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Abstract

Maritime surveillance and situational awareness are of topical interest but re-

quire massive amounts of human labour if done manually in a traditional setting.

The human factor can make this process also highly expensive and unproductive.

Computer vision techniques, through maritime object detection and tracking, can

transform maritime surveillance and improve maritime navigation. Classic object

detection algorithms trained on general-purpose datasets do not yield satisfactory

results for maritime vessel detection, one reason being that ships constitute only a

small fraction of objects in these datasets. In this context, availability of domain-

specific datasets is crucial, hence a few maritime detection datasets have been pub-

lished, for example, ABOships, Seaships, Singapore Maritime Dataset, MCShips and

MARVEL. Various object detection algorithms (one- and two-stage detectors) have

been employed for ship detection with varying performance. More recently, a new

class of detectors, key-point detectors, emerged, yielding promising results on some

of the maritime detection datasets mentioned above. This thesis investigates the use

of transfer learning techniques on a CenterNet implementation (with various feature

extractors), an evaluation of their performance is done on a locally collected mar-

itime vessel dataset, ABOships. Results are evaluated under several augmentation

techniques, using Average Precision (AP) and Intersection over Union (IoU) metrics.

Keywords: Maritime surveillance, Computer vision, Maritime object detection,

Transfer learning, Deep Learning, Maritime detection datasets, CenterNet
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1 Introduction

Detection of maritime objects gathered from inshore and offshore imagery is of high

importance in the context of coastal surveillance and situational awareness. Tradi-

tionally, an extensive number of hours has been devoted to manually both classify

and surveil ships in maritime environments, for example in border control or dock

traffic monitoring. So far, generic object detection algorithms that have been trained

on general-purpose datasets have not been able to yield adequate performance in a

marine environment, a big reason for this is the fact that purely maritime vessel

datasets account for only a small percentage of all object detection datasets. There

is a crucial need for autonomous systems in maritime environments to be able to

efficiently identify vessels through maritime object detection and for domain-specific

datasets to be readily available. Notable datasets worth mentioning within the do-

main of maritime object detection are: ABOships [1], Seaships [2], Singapore Mar-

itime Dataset [3], MCShips [4], and MARVEL [5], some of which will be discussed

in more detail in this thesis.

This thesis investigates the usage of a key-point detector for identifying mar-

itime vessels and objects, as well as how the performance of transfer learning from e

general-purpose dataset like COCO [6] is in comparison with training from scratch

on a domain-specific dataset, like ABOships.

There is a scarce number of datasets specifically tailored towards maritime object

detection while in comparison there are a lot of general-purpose datasets which

contain a small subsample of maritime objects. In this thesis I will discuss one-stage,

two-stage and key-point detectors, and subsequently focus on transfer learning on a

center-based object detector - CenterNet (Objects as points) [7].

The aim of this thesis is to explore the viability of a center-based key-point

detector called CenterNet for maritime object detection. CenterNet comes with the

added benefit of a certain modularity in choosing its backbone architecture (some of

which have been slightly modified from their original). The backbones used in this

thesis are as follows: DLA-34, Hourglass, ResNet101 and ResNet18. A set of training
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runs were conducted, such that each backbone in the network were at least trained

from scratch and pre-trained with the COCO dataset. Each model was evaluated

by means of average precision over a set of intersection over union thresholds. In

order to understand the context of key-point detectors on domain-specific datasets,

the thesis will cover and explain one- and two-stage detectors, transfer learning as

well as the domain of maritime vessel detection.

The rest of the thesis is structured as follows. Chapter 2 present preliminary

background information about generic object detection as well as a more detailed

explanation of deep convolutional neural networks (DCNNs) and their main detector

types. Chapter 3 discussed transfer learning, how it can be used in object detection,

different approaches for deep learning as well as giving an overview of its formal def-

initions and scenarios. Chapter 4 discusses a multitude of maritime vessel datasets,

each varying in size and scope. The chapter also introduces the dataset used to

evaluate the performance of CenterNet. Chapter 5 explains the overall structure

and different backbones of CenterNet in greater detail. An exploratory analysis of

the ABOships dataset is conducted as well as an explanation as to how and why

the dataset has been modified. The chapter also presents the evaluation methods

used to measure the performance of each model trained on the dataset. Finally, the

chapter ends with the results of each model being from trained from scratch or using

transfer learning. Chapter 6 presents a conclusion and discussion about future work.
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2 Deep learning for object detection

Before discussing the intricacies of Deep Learning (DL) or Machine Learning (ML),

I briefly introduce the super-category, Artificial Intelligence (AI). AI is inspired by

the complex structure of the human brain and aims to imitate intelligent human

behaviour to some extent. Machine learning (ML) is a sub-category of AI, extending

the capabilities of a system to learn and improve automatically, based on experience.

Most common ML methods include unsupervised learning, supervised learning, semi-

supervised learning and reinforcement learning. Moreover, deep learning (DL) is

itself a sub-category of ML. A Venn diagram between the relationships of AI, ML

and DL can be seen in Figure 1.

Deep artificial neural networks (DANNs) distinguish themselves from Artificial

Neural Networks (ANN) primarily through the scale of the network, the tasks they

aim to solve and how they are trained (scale in this context means the depth of the

network, i.e. number of layers). Task differences between the two usually narrows

down to the complexity of the task. Training differences are the following: ANNs

are trained through backpropagation, meaning that the error (often called loss) is

calculated backwards through the network to effectively compute the gradient. This,

in turn, means that the ANNs are able to learn from previous errors and improve

upon them. A more in-depth review of DL, more specifically Convolutional Neural

Networks (CNNs) and its deeper variant will be discussed in a later sub-chapter. ML

networks, in contrast, rely more on the tuning of parameters after each training run

(epoch) [8, 9]. All of these differences will be explained in more detail throughout

the thesis.

3



Figure 1: Venn-diagram of the relationships between Artificial Intelligence, Machine
Learning and Deep Learning.

2.1 Generic object detection

Generic object detection is defined as identifying a set of objects that are of pre-

established categories or classes in an image and then returning each individual

object’s location and semantic information. An example of a set of objects could

be a set of cars or motorcycles in an image, each with their own intraclass varia-

tions. The locations of objects in an image is most commonly depicted as bounding

boxes (a vector of four values, usually xmin, xmax, ymin, ymax) or as pixelwise seg-

mentation masks [9], both depicted in Figure 2. Object detection can furthermore

be categorized into four distinct image recognition problems: object classification,

generic object detection, semantic segmentation and object instance segmentation

[8, 9].

Object classification, as shown in Figure 2 (a), is classifying the various instances

of objects in an image; in this example, there are two class types, ferry and motorboat

(notice also that there is no effort in separating objects from one another). Semantic

segmentation, Figure 2 (c), is a pixelwise segmentation of each object in the image,

again, without distinguishing between objects. Object detection, Figure 2 (b), is the

process in which an object and its object class label is identified in an image, such

that a bounding box and the object label is superimposed over each object in an
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image. Instance segmentation, Figure 2 (d), depicts a pixelwise segmentation of each

object with the added benefit of distinguishing between object instances (in contrast

to Semantic Segmentation that does not separate each object).

Figure 2: The different image recognition problems exemplified on the ABOships
dataset [1]

However, before the onset of mainstream deep learning methods, object detection

was performed by first generating proposals for regions of interest (RoI), then ex-

tracting feature vectors and finally classifying each RoI. The most common method

for proposal generation was the use of sliding windows. The sliding window algo-

rithm, as the name implies, slides a grid of a predefined size over an input image

with a predefined stride which is done until the whole image has been worked over.

The process is then repeated with a different size and stride to cover more regions.

For each step that the sliding window takes, a feature vector extraction is obtained,

meaning that semantic information of the particular regions are gathered [10, 8].

To identify what objects (class labels) are in the image, region classification was

generally performed with support vector machines (SVMs) [8].

Often the focus of object detection was to manually create high quality feature

descriptors, which was slow but effective at the time. In spite of the fact that these
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detectors generated impressive results for their time, they came with certain limita-

tions, namely the massive number of generated proposals and the fact that a large

sub-set of them were unusable as they returned false positives at the classification

step. The sliding window algorithm was in itself inefficient, as the search space grows

according to the amount of pixels in an image, 104−105 windows per image growing

to as much as 106 − 107 windows per image, if multiple scales and aspect ratios are

used [9]. An optimal global solution was not feasibly attainable, as each step of the

process was tuned and optimized separately. Another reason for the inefficiency of

precursor methods of DL are the fact that feature descriptors were manually cre-

ated by humans, resulting in difficulties to capture quality semantic information in

complex images [8].

The most common ANN for object detection is CNNs, which were first popular-

ized by Krizhevsky et al. in 2012 with its impressive results in the ImageNet Large

Scale Visual Recognition Competition (ILSVRC) competition [11]. A CNN is com-

prised of three distinct layers: convolutional layers (or just a convolution), pooling

layers and, lastly, fully connected layers. These layers together can be considered as

building blocks when it comes to bigger networks, such as, combining multiple such

blocks to form a DCNN [12]. A high-level overview of a CNN can be seen in Figure

3.

Figure 3: A high-level overview of a convolutional neural network.

The convolutional layers of CNNs incorporate two different operations in tandem

for feature extraction, a convolutional operation (linear) followed by an activation

function (non-linear) such as sigmoid, a hyperbolic tangent (tanh) or the most com-

monly used activation function, a rectified linear unit (ReLu) each of which can be

viewed in Figure 4.
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Figure 4: Three different activation functions: Sigmoid, Tanh and ReLu.

