modeller och det utvidgade Kalmanfiltret används vanligen

för olinjära modeller. Det utvidgade kalmanfiltret använder linjärisering, vilket

enligt [2] inte är optimalt. För olinjära modeller föreslår de en estimator som

utnyttjar ett fixt antal mätningar y(T−N), . . . ,y(T ), som uppdateras då man rör

sig framåt i tiden. På basen av mätningarna optimeras en kostnadsfunktion för

att få optimala tillstånds estimat. På engelska heter metoden Moving Horizon

Estimation (MHE), vilket beskriver metoden bra. I [2] förespråkas dessutom

MHE kombinerat med MPC, vilket används i denna avhandling.

Utsläppsgränserna blir kontinuerligt strängare och nya metoder för att reglera

utsläpp mera effektivt behöver snabbt utvecklas. Selektiv Katalytisk Reduktion

(SCR) är en kemisk process där kväveoxider (NOx) reduceras till kväve och vatten

genom insprutning av ett reduktionsmedel som oftast är en urea-lösning. SCR

används i gas- och dieselmotorer. Nästan alla nya bilar som drivs med diesel

använder SCR processen för att minska på kväveoxidutsläppen.

SCR modellen som används i denna avhandling är utvecklad av Milver Col-

menares i hans diplomarbete [11]. Modellen består av tre olinjära ordinära dif-

ferentialekvationer, där (6.1) beskriver dynamiken för täckningsgraden θ av am-

moniak i katalysatorn, (6.2) beskriver koncentrationen NO och (6.3) beskriver

koncentrationen NH3. SCR-processen går också att modellera med partiella

differentialekvationer, men de är svåra att jobba med. För att undvika detta

är SCR-processen modellerad med flera seriekopplade celler där utsignalen från

tidigare cell används som insignal för nästa cell. Modellen som Colmenares har

utvecklat beskriver en cell.

En simulator har utvecklats i denna avhandling för att undersöka och effek-
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tivera regleringen av SCR-processen. NMPC algoritmen som används i simula-

torn är en vidare utvecklad version av Grünes och Panneks NMPC rutin [18].

En modell med fyra celler är använd i simuleringarna och det visar sig att Col-

menares modell med flera celler är mycket tung att optimera, eftersom den har

12 tillstånd. En förenklad modell bestäms genom att approximera ekvationerna

(6.2) och (6.3) i deras jämviktstillstånd, det vill säga derivatorna sätts lika med

noll.

Den förenklade modellen används både som prediktionsmodell för NMPC,

för beräknadet av börvärden för NMPC kostnaden samt som estimeringsmodell

för MHE. Den förenklade modellen saknar tillstånd för NO koncentrationen och

NH3 koncentrationen och därför sätts begräsningarna i NMPC på långtids-

medelvärden för respektive koncentration som är beräknade med formel (6.7).

Långtidsmedelvärdena ger också lite tid åt regulatorn att agera samt påminner

långtidsmedelvärdena de verkliga miljöbegränsningarna. Den förenklade predik-

tionsmodellen har endast sex tillstånd. Prediktionsmodellen jämförs med simu-

lering mot Colmenares modell och det kan ses att prediktionsmodellens beteende

följer Colmenares modell bra, se figur 7.1. Idén med en förenklad modell är att

minska på beräkningstiden och göra optimeringen mera effektiv både i NMPC och

MHE. I simuleringarna används den förenklade modellen som prediktionsmodell

samt estimeringsmodell och Colmenares mer komplicerade modell används för

att simulera den riktiga processen.

Colmenares modell är formulerad i kontinuerlig tid och för att göra optimerin-

gen ännu snabbare så transformeras den förenklade modellen till diskret tid med

Eulers metod. NMPC algoritmen i Matlab har färdighet för modeller både i

kontinuerlig och diskret tid, men optimeringen blir betydligt snabbare då man

använder en färdigt diskretiserad modell.

Simuleringarna visar att SCR-processen kan styras effektivt med olinjär mod-

ellprediktiv reglering. Regulatorn klarar av att hålla miljögränserna och dessu-

tom styra insprutningen av ammoniak på ett effektivt sätt. Att kunna garan-

tera att miljögränsen för ammoniak hålls är den stora fördelen med NMPC vid
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styrning av SCR. En PI-regulator klarar inte av att hålla ammoniakgränsen då

systemet får ett högt inflöde av NO. Ammoniak är ett större miljöproblem än

NO och därför vill man inte överskrida ammoniakgränsen. Estimatorn lyckas

noggrant estimera tillstånden som inte enkelt kan beräknas med endast mätning

av in- och utflöde NO, samt med kännedom av styrsignalen.

Ett problem med NMPC kombinerat med MHE är lång beräkningstid. Vid

varje iteration körs två optimeringar, då systemet får en störning blir beräkn-

ingstiden längre, eftersom NMPC:n måste vidta stränga åtgärder för att hålla sig

inom begränsningarna. Inga riktiga experiment har gjorts i denna avhandling

men riktiga experiment med fysisk hårdvara skulle vara nästa steg för detta

arbete.
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Matlab code

A.1 Prediction model validation

The simplified prediction model is compared in both continuous-time and discrete-

time to the full SCR model with the code below.

1 %Prediction model validation Simulator

2 %OSCAR AALTONEN

3 %15.7.2022

4 clear all

5 t = 900;

6 %for continuous models

7 tMeasure = [0 t];

8

9 %for discrete model

10 T = 5; %sample time

11 %Get same time as for the continuous models

12 evals = t/T;

13 xaxis = [0:T:t-1];

14

15 %evals = t;

16 %xaxis = [1:t];

17

68
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18 %The original continuous model

19 options = odeset('RelTol',1e-5,'Stats','on');

20 [t1,y] = ode15s(@systemM,tMeasure,[0 0 0 0 0 0 0 0 0 0 0 ...

0],options);

21

22 yO1 = y(:,1); %theta_1

23 yO2 = y(:,2); %NO_1

24 yO3 = y(:,3); %NH3_1

25 yO4 = y(:,4); %theta_2

26 yO5= y(:,5); %NO_2

27 yO6 = y(:,6); %NH3_2

28 yO7 = y(:,7); %theta_3

29 yO8 = y(:,8); %NO_3

30 yO9 = y(:,9); %NH3_3

31 yO10 = y(:,10); %theta_4

32 yO11 = y(:,11); %NO_4

33 yO12 = y(:,12); %NH3_4

34

35

36

37 %The steady state continuous time Model

38 options = odeset('Stats','on');

39 [t2,y] = ode15s(@systemSSc,tMeasure,[0 0 0 0 0 0],options);

40

41 ySSc1 = y(:,1); %theta1

42 ySSc2 = y(:,2); %theta2

43 ySSc3 = y(:,3); %theta3

44 ySSc4 = y(:,4); %theta4

45 ySSc5 = y(:,5); %NO_avr 4th cell

46 ySSc6 = y(:,6); %NH3_avr 4th cell

47

48

49 %The Discrete time steady state model

50 ySSd1 = zeros(evals,1);

51 ySSd2 = zeros(evals,1);

52 ySSd3 = zeros(evals,1);
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53 ySSd4 = zeros(evals,1);

54 ySSd5 = zeros(evals,1);

55 ySSd6 = zeros(evals,1);

56 aSSd = zeros(evals,1);

57 bSSd = zeros(evals,1);

58

59 ySSd1(1)=0;

60 ySSd2(1)=0;

61 ySSd3(1)=0;

62 ySSd4(1)=0;

63 ySSd5(1)=0;

64 ySSd6(1)=0;

65

66 y = [0 0 0 0 0 0];

67 for i = 2:evals

68 [y,a,b] = dtSystemSS(0, y, T);

69 ySSd1(i) = y(1);

70 ySSd2(i) = y(2);

71 ySSd3(i) = y(3);

72 ySSd4(i) = y(4);

73 ySSd5(i) = y(5);

74 ySSd6(i) = y(6);

75 aSSd(i) = a;

76 bSSd(i) = b;

77 end

78 k = tiledlayout(2,2);

79 title(k,'Simplified model compared to Colmenares model')

80

81 nexttile

82 plot(t1/60,yO1)

83 hold on

84 plot(t2/60,ySSc1,'--')

85 hold on

86 plot(xaxis/60, ySSd1,'--')

87 hold on

88 plot(t1/60,yO4)
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89 hold on

90 plot(t2/60,ySSc2,'--')

91 hold on

92 plot(xaxis/60, ySSd2,'--')

93 hold on

94 plot(t1/60,yO7)

95 hold on

96 plot(t2/60,ySSc3,'--')

97 hold on

98 plot(xaxis/60, ySSd3,'--')

99 hold on

100 plot(t1/60,yO10)

101 hold on

102 plot(t2/60,ySSc4,'--')

103 hold on

104 plot(xaxis/60, ySSd4,'--')

105 legend('\theta_{1}','\theta_{Sc1}','\theta_{Sd1}','\theta_{2}', ...

