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Abstract:  

Having an accurate forecast of the upcoming demand is of utmost importance to a retail company, 

as it helps the retailer plan the day-to-day activities and optimize the supply chain. At the same 

time, retailers also gather a substantial amount of data about everything from weather conditions 

to promotional campaigns, having the potential to improve the forecasts when used right.  The 

aim of this thesis is to compare time series analysis, which only utilize the past sales data, to 

machine learning models, which can also utilize other data, when forecasting retail sales figures. 

The comparison is conducted by a thorough literature review and an empirical study where 

forecasting is performed on a set of Walmart sales data. The forecasting methods used in the 

empirical study are ARIMA, Holt-Winter’s exponential smoothing, linear regression, decision 

tree and artificial neural networks, and the results of the empirical study suggest that ARIMA 

and Holt-Winter’s exponential smoothing are the best performing models on this particular 

dataset.  
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1. Introduction/background 

 

 

1.1. Introduction 

 

For a retail company, there are two main factors thar affect its profitability: a 

positive customer base of a sufficient size and a healthy cost structure. Maintaining the 

customer base requires knowing the customers, whereas maintaining the cost structure is 

more complicated. The latter involves everything from planning the upcoming shifts so 

that neither over- nor understaffing occurs, to maintaining a proper inventory level to 

ensure that the stock is not depleted at the same time as trying to avoid overstocking, and 

hence prevent unnecessary costs. Most of the factors affecting the cost structure of a retail 

company have one common underlier – the demand. 

 Knowing, or at least having an idea of, the upcoming demand for the products 

being sold has many benefits. For example, it has a significant positive impact on planning 

the upcoming shifts, mitigating the situations where over- or understaffing occurs 

(Defraeye and Van Nieuwenhuyse, 2016), it facilitates the supply chain maintenance, 

avoiding as much under- or overstocking as possible (Carbonneau, Laframboise and 

Vahidov, 2008), and it also assists in making the sales plan (Ma, Fildes and Huang, 2016). 

For example, when running a grocery store, knowing that the weeks before Christmas tend 

to be one of the busiest times of the year and the sales of ham is substantial already helps. 

In addition to this, knowing approximately how much ham is expected to be sold during 

Christmas mitigates the risk of under- or overstocking, which in turn reduces the number 

of unhappy customers or unnecessary costs in terms of personnel or inventory costs. 

Knowing that Christmas is one of the busiest periods of the year is already the result of a 

demand forecast itself, but a more accurate demand forecast is often desired. The fact that 

companies around the world spend billions of dollars yearly on consulting fees, software 

and personnel in order to attain accurate demand forecasts (Aiyer and Ledesma, 2004) is 

a clear sign that reliable demand forecasts are highly desired. 



A. Lindfors: Demand Forecasting in Retail: A Comparison of Time Series Analysis and Machine 

Learning Models 

 

2 
 

 One of the main incentives behind the high demand for the most accurate demand 

forecasting techniques is the effect they have on inventory planning. According to Tuovila 

(2020), the cost of carrying inventory is 20% to 30% of the value of the total inventory. 

Even though the buy-in price of a product is most often cheaper when bought in bulk 

(Mueller, 2019), the actual price of the product for the retailer could eventually become 

higher than the non-bulk price, if there is not enough demand for the product and the 

inventory carrying cost is considered. Kot, Grondys and Szopa (2011) found that high 

error in demand forecasting combined with poor communication in the supply chain led 

to increased costs because of increased inventory levels, and Watson (1987) showed that 

demand forecast variations increased the annual inventory carrying costs. Even though the 

major costs related to inventory errors come from overstocking, it is also important to note 

the disadvantages of understocking. As Beutel & Minner (2012) showed, having a 

shortage in stock would ultimately lead to customer dissatisfaction, which in turn could 

lead to loss of customers, reputation damage, loss of profits, etc. 

 A focal point of the research on demand forecasting in the past decades has been 

the seasonal variation that different industries face. Many time series analysis models have 

been developed, including time series regressions, time series decomposition, exponential 

smoothing and the autoregressive and integrated moving average (Chu & Zhang, 2003). 

Although these models work – at least to some degree – they have their flaws, mainly 

because they are all linear models. Hence, they are very user-reliant and depend on the 

user to specify the model form in order to work properly. In many cases, the user does not 

have the necessary knowledge of the relationships in the data, meaning that the specified 

model form will be inaccurate, or at least not as accurate as desired. (Chu & Zhang, 2003). 

To tackle the problem of the high user dependency of the time series analysis models, 

many machine learning models have been developed over time, most notably the decision 

tree and the artificial neural networks (ANN). An ANN is a model designed to follow the 

decision-making process of a human brain and it can be used for many different types of 

complex problem solving, out of which forecasting is only one application (Nielsen, 

2015). While the structure and design of an ANN can be highly complex, the major 

advantage of an ANN as a forecasting method is that it does not need any human input 

other than a training dataset in order to be able to generate forecasts. The ANN is 
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automatically able to determine the relationships in the data and, therefore, eliminates the 

problem of the time series analysis (Nielsen, 2015). 

Even though some research has been conducted regarding the differences between 

time series analysis and machine learning models in the retail industry, much of the 

research on the topic has focused on other industries. In addition to this, the fact that 

forecasting methods are highly case sensitive warrants further research on the topic of 

demand forecasting in the retail industry. Thus, this thesis will aim to clarify the 

differences between the most common time series analysis and machine learning models 

through a thorough literature review. It will also apply selected time series analysis models 

as well as an ANN and a decision tree model to a set of retail sales data in order to 

determine if there is a substantial difference in the performance of the models. 

 

 

1.2. Objective 

 

Given the lack of previous research regarding the differences between time series 

analysis and machine learning models for forecasting in the retail industry, the objective 

of this study is to provide a thorough comparison between them.  

In order to address this research objective, the thesis attempts to answer the following 

two research questions: 

1. Do forecasting methods utilizing machine learning techniques perform better 

than the time series analysis models? 

 

2. Which forecasting method gives the best performance in sales forecasting? 
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1.3. Method 

 

To answer the first research question, a literature review treating the most popular 

forecasting methods and an empirical study of sales forecasting in the retail industry will 

be conducted. The literature review will be conducted first as it will be used to select the 

appropriate forecasting models to be used in the empirical study. The empirical study will 

then be conducted by applying the chosen forecasting models to a dataset of the sales data 

of Walmart, which has been acquired from the machine learning community Kaggle. The 

forecasting models will be developed using various software and predesigned models for 

Python, as it makes it possible to include more models in the comparison due to less 

programming skills being required from the author.  

The second research question will be answered by examining the literature review and 

the results of the empirical study. The forecast accuracy metrics of the empirical study 

will be compared to each other, whereafter an answer will be suggested based on the 

findings of the literature review and the empirical study. 

 

 

1.4. Structure of thesis 

 

The upcoming work of the thesis will be structured as follows. First there will be a 

literature review focusing on time series analysis models and some alternative, more 

progressive machine learning models. The results of the literature review will be analyzed, 

and the time series analysis models will be compared to the alternative models. After this, 

a few models will be chosen and applied to a dataset in Python to compare their real-world 

performance in order to find an answer to the research questions. The methods will be 

explained and the results will be discussed, and finally further research opportunities will 

be defined. 
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2. Literature review 

 

This chapter will provide a thorough literature review of the most common time 

series analysis models, as well as some more advanced machine learning models. The time 

series analysis models to be discussed are the moving average, the exponential smoothing 

and the ARIMA model, and the machine learning models covered will be the linear 

regression, the artificial neural network and the decision tree. While linear regression is a 

form of time series analysis, it utilizes machine learning and will therefore be considered 

a machine learning model in this thesis. We will first go through the previously mentioned 

time series analysis models, after which we will examine the machine learning models. 

All sections will follow the same structure – the models will first be presented and 

explained, whereafter the previous research on the models will be presented. 

 

 

2.1.  Time series analysis 

 

In order to produce accurate forecasts, it is crucial to have a complete 

understanding of the time series data that the forecast is based on. Different forecasting 

methods are best suited for different types of data and, therefore, it is of utmost importance 

to know the characteristics of the time series in order to be able to choose the most 

appropriate forecasting method. The most important characteristics to know about a time 

series when choosing a forecasting method are the patterns, such as seasonality, and the 

trend of the time series. In this section, the different patterns of a time series will be 

discussed, and some forecasting methods suited for each pattern will be mentioned. 

Anderson, Sweeney and Williams (2011) describe time series analysis as follows: 
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“The objective of time series analysis is to discover a pattern in the historical data or 

time series and then extrapolate the pattern into the future; the forecast is based solely on 

past values of the variable and/or on past forecast errors.” 

 

 

2.1.1. Time series patterns 

 

 A time series can have many kinds of patterns and in order to attain a basic 

understanding of the patterns, Anderson, Sweeney and Williams (2011) suggest that a 

simple plot of the time series should be constructed. The graphical presentation of the time 

series can often be enough for the user to identify that the data exhibits a clear pattern. 

However, in order to fully understand the characteristics of the pattern, more advanced 

methods than a time series plot might needed. The pattern of a time series is an important 

part of understanding the past behavior of the time series, and if this behavior can be 

expected to continue in the future, the pattern can be used to help selecting a proper 

forecasting method. (Anderson, Sweeney and Williams, 2011) 

 Some of the most common patterns of a time series are horizontal patterns, trend 

patterns, seasonal patterns, and cyclical patterns (Anderson, Sweeney and Williams, 

2011). A horizontal pattern is a pattern that moves around the mean of the time series and 

it is always present in a stationary time series (discussed further in Section 2.4.1). Even 

though a horizontal pattern moves around the mean of the time series, the level of the 

pattern can change in some cases, for example if new distribution contracts that increase 

the sales of a product are signed. In these cases, we can observe a quick rise of the level 

of the trend whereafter the trend continues as horizontal. (Anderson, Sweeney and 

Williams, 2011) 

 One of the most typical patterns of a time series is the trend pattern, or just simply 

the trend of a time series. A trend is when a time series constantly moves towards lower 

or higher values during a long period of time. The trend pattern does not exclude the 

existence of other patterns, such as seasonality, in the time series, but trend and horizontal 
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patterns cannot exist at the same time, as they are mutually exclusive. The reason we have 

trends are usually long-term factors such as population growth or decreases, or change of 

consumer preferences. (Anderson, Sweeney and Williams, 2011) 

 The seasonal pattern and the cyclical pattern have similar characteristics but are 

still notably different from each other. A seasonal pattern is recognized by observing the 

same pattern in the time series being repeated every season. For example, the sales of ice 

skates would probably be expected to increase every winter before decreasing to a lower 

level as we approach summer, showing the characteristics of a seasonal pattern. Even 

though the seasonal pattern might be thought to occur yearly, it can also be seen in shorter 

periods, or seasons, such as months or even days when the time series represents data with 

shorter seasons. A cyclical pattern on the other hand is a pattern in which the observations 

alternate between points below and points above the trend line for longer than a year. 

Cyclical patterns are often observed in economic time series as a result of multiyear 

business cycles caused by periods of moderate inflation followed by periods of rapid 

inflation. Anderson, Sweeney and Williams (2011) emphasize that due to the high 

difficulty of forecasting business cycles, the cyclical effects are often combined with the 

long-term trend. (Anderson, Sweeney and Williams, 2011) 

 When the pattern of the time series has been identified it is of utmost importance 

to select the appropriate forecasting method or otherwise the accuracy of the forecast will 

most likely suffer. When there is a horizontal pattern and the time series is stationary, an 

average of past observations may be used. If there is a horizontal pattern but the time series 

is not stationary because of changes in the level of the pattern, the naïve method, which 

uses the last observation as the forecast for the next observation, may be used. The simple 

moving average, weighted moving average and exponential smoothing are other methods 

suited for a time series with a horizontal pattern. If we have a trend pattern, on the other 

hand, linear regression or Holt’s linear smoothing will most likely be the most suitable 

forecasting models. If we have a season 

al pattern, then a multiple regression model with dummy variables for each season could 

be used, and if we have both seasonality and trend, a trend variable might be added to the 

regression model. (Anderson, Sweeney and Williams, 2011) 
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2.1.2. Forecast accuracy 

 

As there are usually many different models suitable for capturing the pattern in the 

time series, the accuracy of the forecasts can be measured in order to decide which method 

to use. Forecast accuracy is measured by running the forecasting method on data that 

already exists, and then measure how close to the actual observations the forecasts are. 

When this is done, the method with the lowest forecast error can then be chosen to forecast 

the upcoming observations. (Anderson, Sweeney and Williams, 2011) 

Anderson, Sweeney and Williams (2011) define a forecasting error by the following 

formula: 

Forecast Error = Actual Value – Forecast  (2.1) 

 

There are many ways of measuring the forecast error of a time series forecast but some of 

the most common methods are the mean absolute error (MAE), the mean squared error 

(MSE) and the mean absolute percentage error (MAPE): 

 

𝑀𝐴𝐸 =
∑ |𝑦𝑖−𝑥𝑖|𝑛

𝑖=1

𝑛
    (2.2) 

𝑀𝑆𝐸 =
∑ (𝑦𝑖−𝑥𝑖)2𝑛

𝑖=1

𝑛
     (2.3) 

𝑀𝐴𝑃𝐸 =
∑ |(𝑦𝑖−𝑥𝑖) 𝑦𝑖⁄ |𝑛

𝑖=1

𝑛
 ,  (2.4) 

where yi is the predicted value at time i, xi is the predicted value at time i, and n is the 

number of observations. 

 

The MAE is the average of the absolute value of all the forecast errors whereas the MSE 

is the average of the squared forecast errors, both eliminating the problem of positive and 

negative forecast errors offsetting each other. While both methods give an easily 
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interpretable forecast error, the scale of the data highly affects the result. To solve this 

problem, we have the MAPE which is similar to the MAE but, instead, measured in 

percentage. To calculate the MAPE we must first measure the absolute percentage error 

for each forecast, whereafter we calculate the average of all absolute percentage errors. 

According to Lewis (1997), if we get a MAPE below 10% it can be considered a good 

forecasting error and a sign that the forecasting method we use is fairly accurate. 

(Anderson, Sweeney and Williams, 2011) 

 

 

2.2. Exponential smoothing  

 

Exponential smoothing was introduced in the late 1950s and early 1960s by Holt (1957, 

reprinted in 2004), Brown (1959) and Winters (1960) and has since been used as a base 

for many successful forecasting methods. The exponential smoothing method generates 

forecasts that are weighted averages which use exponential weighing, giving the most 

recent observations more weight. (Hyndman & Athanasopoulos, 2021) 

In this section we will first present the three most important variations of the exponential 

smoothing method, and then look at the research treating exponential smoothing as a 

forecasting method in the retail industry. 

 

 

2.2.1. Single exponential smoothing 

 

The single exponential smoothing, or simple exponential smoothing as Hyndman 

and Athanasopoulos (2021) called it, is the most basic form of exponential smoothing. 

The method is used when there is no clear seasonal pattern or trend in the dataset, and 

when the naïve and average methods are unable to produce forecasts with a sufficient 
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accuracy. The naïve method assumes that the future forecast equals the last observed point 

in the series, whereas the average method assumes that the future forecast equals a simple 

average of the observed data. The single exponential smoothing on the other hand, can be 

seen as a middleman between these two models. It calculates the forecast using a weighted 

average, where the weights are exponentially distributed, giving a higher weight to the 

observation the newer the observation is. To compare it, the naïve method could be seen 

as a weighted average giving the latest observation a weight of 1 and all the other 

observations a weight of 0. (Hyndman & Athanasopoulos, 2021) 

The Naïve method, Simple Average method and Single Exponential Smoothing method 

are given as follows: 

Naïve 

                      𝑦̂𝑇+ℎ|𝑇 = 𝑦𝑇, for h = 1, 2, …   (2.5) 

 

Simple average 

                        𝑦̂𝑇+ℎ|𝑇 =
1

𝑇
∑ 𝑦𝑡

𝑇
𝑡=1 , for h = 1, 2, …   (2.6) 

 

Single exponential smoothing 

 

               𝑦̂𝑇+1|𝑇 = 𝛼𝑦𝑇 + 𝛼(1 − 𝛼)𝑦𝑇−1 + 𝛼(1 − 𝛼)2𝑌𝑇−2 + ⋯  (2.7) 

 

where 0 ≤ α ≤ 1 is the smoothing parameter. 

 

As the smoothing parameter is a constant value between one and zero the model above 

clearly shows how the smoothing parameter controls the rate at which the weight 
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exponentially decreases by time. Table 2.1 below shows the weight of the six previous 

observations given four different smoothing parameters.  

 

Table 2.1 

Hyndman & Athanasopoulos (2021), Forecasting: Principles and Practice, Chapter 8. 

 

As can be seen here, the higher the smoothing parameter is, the more weight is given to 

recent observations and the rate at which the weight decrease is higher. If we go to the 

extremes where α = 1 and α = 0, we get forecasts equaling the ones of the naïve and 

average method. Also, the more weight is given to recent observations, the faster the 

model is in reacting to changes. 

When using a single exponential smoothing method there are two problems that need to 

be solved before the model can be used. A starting point – meaning how many past 

observations are included – and an α value for the calculation must be chosen. If the 

dataset is relatively small it might be acceptable to include all past observations in the 

calculations, but as the dataset grows larger it fast becomes unnecessary to include all 

observations. Due to the exponential smoothing, the weight of the past observations 

reaches close to zero quickly, and therefore, it is an unnecessary strain to include too many 

observations in the calculation as the older observations would carry a weight close to 

zero. When it comes to selecting a proper value for α, it can in some cases be chosen 

subjectively by the forecaster, but it is usually feasible to obtain the unknown parameters 

from the observed dataset. This is done by finding the values that minimize the sum of the 
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squared residuals, or sum of the square errors (SSE) as it is also called. The formula for 

SSE is the following and we want to find the values that minimize the outcome 

 

𝑆𝑆𝐸 = ∑ (𝑦𝑡 − 𝑦̂𝑡|𝑡−1)2𝑇
𝑡=1 = ∑ 𝑒𝑡

2𝑇
𝑡=1  .   (2.8) 

 

To solve this minimization problem, an optimization tool such as R must be used, as the 

problem includes a non-linear minimization problem that cannot be solved by using any 

formula. (Hyndman & Athanasopoulos, 2021) 

 

 

2.2.2. Double exponential smoothing 

 

The double exponential smoothing method was developed by Holt (2004) to extend simple 

exponential smoothing to be able to forecast data with a trend. Thus, the model is also 

known as Holt’s linear trend model. The main difference between the single and double 

exponential smoothing models, apart from the ability to predict based on data with a trend, 

is that the double exponential smoothing uses two smoothing factors whereas the single 

exponential smoothing model only uses one. (Hyndman & Athanasopoulos, 2021). The 

formulas for double exponential smoothing are given as follows: 

 

Forecast equation:   𝑦̂𝑡+ℎ|𝑡 = 𝑙𝑡 + ℎ𝑏𝑡    (2.9) 

Level equation:  𝑙𝑡 =∝ 𝑦𝑡 + (1−∝)(𝑙𝑡−1 + 𝑏𝑡−1)  (2.10) 

Trend equation:  𝑏𝑡 = 𝛽(𝑙𝑡 − 𝑙𝑡−1) + (1 − 𝛽)𝑏𝑡−1  (2.11) 
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where h = 1, 2, …, and 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1 are smoothing factors. The forecast equation 

consists of two separate equations for finding the level and the trend of the equation, 

respectively, both of which are weighted averages based on past values of the equations. 

