A formal toolchain for model-based

testing of PLC systems

Gaadha Chariyarupadannayil Sudheerbabu 1900645

Master’s degree Programme in Information Technology, Computer Engineering
Supervisors: Dragos Truscan, Tanwir Ahmad

Faculty of Science and Engineering

Abo Akademi University

2021

Abstract

Programmable logic controllers (PLCs) are programmable controller devices broadly used
for industrial automation in industrial control systems. The correct functioning of such
systems using PLCs is of utmost importance since their failure can result in financial
losses and even human life losses. For the verification and validation of PLC systems,
there is an increasing demand for test automation solutions. Early verification of the
system’s functional and safety features based on requirements can prevent malfunctions
and ensure software quality. Besides, this enhances the feedback mechanisms during the
software’s development and operation phases.

Model-based testing (MBT) is a black-box testing approach that generates abstract
tests automatically from a behavioral model describing the expected behavior of the sys-
tem. Such model can be typically built from the requirements of the system. The quality
and performance evaluation of the MBT while testing the robustness of complex systems
is an area under active research.

This thesis proposes a model-based testing toolchain approach for modeling, test case
generation, and test execution for safety-critical PLC systems. The proposed methodol-
ogy considers the system under test as a black-box, and the behavioral model of the sys-
tem is built based on the requirements specification. The model is created using UPPAAL
timed automata and its properties are verified via model checking in the UPPAAL tool via
Timed Computation Tree Logic (TCTL) queries. The UPPAAL tool is then used for test
generation either via model checking or via structural coverage. The generated tests are
executed using the Pytest testing framework against the PLC application program.

In this work, a machinery control system implemented using the IEC 61131-3’s Func-
tion Block Diagrams (FBD) programming language is used as the case study. Pytest
testing framework uses OPC UA communication protocol to connect to the PLC appli-
cation running on a simulated device in the CODESYS development environment. The
results of the study show that the proposed toolchain can be an efficient solution for the
verification of safety-critical PLC systems in the industry.

Keywords: Model-based Testing; Model checking; Programmable Logic Controllers;
PLC; IEC 61131-3; IEC 61508; UPPAAL; OPC UA; Function block diagram; FBD.

Acknowledgements

I would like to wholeheartedly thank my supervisor, Adjunct Professor Dragos Truscan,
for the guidance, encouragement, and continuous support. I express my sincere gratitude
to Professor Ivan Porres Paltor and Dragos Truscan for the opportunity to do the thesis
work as part of the VeriDevOps team.

Thanks to my labmates, Tanwir Ahmad, Junaid Igbal, and Srijan Chapagain, for their
cooperation. I would like to thank Shameena V.M, Sargamates, Shahariya R.P, Induja M.J,
Farzana Tajuddin, Imran Ahmad Shahid for your love and friendship. I fondly thank all
the friendly and smiling faces at third-floor Agora for making the workplace wonderful.

Big thanks to my dear parents, Sudheerbabu and Indira, for the love and prayers. An

ocean of love and gratitude to my partner Fuaad and our little bundle of joy, Alia.

Contents

1 Introduction

2

1.1 Researchquestions

1.2 Research contributions

1.3 Structure of the thesis

Background

2.1 Programmable Logic Controllers

2.1.1 Function block diagrams
22 CODESYS . . . e
22.1 CODESYSProfiler

2.3 Open Platform Communications Unified Architecture

23.1
232

CODESYSOPCUA Server
Python OPCUAClient

24 Software Testing e

2.4.1
242

243
24.4
245
24.6

2.5 Pytest

Model-based testing
Relatedwork
2.4.2.1 Verification and validation of PLC systems
2.4.2.2 Model checking tools for PLC systems
2.4.2.3 Research challenges in PLC model checking
Formal methods for software verification
UPPAAL Timed Automata
Verification using UPPAAL
Model checking using UPPAAL tool
24.6.1 SystemEditor
24.6.2 Verifier
24.6.3 Symbolic Simulator
2.4.6.4 Model-based test generation using UPPAAL Y ggdrasil

3 Design and implementation 29

3.1 Methodology 29
32 Casestudy 30
3.3 Modeling and verification 33
3.3.1 Buildingthemodel 33

3.32 Verification e 37

34 Testgeneration e e 38
3.5 Testexecution e e e 40
4 Results and Evaluation 43
4.1 Verificationeffort 43
42 Testefficiency 44
4.3 Evaluation of test effectiveness 46

4.4 Advantages and disadvantages of using UPPAAL Yggdrasil for test gen-

EratioN v v v o e e e e e e e e e e 47
5 Conclusions and Future work 49
5.1 Conclusions e 49

5.2 Future work 50

List of Figures

1.1

1.2

1.3
1.4

2.1
22
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16

3.1
32
33
34
3.5

Recommendations to avoid introduction of faults during software design
and development IEC 61508-3) [12] 3

Safety integrity levels for safety functions operating in the low demand

mode of operation [12] L Lo 3
Verification and validation of software under IEC 61508-3:2010 [14] . . . 4
Proposed toolchain approach for MBT and verification of PLC systems . 6
A Programmable Logic Controller 7
Implementation of an XOR withan ANDandOR 8
Graphical declarations of the bistable function blocks SR and RS [11] .. 9
Graphical declarations of the function blocks R_TRIG and F_TRIG [11] . 10
Graphical declarations of the function blocks CTU, CTD, and CTUD [11] 11
Graphical declarations of the function blocks TON, TOF, and TP [11] . . 11
OPC UA Security Architecture [20] 12
The Software Development Life Cycle and testing levels "V model” [28]. 14
The Model-based testing process [15]. 16
The overview of the taxonomy of model-based testing process [15]. . . . 17
UPPAAL Editortab 24
UPPAAL Verifiertab, 25
UPPAAL Simulatortab 26
Entering test code in UPPAAL Editor 27
Test code entered in the behavioral model 27
Yggdrasil tabin UPPAALGUI 28
Proposed toolchain for MBT of PLC system 30
Abstract schematic representation of the MCS 31
Detailed implementation of the MCS using FBD 32
Timed Automata model for Machineunit 34
Timed Automata model for Cargounit 35