...

106 '\theta_{Sc2}','\theta_{Sd2}','\theta_{3}','\theta_{Sc3}', ...

...

107 '\theta_{Sd3}','\theta_{4}','\theta_{Sc4}','\theta_{Sd4}', ...

...

108 'Location', 'southeast')

109 xlabel('time (min)')

110 title('\theta')

111 hold off

112

113 nexttile

114 plot(t1/60,yO11*1000000)

115 hold on

116 plot(t2/60,ySSc5*1000000)

117 hold on

118 plot(xaxis/60,ySSd5*1000000)

119 legend('NO','NO_{cAvrg}','NO_{dAvrg}','Location', ...

'northeast')

120 xlabel('time (min)')
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121 ylabel('Concentration ppm')

122 title('NO last cell')

123 hold off

124

125 nexttile

126 plot(t1/60,yO12*1000000)

127 hold on

128 plot(t2/60,ySSc6*1000000)

129 hold on

130 plot(xaxis/60,ySSd6*1000000)

131 legend('NH3','NH3_{cAvrg}','NH3_{dAvrg}','Location', ...

'northeast')

132 xlabel('time (min)')

133 ylabel('Concentration ppm')

134 title('NH_3 last cell')

135 hold off

136

137 nexttile

138 yline(10^-3*1000000, 'r')

139 hold on

140 yline(0.8*10^-3*1000000, 'b')

141 ylim([0.5*10^-3 1.2*10^-3]*1000000)

142 legend( 'NO_{in}','NH3_{in}','Location', 'northeast')

143 xlabel('time (min)')

144 ylabel('Concentration ppm')

145 title('NH3_{in} (u) and NO_{in}')

146 hold off

147

148

149 function dx = systemM(t, x) %Milver Model

150

151 kads = 10;

152 kred = 300;

153 kdes = 0.0;

154 catmax = 0.1;

155 v = 2/4;
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156 NO_in = 10^(-3);

157 u = 0.8*10^(-3);

158 dx = zeros(4*3,1);

159

160 dx(1) = kads*x(3)*(1-x(1))-(kdes+kred*x(2))*x(1);

161 dx(2) = v*(NO_in-x(2))-kred*x(2)*x(1)*catmax;

162 dx(3) = ...

v*(u(1)-x(3))-kads*x(3)*(1-x(1))*catmax+kdes*x(1)*catmax;

163

164 for i = 4:3:4*3

165 dx(i) = kads*x(i+2)*(1-x(i))-(kdes+kred*x(i+1))*x(i);

166 dx(i+1) = v*(x(i-2)-x(i+1))-kred*x(i+1)*x(i)*catmax;

167 dx(i+2) = ...

v*(x(i-1)-x(i+2))-kads*x(i+2)*(1-x(i))*catmax...

168 +kdes*x(i)*catmax;

169 end

170

171 end

172

173

174 function dxdt = systemSSc(t,x) %SS continuous model

175

176

177 kads = 10;

178 kred = 300;

179 kdes = 0.0;

180 catmax = 0.1;

181 v = 2/4;

182 NO_in = 10^(-3);

183 u = 0.8*10^(-3);

184

185 dxdt = zeros(6,1);

186

187 b = NO_in/(1+kred*x(1)*catmax/v);

188 a = (u(1)+kdes*x(1)*catmax/v)/(1+kads*(1-x(1))*catmax/v);

189 dxdt(1) = (kads*a*(1-x(1))-(kdes+kred*b)*x(1));
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190

191 for i = 2:4

192 b = b/(1+kred*x(i)*catmax/v);

193 a = (a+kdes*x(i)*catmax/v)/(1+kads*(1-x(i))*catmax/v);

194 dxdt(i) = (kads*a*(1-x(i))-(kdes+kred*b)*x(i));

195 end

196

197 dxdt(5) = -0.0025*x(5)+0.0025*b;

198 dxdt(6) = -0.0025*x(6)+0.0025*a;

199

200 end

201

202

203 function [y, a, b] = dtSystemSS(t, x, T) %Simplified ...

discrete model

204 kads = 10;

205 kred = 300;

206 kdes = 0.0;

207 catmax = 0.1;

208 v = 2/4;

209 NO_in = 10^(-3);

210 u = 0.8*10^(-3);

211 avrg = 0.0025;

212

213 y = zeros(1,4+4);

214 b = NO_in/(1+kred*x(1)*catmax/v);

215 a = (u(1)+kdes*x(1)*catmax/v)/(1+kads*(1-x(1))*catmax/v);

216 y(1) = x(1) + T*(kads*a*(1-x(1))-(kdes+kred*b)*x(1));

217

218 for i = 2:4

219 b = b/(1+kred*x(i)*catmax/v);

220 a = (a+kdes*x(i)*catmax/v)/(1+kads*(1-x(i))*catmax/v);

221 y(i) = x(i) + T*(kads*a*(1-x(i))-(kdes+kred*b)*x(i));

222 end

223

224 y(5) = x(5)+T*(-avrg*x(5)+avrg*b);
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225 y(6) = x(6)+T*(-avrg*x(6)+avrg*a);

226 end

A.2 PI-controller

The Matlab code for the PI-controller is presented below.

1 %__PI-Control of the SCR__

2 %--OSCAR AALTONEN--

3 %15.7.2022

4

5 %Initate varables

6 x7m = 0;

7 eold = 0;

8 t0 = 0;

9 T = 5;

10 x0 = zeros(1,12);

11 u = 0;

12 x = [];

13 t= [];

14 u1 = [];

15 NO_in = [];

16 tic

17

18 iter = 180;

19 %iter = 600;

20 %iter = 2160;

21

22 %Iterate PI-controller

23 for i = 1:iter

24 [¬, NO_in_new] = plant(t0, zeros(1,12),0,0);

25

26 NO_in = [NO_in, NO_in_new];

27 x = [ x; x0 ];
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28 t = [ t; t0 ];

29 u1 = [u1 ; u];

30

31 [u,x7m,eold]=PI(x7m,eold,x0,T,u);

32 x0 = dynamicPlant(@plant,T,t0,x0,u,1e-12,1e-12);

33 t0 = t0+T;

34

35 end

36 toc

37 %Plots

38 k = tiledlayout(2,2);

39 title(k,'PI simulation (4 cell)')

40 nexttile

41 plot(t/60,x(:,1)*1000000)

42 hold on

43 plot(t/60,x(:,4)*1000000)

44 hold on

45 plot(t/60,x(:,7)*1000000)

46 hold on

47 plot(t/60,x(:,10)*1000000)

48 legend('\theta_{plant1}','\theta_{plant2}','\theta_{plant3}',...

49 '\theta_{plant4}', 'Location', 'northwest')

50 xlabel('t (min)')

51 title('\theta')

52

53 nexttile

54 plot(t/60,x(:,11)*1000000)

55 legend('NO_{plant}','Location', 'northeast')

56 xlabel('t (min)')

57 ylabel('Concentration ppm')

58 title('NO out of last cell')

59

60 nexttile

61 plot(t/60,u1*1000000)

62 hold on

63 plot(t/60,NO_in*1000000)
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64 legend('u','NO_{in}','Location', 'southeast')

65 xlabel('t (min)')

66 ylabel('Concentration ppm')

67 title('NH3_{in} (u) and NO_{in}')

68

69

70 nexttile

71 plot(t/60,x(:,12)*1000000)

72 hold on

73 legend('NH3_{plant}','Location', 'southeast')

74 xlabel('t (min)')

75 ylabel('Concentration ppm')

76 title('NH3 out of last cell')

77

78 %Function for the PI-controller

79 function [u,x7m,em] = PI(x7m,eold,x0,T,u)

80 Kc=-0.9;

81 Ti=1.9*60;

82 a= 0.01;

83 NOmeas = x0(11)+0.8*x0(12)+(-1*10^-5 + ...

(1*10^-5+1*10^-5).*randn(1,1));

84 x7m = T*a*NOmeas+(1-T*a)*x7m;

85 em = 1.9e-4-x7m;

86 %em = 1e-5-x7m;

87

88 u=u+Kc*(em-eold+1/Ti*T*em);

89 u=max(u,0);

90 u=min(u,2e-3);

91 end

92

93 %Function to iterate the Plant

94 function [x, t_intermediate, x_intermediate] = ...

dynamicPlant(system, T,...

