
A Study on Automatic License Plate Recognition

Joel Andersson

Master of Science (Technology) Thesis

Supervisor: Dragos Truscan

Åbo Akademi University

Faculty of Science and Engineering

2022

1



Abstract

Automatic license plate recognition, ALPR, is the process of detecting

license plates, and recognizing the characters, present in any given image.

ALPR can be applied in many situations to reduce the requirement for

manned operation of various tasks. In this thesis, different methods for

performing ALPR are tested and qualitatively evaluated. The main focus

is on deep learning based object detectors, how they can be applied for a

more modern version of ALPR and the challenges involved. A significant

problem with deep learning is the amount of data needed, and this was also

encountered by the author of this thesis. The data sets gathered did not

have enough variation for training deep learning models with satisfactory

accuracy, which was solved by generating images of license plates to increase

the variation in the data sets.
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Glossary

ALPR Automatic License Plate Recognition. 7–10, 40, 50, 54, 68, 72, 83, 84,

98, 110, 119, 123

ANN Artificial neural networks, often referred to as neural networks (NN), are

machine learning models that attempt to mimic the function of biological

neural networks. 11

GIoU Generalized Intersection over Union. 55

IoU Intersection over Union. 54, 57

ML Machine learning. Methods that can be performed by a computer to detect

patterns in data, predict future data or make some type of decisions without

explicit instructions. [11]. 74, 87

OpenCV Open source Computer Vision library. 42, 43, 50, 81, 86, 91

SSD Single Stage Detector, a type of machine learning object detection method.

45, 56
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1 Introduction

Automatic License Plate Recognition (ALPR) is the process of taking an image

and determining whether there are license plates in the images and then identi-

fying the characters in those license plates, all without human intervention.

ALPR has many practical applications, such as traffic flow statistics collec-

tion [1]; parking management systems [2], travel time estimation [3], automated

toll violation monitoring [4] and even aiding police by providing real-time data

paired with location [5].

ALPR is a field which has been growing in popularity and especially so in

recent years, as computing power is becoming more affordable and more readily

available. Originally ALPR was performed with highly proprietary hardware but,

in recent years, it has become possible to perform ALPR on both higher resolution

images and using general purpose hardware. All in all, the progress of technology,

open source software and machine learning has made it easier for anyone with an

interest to implement their own ALPR systems.

There are several approaches to ALPR but, on the whole, the most important

steps can be viewed as license plate detection followed by character recognition.

The more conventional approaches to ALPR work best in controlled environ-

ments where the vehicle is always at the same angle and position in the image,

and the license plate is brightly illuminated. These constraints come from the

conventional approaches making assumptions about what to expect in the image.

However, since the rise of machine learning, it has become more realistic to cir-

cumvent these tight constraints and instead make algorithms that work in more

varied environments.

There are complete ALPR systems for both moving and stationary cameras,

developed and sold by companies such as [6] that come with all the hardware etc.,

all built into one product. These kinds of systems have been successfully deployed

by Police Departments in the US [5] but they are not cheap, since one pays for

everything and the prices are often not even listed. At the more affordable end

of the spectrum, there are online services to which one can forward images and

receive the license plate recognitions in response. Such services are available
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from e.g. [7, 8]. These are usually more transparent regarding the pricing, but

deploying thousands of systems using these kinds of services and running them

every hour of the day will quickly become expensive as well. Not to mention the

cost of the network bandwidth consumed. Having a reliable internet connection is

also not necessarily a given and ALPR systems will often need to produce results

immediately in order to be effective. Sending images of license plates to a third

party also requires a high level of trust.

In this thesis, I go into the core problems surrounding ALPR, discuss and

compare the performance of different possible solutions to each of these problems,

as well as highlight the strengths and weaknesses of each solution. The goal is

to identify good paths to approaching the problem of ALPR, depending on one’s

requirements. In this thesis, the context will be Finnish license plates, but the

problems will be addressed on a general level.

1.1 Goal

There is a virtually limitless number of tasks that can be sped up remarkably

by introducing an ALPR system. Most of these systems utilize static cameras,

but some, such as the systems deployed on police vehicles [5], need to work even

on moving vehicles. A stationary camera can use certain algorithms that are

not feasible for a moving camera but, in the end, they all need to do the same

thing: read pictures, extract license plate images and identify the characters in

said license plate images. Thus, they all face the same problems to some extent.

The main problems involved in each activity are that the license plate can be

partially obscured, lighting conditions can vary, the resolution of the image can

be too low if the vehicle is far away, and the plane of license plate may not be

parallel to the plane of the camera, making it difficult to read the license plate

characters correctly. The common factors between these problems can be boiled

down to variation in the environment, variation in the license plates, and variation

in technology used.

In the early days of ALPR, lights were often installed to try and ensure more

consistency in the data [9, 10], but an algorithm that is capable of performing
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ALPR regardless of lighting conditions would be preferable. A flexible system

will handle different lighting conditions and perhaps difficult perspectives, but

not partially obscured plates. In order to address that we also need to compare

each plate with previous (recent) detections of the same license plate. For ex-

ample, a strong light might reflect off of the plate in a way that obscures the

characters in the area of the reflection, and that spot might move across the plate

between images, thus always obscuring some part of the plate. In this case, a

more advanced ALPR system should be able to piece the detections together and

obtain a complete license plate. When more pictures of the same license plate

are needed to form a complete recognition, the program needs to be fast enough

to take more pictures while the license plate is still in view of the camera.

Some ALPR systems rely on an external trigger of some sort, which makes the

camera take one picture and only then runs the ALPR system on that image. The

nature of these kinds of systems is that the one image taken needs to be perfect,

so a very high quality camera is needed (preferably with the focus automatically

being adjusted by the estimated position of the vehicle). However, these systems

do not usually require instantaneous results to be effective. An example of such

a system is a speeding camera. The camera is triggered by a radar or some

form of sensor underneath the drive path, a high resolution picture is taken

using a camera with a very fast shutter, the license plate is identified, and the

offender receives the bill in the mail a few days or weeks later. This kind of

system would not necessarily even need to be automated; a police officer could

take a look at the image and look up the owner of the license plate they see in

the picture. Automating it would save man-hours spent, but the cost of false

positives could potentially outweigh the benefits. Other applications, such as

restaurant drive-throughs that employ loyalty programs or automatic gates for

parking caves need to respond quickly to deliver the best possible service to

the user. The faster an ALPR system can produce the recognitions, the more

meta-analysis can be performed, such as tracking the position of a vehicle in the

image and determining that all the license plate recognitions from within the

bounds of that specific vehicle can be combined to create a recognition with a

higher confidence. This meta-analysis touches on what was mentioned in the
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previous paragraph, namely being able to piece together incomplete recognitions.

If the images are processed quickly enough, assumptions can be made regarding

how far the vehicle could possibly have moved (from the perspective of a single

camera). However, always collecting images (without a trigger) also makes it

possible to track how fast the vehicle is moving on average, without expensive

sensors such as radars. Continuous image collection permits comparing license

plate recognitions between cameras in different locations. Live feed ALPR can

also be used by city planners to determine how efficiently traffic is flowing and

where traffic congestions emerge [1].

The main goal of this thesis is to investigate different approaches to imple-

menting ALPR and to provide the reader with a better idea of how each problem

can be tackled and what one can do to improve performance and reduce develop-

ment time. The advantages and disadvantages to each approach will be discussed,

and some of these approaches will be implemented and their performances com-

pared.
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2 Background - Machine Learning and Deep Learn-

ing

In this section, I review the necessary background theory surrounding the con-

cepts and terms later used with regard to deep learning-based object detectors.

The theory gradually becomes more complex and specific, until all of the con-

cepts needed to discuss YOLOv5, which is the object detector that ultimately

was tested, have been introduced.

2.1 Machine Learning

Machine learning constitutes any method that can be performed by a computer

on a set of data in order to detect some type of pattern, predict future data or

make some type of decision based on the data. The parameters of those methods

are not explicitly written but, instead, determined through algorithms learning

what the data means [11].

2.1.1 Neural Networks

An artificial neural network (ANN), sometimes multi-layer perceptron (MLP) or

neural network (NN), is an interpretation of the biological neuron that can be

expressed using mathematics and implemented in code. Neural networks were

first introduced as a concept in 1943 by McCulloch & Pitts [12]. Later, in 1958,

the perceptron was introduced by Rosenblatt as a model for the neuron [13].

Rosenblatt’s theory of perceptrons is still applied in neural networks today [14].

Neural networks can be used to solve two types of problems: classification and

regression. See Figure 1.

The perceptron/artificial neuron itself consists of weighted input connections,

an activation function and a bias. The output of the neuron is calculated as

shown in the following formula below, where j is the number of the neuron,

fj is the neuron’s activation function, n is the number of connections, i is the

connection number, wi is the weight of the connection, xi is the input value on

that connection and b is the bias. See Figure 2.
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Figure 1: The two types of problems neural networks can solve: classification and re-

gression. The classification example shows what a classification of male/female based on

height and weight might look like. The regression example shows what the relationship

between the maximum load in the bench press exercise and body weight might look like.

Both examples are approximated using linear functions (f(x) = ax+ b).

yj = fj(
∑n

i=0wi · xi) + b

Figure 2: An example of what a perceptron might look like. Both weights have the value

0.6 and the activation function is a threshold set to 1. This perceptron calculates binary

AND. Note that the weights and threshold value could change to a large degree, and it

would still calculate AND correctly. The bias is left out of this example, but it would be

added as described earlier.
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There are many popular activation functions, some of which output a floating

point value and some of which output a binary value; a few examples of popular

activation functions [15] are shown in Figure 3. Because the activation function

directly shapes the output, it ultimately determines what patterns the neural

network will be able to recognize.

Figure 3: The sigmoid, tanh, rectified linear unit and linear functions. All commonly

used as activation functions in neural networks.

Neural networks have three sections: the input layer, the hidden layers and the

output layer. Each layer consists of a set of neurons which are connected to the

next layer with weights. The final layer, the output layer, does the same thing but

while some middle layers’ activation functions might only produce either a 0 or a

1, the neurons in the final layer usually have an activation function that produces

a floating point value between 0 and 1. This is because it can be interpreted as

the neural network’s confidence in its prediction [15] in a classifier. The output

node with the largest value, thus, corresponds to the class that the neural network

is most confident that the data represents.

When training neural networks one must ensure that there is enough variation

in the training data so that the model does not become "overfitted". An overfitted

model performs well on known data but not so well in general; see Figure 4.

By training the network, we are essentially shaping the output of the activation

functions and the combination of these activation functions [15]. Neural networks
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can be trained using two different methods: supervised and unsupervised learning.

Supervised learning is comparable to a teacher giving a student some task and

actively providing feedback as opposed to unsupervised learning which would be

comparable to a teacher giving a student a bunch of blocks of different shapes

and sizes and telling them to organize the blocks, allowing the student to decide

what the best grouping is, on their own.

Figure 4: Non-linear regression fitting.

2.1.2 Supervised Learning

Supervised learning is the first type of machine learning, and it is the process

of learning a mapping from some input data to some output data. In essence,

supervised learning is done by comparing the network’s prediction with what the

expected answer was; and while we can simply say "true" or "false", it helps

to be able to quantify to what degree the prediction was wrong. This is done

by calculating the loss (or cost), using what is called a loss function (or cost

function). If we have a neural network model that is being trained to predict the

position of a license plate in a picture, and it predicts that the license plate is

positioned at x = 458, y = 50, while we know that the license plate is actually at

x = 430, y = 56 (the expected value is called "ground truth"), we can define a

loss function like one of the following formulas. [11]
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loss =
∣∣xpred − xground_truth∣∣+ ∣∣ypred − yground_truth∣∣

= |458− 430|+ |50− 56|

= |28|+ |−6| = 26 + 6 = 32

loss_squared = (xpred − xground_truth)2 + (ypred − yground_truth)2

= (458− 430)2 + (50− 56)2

= (28)2 + (−6)2 = 784 + 36 = 820

(1)

The squared loss is useful because it is naturally disproportional, so a larger

error will be disproportionately larger than a smaller error.

When we know the loss, we can look at which weights contributed to the

loss and adjust those in proportion to how much they each contributed to the

error. We want to do this with large enough steps that the loss function is pushed

down towards zero (or as low as it goes); but with small enough steps so as not

to overshoot and end up jumping back and forth over the minimum. The most

widely used learning algorithm for supervised feed-forward neural networks is

called back-propagation.

Figure 5: The gradient

of a loss function, with

respect to the weight w,

is minimized using back-

propagation.

Back-propagation was first introduced by Lin-

nainmaa in his master’s thesis [16]. The context of

Linnainmaa’s master’s thesis was not one of neural

networks, but the ideas he covered can be applied

to neural networks. The idea of back-propagation is

to minimize the error of nested functions using the

chain rule. Back-propagation is done by calculating

the error (loss) of the output (final layer) using a loss

function, determining the gradient of the loss function

given the current parameters (weights and biases) for

each neuron for each layer, and propagating the error

backwards as one is traversing the weights backwards

to the start of the network. Ultimately, the gradient

(the derivative) of the loss function with respect to the parameter (the weight
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or the bias) in question is multiplied by a learning rate (to slow it down, for

accuracy) and added to the parameter. This pushes the loss function to the local

(ideally global) minimum. When inching closer to the local minimum the gradient

will approach zero, and the training will converge (slow down/reach a minimum).

2.1.3 Unsupervised Learning

Unsupervised learning is the second type of machine learning and, unlike in su-

pervised learning, the machine learning method is never told what the answer is

supposed to be; rather, it is simply given some data to process. The goal with

unsupervised learning is to discover patterns in the data. For example, the classi-

fication graph in Figure 1 shows linear function classifying datum as male/female

based on which side of the line they land. This is a problem which could be solved

using clustering, which is an unsupervised learning method, as well [11].

Figure 6: K-means clustering solving the weight/height to gender classification problem.

One popular type of clustering is the K-means algorithm (or K-means cluster-

ing), which has one objective, to find K (an arbitrary number) groups (clusters)

of similar datum in a data set; see Figure 6. K-means clustering first creates K

"centroids" at random, assigns each datum to its closest centroid and then shifts

the centroids towards the mean of its cluster. The two latter steps are repeated

until the centroids have stabilized or until the maximum number of iterations
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have been performed. Given the height and weight to gender relationship, we

could give the K-means a K of 2 and expect it to identify the centers of each

cluster (but it would not know which is which) [11].

2.1.4 Fully Connected Neural Networks

A fully connected neural network is one where every neuron is connected to every

neuron in the next layer. This is quite many connections and can lead to what is

often referred to as "the curse of-dimensionality" [17]. If one takes an image of

size 28 × 28 such as those in the MNIST data set of hand-drawn digits [18] and

passes them to a fully connected first hidden layer, it means that each neuron

will have 28 × 28 × 1 = 784 weights. If there were three color channels instead

of only one, it would mean 28 × 28 × 3 = 2352 weights. If one takes an image

of size 640× 640 such as those used in YOLOv5 (which will be discussed later),

this means 640 × 640 × 3 = 1′288′800 weights per neuron. This very quickly

runs away from the realm of computability. It is easy to see that fully connected

neural networks are better suited for tasks with fewer input variables, but with

complex relationships between these variables.

Figure 7: A fully connected neural network.