As we see in Formula 2.9 and 2.10, the level equation, lt, is a weighted average of yt and 

a one step ahead forecast for time t. The trend equation, bt, is also a weighted average 

based on the difference between the level at time t and t-1, and a one step ahead forecast 

of the past trend, bt-1. The smoothing factors used in the equations for lt and bt are estimated 

in the same way by minimizing the SSE, as with the single exponential smoothing. 

(Hyndman & Athanasopoulos, 2021).  

Hyndman and Athanasopoulos (2021) describes the core idea of double exponential 

smoothing as follows: 

 

“The forecast function is no longer flat but trending. The h-step-ahead forecast is 

equal to the last estimated level plus h times the last estimated trend value. Hence 

the forecasts are a linear function of h.” 

 

The problem with the double exponential smoothing model is that it tends to over-forecast 

in the long run as the model displays a constant trend (Hyndman & Athanasopoulos, 

2021). Due to this, Gardner and McKenzie (1985) developed an improved double 

exponential smoothing model that includes a damping-parameter which flattens the trend 

into a flat line in the long run. According to Hyndman and Athanasopoulos (2021), 

methods which include a damped trend tend to perform much better than methods with a 

constant trend. The improved double exponential smoothing model from Hyndman and 

Athanasopoulos (2021) is as follows: 
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Forecast equation:  𝑦̂𝑡+ℎ|𝑡 =  𝑙𝑡 + (𝜑 + 𝜑2 + ⋯ + 𝜑ℎ)𝑏𝑡  (2.12) 

Level equation:  𝑙𝑡 =∝ 𝑦𝑡 + (1−∝)(𝑙𝑡−1 + 𝜑𝑏𝑡−1)  (2.13) 

Trend equation:  𝑏𝑡 = 𝛽(𝑙𝑡 − 𝑙𝑡−1) + (1 − 𝛽)𝜑𝑏𝑡−1  (2.14) 

 

Where  0< 𝜑 <1 is the damping parameter, and if the damping parameter would equal 1, 

the method would be identical to Holt’s linear method. The lower the damping parameter 

is, the faster the model is to dampen the curve and vice versa. In practice, however, the 

damping parameter is often restricted to a value between 0.8 and 0.98, as a value lower 

than 0.8 results in a strong damping effect that dampens the curve too fast, and a value 

over 0.98 results in a damping effect that is nearly impossible to distinguish. (Hyndman 

& Athanasopoulos, 2021) 

 

 

2.2.3. Triple exponential smoothing 

 

Holt (2004) and Winters (1960) further developed the double exponential 

smoothing method so that it could take seasonality into account. The model they 

developed is the triple exponential smoothing model, or Holt-Winters' seasonal method, 

and in addition to the two smoothing equations for level and trend in the double 

exponential smoothing method, it also includes a third equation for seasonal components. 

Thus, it also includes a third smoothing factor, and the name of the model is explained. 

(Hyndman & Athanasopoulos, 2021) 

There are two different versions of the triple exponential smoothing method, which are 

used depending on the type of seasonality in the data. If the seasonal variations are 

constant throughout the series, the additive method is used, and if the seasonal variations 

are changing proportionally to the level of the series, the multiplicative method is used. 

The additive and multiplicative method are defined as follows: 
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Holt-Winters' additive method 

Forecast equation:  𝑦̂𝑡+ℎ|𝑡 = 𝑙𝑡 + ℎ𝑏𝑡 + 𝑠𝑡+ℎ−𝑚(𝑘+1)  (2.15) 

Level equation:  𝑙𝑡 =∝ (𝑦𝑡 − 𝑠𝑡−𝑚) + (1−∝)(𝑙𝑡−1 + 𝑏𝑡−1) (2.16) 

Trend equation:  𝑏𝑡 = 𝛽(𝑙𝑡 − 𝑙𝑡−1) + (1 − 𝛽)𝑏𝑡−1  (2.17) 

Seasonality equation:  𝑠𝑡 = 𝛾(𝑦𝑡 − 𝑙𝑡−1 − 𝑏𝑡−1) + (1 − 𝛾)𝑠𝑡−𝑚 (2.18) 

 

Holt-Winters' multiplicative method 

Forecast equation:  𝑦̂𝑡+ℎ|𝑡 = (𝑙𝑡 + ℎ𝑏𝑡)𝑠𝑡+ℎ−𝑚(𝑘+1)  (2.19) 

Level equation:  𝑙𝑡 =∝
𝑦𝑡

𝑠𝑡−𝑚
+ (1−∝)(𝑙𝑡−1 + 𝑏𝑡−1)  (2.20) 

Trend equation:  𝑏𝑡 = 𝛽(𝑙𝑡 − 𝑙𝑡−1) + (1 − 𝛽)𝑏𝑡−1  (2.21) 

Seasonality equation:  𝑠𝑡 = 𝛾
𝑦𝑡

(𝑙𝑡−1+𝑏𝑡−1)
+ (1 − 𝛾)𝑠𝑡−𝑚 ,  (2.22) 

 

where m is the frequency of the seasonality, i.e., m=12 if we have monthly data, and k is 

the integer part of (h-1)/m, which is used to ensure that the estimates of the seasonal 

indexes used comes from the final year of the sample. In the additive method the seasonal 

component, st, will add up to approximately zero within each year, whereas it will sum up 

to approximately m in the multiplicative method. (Hyndman & Athanasopoulos, 2021) 

A damped version of the triple exponential smoothing method can also be applied to both 

the additive and multiplicative version, and according to Hyndman & Athanasopoulos 

(2021) it often provides an accurate forecast for the multiplicative version of triple 

exponential smoothing. The dampening follows the same principles as explained in 

Section 2.2.2 and, therefore, the formula for triple exponential smoothing with 

multiplicative seasonality and a damped trend is as follows: 
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Forecast equation:  𝑦̂𝑡+ℎ|𝑡 = [𝑙𝑡 + (𝜑 + 𝜑2 + ⋯ + 𝜑ℎ)𝑏𝑡]𝑠𝑡+ℎ−𝑚(𝑘+1) (2.23) 

Level equation:  𝑙𝑡 = 𝛼(
𝑦𝑡

𝑠𝑡−𝑚
⁄ ) + (1 − 𝛼)(𝑙𝑡−1 + 𝜑𝑏𝑡−1)  (2.24) 

Trend equation:  𝑏𝑡 = 𝛽(𝑙𝑡 − 𝑙𝑡−1) + (1 − 𝛽)𝜑𝑏𝑡−1   (2.25) 

Seasonality equation:  𝑠𝑡 =  𝛾
𝑦𝑡

(𝑙𝑡−1+𝜑𝑏𝑡−1)
+ (1 − 𝛾)𝑠𝑡−𝑚   (2.26) 

 

 

2.2.4. Exponential smoothing as a forecasting method 

 

This section will present research that has been conducted using exponential 

smoothing as a forecasting method in the retail industry. It is evident that the single 

exponential smoothing is a rarely used model when it comes to the retail industry and 

therefore this section will mainly consist of research around the double and triple 

exponential smoothing models. 

 While exponential smoothing has been a popular forecasting method in recent 

years, it has not always had the same popularity. Gardner (2006) describes the reasons 

behind the lack of popularity in the early days of exponential smoothing as follows: 

 

“When Gardner (1985) appeared, many believed that exponential smoothing 

should be disregarded because it was either a special case of ARIMA modeling or 

an ad hoc procedure with no statistical rationale. Since 1985, the special case 

argument has been turned on its head, and today we know that exponential 

smoothing methods are optimal for a very general class of state-space models that 

is in fact broader than the ARIMA class.” 

 

Even though we have acknowledged the optimality of exponential smoothing 

models as stated by Gardner (2006) above, Gardner (2006) also points out that little 
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progress has been made on the identification and selection of exponential smoothing 

models. Gardner and McKenzie (1988), Shah (1997) and Meade (2000) have all addressed 

the subject of method selection, but the results are still to some degree inconclusive. While 

the aforementioned research may have developed models for selecting the proper 

exponential smoothing model, Gardner (2006) still believe it is too early and therefore 

difficult to tell if they have enough qualifications to select the right model. Despite this, 

Gardner (2006) points out that the damped models almost always beat the base models in 

forecasting accuracy. 

In a study by Jeong (2017) the additive version of the triple exponential smoothing 

was found to be the best performing exponential smoothing model when predicting the 

sales of discount stores and department stores. The exponential smoothing methods 

compared by Jeong (2017) were the double exponential smoothing, the damped double 

exponential smoothing and the additive and multiplicative triple exponential smoothing 

method. When forecasting the sales of discount stores, Jeong (2017) chose the additive 

triple exponential smoothing model, the double exponential smoothing model as well as 

the damped double exponential smoothing model for comparison based on the 

characteristics of the sales data. He found that the additive triple exponential smoothing 

model outperformed the two other models on all measurements. For example, the R-

squared was notably higher, and the MAPE and RMSE were notably lower than in the 

other two models. The additive triple exponential smoothing model also outperformed an 

ARIMA-model on many measurements, such as the previous three measurements. When 

forecasting the sales of department stores, Jeong (2017) only compared the additive and 

multiplicative triple exponential smoothing because of the highly seasonal sales data of 

the department stores. Once again, the additive model was superior only being 

outperformed by the multiplicative model on MAE which is used for estimating the worst-

case scenario. This time, however, the models performed much closer to each other, 

meaning that the forecasts would probably be quite similar no matter which model was to 

be chosen. One criticism on Jeong’s work would have to be the fact that he never followed 

up on his predictions to see how accurate they really were. Even though the results on the 

test data might be promising it is hard to say how good the actual predictions are without 

following up on how close they are to the actualized sales. This was also shown by the 
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findings of the research by Chu and Zhang (2003), in which their regression model had 

good performance on the test data but significantly worse accuracy when applied to the 

forecast data. 

Another study on exponential smoothing as a forecasting method in the retail 

industry was made by Alon, Qi and Sadowski (2001), who compared different forecasting 

models when forecasting US aggregate retail sales. They forecasted the aggregate sales of 

two periods and performed both a one-step and a multiple-step forecast for the four 

methods they compared. Even though the triple exponential smoothing was one of the two 

worst performing models in both periods when comparing the average MAPE for the one-

step and multiple-step forecast, it was the only model to perform notably better in the 

multiple-step forecasts in both periods. In period two it was actually the best performing 

model in the multiple-step forecasting but the rank was brought down by the bad 

performance of the one-step forecast. However, even though the results show that the 

triple exponential smoothing performed better in a multiple-step forecast in both periods, 

the results are also varying a lot between the two periods. In period one, the MAPE for 

the one-step forecast was 3.11% and for the multiple-step forecast 2.27%, whereas the 

same numbers for period two were 2.22% and 1.16%. This was not exclusively the case 

with triple exponential smoothing but with all the forecasting models compared, indicating 

that the models are highly case sensitive.  

A study by Makatjane and Moroke (2016) compares multiplicative Holt-Winters' 

triple exponential smoothing to the seasonal ARIMA method when forecasting short term 

car sales. They, as the previously mentioned studies, use the MAPE, R-squared and the 

MAE to measure the forecast errors and to choose the optimal model. However, unlike 

Jeong (2017) and Alon, Qi and Sadowski (2001), Makatjane and Moroke (2016) realized 

that the error measurements were not enough to draw conclusions about the best model 

and therefore they also calculated a power test which showed that the triple exponential 

smoothing model had about 0.3% more predictive power. Despite this, Makatjane and 

Moroke (2016) did not follow up on the actual sales of the twelve months they predicted 

with the triple exponential smoothing either, and therefore we once again cannot know the 

true accuracy of the predictions. 
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2.3. Moving average 

 

Another traditional way of time-series forecasting is done by calculating the 

moving average. The moving average, also known as the rolling average, takes a 

predetermined set of past observations and calculates the average of these observations. 

As the time moves forward, the oldest observations are dropped and replaced by newer 

observations, maintaining an always up-to date recent average of the measured 

development. By doing this, the moving average smooths out the short-term fluctuation 

in a time series and focuses on finding the trend of the time series (Anderson, Sweeney 

and Williams, 2011). The moving average is mainly used for predicting the development 

of financial instruments (Gunasekarage & Power (2011), Metghalchi, Marcucci and 

Chang (2012) and Fifield, Power and Knipe (2008), amongst others), but it can also be 

used for predicting retail sales (Winters, 1960) although more developed versions, such 

as SARIMA, has had greater success (Arunraj, Ahrens and Fernandes, 2016). 

Many different versions of the moving average have been developed over the years 

and in this section, we will present the two most common versions, the simple moving 

average and the weighted moving average. The more developed models using moving 

averages, such as ARIMA and SARIMA, deserve their own section and will therefore be 

discussed later in this thesis. 

 

 

2.3.1. Simple moving average 

 

The most basic form of the moving average, the simple moving average, is 

calculated by adding together all observations (e.g., the daily sales of a product or closing 

price of a stock) for a predetermined number of days and then dividing the sum by the 

number of observations. 
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𝑆𝑀𝐴 =
𝑃1+𝑃2+𝑃3+⋯+𝑃𝑛

𝑛
    (2.27) 

 

where P1, …, Pn = the most recent past observation and n = number of observations 

included in the moving average. When determining the number of observations included 

in the calculation of the moving average there are no rules on how many observations the 

user should consider. However, as James (1968) points out,  

 

“It is a fact, well known to statisticians, that the variance of an average of sample 

observations decreases as the number of observations increase.” 

 

In other words, as the number of observations we include in our moving average increase, 

the variance of the moving average decreases. This means that a moving average 

consisting of a large number of observations is slower to react to new observations than a 

moving average consisting of a smaller number of observations (James, 1960). For 

example, a 30-day moving average reacts faster when the price of a stock rises quickly 

and adjusts to the short-term trend fast, whereas a 200-day moving average might barely 

react to the quick price rise of the stock, needing many new observations of a higher price 

before adjusting the more long-term 200-day trend notably.  

When using the simple moving average model for forecasting, the assumption is 

that the recent average performance is a good predictor of the future performance (Eppen 

et al., 1993). Also, the key to attaining the most accurate prediction is to select the proper 

number of past observations to be used in the simple moving average model (Gentry, 

Wiliamowski and Weatherford, 1995). This is not exclusive to the simple moving average 

model as the number of historical observations chosen to be used for forecasting could be 

crucial to other moving average models which are to be discussed later, but it plays a 

bigger role here as there are no other factors affecting the simple moving average model. 

As was discussed earlier, the number of observations affects how fast the model reacts to 

changes, and therefore the user must consider how sensitive they need their model to be. 
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Usually, the further ahead we want to predict, the less sensitive the model needs to be. For 

example, Gentry, Wiliamowski and Weatherford (1995) compared the performance of the 

simple moving average model to neural networks and some other models on a one week 

ahead and three weeks ahead forecast, and used observations ranging all the way from two 

up to eight weeks' worth of data in their moving average models, showing that different 

number of observations are suitable for different applications. Anderson, Sweeney and 

Williams (2011) also recommend that the best number of observations included in the 

moving average model should be determined by trial and error, finding the number of 

observations that minimize the forecasting error. 

 

 

2.3.2. Weighted moving average 

 

The weighted moving average follows the same principles as the simple moving 

average with the addition that it gives more weight to the most recent observations, 

whereas all observations were equally weighted in the simple moving average model. The 

weights follow an arithmetic sequence and the sum of the weights given to all observations 

should always be 100%, or 1. (Anderson, Sweeney and Williams, 2011)  

The formula for the weighted moving average is as follows: 

 

𝑊𝑀𝐴 =
(𝑃1∗𝑛+𝑃2∗(𝑛−1)+𝑃3∗(𝑛−2)+⋯+𝑃𝑛

((𝑛∗(𝑛+1)) 2)⁄
  (2.28) 

 

where P1, …, Pn = the most recent past observations and n = number of observations 

included in the moving average.  

 

Let us look at the following example to make it clearer.  
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Table 2.2 Fictional sales 

Date Sales Weighting 

February 4 1847.50€ 4/10 

February 3 2011.79€ 3/10 

February 2 1999.99€ 2/10 

February 1 1810.49€ 1/10 

 

Given the observations in Table 2.2 we want to calculate the weighted moving average of 

the recent sales. To do this we simply multiply the given sales each day by their weights 

and then total all the values to get the weighted moving average. 

 

WMA = (1847.50 * 4/10) + (2011.79 * 3/10) + (1999.99 *2/10) + (1810.49 * 1/10) 

WMA = 1923.584€ 

 

The benefit of using the weighted moving average instead of the simple moving 

average is that the user gets a more sensitive and faster reacting model. As the recent 

observations are assigned more weight, the weighted moving average is naturally faster 

to react to changes. On the other hand, this also gives the model a higher volatility 

compared to simple moving average as more sensitivity means more movement in the 

line.  
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2.3.3. Moving average as a forecasting method 

 

When it comes to using moving averages as forecasting methods, the basic models 

are rarely used, especially when it comes to retail demand forecasting. Most researchers 

focus on models based on the autoregressive and integrated moving average (ARIMA) 

which will be covered in the next section. However, there is some research focusing on 

the basic moving average models as forecasting methods. Although most of it does not 

focus on the retail industry, it could to some degree be argued that the research could be 

applied to the retail industry as well. 