95 t0, x0, u, atol_ode, rtol_ode)

96 options = odeset('AbsTol', atol_ode, 'RelTol', rtol_ode);

97 [t_intermediate,x_intermediate] = ode45(system, ...
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98 [t0, t0+T], x0, options, u);

99 x = x_intermediate(size(x_intermediate,1),:);

100

101 end

102 %Model

103 function [dx, NO_in] = plant(t,x, u,T)

104 NO_in = 1e-3;

105 kads = 10;

106 kred = 300;

107 kdes = 0.0;

108 catmax = 0.1;

109 v = 2/4;

110 dx = zeros(12,1);

111 if t>1500

112 NO_in=1.2e-3;

113 end

114

115 if t>2000

116 NO_in=1.4e-3;

117 end

118 dx(1) = kads*x(3)*(1-x(1))-(kdes+kred*x(2))*x(1); ...

%cell 1

119 dx(2) = v*(NO_in-x(2))-kred*x(2)*x(1)*catmax;

120 dx(3) = ...

v*(u(1)-x(3))-kads*x(3)*(1-x(1))*catmax+kdes*x(1)*catmax;

121

122 dx(4) = kads*x(6)*(1-x(4))-(kdes+kred*x(5))*x(4); ...

%cell 2

123 dx(5) = v*(x(2)-x(5))-kred*x(5)*x(4)*catmax;

124 dx(6) = ...

v*(x(3)-x(6))-kads*x(6)*(1-x(4))*catmax+kdes*x(4)*catmax;

125

126 dx(7) = kads*x(9)*(1-x(7))-(kdes+kred*x(8))*x(7); ...

%cell 3

127 dx(8) = v*(x(5)-x(8))-kred*x(8)*x(7)*catmax;

128 dx(9) = ...
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v*(x(6)-x(9))-kads*x(9)*(1-x(7))*catmax+kdes*x(7)*catmax;

129

130 dx(10) = kads*x(12)*(1-x(10))-(kdes+kred*x(11))*x(10); ...

%cell 4

131 dx(11) = v*(x(8)-x(11))-kred*x(11)*x(10)*catmax;

132 dx(12) = ...

v*(x(9)-x(12))-kads*x(12)*(1-x(10))*catmax+kdes*x(10)*catmax;

133

134 end

A.3 Main file for the SCR control simulator

This is the main file where the input is set for all the different components. The

program starts from this file. The files A.3, A.4, A.5 and A.6 are required for

the NMPC control simulation.

1 %Input and output for the NMPC, NMHE and Nonlinear Target ...

problem

2 %--OSCAR AALTONEN

3 %14.7.2022

4

5 %--------------

6

7 t_Start = tic;

8 tic

9 [t, xPlant, u ,xContr, xhat, allU,NO_in, mpciterations, ...

N, scrCells,...

10 nMHE] = input();

11 toc

12 t_Elapsed = toc( t_Start );

13

14 %Plots

15 figure(1)

16 k = tiledlayout(2,2);



APPENDIX A. MATLAB CODE 80

17 title(k,'NMPC simulation')

18

19 %plot of theta

20 nexttile

21 for i = 1:3:scrCells*3

22 plot(t/60,xPlant(:,i))

23 hold on

24 end

25 if nMHE<0

26 for i = 1:3:scrCells*3

27 plot(t/60,xhat(:,i),'--')

28 end

29 end

30 ax = gca;

31 ax.YAxis.Exponent = 0;

32 legend('\theta_{plant1}','\theta_{plant2}','\theta_{plant3}',...

33 '\theta_{plant4}','\theta_{est1}','\theta_{est2}',...

34 '\theta_{est3}','\theta_{est4}', 'Location', 'northeast')

35 xlabel('t (min)')

36 title('\theta')

37

38 %plot of NO

39 nexttile

40 plot(t/60,xPlant(:,scrCells*3-1)*1000000)

41 hold on

42 if nMHE<0

43 plot(t/60,xhat(:,11)*1000000,'--r')

44 end

45 ylim([0 1000])

46 legend('NO_{plant}','NO_{est}','NOcontr','Location', ...

'northeast')

47 xlabel('t (min)')

48 ylabel('Concentration ppm')

49 title('NO out of last cell')

50

51 %plot of NH3in and NOin
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52 NH3_in = u(1:2:end);

53 nexttile

54 plot(t/60,NH3_in*1000000)

55 hold on

56 stairs(t/60,NO_in*1000000)

57 hold on

58 ylim([0 1.5*10^-3*1000000])

59 legend('u','NO_{in}','u_{exact}','Location', 'southeast')

60 xlabel('t (min)')

61 ylabel('Concentration ppm')

62 title('NH3_{in} (u) and NO_{in}')

63

64 %plot of NH3out

65 nexttile

66 plot(t/60,xPlant(:,scrCells*3)*1000000)

67 hold on

68 plot(t/60,xContr(:,end-2)*1000000);

69 hold on

70 if nMHE<0

71 plot(t/60,xhat(:,12)*1000000,'--r')

72 end

73 legend('NH3_{plant}','NH3_{AvrgContr}','NH_{3est}',...

74 'constraint','Location', 'southeast')

75 xlabel('t (min)')

76 ylabel('Concentration ppm')

77 title('NH3 out of last cell')

78

79

80 %Input for the nmpc algorithm

81 function [t, x, u, x1, xhat, allU, NO_in, mpciterations,...

82 N, scrCells, nMHE] = input()

83

84 %SCRmodel

85 scrCells = 4; %optimization work only for scrCells=4

86

87 %steadyStateTarget
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88 ysp = 0; %Soft setpoint

89 rsp = 0.000200; %Hard setpoint for NOx

90 usp = 0; %Soft setpoint for control variable

91

92 %NMPC with estimates, choose nMHE > 0

93 %NMPC without estimation, choose nMHE=0

94 %NMPC without estimation, but estimation done separately ...

choose nMHE<0

95 nMHE = 13;

96 ammonia = 0.5; %Ammonia cross sensitivity

97 noise = 1; %1 for noise 0 for no noise

98

99 %NMPC

100 mpciterations = 180; %mpc iterations

101 N = 40; %prediction horizon length

102 uN = N; %control variable horizon length

103 T = 5; %sampling interval

104 tmeasure = 0.0;

105 xmeasure = [0 0 0 0 0 0 0 0 0 0 0 0]; %initial ...

values for states

106 u0 = zeros(2,N); %initial guess for the ...

control value

107 type ='difference equation';

108 tol_opt = 1e-14;

109 opt_option = 0;

110 iprint = 10;

111 atol_ode_real = 1e-12;

112 rtol_ode_real = 1e-12;

113 atol_ode_sim = 1e-4;

114 rtol_ode_sim = 1e-4;

115

116 [t, x, u, x1, xhat, allU, NO_in] = ...

nmpc4cellFinal(@runningcosts,...

117 @terminalcosts, @constraints, @terminalconstraints,...

118 @linearconstraints, @predMod, @plant, mpciterations, ...

N, T,...
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119 tmeasure, xmeasure, u0, nMHE, uN, ...

scrCells,ysp,rsp,usp, ammonia,...

120 noise, tol_opt, opt_option, type, atol_ode_real,...

121 rtol_ode_real, atol_ode_sim, rtol_ode_sim, ...