Another problem with using fully connected neural networks for visual tasks

is that they are not necessarily very good at generalizing, as they tend to end

up classifying on very specific things in the image, instead of recognizing and
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combining features. This means that they tend to overfit more easily, by factors

such as the exact position of an object, instead of only focusing on the features of

that object regardless of its position. Looking at the examples in Figure 1 they

both only have two dimensions, but feeding a neural network an image means

that the solution space has one dimension per pixel. Finding the global/local

minimum of such a solution space is very complex. This is where convolutional

neural networks come into the picture, as they try to recognize the features of the

image and generally reduce the amount of variability for each layer while being

better at generalizing. [15]

One method that has been shown to reduce overfitting in neural networks is

using a dropout layer [19]. A dropout layer is simply a layer that during training

has some defined probability of setting the activation function of a neuron in the

previous layer to 0. The effect of this is that all neurons need to spread their

weights more evenly between all the incoming connections in order to still be

able to perform correctly, making it generalize slightly better. One disadvantage

of using dropout is that the loss function will not necessarily point the gradient

in the correct direction when suddenly dropping some neurons. [19]
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2.1.5 Convolutional Neural Networks

The convolutional neural network was first introduced as the "neocognitron" by

Fukushima [20]. His work was inspired by the theory of how the visual nervous

system of a cat works, proposed by Hubel and Wiesel [21]. The architecture he

proposed (see Figure 8) is one where the network recognizes different features

in an S-layer (simple layer), reducing the size of the input and then feeds those

features into a C-layer (complex layer) which makes sense of the combinations of

features, which then is fed into another S-layer and so on. The cells in the S-layers

only feed their output forward into one C-cell in the next C-layer, but each C-cell

feeds its output to all the S-cells in the next layer [20]. This specifically, means

that each C-cell will be responsible for detecting a certain feature and, naturally,

the deeper one goes the more complex the features become. The convolutional

networks of today have evolved since this point but the idea of combining simpler

features to recognize more complex features is still the same.

Figure 8: The neocognitron.

Convolutional neural networks are built from convolutional layers, which in

turn consist of a series of weight matrices, known as "kernels". The output of a

kernel is called a "convolution" (or a "channel"). The kernels are used in matrix

multiplications together with the input image (or convolutions from previous

layers). More specifically, a convolution is the scalar product of a weight matrix

with every neighborhood in the input. In the convolutional layer, the kernel is
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slid over the image to compute all the scalar products as shown in Figure 9. As

we can see in the figure, the output is the size of the freedom of movement that

the kernel has in the image. The kernel in the example has a "stride" of one,

meaning that the kernel moves over one pixel at a time, but the stride can be

larger than one. A larger stride means less freedom of movement, which means

that the output will be smaller. With any kernel larger than 1×1 the output will

be smaller than the input. Sometimes it can be useful to have the output be of

the same size as the input, and then "zero padding" can be used (if nothing else

then because it is easier to calculate of what dimensions the output will be). Zero

padding means that zeros are added around the image/feature-map so that the

kernel can compute a value for each pixel.

Figure 9: An illustration of the process of a convolutional kernel.

In a multichannel image (RGB has three color channels), there is one kernel

per channel per filter. Using the cross-shaped kernel filter example in Figure 9

there would be one such kernel for each channel, each doing the same things,

as illustrated in Figure 10. It is important to note, however, that the kernels

can end up with entirely different weights, depending on the color (channel) they

correspond to, so it might not look like a cross for the other channels. Then, the

values of all kernels are summed up and a scalar (1×1) bias is added to the sum.

In order to detect larger structures the convolution output of one layer can be
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Figure 10: The workings of a multichannel convolutional filter.

downsampled before being passed to the next. For example, given an image of

size 32× 32 and a 4× 4 kernel; using zero padding, the output will be a 32× 32

sized output. If we downsample that by half to 16× 16 we can now use the same

size kernel to detect the same features that are twice as large.

Max pooling is a downsampling filter often used in convolutional neural net-

works. It preserves the strongest features detected by simply preserving the

largest value in an area of interest, rather than performing some kind of averag-

ing and making the activation of the convolution diluted. See Figure 11.

Figure 11: Max-pooling example. The result shows that the corner shape of the kernel

is most present in the top-left corner of the image.

The weights in a kernel are adjusted by training [15], just like any other neural
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network, and it is usually done with back-propagation as shown in Figure 12.

Figure 12: Convolutional neural networks can also be trained using back-propagation.

Because the kernels in convolutional neural networks, usually, are two-dimensional

and there are multiple kernel filters per convolutional layer that each produce their

own two-dimensional output; the result is, naturally, three-dimensional. These

three-dimensional output volumes are usually represented by cubes, like in Fig-

ure 13. The number of convolutions produced is the same as the number of kernel

filters per layer. In order to get some form of classification out of a CNN, we can

look at the example Figure 13 where, as we go further down in the network, the

depth dimension is growing, and finally the convolutions are fed into two fully

connected perceptron layers that are responsible for the classification.

However, as discussed, fully connected perceptrons are prone to overfitting

and, thus, Lin et al. [22] proposed using a 1 × 1 kernel filter instead of percep-

trons, which they call "Global Average Pooling". The advantage of this is that

it makes the classifier look at the same pixel in each channel (refer to Figure 9),

as opposed to the neurons in the fully connected perceptron which could com-

pare any combination of pixels in all the channels. This should naturally force

different areas, through the whole chain of convolution kernels, to specialize on

specific features. This should make training faster, and Lin et al. were indeed

able to show that it does. They were also able to show that this works better

than using only dropout. [22]
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Figure 13: Illustration of a convolutional neural network and the calculations determin-

ing the dimensions of the channels. This example is a classifier with four classes.

2.1.6 Revisiting activation functions

Now that we have a general understanding of how neural networks work, it is

useful to revisit activation functions (see Figure 3 for reference) to understand

why one would be chosen over another. What we need out of an activation

function is non-linearity, because our input data will not be linear, so we need a

way to adapt to that. It does not matter how many times one chains the function

f(x) = w ∗ x + b or what value one gives either of the parameters; the resulting

shape will always be linear, which means that it could be modeled using a single

neuron, so that is not very useful. It also helps if the activation function has some

range where it is more sensitive to change.

The sigmoid function has been quite popular, it is very much non-linear, and

the rate of change is lower the further away from x = 0 ones goes. It also does not

change much at all below -5 or above +5 (with the default parameters, though

these may be adjusted), so no matter how strong the input is, the rate of change

(gradient) is not going to be very large outside that range. This can be desirable

e.g. if one wants a confidence value, because the model should not very easily

reach 100% confidence. Thus, the sigmoid function is often used for the final
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layer. However, when we are talking about neural networks with multiple hidden

layers, we want to optimize them using exactly the gradient and if many neurons

end up outside the areas with strong gradients, training will be slow. This is both

desirable and undesirable for a neural network. Desirable because we want to be

able to find a good combination of parameters and stay there and undesirable

because the training can stagnate if too many neurons end up outside the active

range. The sigmoid function also takes a few computations to calculate compared

to simpler activation functions.

σ(x) =
1

1 + e−x

The hyperbolic tangent (tanh) function is similar to the sigmoid function,

but it is centered around 0 instead, which can be advantageous if the inputs

are normalized around 0. The derivative of the tanh function also has a larger

peak (larger gradient = faster training). The tanh function, however, has the

same disadvantage as the sigmoid function, that is to say that tanh also becomes

saturated towards the extremes, and it is slightly more complex than the sigmoid

function.

tanh(x) =
ex − e−x

ex + e−x

The rectified linear unit (ReLU) is another alternative, and it is computed as

follows:

relu(x) =

x if x > 0

0 otherwise
(2)

Mathematically speaking, the derivative is undefined at the point where the

ReLU function bends, but in a computer program one can simply define that
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point to be 0 and that solves that problem. ReLU is non-linear, even though

it locally looks linear, because of the bend where the direction of the function

suddenly changes. The first reaction might be that this will be as useless as y = x,

but since non-linearity is what we need to be able to model complex functions,

this is also possible with ReLU, as shown in Figure 14.

Figure 14: A combination of ReLU neurons creating a wedge shaped activation.

ReLU has become quite popular for deep CNNs and there are several vari-

ations of it. A "leaky" ReLU is one where y is allowed to go below zero, but

slowly. The reason for using leaky ReLU is to avoid "dead neurons" that simply

output 0 for any (reasonable) input [23]. A very wrong answer will be punished

more than a slightly wrong answer when using a leaky ReLU.

leaky(x) =

x if x > 0

0.1x otherwise

A modern take on ReLU called "Funnel ReLU" or "FReLU", specifically

meant for convolutional neural networks, was introduced by Ma et al. [24]. They

claimed an improvement in accuracy of up to 1.5% by using FReLU over ReLU.

The FReLU formula is frelu(xij) = max(xij, T (xij)), where xij, is the pixel and

i and j are its coordinates in the image x. T (xij) is the value of the "parametric

pooling window" (essentially a convolutional kernel that looks at each channel

separately), centered on xij of the input x.
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Figure 15: Funnel rectified linear unit.

2.2 Deep Learning and Recent Improvements

Deep learning is a subclass of machine learning specifically referring to deep

neural networks. Neural networks tend to be able to recognize more complicated

features and/or relationships in data the deeper they are, so deep learning simply

refers to the topic of very deep neural networks [15]. The term deep learning was

likely coined by Rina Dechter in 1986 [25] and first used in the context of neural

networks in the year 2000 by Aizenberg et al. [26]. However, as early as 1962,

Hubel and Wiesel [21] suggested that the feline visual cortex consists of layers of

neurons where the early layers detect simple edges and the deeper in the visual

cortex the neurons are the more complicated the detected features are. In 1980,

Fukushima, inspired by the work of Hubel and Wiesel, introduced the concept of

neocognitrons, today known as convolutional neural networks [20]. The concept

of convolutional neural networks is the very foundation of most state-of-the-art

object detectors [27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40] and, per

implication, the topic of deep learning itself, to a large degree.

2.2.1 Batch Normalization

For any neural network, it is useful to normalize and/or standardize the data

before passing it to the model. Normalization means to adjust the size of the

input values to a more usable scale (usually 0-1). For example, if we are trying

to predict the number of years a person will live (from today) by the variables

age, daily caloric intake and kilometers driven per day (in a car); then these

values are likely to all be of different magnitudes. The age is in all likelihood
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going to be 0-100, the daily caloric intake 1000-10000 and kilometers driven 0-

1000. These variables would all be mapped, respectively, such that the lowest

value present is 0 and the highest is 1, and the rest of the values are extrapolated

linearly between 0 and 1. If we do not normalize this, the extreme of a thousand

kilometers driven per day will have a much stronger impact on the prediction

than an age of 100. Standardization is the process of calculating the mean and

standard deviation of the input parameters, subtracting the mean and dividing

by the standard deviation. This will make the new mean 0 and the new standard

deviation 1.

Another problem with neural networks is that the covariates of the data in a

data set may be shifted in some direction away from the true mean and variation

values. This is called "covariate shift" [41]. In rough terms, if we are trying to

train a classifier to classify cats, but during training we are only giving it images

of black cats, the covariates of these images will be slightly different from the

covariates in a set of images of gray or orange cats. Meaning that our classifier

might no longer be convinced that the images are of cats. By standardizing the

data this would be solved for the first layer, but the output of one layer is not

guaranteed to be standardized even though its input was.

This is where batch normalization (BN) comes into the picture. It was first

introduced by Ioffe and Szegedy in 2015 [42] when they realized that the current

standard was to normalize/standardize the input, while the internal layers also

experience the same problem of covariate shift, which they call "internal covariate

shift". Batch normalization looks to address internal covariate shift by looking at

a whole batch at a time, and for each layer determining the mean and standard

deviation and standardizing the output. While training, if we are updating the

weights after every single evaluation, this can cause the weights to be updated in

the wrong direction, or the loss function to become stuck in a local minimum. If

we instead consider multiple evaluations at once, as a batch, we are much more

likely to be updating the weights in the correct direction. Because modern GPUs

are good at parallel processing, running multiple evaluations at the same time

will also be faster than running them one at a time.

The first step is to, for every neuron in the network, calculate the mean µB

27



and variance VB of the weighted input sum xi (the paper [42] does not specify if

this is done before or after the activation function, but let us assume before) for

the entire batch B and normalize that (→ x̂i).

µB =
1

m

m∑
i=1

xi

VB =
1

m

m∑
i=1

(xi − µB)2

x̂i =
xi − µB√
VB + ε

Where ε is a small number to prevent division by zero. They also introduced

two new parameters, γ and β, that are trained together with the network.

yi = γx̂i + β ≡ BNγ,β(xi)

This might seem somewhat counter-intuitive, that we first normalize the input

and then modify it again, but the idea behind it is that it might not actually be

ideal to have µ = 0 and V = 1 but scaled and shifted slightly. Then the γ and

β parameters can learn what the appropriate shift is and adjust it. They also

presented a second algorithm, but understanding the first one is enough for us and

batch normalization is already available in modern machine learning frameworks

(e.g. PyTorch).

Ioffe et al. were able to show that, when using batch normalization, they only

needed 7% of the training time to achieve the same performance compared to

without batch normalization (given the specific network they tested on). Batch

normalization also effectively eliminated the need to use dropout layers, which

was the previous gold-standard for reducing over-fitting and improving training

performance, because BN also helps with the problems of becoming stuck in local

minima and vanishing/exploding gradients.

2.2.2 Residual Learning

In accordance with the theory presented thus far: increasing the number of layers

in a neural network means that it will be able to detect more patterns. However,
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when training very deep neural networks, He et al. [36] noticed that a deeper

neural network showed a higher error rate after the same number of iterations

and using the same data set, than a shallower one. This is strange, because if we

have a neural network that is 20 layers deep and add another 36 layers to those

(these are the numbers they tested with in the paper); then the 56 layer network

should be able to perform at least as well as its shallower counterpart, given that

neural networks are nothing but nested functions. They had already addressed

the potential problem of vanishing gradients by using batch normalization and

ruled out overfitting because that would mean the error rate would go up after

going down, which it did not. Since simply adding more layers increased the error

rate, there was clearly something else at play. [36]

If the layers in neural network A can learn a function, and if the layers C that

are added after A can be initialized as the identity function (the function that

given x returns x), there should be no difference in learning rate. [36]

Figure 16: The residual

block.

Thus, if some set of layers can learn to approx-

imate a function H(x), they should also be able to

learn to approximate the residual function F (x) =

H(x)− x, and we can write the original function as

H(x) = F (x) + x. If it is optimal to have the resid-

ual be zero, the weights can adapt to this to force

it down. While both functions, F (x) and F (x) + x,

should be equally capable of mapping the desired

function they might affect learning differently. This

residual connection is achieved by adding a shortcut

connection between every N layers, and adding the

output x of layer Li to the output of layer Li+N (see

Figure 16). In their paper they use the term "building blocks" for the blocks

(see Figure 16) between the connections but as that is quite general, they are

usually referred to as "residual blocks". The shortcut connection is only implied

and does not rely on any extra parameters being introduced. The only difference

is a few element-wise additions, so this modification comes very cheap. They

hypothesized that, if implemented, each layer would actually need to alter the
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incoming data less (compared to non-residual networks), because the identity

function already is a quite good answer. [36]

One problem that comes up with residual blocks is that the dimensions of the

layers to be added need to match. They proposed, and tested, three different

options for addressing this problem. The first is to simply zero pad x to be of

the same size (e.g. concatenate channels with only zeros until F (x) and x are of

the same dimensions). The second is to increase the number of channels with a

projection shortcut (using 1 × 1 convolutions) whenever there is a difference in

dimensionality. The third option is to always use the projection shortcut instead

of the addition, but this introduces many extra parameters and does not improve

performance significantly enough to justify the cost over using the second option.