A convolutional operation sequentially uses a kernel (a matrix) on a tensor. In

this context, a tensor is an image with any number of channels (or a multi-linear

map). To obtain a feature map, an element-wise product is calculated for each

element of the kernel and tensor and then summed to create resulting feature maps

for each position of the output. The aforementioned process is performed multiple

times after each other for as many times as the output requires. Two different values

or hyperparameters are used to change the behaviour of the convolutional operation,

the size of the kernel (usually an odd size like 3x3, 5x5, etc.) and the number of

channels used (which controls the depth of the feature map). The distance that

a kernel travels from one position to another is known as a stride, which also is a

hyperparameter that can be tuned, a stride of one (1) is a common default. However,

without the use of padding, the network is unable to keep its in-plane dimension and

each feature map in succession would shrink and lose information. To address this

problem, zero-padding is used, i.e, new rows to the outermost columns and rows are

added and filled with zeroes in the tensor.

The biggest advantage of convolutions is the fact that kernels are shared across the

image space. Figure 5 demonstrates a convolutional operation with a zero-padding

of one (1) and a stride of one (1). Each convolution has an activation function, in the

case of modern CNNs, a non-linear activation unit, i.e. a rectified linear unit (ReLu)

which is shown in Figure 4. A ReLu computes the positive part of an argument, so

for example, if the argument is a negative number, a zero (0) is returned and any

positive number if the argument is a positive number, i.e. f(x) = max(0, x) [12].

To decrease the ensuing learnable parameters and save on resources, pooling
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Figure 5: A convolutional operation with a zero-padding of one and a stride of one.

layers are used. Other than decreasing the number of parameters that the network

needs to learn, pooling also introduces an effective way of downsampling to alleviate

small shifts and distortions in the feature maps. The two most common pooling

methods are: max pooling and average pooling. There are, however, some more

specialized methods such as fractional max pooling which will not be discussed in

this thesis. A pooling operation traverses each feature map sequentially extracting

patches, most commonly at a filter size (the patch) of 2x2 with a stride of two (2),

meaning then that the pooling operation effectively downsamples the feature map by

a factor of two (2). Max pooling extracts the maximum value of each kernel, while

average pooling extracts the average of each element in a kernel; average pooling is,

however, the lesser used pooling operation of the two [12]. An example of a max-

pooling operation with a kernel size of three (3) and a stride of two (2) is illustrated

in Figure 6.

Figure 6: A max-pooling operation with a kernel size of 3x3 and a stride of three
(3).

Fully connected layers (FC) of a CNN are used as a means to flatten the feature
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maps into one-dimensional arrays, i.e. vectors. The reason they are called fully

connected layers is that each input of these layers is connected to each and every

output, more often than not each output node of the last fully connected layer

represents a class to be detected by the network. As mentioned earlier, each of these

fully connected layers always ends with an activation function (non-linear in this

case), typically a ReLu. The last FC layer of a CNN always ends with an activation

function. The type of activation function that is used depends on the task that the

network is required to solve, for example, Sigmoid is used for binary classification

while Softmax is used for multiclass classification. Softmax takes the input vector

and normalizes it according to class probabilities, ranging from 0-1 where all values

summarize to 1 [12].
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2.2 Main detector types

The two main types of DCNNs detectors are one-stage detectors and two-stage de-

tectors [8] with a third becoming increasingly popular: key-point detectors [7]. One-

stage detectors combine proposal generation and feature extraction through one pass

of the neural network, meaning that they attempt to immediately predict the bound-

ing boxes for each RoI: either as background or as a known object class. Two-stage

detectors use two distinct stages for predictions: first generating a set of sparse pro-

posals and then extracting feature vectors from them. Each of the detector types

have a different set of use cases, for example, one-stage detectors are in general faster

than two-stage detectors, making them excellent candidates for real-time tasks, while

two-stage detectors are more accurate but less efficient (slower training/inference)

[8].

2.2.1 One-stage detectors

OverFeat [13] is one of the first one-stage detectors to use convolutions to train a

network for multiple different tasks, such as, classification, localization and object

detection. Since OverFeat is one of the first networks to utilize CNN for feature

extraction it shares many architectural similarities with the CNN popularized by

Krizhevsky et al., with some added improvements to some areas. For classification

each image that is fed through the network has one label assigned that correlates with

the main object in the image. The network is allowed to make five proposals (guesses)

per image. Localization works in much the same way, meaning that it also has five

proposals per image but also tries to predict a bounding box for each proposal. To

be considered a true positive the bounding box must have an Intersection over Union

(IoU) value of at least 50% over the ground truth as well as be labeled correctly to its

respective object class. For detection there is no limitation for the number of objects

that can be detected in each image as well as the need to predict the background if

no other object is present in the image. OverFeat also uses negative training which

selects a couple of negative examples based on their offending negative error or just

chosen at random. Negative training is used to prevent or reduce the chance of a
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mismatch of negative examples and training times, as well as reducing the chance of

overfitting on smaller sets [13].

You Only Look Once (YOLO) [14] is unique in the sense that it handles object

detection as a single regression problem, meaning that YOLO can detect objects and

bounding boxes from a single sweep over an image. Consequently, the network can

detect objects very fast (real-time). YOLO splits each image into an SxS grid, where

each grid cell is only able to predict a single object in an image and where the grid cell

that is in the middle of an object becomes responsible for the aforementioned object.

Each grid cell is capable of predicting a set number of bounding boxes, each bounding

box contains five different predictions: x, y, width, height and a confidence score. The

x and y values represent the center of the bounding box while the width and height

are calculated relative to the entire image. The confidence score is evaluated for each

bounding box that the network can predict, the confidence score is the probability

of an image containing a certain bounding box and the object within it (from 0 1).

The confidence value is calculated using IoU and Non-maximum suppression (NMS).

IoU calculates the overlap between the prediction and the ground truth label while

NMS takes each similar IoU value over an object and filters out the best performing

detection against a given threshold. Each individual grid also calculates a class

probability of the cells containing an object. In addition to the class probabilities

and bounding boxes (with their confidence values) YOLO keeps each prediction with

a confidence score over or equal to a predetermined value for each object in an image

and discards the rest to form the final detections. The drawback to YOLO is the fact

that it identifies at most one object class per grid cell, meaning that the network

has a hard time finding smaller objects in crowded images. YOLO is also highly

generalized to the data it trains on, which leads it to generate bad predictions if new

images are in a different aspect ratio [14].
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Figure 7: Overall architecture of YOLO.

YOLOv2 and YOLO9000 [15] are both distinct iterations of the original

YOLO detector, each with their own unique set of features and use cases. YOLOv2

has many incremental improvements over YOLO all of which add up to both much

faster detection speed and higher accuracy (average precision). Instead of using

dropout YOLOv2 uses batch normalization on all of its convolutional layers, which

helps with convergence and in turn to regularize the network. The starting resolu-

tion of the classifier is also increased, from 224x224 to 448x448, this makes it easier

for the filters to adjust to images of higher resolution. The FC layers used in YOLO

are replaced by anchor boxes while also removing the class prediction mechanism

in favour of predicting class objects with the aforementioned anchor boxes. To find

each anchor box, YOLOv2 uses IoU based k-means clustering, the author states that

a cluster size of five (5) gives a good trade-off between recall and complexity. To

further combat model instability YOLOv2 implements direct location predictions,

i.e., predicting locations according to the feature map grid cell. The last incremen-

tal improvement for YOLOv2 involves multi-scale training, meaning that for every

tenth epoch of a training run, YOLOv2 chooses a new image dimension at random,

with a minimum resolution of 320x320 and a maximum of 608x608. This makes the

network predictions robust over a larger variety of resolutions which also means that

YOLOv2 can train on distinct resolutions. YOLO900 further built upon YOLOv2

with the added benefit of being able to detect over 9000 object classes by combining

classification and detection optimizations. The author uses a WordTree to combine

two different datasets (ImageNet and COCO), which the network is then trained on
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in the aforementioned way [15]. There are newer versions of YOLO, i.e., incremental

revisions, version three (3) and version four (4), whereas that at the time of writing

this thesis YOLO has evolved to a fifth version which is still under development and

can be found at https : //github.com/ultralytics/yolov5.

Single shot Multibox Detector (SSD) [16], much like YOLO, is built with

the intent of detecting objects in real-time. SSD is based on the model architecture of

VGG16 [17], but the author notes that any other backbone network should give good

results. SSD uses small convolutional filters to compute the location and object class

in images, i.e., feature extraction with the combination of a set of default bounding

boxes. For feature extraction, SSD uses multi-scale feature maps from multiple layers

instead of just one, where each consecutive layer reduces the spatial dimension and in

turn reduces the resolution of each feature map. This entails that larger objects get

reduced to a smaller resolution to be more easily detectable. Every feature map has

a set of default bounding boxes applied to it, each of a different shape to effectively

compute each distinct output shape that could be used in the final prediction. The

default bounding boxes are manually chosen with a scale value and an aspect ratio

for each feature map, both of which increase in a linear fashion as it goes through

each layer and finally forming the width and height of the default bounding boxes.

SSD like most other detector uses a set IoU thresholds to determine if a detection is

positive or negative [16].

Figure 8: Overall architecture of SSD.