122 iprint,@printHeader, @printClosedloopData);

123

124 end

125

126 %cost and constraints for nmpc

127

128 %stage cost

129 function cost = runningcosts(t, x, u, ref)

130 cost = (u(1)-ref(7))^2+u(2)*10^10; %Cost with reference

131 %cost = u(1)^2+u(2)*10^10; %Cost with 0 reference

132 end

133

134 %terminal cost

135 function cost = terminalcosts(t, x)

136 cost = 0.0;

137 end

138

139 %constraints for the states

140 function [c,ceq] = constraints(t, x, u)

141 c = [];

142 c(1) = x(5)-(6*10^-4)-u(2);

143 c(2) = x(6)-(1.1*10^-5);

144 ceq = [];

145 end

146

147 %terminal constraints for the states

148 function [c,ceq] = terminalconstraints(t, x)

149 c =[];

150 ceq = [];

151 end

152

153 %constraints for the control variable
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154 function [A, b, Aeq, beq, lb, ub] = linearconstraints(t, x, u)

155 A = [];

156 b = [];

157 Aeq = [];

158 beq = [];

159 lb = [0 0];

160 ub = [0.002 inf];

161 end

162

163

164 %Discrete time prediction model

165 function [xPlus, avrg, NO_in]= predMod(t, x, u, T, scrCells)

166 %NO in values for different time

167 NO_in=1e-3;

168

169 if t>1500

170 NO_in=1.2e-3;

171 end

172

173 if t>2000

174 NO_in=1.4e-3;

175 end

176

177 if t>2500

178 NO_in=1.1e-3;

179 end

180

181 if t>3000

182 NO_in=0.9e-3;

183 end

184

185 if t>3200

186 NO_in=0.6e-3;

187 end

188

189 if t>3500
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190 NO_in=1e-3;

191 end

192 %}

193

194 %model parameters

195 kads = 10;

196 kred = 300;

197 kdes = 0.0;

198 catmax = 0.1;

199 v = 2/4;

200 avrg = 0.0025;

201 xPlus = zeros(1,4+4);

202 b = NO_in/(1+kred*x(1)*catmax/v);

203 a = (u(1)+kdes*x(1)*catmax/v)/(1+kads*(1-x(1))*catmax/v);

204 xPlus(1) = x(1) + T*(kads*a*(1-x(1))-(kdes+kred*b)*x(1));

205

206 for i = 2:scrCells

207 b = b/(1+kred*x(i)*catmax/v);

208 a = (a+kdes*x(i)*catmax/v)/(1+kads*(1-x(i))*catmax/v);

209 xPlus(i) = x(i) + T*(kads*a*(1-x(i))-(kdes+kred*b)*x(i));

210 end

211

212 xPlus(5) = x(5)+T*(-avrg*x(5)+avrg*b);

213 xPlus(6) = x(6)+T*(-avrg*x(6)+avrg*a);

214

215 xPlus(7) = b;

216 xPlus(8) = a;

217

218 end

219

220 %Model of the plant (Colmenares model)

221 function dx = plant(t, x, u, scrCells)

222 %NO in values for different time

223 NO_in=1e-3;

224

225 if t>1500
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226 NO_in=1.2e-3;

227 end

228

229 if t>2000

230 NO_in=1.4e-3;

231 end

232

233 if t>2500

234 NO_in=1.1e-3;

235 end

236

237 if t>3000

238 NO_in=0.9e-3;

239 end

240

241 if t>3200

242 NO_in=0.6e-3;

243 end

244

245 if t>3500

246 NO_in=1e-3;

247 end

248

249 %model parameters

250 kads = 10;

251 kred = 300;

252 kdes = 0.0;

253 catmax = 0.1;

254 v = 2/4;

255 dx = zeros(4*3,1);

256

257 dx(1) = kads*x(3)*(1-x(1))-(kdes+kred*x(2))*x(1);

258 dx(2) = v*(NO_in-x(2))-kred*x(2)*x(1)*catmax;

259 dx(3) = ...

v*(u(1)-x(3))-kads*x(3)*(1-x(1))*catmax+kdes*x(1)*catmax;

260
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261 for i = 4:3:scrCells*3

262 dx(i) = kads*x(i+2)*(1-x(i))-(kdes+kred*x(i+1))*x(i);

263 dx(i+1) = v*(x(i-2)-x(i+1))-kred*x(i+1)*x(i)*catmax;

264 dx(i+2) = ...

v*(x(i-1)-x(i+2))-kads*x(i+2)*(1-x(i))*catmax...

265 +kdes*x(i)*catmax;

266 end

267

268 end

269

270 function printHeader()

271 fprintf([' k | u(k) x(1) x(2) ...

x(3)' ...

272 ' x(4) x(5) x(6) x(7) ...

x(8)' ...

273 ' x(9) x(10) x(11) x(12) ...

Time\n']);

274 fprintf('--------------------------------------------------\n');

275 end

276

277 function printClosedloopData(mpciter, u, x, t_Elapsed,scrCells)

278 fprintf([' %3d | %+11.6f %+11.6f %+11.6f %+11.6f %+11.6f ...

%+11.6f' ...

279 ' %+11.6f %+11.6f %+11.6f %+11.6f %+11.6f %+11.6f ...

%+11.6f' ...

280 ' %+11.6f'] , mpciter, ...

281 u(1,1), x(1), x(2),x(3),x(4), x(5), x(6), x(7), ...

x(8) ...

282 ,x(9),x(10), x(11), x(12), t_Elapsed);

283 end

A.4 Nonlinear MHE

The code below is used for the nonlinear MHE.
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1 %Nonlinear Moving Horizon estimation

2 %--OSCAR AALTONEN--

3 %14.7.2022

4

5 function x = MHE4cellFinal(T,N,Y,u,xInit,NO_in)

6 %Input for fmincon

7 A = [];

8 b = [];

9 Aeq = [];

10 beq = [];

11 lb = [];

12 ub = [];

13 nonlcon = [];

14 options = optimoptions('fmincon','display','none', ...

15 'MaxFunctionEvaluations',100000000,...

16 'Algorithm','interior-point');

17 x0 = xInit;

18

19 %MHE optimization problem

20 x = fmincon(@(xhat) costfunctionSimpl(xhat,T,N,Y,u,NO_in), ...

21 x0, A, b,Aeq,beq,lb,ub,nonlcon,options);

22

23

24 end

25

26

27 %costfunction for MHE

28 function obj = costfunctionSimpl(xhat,T,N,Y,u,NO_in)

29 sum1 = 0;

30 sum2 = 0;

31

32 %sum ||xhat-f(xhat,u)||^2

33 for i = 1:N-1

34 fxhat = fs([xhat(1,i) xhat(4,i) xhat(7,i) ...

xhat(10,i)],u(i),T, ...
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35 NO_in(i));

36 w = [1 1 1 1];

37 W = diag(w.^2);

38 xhat_k = [xhat(1,i+1) xhat(4,i+1) xhat(7,i+1) ...

xhat(10,i+1)];

39 sum1 = sum1 + (xhat_k-fxhat)*W*(xhat_k-fxhat)';

40 end

41 %sum ||y-h(xhat)||^2

42 for i = 1:N

43 st = xhat(:,i);

44 h_xhat = h(st);

45 w = [1 1 1 1 1 1 1 1];

46 conc = concentrationsXhat([xhat(1,i) xhat(4,i) ...

xhat(7,i) ...

47 xhat(10,i)],u(i),NO_in(i));

48 y = [conc(1) conc(2) conc(3) conc(4) conc(5) conc(6) ...

Y(i,:) ...

49 conc(8)];

50 W = diag(w.^2);

51 sum2 = sum2 + (y-h_xhat)*W*(y-h_xhat)';

52 end

53

54 obj = sum1+sum2;

55 end

56

57 function hxhat = h(xhat)

58 hxhat = [xhat(2) xhat(3) xhat(5) xhat(6) xhat(8) xhat(9) ...

xhat(11) ...

59 xhat(12)];

60 end

61

62

63

64 %Simplified model in discrete time

65 function xPlus= fs(x, u, T, NO_in)

66
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67 kads = 10;

68 kred = 300;

69 kdes = 0.0;

70 catmax = 0.1;

71 v = 2/4;

72 xPlus = zeros(1,4);

73 b = NO_in/(1+kred*x(1)*catmax/v);

74 a = (u(1)+kdes*x(1)*catmax/v)/(1+kads*(1-x(1))*catmax/v);

75 xPlus(1) = x(1) + T*(kads*a*(1-x(1))-(kdes+kred*b)*x(1));

76

77 for i = 2:4

78 b = b/(1+kred*x(i)*catmax/v);

79 a = (a+kdes*x(i)*catmax/v)/(1+kads*(1-x(i))*catmax/v);

80 xPlus(i) = x(i) + T*(kads*a*(1-x(i))-(kdes+kred*b)*x(i));

81 end

82

83

84 end

85 %model to obtain the steady state values of the concentrations

86 function concXhat = concentrationsXhat(xhat,u, NO_in)

87

88 kads = 10;

89 kred = 300;

90 kdes = 0;

91 catmax = 0.1;

92 v = 2/4;

93

94 b1 = NO_in/(1+kred*xhat(1)*catmax/v);

95 a1 = (u(1)+kdes*xhat(1)*catmax/v)/(1+kads*(1-xhat(1))*catmax/v);

96

97 b2 = b1/(1+kred*xhat(2)*catmax/v);

98 a2 = ...