The second option yields better performance than the first. [36]

For an architectural comparison they compared a 34-layer model ResNet with

a previous state-of-the-art model, VGG-19. The VGG-19 model (19 layers) re-

quires 19.6 billion FLOPs (floating point operations) for one inference and the

ResNet model requires 3.6 billion FLOPs. In the performance comparisons they

compared with VGG-16 (15.3 billion FLOPs), but nonetheless the ResNet model

performed significantly better with only 23% of the floating point operations (and

some models with more layers performed even better). [36]

Because the networks were easier to train they were able to reduce the size of

the first convolutions faster than VGG. In the beginning of the network VGG-19

has two (3× 3, 64 filters, stride 1) layers working on 224× 224 images/channels,

pooling with a stride of two to halve the size (in both x and y) and doubling the

channels, followed by two (3 × 3, 128 filters, stride 1) layer followed by another

pooling to halve/double and arrive at 128 channels of size 56 × 56. Whereas

the 34-layer ResNet model starts off with a (7× 7, 64 filters, stride 2) layer and

then pooling that with a stride of two, to halve, and arrive at the same 56 × 56

channel dimensions, but with 64 channels instead of 128. The VGG-19 model

also increased the channel size much faster and had a total of 8 (3×3, 512 filters,

stride 1) on channels with dimensions 28× 28 and 4 on channels with dimensions

4 × 14. The ResNet model only has one layer doing (3 × 3, 512 filters, stride

2) on 14 × 14 channels to bring it down to 7 × 7 channels, and then 5 layers of
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(3× 3, 512 filters, stride 1). Finally, the VGG-19 model adds two fully connected

perceptron layers, each with 4096 neurons to the 512 7 × 7 channels and then a

1000 layer fully connected to that, whereas the 34-layer ResNet model only fully

connects a 1000 neuron perceptron layer to the 512 7×7 channels. These changes

meant that they were able to train deeper models with fewer parameters. [36]

As the entire point of the paper was training very deep networks they were

becoming concerned with how computationally heavy the models were becoming

and also proposed a "bottleneck" building block, which first projects the incom-

ing convolutions down to a smaller number of channels before computing the

convolution, and then projecting it back up again, as shown in Figure 17. In the

example bottleneck, 256 channels are projected down to 64 using a 1× 1 convo-

lutional layer. This is 9 times cheaper than a 3×3 convolution, and now the 3×3

convolution can be performed on the 64 channels instead of 256 channels, which

is 4 times cheaper. [36]

Figure 17: A bottleneck building block compared to a residual function.

Finally, they looked at the magnitude of the responses of the layers in the

ResNet models and found that their hypothesis about the individual layers not

needing to change the input significantly stood true. The models they tested
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without residual connections were exhibiting much stronger activations (more

changing of the input data) than those with the residual connections. After-

wards, when comparing the training errors between a 34-layer network and an

18-layer network they were able to see what they expected to find at first. By

adding more layers the training error goes down. Unlike models without the

residual connections, when going from 18 layers to 34 layers increased the train-

ing error. [36]

Thanks to these ideas they were able to train deeper neural networks and

obtain a relative performance increase of 28% on the COCO object detection

data set and won the 2015 ImageNet competition. Their paper has also been

one of the most influential papers in deep learning with over 36000 citations to

date. [36]

As a side-note, Huang and Sun et al. [43] were able to improve the training

efficiency by re-introducing "dropout", in a new form that they call "Stochastic

Depth". Instead of dropping individual neurons like in multi-layer perceptrons,

they proposed dropping individual residual blocks (randomly, during training),

such that only the identity function was passed forward. This makes the gradient

less diluted during training and, thus, makes training faster, while also being

inherently faster to train due to having fewer parameters. They saw training

time reductions of about 25% while using stochastic depth; and while He et

al. [36] concluded that their 1202-layer model was overfitting (7.93% error rate

on CIFAR-10 [44], whereas their 110 layer model had a 6.43% error rate), Huang

and Sun et al. [43] were able to successfully train a 1202-layer model without

overfitting (a 110-layer model showed a 5.25% error rate and a 1202-layer model

showed 4.91% error rate).

2.2.3 DenseNet

Inspired by the recent progress in the ability to train ever deeper neural networks,

Huang and Liu et al. brought yet another improvement (partly the same authors

that brought stochastic depth [43]). This time they proposed "Densely Connected

Convolutional Networks", or DenseNet [37]. As they were able to show in their

paper on stochastic depth, some layers can be dropped while training and still
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improve the performance of the network. This aligns with what He et al. pointed

out in their ResNet paper [36] (about most layers only needing to manipulate

the input very slightly). This led them to a more explicit way of preserving the

previous information than ResNet does with the residual. Instead of adding the

identity to the output, they concatenate the previous convolutions and reduce the

number of filters per convolutional layer; see Figure 18. This means that there

will be
L(L+ 1)

2
connections in an L-layer network instead of just L like there

usually would have been. However, to prevent the networks from growing too

large they use a low, constant, growth rate (each convolutional layer adds K new

channels) as opposed to the previously popular doubling of channels whenever

the dimensions are halved.

When the size of the feature maps change, concatenation is no longer possible.

They then use a transition layer consisting of a batch normalization layer, a 1×1

convolutional layer and a 2× 2 average pooling layer.

The main advantages of DenseNet are that there is less redundancy by not

producing more convolutions than really are needed, and the information flow is

better as each layer has explicit access to the same information as the previous

layers (this leads to stronger gradients and more efficient training). They also

found that these dense connections reduce overfitting with smaller training set

sizes. DenseNet achieved 3.46% error rate on CIFAR-10 [44].

33



Figure 18: A DenseNet with three dense blocks
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Further improving on DenseNet, Wang et al. [45], brought about the idea of

splitting the given input channels passed to the dense block into two parts, such

that one half is passed into the dense block and the other half is concatenated to

the output of the dense block, in the transition layer; see Figure 19. They call

this "Cross Stage Partial Networks" (CSPNet), or when applied to DenseNet,

"Cross Stage Partial DenseNet". By adding a shortcut between the input and

output this method provides another path for the gradient to flow, meaning that

the training efficiency should be improved. With this change, applied to any

model (at least those they tried in the paper), one can reduce computational

load by at least 10% (the largest reduction observed in the paper was 22%) while

maintaining the same level of accuracy (or increasing it). They mention that

part of the performance gains come from removing computational bottlenecks by

distributing the amount of computation of each CNN-layer more evenly.
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Figure 19: A Cross Stage Partial DenseNet block. The input channels are split into two

parts, one is passed to the dense block and the other is concatenated to the output of the

dense block they are all processed by the partial transition layer.
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2.2.4 Spatial Pyramid Pooling

Spatial Pyramid Pooling (SPP) is the method of taking a set of feature maps or

an image of any dimension, and pooling said feature maps with kernels of differ-

ent sizes, in order to preserve information of different scales while transforming

the data into an input-independent shape. This was introduced by He et al. [46],

because the standard at the time was to crop and/or warp the input image be-

fore passing it to the network to achieve a constant shape, and those methods

imply loss of information. They concluded that the only part of the network that

really needs a specific size is the fully connected layers at the end of the classi-

fier/detector. Convolutional kernels can operate on any feature map dimensions.

Thus, they introduced SPP, which takes the convolutions and converts them to

an expected shape by pooling on the feature maps, on different scales, but using

kernel filters of dimensions relative to the input dimensions. Figure 20 shows an

example of SPP turning a feature volume of shape W ×H ×C into the expected

shape 21×C. Where W and H could vary from image to image but C would be

determined by the architecture of the model or, for the first layer, equal to the

number of color channels.

Figure 20: Spatial Pyramid Pooling as described in the original paper.
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2.2.5 Feature Pyramid Networks

CNNs are, as discussed, inherently capable of detecting features independent of

scale and locality in an image; but, the deeper a network becomes, the more

the representations of each scale of the objects start to interfere with each other.

Feature Pyramid Networks as introduced by Lin et al. [38] help make detection

of objects at multiple scales more feasible by removing the implicit aspect and in-

stead explicitly concatenating some earlier feature maps, of the same dimensions,

to later feature maps to preserve the difference; see Figure 21. Applying this

to Faster R-CNN they achieved state-of-the-art accuracy on the COCO object

detection benchmark.
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Figure 21: Feature Pyramid Network compared to previous feature pyramid attempts.

Darker feature maps imply "stronger" features.
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3 Background - Object Detection, Classification,

Recognition and Localization

A paper from 1969 mentions several types of Automatic Vehicle Identification

(AVI) systems designed and tested, but most of these required additional tech-

nology to be installed on the vehicle [47]. These systems ranged from relying

on induction antennas buried in the road to microwave and acoustic transmitters

with an identification code being encoded into the vehicle somehow. In this paper

the authors also mention scanning the license plate using a "television camera",

but without further elaboration [47]. This seems to be one of the earliest men-

tions of ALPR. In another paper from the 70s the cost of a single unit of these

types of AVI systems were listed and ranged from between 2500 USD and 16000

USD (not adjusted for inflation) [48]. Most of these early systems were simply

AVI however, and not ALPR, i.e. they do not rely on optical recognition of the

license plate characters itself.

ALPR was allegedly first implemented in 1976 by the Police Scientific Devel-

opment Branch in the UK, where its first purpose seems to have been to monitor

traffic in and around London to help the police fight crime [49]. However, the

interest in these kinds of systems started picking up in the late 80s/early 90s [50],

and since then there has been an ever-increasing number of papers being pro-

duced on the subject. Many of these systems are slower and rely on some kind

of trigger to start the system, but one of the first papers to mention real-time

processing is one by Kanayama et al. [10] and they quoted a respectable 150 ms

processing time. It was achieved using proprietary equipment and lights to illu-

minate the license plates, yet the performance of the system suffered noticeably

during nighttime (90% recognition accuracy daytime vs 60% recognition accuracy

nighttime).

3.1 Classification, Detection, Recognition and Localization

It is necessary to clarify the distinction between classification, detection, recog-

nition and localization as they are entirely different things, and they are often
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referred to differently in different texts. In this thesis we are doing object de-

tection, image classification and object localization. License plate recognition, is

what we have ultimately achieved after determining exactly which license plate

we are looking at.

Image Classification is the process of classifying the pattern in some data.

For example, determining whether there is a cat in an image, without necessarily

knowing where it is in the image, only that the image is one of a cat.

Object Detection is the process of detecting different objects in an image,

creating a bounding box around each of them and classifying them.

Object Recognition is the process of recognizing a subtype of a type of object.

Such as recognizing a specific face instead of just any face.

In our case, detecting any license plate in a picture corresponds to object

detection, while detecting a string of literals (e.g. AZT-882) in the license plate

object corresponds to object recognition; see Figure 22. Similarly, detecting a car

is detection, but recognizing that a car specifically is a Honda is recognition. By

this same logic, we are doing character recognition and not character detection.

Confusingly, object recognition is often used synonymously with object detection,

and vice versa.

Localization is the process of determining where some objects are in an image,

an example of this is the motion detection algorithms discussed later in the thesis.

Localization means that something is detected at some position, but nothing is

necessarily known about what it is.

In this thesis we are not doing "Recognition" of specific license plates in one

step, but we are performing several individual steps of detection and localization,

which in the end yields a license plate recognition. All the detections in this

thesis carry location (pixel coordinates) information, explicitly or implicitly, and

all them are referred to as detections. Localizations will be referred to as such until

they have been classified, at which point they will be referred to as detections.
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Figure 22: The differences between classification, object detection and object recognition.

3.2 Libraries for ALPR

3.2.1 OpenCV

OpenCV is an open source computer vision and machine learning library, and

perhaps the most popular computer vision library as of writing this thesis [51].

OpenCV versions before 4.5.0 are licensed under the 3-clause BSD license and

OpenCV versions greater than or equal to 4.5.0 are licensed under the Apache

2 license [52]. All the methods mentioned in this thesis will utilize OpenCV to

some extent; some methods do more processing and some only load, crop, resize

and show the images.

3.2.2 Tesseract OCR

Tesseract OCR is an open source optical character recognition software originally

developed by Hewlett-Packard Laboratories Bristol [53]. It has been developed

by google since 2006. Tesseract OCR works best on perfectly formatted, clean

text, with correct perspective and no skew. As such, one can see that it will take

some work to make this program to work nicely in our real world scenarios where
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the license plate is not always in the same location, the same angle to the camera

or even in the same lighting conditions. Nevertheless, this kind of cleaning can be

completed using OpenCV as described in later sections, but the cleaning results

may vary significantly based on said conditions and, as mentioned, Tesseract OCR

requires quite clean images to perform optimally. It should be mentioned that

Tesseract OCR also incorporates machine learning as of Tesseract 4 as opposed

to the more conventional methods previously used.

3.2.3 OpenALPR

OpenALPR is a License Plate Recognition Software. It was initially available only

as a library that one could use in one’s own programs but they later released a paid

cloud service. Today, the benefit of using the cloud service over doing it oneself

is that the models they provide through the paid service perform better than the

models they provide for free. As of the writing of this thesis, the paid service

is available through four different products: OpenALPR Watchman Agent, On-

Premises SDK, Cloud API and Forensic Plate Finder 1.

The open source library The open source library is available on GitHub

at https://github.com/openalpr/openalpr and it is the only freely available

product by OpenALPR. The library is available for C/C++ but also has bindings

for C#, Java, and Python. Using the libraries one can pass in single images at a

time and obtain the result as single plate readings. Using the library one will have

to implement the algorithm for grouping the plates oneself. It is not necessary

to perform grouping for all purposes, but there are benefits to doing so. For

example if one has a parking garage that needs to let people in based on their

license plate it may be preferable to only send the request to the server when one

is quite certain what the license plate is, instead of drowning the server with 30

license plate predictions per second.

As of May 2022 there has only been maintenance commits since 2018, so
1As I was finishing up this thesis I noticed that OpenALPR has now been bought or re-

branded as Rekor, and the selection of products and services they offer seem to be different,

but likely close enough to the ones mentioned in this thesis.
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it seems quite safe to assume that they are not going to be improving on the

open source version anymore. When installing the program according to the

instructions (at least on Ubuntu 18.04), and running the test they provide, the

program crashes due to a segmentation fault. This issue can be worked around by

specifying the country code but that their own tests fail does not exactly instill

confidence.

The open source version of OpenALPR can be improved upon by training

one’s own models, but this will require providing one’s own labeled images. Both

the character recognition and plate detection models can be retrained. This does,

however, entail large amounts of manual work for something that may or may

not improve one’s results. Of course, the project is open source so changing it to

your own liking is free to do, as long as one abides by the current license.

OpenALPRWatchman Agent The OpenALPR Watchman Agent (paid ser-

vice) is configurable to take input from multiple IP cameras and turns them

into what they call plate groups, that is, "data objects" containing readings of

similar plates, based on their Levenshtein distance [54], so that "ABC123" and

"ABC128" would be placed in the same group if they were spotted close enough

in time. These plate groups essentially provide information about how long the

vehicle was visible and they provide some extra confidence by determining which

license plate has appeared most frequently during a specific interval of time.

On-Premises SDK The On-Premises SDK (Software Development Kit) is

available for C/C++ and can be configured in much the same way as the Watch-

man Agent, but one will need to perform the plate grouping oneself. This On-

Premises SDK differs from the open source version in that it is using the better

models, so the performance should be better.

3.3 Methods for Object Detection

Object detection can be done through two different primary approaches: deep

learning-based methods and conventional computer vision-based methods. The

latter potentially combined with more basic machine learning such as simple
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classifying multi-layer perceptrons.

Deep learning means neural network models that learn to identify features and

patterns, automatically, as opposed to being given a set of hand-crafted features

and simply identifying those [15]. Features learned by a deep neural network are

often better than hand-crafted features [15]. A popular deep-learning approach

in modern object detection is to only have one model for generating bounding

boxes around the objects that are automatically classified, all in one step [27, 33].

Such a model is called a single stage detector (SSD) which is the type of model

this thesis mainly will be focusing on, with regard to deep learning.

The conventional computer vision methods rely on applying various image

manipulation techniques in order to make the object(s) of interest stand out

from the background, and then isolating the most visible objects that match

some criteria for e.g. shape or size.

Depending on how one looks at this, either of these approaches might be

the difficult way or the easy way. If one has large amounts of ready data and

a powerful GPU, training a deep learning model to detect license plates and

another to recognize characters might be the easier approach. If one does not,

it might be easier to combine the more conventional computer vision methods

of image manipulation with template matching, a classifying neural network or

some existing optical character recognition library such as Tesseract OCR.