One of the few studies where the moving average is used for predicting retail 

demand is done by Chen et al. (2010). They compare a simple 7-day moving average to a 

7-day, 14-day, 21-day and a 28-day back-propagation neural network (BPNN) and 

measure the accuracy when predicting the sales of 10 different food products of a 

Taiwanese convenience store chain. They found that while the 28-day BPNN was the most 

accurate BPNN, the moving average still outperformed the 28-day BPNN on almost all 

measurements. The combined mean-squared error was by far the lowest for the moving 

average (1.0036 compared to 1.6286 for the 28day-BPNN), the number of times with no 

prediction error was notably higher for the moving average (51.79% vs. 37.14%) and the 

number of times with a prediction error of one or less was also higher for the moving 

average (82.50% vs. 78.57%). The moving average also has a smaller percentage of 

disqualified performances – performances with a prediction error greater than 2 – 

compared to the BPNN (17.50% vs. 21.43%). The only areas where the BPNN 

outperformed the moving average were the mean-squared error of three individual 

products as well as never underestimating the upcoming sales. In the eyes of the customer, 

it is obviously positive for a model to never underestimate the sales as there will never be 

a situation where the product is out of stock. However, the retailer must consider if the 

cost of losing a sale is bigger than the cost of having too much inventory, or in other words, 

if it is more profitable to have a positive or negative forecasting error. 

Samvedi and Jain (2013) compared the performance of the simple moving average, 

the weighted moving average, and a few other forecasting models in different supply chain 
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scenarios. They used what they call a two-stage scenario, which only includes the 

customer and retailer, to compare the performance of the models in simulated scenarios 

with different demands. They found that both the simple moving average and the weighted 

moving average performed best when the demand was steady and there were no 

disruptions in the demand. The only difference between the models in this scenario is that 

the weighted moving was a little bit faster to react to changes in demand. When disruptions 

in the form of sudden peaks in demand were introduced, the moving average models were 

immediately beaten by other forecasting models since moving average models tend to stay 

close to the mean value. The higher the degree of smoothing of the interruption (the more 

steps it takes to reach the peak of disruption) was, the better the moving average models 

performed, but they were still outperformed by faster reacting models. However, it is 

worth noting that Samvedi and Jain (2013) did not specify how many past observations 

they used for calculating the moving averages. Therefore, the performance of the moving 

average models could possibly be explained by Samvedi and Jain (2013) using too many 

observations for their calculations, leading to unresponsive moving average models. 

Anusha, Alok and Ashiff (2014) conducted a study where they applied the simple 

moving average as well as three exponential smoothing models to forecast the demand for 

two products sold by an Indian pharmacy chain. One of the products is used to treat 

allergies and therefore has a seasonal variation in its demand, whereas the other product 

is used to treat high blood pressure and, thus, has a relatively steady demand throughout 

the year. Anusha, Alok and Ashiff (2014) found that the simple six-month moving average 

was the most accurate model when forecasting the demand for the product with no 

seasonality, but when it comes to the product with seasonal demand, an exponential 

smoothing model performed better. This result confirms the findings of Samvedi and Jain 

(2013) as they also concluded that moving averages performed best when the demand is 

steady, but when disruptions are introduced, the moving averages are outperformed by 

other models. In the case of Anusha, Alok and Ashiff (2014) the seasonality can be seen 

as a form of disruption, as seasonal demand means that there is a high variation in the 

demand. 
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Finally, Kalaoglu et al. (2015) compared the simple moving average, the weighted 

moving average and a linear regression model when forecasting the demand for a Turkish 

clothing retailer. They found that the moving averages outperformed the regression model 

in the predictions, but the performance of the simple and weighted moving average models 

did not show any major differences when compared to each other. Also, in this study, the 

moving averages performed better on products with less seasonality, confirming the 

findings of Samvedi and Jain (2013) and Anusha, Alok and Ashiff (2014). 

To conclude the findings about the moving average as a retail forecasting method, 

they work quite well and accurately when the demand for the product being forecasted is 

steady and has few disruptions. This is because the moving average tends to stay close to 

the mean of a time series and is relatively slow to react to changes. When the demand has 

more disruptions, for example seasonality, the moving averages are often outperformed 

by advanced models as Anusha, Alok and Ashiff (2014) showed. However, it is important 

to remember that the essence of moving averages is more about finding trends (Fong & 

Yong, 2005) than predicting exact values. This is also why the moving averages are more 

commonly used for analyzing stock markets where the trends play a bigger role, than for 

predicting product demand and sales where the actual sales number plays a bigger role. 

 

 

2.4. ARIMA 

 

The autoregressive integrated moving average (ARIMA) model, along with 

exponential smoothing, are the two most widely used models for time series forecasting. 

While exponential smoothing is based on finding and describing the trend and seasonality 

in the data, the ARIMA focuses on finding the autocorrelation in the data. The ARIMA 

model is based on the ARMA model with the difference that ARIMA can use non-

stationary data while ARMA requires stationary data in order to work properly. To be able 
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to use non-stationary data the ARIMA model applies differencing to the time series data, 

making non-stationary data stationary. (Hyndman and Athanasopoulos, 2021). 

In the upcoming section we will describe the three components of an ARIMA 

model – stationarity and differencing, autoregressive models and moving average models 

– as well as how ARIMA model are constructed, whereafter we take look into the research 

made on the use of ARIMA for retail demand forecasting. 

 

 

2.4.1. Stationarity and differencing 

 

“A stationary time series is one whose statistical properties do not  depend on the 

time at which the series is observed.” Hyndman & Athanasopoulos (2021) 

 

Because of this, time series with seasonality are not stationary as the seasonality affects 

the value of the time series at different times. However, as Anderson, Sweeney and 

Williams (2011) point out, a stationary time series will always have a horizontal trend, but 

a horizontal trend does not automatically mean that the time series is stationary. In general, 

time series without predictable patterns in the long term are stationary (Hyndman and 

Athanasopoulos, 2021). Hyndman and Athanasopoulos (2021) emphasize that it in some 

cases can be confusing to determine if a time series is stationary or not, as a time series 

with cyclic behavior does not have to be non-stationary. Even though a time series with 

cyclic behavior might resemble a time series with seasonality this does not necessarily 

have to be the case as we can have cycles without a fixed length, meaning that we cannot 

be sure of the peaks of the cycle before we observe the data. Therefore, we can have 

cyclical time series that might look non-stationary at the first glance but ultimately are 

still stationary.  

To tackle the problem of stationarity, differencing has been integrated (hence the 

I in ARIMA) into the ARIMA model. Differencing is a method where a seasonal time 
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series or a time series with a trend is transformed into a stationary time series by 

computing the differences between consecutive observations (Hyndman and 

Athanasopoulos, 2021). As can be seen in Figure 2.2 by Hyndman and Athanasopoulos 

(2021), differencing has removed the trend of the time series when we observe the change 

between the closing prices each day instead of the closing prices each day. 

 

Figure 2.2  

 

Closing price vs. Change in closing price of Google stock - Hyndman & Athanasopoulos 

(2021), Forecasting: Principles and Practice, Chapter 9.1 

 

There are two main ways to conduct the differencing – the random walk model 

and the seasonal differencing model (Hyndman and Athanasopoulos, 2021). The random 

walk model follows Formula 2.29: 

 

𝑦′𝑡 = 𝑦𝑡 − 𝑦𝑡−1    (2.29) 

 

where y’t is the difference for each observation t in the original time series and a 

differenced series of the original series with t-1 values is created. The series only contains 

t-1 observations as we cannot calculate a difference for the first observation in the original 
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series. Sometimes, the data might still be non-stationary after the differencing and in those 

cases, it might be necessary to difference the data once more. This is called a second-order 

differencing (Hyndman and Athanasopoulos, 2021) and it follows the following formula: 

 

𝑦′′
𝑡

= 𝑦′
𝑡

− 𝑦′
𝑡−1

 

𝑦′′𝑡 = (𝑦𝑡 − 𝑦𝑡−1) − (𝑦𝑡−1 − 𝑦𝑡−2)   (2.30) 

𝑦′′𝑡 = 𝑦𝑡 − 2𝑦𝑡−1 + 𝑦𝑡−2 

 

where y’’t is the difference between each observation in the already differenced series, 

and this time the series will have t-2 values. According to Hyndman and Athanasopoulos 

(2021), second-order differencing is almost always enough to attain a stationary time 

series and in practice, further differencing is rarely used. 

Seasonal differencing follows the same principles as the random walk model, but it 

calculates the difference between an observation and the previous observation from the 

same season (Hyndman and Athanasopoulos, 2021). In other words, the difference 

attained from seasonal differencing is the difference between one season and the next. The 

Formula 2.31,  

 

𝑦′𝑡 = 𝑦𝑡 − 𝑦𝑡−𝑚 ,   (2.31) 

 

looks similar to the one of the random walk model, but m = number of seasons is 

introduced. In some cases, such as with the random walk model, one degree of seasonal 

differencing might not be enough. In those cases, we can difference once more using the 

random walk model resulting in the following formula: 
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𝑦′′
𝑡

= 𝑦′
𝑡

− 𝑦′
𝑡−1

 

𝑦′′
𝑡

= (𝑦𝑡 − 𝑦𝑡−𝑚) − (𝑦𝑡−1 − 𝑦𝑡−𝑚−1)  (2.32) 

𝑦′′𝑡 = 𝑦𝑡 − 𝑦𝑡−1 − 𝑦𝑡−𝑚 + 𝑦𝑡−𝑚−1 

 

 

2.4.1.1. Is differencing needed? 

 

It might not always be clear if the time series is stationary or if another level of 

differencing is needed. However, to get a more objective answer to the question, a unit 

root test, which is a statistical hypothesis test of stationarity (Hyndman and 

Athanasopoulos, 2021), can be performed. Many different unit root tests have been 

developed such as the ones by Levin, Lin and Chu (2002), Harris and Tzavalis (1999), 

and Hadri and Larsson (2005) but the most cited one is the Kwiatkowski-Phillips-

Schmidt-Shin (KPSS) test (Kwiatkowski et al., 1992). In the KPSS test, the null 

hypothesis is that the time series is stationary, and we try to prove the null hypothesis 

false. To do this the time series is expressed as a sum of a deterministic trend, a stationary 

error and a random walk, and a Lagrange multiplier test is used to test the hypothesis that 

the random walk has zero variance (Kwiatkowski et al. 1992). If the KPSS test returns 

low p-values, the conclusion can be drawn that further differencing is needed.  

The unit root tests can be quite complicated but luckily some unit root tests, such 

as the KPSS test, can be found built in or in downloadable packages for statistical 

programs such as R or Stata. Therefore, it is usually enough to know how to interpret the 

results of the test, eliminating the need for deep understanding of the processes behind the 

test. 
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2.4.2. Autoregressive models 

 

In an autoregressive model, we use a linear combination of past values of the 

variable to predict the variable of interest. (Hyndman and Athanasopoulos, 2021). An 

autoregressive model of order p, or an AR(p) model, is written as:  

 

𝑦𝑡 = 𝑐 + 𝜑1𝑦𝑡−1 + 𝜑2𝑦𝑡−2 + ⋯ + 𝜑𝑝𝑦𝑡−𝑝 + 𝑢 (2.33)  

 

where u = error term, and the lagged values of yt are the predictors, or the explanatory 

variables. Changes in the parameters ϕ1 to ϕp results in different time series patterns 

whereas variance in the error term only results in changes of the scale of the pattern. Also, 

autoregressive models are restricted to stationary data with some constraints required for 

the parameters. The restrictions for an AR(1) model are − 1 < ϕ1 < 1, and the restrictions 

for an AR(2) model are −1 < ϕ2 < 1, ϕ1 + ϕ2 < 1, ϕ2 − ϕ1 < 1. When an autoregressive 

models has p ≤ 3, the restrictions are more complicated but most statistical programs have 

built-in or downloadable packages that take care of them. (Hyndman and Athanasopoulos, 

2021) 

 

 

2.4.3. Moving average models 

 

The moving average model within an ARIMA model uses the past forecasting errors to 

create the following moving average, or MA(q), model of order q: 

 

𝑦𝑡 = 𝑐 + 𝑢 + 𝜃1𝑢𝑡−1 + 𝜃2𝑢𝑡−2 + ⋯ + 𝜃𝑞𝑢𝑡−𝑞 (2.34) 
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where u is the error term. This model reminds us of a regression model but as we do not 

observe the values of u, it is not a regression in its usual sense (Hyndman and 

Athanasopoulos, 2021). As can be seen, each value of yt can be viewed as weighted 

moving average of the past forecast errors with weights of θ1 to θq. As with the AR(p) 

models, changes in the parameters θ1 to θq results in different time series pattern whereas 

changes in the error term only results in changes of the scale of the pattern. Also, we once 

again have fairly simple constraints for the parameters of MA(1) and MA(2) and more 

complicated constraints as q is 3 or higher. The restrictions for a MA(1) model are −1 < 

θ1 < 1, and the restrictions for an MA(2) model are −1 < θ2 < 1, θ2 + θ1 > −1 , and θ1 − θ2 

< 1. (Hyndman and Athanasopoulos, 2021) 

 

 

2.4.4. The ARIMA model 

 

When combining the differencing, autoregression and the moving average model 

we get a non-seasonal ARIMA model that can be written as 

 

𝑦′𝑡 = 𝑐 + 𝜑1𝑦′𝑡−1 + ⋯ + 𝜑𝑝𝑦′
𝑡−𝑝

+ 𝜃1𝑢𝑡−1 + ⋯ + 𝜃𝑞𝑢𝑡−𝑞 + 𝑢 (2.35) 

 

where y’t is the differenced series and the predictors on the right side include both lagged 

errors and lagged values of yt. This model is also called an ARIMA(p, d, q) model where 

p is the order of the autoregression, d is the degree of differencing of the original time 

series data, and q is the order of the moving average. The same constraints that are used 

on autoregressive models and moving average models also applies to the ARIMA(p, d, q) 

model. (Hyndman and Athanasopoulos, 2021) 

Even though we have automated functions that can choose the values of p, d and 

q for us, it is important to understand the behavior of the ARIMA model. Table 2.3 shows 
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the effects of the relationship between c and d on the long-term forecasts. The value of d 

also affects the prediction intervals so that a higher value of d results in a more rapidly 

increasing prediction interval size. Also, if d is 0 the long-term standard deviation will go 

towards the standard deviation of the historical data. (Hyndman and Athanasopoulos, 

2021). 

 

Table 2.3 

 d=0 d=1 d=2 

c=0 To zero To non zero 

constant 

Follows straight 

line 

c≠0 To mean of data Follows straight 

line 

Follows quadratic 

trend 

Direction of long-term forecast using ARIMA(p, d, q) model. (Hyndman and 

Athanasopoulos, 2021) 

 

 

2.4.4.1. Seasonal ARIMA model 

 

While the basic ARIMA(p, q, d) model is a non-seasonal model, ARIMA models 

can also be used on seasonal data. In order to do so, the ARIMA(p, q, d) model is modified 

to include additional seasonal terms to become the ARIMA(p, d, q)(P, D, Q)m model 

(Hyndman and Athanasopoulos, 2021), or SARIMA as it is also known as. In the 

SARIMA model the m stands for the seasonal period of the time series (e.g., 12 for 

monthly data and 52 for weekly data) and the uppercase P, D and Q are the seasonal part 

of the model. Hyndman and Athanasopoulos (2021) explains the difference between the 

seasonal and non-seasonal parts of the model as follows: 

 

“The seasonal part of the model consists of terms that are similar to the non-

seasonal components of the model, but involve backshifts of the seasonal period.”  
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As an example Hyndman and Athanasopoulos (2021) give an ARIMA(1,1,1)(1,1,1)4 

model for quarterly data as m=4, that can be written as follows.  

 

(1 − 𝜑1𝐵)(1 − 𝝋1𝐵4)(1 − 𝐵)(1 − 𝐵4)𝑦𝑡 = (1 + 𝜃1𝐵)(1 + 𝜽1𝐵4)𝑢 (2.36) 

 

Where the first two parentheses represent AR(p) and AR(P), the third and fourth 

parentheses represent the differencing (d) and (D), the final two parentheses represent the 

MA(q) and MA(Q) and u = error term, (Hyndman & Athanasopoulos, 2021). 

 

 

2.4.5. ARIMA as a forecasting method 

 

 The statement presented in the beginning of this Section 2.4 by Hyndman and 

Athanasopoulos (2021), that ARIMA is one of the most popular time series forecasting 

methods alongside exponential smoothing, is confirmed by the amount research that can 

be found on the topic. In this section, the most relevant research that treats ARIMA models 

as a forecasting method in the retail industry will be presented. 

 Da Veiga et al. (2016) compared the performance of the triple exponential 

smoothing and ARIMA models alongside a neural network and a fuzzy system when 

forecasting the demand of three perishable food products. To estimate the parameters of 

the triple exponential smoothing and ARIMA models, da Veiga et al. (2016) used the 

Minitab statistical package and to compare the accuracy of the forecasts they used both 

the MAPE and U-Theil measures, which both take a lower value the better the forecast is. 

When comparing the forecast accuracy of the ARIMA models and the triple exponential 

smoothing models, the ARIMA model outperformed the triple exponential smoothing on 

the forecast of one product and the triple exponential smoothing outperformed the ARIMA 

models on the forecast of the two other products. However, all three forecasts with both 
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models had a MAPE ranging from 4.91 to 8.57, suggesting that they all performed 

reasonably well as a MAPE below 10 usually is a sign of a forecast that has performed 

well (Lewis, 1997). This, once again, shows that finding the best performing model is 

highly case specific, as has been shown previous in this thesis. Also, it is worth noting that 

while the time series analysis models performed well, they were outperformed by one or 

both machine learning models on the forecasts of all three products.  

The study by Alon, Qi and Sadowski (2001) brought up in Section 2.2.4. also has 

ARIMA as one of the compared models. The results of this study confirm the findings of 

da Veiga et al. (2016) as the time series analysis models performed well but were still 

beaten by a neural network. The MAPE of the time series analysis models ranged from 

1.18 to 3.11 which is notably lower than the ones by da Veiga et al. (2016). It is hard to 

pinpoint the exact reason for the better forecasting results as it could be anything from 

better optimized models to more suitable data. However, one notable result of the study 

by Alon, Qi and Sadowski (2001) is the fact that their ARIMA model was able to beat the 

neural network in forecast accuracy on one occasion. This shows that time series analysis 

models are capable of outperforming more advanced machine learning models when the 

conditions are optimal. As with de Veiga et al. (2016), Alon, Qi and Sadowski (2001) also 

found the performance of the ARIMA models and triple exponential smoothing to be close 

to each other, ARIMA having MAPEs between 1.18-2.20 and triple exponential 

smoothing having MAPEs between 1.16-3.11. 