RetinaNet and Focal Loss [18] for object detection. The creator of RetinaNet

and the novel loss function Focal Loss Lin et al. states that the main thing that
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prevents one-stage networks of gaining equal or better performance than two-stage

networks is the extreme foreground-background class imbalance for one-stage net-

works. To combat this discrepancy a Focal Loss added to the standard cross entropy

is implemented, this in essence creates a narrower focus on hard negative exam-

ples. Focal Loss is the normal loss function reformulated to focus more heavily on

harder negative examples instead of easy negative examples, where which a modu-

lating factor is attached to the cross entropy with an adjustable focus parameter:

−αt(1 − pt)
γlog(pt) where gamma controls the curve of the loss while alpha helps

to balance between negative and positive examples. However to reduce the loss of

easily classified examples Focal Loss also introduces a multiplicative factor to the

Cross Entropy loss, i.e., (1 − pt)
γ. A more detailed explanation can be found in

[18]. RetinaNet uses a network based on a Feature Pyramid Network (FPN) [19] as

backbone with a Residual Neural Network (ResNet) [20] for deep feature extraction.

FPN takes in an input image and creates a multi-scale feature pyramid by feeding

the image through a set of top-down and side-way connection from ResNet where

each iteration through the connections brings a different scale for an object to be

detected through, this can be seen in 9 [18]. FPN in essence can be seen as an

improvement for multi-scale predictions on Fully Connected Networks (FCN) which

will be discussed in the next sub-chapter. ResNet will also be further discussed more

in detail in Chapter 5.1.1.

Figure 9: Overall architecture of RetinaNet.
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2.2.2 Two-stage detectors

Region-based Convolutional Neural networks (R-CNN) [21] for object de-

tection follows three consecutive steps to identify class objects in an image. The

first step is the generation of candidate region-proposals, which are selected through

selective search. Selective search works by finding an initial sub-set of regions with

image segmentation, iteratively grouping similar regions together and combining the

most similar regions to form larger regions. This process is repeated until the whole

image becomes a single region [22]. The selective search algorithm results in 2000

candidate regions. Each of these 2000 candidate regions are then reformed into a

square that is fed through a DCNN that produces a fixed length (4096-dimension)

feature vector for each candidate region as an output. The third and final step then

uses a set of class specific SVMs to identify the object classes within each candidate

region proposal [21]. An overview of the overall candidate region-proposal is visual-

ized in Figure 10. There are however certain downfalls to R-CNN, training is very

cost-inefficient since 2000 candidate region-proposals per image adds up very quickly

if a large dataset is used. Testing is also very inefficient as detection for VGG16

takes 47 seconds per image using a GPU, meaning that using it in real-time is un-

feasible. Selective search has fixed parameters, preventing the network to improve

significantly over time and leading to bad region-proposals. All of these downfalls are

addressed in the next iteration of R-CNN; Fast-RCNN [23] which will be discussed

in a following sub-chapter.

Figure 10: A high-level overview of how R-CNN generates candidate region-
proposals.

Spatial Pyramid Pooling Networks (SPP-net) [24] for object detection

was built as an improvement on R-CNN both in detection speed and accuracy. In
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its simplest form SPP-net (for object detection) is a combination of R-CNN and a

Spatial Pyramid Pooling (SPP) layer added to the last convolutional layer of the

network. The SPP layer pools each feature vector, generating fixed-length outputs

that are then classified by FC layers, this in turn negating the need for reforming

images before inputting them into the DCNN for feature extraction. SPP divides

each image into multi-level spatial bins of granularity (finer to coarser) and adds

their local features together using max pooling layers to form a fixed-length repre-

sentation. Figure 11 illustrates the overall structure of the network with an SPP

layer added to it. In contrast to R-CNNs use of sliding window, pooling means that

SPP can create a set length of outputs regardless of the input size. Not only that,

but SPP can also take advantage of different aspect ratios and scales, i.e., the image

resolution in datasets can vary, not only for testing but also for training. However,

the biggest advantage of using SPP-net over using R-CNN is the fact that SPP-net

only needs to run the convolutional layer one time over each image, leading to fea-

ture extraction effectively becoming 24-102 times faster, making SPP-net viable for

real-time applications [24]. However, unlike R-CNN, SPP-net cannot update and

therefore not fine-tune its convolutional layers that come before the spatial pyramid

pooling layer, limiting the performance accuracy in deeper networks [23].

Figure 11: Spatial pyramid pooling layer structure.

Fast R-CNN [23], as was stated earlier on, is the next iteration of R-CNN (one

could even consider it to be an update to SPP-net). Fast R-CNN improves upon the

16



same problems as SPP-net does for R-CNN, such as not having to parse through 2000

candidate regions and overall having higher detection speeds. Each image is input

through Fast R-CNN instead of having to go through individual candidate region-

proposals and then through max-pooling layers to finally generate a convolutional

feature map. Fast R-CNN is also fed several object proposals that are run through

a RoI pooling layer (which reforms the image into a square) to gather fixed-length

vectors from each feature map. The feature maps are then input into a series of fully

connected layers. Each fully connected layer is split into two separate output layers,

one that predicts the class (and background) of proposed regions with SoftMax, and

the other output layer which gives the offset values of each bounding box. Since the

2000 candidate region-proposals aren’t fed through the CNN anymore, and the fact

that it is the images themselves that are used in the convolution operation once per

image, means that the detection process is much faster than the previous two-stage

networks discussed in this thesis. In fact, training VGG16 with Fast R-CNN is nine

times faster than R-CNN and three times faster than SPP-net while also having an

overall higher detection quality [23]. Figure 12 illustrates the overall architecture

of Fast R-CNN. Even though this is a clear improvement on earlier iterations, Fast

R-CNN still has one big bottleneck; how each candidate region-proposal is gathered,

more specifically the fact that selective search is both slow and time-consuming

influencing the performance of the overall network [25].

Figure 12: Overall architecture of Fast R-CNN.

Faster R-CNN [25] replaces the selective search algorithms in favour of a Region

Proposal Network (RPN) which is able to share each entire images computation

with the detection network, vastly improving the efficiency of identifying candidate
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region proposals. Faster R-CNN is similar to SPP-net in the sense that it uses a

combination of two modules to effectively perform object detection [25]. Faster R-

CNN is a combination of two networks, RPN to form candidate regions-proposal and

Fast R-CNN that is fed the proposals forming a unified network. RPN takes in an

image and inputs it to a spatial sliding window that combines a classification layer

as well as a regression layer (both of which are fully connected) with a set of multi-

scale anchors to process the image. The classifier determines at what probability

a proposal has in it a target object while the regressor regresses the coordinates of

each proposal. The anchors are layered on top of each other creating a ”pyramid of

anchors”, the anchors themselves are used as a regression reference for the regression

layer, meaning that the labels are assigned according to the anchors with the highest

IoU with regards to the ground truth bounding box (IoU threshold is usually 70%).

It is worth nothing that RPN is robust against translations, making it translation

invariant. When training Faster R-CNN the authors use alternate training to share

convolutional layers, which means that RPN is first trained from which Fast R-CNN

uses the proposals that are gathered. The network is then switched around, i.e.,

Fast R-CNN is used to activate RPN, this process is repeated until the network

converges. This must be done since otherwise both networks would have to be

trained and compute their convolutions separately [25].

Region-based Fully Convolutional Network (R-FCN) [26], so far each

two-stage detector (except R-CNN) has been semi-convolutional, meaning that a

convolutional network first shares the computation on each entire image and then an-

other (non-convolutional) network that identifies each candidate region. R-FCN still

uses RPN for candidate region-proposal gathering, but are now applied to position-

sensitive score maps with position-sensitive RoI pooling layers. The position-sensitive

score maps differ from normal feature maps in the sense that each map gives a score

for a sub-region of an object, such that each sub-region is unique from the previ-

ous sub-region (top-left, top-middle,... bottom-right). Position-sensitive RoI pooling

layers compute the score map per unique sub-region and finally takes an average of

each region. Since the network is fully convolutional, all the features are shared
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between RPN and R-FCN similarly to Faster R-CNN. The outstanding difference

from previous two-stage detectors is the fact that the last convolutional layer in the

network creates an array of position-sensitive score maps for each object class (or the

background), the scores are then fed through a position-sensitive RoI pooling layer

which is aggregated to form a final score of each RoI. An average is then produced

from the RoIs to form the object class score, i.e., the IoU overlap on the image.

R-FCN boasts 20 times faster run time over Faster R-CNN and an average precision

13% higher (comparison on PASCAL VOC 2012, using ResNet-101) [26].

2.2.3 Key-point object detectors

The two main key-point object detection approaches that will be discussed in this

chapter are: corner-based and center-based approaches. This chapter is meant as an

overview of these methods of detection.

Direct Sparse Sampling Network (DeNet) [27] is an RPN which estimates

objects of interest based on the corners of bounding boxes in conjunction with a

naive search looking for candidate region proposals. Direct Sparse Sampling (DSS)

is referred to as the combination of a two-stage approach, i.e., the first part of the

network does an estimation of object locations and the second identifies them as

classes. Being a corner-based object detector, DeNet estimates Pr(ct|(x, y)) where

ct is one of the four corner types (top-left, top-right, bottom-left, bottom-right)

whereas (x, y) are the pixel coordinates on the image. A rank is then derived from

the most probable top-left and bottom-right combinations in the image with a Naive

Bayes classifier. To estimate new bounding boxes with their respective object classes

Tychsen-Smith and Petersson uses a modified NMS. The modified NMS (called Fit-

ness NMS) predicts the class and proposal with and added IoU estimate. Finally a

nearest RoI pooling layer is used to extract feature vectors, the nearest pooling layer

selects the feature that is closest to each vertex of the grid [27] similar to the nearest

neighbour algorithm would.