Lastly, the different methods have their own strengths and weaknesses. The

deep learning methods will probably require more work to achieve good results,

but when it works well it will most likely be better suited as a general solution

than the conventional methods. Implicitly, the conventional methods are prob-

ably faster to deploy, but with less flexibility, and most likely would have to be

tuned specifically for each install to zoom the camera in on the, exact, correct

spot etc. One of the main differences between the deep learning methods versus

the conventional methods is that it is nearly impossible to do vehicle detection

using the conventional methods as it simply becomes too complex. License plate

detection is feasible provided that the image is zoomed in closely enough such

that the license plate is guaranteed to be the most prominent feature after the

image manipulation steps.
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3.3.1 Sliding Window Object Detection

A common approach to object detection is to perform a sliding window search

over the image. A window is slid across the image and each sub-image is classified

using some preferred classification method. Classification methods include, but

are not limited to, template matching and classifying neural networks.

The time it takes to detect objects using the sliding window approach depends

on how many total windows the classifier ends up processing. No matter how the

sliding window algorithm is approached, it inherently relies on running one or

more classifiers multiple time for each image, which can turn out quite costly.

This is later shown with the character classifier in section 5.3.3 and template

matching algorithm in section 5.3.2.

3.3.2 ML-based Object Detection

Machine learning-based object detection comes in many flavours but, generally

speaking, they all require training some algorithm or model on a set of images

combined with labels corresponding to the positions and classes of the objects

present in the image. Such a set of images and labels is called a data set. Train-

ing an ML-based object detector is done by iteratively processing the data set,

letting the object detector predict what the correct labels are, and adjusting its

parameters based on its predictions. The goal with training is to improve the

predictions of the detector. This process is more or less the same no matter what

type of object one is attempting to detect in an image.

There are many types of machine learning-based object detectors. For ex-

ample, the Viola-Jones (discussed below) cascading classifier is indeed such a

detector. However, as of 2021, the most accurate ML-based object detectors are

all deep learning-based.

Modern deep learning-based object detection models are usually made up

of two parts, a "backbone" for detecting features and a "head" for predicting

the class and bounding box of the objects detected in the backbone. Further-

more, there are one-stage object detectors [27, 28, 29, 30, 31, 33, 34, 55, 56] and

two-stage object detectors [35, 57, 58, 59, 60]. The two-stage object detectors
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separately generate region proposals and then, in the second step, classify those

areas; whereas the one-stage detectors produce both in the same stage (in one

neural network). Generally speaking, the one-stage detectors tend to be faster

while the two-stage detectors tend to be more accurate.

The Viola-Jones Cascading Classifier (sometimes referred to as a HAAR

cascade classifier), is an object detection algorithm as described by P. Viola and

M. Jones, in 2001 [61].

The Viola-Jones cascading classifier uses a sliding window approach to move

across the image and compares that sub-image with all the classifiers, starting

with the weakest classifier and ending with the strongest classifier. The idea

being that it is best to quickly discard areas that have a low probability of being

the sought object. The window sizes to be tested are determined beforehand

(through training or hand-picking), but they are set in stone, so there needs to

be a window size that matches the size of the sought object closely enough to

pass through the whole classifier chain successfully. The features used in each

classifier are selected through training as described in their paper [61].

The main drawback of HAAR cascade classifiers is that they are prone to

producing false positives [62, 63, 64]. They can be very fast, however. Even

back when their paper was released, this algorithm was able to detect faces at

15 frames per second for images of size 384×288; and this was on a single core

700 MHz processor. Admittedly, this is very low resolution and HAAR cascade

classifiers do not scale well, with regard to resolution; but, in cases that allow a

lower resolution this can be a fast method of doing object detection.

The algorithm is based on first computing what they refer to as an "integral

image" (see Figure 23), and then comparing that image with a set of HAAR-like

features (see Figure 24). In a cascading manner, any suggestion that does not

pass the next classifier is rejected.

The integral image (see Figure 23) has one value for each pixel in the original

image, and this value is the sum of all the pixel values above and to the left of the

pixel plus the value of the current pixel. Because the next sum is based on the

previously calculated sums, this is relatively fast to calculate. On larger images
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Figure 23: The integral image calculated from the pixel values in an image.

Figure 24: Some examples of HAAR-like features.

this will still take a very long time (e.g. a python for-loop of size 1920×1080 takes

around 78ms on the author’s computer). The beautiful thing with an integral

image is that one can pick any rectangle in the image and quickly calculate the

total pixel intensity for that whole rectangle at a constant time-cost, regardless

of the actual size of the rectangle.

The features can be compared with the integral image by doing comparisons

as described in Figure 25; one can, e.g., compare the total brightness between

area B and D by simply calculating the sum of pixel intensity of both areas in

just a few steps. Thus, by accessing four values in the integral image matrix one

can calculate the sum of any area; and in other words, the complexity of any

comparison is constant, regardless of the size of the area.

Features are combined to form classifiers, which denote some part of the face

(in the case of the Viola-Jones paper), e.g. an eye, a nose, or a mouth. A
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Figure 25: The value at location 1 is A, the value of location 2 is A + B, the value at

location 3 is A + C and the value at location 4 is A + B + C + D. The sum of area D

is 4 + 1 - (2+3) (the values at each point, not the integer values).

classifier is successful if more features are detected than the threshold value for

the classifier. A weak classifier has fewer features and a lower threshold than a

strong classifier. By combining multiple classifiers like a chain, one can move on

to the next window if the first classifier in the chain fails (e.g. a face requires one

nose, two eyes and one mouth). Viola & Jones quoted that only ten features, on

average, were compared per window in their tests, meaning that negatives were

quickly rejected.

3.3.3 Character Segmentation

Character segmentation is the process of isolating each character in an image into

their own images. Usually using quite simple and intuitive algorithms.

One method of doing character segmentation is by calculating the intensity of

each row and/or column of the image. Essentially, this means scanning through

each pixel in the image (or a scaled down version of the image for faster processing)

once and summing the values by row and/or column so that one receives a list

of the pixel intensity for each row and/or column. When this is done one can

use an intensity threshold to create boxes around each character. From left to

right for column intensity: the location at which the intensity value goes above

the threshold is the left edge of the box and the location at which the intensity
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value goes below the threshold is the right edge of the box. This works best if the

image’s perspective has been corrected. If the image has not been perspective

corrected there might be some characters that overlap on the X-axis. Overlapping

characters is a difficult problem to solve, but one approach is to combine the pixel

intensity sums with the pixel projection as discussed in e.g. [65].

3.3.4 Perspective Transformation and Skew Correction

Perspective transformation and skew correction are two different methods of

transforming an image to prepare it for OCR. They are both important parts

of the ALPR pipeline, because regardless the approach, it will be easier to cor-

rectly identify characters if the shapes of the characters are consistent.

Perspective transformation is the process of identifying the perspective of

the object in relation to the plane of the picture and transforming the image

so that the object is facing in the desired direction. Perspective transform is a

three-dimensional operation, whereas skew correction is two-dimensional.

OpenCV has built-in functions for performing perspective transformation. For

perspective transformation one needs to know the original position of the four

corners (top left, top right, bottom left, bottom right) and the new positions of

these corners, which one would place squarely in the image. In order to locate the

corners OpenCV also provides a function, "cornerHarris", for detecting corners

in an image [66], this is a very cheap operation (0.2ms on an image of resolution

150×76) and using these corners we can try to determine the actual corners of

the objects in question.

Another approach to this, is if one knows what the angle of the camera is

going to be and the camera is placed above the vehicle path. Characters in

such an image would be compressed along the vertical axis so by dividing the

characters into horizontal sections and inserting a sort of extrapolated middle,

one thereby corrects the aspect ratio of the characters detected, making them

look less compressed. This approach was taken in one of the earliest attempts at

ALPR (or Automatic Vehicle Identification, AVI as it is referred to in the paper)

by [10]. This is by no means a perfect method because it will not enlarge the
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characters uniformly, but it is at least an improvement over a distorted image,

and it is an alternative that could more easily be utilized on embedded systems

because of its simplicity.

Skew Correction is the process of rotating a text that is facing straight to-

wards oneself, but is rotated along its central point, so that the text is right-side

up. It is easy to assume that this is unnecessary because for most scenarios in-

volving license plates the camera will be right-side up, and the plates will always

be right-side up, but as can be seen in Figure 63, even minimal skew can have a

profound effect on less flexible text recognition algorithms.

A more brute-force approach for determining the correct rotation angle is to

calculate histograms of the sums of the pixel intensity values in each column of an

image and comparing the histograms for each rotation degree respectively. The

premise being, that histograms with a larger difference between the peaks and

valleys have a better rotation. In Figure 26, a license plate was correctly rotated

with this method. The problem with this method is that the more rotation one

allows for the longer the processing will take as it has to rotate the image and

calculate the histogram additional times.

Figure 26: Simple skew correction of license plate. Processing time 16ms. Testing

angles -15 to +15.

3.3.5 Template Matching

Template matching is a method for locating a template image in a larger im-

age [67]. This can be useful for detecting characters in images, provided that the

image is clean enough. The template image slides across the target image and
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the difference is calculated at each point. See the formula below for an example

of such a difference calculation.

R(x, y) =
∑

x′,y′(T
′(x′, y′) · I ′(x+ x′, y + y′))

Where R(x,y) is the total difference for the point (x,y) in the image, T is the

template image, I is the target image, x’ and y’ are the positions for x and y in the

template image (x′ = 0...w − 1, y′ = 0...h− 1). By doing this sliding comparison

one obtains a map of the difference where the highest value corresponds to the

position at which the image best matches the template. This means that the

coordinate one is comparing is not the center of the template but the corner

that is the closest to the origin (x=0, y=0). The size of the resulting image is:

(W −w+1)× (H − h+1), where W,H are the dimensions of the image and w,h

are the dimensions of the template. This means that an image and template of

the same size results in a 1× 1 (×1, if gray scale color) matrix.

One can then create a template for each character one wants to detect, do

this comparison for each template over the license plate image and then select

the template which matches the best.

3.3.6 Neural Network Classifier

A neural network classifier is a feed-forward neural network that has been trained

to recognize certain patterns when given data of a specific shape. For an image

this means that there would be one input neuron for each pixel in the image and

one output neuron for each possible class. The neural network classifier can be

used to classify images of characters that have been cropped to bounds of the

characters.
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3.4 Metrics for Object Detectors

To monitor the progress when training an object detector or classifier it is common

to use the metrics "Precision" and "Recall". In order to understand precision and

recall we must first discuss the possible outcomes of a classification. Imagine a

classifier that simply gives one single positive or negative response. If the instance

is classified as positive and the instance is positive, that is a true positive. If the

instance was actually negative, that is a false positive. If the instance is classified

as negative and the instance is negative, that is a true negative. If the instance

was classified as negative, but it was positive, that is a false negative. Figure 27

illustrates these relationships using confusion matrices. Using this knowledge, the

precision and recall metrics can be calculated. [15]

Figure 27: The relationship between true/false positive/negative illustrated with two

confusion matrices.

Precision denotes the number of correct predictions out of the total number of

predictions in an example, and recall denotes the number of correct predictions

out of the total number of positives in an example; see Figure 28. Naturally, it

is best that both values are as high as possible, as a precision of 1 and a recall

of 1 would mean that there are no false positives and all objects were detected.

If the recall is 1 and the precision is 0.5, that means we detected every object

successfully, but we also got many false positives; which likely means that our

detector has become very sensitive and is now reporting way too many positives.

However, if we have a precision of 1 and a recall of 0.5, that means we produced

no false positives, but we only detected half of the objects, meaning that the
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detector has become too "picky", possibly because of too little variation in the

data or by overfitting. [15]

Figure 28: The precision and recall metrics.

Looking at the precision and recall metrics from the ALPR perspective, it is

not too bad if the recall is much higher than the precision for our vehicle detector,

because that just means that we should not actually be missing any vehicles. For

the license plate detector it is more important that the recall and precision are

at similar (and high) levels and for the character detector it is the even more

important. If our character detector has a low recall it means that it will not

detect all the characters and if the precision is low it means that it will produce

many false positives. False positives, in this case, are better than false negatives,

as the false positives most likely would show up as noise and be something we

can filter out based on how often each character appears (assuming that the

same license plate is captured multiple times). A false negative, however, is lost

data; thus, when training, it is likely a good idea to utilize a vehicle/license plate

detector that is quite sensitive. Whereas the character detector really should have

as high precision and recall as possible.

Object detectors produce bounding boxes, i.e. values that represent rectangles

defining the bounds of the detected object. To determine the accuracy of a

bounding box, one must compare the "ground truth" bounding box (the bounding

box that has been defined by the person conducting the test) and the predicted

bounding box. This is often done using "Intersection over Union", IoU. This IoU

is calculated by dividing the area of the intersection of the bounding boxes by the

area of the union of the bounding boxes; see Figure 29. In research papers, the
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standard metric for accuracy of object detection algorithms is Average Precision

(AP) or mean Average Precision (mAP). Average precision is the average (or

mean) precision (for different thresholds of IoU) between the predicted boxes and

the ground truth. One alternative (which is mentioned later in this thesis) to IoU

is Generalized Intersection over Union, GIoU. According to the original paper

on GIoU [68], object detection models perform better when trained using GIoU

rather than IoU.

Figure 29: How IoU and GIoU are calculated.

When comparing object detection models the authors often test their mod-

els on some commonly used data sets such as the PASCAL VOC 2007 [69] or

COCO [70] and calculate the AP to measure their performances. These data

sets were created for the purpose of advancing the field of machine learning. The

AP is not necessarily calculated the same way by different data set providers (the

AP’s for PASCAL VOC 2007 and COCO are calculated differently) but for object

detection it is usually calculated by looking at the number of true/false positive

detections and false negatives (determined by the IoU between the prediction and

the ground truth) at different thresholds for IoU. APs with different thresholds

are used as different metrics, e.g. YOLOv3 refers to AP50 which means the IoU

threshold for a true positive is 0.5 and AP75 which means the threshold is 0.75.

Exactly how the mAP is calculated is not, however, very relevant here as we are
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only interested in the direct comparison; for more information refer to the pages

of the specific data sets.

3.5 You Only Look Once (YOLO)

You Only Look Once, YOLO, is a deep learning-based object detection model

that was developed with the idea of putting the whole object detection pipeline

in a single neural network in mind. This is contrary to the norm at the time,

which was to split the algorithm up into several steps. YOLO is one of the most

popular modern Single Stage Detectors (SSD, sometimes "one-stage detector").

It was developed by Redmond et al. [27].

3.5.1 YOLOv1

YOLOv1 is the first of three versions published by the original authors. The first

thing one needs to know to understand YOLO is that it is a model that is divided

into a grid of S × S cells. Each cell in turn, has B bounding box predictors and

each of those predict one bounding box, for a total of five values per bounding

box. Finally, each cell also produces C class predictions.

The bounding boxes consist of five prediction values between 0 and 1, the

prediction confidence, the center x coordinate, the center y coordinate and the

width and height of the bounding box. The bounding box predictions are treated

as regressions instead of classifications. The predicted width and height of the

bounding box correspond to the relative width in comparison to the image. The

predicted center coordinate is relative to the bounds of the cell.

Since YOLO can produce multiple detections for the same object, non-max

suppression is used. This simply means that the detections are ordered by con-

fidence and added to a list one by one; unless the detection has an IoU larger

than 0.5 with another detection, in which case they are discarded (only one of

the overlapping detections is kept).

YOLO works by first performing a set of convolutions and pooling, sequen-

tially detecting more and more complex features. To make sense of the features,

a perceptron layer is fully connected to the last convolution layer, which in turn is
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fully connected to the, three-dimensional, output layer of size S×S× (B ·5+C).

In the original YOLO paper the parameters were defined as S = 7, B = 2 and

C = 20, which comes out to be 7× 7× (5 · 2 + 20) = 7× 7× 30.

The YOLOv1 loss function is defined by the formula below.