9

3.6
3.7
3.8
39
3.10
3.11

4.1
4.2
4.3
4.4

Timed Automata behavioral model for LoadEnabler unit 36

Verification of queries using UPPAAL Verifier 38
Test case files generated using Yggdrasil 39
Testsinthetestcasefile. 39
OPC UA adaptor layer for test execution 40
Test execution using pytest Lo 42
Memory usage and running time measurement 43
Test case generation using Yggdrasil 44
Test summary frompytest L. 45
Code coverage measurement using CODESYS Profiler 46

List of Tables

1.1

2.1
22

2.3

3.1

Details of cyber-attacks on nuclear power plants 2
List of standard function blocks [11] 9
Abbreviations and meaning of the input and output variables in Table 2.1

(1] . e 10
Comparison of verificationtools. 19
Input output structure of UPPAAL TA behavioral model of MCS. 36

11

1. Introduction

Industrial control systems (ICS) are increasingly present in many application domains,
such as as manufacturing, electric power generation, chemical manufacturing, oil re-
fineries, and water and wastewater treatment. An industrial control system consists of
different types of control systems and associated instrumentation such as devices, sys-
tems, networks, controls working together to operate or automate industrial processes [1,
2]. An ICS includes control systems such as Programmable Logic Controllers (PLCs),
distributed control systems (DCS), and supervisory control and data acquisition systems
(SCADA). PLCs are controller devices that collects information from sensors and input
commands and control a process based on a program logic execution [3]. PLCs are used in
complex industrial control systems such as nuclear power plants, heavy machinery equip-
ment control, system monitoring, logistics, energy research, rail automation, etc. Such
systems should not only implement their functions correctly, but also should be safe to

use and secure.

The gradual shift of ICS systems from physical to cyber-physical systems introduces
potential security threats, emphasizing the importance of security testing. There has been
incidents reported about cyber-attacks on nuclear power plants (NPP) such as emergency
shutdown of the Brown Ferry NPP in 2006 [4], Hatch NPP in 2008 [5] , and the Stuxnet
worm attack on the Natanz nuclear facility in 2010 [6]. Table 1.1 summarizes the details
and causal factors of the aforementioned cyber-attacks targeted on PLC systems to exploit

their vulnerabilities and trigger a system malfunction.

An investigative study by Lim, Bernard, et al. [7] demonstrated the impacts of a
cyber-attack on a Tricon PLC system of a nuclear power plant. Their research revealed
possible ways to trigger an attack and exploit the vulnerabilities of the Tricon PLC that
uses a Triple-Modular Redundant (TMR) architecture. The findings from the study shows
that using the types of attack: (1) Latent Failure Attack, and (i1) Immediate Failure attack,
the control logic of Tricon system can be altered resulting in a common-mode failure.
To prevent future cyber-attacks on PLC systems, developing strategies for verifying and

validating their functional safety is becoming more important.

Safety-critical software systems need to be verified and validated meticulously for

1

Incident Details and Causal factors

The failure of two water recirculation pumps caused an
emergency manual shutdown in the Browns Ferry NPP in 2006.
Browns Ferry NPP | The failure was caused by a spike in network data

traffic due to a malfunctioning PLC. The pattern of

attack was similar to a denial of service cyber-attack.

A software update to a computer on the NPP’s network

caused Unit 2 of the Hatch NPP to automatically shutdown.
While rebooting the computer collecting the diagnostic data

from the process control network, the data on the control network
Hatch NPP was reset by the synchronization program. This data reset was
misinterpreted as a sudden drop in the reactor’s water reservoirs,
causing an automatic shutdown. A failure in understanding the
dependencies between network devices triggered a cyber-attack
in this case.

Stuxnet worm attack targeted a SIEMEN’s Step 7 PLC (used
Natanz NPP to configure the PLC) and hijacked the Step 7 configuration
software by replacing one of the dynamic link library used by it.

Table 1.1: Details of cyber-attacks on nuclear power plants

their functional and safety features to prevent malfunctions [8] and there is an increasing
demand for test automation tools for the verification of safety-critical PLC applications
[9].

Most PLC manufactures in Europe are members of PLCopen, an independent organi-
zation providing efficiency in industrial automation [10]. PLCopen defines IEC 61131-3
as a worldwide standard for PLC hardware and the PLC programming systems [11]. IEC
61508 is an international safety standard for the design of safety related systems imple-
mented using electrical / electronic / programmable electronic devices [12]. The compli-
ance requirements of IEC 61131-3 standardisation keep development and implementation
costs of PLC systems under control. The standard consists of seven parts, and part 6 deals
with safety-related PLC which aims to adapt the requirements of safety standard IEC
61508 to PLCs.

IEC 61508-3 defines safety integrity levels (SILs) for software in safety-related sys-
tems to avoid systemic failures. Figure 1.1 shows the IEC 61508-3 recommendations to
avoid the introduction of faults in software design and development phase.

An example of safety-related PLC is a machinery control system which is required
to operate its machine unit in a continuous mode maintaining its safe state. In safety-
related systems the safety requirements should be translated to SILs in its final stage of

development Figure 1.2.