When it comes to data with seasonality, the seasonal ARIMA model is the most 

advanced time series analysis model that has been widely successfully tested (Chu and 

Zhang, 2003). Chu and Zhang (2003) conducted a comparative study of time series 

analysis and machine learning models for aggregate retail sales forecasting. They 

compared a seasonal ARIMA model to a linear regression model as well as to neural 

networks. They used a forecasting software called Forecast Pro to automatically generate 

the best ARIMA model based on the data, and the seasonal ARIMA(0,1,1)(0,1,1)12 model 

was generated. Chu and Zhang (2003) found, as the previously mentioned research, that 

while their ARIMA model was the best performing time series analysis model, it was 

outperformed by neural networks. The performance of the ARIMA model was by no 
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means bad as the MAPE was only 2.30 which is significantly lower than the MAPE of 

5.36 of the regression model but the neural networks had MAPEs as low as 1.69. However, 

Chu and Zhang (2003) emphasize that while the MAPE of the models were low and the 

forecasts were fairly accurate, both the ARIMA model and the neural networks generated 

forecasts that were consistently lower than the actual sales. In other words, this is a clear 

under-forecasting situation where the retailer would constantly lose sales if they blindly 

trusted the forecast and did not have any safety stock. 

There is also some criticism against and disadvantages of using an ARIMA model. 

Stevenson (2007) raised concerns that if the need for differencing is varying between 

different periods in the time series and the size of the time series is limited, the suitability 

of ARIMA models can be questioned. The data used by Stevenson (2007) contained 60 

observations, which is more than the suggested minimum of 50 observations (McGough 

and Tsolacos, 1994, as well as Tse, 1997) when using ARIMA, but the observations only 

changed between four consecutive periods. This suggest that the need for differencing 

only exists for the observations around these four periods, and therefore, more suitable 

forecasting models might exist for this dataset. Another disadvantage of the ARIMA 

model is that it does not allow to estimate the direct relationship between two series 

(Jenkins, 1979), but Chamlin (1988), who studies the relationship between crime and 

arrests, points out that this is not a problem if you are interested in the lagged relationship 

between two variables. Other issues brought up by Chamlin (1988) is that ARIMA tests 

have been criticized for being too conservative when studying the causation between two 

series, as well as multivariate ARIMA models requiring long time series in order to 

produce reliable estimates of the parameters (McCleary et al., 1980).  

 

 

2.5. Time series regression 

 

Time series regression, or regression analysis using time series data, is a statistical 

method used for predicting the future outcome based on historical data. Depending on 
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how advanced the regression model is it can be divided into simple linear regression 

analysis or multiple regression analysis. (Woolridge, 2012). In order to gain an 

understanding of how time series regressions are used for demand forecasting we will first 

look at the theory behind simple and multiple regression analysis, and thereafter we will 

examine how they can be applied to demand forecasting.  

 

 

2.5.1. Simple regression analysis 

 

A simple regression model is used to study the relationship between two variables; 

how is y affected by a change in x. In retail forecasting this could be translated into, for 

example, how the sale of a product is affected by a price reduction. The model can often 

be quite limiting since it only studies two variables, but nevertheless it has its uses, and it 

is crucial to understand how a simple regression model works in order to understand 

multiple regression. Woolridge (2012) describes a simple linear regression model as 

follows: 

 

 𝑦 = 𝛽0 + 𝛽1𝑥 + 𝑢.    (2.37) 

 

In this model y and x are the two variables we want to find the relationship 

between. Y is called the dependent variable or explained variable, x is the independent 

variable or explanatory variable, u is the error term or disturbance of the relationship 

representing other factors affecting the relationship, β0 is the intercept and β1 is the slope 

parameter (Woolridge 2012). In other words, y is the unknown variable we want to 

predict, x is the variable which affects the predicted variable, β1 explains to which degree 

x affects y, β0 tells what the expected y is when x = 0, and u represents everything else not 

specified in the model that is affecting the relationship between y and x. However, in order 

to get reliable estimators of β0 and β1 of a data set we assume that E(u) = 0, because 
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otherwise we will not be able to estimate the ceteris paribus (all other things equal) effect, 

or β1. Woolridge (2012) rationalized the assumption as follows: 

 

“Before we state the key assumption about how x and u are related, we can always 

make one assumption about u. As long as the intercept β0 is included in the 

equation, nothing is lost by assuming that the average value of u in the population 

is zero.” 

 

In other words, we can assume that u = 0 because it is assumed that all other factors 

effecting y are equal in all cases and are therefore already included in the intercept, β0. 

 

 In order to create the regression model, the intercept β0 and the slope parameter β1 

must be attained. This can be done using the least squared method, which uses sample 

data to provide the values for the slope and intercept at which the sum of the squares of 

the deviations between the observed values of the independent variable and estimated 

values of the dependent variable are minimized (Anderson, Sweeney and Williams, 2011). 

What happens in practice is that we use Equation 2.39 and 2.40 presented by Anderson, 

Sweeney and Williams (2011) in order to find the values that minimize the least squares 

criterion (Equation 2.38). 

 

𝑚𝑖𝑛 ∑(𝑦𝑗 − 𝑦̂𝑖)
2   (2.38) 

where 

𝑦𝑗= the observed value of the dependent value for observation i 

𝑦̂𝑖= the estimated value of the dependent value for observation i 
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𝛽1 =
∑(𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)

∑(𝑥𝑖−𝑥̅)2    (2.39) 

𝛽0 = 𝑦̅ − 𝑏1𝑥̅     (2.40) 

where 

𝑥𝑖 = value of the independent variable for the ith observation 

𝑦𝑗 = value of the dependent variable for the ith observation 

𝑥̅ = mean value for the independent variable 

𝑦̅ = mean value for the dependent variable 

 

For small datasets, Equation 2.39 and 2.40 can be used to calculate the intercept and slope 

parameter by hand, but the datasets used for forecasting are usually of such a large size 

that this is not a viable option. Also, as a minimization problem is included by Equation 

2.38, the processing power of a computer is needed to solve the values of the slope 

parameter and the intercept. Luckily, there are various forecasting and statistical 

programs, such as Stata, which can be used to automatically attain the intercept and slope 

parameter from the chosen set of sample data. In addition to these, there are also 

predesigned functions such as the LinearRegression function by Scikit-learn that can be 

used in a python environment in order to develop a linear regression model. 

Finally, to make it clear, let us look at the following example of a regression model 

describing the expected exam score in relation to how many lectures a student attended.  

 

𝐸𝑥𝑎𝑚𝑠𝑐𝑜𝑟𝑒 = 3.14 + 0.15𝑙𝑒𝑐𝑡𝑢𝑟𝑒𝑠  (2.41) 

 

This regression model is interpreted so as that the exam score is expected to be 3.14 if the 

student has skipped all lectures, but for every additional lecture attended the score is 
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expected to be 0.15 higher. If for example a student attends 5 lectures, the exam score is 

expected to be 3.14 + 0.15 * 5 = 3.89. 

 

Even though the single regression model is easy to understand and gives a clear 

relationship between x and y, it has a major drawback which often makes it an unrealistic 

model for empirical use. It is difficult to draw the ceteris paribus conclusions on how x 

affects y because in practice all other things are seldom equal (Woolridge, 2012). Looking 

back at the previous example you could seldom say that the exam score only depends on 

how many lectures are attended. There are most likely other factors such as previous 

knowledge and hours spent studying for the exam that have a noticeable effect on the 

exam score and therefore it is impossible to say that all other factors would be equal.  

 

 

2.5.2. Multiple Regression Analysis 

 

Multiple regression analysis tackles the problem of drawing a definite ceteris 

paribus effect using single regression analysis. As the name implies, multiple regression 

analysis takes multiple different factors that influence the dependent variable into account, 

making the statement of all other things being equal more accurate than in the case of 

single regression analysis. If we add more factors that can be used to explain the dependent 

variable y to our model, it naturally leads to a bigger portion of the variance in y to be 

explained. This is a clear advantage compared to a single regression analysis, and 

therefore the ceteris paribus effect can also be said to be more accurate, and more accurate 

prediction models are created as a result. According to Woolridge (2012), the fact that 

multiple regression analysis allows us to control many different factors that 

simultaneously affects the dependent variable, resulting in a more accurate ceteris paribus 

analysis, is crucial when we are using a model to test nonexperimental data. For example, 

Woolridge (2012) mentions testing economic theories and evaluating policy effects, but a 
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multiple regression analysis could equally well be applied to predict the upcoming sales. 

(Woolridge, 2012) 

 

If we look at the example in the previous section, we can turn it into a model for 

multiple regression analysis simply by adding another factor into the equation.  

 

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑧 + 𝑢    (2.42) 

 

We have now added the independent variable z with the slope parameter of β2 to 

make the single regression model into a multiple regression model. Once again, we can 

also assume that E(u) = 0 as all other factors affecting y are included in the intercept to 

make the model ceteris paribus. In this example we only added one independent variable 

to the equation but in theory we could add as many as necessary if we know the slope 

parameter for each added variable. Let us look at the example treating exam scores from 

the previous section. The regression model presented in Equation 2.41 indicates that every 

lecture attended resulted in a 0.15 higher exam score. Let us assume that after making a 

survey amongst the students in the class, a relationship between the exam score and hours 

studied for the test, as well as taking an algebra course in the previous year has also been 

found. We now update the model, and the result is the following: 

 

𝐸𝑥𝑎𝑚𝑠𝑐𝑜𝑟𝑒 = 2.04 + 0.15𝑙𝑒𝑐𝑡𝑢𝑟𝑒𝑠 + 0.05ℎ𝑜𝑢𝑟𝑠 + 0.3𝑎𝑙𝑔𝑒𝑏𝑟𝑎  (2.43) 

 

The new models add the independent variable hours with a slope parameter of 0.05 

and the independent dummy variable algebra with a slope parameter of 0.3. The intercept 

has now also decreased from 3.14 to 2.04. What this means is that the expected exam score 

without attending lectures, studying and taking the algebra course is now 2.04. The big 

decrease in the expected exam score is explained by the fact that both hours studied and 
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the previous knowledge from the algebra course were wrongfully included in the intercept 

in the simple regression model as we did not know that they had a direct relationship with 

the exam score. Using the example above the calculation for the expected exam score 

could look like this: 

 

Examscore = 2.04 + 0.15*5 + 0.05*16 + 0.3*1 

Examscore = 3.89 

 

As we see here, in addition to the 5 lectures attended it also required 16 hours 

studied for the exam as well as attending the algebra course to get the expected exam score 

of 3.89 that the single regression model gave us. The multiple regression analysis showed 

us that the single regression analysis made earlier was in fact quite inaccurate and all other 

things were not equal although we assumed they were. 

 

 

2.5.3. Linear regression as a forecasting method 

 

A lot of research has been made regarding linear regression as a forecasting 

method. Burger et al. (2001) compared different methods for forecasting the tourist 

demand in Durban, South Africa, and found that multiple regression was a fairly accurate 

model in their case, but it was also quite a limited model. Multiple regression is limited 

by the relatively small number of coefficients in the model and in the case of Burger et al. 

(2001) they could only predict one month in advance with multiple regression, whereas 

other models were able to predict multiple months into the future. Bougadis, Adamowski 

and Diduch (2005) studied the forecasting of short-term water demand in Ottawa, Canada, 

with the help of both simple and multiple linear regression models, amongst other models. 

They got quite accurate results using multiple regression although not as accurate as the 

ones by Burger et al. (2001). Also, Bougadis, Adamowski and Diduch (2005) had different 
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versions of the multiple regression model working best with the training data set and the 

test data set, showing that the multiple regression models are highly case specific.  

When forecasting using time series regression it is also common to use a modified 

version of the multiple regression model. For example, Chan (1993) uses a sine wave time 

series regression approach to forecasting the number of tourists arriving at a destination 

during a month. Chan (1993) developed the following model: 

 

𝑦 = 𝑎1 + 𝑎2𝑡 + 𝑎3 sin(𝑎4 + 𝑎5𝑡) + 𝑢    (2.44) 

 

where 

𝑦 = seasonally adjusted number of tourist arrivals at time t 

𝑡 = time in month with respect to a fixed reference point 

𝑎1 = intercept of the linear model 

𝑎2 = slope of the linear model 

𝑎3 = amplitude of the sine function 

𝑎4 = phase angle of the sine function 

𝑎5 = frequency of the sine function 

𝑢 = error term 

 

The addition of the sine function to the multiple regression model makes it a non-linear 

model. Chan (1993) used historical data from 221 previous months to predict the number 

of tourists for the next 19 months. Three of the forecasted months had a forecast error of 

over 5% when comparing the forecast to the actual number of tourists, but for the other 

months the error was around 3% or lower and the lowest forecast error achieved was only 

0.27%. Even a forecast error of 5% can be considered as a low forecast error, as per Lewis 
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(1997), and therefore, the results by Chan (1993) show that time series regression models 

are capable of producing accurate forecasts.  

 When it comes to research focusing on the retail industry the two most cited 

research papers are the ones by Chu and Zhang (2003) and Alon, Qi and Sadowski (2001). 

Chu and Zhang (2003) conducted a study where they compared linear regression to a 

seasonal ARIMA model and a few neural network models when forecasting the monthly 

aggregated US retail sales. While they found that all forecasting models performed well, 

achieving MAPEs below 7%, the linear regression model was one of the worst performing 

models. While the linear regression model achieved a MAPE of 6.67% on an out-of-

sample forecast, the ARIMA model and some of the neural networks managed to achieve 

forecast errors as low as 1.69-2.30%, majorly outperforming the linear regression model. 

Chu and Zhang (2003) also noted that the forecast error of their linear regression model 

was almost five times larger on the out-of-sample forecast compared to the forecast error 

of the validation sample. This shows that a good performance on the sample data does not 

always result in a model that forecasts well, and in the case of linear regression it could 

be a result of, for example, over-fitting of the model. 

 In the study by Alon, Qi and Sadowski (2001), the US aggregate retail sales 

was once again forecasted. This time a regression model was compared to an ARIMA 

model, a triple exponential smoothing model and an ANN. The findings of Alon, Qi and 

Sadowski (2001) are similar to the findings of Chu and Zhang (2003) as they also found 

that the regression model the worst performing models even though it had an average 

MAPE of 2.75%. It was also found that the regression model performed worse on a 

multiple step ahead forecast, hinting that a regression model might work better on short-

term forecasts. This is somewhat contradictory to the performance of the other forecasting 

models used, as on average the forecast performance of the multiple-step forecasts were 

lower than the one step forecasts. On the other hand, as Alon, Qi and Sadowski (2001) 

point out, it would be more logical that the performance of a one-step forecast is more 

accurate than a multiple-step forecast as the data used is more up to date in the case of a 

one-step forecast. Therefore, it can be concluded that the performance of the regression 

model is as expected. 
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2.6.  Decision trees 

 

A Decision tree is a method of sequential decision-making which can easily 

visualized in a straightforward way (Anderson, Sweeney and Williams, 2011). As the 

name suggests, decision trees are mainly used for decision-making but they can also be 

applied to other purposes, such as forecasting in the case of this thesis. In the upcoming 

section the structure of a decision tree for machine learning will be briefly explained, 

whereafter the research on the topic of decision trees as a forecasting method will be 

presented. 

 

 

2.6.1. The structure of a decision tree 

 

When a decision tree model is used for forecasting, it involves a tree-based method 

for regression, classification, or a combination of both. Due to the structure of a decision 

tree being characterized by a set of splitting rules for segmenting, the visualization of the 

model has the likeness of a tree, explaining the name of the model. (James et al. 2013) 

To understand the basic structure and functionality, let us look at the regression 

tree presented by James et al. (2013): 
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Figure 2.3  

 

Regression tree – James et al. (2013), An introduction to statistical learning, Chapter 8.1 

 

This simplified regression tree is used to predict the salaries of baseball players. It 

has two splitting rules assigning the observations to different branches based on years 

played and hits made. First, starting from the top of the tree, the regression tree splits the 

observations so that all players that have played less than 4.5 years are assigned to the left 

branch and are predicted to have a salary equaling the mean salary of all players who have 

played less than 4.5 years. In this case the salaries are log-transformed, measured in 

thousands of dollars, and rounded to the nearest hundredth in the visualization, meaning 

that the salary for this group of players would be e5.107
 thousands of dollars, or $165,174. 

The group of players that have played longer than 4.5 are further split into two groups 

based on how many hits they have made last season. The players who made less than 

117.5 hits are predicted to earn e5.999 * $1,000 = $402,834, and the players managing more 

than 117.5 hits are predicted to earn e6.740 * $1,000 = $845,346. These three groups of 

players can also be written as: 
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𝑅1 = [𝑋|𝑌𝑒𝑎𝑟𝑠 < 4.5]   (2.45) 

𝑅2 = [𝑋|𝑌𝑒𝑎𝑟𝑠 ≥ 4.5, 𝐻𝑖𝑡𝑠 < 117.5] (2.46) 

𝑅3 = [𝑋|𝑌𝑒𝑎𝑟𝑠 ≥ 4.5, 𝐻𝑖𝑡𝑠 ≥ 117.5], (2.47) 

 

where R1, R2, R3 are known as terminal nodes or leaves. In addition to these, the points at 

which the splitting rules are applied are called internal nodes, and the segments that 

connect the internal nodes are called branches. (James et al., 2013) 

When a regression tree is built, the goal is to find the groups R1, …, RJ that 

minimize the root sum squared (RSS), given by the equation: 

 

∑ ∑ (𝑦𝑖 − 𝑦̂𝑅𝑗
)2

𝑖∈𝑅𝑗

𝐽
𝑗=1 ,   (2.48) 

 

where ŷRj is the mean response for the training observations in the jth group (James et al., 

2013). Since it is impractical to consider every possible partition when creating the groups, 

a top-down, greedy approach known as recursive binary splitting must be taken when 

building a regression tree. The process begins at the top layer of the tree where the best 

split is made before moving on to the next layer of internal nodes where new splits are 

made minimizing the RSS, again moving to the next layer creating new splits minimizing 

the RSS, and so on. The process is called greedy since at each step of creating splits, the 

future splits are not considered. Instead, only the best split at the current level is 

determined, not looking forward and selecting the split that would possibly result in a 

better tree in the future. When all the groups R1, …, RJ have been determined and created, 

the response for each given observation is calculated using the mean of the training 

observations in each group. (James et al., 2013) 

According to James et al. (2013) creating a regression tree this way often leads to 

a model that performs well on the training set but likely overfits the data, resulting in poor 

performance on the test set. As a way of dealing with this problem, James et al. (2013) 
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presents the process of cost complexity pruning or weakest link pruning as it is also known 

as. Pruning is a process of first creating large tree and then prune it back to obtain a smaller 

subtree. The goal of pruning is to select the subtree with the lowest test error rate which 

could be done using cross-validation. However, estimating the cross-validation error for 

every subtree is a demanding task taking a lot of time. The cost complexity pruning solves 

this by considering a sequence of trees with a tuning parameter α, instead of considering 

every possible subtree. There is a corresponding subtree for every value on α where T⸦To 

and  

 

∑ ∑ (𝑦𝑖 − 𝑦̂𝑅𝑚
)2+∝ |𝑇|𝑖:𝑥𝑖∈𝑅𝑚

|𝑇|
𝑚=1   (2.49) 

 

is minimized. |T| is the number of terminal nodes in the tree, Rm is group corresponding 

with the mth terminal node, and ŷRm is the predicted response for Rm. (James et al., 2013) 

A classification tree is similar to the regression tree described so far, with the 

difference that a classification tree is used to predict qualitative responses instead of the 

quantitative responses of a regression tree. Whereas a regression tree returns the mean 

response for the group, a classification tree returns the most commonly occurring response 

in the group. Also, whereas the regression tree used RSS as a criterion for making the 

splits, a classification tree can use the classification error rate which measures the fraction 

of the training observation that do not belong to the most common class of the group. 