λcoord

S2∑
i=0

B∑
j=0

1objij
[
(xi − x̂i)2 + (yi − ŷi)2

]
+λcoord

S2∑
i=0

B∑
j=0

1objij

[(√
wi −

√
ŵi

)2
+

(√
hi −

√
ĥi

)2
]

+
S2∑
i=0

B∑
j=0

1objij
(
Ci − Ĉi

)2
+λnoobj

S2∑
i=0

B∑
j=0

1noobjij

(
Ci − Ĉi

)2
+

S2∑
i=0

1obji
∑

c∈classes

(pi(c)− p̂i(c))2

In the summations, S is the number of cells and B is the number of bounding

boxes predicted per cell, as described in previous paragraphs. The i is the index

of the cell and j is assigned based on which predictor’s prediction has the highest

IoU with the ground truth bounding box. This means that the predictor that is

best at detecting one object will become better at detecting that object, and it

means that the individual predictors will become good at predicting objects of

certain sizes, aspect ratios and classes.

The x and y parameters are the center coordinate values of the given training

label and x̂i, ŷi are the predicted center coordinates for the predicted bounding

box. The wi and hi parameters are the width and height of the given training

label and ŵ, ĥ are the squared widths and heights of the predicted bounding box.

They are squared because a small deviation in a large box should be punished

less than a small deviation in a small box.

Ci and Ĉi are the expected confidence (should be 1 if an object is present),

and the predicted confidence (objectness).

Finally, the 1obji denotes whether there is an object in cell i and 1objij is equal to

1 (thus enabling the loss) for the predictor j that is responsible for the bounding
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box prediction. This means that the loss function only penalizes the classification

error if there is an object present, and it only penalizes the location, dimension

and "objectness" (object presence confidence) errors for the bounding box respon-

sible for the prediction. The λcoord and λnoobj parameters are used to increase the

loss for specific parts of the loss function. In the original YOLO paper they used

λcoord = 5 and λnoobj = 0.5.

YOLOv1 has 24 convolutional layers followed by 2 fully connected layers, con-

sistently reducing the x and y dimensions and increasing the number of channels,

until reaching a volume of size 7 × 7 × 1024. Figure 30 shows the general idea

without showing all the convolutional layers. Some convolutional layers use filters

with 1× 1 kernels as described in Section 2.1.5. The 7× 7× 1024 parameters of

the final channels are fully connected to a perceptron layer with 4096 neurons,

which in turn is connected to the output layer. The output layer uses a linear

activation function and all the other layers use a leaky rectified linear activation

function. When training, they used a dropout layer with a rate of 0.5 between

the last convolutional layer and the first perceptron layer (in the paper they said

it is after the first perceptron layer but according to the code available on GitHub

it comes before [71]).

Figure 30: Compressed image of the YOLOv1 model structure.

When YOLOv1 was released it had the best speed per mAP (PASCAL VOC

2007) by far, based on the tests made in the paper [27]. The YOLO network
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ran at 45 FPS with an accuracy of 63.4 mAP while the second-fastest object

detector, the 100Hz DPM [72] (running at 100 FPS), had an accuracy of 16.0

mAP. The most accurate network at the time was MR_CNN_MORE_DATA,

at 73.9 mAP, but its frame rate was not listed. Faster R-CNN VGG-16 [59],

however, performed at 73.2 mAP, running at 18 FPS. This new level of speed at

such a high accuracy is what made YOLO popular.

3.5.2 YOLOv2

The second iteration, YOLOv2, runs faster and with a higher accuracy (PASCAL

VOC 2007) at 78.6 mAP, than YOLOv1 at 63.4 mAP. These improvements come

from a slew of changes, but the most notable ones are perhaps, training the

classifier part of the network in higher resolution and increasing the final channel

dimensions to 13×13(×1024). They also replaced the fully connected perceptron

classifier with a convolutional approach where a kernel filter is responsible for the

prediction of each variable, concatenate convolutions like in section 2.2.3, employ

anchor boxes and random image rescaling during training. Normally, anchor

boxes refer to fixed size boxes, but in YOLOv2 they use a modified version. In

the modified version, the predicted bounding box values modify the anchor values

instead of only predicting a center point and using the anchors as the bounding

boxes. In the YOLOv2 paper they refer to these as dimension clusters, but for

simplicity we will refer to them as anchors as well. In YOLOv2 the output also

looks slightly different: each predicted box now has its own class predictions,

whereas in YOLOv1 there was only one set of class predictions per cell. The

concatenation was done from a previous 26 × 26 × 512 layer, which had to be

resized to 13 × 13(×2048) for it to be possible, for a total of 3072 channels; see

Figure 31. This helps the network detect smaller features.

The dimensions of the anchors are decided before training, using K-means

clustering [28]. The anchor-based bounding boxes in YOLOv2 are constrained to

have their center fall within the bounds of the predicting cell, unlike in YOLOv1

where the center point could fall anywhere in the image, this makes YOLOv2

much easier to train and the bounding box width and height is restricted by

the sizes of the available anchors. An anchor is simply a bounding box of pre-
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decided dimensions (based on the training data set). The predicted bounding

box values describe the translation of the bounding box position relative to the

cell, a scale value for the width and a scale value for the height to be multiplied

by the dimensions of the anchor (see the formula following this paragraph). Like

in YOLOv1, the confidence (IoU during training). Each cell also predicts 5 boxes

instead of 2, in YOLOv2.

bx = σ(tx) + cx

by = σ(ty) + cy

bw = pw · etw

bh = ph · eth

Pr(object)× IoU(b, object) = σ(to)

Where b refers to the predicted bounding box, (cx, cy) is the top-left corner

coordinates of the cell, tx is the predicted value for the x coordinate modifier,

ty is the predicted value for the y coordinate modifier, tw is the predicted value

for the width modifier, th: is the predicted value for the height modifier, to is

the predicted objectness, Pr(object) is 1 when there is an object in the cell,

IoU(b, object) is the IoU between the predicted box and the ground truth, σ is

the activation function and Pr(object) × IoU(b, object) is the objectness during

training.

Figure 31: Simplified image of the YOLOv2 model structure.
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3.5.3 YOLOv3

In the third version, YOLOv3, there has been significant changes architecture-

wise, but not so much training-wise. To quote the authors of the paper "We

mostly took good ideas from other people. We also trained a new classifier net-

work that’s better than the other ones." [29]. Foremost, the feature extraction

part of the network has increased in size from 19 to 53 layers. In addition to

this, YOLOv3 predicts boxes on three scales using an FPN (section 2.2.5) style

approach by concatenating feature maps from previous layers with later ones.

YOLOv3 also comes with residual blocks as described in section 2.2.2. Each cell

predicts B × (5 + C) values, like YOLOv2. In the tests made for the YOLOv3

paper B = 3 and C = 80.

Figure 32: The YOLOv3 output. The yellow grid cell produces three bounding box

predictions on three different scales.

As a final note about YOLOv1-3, the authors first trained the feature detec-

tor parts of the networks to classify, and then trained the full network, object

detection layers and all. The training methods differ between YOLO versions but

for most end-users this is not important as one can start with the weights from

the pre-trained models and then train with one’s own data.

3.5.4 YOLOv5

YOLOv5 was not developed by the same authors as the three original YOLO ver-

sions, but by Glenn Jocher, and there is no research paper describing it. However,

it builds upon the same model architecture used in YOLOv3 for the backbone
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and the entire project is available on GitHub under the GPL-3.0 license [31].

YOLOv4 [30] was not developed by the same authors as YOLOv1-3 either, but

it is forked from the original project (i.e. it uses the same framework) on GitHub

and there is a research paper backing it up, so that is something to consider.

There has been some confusion and debate about which one of YOLOv4 and

YOLOv5 is better/faster/more accurate but there are not many papers available

on the topic and since the author of YOLOv5 has not published a paper it makes

things slightly more difficult. Regardless, YOLOv5 is built using PyTorch instead

of Darknet, which all the other YOLO versions are built with. Because the author

of this thesis has a stronger familiarity with python and PyTorch, YOLOv5 was

chosen. The main drawback of using YOLOv5 as the example in this thesis is

that there is no official research paper about it. Thus, the implementation must

be interpreted by reading the code, which could potentially change at any time.

Towards the end of the process of writing this thesis, another paper improving

on the YOLO architecture was published [32]. They also compared the

differences between YOLOv4 and YOLOv5 and showed that YOLOv5 is indeed

faster and more accurate.

There are several architectures of YOLOv5 available in the GitHub repository,

some of which are surely employing more modern methods than the original mod-

els posted there. Nonetheless, one of the original models "yolov5s" was used in

this thesis. Figure 33 shows the architecture of the "yolov5s" model configuration

(or at least what it looked like when it was downloaded for this thesis).
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Figure 33: The YOLOv5s model architecture. The blocks are explained in Figure 34.
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Figure 34: The explanations of the blocks used in Figure 33. The "detect" block is shown

in Figure 35.
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Figure 35: Figure 33 shows three detect blocks, each in essence only consisting of a 1×1

convolutional layer. This figure shows how the parameters defined for the models are

connected graphically.

As we can see in Figure 33, the YOLOv5s model was implemented similarly

to YOLOv3 using a FPN style architecture for multiscale detection.

The first difference is the introduction of a "Focus" block, often referred to as

a "space-to-depth layer" [73, 74]. The purpose of this block is to quickly reduce

the resolution of the image by dividing the image and concatenating the parts

depth-wise. This means that the entire resolution of the image is still available in

the feature maps, but with one fourth the area and four times the depth. After

reducing the resolution the volume is passed to a convolutional layer with 64 3×3

kernel filters, and then that output is passed through a leaky ReLU.

YOLOv5 also employs CSP, but not quite implemented the way suggested in

the CSPNet paper [45]. In the CSPNet paper they suggest splitting the input

feature maps, passing half into the dense block and concatenating the other half

to the output of the block in the transition layer; see Figure 19. In the YOLOv5

implementation of CSP the input feature maps are not split up, instead, all

feature maps are passed through the dense block for the first path and through a

single 1×1 convolutional layer for the second path before the outputs of each path
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are concatenated. Naturally, this means more computation and potentially higher

performance (my tests indicate that it does perform better). The dense block first

reduces the depth to CINNER (it is variable but in this model it is always half that

of CIN), after which that volume is passed through a chain of bottleneck blocks,

similar to the bottleneck blocks from ResNet [36]; see Figure 17. The number

of bottleneck blocks is determined by the second parameter in the configuration

array for the layer, as shown in Figure 34.

The SPP-layer is also not quite the same as the one suggested in the original

paper [46], as the output is not two-dimensional, but it follows the same principles

of pooling at different scales, which essentially means that the different feature

maps of the output volume represent features/objects at different scales.

The output is of the same shape as the output in YOLOv3 (compare figures

32 and 35), but the bounding box variables are calculated differently. After

performing the 1 × 1 convolution, the output volumes are processed one at a

time. First, they are split into 4-dimensional volumes, or hyper-volumes, such

that each predicted bounding box has their own coordinate in the new dimension

(it might help to think of this as a list of volumes). The values are all passed

through a sigmoid function and output a volume where each cell corresponds to

the one detection this cell produced, containing all parameters depth-wise, like

in Figure 32. Then the bounding box values are calculated from the predicted

values tx, ty, tw and th using the following formulas.

bx = 2σ(tx)− 0.5 + cx

by = 2σ(ty)− 0.5 + cy

bw = 2σ(tw)
2 · pw

bh = 2σ(th)
2 · ph

Jocher identified a problem with regard to how the width and height values

were calculated in YOLOv2 and YOLOv3 (and YOLOv4). Because the width

and height are calculated by bw = pw ·etw there is no upper limit, bw(tw) ∈ [0,∞[.

To stabilize the training YOLOv5 also passes the width and height predictions

through the sigmoid function.
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Finally, the loss function is also different in YOLOv5. YOLOv5 uses GIoU

instead of IoU (see Figure 29), which is combined with the "binary cross-entropy"-

loss (BCE) of the class predictions and the BCE-loss of the objectness. The binary

cross-entropy loss is defined as follows [75].

BCE = −
C∑
i

tilog(yi) + (1− ti)log(1− yi)

Where C is the number of classes, i is the class in question, yi is the predicted

value and ti is the ground truth value. The loss of each class is calculated, summed

up and inverted. To be precise, YOLOv5 uses the BCEWithLogitsLoss function

from PyTorch, which applies the sigmoid function to the predicted values before

calculating the logarithm [75].

BCEWithLogitsLoss = −
C∑
i

tilog(σ(yi)) + (1− ti)log(1− σ(yi))

3.5.5 Training YOLOv5

When training an object detection model, such as YOLO, it is important to be

as consistent as possible when preparing the bounding box labels for the training

data set. This is because the loss function of object detectors need to take the

size and location of the box into account in order to improve. It not only takes

into account whether the predicted class is correct but also how well the predicted

bounding box matches the ground truth bounding box. Recall how the YOLO

loss function (and probably most other object detection loss functions) tries to

minimize the bounding box location error, the bounding box dimension error

and the classification error. If the model in reality produces the best possible

bounding box, but the label it has been given is not perfect, it will be penalized

even though the prediction might have been closer to the truth than the label.

Thus, consistency is important.

YOLOv5 comes with a slew of configuration options for training. These hy-

perparameters, as Jocher refers to them, are configurable, manually or through

the project’s built in hyperparameter evolution. This means that by simply run-

ning the training program as if one were to actually train a model, but with the
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"–evolve" parameter set, a better set of hyperparameters will be produced. Do

note that those hyperparameters are not necessarily going to be very good for

a different model and/or data set. Hyperparameters are parameters related to

training but not the network itself. In other words, hyperparameters are not the

weights of the network, but the parameters used in training, such as learning

rate and multipliers used to amplify/reduce the effect of a specific part of the loss

function, as well as training data-modification options. The hyperparameters will

continue evolving until the program is stopped, after which one can use them to

train new models.

Another very useful thing that comes "out of the box" with YOLOv5 is the

generation of anchors for the data sets. New anchors are generated by assigning

an integer value instead of the anchor lists to the "anchors" variable, in the model

configuration file. This integer will represent the number of anchors to generate

per detection layer (3 anchors and 3 detection layer scales by default means it

generates 9 anchors). The anchors are printed to the console and need to be

copied into the configuration file in order to be reused. Using anchors generated

specifically for one’s data set can improve performance tremendously as the pre-

generated ones are for the COCO data set and do not necessarily suit one’s own

data.

During training, YOLOv5 will automatically modify the input data (can be

disabled) so that the same example is never shown twice, despite using the same

example image/label multiple times. The data can be modified by rotation,

translation, flipping, altering the colors, "mosaic" augmentation or cutting out

positive examples of images at random, etc. Mosaic augmentation is a simple

data augmentation method, first introduced in the YOLOv4 paper [30], which

combines parts from four images into one training image, arranged randomly.

3.6 Vehicle Detection

Vehicle detection can be useful when doing ALPR for a few different reasons.

First, one can be more confident that a detected license plate is actually a real

license plate (and not e.g. a traffic sign), if it is within the boundaries of a
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detected vehicle. This works the other way around too: if one detects a vehicle

in the image one can be fairly certain that there is also going to be a license

plate present within that section of the image. Second, one might be able to

reduce processing time if it is faster to detect vehicles than license plates. Third,

it might be useful to know the make and model of the vehicle as this means more

information to compare with if trying to group the license plate recognitions.

Adding the make and model of the vehicle to the recognition can help with the

confidence of any license plate recognition, This is especially true in countries

such as The United States, where it could even be necessary, as the same license

plate number can exist as long as they are from different states. In the United

States the license plates look different for each state, which can be used as a

way to differentiate vehicles with the same license plate number. As a side note,

the make and model could also be used to create a persona of a customer, e.g.

"ABC-123; Honda; Sedan; vegan/vegetarian" and "ABC-123; Ford; Pickup truck;

gluten-free".

3.6.1 Conventional Methods

Vehicle detection is not easy to implement using conventional methods. The main

limitation of the conventional methods is that one specifically needs to define the

process for detection oneself. One method that avoids complex conventional

algorithms is motion detection.