A study on software safety process patterns by Vuori et al. [13] states that IEC 61508-

2

Technique/Measure SIL1 SiL2 SIL3 SIL4
1 Fault detection and diagnosis R HR HR
2 Error detecting and correcting R R R HR
codes
3a Failure assertion programming R R R HR
3b Safety bag techniques R R R
3c Diverse programming R R R HR
3d Recovery block R R R R
3e Backward recovery R R R R
3f Forward recovery R R R R
3g Re-try fault recovery mechanisms R R R HR
3h Memorising executed cases R R HR
4 Graceful degradation R R HR HR
5 Artificial intelligence - fault - NR NR NR
correction
8 Dynamic reconfiguration - NR NR NR
7a Structured methods including for HR HR HR HR
example, JSD, MASCOT, SADT
and Yourdon.
b Semi-formal methods R R HR HR
7c Formal methods including for
example, CCS, CSP, HOL, R R HR
LOTOS, OBJ, temporal logic,
VDM and Z
3 Computer-aided specification tools R R HR HR
Appropriate techniques/measures should be selected according to the safety integrity level. Alternate
or equivalent techniques/measures are indicated by a letter following the number. Only one of the
alternate or equivalent techniques/measures has to be satisfied.

Figure 1.1: Recommendations to avoid introduction of faults during software design and
development (IEC 61508-3) [12]

Safety integrity level Target failure measure

(Average probability of failure to perform its design function on
demand)

>107to < 107

>10%to < 10°

=107 to < 107

2107t < 107

EVINIER IS
v

Figure 1.2: Safety integrity levels for safety functions operating in the low demand mode
of operation [12]

3 (2" Edition) recommends model-based testing during software design and development
to ensure software safety. IEC 61508-3:2010, Part3 [14] recommends as recommended
(R) or highly recommended (HR), the test execution from model-based test case genera-
tion for verification and validation of safety-related software systems based on the SILs
(Figure 1.3).

MBT is a promising black-box testing technique that can reveal whether the system’s
actual implementation conforms to the requirement specification and ensure its opera-
tional correctness. It aims to generate tests automatically from abstract behavioral models
of the system [15]. It relies on creating a behavioral model of the software system and
the behaviour of the environment from its requirements. Recent research in model-based

testing strives to develop methods and tools to fine-tune MBT for domain-specific use in

SIL
Technique / Measurement

1 2 3 4
1. Test case execution from boundary value analysis R HR HR HR
2. Test case execution from error guessing R R R R
3. Test case execution from error seeding R R R
4. Test case execution from model-based test case generation R R HR HR
5. Performance modeling R R R HR
6. Equivalence classes and input partition testing R R R HR
7a. Structural coverage (entry points) 100% HR HR HR HR
7b. Structural coverage (statements) 100% R HR HR HR
Te. Structural coverage (branches) 100% R R HR HR
7d. Structural coverage (MC/DC) 100% R R R HR

(a) Dynamic analysis and testing: IEC 61508-3, Part3, Annex B Table B.2

Technique / Measurement o8

1 2 3 4
1. Test Case Execution from Cause Consequence Diagrams - - R R
2. Test case execution from model-based test case generation R R HR HR
3. Prototyping/Animation - - R R
4. Equivalence Classes and Input Partition Testing, including boundary value analysis R HR HR HR
5. Process Simulation R R R R

(b) Functional and black-box testing: IEC 61508-3, Part3, Annex B Table B.3

Figure 1.3: Verification and validation of software under IEC 61508-3:2010 [14]

industrial applications.

By having a test model created from requirements, MBT allows one to detect early
errors and inconsistencies in the specifications. And this is beneficial because, as stated
in [16], most common errors in software systems stem from misunderstanding or misin-
terpretation of software specifications, often resulting in incorrect implementations. Thus
there is a need for formal verification of the specs / models via model checking to increase

their quality by detecting faults early during design and development phase.

The evolution of ICS systems from physical systems into cyber-physical systems in-
troduces potential security risks and emphasises the need for their functional safety and
security testing. ICS systems should undergo thorough testing to confirm their operational
correctness. This thesis proposes a model-based testing toolchain approach for modeling,
test case generation, and test execution for safety-critical PLC systems. The proposed
methodology considers the system under test as a black-box, and the behavioral model
of the system is built based on the requirements specification. The model is created us-
ing UPPAAL timed automata [17] and its properties are verified via model checking in
the UPPAAL tool via Timed Computation Tree Logic (TCTL) queries. The UPPAAL
tool is then used for test generation either via model checking or via structural coverage.
The generated tests are executed using the Pytest testing framework [18] against the PLC

application program.

1.1 Research questions

Model-based testing allows increasing the quality of PLC implementations. The objective
of this thesis is to investigate the benefits a formal toolchain for functional and safety
testing of PLC systems using MBT techniques. Throughout this work, we attempt to

answer the following research questions:

* (RQ1) How to apply verification effectively using model checking of the behavioral

specifications for industrial control systems?

* (RQ2) How to generate automated tests and execute offline testing for PLC FBDs
using the UPPAAL model checker?

* (RQ3) How does the toolchain perform in terms of quantitative measures such as

test suite generation time and memory usage in the MBT process?

1.2 Research contributions

Recent research conducted in model-based testing techniques has revealed the advantages
of automated test generation using model checking [9, 19]. In automated test generation
input values for a test is generated dynamically from an abstract behavioral model of
the system and embedded into executable test scripts. Automated test generation is more
effective and efficient in terms of time, cost, and maintenance compared to manual testing.
The challenge is to design test automation strategies and tools based on model-based
methodologies and coverage measurement techniques.