However, according to James et al. (2013), the classification error rate is not always 

accurate enough. In those situations, the Gini index which measures the variance across 

all groups can be used. A low Gini index is a sign that a large portion of the observations 

in a node are from a single class, hence explaining why the Gini index is sometimes also 

called the index of node purity. Another alternative to use is entropy, which is similar to 

the Gini index. Like the Gini index, entropy takes a small value if a node is pure. When 

building a classification tree both the Gini index and entropy can be used to determine the 

quality of a split. However, when pruning the tree, the classification error rate is preferred 

as it usually results in better prediction accuracy. (James et al., 2013) 
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While decision trees like the ones described above can be designed from scratch, 

it is usually not a simple task. However, there are some predesigned functions and 

programs available, such as the DecisionTreeRegressor for python by Scikit-learn, which 

applies machine learning techniques to develop the most suitable regression tree for 

forecasting based on the historical data provided by the user. Forecasting results attained 

by decision trees will be presented in the next section.  

 

 

2.6.2. Decision tree as a forecasting method 

 

While decision trees are a popular research topic, a vast majority of the research 

available focuses on the use of decision trees for classification problems, and when it 

comes to the research treating decision trees as a forecasting method, it mainly focuses on 

other fields than the retail industry. For example, Liu et al. (2017) used a machine learning 

algorithm based on decision tree to forecast the price of copper, Kumar (2013) used 

decision tree for weather forecasting, Lai et al. (2009) forecasted the upcoming stock 

prices with a fuzzy decision tree and Liao and Sun (2010) used a decision tree method to 

forecast the water quality of Chao Lake. While these research papers did not focus on the 

retail industry, they still had promising results showing the forecasting capability of a 

decision tree. For example, Liu et al. (2017) achieved MAPEs lower than 4%, indicating 

that the model produces accurate forecasts, and Liao and Sun (2010) showed that the 

decision tree used produced more accurate forecasts than neural networks. 

When it comes to the research on decision tree as a retail sales forecasting method, 

the work of Thomassey and Fiordaliso (2006) is one of the most quoted articles. They 

developed a hybrid forecasting model based on both clustering and decision tree, to be 

used in the highly versatile textile market. As the textile industry is highly competitive 

and has specific constraints such as the short lifetime of the sold items and the enormous 

number of new items released to the market, the time series analysis models are unsuitable 

for the industry and a new forecasting model is needed (Thomassey and Fiordaliso, 2006). 
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The model developed by Thomassey and Fiordaliso (2006) tries to solve these problems 

by using clustering to group products with similar sales profiles and then finding the links 

between the clusters using the decision tree. When applied to the data of a French retailer, 

Thomassey and Fiordaliso (2006) got highly accurate results with their model. The 

average RMSE of the model when tested on 285 items was only 12.7E-3 which is about 

10% lower than the best benchmark model used by the researchers. While the model used 

in this paper is specifically developed for the textile industry, Thomassey and Fiordaliso 

(2006) claim that the model is also applicable to other industries characterized by many 

historical items but with no historical data to base the predictions on. In addition to this, 

descriptive criteria do also need to be available for their model to work. Situations with 

these characteristics usually arise when the sales of new products are forecasted. 

In another research paper, Cheriyan et al. (2018) studied the use of different 

machine learning techniques for sales trend prediction. They applied a decision tree along 

with two other machine learning models to a dataset of e-fashion sales data in order to 

compare the predicting performance of the models. The results of the study by Cheriyan 

et al. (2018) are somewhat contradictory to the results of Thomassey and Fiordaliso 

(2006). While Thomassey and Fiordaliso (2006) managed to develop a highly accurate 

model, Cheriyan et al. (2018) had a much more inaccurate decision tree model. Cheriyan 

et al. (2018) calculated the RMSE, the MSE and the absolute error, and presented the 

average of these as the error rate of the model. The error rate for the decision tree model 

used by Cheriyan et al. (2018) was 29% which cannot be considered an acceptable 

forecasting error of an accurate model. The study also showed that other machine learning 

techniques managed to achieve error rates as low as 2%, proving that either the data used 

was unsuitable for a decision tree model or that the decision tree model was poorly 

developed. 

In the final relevant research paper to be presented on decision tree models used 

as a retail sales forecast method, Wen et al. (2013) study de use of a support vector 

machine (SVM) model to forecast the grape sales of a fruit supermarket and compare the 

results to an artificial neural network (ANN) and a decision tree model. The sales of grapes 

is characterized by its high seasonality due to grapes becoming ripe in the summer months 
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and the short shelf life due to the perishability of grapes. When forecasting, Wen et al. 

(2013) use the weather data and type of date (weekday or weekend) in addition to the sales 

quantity and grape price in order to develop more accurate forecasting models to be used 

on the three different grape species forecasted. They found that the average relative errors 

were somewhat different for each of the grape species, differing about 10 percentage units 

between the most accurate and least accurate forecast for each forecasting method. While 

the average relative errors varied somewhat between each grape species, the three 

forecasting methods still performed consistently in relation to each other for every grape 

species forecasted. The forecast generated by the ANN was always the worst performing 

model out of the three, trailing by an average relative error of 0.03 to the second-best 

performing model which on average was the decision tree model. Even though the 

decision tree model on average was outperformed by the SVM model, it was always close 

in forecast accuracy and even managed to beat the SVM model on one occasion. Another 

important finding by Wen et al. (2013) worth noting is the fact that the decision three was 

able to execute the forecasts substantially faster than the other two models. The decision 

tree took about 5 to 6 seconds to execute, whereas the fastest ANN took about 50 seconds 

to execute and the fastest SVM model took about 48 seconds to execute. This indicates 

that decision trees require substantially less computing power in order to be executed 

which in certain situations can be a deal breaker.  

To summarize the findings on decision tree models as a retail sales forecasting 

method it can be said, as with most of the previously mentioned methods, that the 

performance of the decision tree is highly case specific. Because all three research papers 

examined in this section used different measures of forecasting accuracy, it is difficult to 

compare the results to each other but the extremely low RMSE attained by Thomassey 

and Fiordaliso (2006) is probably still the lowest forecast error of the three articles. This 

shows that hybrid models also have the potential to be even more accurate than models 

only utilizing one forecasting technique. However, due to the lack of research on the topic, 

it is impossible to draw definite conclusions based on these three articles, especially since 

different measures of accuracy were used. 
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2.7. Artificial neural networks 

 

Artificial neural networks (ANN) are machine learning techniques that are 

designed to follow the learning pattern of a brain. A human nervous system contains 

neurons which are connected to each other with axons and dendrites, and the region 

between them is called synapses. When external stimuli are introduced, the strength of the 

synapsis changes, and this change is how learning takes place in living organisms. ANNs 

are designed to follow this same mechanism for learning. (Aggarwal, 2018) 

Since ANNs are such a wide topic that they could be covered in a master’s thesis of their 

own, this section will only focus on explaining the basic principles of how an ANN works 

and providing a review of how ANNs are used to forecast retail sales.  

 

 

2.7.1. Structure of an artificial neural network 

 

Just as a neural network of an animal, the artificial neural network consists of many 

neurons connected to each other. The neurons of an ANN are connected by weights which 

have the same functionality as the synaptic connections in a real neural network, and by 

changing the weights of an ANN the learning takes place. ANNs also require external 

stimuli in the form of a training dataset in order to learn. (Aggarwal, 2018) 

An ANN can have different types of neurons. In order to understand the basic 

structure and functionality of an ANN we will begin by explaining perceptrons, which are 

a basic form of neurons developed in the 1950s and 1960s by Rosenblatt (Nielsen, 2015). 

Even though the perceptrons are somewhat outdated and not that commonly used today, 

they are essential in order to understand how the more advanced sigmoid neurons work, 

and therefore, the perceptrons needs to be covered. The perceptron is a neuron that works 

with binary inputs and outputs. Depending on if the weighted sum of the input is above or 
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below a specific threshold, the neuron returns an output of either one or zero. Nielsen 

(2015) depicts this by the following drawing: 

 

Figure 2.5 

 

The neuron. (Nielsen, 2015) 

 

 

𝑜𝑢𝑡𝑝𝑢𝑡 = {
0, 𝑖𝑓 ∑ 𝑤𝑗𝑥𝑗 ≤ 𝑡𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑗

1, 𝑖𝑓 ∑ 𝑤𝑗𝑥𝑗 > 𝑡𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑗
  (2.50) 

 

Where x = input and w = weight of the input. Another way of writing the output of a 

perceptron is the following (Nielsen, 2015): 

 

𝑜𝑢𝑡𝑝𝑢𝑡 = {
0, 𝑖𝑓 𝑤 ∗ 𝑥 + 𝑏 ≤ 0
1, 𝑖𝑓 𝑤 ∗ 𝑥 + 𝑏 > 0

   (2.51)  

 

Where x = input, w = weight of the input and b = bias. The bias is a measurement of how 

easy it is to get the perceptron to return a 1, or in other words, how easy it is to get the 

perceptron to fire. The bigger the bias is, the easier it is to get the perceptron to fire. 

An ANN is created by combining many neurons in multiple layers. Each layer 

answers questions of increasing level of complexity, with the first layer answering the 
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simplest question and the output layer answering the most complicated and complex 

question. By building an ANN so that it answers a complex question by breaking it down 

into multiple, less complex questions mimics the behavior of animal brains. For example, 

if we had an ANN which was to identify if a picture showed a car, it could first ask 

questions like “Is this a tire?” and “Is this a lug nut?”, which would lead to “Is this a 

wheel?”, which in turn eventually would lead to the final question “Is this a car?”. 

(Nielsen, 2015) 

The ANN presented above is a deep neural network, described as follows by 

Nielsen (2015): 

 

“It does this through a series of many layers, with early layers answering very 

simple and specific questions about the input image, and later layers building up 

a hierarchy of ever more complex and abstract concepts. Networks with this kind 

of many-layer structure - two or more hidden layers - are called deep neural 

networks.” 

 

The first layer of an ANN is called the input layer as it is the layer that processes 

the input data, and the final layer of an ANN is called the output layer as it is the layer 

giving the final output of the ANN. All the layers in between the input and output layer 

are called hidden layers as they are neither input nor output layers. Nielsen (2015) depicts 

the architecture of an ANN as follows in Figure 2.6. 
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Figure 2.6 

 

The structure of an artificial neural network. (Nielsen, 2015) 

 

It is important to note that even though the neurons have many output arrows it only 

represents that the output is used as an input in many hidden neurons, not that there are 

many different outputs for each neuron. Also, after the input layer, all the decisions made 

by the neurons are made based on the outputs of the previous layers and the original input 

data is not used any more (Nielsen, 2015). 

 The problem with perceptrons is that the output is always a zero or a one. In order 

to create a learning algorithm inside a neural network we want to see a small change in 

the output when we make a small change in a weight of a neuron. This is not possible with 

perceptrons as a small change in the weight of an input might lead to the output flipping 

from a one to a zero, or vice versa. This in turn leads to all upcoming neurons in the ANN 

needing complicated restructuring and recalculation, taking a lot of time and processing 

power each time a weight is slightly adjusted. To solve this problem the sigmoid neurons 

are introduced. Sigmoid neurons are neurons which take a value between zero and one as 

the input value instead of the binary input values of a perceptron and returns an output 

value also between zero and one instead of zero or one. (Nielsen, 2015) 
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 The output of a sigmoid neuron is 

 

       𝜎(𝑤 ∗ 𝑥 + 𝑏),    (2.52) 

 

where w = weight, x = input and b = bias, and it can be defined with the following 

formulas: 

 

𝜎(𝑧) =
1

1+𝑒−𝑧    (2.53) 

Or 

𝜎(𝑧) =
1

1+exp (− ∑ 𝑤𝑗𝑥𝑗−𝑏)𝑗
   (2.54) 

 

If z  = w*x+b is a large positive number, then σ(z) ≈ 1, and if it is a large negative number 

then σ(z) ≈ 0. Therefore,  

 

“It’s only when w*x+b is of modest size that there’s much deviation from the 

perceptron model.” (Nielsen, 2015) 

 

Even though it has the capability of taking more versatile inputs and giving more 

versatile outputs, the sigmoid neuron has one problem. When we have a question which 

can only be answered yes or no, the sigmoid neuron seldom gives a clear answer. 

Therefore, in these cases it has become common practice that outputs of 0.5 and higher 

are interpreted as a yes, and outputs below 0.5 are interpreted as a no. (Nielsen, 2015) 

 An ANN in the form described in this section, where the output of a neuron in the 

previous layer is used as an input in the next layer, is called a feedforward neural network. 
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There are also neural networks which utilize looping, called recurrent neural networks, 

but as of now they are not as effective as feedforward neural networks and therefore they 

are not that widely used. To briefly explain a recurrent neural network, it is an ANN where 

the neurons only fire for a limited time before being quietened, stimulating other neurons 

which fire for a limited time later on in the ANN. Constructing an ANN this way results 

in loops not causing any problems as the output of a neuron only affects its input at a later 

point in time. (Nielsen, 2015) 

 

 

2.7.2. How an artificial neural network learns 

 

As mentioned by Aggarwal (2018) and Nielsen (2015), an ANN learns by 

modifying the weights and biases in order to reach the desired output when being exposed 

to external stimuli in form of a training dataset. For example, if we want to train an ANN 

to predict future sales, we need a training dataset that contains at least the historical sales 

numbers. If the dataset also contained information such as weather, campaigns, customer 

flow and so on, the ANN has the potential to produce more accurate forecasts. The ANN 

would then try to find the proper weights and biases for the inputs in order to reach the 

realized sales number for that period. In addition to questions related to weather, 

campaigns, customer flow and so on, the ANN could for example also identify patterns in 

the training dataset and use that to an advantage when predicting future sales numbers. 

When the learning algorithm has finished finding and assigning the proper weights and 

biases, the ANN needs to be tested on a test dataset in order to confirm that the ANN 

works as intended in other scenarios. The test dataset contains the same type of 

information as the training dataset, but it could for example be from another time period. 

If the accuracy of the forecasts on the test dataset is adequate, it can be concluded that the 

ANN works as intended for it purpose and it can be applied to predict future sales numbers. 

(Nielsen, 2015) 
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 To conclude, the learning algorithms that do the heavy work are very complex and 

can be really hard, if not impossible to design “by hand”. Luckily, many techniques for 

developing the learning algorithm have been created in recent years. Nielsen (2015) 

summarizes the most recent and most important developments as follows: 

 

“Since 2006, a set of techniques has been developed that enable learning in deep 

neural nets. These deep learning techniques are based on stochastic gradient 

descent and backpropagation, but also introduce new ideas. These techniques 

have enabled much deeper (and larger) networks to be trained - people now 

routinely train networks with 5 to 10 hidden layers. And, it turns out that these 

perform far better on many problems than shallow neural networks, i.e., networks 

with just a single hidden layer.” (Nielsen, 2015) 

 

 

2.7.3. Artificial neural networks as a forecasting method 

 

The following section will treat artificial neural networks as a forecasting method. 

First, the early forecasting use of neural networks will be presented, then, the findings 

after the deep learning techniques were discovered will be presented, and finally, the 

research on neural networks as a retail sales forecasting method will be introduced. 

 

 

2.7.3.1. Early forecasting use of artificial neural networks 

 

In their article “Forecasting with artificial neural networks: The state of the art”, 

Zhang, Patuwo and Hu (1998) provided a comprehensive overview of the early 

forecasting use and research on ANNs as well as the ANN modeling issues at the time. 
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First, the advantages of ANNs as a forecasting method were presented. As opposed to the 

time series analysis models, an ANN is a self-adaptive method that is able to learn from 

examples and can find even the most subtle relationships in the data, which would 

otherwise go unrecognized. Because of this, ANNs are suited for problems where 

adequate data is available, but the answers require knowledge, which is hard to specify 

(Zhang, Patuwo and Hu, 1998). Zhang, Patuwo and Hu (1998) mentioned that it is often 

easier to access extensive data than having the knowledge about the underlying laws that 

a system uses to generate the data. Thus, ANNs become extremely useful as they have the 

ability to learn the relationships in a dataset. ANNs can also generalize, often leading to 

accurate forecasts even though the sample data might be noisy (Zhang, Patuwo and Hu, 

1998). Finally, ANNs are non-linear as opposed to the time series analysis methods, which 

use linear statistics. While the time series analysis models have the benefits of being easy 

to explain and interpret as well as having the ability to be analyzed in greater detail, they 

might be inappropriate and provide inaccurate forecasts if the underlying system 

generating the data has non-linear mechanics (Zhang, Patuwo and Hu, 1998). 