(a1+kdes*xhat(2)*catmax/v)/(1+kads*(1-xhat(2))*catmax/v);

99

100 b3 = b2/(1+kred*xhat(3)*catmax/v);

101 a3 = ...
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(a2+kdes*xhat(3)*catmax/v)/(1+kads*(1-xhat(3))*catmax/v);

102

103 b4 = b3/(1+kred*xhat(4)*catmax/v);

104 a4 = ...

(a3+kdes*xhat(4)*catmax/v)/(1+kads*(1-xhat(4))*catmax/v);

105

106 concXhat = [b1 a1 b2 a2 b3 a3 b4 a4];

107

108 end

A.5 Nonlinear setpoint tracking

This is the Matlab code for the nonlinear setpoint tracking problem.

1 %Nonlinear target problem

2 %--OSCAR AALTONEN

3 %14.7.2022

4

5 %The optimization problem

6 function ref = steadyStateTargetFinal(NO_in, T, ysp, rsp, usp)

7 obj=@(x) cost(x,ysp,usp);

8 x0 = zeros(1,7); %initial value

9 A = [];

10 b = [];

11 Aeq = [];

12 beq = [];

13 lb = [];

14 ub = [];

15 nonlcon = @(x) noNlcon(x(1:6),x(7),NO_in,T,rsp);

16 options = optimoptions('fmincon','display','none');

17 ref=fmincon(obj,x0,A, b,Aeq,beq,lb,ub,nonlcon,options);

18

19

20 end
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21

22 %costfunction

23 function obj = cost(x,ysp,usp)

24 Rs=1; %weight

25 Qs=1; %weight

26 obj = ...

1/2*((x(7)-usp)*Rs*(x(7)-usp)+(x(6)-ysp)*Qs*(x(6)-ysp));

27

28 end

29

30 %Simplified model

31 function [xPlus, avrg, NO_in]= predMod(x, u, T, NO_in)

32

33 kads = 10;

34 kred = 300;

35 kdes = 0.0;

36 catmax = 0.1;

37 v = 2/4;

38 avrg = 0.0025;

39 xPlus = zeros(1,4+2);

40 b = NO_in/(1+kred*x(1)*catmax/v);

41 a = (u(1)+kdes*x(1)*catmax/v)/(1+kads*(1-x(1))*catmax/v);

42 xPlus(1) = x(1) + T*(kads*a*(1-x(1))-(kdes+kred*b)*x(1));

43

44 for i = 2:4

45 b = b/(1+kred*x(i)*catmax/v);

46 a = (a+kdes*x(i)*catmax/v)/(1+kads*(1-x(i))*catmax/v);

47 xPlus(i) = x(i) + T*(kads*a*(1-x(i))-(kdes+kred*b)*x(i));

48 end

49

50 xPlus(5:6) = [b a];

51

52 end

53

54 %Steady state constraint

55 %The system should always satisfy the steady state
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56 function [c, ceq] = noNlcon(x,u,NO_in,T,rsp)

57 c = [];

58 ceq(1:6) = x - predMod(x, u, T, NO_in);

59 ceq(7) = x(5) - rsp;

60

61 end

A.6 NMPC algorithm

All the code above is done by me and the code beneath is obtained from [18],

but some changes has been done to match the problem that is introduced in

this thesis. The function measureInitialValue on row 397 to row 491 has been

modified and developed further. New parameters has also been added to some

functions to match the requirements for the SCR control.

1 %The NMPC algorithm

2 function [t, x, u, xContr, xhatS, allU, NO_in] = ...

nmpc4cellFinal...

3 (runningcosts, terminalcosts, ...

4 constraints, terminalconstraints, ...

5 linearconstraints, model,plant, ...

6 mpciterations, N, T, tmeasure, xmeasure,...

7 u0,nMHE,uN,scrCells,ysp,rsp,usp,ammonia,noise, ...

8 varargin)

9

10 % Computes the closed loop solution for the NMPC problem ...

defined by

11 % the functions

12 % runningcosts:

13 % evaluates the running costs for state and control

14 % at one sampling instant.

15 % The function returns the running costs for one

16 % sampling instant.
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17 % Usage: [cost] = runningcosts(t, x, u)

18 % with time t, state x and control u

19

20 % terminalcosts:

21 % evaluates the terminal costs for state at the end

22 % of the open loop horizon.

23 % The function returns value of the terminal costs.

24 % Usage: cost = terminalcosts(t, x)

25 % with time t and state x

26

27 % constraints:

28 % computes the value of the restrictions for a

29 % sampling instance provided the data t, x and u

30 % given by the optimization method.

31 % The function returns the value of the

32 % restrictions for a sampling instance separated

33 % for inequality restrictions c and equality

34 % restrictions ceq.

35 % Usage: [c,ceq] = constraints(t, x, u)

36 % with time t, state x and control u

37

38 % terminalconstraints:

39 % computes the value of the terminal restrictions

40 % provided the data t, x and u given by the

41 % optimization method.

42 % The function returns the value of the

43 % terminal restriction for inequality restrictions

44 % c and equality restrictions ceq.

45 % Usage: [c,ceq] = terminalconstraints(t, x)

46 % with time t and state x

47

48 % linearconstraints:

49 % sets the linear constraints of the discretized

50 % optimal control problem. This is particularly

51 % useful to set control and state bounds.

52 % The function returns the required matrices for
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53 % the linear inequality and equality constraints A

54 % and Aeq, the corresponding right hand sides b and

55 % beq as well as the lower and upper bound of the control.

56 % Usage: [A, b, Aeq, beq, lb, ub] = linearconstraints(t, x, u)

57 % with time t, state x and control u

58

59 % system:

60 % evaluates the difference equation describing the

61 % process given time t, state vector x and control u.

62 % The function returns the state vector x at the next time ...

instant.

63 % Usage: [y] = system(t, x, u, T)

64 % with time t, state x, control u and sampling interval T

65 % for a given number of NMPC iteration steps (mpciterations). For

66 % the open loop problem, the horizon is defined by the number of

67 % time instances N and the sampling time T. Note that the dynamic

68 % can also be the solution of a differential equation. ...

Moreover, the

69 % initial time tmeasure, the state measurement xmeasure and a ...

guess of

70 % the optimal control u0 are required.

71

72 % Arguments:

73 % mpciterations: Number of MPC iterations to be performed

74 % N: Length of optimization horizon

75 % T: Sampling interval

76 % tmeasure: Time measurement of initial value

77 % xmeasure: State measurement of initial value

78 % u0: Initial guess of open loop control

79

80 % Optional arguments:

81 % iprint= 0 Print closed loop data(default)

82 % = 1 Print closed loop data and errors of the optimization ...

method

83 % = 2 Print closed loop data and errors and warnings of the ...

method
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84 % ≥ 5 Print closed loop data and errors and warnings of

85 % the optimization method as well as graphical

86 % output of closed loop state trajectories

87 % ≥10 Print closed loop data and errors and warnings of

88 % the optimization method with error and warning description

89

90 % printHeader: Clarifying header for selective output of closed

91 % loop data, cf. printClosedloopData

92

93 % printClosedloopData: Selective output of closed loop data

94

95 % plotTrajectories:

96 % Graphical output of the trajectories, requires iprint ≥ 4

97 % tol_opt: Tolerance of the optimization method

98 % opt_option: = 0: Active-set method used for optimization ...

(default)

99 % = 1: Interior-point method used for optimization

100 % = 2: Trust-region reflective method used for optimization

101 % type: Type of dynamic, either difference equation or

102 % differential equation can be used

103 % atol_ode_real: Absolute tolerance of the ODE solver for the

104 % simulated process

105 % rtol_ode_real: Relative tolerance of the ODE solver for the

106 % simulated process

107 % atol_ode_sim: Absolute tolerance of the ODE solver for the

108 % simulated NMPC prediction

109 % rtol_ode_sim: Relative tolerance of the ODE solver for the

110 % simulated NMPC prediction

111

112 % Internal Functions:

113 % measureInitialValue: measures the new initial values for t0

114 % and x0 by adopting values computed by

115 % method applyControl.