Motion detection can be used as implicit vehicle detection. Motion detection

can be done in many ways, but the perhaps most obvious approach is to simply

calculate the difference between a new image and a reference image, binarize the

difference by thresholding and perform contour detection on that. This works

best when the new image and the reference image were taken relatively closely

in time, because the longer the algorithm is running the larger the difference

between the images will be (meaning noisier output). One way to fix this is to

simply take a new reference image every so often, but if the image is taken at

the wrong time (i.e. when something that is not actually part of the background

is visible) all comparisons with that reference image will produce bad detections.

A more resilient approach, presented by Stauffer and Grimson, is to model each
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pixel as a mixture of gaussians and updating them live [76]. This model is better

at determining, e.g. if a swaying tree branch is part of the background or the

foreground.

Figure 36: Naive motion detection using OpenCV. Short video clip.

3.6.2 ML-Based Methods

Specifically for vehicle detection one does not have to look far and wide to find a

working solution. For example, YOLOv5 comes with pre-trained models on a data

set that contains several types of vehicles, and is very easy to deploy. Meaning

that one could deploy a powerful vehicle detection algorithm with minimal effort.

These models are trained on other classes of objects as well, but those can be

ignored if one does not wish to train one’s own model. Generally speaking, ML-

based vehicle detection will be much the same as for any other type of ML-based

object detection, acquire a data set, design a model and start training.

There are also HAAR-cascades available, for free, for vehicle detection, so ve-

hicle detection can quite easily deployed with the Viola Jones cascading classifier.

3.7 License Plate Detection

License plate detection is the process of finding license plates in an image, or

"simpler" versions such as looking for rectangles and specific colour patterns.
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3.7.1 Conventional Methods

By the heuristic/conventional method we mean that we specifically try to break

down what it means to see a license plate. A license plate is usually quite oblong,

rectangular, with a more or less uniform background color and a number of shapes

(the characters) with a color contrasting the background color. A heuristics-based

approach would be one that manipulates the image in ways that make the features

that fit our definition of what a license plate looks like more prominent and the

features that do not fit less prominent. One example of that could be to first

detect contours in the image, detect rectangular shapes based on those contours

and then using some criteria about the shapes and sizes determine which of those

rectangles are likely to be license plates.

One approach published in 1991 by Kanayama et al. [10] is based on the

premise that cars have mostly horizontal lines in the front, except for the license

plate itself. Thus, they divided the image in horizontal sections and starting at the

bottom right check for contours in each image section, and use all the sections

between which the two sections the number of lines exceed a pre-determined

threshold. The first vertical contour detected in this area will be determined to

be the right edge of the plate.

3.7.2 ML-Based Methods

Just like with the vehicle plate detection, we can employ YOLOv5 or similar

object detectors, and just like for the vehicles, there are license plate HAAR-

cascades available to download for free. However, these might not necessarily

be available for the correct region (e.g. I have not found any for Finnish license

plates).
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4 Methodology

The flow of most ALPR systems can be described by something like Figure 37,

in which one can see that some skip the step of first detecting the vehicle, since it

might not actually be relevant in all cases. Nevertheless, this will be the baseline

for the processes we will try to implement and optimize through all the steps.

Since the ALPR algorithm can be considered quite modular (with some excep-

tion), and the output it produces is very quantifiable, it is rather easy to measure

the performance gained, or lost, by modifying code in one "module" of the algo-

rithm. In the steps involved it often comes down to comparing if performing an

object detection approach is more efficient than the more conventional approaches

based on cleaning the image and performing various edge/contour detections and

similar computer vision-/heuristic-based steps.

4.1 Benchmarking Performance

In order to be able to determine which ALPR systems or combination of algo-

rithms evaluated work the best the different methods were tested individually

and in part as a whole system. The conventional methods were evaluated by

simply implementing them and noting how quickly they performed the relevant

task and determining whether that execution time is technically feasible for a

real-time application with similar results as the YOLO-alternative. The differ-

ent YOLO-models were all tested using the same benchmark-program which ran

the model on a short video file which has a few license plates showing and the

number of correct (and almost correct) detections were noted. This way, the per-

formance of each individual model could be compared. Due to time constraints

the conventional models were not combined into one whole algorithm.
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Figure 37: The different arrangements of ALPR evaluated in this thesis.
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4.2 Data Used for Training

To train machine learning models one needs a data set, and it needs to be labeled

according to the specific shape the algorithm uses. Freely available data sets are

rarely labeled according to the format one needs but converting them will in most

cases be a trivial task that can be automated.

Most of the data used was for the ML-based object detection models (the

YOLOv5 models). The YOLOv5 models used for training were pre-trained by the

author of YOLOv5. This means they have already learned to recognize specific

features, which for us means that fewer data are needed for training to learn

to recognize a new combination of features compared to beginning with entirely

random weights.

For the vehicle and license plate data a combination of data sets was used.

First, a license plate/car data set (of Croatian license plates), freely available

to use, was downloaded from [77]. This was used to train the first version of a

license plate detector but because it did not seem to be quite enough to make the

algorithm work well on Finnish license plates this was complemented by collecting

a data set of Finnish license plate images. This data set of around 700 pictures

of Finnish license plates were used to train a vehicle and license plate detector.

Numerous of Finnish license plate pictures were also computer generated in hopes

that this could be used to prepare the network before fine-tuning with the real

data.

According to the documentation available for YOLOv5 [31] the following mat-

ters should be considered with the data set (copied directly from the GitHub

page).
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• Images per class. >= 1500 images per class recommended

• Instances per class. >= 10000 instances (labeled objects) per class rec-

ommended

• Image variety. Must be representative of deployed environment. For

real-world use cases we recommend images from different times of day,

different seasons, different weather, different lighting, different angles,

different sources (scraped online, collected locally, different cameras)

etc.

• Label consistency. All instances of all classes in all images must be

labelled. Partial labelling will not work.

• Label accuracy. Labels must closely enclose each object. No space should

exist between an object and its bounding box. No objects should be miss-

ing a label.

• Background images. Background images are images with no objects that

are added to a data set to reduce False Positives (FP). We recommend

about 0-10% background images to help reduce FPs (COCO has 1000

background images for reference, 1% of the total). No labels are required

for background images.

Obviously, neither the Finnish data set, nor the Croatian data set, nor the

combination of the two, amount to 1500 images. Acceptable results were nev-

ertheless observed for the vehicle/license plate detector, perhaps because it only

has two classes (vehicle and license plate). Using the plate generator program we

can generate as many images as we want, so for the character detector this is less

of an issue.

All the real images were hand labeled and as such the characters in that part of

the data set are not as perfectly boxed as the characters in the generated images

are. It is important to note, however, that even though the characters in the

generated data might be perfectly boxed at first, that is not necessarily the case

after applying perspective transformation; see Figure 38. Thus, our "perfectly"
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Figure 38: The bounding boxes of a license plate need to be adjusted after perspective

transform.

machine-labeled generated plates may also cause some localization loss.
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4.2.1 Finnish Data Set

The Finnish license plate images were taken, by the author of this thesis, with a

OnePlus 6T phone using the default settings and most of them from the inside

of a moving car. Many of these images were so blurry that they were unusable

for character recognition, but were usable for vehicle and license plate detection.

Thus, the data had to be separated into those suitable for character recognition

and those that were not. The images were not originally of resolution 1920×1080,

and since that is, perhaps, the most common resolution as of 2021, the images

were cropped so that a 1920 × 1080 sub-image was collected, centered on the

most relevant part of the image. This was done manually. For training the

vehicle and license plate detector these images were then resized to 640 × 640,

which naturally distorts the proportions of the image. This is not an issue if

all the input images have the same resolution (1920 × 1080). For the character

detector, resizing the images to 640× 640 like that is not recommended. Because

the license plate character images’ dimensions depend on the original resolution

and the angle and distance to the camera, it would be difficult to generate a good

set of bounding boxes, and it would be difficult to make the models to generalize

well. The better approach here is to resize the larger dimension to 640 and pad

the other dimension with black pixels (zeros), such that the image is centered

in the padding, this is sometimes referred to as "letterboxing". By padding the

image we are not utilizing the entire 640×640 resolution, which essentially means

that we are wasting compute time. This could be remedied by inserting multiple

license plates into the same 640× 640 image, provided that they would fit. This

would be immediately useful if there are two license plates visible at the same

time. Since most license plates are well above the minimum width of twice the

height, it would be feasible. Doing this would imply a significant performance

improvement. This was not tested in this thesis, but the run-time for a detection

using YOLOv5 will be more or less consistent, regardless of whether the entire

image contains relevant information or not.
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Figure 39: An example of one of the blurrier images (only suitable for vehicle detection)

in the Finnish data set.

4.2.2 The Croatian Data Set

The data set of rear views of Croatian vehicles and their license plates has around

500 images [77]. It was gathered for a student project by students at The Uni-

versity of Zagreb in 2003. The data set is not labeled so labeling it oneself is

necessary. The images are of resolution 640 × 480 pixels, which is smaller than

our 640 × 640 input size expected for YOLOv5, so a padding of black pixels is

applied to the smaller dimension.

4.2.3 Generated Data

A large data set of Finnish license plates was automatically generated using a

program created by the author [78]. This program has many options for adding

noise, picture transformation, using different fonts and license plate formats as

well as different license plate base images. It proved quite useful for adding

variation to the training data. A few examples of generated license plates can be

seen in Figure 41.

As mentioned earlier, in section 4.2, the bounding boxes of the generated li-

cense plates would be larger than the characters after applying perspective trans-

formation. To improve the bounding boxes again, the plate generator program
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Figure 40: An example of the images in the Croatian data set.

attempts to detect (before noise is applied) which contour within the bounds of

the bounding box that actually is the character and adjust the bounding box

according to that. This is more difficult with the Å, Ä and Ö characters as they

have disconnected parts, so for those the bounding box is simply adjusted to the

bottom of the best contour and the left, top and right edges are set to the first

coordinate where a dark pixel is (starting from the corresponding edge). The hy-

phen character is also treated slightly differently, as the box we produce for it is

set to be the same height as the other characters, so the bounding box adjusting

process does not change the y coordinates of it, but only the x coordinates. These

factors mean that, in general, any model trained on this generated data will not

be able to produce as good bounding boxes for these edge case characters as for

the other ones. Figure 41 demonstrates the results of the adjustment process.

Improving the method for adjusting boxes would likely make the data easier to

train on.
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Figure 41: A few examples of generated plates, with and without noise/transformation

and some pictures of the characters demonstrating the box-widening effect mitigation.

The images labeled "original" are the generated images without any effects applied, and

those labeled "plate" are the final images (where the bounding boxes are only visible for

demonstration).
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A smaller number of data was also generated for a character classifier, some

of these were hand-drawn using a small helper program written in java and some

were generated using a simple OpenCV-based python program.

4.2.4 Data format

After acquiring a data set one first needs to label it according to the format used

by the algorithm one intends to use. For YOLO, this means that the label files

have a separate row for each object with each data point separated by a space.

The values are "class x_center y_center width height" and the coordinates and

dimensions are relative to the size of the image (floating point values between 0

and 1). There are open source programs to help with labeling e.g. [79] (it does

not write the labels in the YOLO format, but the conversion is trivial).

4.2.5 Ways to improve the data

A simple program, which allows the user to adjust each label bounding box to

more closely represent the ground truth, was created (using the same principles

mentioned in section 4.2.3). After using this program to improve a license plate

character data set, a twin data set with slightly randomly altered boxes was

generated from the newly fixed boxes, and one model was trained with each data

set. The training performance difference can be seen in figures 42 and 43.
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Figure 42: Training output of training with well boxed labels using YOLOv5. The x-axis

is the epoch number.

Figure 43: Training output of training with badly boxed labels using YOLOv5. Same

images and labels as in the previous figure, but with small random mutations to the

boxes coordinates and size. The x-axis is the epoch number.
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4.3 Challenges

4.3.1 Variability

The variability in an ALPR system comes in two separate forms, the variability

of the input data and the variability of the tool chain.

The variability of the input data stems from many problems. One such prob-

lem is the installation/environment, i.e. how the camera will be positioned in

space in relation to the vehicles it will be observing, the lighting conditions, if the

camera continuously processes frames or if a tandem system triggers the camera

to take a picture and even if the camera is moving or stationary. A different cam-

era will also produce a different color shade given the same set of circumstances

and will not necessarily have the same resolution or aspect ratio as another. All

of these are factors one must take into consideration, and they will have a major

impact on performance. It is easy to produce decent results in a lab environment

in controlled lighting and conditions, whereas the real world is a different matter.

These factors might place constraints that one needs to follow when installing the

camera, such as ensuring that one does not exceed the maximum distance from

the area of interest (to ensure high enough image resolution of the license plates).

However, a robust system should be able to handle all of this variability.

The variability of the tool chain comes from using different algorithms that are

sensitive to different kinds of problems. One algorithm might perform amazingly

well, at best, but only at 15 o’clock on a sunny day in June because that is the

only time when the vehicles’ license plate would be in daylight, while another

algorithm might produce results that are more consistent, while less impressive

at best, because it is less dependent on lighting conditions. This is similar to the

variability of the input data to some degree but the aspect we are interested in

is how well the algorithm handles it, not how to stabilize the environment.

Area of interest, that is to say the area in which we expect to find license

plates, and outside which we should discard license plate detections or, even

better, not perform the detection at all. If the developer of the ALPR system

is not in control of the installation of the physical camera, it will most likely be
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necessary to restrict the area of interest, if possible. In an ALPR installation

with a stationary camera, the area of interest can be restricted at install time

by creating an image mask which is referenced at run-time. Such a mask can

simply be a black/white image of the same dimensions as the processed images

that has one color for the area of interest and another for the "ignore zone". Any

object/detection with a center point outside the area of interest is then discarded,

or an image mask with a transparent area of interest and opaque ignore zone can

be overlaid on top of the input image to block the unwanted areas before detection.

Figure 44: The relation-

ship between physical size

per pixel, field of view and

distance from camera to ob-

ject.

Pixels on area of interest is something that is

important to consider for any object detection model.

The resolution at which the images are processed, at

what distance from the camera the objects are likely

to appear and how large a part of the field of view

they are going to occupy will all affect the resolution

of the area of interest. The size of a pixel (in real,

physical distance) can be calculated by dividing the

arc length by the size of the image along that axis (in

pixels). The arc length can be calculated based on the

distance of the object and the field of view (degrees);

see Figure 44. The formula to calculate the arc length

is

L = θ/360◦ × 2× π × r

where theta is the field of view and r is the distance from the camera to the

object. Using this formula we can determine the pixels per Finnish license plate

at certain distances, as shown in Table 1. While the input resolution is something

one can configure, training a network of a size like 1440×1440 (same pixel amount

as 1920×1080) or similar would be many times slower.
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Resolution Distance Pixel Width Pixels / Plate (40 cm)

640 1 0.16 244

640 2 0.33 122

640 3 0.49 81

640 5 0.82 49

640 10 1.64 24

640 15 2.45 16

1080 1 0.1 413

1080 2 0.19 206

1080 3 0.29 138

1080 5 0.48 83

1080 10 0.97 41

1080 15 1.45 28

1440 1 0.07 550

1440 2 0.15 275

1440 3 0.22 183

1440 5 0.36 110

1440 10 0.73 55

1440 15 1.09 37

Table 1: Pixels per distance for pictures 640, 1080 and 1440 pixels wide assuming the

camera has field of view of 60 degrees.
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5 Character Recognition

Once we have a picture of a license plate image we are ready to start processing

what characters are present in the image.

There are many approaches to this, but in this thesis we will qualitatively eval-

uate a couple of free to use open source libraries, YOLOv5 and some more con-

ventional heuristics-based approaches. In general what they all have in common

is that based on a given image they will produce a set of character recognitions

(character and location in image).

Figure 45: ALPR algorithm with the segmentation step.

There are libraries for this such as Tesseract OCR, OpenCV’s built-in text

recognition, and EasyOCR. The problem with all of these is that they tend to

work well for images with very good visibility and picture quality. EasyOCR

perhaps being the exception to this rule, but it does not perform flawlessly either

and, according to my tests, it can take minutes to process even just one image

and that is when running on the GPU.