This thesis proposes a toolchain for model checking and model-based test generation
using the UPPAAL tool for PLC systems written in FBDs. The proposed toolchain em-
ploys UPPAAL Timed Automata formalism to model the expected behavior of the soft-
ware system, UPPAAL-Y ggdrasil tool of UPPAAL for automated test generation, OPC
UA (Open Platform Communications Unified Architecture) [20] as communication pro-
tocol for data exchange between PLC system and Python, and Python testing framework
Pytest for test execution (Figure 1.4).

The test suite comprising the automatically generated tests from the behavioral model
created using the UPPAAL tool will be executed using the Pytest testing framework
against the PLC application under test. The behavioral model is designed based on the
requirements specification that specifies the expected output for each input combinations.
The test code has validation checks for conformance checking of expected output behav-
ior of SUT to the requirements. The test report from Pytest summarizes each test case’s
pass/fail status, and a coverage measurement add-on named CODESYS Profiler [21] will

be used to measure the code coverage achieved by the generated test suite.

5

Requirements
specification

Modeling and Verification using UPPAAL

\ 4

Automated test generation using UPPAAL Yggdrasil

Y
Test execution using Pytest ‘ﬂ@ PLCZSplrJql%ram
Y
Verdict

Figure 1.4: Proposed toolchain approach for MBT and verification of PLC systems

1.3 Structure of the thesis

The rest of the thesis is divided into five chapters. Chapter 2 introduces the concept of
software testing, model-based testing, PLC, FBDs and the tools UPPAAL, CODESYS,
OPC UA, and Pytest. The related works published on model checking of PLC systems
and model-based testing applied to industrial case studies are discussed in Chapter 3.
Chapter 4 introduces the design and implementation strategy for the proposed toolchain.
The case study results and the findings from the verification, test generation, test execution
and coverage measurements are presented in Chapter 5. Chapter 6 summarizes the work

done, recall the research questions, and discuss the future work.

2. Background

The concepts of PLC, FBD, software testing, model-based testing, formal verification
using model checking, and the tools UPPAAL, CODESYS, OPC UA, and Pytest are in-

troduced in this chapter.

2.1 Programmable Logic Controllers

PLCs are programmable controller devices widely used for automation purposes in ICS
systems due to their simultaneous input/output processing capacity. A PLC system com-
prises the components: processing unit, memory, input/output interface, communication
interface, and the programming device [22]. The processing unit in PLC (Figure 2.1) in-
terprets the input signals, carries out control actions issued by the program in the memory,
and communicates the decisions as action signals to the outputs. The memory unit stores
the programs and the input/output data. The communications interface transfers the data
on communication networks among the connected PLC devices. A program organization

unit (POU) in a PLC application periodically repeats its execution like a cyclic task.

Program

—> —>

Inputs PLC Outputs

Figure 2.1: A Programmable Logic Controller

The IEC 61131-3 standard followed by most of the PLC manufactures includes the

programming languages [23] :

e Instruction List (IL)

Structured Text (ST)

Ladder Diagram (LLD)

Function Block Diagram (FBD)

Sequential Function Chart (SFC)

IL and ST are text-based languages, while LD, FBD, and SFC are graphical program-
ming languages. The standard suggests improvements to the programming languages in
aspects such as addressing, execution, data structures, sequential control, use of symbols,

and connection between languages. It also promotes the reuse of the program code.

2.1.1 Function block diagrams

Function Block Diagram (FBD) is a graphical modeling PLC programming language
widely used in developing safety-critical industrial systems [23]. An FBD program is
composed of interconnected blocks and follows a hierarchical software architecture. FBD
uses graphical objects such as connections, graphical elements for execution control,
graphical elements to call a function or a function block, and connectors. It uses stan-
dard logical functions such as AND, OR, NOT, in a graphical form. Figure 2.2 presents
an example of the implementation of an XOR with an AND and OR.

AND
VarA ——(O
)
VarB OR
— |
Var_out
—
AND
VarA
L J

VarB ——— (O

Figure 2.2: Implementation of an XOR with an AND and OR

In an FBD program, the code is divided into networks containing a logical or arith-
metic expression, calls of other programs or functions or function blocks, jumps or return
conditions. These networks form a program that is executed sequentially by the PLC.
When a block in an FBD program is activated, it reads the input variables, executes, and

writes the outputs.

IEC 61131-3 defines five groups of standard function blocks: bistable elements, edge

detection, counters, timers, and communication function blocks [11]. Table 2.1 gives a list

of all the standard function blocks available in bistable elements, edge detection, counters,

and timers.

Name of FB with input pa-
rameter names

Names of output parameters

Short description

Bistable elements

SR (S1,R, Q1) Set dominant

RS (S,R1, QD Reset dominant
Edge detection

R_TRIG { ->} (CLK, Q) Rising edge detection
F_TRIG { <} (CLK, Q) Falling edge detection
Counters

CTU (CU, R, PV, Q,CV) Up counter

CTD (CD, LD, PV, Q,CV) Down counter
CTUD (CU,CD,R, LD, PV, | Q,CV) Up/down counter
Timers

TP (IN, PT Q,ET) Pulse

TON (IN, PT Q,ET) On-delay

TOF (IN, PT Q.ET) Off-delay

Table 2.1: List of standard function blocks [11]

The table lists the names of the input and output variables. Their name, along with the

meaning and the elementary data types are listed in Table 2.2.
Bistable elements(Flip-flops): The bistable function blocks SR and RS (Figure 2.3)

implement dominant setting and resetting.