116 % The function returns new initial state

117 % vector x0 at sampling instant t0.

118
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119 % applyControl: applies the first control element of u to

120 % the simulated process for one sampling interval T.

121 % The function returns closed loop state

122 % vector xapplied at sampling instant tapplied.

123

124 % shiftHorizon: applies the shift method to the open loop

125 % control in order to ease the restart.

126 % The function returns a new initial guess

127 % u0 of the control.

128

129 % solveOptimalControlProblem: solves the optimal control ...

problem of the

130 % horizon N with sampling length T for the

131 % given initial values t0 and x0 and the

132 % initial guess u0 using the specified algorithm.

133 % The function returns the computed optimal

134 % control u, the corresponding value of the

135 % cost function V as well as possible exit

136 % flags and additional output of the

137 % optimization method.

138

139 % costfunction: evaluates the cost function of the

140 % optimal control problem over the horizon

141 % N with sampling time T for the current

142 % data of the optimization method t0, x0 and u.

143 % The function return the computed cost function value.

144

145 % nonlinearconstraints: computes the value of the restrictions

146 % for all sampling instances provided the

147 % data t0, x0 and u given by the

148 % optimization method.

149 % The function returns the value of the

150 % restrictions for all sampling instances

151 % separated for inequality restrictions c

152 % and equality restrictions ceq.

153
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154 % computeOpenloopSolution: computes the open loop solution ...

over the

155 % horizon N with sampling time T for the

156 % initial values t0 and x0 as well as the control u.

157 % The function returns the complete open

158 % loop solution over the requested horizon.

159

160 % dynamic: evaluates the dynamic of the system for

161 % given initial values t0 and x0 over the

162 % interval [t0, tf] using the control u.

163 % The function returns the state vector x

164 % at time instant tf as well as an output

165 % of all intermediate evaluated time instances.

166 % printSolution: prints out information on the current MPC

167 % step, in particular state and control

168 % information as well as required computing

169 % times and exitflags/outputs of the used

170 % optimization method. The flow of

171 % information can be controlled by the

172 % variable iprint and the functions

173 % printHeader, printClosedloopData and plotTrajectories.

174 %

175 % Version of May 30, 2011, in which a bug appearing in the ...

case of

176 % multiple constraints has been fixed

177 %

178 % (C) Lars Gruene, Juergen Pannek 2011

179

180 if (nargin≥22)

181 tol_opt = varargin{1};

182 else

183 tol_opt = 1e-6;

184 end;

185 if (nargin≥23)

186 opt_option = varargin{2};

187 else
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188 opt_option = 0;

189 end;

190 if (nargin≥24)

191 if ( strcmp(varargin{3}, 'difference equation') || ...

192 strcmp(varargin{3}, 'differential equation') )

193 type = varargin{3};

194 else

195 fprintf([' Wrong input for type of dynamic: use ...

either ', ...

196 '"difference equation" or "differential ...

equation".']);

197 end

198 else

199 type = 'difference equation';

200 end;

201 if (nargin≥25)

202 atol_ode_real = varargin{4};

203 else

204 atol_ode_real = 1e-8;

205 end;

206 if (nargin≥26)

207 rtol_ode_real = varargin{5};

208 else

209 rtol_ode_real = 1e-8;

210 end;

211 if (nargin≥27)

212 atol_ode_sim = varargin{6};

213 else

214 atol_ode_sim = atol_ode_real;

215 end;

216 if (nargin≥28)

217 rtol_ode_sim = varargin{7};

218 else

219 rtol_ode_sim = rtol_ode_real;

220 end;

221 if (nargin≥29)
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222 iprint = varargin{8};

223 else

224 iprint = 0;

225 end;

226 if (nargin≥30)

227 printHeader = varargin{9};

228 else

229 printHeader = @printHeaderDummy;

230 end;

231 if (nargin≥31)

232 printClosedloopData = varargin{10};

233 else

234 printClosedloopData = @printClosedloopDataDummy;

235 end;

236 if (nargin≥32)

237 plotTrajectories = varargin{11};

238 else

239 plotTrajectories = @plotTrajectoriesDummy;

240 end;

241

242 % Determine MATLAB Version and

243 % specify and configure optimization method

244 vs = version('-release');

245 vyear = str2num(vs(1:4));

246 if (vyear ≤ 2007)

247 fprintf('MATLAB version R2007 or earlier detected\n');

248 if ( opt_option == 0 )

249 options = optimset('Display','off',...

250 'TolFun', tol_opt,...

251 'MaxIter', 20000,...

252 'LargeScale', 'off',...

253 'RelLineSrchBnd', [],...

254 'RelLineSrchBndDuration', 1,'MaxFunEvals',20000);

255 elseif ( opt_option == 1 )

256 error('nmpc:WrongArgument', '%s\n%s', ...

257 'Interior point method not supported in ...
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MATLAB R2007', ...

258 'Please use opt_option = 0 or opt_option = 2');

259 elseif ( opt_option == 2 )

260 options = optimset('Display','off',...

261 'TolFun', tol_opt,...

262 'MaxIter', 2000,...

263 'LargeScale', 'on',...

264 'Hessian', 'off',...

265 'MaxPCGIter', ...

max(1,floor(size(u0,1)*size(u0,2)/2)),...

266 'PrecondBandWidth', 0,...

267 'TolPCG', 1e-1);

268 end

269 else

270 fprintf('MATLAB version R2008 or newer detected\n');

271 if ( opt_option == 0 )

272 options = optimset('Display','off',...

273 'TolFun', tol_opt,...

274 'MaxIter', 10000000,...

275 'Algorithm', 'active-set',...

276 'FinDiffType', 'forward',...

277 'RelLineSrchBnd', [],...

278 'RelLineSrchBndDuration', 1,...

279 'TolConSQP', 1e-14);

280 elseif ( opt_option == 1 )

281 options = optimset('Display','off',...

282 'TolFun', tol_opt,...

283 'MaxIter', 2000,...

284 'Algorithm', 'interior-point',...

285 'AlwaysHonorConstraints', 'bounds',...

286 'FinDiffType', 'forward',...

287 'HessFcn', [],...

288 'Hessian', 'bfgs',...

289 'HessMult', [],...

290 'InitBarrierParam', 0.1,...

291 'InitTrustRegionRadius', ...
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sqrt(size(u0,1)*size(u0,2)),...

292 'MaxProjCGIter', 2*size(u0,1)*size(u0,2),...

293 'ObjectiveLimit', -1e20,...

294 'ScaleProblem', 'obj-and-constr',...

295 'SubproblemAlgorithm', 'cg',...

296 'TolProjCG', 1e-2,...

297 'TolProjCGAbs', 1e-10);

298 % 'UseParallel','always',...

299 elseif ( opt_option == 2 )

300 options = optimset('Display','off',...

301 'TolFun', tol_opt,...

302 'MaxIter', 2000,...

303 'Algorithm', 'trust-region-reflective',...

304 'Hessian', 'off',...

305 'MaxPCGIter', ...

max(1,floor(size(u0,1)*size(u0,2)/2)),...

306 'PrecondBandWidth', 0,...

307 'TolPCG', 1e-1);

308 end

309 end

310

311 warning off all

312 t = [];

313 x = [];

314 u = [];

315 xContr = [];

316 xhatS =[];

317 allU = [];

318 NO_in = [];

319

320 % Start of the NMPC iteration

321 %initiate variables

322 mpciter = 0;

323 xmeasureContr = [xmeasure(1) xmeasure(4) xmeasure(7) ...

xmeasure(10)...

324 xmeasure(11) xmeasure(12) xmeasure(11) xmeasure(12)];
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325 x0 = [xmeasure(1) xmeasure(4) xmeasure(7) xmeasure(10) ...

xmeasure(11)...

326 xmeasure(12) xmeasure(11) xmeasure(12)];

327 tmeasureContr = tmeasure;

328 if nMHE<0

329 xhat = zeros(12,-nMHE);

330 else

331 xhat = zeros(12,nMHE);

332 end

333 measurementsX = xmeasure;

334 measurementsU = u0(1);

335

336 while(mpciter < mpciterations)

337 % Step (1) of the NMPC algorithm:

338 % Obtain new initial value with measureInitialValue

339 t_Start = tic;

340 [t0, x0, xhat, NO_new, ref] = measureInitialValue ( ...

tmeasure,...

341 xmeasure, x0, T, measurementsX, measurementsU, ...

xhat,...