5.1 Using Tesseract OCR

To test Tesseract OCR, a minimal program was written (Figure 47) and fed

some variations of the same images. In Figure 48 only the middle left image

was recognized. Tesseract OCR found no text in the other images. In Figure 50

Tesseract OCR detected no text in either image, even though the text is as perfect
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Figure 46: ALPR algorithm without segmentation step using sliding template match-

ing or ML object detection for recognizing characters and their positions in an image.

Cleaning the image might be necessary before template matching but not before ML object

detection.

as could possibly be imagined, being computer generated and noise free.
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Figure 47: Minimal Tesseract OCR test program

Figure 48: Image variants of AZT-882 license plate that Tesseract OCR was tested on.

The original image was of size 650×180 and the others were the same or smaller. The

processing time varied between 100ms and 140ms.

Figure 49: Recognized text: "Beceem is".

Processing time: 117ms.

Figure 50: Generated license plate, raw

and cleaned. Image sizes: 1280×326 and

1074×244. Processing times: 148ms and

124ms.
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One caveat with Tesseract OCR (arguably the best open source OCR engine)

is the performance, because even if one achieves good cleaning of one’s images

prior to passing them through, it sometimes detects nothing at all, and it always

takes a long time. The, very minimal, python program in Figure 47 was used to

obtain an idea of the performance of Tesseract OCR. A set of license plate images

were cropped and passed to the program (images cropped to contain ONLY the

license plate) and the fastest processing time was around 100ms, which may be

fast enough depending on one’s specific use case and requirements. Cleaning

said images can be quite fast, however. When tested using six different images

two of them gave the correct result, two of them were one and two letters off

respectively and two gave an empty string as output (because they only found

one single contour in the image). The cleaning process of said images took 32

milliseconds at the most and 3 milliseconds at the least. The resolution of the

largest image was 735×481 and the resolution of the smallest image was 131×77.

The tests completed seemed to suggest that adding some padding around the

characters (so that the edges of the characters do not touch the edges of the

images) of the images processed by Tesseract OCR increases the accuracy.

5.2 Using Object Detection

Instead of trying to ensure perfect conditions and cleaning the input images to

perfection, one could train an object detection model for this. One simply needs

to create or acquire a data set of images with characters in them, and their

corresponding labels, preferably of license plates, because that is what we are

looking for, and train the network on that. We know that it will not be too many

classes because the COCO data set has 80 classes, whereas in this thesis we will

end up training on 41 classes (29 characters + one class for license plate symbols

+ hyphen + the digits, zero through nine). Since we know that the YOLOv5

network is quite fast when trained on the COCO data set and with 80 classes

(more complex than our 41 classes), we can make the assumption that this will

also be the case for simple characters, and since we have fewer classes we may

be able to decrease the size of the network to make it run faster. This approach
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means that we do not necessarily have to perform any perspective transform to

create perfect conditions, because we can simply train our model to recognize

license plate characters at an angle. It might, however, still be advantageous to

perform perspective transformation.

As far as license plate recognition is concerned, what we consider the most

important is simply which characters are present in the image, and in what order.

However, exactly how large each character is, e.g. 48 pixels or 50 pixels, does

not matter as much. This means that we can reduce the effect of the localization

part of the loss function and increase the effect of the class part. This way, when

training the network it learn how to more effectively differentiate the characters

rather than exactly how big each one is expected to be. Since part of the data

set might be (is in this case) hand-labeled, the size may vary by a few pixels.

Because the characters of the training/test data images are often relatively small,

e.g. 30 pixels high, but they might be 40 pixels high according to the label, the

localization loss might be quite large. This can affect the training performance

as a whole, even if the correct class was assigned. Thus, because the training

algorithm does not know which labels are good and which labels are not (it

assumes they all are perfect), it is simply better to reduce the "punishment" of

the part of the loss function that tries to improve localization. Thus, the "giou"

hyperparameter (localization loss) was reduced to 0.005 from the default of 0.01

and the "cls" hyperparameter (class loss) was increased to 0.5 from the default

of 0.4.

5.3 Using Heuristics

We can use some basic heuristics in order to perform character recognition. To

begin with, we know that (at least in Finland) the license plate usually has black

letters and a white background. We also know that the characters do not touch

each other, and we know that the letters come first, followed by a hyphen, followed

by the numbers. License plates for motorcycles, however, follow slightly different

rules as the letters and numbers are stacked horizontally instead. Based on these

rules, we can create an algorithm that segments all black shapes and performs
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classification/template matching on the cropped images.

5.3.1 Character Segmentation

For the conventional/heuristics-based approaches it helps to clean the image first,

so that one is better able to isolate the important parts of the image, the char-

acters themselves. The closer one can come to the original character shape the

better. In the best case scenario, we want to end up with a picture where the

background is entirely black and there is nothing except for the characters that is

white, or vice versa. The method chosen by the author of this thesis is as follows.

First, we convert the image to gray scale and blur it to reduce noise but still

preserve the largest most important shapes. Now we have an image with much

less noise, which is ready for binarization by thresholding.

After thresholding, there are a few different popular methods. One of these

is to look for peaks and valleys in the pixel intensity in each axis and another is

to look for contours. The pixel intensity sums of a rotated image and its skew

corrected counter-part are shown in figures 51 and 52. Based on the histogram

of the rows in the skew corrected image one can clearly tell where the top and

bottom lines are, and in the histogram of the columns it is also easy to tell where

the left and right of each character is. The histograms of the original image are

not as clear.

When going for the contour detection approach, it was noted that the "find-

Contours" function in OpenCV sometimes did not find anything except one large

contour in the image. To remedy this, simply removing 10% off each side of

the image sometimes helped. This extra cropping step will obviously not always

work, but it is, relatively speaking, not a costly operation. When this extra crop-

ping step was needed, "findContours" was run again. If at this point the number

of contours is larger than some threshold value (e.g. three in Finland, because

Finnish license plates need to have at least two letters and one digit [80]), we can

sort the contours by area and keep the largest N (maximum number of expected

characters plus margin) contours and turn them into bounding boxes using the

"boundingRect" function in OpenCV. Now the contour boxes can be analyzed

and filtered based on their shapes, e.g. any contour box taking up more than half
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Figure 51: The original image, the cleaned and thresholded image, the pixel intensity by

column and the pixel intensity by row.

of the width and contours with too much overlap on the x-axis (except if the rele-

vant plate formats allow multiple rows). For Tesseract OCR and sliding template

matching, the final step is to isolate the characters by cropping them out and

placing them on a clean black background. For the single template matching and

classifier methods, we simply crop the individual characters and pass the images

to the template matcher or classifier.
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Figure 52: The original image, the cleaned and thresholded image, the pixel intensity by

column, the pixel intensity by row.
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The following is a description, of how one can clean images for character

recognition, using a combination of pseudocode and actual python code utilizing

the OpenCV library. Figure 53 shows the results of the first steps of this process.

-p: Gray scale conversion

- convert the image to grayscale

- gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

-p: Blur the image

- perform blurring on the image to reduce noise

- blur = cv2.bilateralFilter(gray, int(image_width*0.02), int(

image_width*0.1), int(image_width*0.17))

- These values were chosen simply by trial and error

-p: Thresholding

- binarize the image by thresholding

- thresholded = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY_INV

| cv2.THRESH_OTSU)[1]

-p Contour detection & reduction

- detect contours in the image

- cnts = cv2.findContours(img.copy(), cv2.REzR_EXTERNAL, cv2.

CHAIN_APPROX_SIMPLE)

cnts = imutils.grab_contours(cnts)

- if too few boxes are detected, try the two above steps once

more after removing 10% from each side of the image.

cnts = sorted(cnts, key=cv2.contourArea, reverse=True)

boxes = [cv2.boundingRect(cnt) for cnt in cnts]

-p Contour rejection & character isolation

- filter the contour boxes according to some pre-specified criteria

- determine background color and create a new image of the same size

- insert character crops into the same positions as in the original

image

-p Perspective transformation / skew correction

- determine perspective transformation or rotation of image

- perform perspective transform or skew correction
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Figure 53: Successful image cleaning. 17ms total processing time.

- Top left: grayed, 0.1 ms processing time

- Top right: blurred, 15 ms processing time

- Bottom left: binarized, 0.1 ms processing time

- Bottom right: cropped smaller, contours filtered and isolated, 1.4 ms processing time

5.3.2 Template matching

There are three main problems with template matching and in our case also a

fourth one. The first is that the template image needs to be the correct size or

one will be looping through (almost) every pixel, doing the template matching

once for the area around each one. The second is that one needs to do the

template checking for each template to find the strongest match (provided that

there are multiple options). The third is that it becomes difficult to determine

which template is correct as soon as the perspective in the target image is different

from the perspective in the template image. When comparing characters, like in

our case, the characters in the image need to use the same font as the characters in

the templates. Unlike a neural network that can learn to recognize a combination

of patterns, template matching algorithms only look at how similar two images

are.

The first problem of the image size can, in some cases, be solved by simply

cropping the image perfectly around the character. That is to say that after

cropping the character which we are trying to recognize it will have the same

kind of margins as our template does. The second problem is, in a sense, solved

at the same time as the first one. By making sure that the template is the same

size as the image we are comparing, we only have to run it once for each template,

making it drastically less expensive to have multiple templates.
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Figure 54: The template matching algorithm was used to search for the letter L using a

template created from using the din1451mittelschrift font (seems to be one of the closest,

free alternatives, to the Finnish license plate font). Each available method was run 100

times and the average execution time was calculated: around 5ms. The image used

is of the dimensions 768×432. "TM_CCOEFF" was the fastest of the ones that was

positioned correctly.

Figure 55: Matches on a plate. All characters, except for the letter O which was rec-

ognized as the number 0, were correctly recognized. Resolution: 119×36 and processing

time: 9.5ms.

As shown in Figure 54 it quickly becomes infeasible to run template matching

using multiple templates if the image is not cropped very close to the license

plate. It took around 5ms to run sliding template matching using one template.

Running it on all possible characters will multiply that processing time by a factor

of around 40, leaving us with a processing time of 200ms for one frame. In Figure

56 it took 113 and 87 milliseconds respectively, but these images are still very big,

even though cropped close to the license plate. Sliding template matching can

be relatively fast however, if the resolution is low enough, as seen in 55. There

it took around 9.5ms to detect all the characters in the license plate (except for
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the O which was read as a 0). Bigger images will always take longer to run but

if they are well cropped they can always be scaled down to the same minimum

resolution, given the same plate format.

Figure 56: Template matching with and without cleaning, the "?" character recognized

was the Swedish letter "Å", in both cases, otherwise all matches were correct.

Original image: 650×180 and 113 ms processing time. Cleaned image: 594×128 and

87 ms processing time.

Figure 57: Template matching on individual character crops. Total processing time:

6.4ms. Templates: 40. Template size: 32×24. Image size: 32×24. Looking at the "A"

character crop compared to the "A" template, the bottom right "intersection" matches

that in the "4" template better than the "A" template.

Running the template matching on an individual image is the fastest way,

because it means one run per template, per image.

In order to make sure that the template and character image sizes match, one

can calculate a histogram (0.1ms for a 32×24 image) of the pixel intensity for

each axis of the image. Based on the histogram one can determine the edges of

the characters in the image crops and resize the image so that it matches the

template. A binary image with black background will only have zeros until the

first row/column that has some piece of the character (or unfiltered noise) in it.

The false detection can be remedied using the information we have about the

image itself (width, height), and about what we expect the plate to look like. We
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Figure 58: The relevant templates.

can make the assumption that the 0 should be an O, because it is on the left

side of the hyphen the license plate would not fit any of the Finnish license plate

formats otherwise.

The third problem, of the perspective, is especially important to address when

performing template matching, as having an image of inconsistent character sizes

will have a large effect on template matching, as seen in figures 59 and 60. Even

though a 1 to 1 ratio for the transformed image (Figure 59) yields a perfect result,

we are not necessarily able to crop the image perfectly around the license plate

every time. Thus, the problem of the template size remains, even if performing

sliding window template matching. If performing perspective transform followed

by character segmentation we can utilize the histogram approach mentioned above

to adjust the image and/or template size, to address the size problem further.

Perspective transform can be addressed as described in section 3.3.4.

The last problem of different fonts can be addressed by using separate tem-

plates for each font. This comes with the disadvantage of a larger processing cost,

but if one’s ALPR system is only supposed to run in a specific country one should

be able to make some assumptions about the font used and, thus, only use one

set of templates. One option is to supply a set of templates for each country and

let the end user specify the country and load the template images based on that.

Figures 59 and 60 show the importance of transforming the image to the
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correct perspective and using the correct template size.
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Figure 59: Comparison of matches found depending on the size of the template relative to

the license plate image. The first match was found when the image height was 1.42 times

the template height, and no matches were found starting from 2.6 times the template

height.
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Figure 60: Comparison of matches found depending on the size of the template relative

to the license plate image on a perspective corrected image at a few different values

of scale. Going down to a 1 to 1 plate-height to template image-height yields the best

(perfect) results, which makes sense, as the template images were generated with the

same padding as is used in the Finnish license plates and the transformed image license

plate is cropped (nearly) perfectly.

101



Performance gains can be had by using what we know about the license plate

format. For example, if we are looking at the first 2 characters (from the left) in

a Finnish license there is no point in comparing with digit templates, and vice

versa if 3 letters have already been recognized. Thus, for a Finnish license plate

we can potentially reduce the number of template checks by up to 9× 2+28× 3.

5.3.3 Classification

Using the same cleaning process described in the section about Tesseract OCR,

but instead of passing the whole license plate crop as one image to the Tesseract

OCR program we instead pass the individually cropped character images, one

at a time, to our own character classifier. The classifier has been trained on

character data automatically generated as described in section 4.2.3 and hand-

drawn images produced using a simple tool that lets one draw a 28×28 sized image

in black and white. The model was implemented in Keras, the Python library, and

follows a variation of a very common structure that is shown in various articles

about classifiers in python and Keras. The model implementation can be seen

in Figure 61. Using the same test-video as for the YOLOv5 tests, the classifier

correctly classified 28% of the characters that were passed to it. Needless to say,

with some effort the classifier should surely be able to perform better than this,

but these were the results I observed.
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Figure 61: The function that returns the character classifier model made with Keras.

Documentation of the Keras library at https: // keras. io/ api/
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5.3.4 Character Correction

If our plate does not quite match one of the known formats, but it is close, we

might be able to perform a correction. Character correction does not work for

any character. For example if a T is detected on the right side of the hyphen (or

if no hyphen is detected splitting the plate in the middle can be an option) we

can not really assume that it should be a 1 or a 7 because it could be either or.

However, if we detect an O (letter) to the right of a hyphen we can with quite

good confidence correct that. A zero to the left of a hyphen could be an O, a Q,

an Ö or even a G, C or D, so we can not necessarily make the same assumptions

vice versa. Depending on the font used in the relevant country, and the character

recognition model used, one can utilize more or fewer of these corrections.

Character correction depends on having enough information about the plate.

First, we need to know where we expect to find what. Most Finnish plates have the

format AAA-111, that is to say three letters and three numbers that are separated

by a hyphen. If we detect a plate that matches this format it is probably best to

not change anything. If we detect a plate with very many characters it is most

likely not a plate, or it might be a plate with some extra text around it (e.g. some

car dealerships put their business’ name on the license plate holder).
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6 Results and discussion

During the process of training the object detectors for this thesis it became ob-

vious that using the generated data improved the performance of the character

detectors. I did not do a quantitative analysis of which ALPR method or model

had the best performance. Regardless, the evaluation of the different methods

and models seemed to indicate that the best alternative for an ALPR system,

when the ALPR scenario is unknown, is the combination of a vehicle and li-

cense plate detector combined with a character detector. This conclusion was

reached because the vehicle and license plate detector is quite flexible with the

data given. The character detectors can be trained, at least partially, on gen-

erated data, meaning that the amount of work can be reduced significantly. In

contrast, the more conventional computer vision-based methods can yield good

results in controlled setups but are very sensitive to changes in the environment

and therefore not as suitable for license plate recognition.