CornerNet [28] is a key-point network that is able to predict the top-left and

bottom-right corners of objects without the need for anchors to make predictions.
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Law and Deng also introduces a novel pooling layer; corner pooling, to more effi-

ciently find corners in images. The architecture of CornerNet consists of a backbone

CNN (Hourglass originally), a set of prediction modules (top-left corner and bottom-

right corner). The two corners are then combined into a final bounding box of the

object in an image. Figure 13 shows a high-level architectural view of CornerNet. As

mentioned CornerNet is able to predict object with two key-points; the top-left and

bottom-right corners of an image with the help of a corner pooling layer followed

by a convolutional layer that generates a set of heatmaps, an embedding and an

offsets. The corner pooling layer for the top-left corner combines a horizontal max

pooled (right to left) feature map with a vertical max pooled (bottom to top) feature

map while the bottom-right corner pooling layer does the inverse. This is done to

circumvent the problem where there is no local evidence of corners in an image (for

example with round objects). The two heatmaps (one for each corner) indicate the

two corners with their respective predicted object class. Each heatmap has several

channels that represents a class and its width and height. The embeddings (one for

each corner) predict the distance between the two corners to check if they belong to

the same object, i.e, if the distance is small it most likely belongs to the same object

class. The location offset helps the network readjust the distance between corners

to get them closer to each other (of the same corner type) [28].

Figure 13: Overall architecture of CornerNet.

Feature Selective Anchor-free (FSAF) [29] is an add-on solution meant

to improve FPN’s that have two key constraints, heuristic guided feature selection

and overlap-based anchor sampling. The FSAF module consists of two convolutional

layers per pyramid layer of the original FPN which do the box offset predictions in an

anchor-free branch. Each anchor-free branch is connected to an anchor-based branch
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from the original network, this branch is responsible for classifying predictions. Both

the anchor-free and anchor-based branches are combined end-to-end to be able to

share their features across all the levels of the pyramid. Based on the anchor-free

branch FSAF is able to gather instance information more effectively as it does not

need to select the instances based on size, but instead with the help of arbitrary

pyramid levels based on the content [29].

CenterNet (Key Point triplets) [30] relies on CornerNet’s [28] architecture,

such that it predicts a set of corner-based key-points but with an added third that

predicts a center-most key-point; hence the key-point triplets. Figure 14 shows

the overall architectural similarities to CornerNet with the added center key-point

heatmap. CenterNet also adds two novel kinds of pooling layers to improve the

corner and center predictions; Center Pooling and Cascade Corner Pooling. The

center pooling layer takes the maximum values (in a similar manner to CornerNet’s

corner pooling layer) of the horizontal and vertical feature spaces of the feature map

and aggregates them. This greatly helps the network to find visual patterns of object

centers in images. The cascade corner pooling layer (shown above the center pooling

layer in Figure 14) takes in contrast to normal corner pooling the maximum values

within a boundary of a directions, i.e., the maximum outer boundary of the top-left

corner as well as the internal boundary of the bounding box and aggregating the

max values. This helps the network find the visual patterns of object corners as well

as their respective boundary information [30].

Figure 14: Overall architecture of CenterNet (Key point triplets) with the added
center heatmap.
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CenterNet (Objects as Points) [7] is similar to anchor-based one-stage de-

tectors with the difference being that CenterNet uses key-point estimation with a

center-based approach. The center point of an object is a shape-agnostic anchor.

Each of these points are assigned from location instead of IoU overlap. To get the

location of an object in images, CenterNet uses key-point heatmaps, which look

peaks associated with the center of an object in the image. From these heatmaps

CenterNet is also able to regress an estimate for each object’s bounding box width

and height. It is also worth noting that CenterNet only uses a single center-point

for each object without having to use any post-processing and thus negates the use

of NMS. CenterNet is able to use four distinct fully convolutional networks as a

backbone for various tasks, such as, object detection and human pose estimation.

Each backbone: Hourglass, Deep Layer Aggregation (DLA) and Residual Networks

18 and 101 (ResNet-18 & ResNet-101) have their own set of advantages and disad-

vantages, namely a training and inference speed versus accuracy [7]. Each backbone

will be discussed in more detail in Chapter 5, particularly their respective architec-

tures and how they have been modified for CenterNet. An illustration of the general

architecture of CenterNet can be seen in Figure 15.

Figure 15: An overview of the general architecture of CenterNet (Objects as points).
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3 Transfer Learning

Transfer learning is defined as: given a source domain and task the goal is to transfer

the information from the source to a target domain and task.

An example use case of transfer learning is the process of using a model that

is trained on one particular task and using it on a different task within the same

domain, i.e. utilizing the knowledge gathered from the first task and adapting it

to another related task. Traditionally, ML models have been created and trained

to solve a specific task, this has then also entailed that models have to have been

re-trained or even re-made from scratch again when the feature space has changed.

Take for example a human being who has learned to walk and now has the challenging

task of learning to run. The human beings do not have to learn running completely

from scratch, as they transfer the previously gathered knowledge (walking) and are

able to apply what they have learned to the new task of running. This, in essence, is

a good analogy for transfer learning [31]. An illustration of the differences between

a transfer learning and a non-transfer learning method can be seen in Figure 16.

One could then argue that there are three main issues regarding transfer learning:

When should one apply it, what should be transferred and how would one transfer

it? When to use transfer learning of course depends on the task at hand, usually

a good reason to use it is when one has a small or limited dataset to work with,

and by then utilizing the transferred knowledge from a much larger dataset. This

then facilitates the necessity of transfer learning for distinct use cases and if the two

datasets are related. There are also times when transfer learning can be harmful

to the performance of one’s model, as when using two distinct datasets that both

differ in their domain-specific features. What to transfer, again depends on the

task at hand. Zhang et al. give four aspects of what to transfer: homogeneous

feature spaces and labels, heterogeneous feature spaces, heterogeneous label spaces

and heterogeneous feature spaces and label spaces, all of which will be explained in

the next sub-chapter. Finally, how to perform transfer learning comes down to when

and what one wants to transfer and it depends on the approach used [31, 33, 32].
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This thesis will mainly focus on transfer learning approaches for deep learning which

will be discussed later on in this chapter.

Figure 16: Illustration of transfer learning.

3.1 Formal definition and Scenarios

3.1.1 Definition

The formal definition of a domain is D = {X , P (X)}, whereas X denotes the feature

space and P (X) the marginal probability distribution in which X = x1, ..., xn, xi ∈

X , meaning that every xi represents an feature vector in the marginal probability

distribution [32, 33].

A task is defined as per a given domain T = {Y , f(x)}, whereas Y denotes the

label space and f(x) the predictive function. f(x) can thus be seen as a conditional

distribution P (y|x) of which that is learned from the feature vector pairs (xi, yi), xi ∈

X , yi ∈ Y [32, 33].

Transfer learning can then be defined as follows: give a source domain DS,

a source task TS, a target domain DT , a target task TT , the main goal of transfer

learning is to learn the conditional distribution P (YT |XT ) within DT with the infor-

mation passed on from DS, where DS ̸= DT or TS ̸= TT . However, as was mentioned

earlier, there is often a limited amount of data in the DT , while DS contains a vaster

amount of data to be used [32].

These definitions then give rise to a set of scenarios in which transfer learning

can be used.
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3.1.2 Scenarios

Homogeneous feature spaces and label spaces mean that the feature spaces

as well as the label spaces for both source and target domains are the same; this

then entails the fact that the different datasets have to be divergent in their data

distribution.

This could also be denoted as XS = XT and YS = YT following the previously

stated definitions.

Heterogeneous feature spaces is a scenario where the feature spaces in the

source domain and target domain differ. This is generally referred to as cross-domain

adaption. In the occurrence of heterogeneous feature spaces, it can be assumed that

the source domain has a sufficient amount of label data to properly transfer to the

target domain.

This could also be denoted as XS ̸= XT and YS = YT following the previously

stated definitions.

Heterogeneous label spaces is a scenario where the source task and the target

task have a differing label space, meaning that there is some shared knowledge in the

domain but that target domain has a new set of labels to be learned. For example,

DS contains of a set class of boats (sailboat, motorboat) and the knowledge is to be

transferred to DT that contains another set class of boats (ship, ferry). The source

domain thus transfers its knowledge to the target domain that is now able to learn

a new set of classes, i.e. it is now able to predict on four classes instead of two.

This could also be denoted as YS ̸= YT and XS = XT following the previously

stated definitions.

Heterogeneous feature spaces and label spaces refers to a scenario where

the features spaces, label spaces, source domain and target domain differ, i.e. a

complete divergence in both source and target data distribution.

This could also be denoted as XS ̸= XT and YS ̸= YT following the previously

stated definitions.
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3.2 Different Approaches for Deep Learning

3.2.1 Domain Adaptation

Domain adaptation is a case of heterogeneous label spaces where the source and

target domains are not the same, but where they both share the same task that they

attempt to solve. This method of transfer learning could, for example, be useful for

a wide variety of computer vision tasks, such as where two datasets share similarities

in their objects (same kind of classes) but the backgrounds are vastly different.

This means that one set of images could, for example, have a white background

while another set has a crowded background. With the formal definition, this could

be defined as variation in the conditional distribution between the two datasets

P (XS,YS) ̸= P (XT ,YT ). This would be considered as standard domain adaptation

where one could assume that there is enough labeled data from the source domain

with a negligible amount in the target domain. This then also means that one has

to rely on approximations of the conditional distribution of the target using the

source domains distribution estimate. Venkateswara et al. argue that this is possible

because of the correlation between the source and target domains [33].

Partial domain adaptation is an approach that is used when only a small amount

of the labeled data between the source and target domain overlap. This problem

is solved with a combination of two approaches: domain adaptation and zero-shot

learning [32], the latter of which will be discussed later on in this chapter. In gen-

eral, cases where partial domain adaption is an appropriate solution often present a

distribution shift between classes in both domains [32].