The earliest use of an ANN for forecasting purposes dates to 1964, when Hu 

(1964) used the Windrow’s adaptive network for weather forecasting. At the time, a 

training algorithm for multi-layer networks did not exist and it was not until 1986 when 

the backpropagation algorithm was introduced by Rumelhart et al. (1986) and Werbos 

(1988) that ANNs began outperforming the time series analysis models in forecasting 

(Zhang, Patuwo and Hu, 1998). According to Zhang, Patuwo and Hu (1998), the first 

successful application of an ANN as a forecasting method was made by Lapedes and 

Farber (1988) when they designed a feedforward neural network, which could accurately 

mimic the system using a logistic map and Glass-Mackey equation used to generate the 

time series used for forecasting. Much progress was made in the years after the findings 

of Rumelhart et al. in 1986, and in 1993, a forecasting competition was organized by 

Gershenfeld and Weigend (1993), in which the winner of every category used an ANN 

model, displaying the dominance of ANNs. Despite this, most of the research from this 

time focused on other fields and industries than retail. Lapedes and Farber (1988), who 

conducted the first successful forecast using an ANN studied a chaotic time series which 

mostly occurs in the field of physics and engineering, which led to many authors following 
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in the same footsteps in the following years (e.g. Jones et al., 1990, Lowe and Webb, 1991, 

and Poli and Jones, 1994). Other fields where ANNs were popularly used are forecasting 

stock prices (e.g. Kimoto et al., 1990, and Grudnitski and Osburn, 1993), foreign exchange 

rates (e.g. Wu, 1995, and Hann and Steurer, 1996) and electric load consumption (e.g. 

Park and Sandberg, 1991, Bacha and Meyer, 1992, and Ho, Hsu and Yang, 1992). Zhang, 

Patuwo and Hu (1998) mentioned a few other forecasting problems that were solved by 

ANNs but did not receive as much attention as the before mentioned areas. Among these 

problems are, for example, forecasting airborne pollen (Arizmendi et al., 1993), 

international airline passenger traffic (Nam and Schaefer, 1995) and tool-wear (Ezugwu, 

Arthur and Hines, 1995). 

Much comparative research between ANNs and the conventional forecasting 

methods was also made at the time of the research of Zhang, Patuwo and Hu (1998), 

although nearly none focused on the retail industry. For example, Tang, De Almeida and 

Fishwick (1991) conducted a study on three business time series where they studied the 

performance of a simple ANN model compared to an ARIMA model. They found that the 

ANN outperformed the ARIMA model, when the time series had more irregularity or 

short memory, meaning that present values do not depend that strongly on past values, but 

when the time series had long memory, meaning that present values depend strongly on 

past values, the performance of ANNs and ARIMA models are equal. These results were 

also confirmed by Kang (1991) who achieved similar results in his research. Hill, 

O’Connor and Remus (1996) found that ANN models were significantly better than 

traditional time series analysis methods when forecasting monthly or quarterly data, but 

when forecasting annual data the time series analsis and ANN methods performed almost 

equally well. Hill, O’Connor and Remus (1996) also found that ANNs are effective when 

the time series is discontinuous, confirming the findings of Tang, De Almeida and 

Fishwick (1991). Nelson et al. (1994) as well as Sharda and Patil (1992) discussed the 

ability of an ANN to learn seasonal patterns. While the results of Nelson et al. (1994) 

indicated that ANNs are unable to learn seasonal patterns, Sharda and Patil (1992) argued 

that the seasonality of a time series does not affect the performance of an ANN. Therefore, 

it can be implied that an ANN can incorporate seasonality in its predictions even though 

it is not able to recognize seasonal patterns. 
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The main challenges of using ANNs were, at the time, the design and building of 

the models. The number of layers, the number of nodes in each layer, the number of 

connections, the training algorithm, the performance measures and the training and test 

datasets, amongst others, must be considered when designing an ANN model, and it was 

a challenge to find the right combination of all components (Zhang, Patuwo and Hu, 

1998). As described by Nielsen (2015), these are the same factors that must be considered 

when building an ANN model today, with the difference that new deep learning 

techniques today allow us to train larger ANNs. 

As described in Section 2.1, the time series analysis models perform best under 

certain conditions. Tang, De Almeida and Fishwick (1991) as well as Tang and Fishwick 

(1993), on the other hand, tried to find the conditions under which ANNs outperform the 

time series analysis models. These two studies found three conditions under which an 

ANN performed at its best. First, the bigger the forecast horizon is, the better ANNs 

performed compared to time series analysis models; secondly, ANNs performed better on 

time series with short memory, and finally, more input nodes in the ANN model gives 

better forecasting accuracy. However, Gorr, Nagin and Szczypula (1994) made the 

important remark that the full power of ANNs might not yet have been discovered when 

they discussed the reasons to why their ANN did not provide any significant forecast 

improvement to the regression models they compared it to. This remark is in line with the 

claim by Nielsen (2015) in the end of Section 2.6.2 that ANNs did not reach their full 

potential until 2006 when a set of new deep learning techniques was presented. 

 

 

2.7.3.2. Deep belief networks 

 

In 2006, deep belief networks (DBN) and the methods for training them were 

introduced in research papers (Nielsen, 2015). According to Nielsen (2015), DBNs are 

not as popular anymore as they were when first introduced in 2006, as feedforward neural 

networks and recurrent neural networks has since become more popular, but despite this 
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they still have several interesting properties. “A fast learning algorithm for deep belief 

nets” by Hinton, Osindero and Teh (2006) as well as “Reducing the dimensionality of data 

with neural networks” by Hinton and Salakhutdinov (2006) were the first papers to present 

how DBNs could be properly trained. One of the two main reasons DBNs gained so much 

interest is because a DBN is a generative model. While a feedforward network (explained 

in Section 2.6.1) determines the activation of a neuron later in a network based on the 

inputs, a DBN also allows for specifying the value of a neuron and then running the 

process backwards in order to figure out the input value needed for activation. Nielsen 

(2015) gives a more concrete example by concluding that for an ANN designed to 

recognize handwriting, this backwards process potentially allows for the ANN to learn 

how to write and be able to generate text that would look like handwriting. Nielsen (2015) 

found the following similitude between the generative model and the human brain, which 

also highlights the advantage of an generative model: 

 

“In this, a generative model is much like a human brain: not only can it read 

digits, it can also write them.”  

 

The second reason to why DBNs are so interesting is the fact that they can learn 

unsupervised. As an example, Nielsen (2015) mentions that when an ANN is trained with 

image data, it can learn features that are useful to recognize other images even though the 

training data would be unlabeled. Despite these two major advantages of DBNs, the 

feedforward networks and recurrent neural networks have still become more popular 

today due to their superior performance. Although DBNs are not as popular as they used 

to be, the work of Hinton, Osindero and Teh (2006) and Hinton and Salakhutdinov (2006) 

was not made in vain, as their work provided the base for future methods on successfully 

training multiple level ANNs with up to ten layers. 

 Even though the findings introduced in 2006 allowed for larger ANNs to be 

trained, it did not bring a change to the fact that most of the research around ANNs as a 

forecasting method circled around other topics than the retail industry. Much of the 
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research on the classic topics such as stock market forecasting (e.g. Vaisla and Bhatt, 

2010, and Wang et al., 2011), electricity demand forecasting (e.g. Kandananond, 2011) 

and weather forecasting (eg. Abhishek et al., 2012) still existed, and especially topics 

related to water seemed to be gaining in popularity. For example, Darji, Dabhi and 

Prajapati (2015) as well as Hung et al. (2009) studied the use of ANNs for rainfall 

forecasting, Mishra and Desai (2006) used ANNs to forecast upcoming droughts, Abrahart 

et al. (2012) studied ANNs as a method for river forecasting, which is a combination of 

rainfall and streamflow modelling, and Ghiassi, Zimbra and Saidane (2008) studied how 

the urban water demand can be forecasted with ANNs. 

 

 

2.7.3.3. Artificial neural networks as a retail sales forecasting 

method 

 

 Because of the lack of extensive, well-established research on retail sales 

forecasting using ANNs, both the research presented before and after the findings in 2006 

will be presented in the same section. The most cited work on retail sales forecasting using 

ANNs is the article “Forecasting aggregate retail sales: a comparison of artificial neural 

networks and tradition methods” by Alon, Qi and Sadowski (2001), which has already 

been presented in section 2.2.4. and 2.4.5. of this thesis. To add to the previously presented 

results, it can be mentioned that the ANN they used had the best performance overall when 

measuring the average MAPE of the two forecasting periods. The ANN had an average 

MAPE of 1.50%, whereas the ARIMA model had an average MAPE of 1.67%, the 

exponential smoothing had an average MAPE of 2.19%, and the regression model had an 

average MAPE of 2.75%. Despite the margins between the top performing models being 

small, Alon, Qi and Sadowski (2001) found that there were notable differences between 

the models. They concluded that while the time series analysis models performed well 

during stable conditions, the ANN provided a significant improvement when the economic 

conditions experienced turbulent conditions. It is hard to say if the findings of Hinton, 
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Osindero and Teh and Hinton and Salakhutdinov in 2006 would have resulted in Alon, Qi 

and Sadowski (2001) finding ANNs outperforming time series analysis methods also 

during stable economic conditions or not. As the margins between the methods were 

small, there is certainly a possibility that it could have happened as even a small 

improvement brings an edge over the other models. However, as the models are often 

highly case sensitive it is impossible to say if a deeper neural network would have brought 

any performance improvements.  

Another research paper on ANNs as a retail sales forecasting method, published 

before the findings in 2006, is the paper by Chu and Zhang (2003) which has already been 

briefly presented in Section 2.4.5. The results of their study found that an ANN 

outperformed both a seasonal ARIMA model and a regression model when forecasting 

monthly sales. However, Chu and Zhang (2003) found that their ANN performed even 

better when the time series data was deseasonalized, even though Sharda and Patil (1992) 

argued that the seasonality of a time series did not affect the performance of the ANN. 

This contradictory finding by Sharda and Patil (1992) suggests that while Chu and Zhang 

(2003) proved that their ANN is more effective than traditional time series analysis 

methods, it can still be optimized as deseasonalizing the data improved the performance 

of their ANN. 

 While the two aforementioned articles were published before the findings in 2006 

and are two of the most cited papers on ANNs as a retail sales forecasting method, it is 

only after 2010 that retail sales started to become a slightly more popular ANN forecasting 

topic. In 2013, Li et al. (2013) compared an ANN to an ARIMA model when predicting 

the weekly retail price of eggs. Their ANN clearly outperformed the ARIMA model for 

all five weeks predicted, having a forecast error between 0.28% and 0.65% compared to 

the forecast errors between 2.67% to 3.07% for the ARIMA model. Li et al. (2013) 

concluded that the results indicate that the ANN is a good tool for short-term forecasting 

due to the extremely high precision of the forecasts. In a case study by Yu et al. (2017), a 

recurrent neural network is used on 45 weeks point of sale data on 66 different products 

in order to forecast the upcoming weekly sales. The results of Yu et al. (2017) are 

somewhat contradictory to the earlier findings regarding the forecasting performance of 
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ANNs as they only got an acceptable forecasting error on one fourth of all the products. 

However, this poor performance may to some degree be explained by the fact that Yu et 

al. (2017) only have 45 weeks of historical data available which they argue is not enough 

to build a robust neural network. Also, they do not take seasonality and promotional 

campaigns into consideration, which are factors that highly affect the sales in the retail 

industry and, therefore, it is nearly impossible to predict the peaks in sales caused by 

promotions and seasonality. Despite this, Yu et al. (2017) argued that the ANN they used 

showed potential for short term retail sales forecasting, especially considering that it had 

decent result on one fourth of the products despite not accounting for promotions and 

seasonality. Finally, Chawla et al. (2018) used ANNs to forecast the upcoming sales of 

the American retail corporation Walmart. They developed one ANN in MATLAB and one 

using the neuralnet package in the R programming environment. The ANN developed 

with R showed more accurate results than the one created with MATLAB but despite this, 

both ANNs still occasionally had inconsistent forecasts around some peaks in sales. 

Chawla et al. (2018) explain these inconsistencies with occasional festivities such as the 

Super Bowl, which still need manual corrections in the predictions by applying a 

correction factor. Despite Chawla et al. (2018) not disclosing the actual forecast errors, 

they claim that they achieved almost perfect accuracy in the end. The only limitations they 

encountered were caused by the lack of processing power as MATLAB was not able to 

iterate through the data when the number of layers in the ANN was increased. As a 

solution to this they suggest that a GPU (graphics processing unit or more commonly 

known as graphics card) based environment be used in order to be able to handle more 

layers of perceptrons. 
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3. Empirical study 

 

This chapter will present the process of the empirical study. The main objective of this 

study is to answer the research questions by identifying the most suitable forecasting 

model for a set of retail sales data, as well as determining whether the more advanced 

machine learning techniques bring a substantial advantage over the time series analysis 

models.  

Section 3.1 describes the methodology of the study, Section 3.2 presents the dataset 

used to conduct the forecasting, and finally, in Section 3.3, the forecasting is conducted 

using the selected models and the results of the forecasting are presented, which are later 

analyzed in Chapter 4. 

 

 

3.1. Method 

 

As per the definition of Williams (2007), the research approach can be selected based 

on the type of data needed to respond to the research question. In most cases, the choice 

of research method lies between a quantitative or a qualitative research approach, but 

sometimes a mix of both methods might be needed. In the case of this study, a quantitative 

research method is chosen as numerical data is required to answer the research questions 

(Williams, 2007). As data is used to objectively measure reality, the research thus stays 

independent from the researcher (Williams, 2007). 

The research conducted in this paper follows the main steps of quantitative research, 

presented by Williams (2007). First suitable data that can be subjected to statistical 

treatment is identified and collected, and then mathematical models are applied as the 

method of data analysis. In the case of this study, a suitable dataset is first acquired, then 

the data is being analyzed and preprocessed whereafter different mathematical models in 
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the form of forecasting methods are applied to the dataset. Finally, the results are analyzed 

using different accuracy measurements and the best performing model is selected.  

 

 

3.2. Data overview 

 

The dataset used in this study is the popular “Walmart Recruiting – Store Sales 

Forecasting” dataset published on Kaggle on February 20, 2014, for a forecasting 

competition by Walmart. Even though the competition ended on May 6, 2014, the dataset 

is still publicly available. As a result, it has been used in many research papers to date.  

The competition dataset consists of four different files containing historical sales data 

for 45 Walmart stores in different regions, with each store containing several different 

departments. The store.csv file has three columns containing anonymized information 

about the type and size of every store. The train.csv file has five columns containing the 

store number, department number, the date, the weekly sales, and information about 

whether there is a special holiday that week or not. The test.csv file contains the same 

information as the train.csv file with the exceptions that the data is from another period 

and the weekly sales numbers have been withheld. This file was originally the file on 

which the forecasting was to be conducted on in the competition and it was used to rank 

the competition entries. However, the test.csv file has not been used in the research of this 

paper as it does not include the sales data, making it unable to validate the forecasts 

generated in this research.  The final file of the dataset is the features.csv file which has 

twelve columns containing the store number, the date, the temperature, the fuel price, 

promotional markdowns, the consumer price index, the unemployment rate, and 

information on whether there is a special holiday that week or not. Table 3.1 to 3.4 lists 

the attributes and the description of the attributes of each file in the dataset. 

In total, the train.csv file contains 421570 rows of historical sales data and the test.csv 

file contains 115065 rows of future sales to be predicted. While the train.csv file might 
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contain enough information to predict the future sales using some of the time series 

analysis models such as the ARIMA model and exponential smoothing, the machine 

learning methods also need the information from the store.csv and features.csv files. This 

problem will be tackled in the upcoming Section 3.2.1. 

 

Table 3.1 stores.csv data description 

Attribute Description 

Store ID number of each store 

Type The type of each store 

Size The size of each store 

 

Table 3.2 train.csv data description 

Attribute Description 

Store ID number of each store 

Dept ID number of each department 

Date The date of Friday each week 

Weekly_Sales The weekly sales in USD 

IsHoliday Whether there is a special holiday during 

the week 

 

Table 3.3 test.csv data description 

Attribute Description 

Store ID number of each store 

Dept ID number of each department 

Date The date of Friday each week 

IsHoliday Whether there is a special holiday during 

the week 
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Table 3.4 features.csv data description 

Attribute Description 

Store ID number of each store 

Date The date of Friday each week 

Temperature The average temperature of the week in 

the region 

Fuel_Price The cost of fuel in the region 

MarkDown1 Anonymized data related to promotional 

markdowns 

MarkDown2 Anonymized data related to promotional 

markdowns 

MarkDown3 Anonymized data related to promotional 

markdowns 

MarkDown4 Anonymized data related to promotional 

markdowns 

MarkDown5 Anonymized data related to promotional 

markdowns 

CPI Consumer price index 

Unemployment Unemployment rate 

IsHoliday Whether there is a special holiday during 

the week 

 

 

 

3.2.1. Data manipulation 

 

In order to use machine learning models to predict retail sales, the data needs to be 

manipulated to some degree before the machine learning techniques are applied. First, the 

train.csv, stores.csv and features.csv files must be merged using Python for all useful 
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features to be found in one single file. The stores.csv and train.csv files are first merged 

whereafter the features.csv file is merged into the previously merged file. Since the 

original files contain some duplicate variables between each other, the duplicate variables 

are dropped in the merging process. In addition to this, the values of the markdowns are 

corrected so that every missing value is replaced with a zero, as a markdown of zero equals 

no markdown at all. This must be done since the original features.csv only contained 

values for the markdowns when a markdown was active; otherwise, the field was left 

empty. Because of this, there are a lot of missing values in the markdown columns which 

cause problems for the machine learning techniques. As a result of the merging and 

manipulation, a file containing all the attributes presented in Table 3.5 is attained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



A. Lindfors: Demand Forecasting in Retail: A Comparison of Time Series Analysis and Machine 

Learning Models 

 

70 
 

 

Table 3.5 Merged data description 

Attribute Description 

Store ID number of each store 

Dept ID number of each department 

Weekly_Sales The weekly sales in USD 

IsHoliday Whether there is a special holiday during 

the week 

Type The type of each store 

Size The size of each store 

Temperature The average temperature of the week in 

the region 

Fuel_Price The cost of fuel in the region 

MarkDown1 Anonymized data related to promotional 

markdowns 

MarkDown2 Anonymized data related to promotional 

markdowns 

MarkDown3 Anonymized data related to promotional 

markdowns 

MarkDown4 Anonymized data related to promotional 

markdowns 

MarkDown5 Anonymized data related to promotional 

markdowns 

CPI Consumer price index 

Unemployment Unemployment rate 

Date The date of Friday each week 
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In addition to the aforementioned data manipulation, further data modifications 

are necessary for the chosen machine learning models. First, the date could be transformed 

from the original form to the month number. This is required because the date of the Friday 

of a specific week can be different each year even though they represent the same week. 