SR

BOOL=—151

BOOL—R Q1—BOOL

BOOL—S

BOOL—R1

RS

Q1—BOOL

Figure 2.3: Graphical declarations of the bistable function blocks SR and RS [11]

For SR,Q1 :=S1 OR (NOT RAND Q1) ;
For RS,Q1 := NOT R1 AND (S OR Q1).
Edge Detection: The function blocks for edge detection R_TRIG and F_TRIG (Fig-
ure 2.4) detect an edge on the first call, if the input of R_TRIG is true or or the input of

F_TRIG is false.

Inputs / Outputs | Meaning Data Type
R Reset input BOOL

S Set input BOOL
R1 Reset dominant BOOL
S1 Set dominant BOOL

Q Output (standard) BOOL
Ql Output (flip-flops only) BOOL
CLK Clock BOOL
CU Input for counting up R_EDGE
CD Input for counting down R_EDGE
LD Load (counter) value INT

PV Pre-set (counter) value INT

QD Output (down counter) BOOL
QU Output (up counter) BOOL
Ccv Current (counter) value INT

IN Input (timer) BOOL
PT Pre-set time value TIME
ET End time output TIME
PDT Pre-set date and time value | DT

CDT Current date and time DT

Table 2.2: Abbreviations and meaning of the input and output variables in Table 2.1 [11]

R TRIG F_TRIG

BOOL—CLK Q |—BOOL — BOOL

BOOL—|CLK Q

Figure 2.4: Graphical declarations of the function blocks R_TRIG and F_TRIG [11]

Counters: The counter inputs CU and CD are of the data type BOOL and have an
additional attribute R_EDGE that represents a rising edge to be recognised in order to count

up or down (Figure 2.5).

Timers: The function block TP (Figure 2.6) acts as a pulse generator which supplies a
pulse of constant length at output Q when a rising edge is detected at input N. The output
ET shows the time that has elapsed. The on-delay timer TON supplies the input value IN
at Q with a time delay when a rising edge is detected at IN. if input IN is "1" only for a
short pulse, the timer is not started for this edge. The off-delay timer TOF performs the
inverse function to TON. It delays a falling edge in the same way as TON delays a rising

one.

10

CTU CTD

BOOL—pCU Qf—BOOL BOOL—pCD Q—BOOL
BOOL—R BOOL—LD
INT—PV CV [—INT INT—/ PV CV [—INT

CTuD

BOOL—pPCU QU—BOOL
BOOL—pPCD QDp—BOOL
BOOL=—R
BOOL=—LD

INT—PV CV[—INT

Figure 2.5: Graphical declarations of the function blocks CTU, CTD, and CTUD [11]

* kK

BOOL—IN Q —BOOL
TIME —PT ETp—TIME

Aok stands for: TON, T---0, TOF, 0---T, TP

Figure 2.6: Graphical declarations of the function blocks TON, TOF, and TP [11]

2.2 CODESYS

CODESYS is an integrated development environment developed by Smart Software So-
lutions GmbH for programming PLC systems. CODESYS follows the IEC 61131-1 stan-
dard defined for the PLC programming languages IL, ST, LD, FBD, and SFC (Refer
section 2.1). In this thesis, CODESYS version 3.5 is used as it has a built-in software
PLC (softPLC). A softPLC is a built-in simulator available in CODESYS to run, monitor,
and debug a PLC program. CODESYS V3.5 SP16 supports the OPC UA features and
allows to set up a communication link between CODESYS softPLC and Pytest for test
automation.

A standard project in CODESYS V3.5 has a program organization unit (POU) with the
name PLC_PRG, a cyclic task where PLC_PRG is called every 200 ms, and the references
to latest available libraries [23]. In this work, the PLC application runs on a simulated
device, CODESYS Control Win V3, which allows testing the application’s functionality
without PLC hardware.

11

2.2.1 CODESYS Profiler

CODESYS Profiler is an add-on solution that comes with CODESYS Professional De-
veloper Edition [21]. It is used for measurement and evaluation of the processing times
and code coverage of program organization units in an IEC 61131-3 (Refer section 2.1)
application. The code coverage measurement during testing can be performed on the
CODESYS softPLC and the tool also shows number of statements covered and state-

ments which were not covered during test execution.

2.3 Open Platform Communications Unified Architecture

Open Platform Communications Unified Architecture (OPC UA) [20] is a data exchange
protocol standard released by the OPC foundation for industrial automation. The basic
OPC UA specification consists of the following parts: [UA1] provides an overview of the
security model, [UA2] specifies the security model assessment, [UA3] defines the address
space model, [UA4] defines the services, [UAS] defines the information model, [UA6] the
mapping of the services to a concrete technology [20]. The different profiles for OPC UA
clients and servers are specified in [UA7], [UA8] covers specializations for data access,
[UAO9] covers alarms and conditions, [UA11] covers historical access, and specializations
for programs are covered in [UA10] [20]. Figure 2.7 shows OPC UA security architecture.

OPC UA Client OPC UA Server

I [I

-

OPC UA Session

Communication Secure Channel > Communication
Layer Layer
Transport Layer Communication Protocol »| Transport Layer

S J S /

Figure 2.7: OPC UA Security Architecture [20]

OPC follows a client-server software architecture for data exchange. OPC UA stan-
dard announced in 2006, uses one address space for all different OPC client-server ar-
chitectures [24]. This standard addresses the security goals such as authentication, au-

thorization, confidentiality, integrity, auditability, and availability to maintain security of

12

industrial automation systems.

Authentication and User Authorization are assigned to the application layer, Appli-
cation authentication verified by the communication layer, and confidentiality and in-
tegrity maintained by the transport layer. The layered architecture and modular design
allow module-level updates to maintain the application’s security without redesigning the
whole application. OPC UA data exchange between client and server supports robust,

secure communication and resists attacks.