3.2.2 Multi-task Learning

To better generalize on a source task TS multi-task learning can be a viable option.

Multi-task learning is the simultaneous transference of knowledge between source

and target tasks to then be trained and learned at the same time. This means that

the model in the end receives a multitude of learnable labels with each task being

different. This in, essence, organizes each task together into one cohesive task where,
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at first, the trainable model has no clue about what the target task is (as they are all

learned simultaneously). This again comes down to approximation of the conditional

distribution, whereas an estimate for a joint distribution is not possible [33].

3.2.3 Zero-shot and Few-shot Learning

Zero-shot learning is a case where the target domain contains no data, whereas few-

shot learning means that the target domain contains one to a few trainable target

labels. For zero-shot learning this creates the problem that if the model were to be

directly applied to the target domain, the model would be heavily biased towards the

source domain’s labels. To combat this an unlabelled dataset of the target domain is

required. Zhang et al. also discussed future solutions to this problem, such as further

investigation into higher-level semantic spaces for connecting known and unknown

classes. In DL, few-shot learning usually suffers from overfitting, as DL models

require a larger amount of information [32].
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4 Maritime Vessel Datasets

In this section, I will briefly discuss some of the most prominent maritime vessel

detection datasets: ABOships, Singapore Maritime Dataset, McShips, and SeaShips.

4.1 ABOships

The ABOships dataset consists in its original form (more on this in Chapter 5) of

9880 images containing 41967 annotations with 11 different object classes. All the

images were taken in the Turku Archipelago and within the city of Turku along the

river Aura from a camera mounted on top of a ferry. Each image in the dataset

is derived from a set of 135 videos that were recorded in 720p (1920 x 720px) at

15 frames per second. The videos were recorded over a timeline of 13 days in July

2018 under a varying set of weather and lighting conditions as well as variations in

background. It is worth mentioning that LiDAR data was also recorded; this will,

however, not be further discussed as it has no relevance to this thesis [34].

As mentioned, the dataset was captured in varying weather, lighting and back-

ground conditions, such as, certain atmospheric conditions consisting of cloudy, rainy

and sunny days, each of which also affects the lighting in each given instance, such

as less lighting when it is raining or cloudy and more lighting when it is sunny. As

the dataset was gathered from the top of a ferry that sailed along a set route from

Turku to Ruissalo, the background in any given image can vary, for example, images

from the Aura River (in the city centre) consist of a multitude of objects, such as

many different boats and people which might be crowded. This also varies to another

extreme, such as, open sea conditions with relatively few objects within the image.

As with most quality datasets, there is also an aspect of a variety in the scales of

both class objects and intra-class objects [34].

As mentioned, the ABOships dataset is annotated with 11 different object classes,

whereas nine of which are a boat type and two are either a seamark or categorized

under miscellaneous. The types of boats area as follows; motorboat, sailboat, misc

boat, passenger ship, military ship, boat, cruise ship, ferry and cargo ship. Each
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annotation was annotated by hand, checked and finally relabelled with a CSRT

tracker [34].

A multitude of CNNs were used to evaluate the performance of ABOships, such

as, baseline one-stage detectors like SSD and EfficientDet and two-stage detectors

like Faster R-CNN and R-FCN. Most of these networks have already been discussed

in detail in this thesis. Results for each network that was used can be seen in Table

1, of which Inception ResNet V2 had the overall best average precision of the CNNs

tested. Each network was separately trained on Microsoft’s COCO dataset and then

tested on the ABOships dataset to evaluate its performance [34].

Neural network AP
Faster R-CNN Inception ResNet V2 0.3518
Faster R-CNN ResNet50 V1 0.2649
Faster R-CNN ResNet101 0.3026
SSD ResNet101 V1 FPN 0.3003
SSD MobileNet V1 FPN 0.2859
SSD MobileNet V2 0.1748
EfficientNet D1 0.3383
R-FCN ResNet101 0.3246

Table 1: Overall AP results on the ABOships dataset [34].
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4.2 Singapore Maritime Dataset

The Singapore Maritime Dataset (SMD) consists of three different kinds of videos:

40 on-shore, 11 on-board and 30 infrared on-shore videos, making it a total of 81

videos with a total number of 241,171 annotations [35, 3]. The videos were taken in

and around Singapore waters with a resolution of 1080p (1920 x 1080px).

The dataset diversity varies in respect to atmospheric conditions as well as back-

ground. Weather conditions are as follows: Clear sky (brighter), cloudy sky (lower

light) and slight foggy weather (lower visibility). Other factors were also taken into

consideration, such as, blurry images (camera out of focus), open sea situations with-

out any maritime activity and crowded situations (many boats overlapping). Scale

variation is also a key point in the SMD dataset as the distance from and between

boats vary greatly. Also, as the angle at which the camera is pointing, e.g., due to

windy weather, the boat (that the camera is on) might rock back and forth creating

a slightly tilted image [35].

There are 10 different object class annotations in the dataset, whereas seven are of

maritime vessels and three are of a miscellaneous nature. Each annotation was hand

annotated in MATLAB by volunteers. The object classes were categorized as follows:

vessel/ship, other, ferry, speed boat, buoy, sailboat, boat, kayak, flying bird/plane

and, finally, swimming person. It is worth mentioning that the dataset also includes

optional fields, motion type (moving, stationary and other) and distance type (near,

far and other) [35], which are not used in this thesis and thus not discussed further.
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4.3 McShips

The McShips dataset consists of 14,709 images that were either collected through a

web crawler or simply downloaded through a search engine. The annotations were

split into two distinct categories: military ships and civilian ships with six and seven

object classes respectively. Besides using a web crawler or search engine, images

were also split from surveillance and ship videos. The authors also mention that

certain images in the dataset have been chosen, annotated and re-annotated up to

five times. The image resolution varies in the dataset, but a minimum threshold of

5002 pixel resolution was chosen with the data diversity rule set below. In total, the

dataset contains 26,529 different annotations [4], meaning that there are on average

1.8 annotations per image.

As with most quality large-scale datasets, there is a fine-grained amount of data

diversity. In this context, a fine-grained dataset diversity means Zheng and Zhang

has shown the utmost care for obtaining a differing set of weather conditions as

well as different scenarios when creating the dataset. As such, McShips consists

of a multitude of images with varying lighting conditions; during clear sky, low

light scenarios such as nighttime, morning and evenings and even greyscale images.

McShips also contains an impressive set of foggy states (light, medium and heavy

fog) in images, some even rendering it difficult for a human being to distinguish

between objects in images. As the images are taken from different points view

(both geographically and anglewise), there are stark differences in both scale and

the number of ships within the images. For example, while most of the images might

only contain a single vessel, some might contain up to as much as 11 vessels in one

image. Another aspect to consider in the McShips dataset is the scale variation. The

author deliberately put in a large number of small objects (fewer than 502 pixels) to

better classify smaller ships [4].

McShips has been manually annotated according to three distinct rules. First,

each video was split into individual frames where each frame with little to no no-

ticeable movement was removed. Then frames that had no objects or target object

classes within them were removed, as they would serve no purpose. At last, each
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frame was annotated, and a bounding box was drawn over each object. As men-

tioned, McShips contains two different categories: military ships and civilian ships,

each with their own labels. The military ship labels are as follows: aircraft carrier,

auxiliary ship, landing ship, destroyer, submarine and missile boat. The civilian ship

labels are as follows: container ship, fishing boat, passenger ship, sailboat, speedboat,

tugboat and support ship [4].

To evaluate the quality of McShips a set of CNNs were trained on it and, finally,

evaluated against each other. Zheng and Zhang trained three different detectors on

McShips with a varying degree of tuning and changes. Faster R-CNN was trained

with different layer counts (50, 101 and 152), YOLO was trained with three different

versions (version 2, version 3 and version 3 SPP) and SSD was trained in its original

form in conjunction with VGG16 [4]. Table 2 shows the different performance metrics

per network and network configuration. ResNet152 had the overall best average

precision out of all the networks tested.

Neural network AP
ResNet50 0.7807
ResNet101 0.7873
ResNet152 0.7913
SSD 0.7711
YOLOv2 0.7492
YOLOv3 0.7797
YOLOv3SPP 0.6944

Table 2: Overall AP results on the McShips dataset [4].
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4.4 SeaShips

The SeaShips dataset consists of 31,455 images which have been split into individual

frames from a set of 10,080 video segments amounting to a total of 40,077 annota-

tions, averaging about 1.3 labelled annotations per image. SeaShips is annotated

with six different vessel types, each of which has its own distinct features and scales

to better diversify the dataset. The videos themselves have been gathered from a set

of onshore surveillance cameras positioned throughout the area of Hengqin Island

in the city of Zhuhai, China. All in all, the video segments were recorded with 45

different cameras from 45 locations. The video interval between each video segment

ranges from January 2017 to October 2018 from early morning to evening, recording

at a resolution of 1080p (1920 x 1080px) [2].

Atmospheric variations, such as lighting and different weather conditions, are

present in the SeaShips dataset. For example, the time of day from when the images

were captured changes both the weather and lighting conditions quite drastically, for

example, early morning and late evenings are much darker than images taken in the

middle of the day. Since the dataset is collected in 45 different locations, SeaShips is

able to have a vast diversity in background environments, for example, urban areas

with many buildings and boats, rural areas with little to no buildings and boats, as

well as open-sea and port environments. Since there is such a varied diversity in the

dataset, there is also a big variation in both scale and occlusion levels in the images,

such as port areas where there are many vessels and, therefore, a large amount of

occlusion between each vessel and for the same reason a large-scale variability in the

dataset. Another challenging part of the SeaShips dataset has to do with the fact

that some images only show partial vessels, since the images are split from video

streams. For example, some images might only have the front part of a boat visible

while other images might only have the back part [2].