342 nMHE, model,scrCells,ysp,rsp,usp,ammonia,noise);

343 % Step (2) of the NMPC algorithm:

344 % Solve the optimal control problem

345 [u_new, V_current, exitflag, output] = ...

solveOptimalControlProblem ...

346 (runningcosts, terminalcosts, constraints, ...

347 terminalconstraints, linearconstraints, model, ...

348 N, t0, x0, u0, T, ...

349 atol_ode_sim, rtol_ode_sim, tol_opt, options, ...

type, uN,...

350 ref, scrCells);

351 t_Elapsed = toc( t_Start );

352

353 % Print solution

354 if ( iprint ≥ 1 )

355 printSolution(plant, printHeader, ...
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printClosedloopData, ...

356 plotTrajectories, mpciter, T, ...

tmeasure,...

357 xmeasure, u_new, ...

358 atol_ode_sim, rtol_ode_sim, type, ...

iprint, ...

359 exitflag, output, t_Elapsed,scrCells);

360 end

361 % Store closed loop data

362 t = [ t; tmeasure ];

363 x = [ x; xmeasure ];

364 u = [ u; u_new(:,1) ];

365 tContr = [ t; tmeasureContr ];

366 xContr = [ xContr; xmeasureContr ];

367 xhatS = [xhatS; xhat(:,end)'];

368 allU = [allU;u_new(1,:)];

369 NO_in = [NO_in,NO_new];

370

371 % Prepare restart

372 u0 = shiftHorizon(u_new);

373 % Step (3) of the NMPC algorithm:

374 % Apply control to process

375 %Check plant with new u and obtain new measurement

376 [tmeasure, xmeasure] = applyControlPlant(plant, T,...

377 tmeasure, xmeasure, u_new, ...

378 atol_ode_real, rtol_ode_real, type,scrCells);

379

380 measurementsX = [measurementsX ; xmeasure];

381 measurementsU = [measurementsU ; u_new(1)];

382

383 %Check model values

384 [tmeasureContr, xmeasureContr] = ...

applyControlModel(model,...

385 T, tmeasureContr, x0, u_new, ...

386 atol_ode_real, rtol_ode_real, type,scrCells);

387
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388

389

390

391 mpciter = mpciter+1;

392

393

394 end

395 end

396

397 function [t0, x0, xhat, NO_in, ref] = ...

measureInitialValue(tmeasure,...

398 xmeasure, x0, T, x, u, init, nMHE, ...

399 model,scrCells,ysp,rsp,usp,ammonia,noise)

400 t0 = tmeasure;

401 [¬, avrg, NO_in] = model(tmeasure,x0,0,T,scrCells);

402 a = T*avrg;

403 ref = steadyStateTargetFinal(NO_in,T,ysp,rsp,usp);

404

405 %MPC with estimation

406 if nMHE > 0

407 if size(x,1)≥nMHE %nMHE amount of measurements ...

required

408 meas = zeros(nMHE,1);

409 uMeas = zeros(nMHE,1);

410 NO_in = zeros(nMHE,1);

411 time = tmeasure-nMHE*T;

412 for i = 1:nMHE %pick right amount of ...

measurements

413 r = size(x,1)-nMHE; %with correct index

414 meas(i,:) = [x(i+r,11)+ammonia*x(i+r,12)+...

415 noise*(-1*10^-5 + ...

(1*10^-5+1*10^-5).*randn(1,1))]; %noise

416 uMeas(i) = u(i+r);

417 [¬, ¬, NO_in(i)] = model(time,x0,0,T,scrCells);

418 time = time + T;

419 end
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420 %all MHE estimates

421 xhat = ...

MHE4cellFinal(T,nMHE,meas,uMeas,shiftHorizon(init), ...

NO_in);

422 %initial value for prediction model

423 x0 = [xhat(1,end) xhat(4,end) xhat(7,end) xhat(10,end)...

424 a*(xhat(11,end)-(0*10^-6))+(1-a)*x0(5)...

425 a*xhat(12,end)+(1-a)*x0(6) xhat(11,end) ...

xhat(12,end)];

426

427

428 end

429 %virtual measurements before measurement window is ...

fulfilled

430 %all measurements zero before the application starts

431 %the last zero updates with the latest measurement

432 if size(x,1)<nMHE

433 xV = x(:,11);

434 uV = u;

435 xVirtual = [zeros(nMHE-size(x,1),1);xV];

436 uVirtual = [zeros(nMHE-size(x,1),1);uV];

437 NO_in = ones(1,nMHE)*NO_in;

438 xhat = MHE4cellFinal(T,nMHE,xVirtual,...

439 uVirtual,shiftHorizon(init),NO_in); %All ...

MHE estimates

440 x0 = [xhat(1,end) xhat(4,end) xhat(7,end) ...

xhat(10,end)...

441 a*xhat(11,end)+(1-a)*x0(5) ...

a*xhat(12,end)+(1-a)*x0(6)...

442 xhat(11,end) xhat(12,end)]; %x0 for next MPC ...

iteration

443 end

444 end

445

446 %MPC without estimation

447 if nMHE==0
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448 x0 = [xmeasure(1) xmeasure(4) xmeasure(7) ...

xmeasure(10)...

449 a*xmeasure(11)+(1-a)*x0(5) ...

a*xmeasure(12)+(1-a)*x0(6)...

450 xmeasure(11) xmeasure(12)];

451 xhat = xmeasure';

452 end

453 %MPC with0 estimation done separately

454 if nMHE < 0

455 nMHE = -nMHE;

456 x0 = [xmeasure(1) xmeasure(4) xmeasure(7) ...

xmeasure(10)...

457 a*xmeasure(11)+(1-a)*x0(5) ...

a*xmeasure(12)+(1-a)*x0(6)...

458 xmeasure(11) xmeasure(12)];

459 if size(x,1)≥nMHE

460 meas = zeros(nMHE,1);

461 uMeas = zeros(nMHE,1);

462 NO_in = zeros(nMHE,1);

463 time = tmeasure -nMHE*T;

464 for i = 1:nMHE

465 r = size(x,1)-nMHE;

466 meas(i,:) = [x(i+r,11)+ammonia*x(i+r,12)+...

467 noise*(-1*10^-5 + ...

(1*10^-5+1*10^-5).*randn(1,1))];

468 uMeas(i) = u(i+r);

469 [¬, ¬, NO_in(i)] = model(time,x0,0,T,scrCells);

470 time = time + T;

471 end

472 xhat = ...

MHE4cellFinal(T,nMHE,meas,uMeas,shiftHorizon(init), ...

NO_in);

473

474

475 end

476 %virtual measurements before measurement window is ...
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fulfilled

477 %all measurements zero before the application starts

478 %the last zero updates with the latest measurement

479 if size(x,1)<nMHE

480 xV = x(:,11);

481 uV = u;

482 xVirtual = [zeros(nMHE-size(x,1),1);xV];

483 uVirtual = [zeros(nMHE-size(x,1),1);uV];

484 NO_in = ones(1,nMHE)*NO_in;

485 xhat = MHE4cellFinal(T,nMHE,xVirtual,uVirtual,...

486 shiftHorizon(init),NO_in);

487 end

488 end

489

490 NO_in=NO_in(end); %return latest NO_in measurement

491 end

492

493 function [tapplied, xapplied] = applyControlPlant(plant, T, ...

t0, x0, u, ...

494 atol_ode_real, rtol_ode_real, ...

type,scrCells)

495 xapplied = dynamicPlant(plant, T, t0, x0, u(:,1), ...

496 atol_ode_real, rtol_ode_real, ...

type,scrCells);

497 tapplied = t0+T;

498 end

499

500 function [tapplied, xapplied] = applyControlModel(system, T, ...

t0, x0, u, ...

501 atol_ode_real, rtol_ode_real, ...

type,scrCells)

502 xapplied = dynamic(system, T, t0, x0, u(:,1), ...

503 atol_ode_real, rtol_ode_real, ...

type,scrCells);

504 tapplied = t0+T;

505 end
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506

507

508 function u0 = shiftHorizon(u)

509 u0 = [u(:,2:size(u,2)) u(:,size(u,2))];

510 end

511

512 function [u, V, exitflag, output] = ...

solveOptimalControlProblem ...

513 (runningcosts, terminalcosts, constraints, ...

terminalconstraints, ...

514 linearconstraints, system, N, t0, x0, u0, T, ...