2.3.1 CODESYS OPC UA Server

CODESYS OPC UA server [25] is included in the CODESYS control SoftPLC systems
and allows communication with any OPC UA client. The CODESYS OPC UA supports
the following features [26]:

Browsing of the data types and variables.

Standard read or write functions.

Encrypted communication according to OPC UA standard.

Imaging of the IEC application according to "OPC UA Information model for IEC
61131-3".

Sending of events according to the OPC UA standard.

2.3.2 Python OPC UA Client

Python OPC UA [27] is a Python library which provides an interface to send and receive
UA defined structures over OPC UA protocol. Python OPC UA client can connect to the
CODESYS OPC UA server and browse the address space containing the input and output

variables in the PLC program.

2.4 Software Testing

Software testing is an essential validation and verification process used to reveal faults
and ensure the software systems’ quality. The reliability and quality of software can be
compromised due to bugs in the implementation. As per Amman et al. [28] software
fault, error, and failure are defined as follows:

Software Fault: A static defect in the software

Software Error: An incorrect internal state that is the manifestation of some fault

13

Software Failure: External, incorrect behaviour with respect to the requirements or
another description of the expected behavior.

Software testing can be performed at different development phases, and tests can be
generated from requirements specification, design, or source code. The “V model” of
software testing depicts the testing levels and the corresponding software development
phase (Figure 2.8). The most cost-effective way of testing is to identify the defects at an
early stage of software development.

Requirements | Acceptance
Ansiysie Test Test
T
Architectural Design P 1
o = reni _ L - ystem |
Dasign Test
Information I
_e| Subsystem | | Integration |
Dasign Test
| Detailed | - Module)
Design Test
\ Unit)

“—= Implementation

Test

Figure 2.8: The Software Development Life Cycle and testing levels "V model” [28].

* The requirements analysis phase captures the user requirements for implementing
the software. Acceptance testing decides whether or not the implementation meets

the specified requirements.

* The architectural design determines components and connectors that comprise the
system as per the specified requirements. System testing decides if the components

work well and the system as a whole meets the specifications.

* The subsystem design defines the behavior of the subsystem in the architecture of
the system. Integration testing checks if the interfaces between the modules in a

subsystem work correctly.

* The detailed design specifies the structure and behavior of each module in the sys-
tem. Module testing probes if the individual module, the modules’ components,

and the data structures work correctly.

14

* The implementation phase is when the actual code of the system is implemented.
Unit testing is the lowest level of testing and checks the correctness of each unit in

the implementation.

2.4.1 Model-based testing

Model-based testing (MBT) is a testing approach to systematically generate tests from
a model of the system and its environment [29]. Model-based testing has three steps:
modeling, test generation, and test execution.

Tests are generated from an abstract behavioral model of the system, and one exe-
cution trace of the model is considered a test case. The test quality can be maintained
by applying test selection criteria while generating test cases from the model and having
good quality models used for test generation. The generated test cases can then be ex-
ecuted against the system under test to verify that the implemented system conforms to
the expected behavior specified by the model. The test execution process in MBT can
be either offline or online. In this work, offline testing is done where the test cases are
generated before the test execution. It provides the advantage that test generation and test
execution can be done in different environments.

Utting et al. [15] describe the process of MBT as the following five steps:

1. The model of the system under test referred to as the test model is created from the
requirements. The test model is built at a more abstract level than the SUT. The
test model is validated for consistency and completeness to ensure the derivation of

meaningful test cases from the model.

2. The test selection criteria are chosen for automatic test generation to generate a

quality test suite.

3. A test specification, a high-level description of a test case, is then generated from

the test selection criteria.

4. A set of test cases is generated satisfying all the test case specifications. The opti-

mization of the test suite depends on the test generator.

5. The test cases are executed on the SUT as a test script, using an adapter that sets
up the interface to the SUT. The adapter component performs the concretization of
test inputs and abstraction of test outputs. The test script execution generates the

verdict of the test.

Based on the above five steps mentioned (Figure 2.9), Utting et al. [15] define the

taxonomy of MBT approaches as six dimensions.

15

— '.- .-l\' ...'..... ..\'.
Test ™ (2) 4 ™

Selection | -~ \Requirements |
Critaria | {
(3) l l (1)
-'z_ ra AWy
| TestCase | f/)
| Specification | P
' / ') Model

Test

{‘”\\ Cases A}

' -

Test | Verdicts |
/ Script [[5_1 } '
Adaptor + Env /,:5—2]

sSuUT ‘
Figure 2.9: The Model-based testing process [15].

Building the model corresponds to the three dimensions scope, characteristics, and
modelling paradigm. The test selection criteria and technology used for generating the
tests are defined in the test generation phase. The test execution dimension deals with the
relative timing of test generation and test execution. Test execution can be done either
online/offline. In online testing, the test generation and test execution are done in parallel.
In the offline testing approach, the test generation is done before test execution. While
testing real-time systems that consume more time for test generation, the offline testing
method provides the advantage of generating tests once and reusing them multiple times

for testing the system. Figure 2.10 shows the taxonomy of MBT approach.

Testing complex systems can be time-consuming, and it is not possible to cover all the
test scenarios. The advantages of using environment models in MBT of complex systems
are test oracle creation, automated and optimal test generation, reducing the size of the
state space, early validation of requirements, and re-usability [30]. Environment models
can be applied for safety, robustness, and regression testing and at all testing levels: unit,

system, and integration.