Some might argue that instead of the number of the month, the week number should be 

used. However, through trial and error, it was found that the choice of month or week 

number did not have a significant impact on the forecasting performance. The second 

problem to be addressed is the “Type” column. There are three different types of stores in 

the original data, represented by A, B and C. String variables are difficult to be interpreted 

by machine learning algorithms and therefore a more easily interpretable format is needed. 

The solution to the problem is transforming the original “Type” column into three new 

columns containing dummy variables, each representing one of the original store types. 

By doing this, the string variables are transformed into numerical variables.  

Since the original test.csv file provided by Walmart does not contain the weekly 

sales numbers it is impossible to validate the forecasting results attained by the model fit 

on the training data. Therefore, the final step is to split the train.csv into a training set and 

a test set before the data exploration and forecasting begins, as suggested by Domingos 

(2012). The splitting is done by removing the last 12 weeks of data from our current 

dataset and placing them in a different file to be used for validation of the attained 

forecasting results. As a result of this, a new training dataset containing 131 weeks’ worth 

of sales data and a test, or validation, dataset containing 12 weeks’ worth of sales data is 

acquired. 

In addition to the data manipulation presented in this section, some minor steps of 

data manipulation must be taken before each forecasting method is applied. These 

manipulations will be presented in conjunction with the forecasting in Section 3.3. 
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3.2.2. Data exploration 

 

Data exploration is an important step of the forecasting process, as was mentioned 

in Section 2.1, a good understanding of the available data is needed in order to be able to 

select the most suitable forecasting models. 

The first step of the data exploration is to view the size of the new training dataset 

created in Section 3.2.1. As can be seen in Table 3.6, the training set contains 386,005 

rows and 18 columns which should be sufficient to both train the machine learning models 

and to calculate the parameters of the time series analysis models. There are no definite 

rules on how much training data is needed to train an effective machine learning model, 

and a common understanding seems to be that the required size of the dataset depends on 

the task to be performed (eg. Domingos, 2012). For the task of sales forecasting in this 

thesis, the training dataset of 386005 rows and 131 weeks’ worth of data should be 

sufficient as, for example, Alon, Qi and Sadowski (2001) managed to generate accurate 

forecasts using much fewer historical data points. 

 

Table 3.6 Size of training data 

Array Size 

Rows 386005 

Columns 18 

 

 

After this, the relationships among variables in the data need to be examined to 

attain a basic understanding of how each variable affects the weekly sales. The scatter 

plots in Figures 3.1-3.9 display the relationship between the weekly sales and all other 

variables except the markdowns. As can be seen in Figure 3.7 and 3.8 the weekly sales 

vary a lot between the stores and between the departments. In addition to this, the weekly 

sale seems to be decreasing as the average temperature reaches the high and low extremes, 
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and bigger stores seem to logically have slightly bigger weekly sales. On the other hand, 

the fuel price and consumer price index does not initially give the indication of affecting 

the weekly sales based on the scatterplots. To further confirm the findings of the high 

variation in sales between stores and between departments, the bar charts of the average 

weekly sales per store and average weekly sales per department are shown in Figure 3.10 

and 3.11.  

 

Figure 3.1 Scatterplot of Weekly_Sales and Fuel_Price 

 

Figure 3.2 Scatterplot of Weekly_Sales and Size 
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Figure 3.3 Scatterplot of Weekly_Sales and Type 

 

 

Figure 3.4 Scatterplot of Weekly_Sales and IsHoliday 
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Figure 3.5 Scatterplot of Weekly_Sales and Unemployment 

 

 

Figure 3.6 Scatterplot of Weekly_Sales and Temperature 
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Figure 3.7 Scatterplot of Weekly_Sales and Store 

 

 

Figure 3.8 Scatterplot of Weekly_Sales and Dept 
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Figure 3.9 Scatterplot of Weekly_Sales and CPI 

 

Figure 3.10 Average weekly sales per store 

 

Figure 3.11 Average weekly sales per department 

 



A. Lindfors: Demand Forecasting in Retail: A Comparison of Time Series Analysis and Machine 

Learning Models 

 

78 
 

To further examine the relationships in the data, a correlation matrix using the 

Paerson correlation coefficient is created in Figure 3.12. The Paerson correlation 

coefficient takes values between 1 and -1 with positive correlation indicating that when 

one variable increase, the other variable also increases. If the correlation is negative, on 

the other hand, it indicates that the values move in opposite directions. Finally, 

correlations close to zero indicates that there is a weak correlation or no correlation at all. 

(Benetsy et al., 2009). As can be seen from the correlation matrix in Figure 3.12, the size, 

department and type are most strongly correlated to the weekly sales. In addition to this, 

other variables which are strongly connected to each other must be found. Since two 

variables with a strong correlation would bring similar information to the model, one of 

the strongly correlated variables need to be dropped when the machine learning model is 

developed and trained. One pair of such strongly connected variables are, for example, 

MarkDown1 and MarkDown4. 
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Figure 3.12 Correlation matrix

  

 

 In addition to the data exploration in this section, some minor data exploration will 

take place before the final forecasting methods are selected and applied. This data 

exploration will be presented in Section 3.3 in the process of model selection. 

 

 

3.3. Forecasting 

 

In this section the selection of forecasting methods as well as the forecasting process 

using all selected methods are presented. First, the time series forecasting methods will be 
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applied to the data, whereafter the machine learning techniques will be used. Following 

the forecasting, the results of the forecasting will be presented in Section 3.4. 

Since the training dataset contains the sales data of 61 departments in 45 different 

stores, forecasting the sales of every department of each store would be a heavy task. 

Therefore, a single department of a single store is selected for the forecasting task of this 

thesis. Using a random number generator, department 2 of store 1 is selected. The 

forecasting methods presented in this section and applied to the aforementioned 

department can also be applied to the other departments to forecast their upcoming sales. 

To determine which time series analysis models are most suitable for the dataset, a 

time series plot is made (Figure 3.13). Since the time series shows clear signs of 

seasonality with significant sales peeks on the week before Christmas, a seasonal ARIMA 

model and a triple exponential smoothing, or Holt-Winter’s exponential smoothing, are 

selected from the time series analysis model. In addition to these, a simple moving average 

will be used as a benchmark model, expected to be outperformed by the other models. As 

a simple moving average is suitable for a time series without trend but cannot handle 

seasonality, and the time series plot in Figure 3.13 shows almost no trend but clear 

seasonality, forecasting models designed to handle seasonality should easily outperform 

the moving average Therefore, it can be determined that a forecasting model is not 

reaching sufficient accuracy if it is not able to outperform the simple moving average. In 

addition to the time series analysis methods mentioned above, a linear regression model, 

a neural network, and three decision trees will be applied to the dataset.  
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Figure 3.13 Weekly sales of department 2 of store 1 

 

 

To determine the optimal ARIMA and triple exponential smoothing models, the 

software Forecast Pro was used. The best ARIMA model was determined to be ARIMA(1, 

0, 1)(0, 1, 0), and the triple exponential smoothing model chosen has a level factor of 

0.1614, a trend factor of 0.001611 and a seasonality factor of 0.698. By observing the time 

series plot in Figure 3.13, these model selections can be deemed reasonable as the time 

series exhibits barely any trend, excluding the need for differencing in the ARIMA model, 

and exhibits a clear seasonality, explaining the high seasonal factor in the triple 

exponential smoothing model. The optimal moving average model was also determined 

using Forecast Pro. Forecast Pro determined that the most suitable moving average model 

should include 44 past observations, and, through trial and error, it was confirmed that 

Forecast Pro had selected the correct number of past observations.  

When it comes to the machine learning methods, a different approach is chosen. The 

software STATA is used to develop the linear regression model while models developed 

by Scikit-learn for Python are used to build the neural network and decision tree models. 

Two different linear regression models are developed – one specific model for department 
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2 of store 1, and one general model that could be applied to every store. This is done to 

see if a general model can produce forecasts with good accuracy. Furthermore, the 

decision tree models and the neural network model built by the Scikit-learn models are all 

general models which can be applied to any department of any store.  The adjusted R-

squared value, which determines if an additional independent variable brings more 

explanatory value to the regression model, was used to determine the variables included 

in the linear regression models. The department-specific model included the variables 

Fuel_Price, IsHoliday, MarkDown1, MarkDown2, MarkDown4, CPI and Unemployment, 

while the general model included the variables Fuel_Price, Temperature, IsHoliday, 

MarkDown1, MarkDown2, and MarkDown4, as well as dummy variables for each store 

and each department. When it comes to the decision tree models, three different models 

were chosen. All the models chosen – the decision tree regressor, the extra tree regressor 

and the random forest regressor – were chosen because of their popularity. Based on the 

data exploration in Section 3.2.2, the variables chosen for these models, in addition to 

Weekly_Sales, are Store, Dept, IsHoliday, Temperature, MarkDown1, MarkDown2, 

MarkDown4, Month and the dummy variables for store type. Therefore, Date, CPI, 

Fuel_Price, Unemployment, MarkDown3 and MarkDown5 were dropped from the dataset 

created in Section 3.2.1. Finally, the neural network model selected is the MLPRegressor, 

or multi-layer perceptron regressor, by Scikit-learn. The same variables used for the 

decision trees are also used to train the neural network. 

 

 

3.4. Results 

 

This section will present the results of the forecasting through visualizations and 

different accuracy measures. The results will also be briefly discussed in this section, but 

a more thorough analysis will be presented in Chapter 4. The measurement of forecasting 

error chosen for this study is the MAPE, as it makes it easy to compare the results of 
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different studies. Other forecasting error metrics, such as the MAE, are dependent on the 

scale of the data used, and therefore, difficult to be compared between studies. 

Figure 3.14 and 3.15 visualize the forecasted sales and the forecast error acquired 

by all forecasting methods when they are applied to department 2 of store 1 on the new 

test set developed in Section 3.2.1. As can be seen in the graphs, the neural network 

underperformed considerably compared to the other models by constantly under-

forecasting by at least $12 000. The MAPEs in Table 3.7 also confirm this, as the neural 

network has an MAPE that is over ten times bigger than the best performing model, and 

almost three times bigger than the second worst performing model. 

By simply comparing the MAPEs in Table 3.7 the ARIMA model has the best 

performance, followed by the exponential smoothing, the department-specific linear 

regression model, and the extra tree regressor. However, since the forecasted period is 

relatively long, stretching over three months, the MAPE does not tell everything. For 

instance, when looking at the MAPE for each forecasted month, the ARIMA model only 

had the best performance for the forecast of the final month. The decision tree regressor 

had the best MAPE for the first month predicted (2.92%) and the extra tree regressor had 

the best MAPE for the second month predicted (2.78%). In Table 3.9, the MAPEs of the 

one month ahead, two months ahead and three months ahead forecast are visualized. From 

this table it can be seen that the performance of the ARIMA model and the extra trees 

regressor stayed fairly close to each other up until month two, but the forecasting 

performance of month 3 lead to the ARIMA model achieving the best overall MAPE. The 

MAPEs of Table 3.9 also show that while the accuracy of most model decreased the 

further in the future was predicted, the ARIMA model and the random forest regressor 

had their most accurate results on the three months ahead forecasts. All these findings 

indicate that most of the forecasting models behave and perform differently, as some 

models are more accurate on a short-term forecast while others perform better on long-

term forecasts. 
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Figure 3.14 Forecasted weekly sales 
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Figure 3.15 Forecast error 

 

 

Table 3.7 MAPE  

 LRgen  LRst1dept2 ARIMA ES SMA NN DecisionTreeRegressor ExtraTreesRegressor RandomForestRegressor 

MAPE 12.54% 4.12% 2.90% 3.71% 5.55% 34.35% 5.72% 4.92% 7.43% 

 

Table 3.8 MAPE per month 

 
LRgen  LRst1dept2 ARIMA ES SMA NN DecisionTreeRegressor ExtraTreesRegressor RandomForestRegressor 
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Table 3.9 MAPE of 1 month ahead vs. 2 months ahead vs. 3 months ahead forecast 

 LRgen  LRst1dept2 ARIMA ES SMA NN DecisionTreeRegressor ExtraTreesRegressor RandomForestRegressor 

1Month 8.20% 3.31% 3.06% 4.13% 3.62% 36.49% 2.92% 3.54% 8.01% 

2Month 10.66% 3.99% 3.01% 3.66% 3.95% 34.78% 5.15% 3.16% 8.24% 

3Month 12.54% 4.12% 2.90% 3.71% 5.55% 34.35% 5.72% 4.92% 7.43% 
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 In addition to the MAPE there are a few other metrics worth examining when 

comparing the performance of forecasting models. First, the over- and under-forecasting 

is examined. As can be seen in Table 3.10 most models tend to over-forecast on more 

occasions than they under forecast. Also, as shown in Table 3.11, the average over-

forecast tends to be bigger than the average under-forecast. In other words, when the 

model under-forecasts, it tends to under-forecast with a smaller margin than it over-

forecasts with. Though, this is not the case with all models as, for example, the random 

forest regressor is more keen to under-forecast and also under-forecasts by about two 

times as much as it over-forecast. 

 

Table 3.10 Number of weeks over- and under-forecasted 

 LRgen  LRst1dept2 ARIMA ES SMA NN DecisionTreeRegressor ExtraTreesRegressor RandomForestRegressor 

Over 11 8 7 9 9 0 8 8 2 

Under 1 4 5 3 3 12 4 4 10 

 

Table 3.11 Average over-forecast and average under-forecast 

 LRgen  LRst1dept2 ARIMA ES SMA NN DecisionTreeRegressor ExtraTreesRegressor RandomForestRegressor 

Over 13.66% 4.25% 2.72% 4.47% 6.11% - 6.07% 6.11% 4.46% 

Under 0.26% 3.87% 3.15% 1.41% 3.86% 34.35% 5.00% 2.53% 8.02% 

 

 Another metric worth examining is the number of times a model has an absolute 

percentage error under a predefined percentage. This is done to determine the frequency 

of accurate forecasts by a model. Table 3.12 presents the number of weeks the forecasting 

models reached an absolute percentage error below 0.5%, 2% and 4%. Once again the 

ARIMA model is one of the best performing models with 8 forecasted weeks with an 

absolute percentage error below 4%. While the ARIMA model did not manage to produce 

a single absolute percentage error below 0.5%, it was able to achieve a forecast error below 

2% in 6 of 12 forecasted weeks, resulting in the overall MAPE below 3%. The other top 

performing models on the overall MAPE also performed well on this metrics with at least 

five forecasted weeks with an absolute percentage error below 5. 
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Table 3.12 Number of weeks absolute percentage error is below x% 

 LRgen  LRst1dept2 ARIMA ES SMA NN DecisionTreeRegressor ExtraTreesRegressor RandomForestRegressor 

>0.5% 1 0 0 2 0 0 1 1 0 

>2% 1 2 6 4 3 0 2 3 2 

>4% 1 6 8 8 5 0 5 5 2 

 

 As a conclusion on the forecasting results it can be said that the empirical study 

confirms, at least to some degree, the findings of the literature review. The different 

forecasting methods are suitable for different applications, depending on if the long-term 

or short-term forecast is more important to the retailer. Also, if a forecasting model 

performed well on one performance metric, it usually also had decent results on the other 

metrics. Based on the forecasting results on the Walmart data, the conclusion can be drawn 

that the ARIMA model is the most suitable method for this dataset. This conclusion can 

be drawn from the consistent results of the ARIMA model throughout the performance 

metrics. The results of the forecasting will be analyzed more deeply in the upcoming 

Chapter 4. 
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4. Discussion 

 

The following chapter focuses on discussing the results of the forecasting done in 

Chapter 3 on a more in-depth level. In addition to discuss the results, possible reasons to 

the subpar performance of a few models as well as possible improvements will be 

discussed in this chapter. Finally, the research questions will be answered. 

 

 

4.1. Empirical study discussion 

 

When discussing the forecasting results attained in Chapter 3, it is important to note 

that the results could be completely contradictory to the ones of this study if another 

department would be chosen for analysis. As was found in the literature review, 

forecasting methods are highly case specific and therefore a definite truth regarding the 

best forecasting method cannot be found. 

The obvious stand-out in the results is the poor performance of the neural network 

model. In addition to the MAPE of 34.35%, the neural network was also the only model 

that constantly under-forecasted and had a MAPE above 10% for each forecasted month. 

When viewing the forecasted weekly sales in Figure 3.14 it is also apparent that the neural 

network failed to mimic the pattern of the actual sales, and instead, often moved in the 

opposite direction of them. The reasons to the poor performance of the neural network is 

hard, if not impossible to be determined as a neural network produces a model that is 

nearly impossible to interpret (Nielsen, 2015). However, since the other machine learning 

techniques used were able to produce far more accurate forecasts using the same data and 

the same variables, the possibility of an over-specified model can be ruled out. Also, when 

the neural network was trained only using the historical data of department 2 of store 1, it 

was able to produce accurate forecasts, leading to the supposition that the neural network 

had problems separating the stores and departments from each other. 
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When creating the models for linear regression, two separate models were developed 

to determine if a general forecasting model outperforms a department specific model, or 

vice versa. The general model created contained dummy variables for the store number 

and department number, and the other independent variables are identical to those in the 

department specific model. As expected, the performance of the general model was poor 

as it attained a MAPE of 12.54% and over-forecasted on all but one week. The poor 

performance is most likely caused by the fact that the general model was trained with all 

available data on all stores, while the specific model was only trained on the data of 

department 2 of store 1. As a result of this, the general model has to consider 

characteristics of all departments in all stores, while the specific model only considers the 

characteristics of the specific department of the specific store, resulting in more accurate 

results for the specific model.  

Quite surprisingly, none of the machine learning models managed to outperform the 

ARIMA and exponential smoothing models on the whole twelve-week period forecasted. 