As many of the other datasets that have been discussed in this chapter, SeaShips

has been hand-annotated following a set of guidelines. As mentioned, the images

in SeaShips were gathered from video surveillance footage in the area of Hengqin

Island, where a total of 168 videos from 45 locations were split into frames every two
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seconds, equalling a total of 302,400 images. After each video was split, each frame

had to be manually checked for usable objects and if the frame had any noticeable

changes from previous frames (i.e., the image was removed if it was empty or was

unchanged from the previous frame). This led to a final tally of 31,455 images that

were then finally annotated manually in the same format as PASCAL VOC2007.

SeaShips was annotated with the following object classes: ore carrier, bulk cargo

carrier, general cargo ship, container ship, fishing boat and passenger ship [2].

To evaluate the performance of the SeaShips dataset Shao et al. set out to test

it with a number of CNNs that all had been pre-trained on ImageNet and then had

their hyperparameters tweaked for object detection with a maritime dataset. The

results for each CNN tested on SeaShips can be seen in Table 3, where ResNet101

has the overall best average precision [2] out of all the networks tested.

Neural network AP
Fast R-CNN VGG16 0.7103
Faster R-CNN ZF 0.8916
Faster R-CNN VGG16 0.9012
Faster R-CNN ResNet18 0.9063
Faster R-CNN ResNet50 0.9165
Faster R-CNN ResNet101 0.9240
SSD 300 MobileNet v1 0.7766
SSD 608 MobileNet v1 0.7950
SSD 300 VGG16 0.7937
SSD 512 VGG16 0.8673
YOLO v2 0.7906

Table 3: Overall AP results on the SeaShips dataset [2].
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5 CenterNet evaluation on ABOships

5.1 CenterNet overview

CenterNet is an anchor free object detection network that relies on keypoint heatmaps

to properly detect object classes in images, more specifically it uses the center-most

keypoint of an object to find the bounding box coordinates. CenterNet does not use

the conventional methods of object detection, regional classification or anchor bases

methods, but instead uses key-points heatmaps peaks to predict centers of objects in

images. From the center-most heatmap, CenterNet is able to predict the width and

height of each object without the need of NMS. Each heatmap peak is also heavily

correlated with any particular object class, meaning that the network is effectively

able to use the key-points, object dimensions and object class probabilities to detect

any given object class that it has been trained on [7]. Figure 17 shows the predictions

of each object in an image as well as their respective heatmaps. The next sub-chapter

will go into more detail about each backbone that is available with using CenterNet.

(a) Predictions (b) Heatmaps

Figure 17: Predictions with their respective center-most heatmaps side-by-side.

5.1.1 Different backbones

As was mentioned in Chapter 2.2.3, CenterNet is modular in the sense that the

backbone of the network is interchangeable out of four distinct architectures. Each

of which have their own use case scenario, either being more accurate or faster. Some

of these architectures are in their original form while others have been modified with

added deformable convolutional layers.
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Deep Layer Aggregation: DLA-34 is an upstream aggregation of layers,

specifically for deeper networks. As such DLA is better able to gather semantic

information and features. With the aggregate nature of DLA, it is able to create

a fusion of both semantic and spatial information. Another advantage of DLA is

the use of skip-connections which further improves upon the information sharing

between layers, Figure18 illustrates the usage of skip-connections between layers.

There are two variations of DLA: Iterative Deep Aggregation (IDA) and Hierarchi-

cal Deep Aggregation (HDA). IDA stacks the shallowest parts of the network into

blocks, each block placed in a distinct division depending on the feature resolution

of the block. Skip connections from each block are then connected and merged with

the scale and resolution of each block aggregated together. Because of the aggrega-

tion already beginning at the shallowest part of the network and iteratively merged

with deeper layers, DLA manages to enhance the shallow features as the network

propagates through its layers. Figure 18(a) illustrates the iterative approach of IDA.

Instead of iteratively aggregate layers, HDA does it in a treelike manner. With HDA

both shallow and deeper layers are merged throughout the network, this is done to

preserve the features from shallower features in combination with a waster feature

diversity [36]. Figure 18(b) illustrates the hierarchical approach of HDA. Center-

Net uses an combination of both IDA and HDA, shown in figure 18(c) with added

skip-connections to the shallowest layers and every convolutional layer changed to

deformable convolutional layers in the upsampling part of the network [7].
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Figure 18: Three different variations of DLA: Iterative deep aggregation, Hierarchical
deep aggregation and DLA-34 which is a modified version of a normal DLA structure
used in CenterNet.

Stacked Hourglass is a set of stacked Hourglass modules which are laid out

in succession. An hourglass module, which can be seen in Figure 19, is designed

in a symmetrical fashion with a set of convolutional layers and max pooling layers

for down-sampling of image resolution followed by a set of nearest neighbor upsam-

pling layers to upscale the images. For each iterative step through the network in

the upsampling stage the network is split and combined with an additional con-

volutional layer. Reference to Figure 19 for a visualization of the splitting from

upsampling to downsampling layers. After reaching the middle part of the network

(lowest resolution) the network starts up-sampling and combining each feature set (of

each resolution scale). The up-sampling is done by combining two resolutions that

are adjacent to each other (one down-sampled and one up-sampled) with a nearest

neighbor upsampling of the down-sampled resolution which then is combined with

an element-wise addition. The Stacked Hourglass architecture is a consecutive stack
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of multiple Hourglass modules, whereas each pass through a module the network is

able to apply a loss. This allows the stacked network to create an iterative inference

slope to be able to reconsider each feature across images. No modifications were

made to the Stacked Hourglass architecture with regards to how it operates as a

backbone for CenterNet [37].

Figure 19: A single stack of the stacked hourglass architecture. Each rectangle
represents a residual block, similar to that of Figure 20.
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Residual Neural Networks: ResNet101 & ResNet18 are a class of DC-

NNs with a set of identity mappings (skip-connections) placed in between a certain

amount of layers. He et al. brings up the point of the exploding gradient problem

when it comes to very deep networks, such as the one in their article that is made up

of 56 layers. The author however argues that the use of Batch Normalization helps

to alleviate the exploding gradient, the true solution to the problem is the use of

Residual Blocks. The Residual Block implements the identity mapping which works

as a shortcut between one layer to another with no added parameters. To combat

the issue with different resolution scales between layers an element-wise addition is

used to be able to combine the layers [20]. Figure 20 illustrates the use of an skip-

connection between a set amount of layers. With these Residual Blocks ResNet’s are

able to incorporate a much larger number of layers, such as ResNet-101 in CenterNet

that has 101 layers. Modifications made in the ResNet architectures for CenterNet:

A deformable convolutional layer is added before each up-sampling phase [7].

Figure 20: A residual block with a skip-connection.
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5.2 ABOships dataset - Exploratory analysis of annotations

ABOships [1] is a dataset consisting of multiple instances of both inshore and off-

shore imagery with a large set of maritime object classes. The dataset was gathered

over a duration of 13 days from a route that extended from the city of Turku (Aura

River) all the way to Finnish Archipelago of Ruissalo. The images from which the

dataset is derived from were split into frames from 135 videos at 720p videos each of

which were filmed at 15 frames per second. The dataset consists of multiple varying

environments, such as, urban areas from the Aura River and open sea conditions

from Ruissalo both of which were captured in different conditions. These different

conditions consist of sunny weather, rainy weather, and clouded weather. All these

conditions meant that the dataset was able to be gathered in different lighting con-

ditions. ABOships consists of 9880 images with 41967 annotations roughly equalling

an average of four object annotations per image, whereas each annotation can be

any one of 11 different maritime classes [1, 34]. The class disparity can be seen in

Table 4 with example images of each class in Figure 21.

As it is described in [34], the the 11 classes of the ABOships dataset are as follows:

motorboat, sailboat, seamark, miscboat, passengership, militaryship, boat, cruise-

ship, ferry, cargoship and finally miscellaneous, all of which have a visual description

in Table 4.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 21: Example images of each class in the ABOships dataset: motorboat (a),
sailboat (b), seamark (c), miscboat (d), passengership (e), militaryship (f), boat (h),
cruiseship (i), ferry (j), cargoship (k), miscellaneous (l).
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Class Images Objects Visual description
Motorboat 4062 7092 Sleek, aerodynamic features
Sailboat 3842 8147 Sails
Seamark 3744 7670 Cone shaped floater or pipe
Miscboat 2797 4642 Generic boat
Passengership 2639 4464 Medium size, multiple lateral windows
Militaryship 2559 4128 Special hull with antennas, dark hue
Boat 2034 2913 Oval shaped, small size

Cruiseship 1347 1504
May contain passengers and/or
cars on board, large size

Ferry 945 1046
Medium size, entrance on two sides,
cabin in the middle

Cargoship 157 161 Large size, long, cargo containers
Miscellaneous 129 200 Random floaters

Table 4: Amount of images and objects in each class type with a visual description
from the ABOships paper.

After a descriptive analysis over the dataset it was evident that there was a high

number of very small bounding box areas (area < 162) that were annotated in the

ABOships dataset, specifically there were 8740 annotations with a bounding box

area of smaller than 162 or only 256 pixels occupied by any given bounding box.