16

Scope —————— Input-only / Input-Output

Untimed / Timed
Deterministic / Non—Det.
Discrete / Hybrid / Continuous

Model —
Specification Characteristics

Pre—Post or Input Domains
Transition—Based
History—Based

Functional

Operational

- Stochastic

Data—Flow

N N

Paradigm

Structural Model Coverage
Data Coverage
Requirements Coverage
Test Case Specifications
Randomé&Stochastic
Fauli-Based

Test Selection
Criteria

Test
Generation

Random generation
Search-based algorithms
Model-checking
Sﬁmbolic execution
Theorem proving
Constraint Solving

Technology

M M

| Test o . Online
n/Offline -
Execution Offine

Figure 2.10: The overview of the taxonomy of model-based testing process [15].

2.4.2 Related work

In this section, the related works published on model checking, model-based testing ap-

plied on industrial case studies, and the testing of PLC FBD programs are discussed.

2.4.2.1 Verification and validation of PLC systems

The capability of the PLC system to process a high number of I/O operations simulta-
neously conforming to real-time constraints makes it ideal for application in domains
like railway systems [19, 31], avionics [32], manufacturing conveyors [33], and nuclear
power plants [34, 35]. The benefits of adopting model-based testing techniques to verify
and validate PLC systems have been investigated in several studies [36, 37, 38] . A study
conducted on the use of the model-based testing for conformance testing of PLC systems
stated that conformance relation based on the minimum duration of a test step in the PLC
execution cycle reduced time and cost of testing and performed well in fault detection

[36]. Bochot et al. [32] used Lustre specification language and Luster model checker for

17

the model checking of Airbus’s ground spoiler controller function. Ferrari et al. [39] con-
ducted a study on General Electric Transportation System’s Automatic Train Protection

system transforming Simulink programs to NuSMV models.

2.4.2.2 Model checking tools for PLC systems

Several researchers have used UPPAAL-based model checking to verify and test ICSs
implemented using PLC software and a systematic literature review can be found in [9].
Enoiu et al. [19, 40] conducted a study on transforming PLC FBD programs into timed
automata models, model checking, and automatically generating test suites using the UP-
PAAL tool. They defined an FBD program as a tuple consisting of Functional Elements
(FE) defined as Function Blocks (FB) and Functions (FUNC), V the variables set, P the
parameters set, and Con the set of connectors between the functional elements. A set of
transformation rules is defined to construct a timed automata model that follows read-
write-execute semantics from FBD programs. The timed automata are created with sys-
tem declaration and templates corresponding to FE instantiations along with an environ-
ment model to interact with the processes. The FBD program is executed and the time for
completion from reading inputs to writing outputs is noted and used to define clock vari-
ables in the timed automata model. The execution order, functional, and timing behavior
of functional elements in the FBD program is mapped to the timed automata model. Us-
ing a PLC scan cycle, the test suite is generated as test sequences separated by resets. A
reset transition is added to reset the variables and parameters to their default value. The
test coverage achieved in the generated test suite is measured as function coverage, deci-
sion coverage, and condition coverage. The study was conducted on a train control and
management system used in the railway industry and the approach proved effective for
generating test suites for functional testing of PLC FBD programs. The toolbox, named
COMPLETETEST, can transform FBDs to Timed Automata and generates test cases de-
signed for logic coverage of FBD programs.The tool takes the input variables into account
and generates the test cases to satisfy coverage criteria. However, the expected outputs
should be entered manually to the toolbox.

Adiego et al. [41] propose a methodology for transforming PLC programs written in
ST language to formal models using NuSMV [42], UPPAAL model checker, and the BIP
framework [43]. The study discusses the challenges in building the correct formal model
of PLC programs and verifying the safety and liveness properties. The proposed solution
is to transform the ST code into an intermediate model (IM) and transform IM into formal
models. Transforming the ST code into IM includes building an Abstract Syntax Tree
(AST), representing the syntax of the PLC code, and a Control Flow Graph (CFG), which

represents the semantics of the PLC code. To address the state-space explosion problem,

18

Model Advantages Disadvantages
checker
NuSMV Beuer performance.for verlﬁcatlf)n Lacks good simulation facilities
Supports Computation Tree Logic
(CTL) and Linear Temporal Logic
(LTL) for the specification properties
UPPAAL Good simulation facilities Supports only a subset of CTL
Provides a language for modeling Verification tool supports only
BIP component-based systems, code)
. . . deadlock properties
Frame- generation and simulation
work

Table 2.3: Comparison of verification tools.

they suggested reduction techniques such as Cone of Influence (COI) [44] reduction while
verifying the properties and rule-based reductions. The study also compared the model
checker tools used (Table 2.3).

Sacha [45] presented a modeling method for PLC controllers using UML-based state
machine diagrams and verification using UPPAAL. The study also formulated a way for
the automatic programming of PLC controllers. Their approach uses the UML state ma-
chine diagram to write the specification, validate and verify it against user and safety
requirements and follow a formal method for defining the semantics of the specification
and rules for automatic code generation.

Mokadem, Houda Bel, et al. [46] proposed a modeling and verification method for
timed multi-task PLC program using the tool UPPAAL. Their case study was conducted
on MSS (Mecatronic Standard System) platform from the Bosch group, and the PLC
program for the system is written in LD. Their approach considered the execution of the
PLC program as three phases: input reading, program execution and output writing and
the cycle duration of execution called PLC scan. The PLC cycle is modeled using the
UPPAAL tool as an automaton structured as a loop and a clock to measure the cycle time
and used one broadcast channel to synchronize all the TON blocks. The model is verified
for its safety and timing properties, and results proved that timed model checking is a
useful technique for verifying PLC multi-task programs.