515 atol_ode_sim, rtol_ode_sim, tol_opt, options, type, ...

uN,ref,scrCells)

516 x = zeros(N+1, length(x0));

517 x = computeOpenloopSolution(system, N, T, t0, x0, u0, ...

518 atol_ode_sim, rtol_ode_sim, ...

type, uN,scrCells);

519

520 % Set control and linear bounds

521 A = [];

522 b = [];

523 Aeq = [];

524 beq = [];

525 lb = [];

526 ub = [];

527 for k=1:N

528 [Anew, bnew, Aeqnew, beqnew, lbnew, ubnew] = ...

529 linearconstraints(t0+k*T,x(k,:),u0(:,k));

530 A = blkdiag(A,Anew);

531 b = [b, bnew];

532 Aeq = blkdiag(Aeq,Aeqnew);

533 beq = [beq, beqnew];

534 lb = [lb, lbnew];

535 ub = [ub, ubnew];

536 end

537
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538 % Solve optimization problem

539 [u, V, exitflag, output] = fmincon(@(u) ...

costfunction(runningcosts, ...

540 terminalcosts, system, N, T, t0, x0, ...

541 u, atol_ode_sim, rtol_ode_sim, type, uN, ...

ref,scrCells),...

542 u0, A, b, Aeq, beq, lb, ...

543 ub, @(u) nonlinearconstraints(constraints, ...

terminalconstraints, ...

544 system, N, T, t0, x0, u, ...

545 atol_ode_sim, rtol_ode_sim, type, uN,scrCells), options);

546 end

547

548 function cost = costfunction(runningcosts, terminalcosts, ...

system, ...

549 N, T, t0, x0, u, ...

550 atol_ode_sim, rtol_ode_sim, type, uN, ...

r,scrCells)

551 cost = 0;

552 x = zeros(N+1, length(x0));

553 x = computeOpenloopSolution(system, N, T, t0, x0, u, ...

554 atol_ode_sim, rtol_ode_sim, ...

type,...

555 uN,scrCells);

556 for k=1:N

557 cost = cost+runningcosts(t0+k*T, x(k,:), u(:,k), r);

558 end

559 cost = cost+terminalcosts(t0+(N+1)*T, x(N+1,:));

560 end

561

562 function [c,ceq] = nonlinearconstraints(constraints, ...

563 terminalconstraints, system, ...

564 N, T, t0, x0, u, atol_ode_sim, rtol_ode_sim, type, ...

uN,scrCells)

565 x = zeros(N+1, length(x0));

566 x = computeOpenloopSolution(system, N, T, t0, x0, u, ...
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567 atol_ode_sim, rtol_ode_sim, ...

type,...

568 uN,scrCells);

569 c = [];

570 ceq = [];

571 for k=1:N

572 [cnew, ceqnew] = constraints(t0+k*T,x(k,:),u(:,k));

573 c = [c cnew];

574 ceq = [ceq ceqnew];

575 end

576 [cnew, ceqnew] = terminalconstraints(t0+(N+1)*T,x(N+1,:));

577 c = [c cnew];

578 ceq = [ceq ceqnew];

579 end

580

581 function x = computeOpenloopSolution(system, N, T, t0, x0, u, ...

582 atol_ode_sim, ...

rtol_ode_sim,...

583 type, uN,scrCells)

584 x(1,:) = x0;

585

586 for k=1:N

587 x(k+1,:) = dynamic(system, T, t0, x(k,:), ...

u(:,min(k,uN)), ...

588 atol_ode_sim, rtol_ode_sim, ...

type,scrCells);

589 end

590 end

591

592 function [x, t_intermediate, x_intermediate] = ...

dynamic(system, T, t0, ...

593 x0, u, atol_ode, rtol_ode, type,scrCells)

594 if ( strcmp(type, 'difference equation') )

595 x = system(t0, x0, u, T,scrCells);

596 x_intermediate = [x0; x];

597 t_intermediate = [t0, t0+T];
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598 elseif ( strcmp(type, 'differential equation') )

599 options = odeset('AbsTol', atol_ode, 'RelTol', rtol_ode);

600 [t_intermediate,x_intermediate] = ode45(system, ...

601 [t0, t0+T], x0, options, u,scrCells);

602 x = x_intermediate(size(x_intermediate,1),:);

603 end

604 end

605

606 %Works only for a continous time plant

607 function [x, t_intermediate, x_intermediate] = ...

dynamicPlant(system,...

608 T, t0, x0, u, atol_ode, rtol_ode, type,scrCells)

609 options = odeset('AbsTol', atol_ode, 'RelTol', rtol_ode);

610 [t_intermediate,x_intermediate] = ode45(system, ...

611 [t0, t0+T], x0, options, u,scrCells);

612 x = x_intermediate(size(x_intermediate,1),:);

613

614 end

615

616 function printSolution(system, printHeader, ...

printClosedloopData, ...

617 plotTrajectories, mpciter, T, t0, x0, u, ...

618 atol_ode, rtol_ode, type, iprint, exitflag, ...

output,...

619 t_Elapsed,scrCells)

620 if (mpciter == 0)

621 printHeader();

622 end

623 printClosedloopData(mpciter, u, x0, t_Elapsed,scrCells);

624 switch exitflag

625 case -2

626 if ( iprint ≥ 1 && iprint < 10 )

627 fprintf(' Error F\n');

628 elseif ( iprint ≥ 10 )

629 fprintf(' Error: No feasible point was found\n')

630 end
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631 case -1

632 if ( iprint ≥ 1 && iprint < 10 )

633 fprintf(' Error OT\n');

634 elseif ( iprint ≥ 10 )

635 fprintf([' Error: The output function terminated ...

the',...

636 ' algorithm\n'])

637 end

638 case 0

639 if ( iprint == 1 )

640 fprintf('\n');

641 elseif ( iprint ≥ 2 && iprint < 10 )

642 fprintf(' Warning IT\n');

643 elseif ( iprint ≥ 10 )

644 fprintf([' Warning: Number of iterations ...

exceeded',...

645 ' options.MaxIter or number of function',...

646 ' evaluations exceeded options.FunEvals\n'])

647 end

648 case 1

649 if ( iprint == 1 )

650 fprintf('\n');

651 elseif ( iprint ≥ 2 && iprint < 10 )

652 fprintf(' \n');

653 elseif ( iprint ≥ 10 )

654 fprintf([' First-order optimality measure was ...

less',...

655 ' than options.TolFun, and maximum ...

constraint',...

656 ' violation was less than ...

options.TolCon\n'])

657 end

658 case 2

659 if ( iprint == 1 )

660 fprintf('\n');

661 elseif ( iprint ≥ 2 && iprint < 10 )
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662 fprintf(' Warning TX\n');

663 elseif ( iprint ≥ 10 )

664 fprintf(' Warning: Change in x was less than ...

options.TolX\n')

665 end

666 case 3

667 if ( iprint == 1 )

668 fprintf('\n');

669 elseif ( iprint ≥ 2 && iprint < 10 )

670 fprintf(' Warning TJ\n');

671 elseif ( iprint ≥ 10 )

672 fprintf([' Warning: Change in the objective ...

function',...

673 ' value was less than options.TolFun\n'])

674 end

675 case 4

676 if ( iprint == 1 )

677 fprintf('\n');

678 elseif ( iprint ≥ 2 && iprint < 10 )

679 fprintf(' Warning S\n');

680 elseif ( iprint ≥ 10 )

681 fprintf([' Warning: Magnitude of the search ...

direction',...

682 ' was less than 2*options.TolX and ...

constraint',...

683 ' violation was less than ...

options.TolCon\n'])

684 end

685 case 5

686 if ( iprint == 1 )

687 fprintf('\n');

688 elseif ( iprint ≥ 2 && iprint < 10 )

689 fprintf(' Warning D\n');

690 elseif ( iprint ≥ 10 )

691 fprintf([' Warning: Magnitude of directional ...

derivative',...
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692 ' in search direction was less than',...

693 ' 2*options.TolFun and maximum ...

constraint',...

694 ' violation was less than ...

options.TolCon\n'])

695 end

696 end

697 if ( iprint ≥ 5 )

698 plotTrajectories(@dynamic, system, T, t0, x0, u, ...

atol_ode,...

699 rtol_ode, type,scrCells)

700 end

701 end

702

703 function printHeaderDummy(varargin)

704 end

705

706 function printClosedloopDataDummy(varargin)

707 end

708

709 function plotTrajectoriesDummy(varargin)

710 end
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