The amount of annotations in each bounding box area can be seen Table 5. For

reference each bounding box area is set accordingly:

• extra small = area < 162

• small = 162 < area < 322

• medium = 322 > area > 962

• large = area > 962

Bbox area Annotations
extra small 8740
small 10061
medium 15959
large 7207

Table 5: Amount of annotations per bounding box area in the ABOships dataset.
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Given the very small size of objects, every image with a bounding box area less

than 162 was removed and consequently removed images which only contained small

bounding box areas with no other bounding box area size annotations in the image.

This reduced the dataset from 9880 images and 41967 annotations to 8377 images

and 33227 annotations. Another change that was done was the aggregation of classes

into larger subsets of classes. Specifically, each class were more or less divided into

bounding box area sizes forming the following new classes: powerboat, sailboat, ship

and stationary which is a combination of the classes seamark and miscellaneous. The

following combinations of classes were done:

• boat + motorboat = powerboat

• passengership + cargoship + ferry + militaryship + cruiseship

+ miscboat = ship

• seamark + miscellaneous = stationary

• sailboat stayed the same

Table 6 shows the new distribution of the amount of images as well as objects per

class type.

Class Images Percentage Objects Percentage
Powerboat 4044 48% 7244 22%
Sailboat 3756 45% 8029 24%
Ship 5887 70% 15272 46%
Stationary 2151 26% 2682 8%

Table 6: Amount of images and objects in each class type for the new dataset as
well as their respective percentages.

The following table, Table 7 serves to show the amount of bounding boxes per

bounding box area size per object class type. This shows that there is a great

deal of variety in the bounding box sizes both between and withing object classes.

For example, most of the bounding boxes for the class powerboat falls within the

bounding box sizes small to medium while sailboat is skewed mostly from medium

to large bounding box sizes. It is also worth noticing that most of the bounding
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boxes for the object class stationary is of the bounding box area size small, since

most of the objects in that class are of smaller seamarks.

Class Small Medium Large
powerboat 3887 2959 398
sailboat 662 4055 3312
ship 3564 8247 3461
stationary 1948 698 36

Table 7: Amount of bounding boxes per bounding box area size per class in ABO-
ships.

Figure 22 shows the bounding box occupied pixel area distribution between the

four new classes in ABOships in log2 − scale. The figure shows each individual

object class with bounding box occupied pixel areas grouped into three distinct

groups: small, medium and large. As each occupied pixel area in the figure has been

transformed to a logarithmic distribution, the areas fall into a distribution between

8 and 18 occupied pixels. The bounding box areas in the figure are as follows:

• small = log2(area) < 10

• medium = 10 < log2(area) < 13.16

• large = log2(area) > 13.16
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(a) Powerboat (b) Sailboat

(c) Ship (d) Stationary

Figure 22: Occupied pixel area distribution in log2 − scale of bounding-boxes in
each object class in ABOships (includes aforementioned superclasses: powerboat,
sailboat, ship and stationary). Each bounding box area size is divided into three
different colors: small colored blue, medium colored orange and, finally, large colored
green. The red line represents the mean distribution of the bounding-box occupied
pixel area for each specific class.

Table 8 shows the disparity of the amount of bounding boxes (of each bounding

box area) per image. There is a very large number of images that have zero bounding

box areas of any one of the bounding box sizes; small medium or large. This does

however not mean that these images without are without any bounding boxes what-

soever, this is just meant to illustrate that there are images which do not contain

any one of the three bounding box area sizes within them, while still containing any

of the other two bounding box areas.

Finally, the ABOships dataset was adapted to the COCO standard format for
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Bbox nr Small Medium Large
0 2810 1990 4443
1 2866 2322 2172
2 1578 1694 955
3 714 1024 438
4 253 598 207
5 93 299 89
6 39 200 29
7 13 93 19
8 6 73 9
9 4 37 8
10 0 26 4
11 1 9 2
12 0 4 1
13 0 2 1
14 0 2 0
15 0 3 0
16 0 1 0

Table 8: Amount of images with 0 to 16 bounding boxes within them depending on
the bounding box size.

datasets. This was done by a custom script that first randomly splits all the images

in the ABOships dataset into a training (70%) validation (15%) and test (15%) set.

After the split the annotation file of the original dataset was parsed in correlation to

the images that were placed in their respective sets and produced in a similar split.

Then the dataset annotation files were converted to JSON from CSV to work with

CenterNet.
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5.3 Evaluation methods

To evaluate the performance of CenterNet on the dataset two metric were employed,

Intersection over Union (IoU) and Average Precision (AP) both of which complement

each other (as they can be used in combination to get a more detailed evaluation of

a given dataset). IoU is the area of which the ground truth labels, and the predicted

labels overlap over each other. The higher magnitude of overlap equals a higher

IoU [38]. Figure 23 illustrates how the intersection over union is gathered from the

division of the area of intersection and of the union of both the precision and ground

truth.

Figure 23: Intersection over Union illustration

Equation 1 explains the above image in a more formal definition, whereas the

intersection of the predictions bounding box Bp and the ground truth bounding box

Bgt taken as an absolute value is divided by the union of the same bounding boxes

in their respective absolute values [38].

IoU =
|Bp ∩Bgt|
|Bp ∪Bgt|

(1)
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AP can be calculated given that the precision and recall is calculated beforehand

and is then done with the following formulae [38]:

AP11 =
1

11

∑︂
(R ∈ {0, 0.1, ..., 0.9, 1})Pi(R) (2)

Whereas precision is

P =
TP

TP + FP
(3)

And recall is

R =
TP

TP + FN
(4)

With the maximum precision Pi(R) over a recall value of over R

Pi(R) = max(R ∗ |R∗ ≥ R)Pi(R∗) (5)
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5.4 Evaluation of COCO-pretrained CenterNet

To examine the out-of-the-box performance of CenterNet on ABOships (pre-trained

on the COCO dataset), I re-labeled all maritime vessel annotations in the dataset

into one super-class ”boat”, and calculated the average precision with an IoU of 50

for each backbone variant, see Table 9.

Feature Extractor Small AP50 Medium AP50 Large AP50 All AP50
DLA 0.184 0.258 0.429 0.346
Hourglass 0.256 0.322 0.452 0.375
ResNet101 0.16 0.267 0.444 0.309
ResnNet18 0.197 0.251 0.362 0.264

Table 9: CenterNet trained on the COCO dataset [6] with each backbone.

5.5 Training

The ABOships dataset was used to train each backbone of CenterNet. The dataset

was randomly split into a ratio of 70% training data, 15% validation data and 15%

test data. For ABOships this meant that there were 5864 images for training the

network, 1257 images for validation and 1257 images for testing out of a total of 8377

images. The dataset was, as previously stated in the thesis, converted to the COCO

format to be able to use the CenterNet. The number of annotations for the dataset

can be found in the overview chapter, which have previously been discussed. The

dataset was trained on a single RTX 2080 Ti with 11GB of VRAM (memory) and

4352 CUDA cores with CUDA Version: 11.3 and PyTorch version 1.1.0 running on

Ubuntu 20.10 in a custom docker container (Docker version 20.10.5, build 55c4c88).

The models were trained on ABOships from scratch without freezing any layer and

without using transfer learning as well as using transfer learning to load in pre-

trained weights from models trained on COCO, there were also scenarios where

parts of the network were frozen, however these results were not significant enough

to be discussed in the thesis. Training each backbone with ABOships in total took

99 hours to complete, Hourglass took by far the longest out of all the backbones,

about 55 hours to train, i.e., over 50% of the total training time. All training was
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done with the following parameters: input resolution of 512x512, training for 200

epochs, at epoch 80, 100 and 125 the learning rate reduced by 10% with an initial

learning rate of 1.25e-4 with the Adam algorithm as optimizer.

5.6 Results

Results are gathered from eight (8) different models, i.e., DLA, Hourglass, ResNet101,

ResNet18, using both training from scratch and transfer learning for ABOships.

Each sub-chapter presents the results either from the models trained from scratch

or trained with transfer learning. Furthermore, each sub-chapter illustrates three

unique tables, one with AP for all object classes enclosing different augmentation

types during testing, one based on occupied pixel area of bounding-boxes and finally

AP results for each individual object class. This means that there are a total of six

(6) tables of results worth discussing. Description of the table containing AP for all

object classes is as follows:

1. Average precision and its target IoU: AP (IoU between 0.50-0.95), AP50 (IoU

0.50) and AP75 (IoU 0.75)

2. Feature extractors: DLA, Hourglass, ResNet101, ResNet18

3. The AP results: N.A (Non-augmented, meaning that the images have been

left untouched), F (Flipped, meaning that the images are flipped) and MS

(Multiscaled, meaning that the test is ran multiple times each with a different

user defined scaling of the images).

The second table is similar in the manner that it is shows the AP and IoU thresh-

old each column comes under, further clarify how the bounding box area specific

tables are structured:

1. Average precision and its target IoU: AP50 (IoU 0.50) and AP75 (IoU 0.75).

2. Feature extractors: DLA, Hourglass, ResNet101, ResNet18.
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3. Bounding box area size: small, medium and large (these were discussed in

detail in Chapter 5.2).

Finally the object class specific table is formatted in a similar manner as the

tables before with added granularity in the form of class specific results:

1. Average precision and its target IoU: AP50 (IoU 0.50).

2. Feature extractors: DLA, Hourglass, ResNet101, ResNet18.

3. Object class: powerboat, sailboat, ship and stationary.

5.6.1 Evaluation of training with transfer learning

The following six tables show the results for CenterNet trained on ABOships with

transfer learning where pre-trained weights from Microsoft’s COCO dataset [6] were

used. The tables are grouped as follows: first ABOships AP for all object classes with

different augmentations, then object bounding box area specific table and finally AP

per object class.