The machine learning models performed well on certain periods, managing to keep up 

with the time series analysis methods when looking at the performance on one-month 

periods, but they lacked the consistency to produce accurate forecasts throughout the 

whole three-month period. For example, the decision tree regressor would most likely 

have been more competitive had it not been for the major over-forecast in the sixth week 

forecasted, and the extra trees regressor was a competitive model up until the final three 

weeks of the forecast. On the other hand, should the pattern of the weekly sales (Figure 

3.13) not have been so consistent, the performance of the time series analysis methods 

could have been much worse as they rely solely on historical sales data. The only major 

disruptions in the time series are the Christmas weeks of each year, falling on the same 

week each year. Also, the fact that the forecasted period did not fall during Christmas 

might possibly be an advantage to the time series analysis models as there is no way 

knowing how they would have handled the disruption. It is also worth noting that the 

performance of the simple moving average used as the benchmark model would most 

likely have been worse had the forecast period been during Christmas. 
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Comparing the results of the two time series analysis methods to each other, the results 

were as expected. The MAPE of both the ARIMA model and the exponential smoothing 

model were within one percent of each other, which confirms the findings of the literature 

review showing that the models are close to each other regarding forecast accuracy. In the 

long-term forecast the ARIMA model outperformed the exponential smoothing model, 

which is also expected as the exponential smoothing model developed by Forecast Pro did 

not include a damping factor. This most likely results in a slight over-forecast in the long 

run. Also, the fact that the ARIMA model has zero degrees of differencing while the 

smoothing weight of the exponential smoothing is close to zero confirms that the models 

behave as they should, since the time series does not show any substantial trend. One 

major difference between the two model can be found in the over- and under-forecasting. 

While both models tend to over-forecast more frequently than they under-forecast, the 

ARIMA model over-forecasts less than the exponential smoothing model. On the other 

hand, the exponential smoothing under-forecasts by a smaller margin than the ARIMA 

model and therefore it is up to the user to decide whether under- or over-forecasting is 

more desired. 

Despite the clear superiority of the time series analysis models, it is worth noting that 

the MAPE of all models, except for the neural network and general linear regression 

model, were below 10% which according to Lewis (1997) is a sign of a reasonably 

accurate forecasting model. Therefore, it can be concluded that none of these models were 

faulty but the time series analysis models were simply more suitable for the available data. 

However, the statement of Lewis (1997) is made 24 years ago and therefore somewhat 

outdated. As technology have advanced and many new models have been developed in 

the past 24 years, the 10% threshold suggested by Lewis (1997) should be reconsidered. 

As was found in the literature review and empirical study of this thesis, a forecasting 

accuracy of 5% or lower is not unusual, and therefore a new threshold could today be set 

at 5%. 

There are a few areas of the forecasting on which a small improvement could possibly 

have led to a more accurate forecast. First, while the data provided by Walmart include 

many useful variables, some minor changes could have brought notable performance 
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boosts to some of the model. While the weekly average temperature is useful information 

to have, a better measurement could have been the difference to the monthly average 

temperature. By having the data in the form provided by Walmart, the same temperature 

is assigned the same weight no matter when it occurs. However, having a, for example, 

15 degrees Celsius temperature in February and July most likely has substantially different 

effects on the weekly sales. Therefore, changing the temperature to the difference to the 

monthly average gives a more relevant variable to be used in the machine learning models. 

Another improvement that could result in better forecasting performance would be 

designing the machine learning models from scratch instead of using predeveloped 

models. The task would require substantial knowledge and expertise, but a model 

specifically designed to suit the available data would increase the forecasting accuracy 

with a high probability. However, it must be considered if a small improvement in 

forecasting accuracy is worth the extra investment when freely available machine learning 

models are able to produce forecasts with MAPEs below 5%. 

 

 

4.2. Research questions 

 

The aim of this thesis has been to understand how the different methods of sales 

forecasting work as well as comparing the time series analysis methods to machine 

learning methods. This thesis has, to some degree, been able to answer the following 

research questions: 

 

1. Do forecasting methods utilizing machine learning techniques perform better than the 

time series analysis models? 

 

2. Which forecasting method gives the best performance in sales forecasting? 
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While there are no definite answers to either research question, both questions can still 

be answered. The answers to both research questions must be derived from both Chapter 

2 and Chapter 3. If the answer to the first question is based solely on the empirical study, 

the answer is no. However, as many studies presented in the literature review showed, the 

machine learning techniques have the potential to and can perform better than the tradition 

forecasting methods. As the results varied, with some studies showcasing superior 

performance of the machine learning models and others exhibiting superior performance 

in the time series analysis models, the conclusion can be drawn that determining the best 

model is highly case specific. Therefore, it is advised that multiple forecasting models are 

compared before a final model is chosen for the sales forecasting task. It must be noted, 

however, that while the performance of a forecasting method can easily be measured in 

the form of a forecasting error, many machine learning models bring the advantage of 

interpretability. While the time series forecasting models base their upcoming forecasts 

simply on previous sales figures, most machine learning models gives the user an 

understanding of which factors affect the sales and to which degree. In some cases with 

small differences in performance between time series analysis methods and machine 

learning methods, the advantage might fall to the machine learning methods because of 

their explanatory power. 

The second research question could once again be answered solely based on the 

empirical study of this thesis, in which case the answer would be the ARIMA model, but 

the answer would then only reflect one case. As with the first research question, the 

literature review showed great variety in the answers to this question. Despite this, the 

best performing model based on the literature review is either an ARIMA, an exponential 

smoothing, a neural network, or a decision tree model. While the neural network 

performed poorly in the empirical study of this thesis, it was often one of the top 

performing models in the studies covered in the literature review. The ARIMA and the 

exponential smoothing models were also almost always in the top three best performing 

models in the covered studies, showing their consistent performance. However, since there 

are countless algorithms and data manipulation options not covered in this thesis, and the 

performance of the covered forecasting methods has proven to be highly case specific, it 
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is impossible to name a single forecasting method that for certain is the best performing 

model for sales forecasting. 

 

 

4.3. Future research 

 

Some areas of possible future have been discovered during the process of this thesis. 

The performance of pre-built machine learning models, such as the ones made available 

by Scikit-learn, could be compared to machine learning models built from scratch. Since 

the literature review showed that the performance of the forecasting models is highly case 

specific, there is potential for machine learning models tailored according to the 

characteristics of the available data to produce more accurate forecasts.  

Additionally, the many machine learning models left out of this thesis could also be 

examined to give a more definite answer to the second research question of this thesis. For 

example, the gradient boosting, the support vector machines and the k-nearest neighbors 

algorithms which all have potential to produce accurate sales forecast were not treated in 

this thesis. 

Furthermore, the forecasting performance of hybrid machine learning models would 

be beneficial to examine. In recent years, hybrid machine learning models have gained 

popularity (eg. Shon & Moon, 2007, Mohan, Thirumalai & Srivastava, 2019, and 

Keshtegar et al., 2021) and their suitability for sales forecasting should be studied. 
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5. Svensk sammanfattning 

 

5.1. Introduktion 

 

För att ett företag inom detaljhandeln ska kunna driva lönsam verksamhet finns 

det två huvudsakliga faktorer som måste beaktas: en tillräckligt stor och positiv kundkrets 

samt en hållbar kostnadsstruktur. Medan upprätthållandet av kundkretsen främst handlar 

om att känna till vem kunden är, innefattar upprätthållandet av den hållbara 

kostnadsstrukturen betydligt fler ämnesområden. Allt från planering av arbetsscheman för 

att undvika över- eller underbemanning till att upprätthålla en korrekt lagernivå för att 

undvika överskottslager samtidigt som produkten inte får ta slut, är involverat i 

upprätthållandet av en hållbar kostnadsstruktur. Trots att det finns väldigt många faktorer 

som påverkar kostnadsstrukturen kan de flesta faktorer ändå härledas till samma 

påverkande faktor: efterfrågan på den sålda produkten. Ifall en detaljhandlare har tillgång 

till prognoser för den kommande efterfrågan eller försäljningen av en produkt kan hen 

utnyttja informationen till att främja kostnadsstrukturen. Till exempel kan situationer då 

över- eller underbemanning förekommer undvikas då bemanningen kan planeras enligt 

den förväntade försäljningen (Defraeye och Van Nieuwenhuyse, 2016). Utöver detta 

underlättar vetskap om kommande efterfrågan även bland annat vid hantering av 

försörjningskedjan i och med att över- eller underskottslager då kan undvikas 

(Carbonneau, Laframboise och Vahidov, 2008). Detta gäller även vid planering av 

kommande försäljningskampanjer (Ma, Fildes och Huong, 2016). 

Syftet med denna pro gradu-avhandling är att undersöka hur de existerande 

prognostiseringsmetoderna kan användas för prognostisering av försäljning inom 

detaljhandeln. Detta sker i form av en jämförande studie där traditionella metoder för 

tidsserieanalys jämförs med maskininlärningsmetoder. Att jämföra metoder för 

tidsserieanalys med maskininlärningsmetoder har varit ett populärt ämne de senaste åren, 

men en marginell del av forskningen har fokuserat på detaljhandeln. I och med att data 

som skapats inom olika branscher kan vara av mycket olika karaktär, finns det luckor i 
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den tidigare forskningen som denna pro gradu-avhandling ämnar fylla. Avhandlingen 

består av en litteraturöversikt i vilken de olika prognostiseringsmetoderna först beskrivs i 

detalj och tidigare forskning presenteras, samt av en empirisk studie i vilken några av de 

i litteraturöversikten beskrivna modellerna sedan används för att prognostisera Walmarts 

försäljning. Forskningsfrågorna som studien försöker besvara är: 

 

1. Producerar prognostiseringsmetoder som utnyttjar maskininlärning mer exakta 

prognoser än metoderna för tidsserieanalys? 

2. Vilken prognostiseringsmetod presterar bäst då försäljning inom detaljhandeln 

prognostiseras? 

 

 

5.2. Litteraturöversikt 

 

Metoderna som presenteras i litteraturöversikten är glidande medelvärde, 

exponentiell utjämning, ARIMA, regressionsanalys, beslutsträd och artificiella neurala 

nätverk. Av dessa är det glidande medelvärdet, den exponentiella utjämningen och 

ARIMA metoder för tidsserieanalys, medan regressionsanalys, beslutsträd och artificiella 

neurala nätverk är metoder som utnyttjar maskininlärning. 

Det glidande medelvärdet omfattar flera olika metoder av vilka det enkla glidande 

medelvärdet och det viktade glidande behandlas i denna avhandling. Ett glidande 

medelvärde är ett medelvärde av de senaste observationerna i en tidsserie som uppdateras 

genom att lägga till den senaste observationen i medelvärdet samtidig som den äldsta 

utelämnas. Därmed fås ett glidande medelvärde som alltid hålls uppdaterat. Till skillnad 

från det enkla glidande medelvärdet där alla observationer är lika viktade, ger det viktade 

glidande medelvärdet större vikt åt de senaste observationerna. Detta kan vara användbart 

bland annat då man vill ha en modell som snabbare reagerar på förändringar.  
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Den exponentiella utjämningen påminner till viss del om det glidande medelvärdet 

men en utjämningsfaktor introduceras i den exponentiella utjämningen, vilket resulterar i 

märkbart olika resultat. Den exponentiella utjämningen kan delas in i enkel exponentiell 

utjämning som lämpar sig för tidsseriedata utan trend och säsongsmässighet, dubbel 

exponentiell utjämning som lämpar sig för tidsseriedata med trend, och trippel 

exponentiell utjämning som lämpar sig för tidsseriedata med både trend och 

säsongsmässighet. 

Den sista metoden för tidsserieanalys är ARIMA, som står för autoregressive 

integrated moving average (fritt översatt: autoregressivt integrerat glidande medelvärde). 

Så som namnet på modellen låter förstå består modellen av flera delar. Det är en 

kombination av autoregression, differentiering och glidande medelvärde där 

differentieringen transformerar använda data till stationära data och autoregressionen och 

det glidande medelvärdet används för att prognostisera. ARIMA och den exponentiella 

utjämningen är de två mest populära metoderna för tidsserieanalys. 

Regressionsanalys är en metod där en regressionsfunktion bestående av beroende 

och oberoende variabler skapas för att beskriva ett dataset. Den beroende variabeln är det 

man försöker förutspå, i detta fall försäljningen, och de oberoende variablerna är de 

faktorer som påverkar försäljningen. I denna avhandling har regressionsanalysen delats 

upp i enkel linjär regressionsanalys, där det endast finns en oberoende variabel, och 

multipel regressionsanalys, i vilken det ingår flera oberoende variabler. I och med att en 

regressionsanalys i teorin kunde utföras utan maskininlärningsmetoder på ett väldigt litet 

dataset, skulle regressionsanalysen också kunna räknas som en metod för tidsserieanalys. 

Eftersom det i praktiken ändå oftast är fråga om väldigt stora dataset vid 

prognostiseringsproblem krävs det oftast maskininlärningsmetoder för att lösa 

regressionsanalysen. 

Den mest populära maskininlärningsmetoden för prognostisering är beslutsträd. 

Ett beslutsträd löser komplexa problem genom att dela in problemet i flera enklare frågor 

som sedan besvaras i tur och ordning för att till slut nå en slutsats. Existerande träningsdata 

används för att träna upp modellen så att rätt slutsats nås då en specifik kombination av 

frågor eller förhållanden matas in. När inlärningen är färdig kan sedan uppkommande 
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förhållanden matas in vilket resulterar i att modeller prognostiserar ett framtida utfall. 

Namnet på modellen härstammar i att en visualisering av ett beslutsträd liknar en 

trädkrona med sina grenar. 

Den sista maskininlärningsmetoden är det artificiella neurala nätverket. Ett 

artificiellt neuralt nätverk är designat att följa samma process för beslutsfattande som 

människohjärnan genom att besvara komplicerade frågor genom att, likt beslutsträdet, 

dela upp dem i flera enklare frågor. Uppbyggnaden av ett artificiellt neuralt nätverk skiljer 

sig dock märkbart från beslutsträden. Ett artificiellt neuralt nätverk består av flera lager 

neuroner, i vilka de enklare frågorna besvaras, vilka är ihopkopplade med vikter. Baserat 

på de inkommande vikterna fattar en neuron ett beslut och skickar sedan en utgående vikt 

till nästa lager. Nätverket lär sig genom att justera vikterna utgående från träningsdata och 

kan därmed till slut fatta egna beslut. Prognostisering sker sedan genom att data för den 

prognostiserade perioden matas in i nätverket, varmed det artificiella neurala nätverket 

utgående från dessa data kan fatta ett beslut om framtida utfall. 

 

 

5.3. Empirisk studie 

 

Den empiriska studien kan delas upp i tre delar – dataanalys, datamodifiering och 

prognostisering. De data som används i den empiriska studien är Walmarts 

försäljningsdata som publicerats på Kaggle i samband med en maskininlärningstävling år 

2012, och modellerna valda för prognostisering är enkelt glidande medelvärde, trippel 

exponentiell utjämning, ARIMA, regressionsanalys, beslutsträd och neurala nätverk. 

Programmet Forecast Pro används för att ta fram de optimala ARIMA- samt exponentiella 

utjämningsmodellerna, medan Python-modeller utvecklade av Scikit-learn används för 

beslutsträden och det neurala nätverket, och Stata används för att skapa modellen för 

regressionsanalys. 

Dataanalysen visar att datasetet består av data innehållande veckomässig 

försäljningsinformation om upp till 99 olika avdelningar i 45 olika butiker. Datasetet 
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innehåller information om butikens typ och storlek, datum för observationen, huruvida det 

är helgdag eller inte, medeltemperaturen, bränslepriset i området, anonymiserad 

prisreduceringsinformation, konsumentprisindex samt arbetslöshetsgraden. Om två 

variabler har stark korrelation utelämnas den ena ur prognostiseringsmodellerna. Andra 

modifieringar som måste göras i datasetet är att de tomma fälten i 

prisreduceringsinformationen fylls med nollor så att de kan hanteras av 

datainlärningsmodellerna, och datumfältet ändras från ett specifikt datum till endast 

månadens nummer för att maskininlärningsmodellerna ska kunna koppla ihop 

observationer från olika år. I sitt ursprungliga format representerade datumet alltid 

fredagen varje vecka men eftersom detta datum kan ändras från år till år behövs ett mera 

lättolkat format. Variablerna som slutligen valdes för beslutsträden och det artificiella 

neurala nätverket är försäljningen, butiksnumret, avdelningsnumret, helgdag, 

temperaturen, prisreduceringsinformation 1, 2 och 4, och butikens typ. Variablerna för 

regressionsmodellen valdes utgående från det justerade R2-värdet och var bränslepriset, 

helgdag, prisreduceringsinformation 1, 2 och 4, konsumentprisindex samt 

arbetslöshetsgraden. 

 

 

5.4. Resultat 

 

För att mäta resultatet av prognostiseringen används MAPE-formeln. MAPE är en 

förkortning av mean absolute percentage error och mäter medelvärdet av det absoluta 

procentuella mätfelet för en modell. Den bästa modellen var ARIMA med MAPE på 2,90 

%, som följdes av exponentiell utjämning på 3,71 %, regressionsanalys på 4,12 %, 

beslutsträd på 4,92 %, glidande medelvärde på 5,55 % och neurala nätverk på 34,55 %. 

För att besvara forskningsfrågorna måste även litteraturöversikten beaktas. Om 

den första forskningsfrågan skulle besvaras endast utgående från den empiriska studien 

skulle svaret vara att modeller som utnyttjar maskininlärning inte producerar mera exakta 

prognoser. Litteraturöversikten visade dock att resultaten av en prognos är väldigt 
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fallspecifika och en modell som ger goda resultat på ett dataset kan ge dåliga resultat på 

ett annat dataset. Vissa studier nådde bättre resultat med maskininlärningsmodeller medan 

andra studier nådde bättre resultat med modeller för tidsserieanalys. Därmed kan ingen 

definitiv slutsats dras, men det bör påpekas att flera prognostiseringsmetoder bör testas på 

det egna datasetet före den slutliga prognostiseringen utförs. 

Vad gäller den andra forskningsfrågan är svaret ARIMA-modellen om svaret åter endast 

baseras på den empiriska studien. I och med att litteraturöversikten visade varierande 

resultat och då det finns otaliga prognostiseringsmetoder som lämnades utanför denna pro 

gradu-avhandling, är det dock omöjligt att ge ett definitivt svar på frågan. Trots det bör 

det nämnas att ARIMA, exponentiell utjämning, beslutsträd och artificiella neurala 

nätverk var de bäst presterande modellerna enligt litteraturöversikten, vilket delvis stöds 

av den empiriska undersökningen. Då även alla modeller förutom det artificiella neurala 

nätverket hade ett MAPE-värde under 10 %, vilket enligt Lewis (1997) är ett tecken på en 

väl presterande modell, kan man inte säga att någon av dessa modeller skulle ha 

misslyckats i sin prognostisering. När det kommer till den andra forskningsfrågan kan 

man därmed också dra slutsatsen att ett flertal prognostiseringsmetoder bör testas på det 

egna datasetet före den slutliga prognostiseringsmetoden väljs. 
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