The environment in which an ALPR system will be installed to a large part

dictates what sort of solution would constitute the best option. In the following

paragraphs I discuss the areas in which I believe the different methods in Figure 62

can be applied.

Conventional ALPR could be used successfully in ALPR systems where the

camera can be focused on a very precise area of interest. When this is possible,

implementing the conventional methods may require significantly less effort, com-

pared to the machine learning counterparts. In these cases these methods can be

reliable, especially if two such methods are run in parallel, although some tweak-

ing might be needed. Using multiple conventional methods could potentially also

reduce some of the inherent inflexibility. I would not, however, recommend using

only conventional methods-based ALPR in any other scenarios.

ALPR systems, using only machine learning methods (e.g. YOLOv5), can be

utilized in any ALPR scenario and should be considered if the developer of the

system does not actually have strict control of the installation of the cameras

and the setup of the systems themselves or if the conditions and visibility are

expected to vary to a large degree. The robustness that the ML-based object
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detectors provide, granted that they have been trained on data with enough

variation, ensures that they will be a good choice regardless of the quality of

the camera installation. One important matter to note is that a system based

entirely on object detectors could run into issues with detecting license plates

of different types or layouts than those on which they have been trained. The

character detectors should do fine, as long as they are of similar enough fonts.

Machine learning-based license plate detection combined with conventional

OCR can be used in any case where ML-only ALPR systems could be used.

However, the conventional OCR methods are, as mentioned, subject to difficul-

ties in varied environments. As such, I would not necessarily recommend this

combination for any ALPR case, as it still requires gathering and labeling a li-

cense plate data set for the region in which the ALPR-system will be run. That

being said, one reason to choose this combination is that the ML-based character

detectors require more training than the license plate detector.

Finally, the combination of motion detection and machine learning-based OCR

can be employed successfully in ALPR-systems where camera is not moving, but

one does not wish to run very powerful object detectors for each camera. To

clarify, this combination could be used in instances where a less powerful computer

runs the relatively simple process of motion detection, and sends the images to a

server that is capable of performing machine learning-based OCR. One significant

drawback with this combination is that the machine learning OCR would be run

on an image containing not only the license plate, meaning one would have fewer

pixels per character. There would also be a large degree of variation in the size

of the characters in the images presented to the character detector, compared to

a scenario where the character detector receives images cropped exactly to the

bounds of the license plates.

106



Figure 62: The different arrangements of ALPR evaluated in this thesis.
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7 Conclusion

The deep learning methods require large amounts of data to train the model on,

which brings us to one of the bigger issues with object detection problems in

general, good data sets are difficult to find and labor-intensive to procure. In

addition to this, the more flexible one needs the model to be the more variation

the data set needs to have, making it even larger and, thus, requiring more manual

labor. More variation in the data set also means that the model will need more

parameters to learn all the different features, meaning the model will require more

compute power to run. License plate data sets are not widely available, since they

contain personally identifiable information (unless properly cleaned, the images’

metadata may contain timestamps and GPS coordinates, making the data quite

sensitive) and those who possess good data sets are not likely to share.

Figure 63: The cleaning process of an image before passing it to Tesseract OCR. The

"cleaned" image was the final result, in which Tesseract OCR correctly found the text

"EA7THE", however, the "rotated" image was intentionally rotated by 2 degrees and

after which Tesseract OCR recognized "Vail" instead.
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It should be noted that while license plate data sets are not readily available,

pre-trained models capable of vehicle detection are. In addition to this, we have

seen that generated data can be used (at least partially) to train license plate

character detectors. There are also existing frameworks for text recognition (e.g.

Tesseract OCR) but such frameworks can be quite demanding with the quality

of the image, the font, skew and perspective etc. As can be seen in Figure 63,

Tesseract OCR does not respond well to skew.

In the end, we have learned that it is possible to complement an otherwise

lacking license plate data set with generated data, how important it is to make

sure that the label boxes are as close to the truth as possible and that it is worth

the effort of creating a program to automatically adjust the character labels, even

if they may seem perfectly labeled.

7.1 Further Comparisons

The Viola Jones classifier for license plate detection on scaled-down images could

potentially be used to rapidly detect license plates before running OCR on the

cropped license plate (not scaled down). The drawback of this approach, as

discussed, is that the Viola Jones cascading classifier is prone to false positives,

leading to excessive time spent by the OCR program trying to identify characters

in images that do not contain license plates. Regardless, this could be a viable

option that was not tested within the scope of this thesis.

7.2 Further Improvements

Tests of the meta data analyses mentioned, namely the idea of combining previous

recognitions based on their locality in the image to complete a license plate that

is partially obscured, e.g. by a tow hook or a bright reflection, were regrettably

not done in this thesis. These meta data analyses are likely going one of the

best ways to improve the performance of an ALPR system that is not always

producing consistent recognitions.

As mentioned in section 4.2, the character detector could utilize the fact that

the license plates are not filling up the entire 640 × 640 size image, such that
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multiple license plates could be processed at once. This would imply half the

processing time for detecting characters for an image with two license plates in

it. This makes sense, because the object detector will take just as long to process

the image regardless of whether only half the image contains a license plate or

whether it is entirely covered with license plate images. The limiting factor here

is of course whether the license plates will fit into the 640×640 size image without

scaling them down. A small amount of scaling could be acceptable in order to

increase performance.

Once a license plate has been successfully detected, the ALPR program could

skip the license plate detection step for a few frames and simply crop the expected

position of the license plate based on the direction and rate of change of the

detected characters in the plate.
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Svensk sammanfattning

En studie om automatisk

nummerplåtsigenkänning

Introduktion

Automatisk nummerplåtsigenkänning, ALPR 2, är en automatisk process som går

ut på att extrahera och känna igen tecknen i en bild som innehåller nummerplåtar.

Målet med avhandlingen är att beskriva hur man kan implementera de oli-

ka delsystem som behövs för ALPR och att kvalitativt beskriva hur moderna

respektive äldre tekniker presterar och hur de skiljer sig från varandra.

År 1969 ordnades en konferens om fordonsigenkänning, och redan då nämndes

automatisk nummerplåtsigenkänning. Sedan dess har forskningen gått framåt och

idag finns ett stort urval av metoder att välja mellan. I min avhandling skriver

jag om hur utvecklingen sett ut och om de system för nummerplåtsigenkänning

vi har idag. Jag har valt att fokusera på YOLO-algoritmen och jämföra den med

konventionella metoder.

YOLO-algoritmen

För att täcka den teoretiska bakgrund som behövs för att förstå hur YOLO-

algoritmen implementeras tar jag i min avhandling avstamp i teori om maskin-

inlärning och neurala nätverk. Jag beskriver hur respektive uppstått och utveck-

lats, och går stegvis igenom hur utvecklingen lett till det nyaste vi ser och an-

vänder inom datorsyn (computer vision) idag, för att slutligen komma fram till

objektsdetekteringsalgoritmen YOLO. Eftersom YOLO-algoritmen är en snabb

och modern objektsdetekteringsalgoritm lämpar den sig väl för objektsdetekte-

ring i realtid. En del andra algoritmer kan producera detektioner med högre träff-

säkerhet än YOLO-algoritmen, men de gör det ofta i en långsammare takt och

medför därför inte samma potential för statistisk meta-analys av detektionerna.
2ALPR står för Automatic License Plate Recognition.
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Detta är en av YOLO-algoritmens fördelar i jämförelse med andra alternativ,

och samtidigt även orsaken till att jag valt att i min avhandling fokusera på just

YOLO-algoritmen. Då YOLO-algoritmen används blir det möjligt att göra en

statistisk meta-analys av detektionerna, vilket i praktiken innebär att man jämför

alla detektioner och analyserar vilka tecken som mest sannolikt förekommer i

nummerplåten och i vilken ordning. På detta vis höjs reliabiliteten, och det går

att med större säkerhet lita på resultatet än om man bara hade litat på en eller

ett fåtal detektioner. YOLO-algoritmen är i jämförelse med andra alternativ en

så pass snabb objektsdetektor att det kompenserar för den något lägre träff-

säkerhetsnivån som YOLOmedför jämfört med andra moderna objektsdetektorer.

Teoretisk bakgrund och centrala begrepp

Klassificering, igenkänning, lokalisering och objektsdetektering är centrala be-

grepp inom nummerplåtsigenkänning.

Klassificering är att baserat på en datapunkts egenskaper tilldela den en klass.

Ett datorsynsexempel på klassificering är att ett datorprogram konstaterar att

en bild föreställer en katt. Med igenkänning avses processen att känna igen ett

specifikt exemplar inom en klass, dvs. att katten i fråga konstateras vara den

specifika katten Maui och inte vilken katt som helst. Lokalisering är den process

som gör det möjligt att upptäcka någonting i en bild och att kunna definiera var

i bilden objektet i fråga befinner sig, men utan att definiera vilken klass objektet

tillhör.

Objektsdetektering är i princip en kombination av klassificering och lokali-

sering, dvs. att känna igen vad och var objekten i en bild är. Moderna maski-

ninlärningsbaserade objektsdetektorer gör detektioner på en gång, medan mer

primitiva metoder skapar implicita detektioner genom att kombinera separata

steg av lokalisering och klassificering.

Innan maskininlärning med djupa neurala nätverk blev genomförbart i realtid

på lättillgänglig hårdvara använde man sig av mer primitiva datorsynsbaserade

metoder. Dessa metoder baserar sig på slutsatser som en människa kan dra då

hon tittar på en bild. Exempel på sådana slutsatser är att nummerplåtar har 4
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hörn och är rektangulära, de har oftast vit bakgrund (åtminstone i Finland) och

tecknen är svarta. Jag tar i min avhandling upp dylika metoder och beskriver

hur de fungerar. Man kan kombinera flera sådana metoder för att känna igen

nummerplåtar och man kan använda dem för att förbereda bilder för att lättare

producera bra nummerplåtsigenkänningar.

Metodologi

Jag tränade och testade YOLO-modeller 3 med hjälp av olika dataset. I huvudsak

tränades två sorters modeller; den första sorten känner igen bilar och nummer-

plåtar i bilder föreställande trafiksituationer. Den andra känner igen i bilder

på nummerplåtar. De två olika sorternas modeller behövdes eftersom objekts-

detektorn, YOLOv5, använder bilder med upplösningen 640 × 640 pixlar, vilket

inte räcker för att känna igen tecknen på en nummerplåt på flera meters avstånd

från kameran. Den första modellen gavs alltså bilder som urpsrungligen var 1920×

1080 pixlar stora omskalade till 640×640, vilket duger för att känna igen bilar och

nummerplåtar. Efter att ha detekterat en nummerplåt inom samma ramar som

man detekterat en bil konverteras koordinaterna till den ursprungliga bildens

koordinatsystem. Nummerplåten klipps sedan ut i full upplösning och skickas

vidare till teckendetektorn.

Nedan beskriver jag de dataset (samlingar av bilder) som användes för att

skapa de dataset (samlingar av bilder och motsvarande annoteringar 4) som jag

sedan använde för att träna YOLO-modellerna som testades.

För det första datasetet annoterade jag bilar och nummerplåtar. Det första

datasetet beskriver alltså var det finns bilar och nummerplåtar i bilderna.

För det andra datasetet klippte ett program automatiskt ut nummerplåtar-

na enligt annoteringarna i det första datasetet. Efter att programmet klippt ur

nummerplåtarna annoterade jag manuellt de enskilda tecknen.
3YOLO-algoritmen används för att träna djupa neurala nätverk. Då man använder olika

dataset för att träna ett neuralt nätverk uppstår olika modeller, även om strukturen på själva

nätverket är densamma.
4med annotering menar jag här att jag markerat objektets position och dess klass i en separat

fil som YOLO-algoritmen sedan läser under träningsprocessen.
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Jag använde mig av ett eget finskt dataset och ett kroatiskt dataset för att

skapa dataseten och sedan träna YOLO-modellerna. Det första datasetet med

annoterade bilar och nummerplåtar användes för att träna bil- och nummerplåts-

detektorer medan det andra datasetet med annoterade tecken användes för att

träna teckendetektorer.

Ursprungligen använde jag mig av det kroatiska datasetet eftersom det var

tillgängligt utan licens för studerande. Jag märkte att variationen i tecknen på de

kroatiska nummerplåtarna dessvärre inte är så stor och att upplägget på plåtarna

i sig inte är detsamma som på finländska nummerplåtar. På grund av detta valde

jag att skapa ett eget finskt dataset.

Variationen i dataseten var fortfarande liten och därför skapade jag ett pro-

gram som genererar annoterade bilder på nummerplåtar och dessutom förvränger

bilderna på olika sätt för att skapa mer variation. Nummerplåtsdetektorerna pre-

sterade tillräckligt bra utan genererade data, men sådana data behövdes för

att träna teckendetektorerna. Kombinationen av det kroatiska, det finska och

mitt eget genererade dataset fungerade bra för att träna teckendetektorerna till

applicerbar träffsäkerhet.

Under träningen av modellerna lade jag även märke till att det ibland uppstod

stor variation i resultatet, dvs ibland presterade modellen bra och ibland sämre.

Vid närmare efterforskning märkte jag att modellen presterade enligt förväntan

trots att de finska och det kroatiska datapunkterna i dataseten var de samma,

men bara de genererade nummerplåtarna var olika från test till test. Min slutsats

var att annoteringarna av tecknen i de genererade nummerplåtarna inte längre

motsvarade tecknens egentliga positioner i de förvrängda bilderna. På grund av

denna variation klarade inte YOLO-algoritmen av att träna modellerna till lika

hög precision som den kunde då annoteringarna var mer korrekta.

Jag åtgärdade detta genom att skapa ett program som automatiskt korrige-

rar annoteringarna genom att processera de genererade bilderna. Detta program

användes sedan för att förbättra annoteringarna i såväl de manuellt annoterade

dataseten som de automatiskt genererade dataseten.

För att sedan jämföra skillnaden i dataset med bra och dåliga annoteringar

jämfördes ett dataset med korrigerade annoteringar och en kopia av det där
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annoteringarna justerades godtyckligt, men till en minimal grad, för att simu-

lera manuella annoteringar. Skillnaden var tillräckligt stor för att vara värt den

investerade tiden eftersom resultaten blev bättre.

Resultat

Efter att ha tränat YOLO-modellerna och testat konstaterade jag att YOLO-

modellerna är en bra metod för nummerplåtsdetektering.

De mer konventionella, datorsynsbaserade metoderna kan ge goda resultat

för ALPR om omgivningen, eller indata, inte har stora förändringar. De medför

dock aldrig samma flexibilitet som en objektsdetektor baserad på neurala nätverk,

t.ex. YOLOv5, gör. Eftersom neurala nätverk imiterar den biologiska hjärnan är

de på samma sätt flexibla med hur de tolkar data. Konventionella metoder kräver

däremot ofta mycket justering och petande med detaljer för att uppnå resultat,

och påverkas därför mer av t.ex. varierande väderförhållanden.

Diskussion

Trots att jag skapade ett eget finskt dataset visade det sig att inte heller det

datasetet hade tillräckligt stor variation i de tecken som ingick. Detta berodde på

att bilderna togs från insidan av en bil i rörelse, och samma nummerplåtar har

därför fastnat på flera bilder. Eftersom vissa tecken förekom oftare än andra blev

modellerna mer benägna att föreslå dem än andra. I min avhandling kunde jag

motverka denna utmaning genom att skapa ett genererat dataset.

Om någon annan skulle göra ett motsvarande arbete, vill jag alltså påpeka

att det är möjligt att komplettera ett annars otillräckligt dataset med genererad

data eftersom det sparar tid och resurser jämfört med att samla in och annotera

ett tillräckligt stort och varierande dataset. Oberoende av vilken typ av dataset

man använder sig av är det viktigt att noggrant kontrollera att annoteringarna

är så goda som möjligt.
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