As each backbone were first pre-trained on the COCO dataset [6] they were able

to produce respectable AP results, especially for Table 11 where large objects in the

ABOships dataset had an AP of 81.7% for DLA and up to 82.5% for Hourglass and

ResNet101 with an IoU threshold of 0.50. However, we can see a clear difference

between the other sizes in the table, in AP50 small and medium have worse AP and

large. This is even more pronounced in AP75 where the AP between small and large

is 42.45%. This illustrates that the occupied pixel areas of different objects plays

a significant role in the average precision that the network can provide. Table 10

shows clear improvements in the testing when using different augmentations, this is

more prominent when using both flipped images as well as multiscaling. Overall,

CenterNet with DLA backbone shows the most promise out of all the backbones

when trained on ABOships with an AP (IoU 0.50-0.95) of 36.3%, this is interesting

as it took much longer to train Hourglass while still showing similar AP results.
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Table 12 shows the class specific AP results per class object in the ABOships

dataset, these results were tested with an IoU threshold of 50 with no test augmen-

tations done, i.e., the images were non-augmented. The results show a fairly even

spread of AP throughout each class, with sailboat having the highest overall aver-

age. Interestingly, CenterNet with DLA as feature extractor was able to distinguish

between the ship class much better than any other backbone, while also having the

worst performance for the stationary class.

AP AP50 AP75
Feature Extractor N.A F MS N.A F MS N.A F MS
DLA 0.320 0.335 0.363 0.674 0.686 0.731 0.249 0.272 0.307
Hourglass 0.328 0.342 0.359 0.679 0.693 0.712 0.277 0.295 0.311
ResNet101 0.316 0.331 0.349 0.674 0.698 0.723 0.241 0.263 0.289
ResNet18 0.286 0.303 0.326 0.638 0.662 0.698 0.206 0.222 0.250

Table 10: AP results from CenterNet pre-trained on COCO and then trained on
ABOships. N.A. (non-augmented), F (flipping), MS (multiscale augmentation) mea-
sured at IoU 0.50:0.95, IoU 50 and IoU 75.

AP50 AP75
Feature Extractor Small Medium Large Small Medium Large
DLA 0.504 0.652 0.817 0.122 0.324 0.582
Hourglass 0.477 0.580 0.825 0.123 0.298 0.560
ResNet101 0.428 0.604 0.825 0.089 0.293 0.560
ResNet18 0.426 0.577 0.822 0.196 0.234 0.526

Table 11: AP results from CenterNet pre-trained on COCO and then trained on
ABOships. Measured at three different bounding box area sizes: small, medium and
large at IoU 50 and IoU 75.

AP50
Feature Extractor Powerboat Sailboat Ship Stationary
DLA 0.695 0.719 0.784 0.641
Hourglass 0.702 0.713 0.663 0.738
ResNet101 0.665 0.717 0.617 0.731
ResNet18 0.594 0.714 0.717 0.655

Table 12: Class-specific AP results from CenterNet pre-trained on COCO and then
trained on ABOships. Measured for each specific object class in ABOships, i.e.,
powerboat, sailboat, ship and stationary at IoU 50.
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5.6.2 Evaluation of training from scratch

The following three tables show the results for CenterNet trained on ABOships with-

out transfer learning, meaning that it was trained from scratch with each backbone.

The tables are grouped by AP for all object classes with different augmentations and

then occupied pixel area of bounding boxes.

When training CenterNet on ABOships from scratch and looking at the results

from all object classes, Table 13 illustrates that DLA backbone is able to extract

features better than when training the network with pre-trained weights (transfer

learning). This contrasts with the rest of the backbones showing worse AP on average

across the board. It would be expected that using a much larger dataset and model

to pre-train the network would yield significantly better results in every scenario,

which clearly is not the case. In Table 14 we can see somewhat similar results in

AP50 as we saw in Table 11 for larger objects. However, what is very surprising is

the fact that DLA-34 in AP75 was able to double its AP when trained from scratch in

comparison to being trained with pre-trained weights, this is most likely the reason

for why DLA yields and overall better AP when trained from scratch. Otherwise, the

backbones seem to show worse results on average when trained from scratch (other

than DLA-34).

Table 15 shows a fairly even distribution between each backbone with DLA per-

forming the best on average across all object classes. Interestingly the object classes

ship and stationary gave better results when trained from scratch than with trans-

fer learning, this could be that the network was able to learn better features from

an early stage when trained from scratch. This could also be because COCO (the

dataset CenterNet was pre-trained on) mostly contains smaller boats such as mo-

torboats. CenterNet is also most likely able to utilise more generic object features

such that would benefit the stationary object class. This is likely the reason as to

why CenterNet is able to perform better with DLA as a backbone when trained from

scratch.

53



AP AP50 AP75
Feature Extractor N.A F MS N.A F MS N.A F MS
DLA 0.324 0.340 0.371 0.676 0.692 0.732 0.261 0.285 0.334
Hourglass 0.293 0.306 0.336 0.637 0.653 0.682 0.225 0.244 0.289
ResNet101 0.291 0.305 0.336 0.638 0.652 0.698 0.212 0.230 0.274
ResNet18 0.273 0.290 0.328 0.611 0.641 0.689 0.190 0.211 0.263

Table 13: AP results from CenterNet trained on ABOships from scratch. N.A. (non-
augmented), F (flipping), MS (multiscale augmentation) measured at IoU 0.50:0.95,
IoU 50 and IoU 75.

AP50 AP75
Feature Extractor Small Medium Large Small Medium Large
DLA 0.480 0.604 0.816 0.227 0.315 0.558
Hourglass 0.528 0.648 0.809 0.138 0.322 0.577
ResNet101 0.290 0.574 0.838 0.136 0.197 0.537
ResNet18 0.365 0.582 0.830 0.182 0.191 0.525

Table 14: AP results from CenterNet train on ABOships from scratch. Measured at
three different bounding box area sizes: small, medium and large at IoU 50 and IoU
75.

AP50
Feature Extractor Powerboat Sailboat Ship Stationary
DLA 0.681 0.712 0.796 0.726
Hourglass 0.677 0.715 0.722 0.784
ResNet101 0.598 0.718 0.728 0.778
ResNet18 0.573 0.712 0.718 0.701

Table 15: Class specific AP results from CenterNet trained on ABOships from
scratch. Measured for each specific object class in ABOships, i.e., powerboat, sail-
boat, ship and stationary at IoU 50.
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Figure 24 shows qualitative results over each backbone and either being pre-

trained with COCO or trained from scratch respectively. In both figures we can

see that there is an annotation error in ABOships, a stationery object has been

detected by all pre-trained models. This is an issue that is often encountered in

object detection/classification datasets, see [39].

In this particular image used for testing, the pre-trained model that was able

to perform the best was Hourglass. All of the backbones were able to detect the

object labelled as stationary even though it was not annotated in ABOships. In

Figure 24 the worst performing backbone was ResNet18, which is not surprising as

this backbone has also the overall worst AP out of all the backbones.
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(a) DLA-34 (b) Hourglass

(c) ResNet101 (d) ResNet18

Figure 24: Qualitative detection results on the ABOships dataset using CenterNet
and transfer learning starting from COCO-pretrained weights. Each image shows
the performance of CenterNet with a distinct feature extractor each with its own
color: (a) DLA colored in green, (b) Hourglass colored in dark green, (c) ResNet101
colored in blue, and (d) ResNet18 colored in purple. Each bounding box shows the
corresponding object class and confidence score within the interval [0, 1].
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6 Conclusion

This thesis investigates the benefits of deep learning and transfer learning for mar-

itime ship detection from inshore and offshore imagery. The main dataset used in

this thesis, ABOships, was trained with CenterNet on its four distinct backbones.

The goal was to find investigate the performance of a key-point detector like Center-

Net on a maritime dataset, as well as to exploit transfer learning and examine the

training performance on smaller datasets. Each trained model was evaluated against

each other with their respective AP over different IoU thresholds.

Both deep learning and transfer learning show promising results in the maritime

vessel sphere. However, the improvements seen with transfer learning were not as

drastic as I would have thought especially for CenterNet trained with DLA as feature

extractor with an IoU of 50, as this showed worse results when trained on pre-trained

weights.

The biggest improvement can be seen when comparing a network trained on a

generic dataset such as COCO in Table 9 versus the results when the network is

trained specifically for maritime objects in Tables 10 and 13. Overall, transfer learn-

ing yielded the best results when applying the pre-trained weights from CenterNet

trained on COCO to CenterNet being trained on ABOships.

Deep learning with key-point detector gives very satisfactory results, especially

when considering that the network is not only accurate but also very fast, both in

training and inference. This shows that key-point detectors are a very viable solution

for real-time problems, such as, traffic monitoring or border control. These kinds of

methods and solutions could save costs in the sense that not as much manpower is

needed for manual labour, such as, monitor surveillance cameras. Instead of manual

labour a layer of automation can be put upon the existing surveillance structure with

automatically detecting vessels in the context if this thesis.

57



6.1 Future work

A set of methods for combining datasets automatically, i.e., ordering images and

their respective class objects, as well as correctly ordering and labelling annotation

data would be beneficial for future research regarding any form of computer vision

problem, not just for object detection. For example, a one click solution for combin-

ing ABOships and SMD in the context of this thesis would be highly beneficial to

further improve results of deep learning for maritime vessel detection, especially in

the case of smaller datasets. This would of course then mean that the datasets that

are going to be merged/combined must be of the same format (in this case COCO),

which could also be automated depending on if the original format is also known

beforehand. Combining datasets could be considered another specific case of trans-

fer learning. Moreover, several other training configurations can be implemented

(different optimizers) along with different changes in the network architecture and

loss functions.
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