Soliman et al. [47] presented an approach for verification of safety critical applica-
tions based on PLCopen safety function blocks (SFBs). They developed a transformation
tool to transform inputs, SFBs, connections, and execution flow in an FBD into UPPAAL
TA models. A PLC programming tool that supports PLCopen-SFB-Library is used to rep-
resent the safety application in PLCopen XML format and then transformed to UPPAAL
XML. The model checking is done on the UPPAAL TA model to verify and validate its

properties.

19

2.4.2.3 Research challenges in PLC model checking

The widespread use of PLC in the development of safety-critical real-time systems em-
phasizes the importance of the verification process [48]. Formal methods for the veri-
fication of PLC systems is also an active area of research [48, 49]. A study conducted
by Ovatman, Tolga, et al. [9] identified that the majority of publications in verification
of PLC systems are in PLC FBD model checking area. According to their findings, the
most common challenges in model checking of PLC systems are state-space explosion,
model consistency, correctly specifying the properties to be checked, emulating the PLC

execution cycle to the model checking environment, and modeling the timer functions.

2.4.3 Formal methods for software verification

Formal methods for software verification employs two techniques: theorem proving and
model checking [50]. The model checking technique depends on building a model of the
system and verifying if a desired property as per the specification holds in that model.
There are different model checkers available for different formalisms, such as UPPAAL
[17] for Timed automata, SPIN [51] for PROMELA , NuSMYV [42] for Finite state ma-
chine (FSM) , ProB [52] for B, etc. In this work, UPPA AL model checker (Version 4.1.19)

is used as it allows to model and model check real-time properties.

2.4.4 UPPAAL Timed Automata

UPPAAL is a model checker tool for modeling, simulation, and verification of real-time
systems using an extended version of timed automata called UPPAAL timed automata
[17].

A Timed Automaton is a state machine with a set of locations, directed edges that

connect the locations to each other, actions, and clocks.

Theorem 2.4.1 (Timed Automata) Let X be a set of non-negative real valued variables
called clocks and G(X) be a set of guards on clocks that are conjunctions in form of x < c,
and let U(X) denote the set of updates of clocks corresponding to sequences of statements
of the form x := ¢, where x € X, ¢ € N and <€ {<,<,=,> >}

A timed automation [53] over (A,X) is a tuple (L,ly,1,E) [54] , where:

» L is a finite set of locations and ly € L is initial location,

* ECLXxAXG(X)xU(X)xLis a set of edges including an action, a set of guards,

and a set of clocks.

* I:L— G(X) is a function, which assigns location invariants.

20

UPPAAL Timed Automata is an extension of timed automata with additional fea-

tures. The additional features include templates, constants, bounded integer variables,

binary synchronization channels, broadcast channels, urgent synchronization channels,

urgent locations, committed locations, arrays (for clocks, channels, constants, and integer

variables), initialisers, record types, custom types, and user functions [55]. In UPPAAL

TA, a state of a system is denoted by a set of locations, variables, and clocks.

B Process Declarations

4

0

Templates: UPPAAL TA has templates defined with a set of parameters of

type int, chan, etc.

Constants: A constant is declared as an integer type and cannot modify the

defined value. Declaration format: const name value.

Clocks: A clock variable can be declared as a global or a local variable. A
clock variable can have a value x, where {x € R | x > 0}. In the initial state,
the clock variables can have a value zero and when an automaton is waiting in
a location and time elapses, the value of clock variables increase. Declaration

format: clock xi,..Xp;

Bounded integer variables: This feature allows to declare integer variables
with a lower and upper bound. Declaration format: int[min,max] name.
The bounds can be applied to guards, invariants, and assignments, and the
verification can perform bound checks. Violation of a bound check can lead

to an invalid state that is discarded at run-time.

B Synchronizations

U

O

l

Binary synchronization: Declared as chan c ; a channel labelled c! synchro-

nizes with c?

Broadcast channels:Declared as broadcast chan c; A sender channel c!

synchronize with the receiver c?

Urgent Synchronization: A synchronization channel can be declared as urgent
by prefixing with the keyword urgent. There should be no delay if the syn-
chronization transition is activated on an urgent channel. Clock guards cannot

be defined on the edges using urgent channels for synchronization.

B Locations

U

Normal locations: A normal location defined in UPPAAL can have an invari-

ant. If an invariant is defined for a normal location, time can pass when system

21

waits in that state/location as long as invariant is satisfied. The system should

leave the location when the invariant becomes false.

Ul Urgent locations: When a location is declared urgent, there should be no

further delay in proceeding forward from that location.

Ul Committed locations: When a location is declared committed, the system
should move from that state without any delay by enabling a transition through

an output edge from the committed location.
B Data types

U] Arrays: The clock, channels, constants, and integer variables can be declared

as arrays.

Ul Initialisers: Integer variables and array integer variables can be declared using

initialisers.
L] Record types: Declared using struct construct like in C.

U Custom types: Declared using typedef construct like in C.
B Functions

Ll User functions: Functions can be global or local to templates. A function

defined locally in a template can access the parameters in the template.

In UPPAAL TA, the system’s model and its environment can be defined as separate
automata, called processes, working parallel. A process can be executed individually
or synchronized with another process. Synchronization of two processes is done using
channel synchronizations. The synchronization between processes is done using input

L“?’

actions denoted as for emitting and output actions denoted as “?” for receiving. A
timed automaton consists of locations and edges. An edge from a location to another
shows the transition from one state to another in the process. Transitions can be enabled
or disabled using predicates known as guards. Timing constraints for a location can be
provided using clock invariants to decide the time duration for being in that location.
UPPAAL supports global and local variables (local to a process) of type integer, boolean,

and clock.

2.4.5 Verification using UPPAAL

The UPPAAL verification engine verifyta is used to verify the model for properties such
as reachability, safety, deadlock-freeness, and liveliness [56]. The query language used
in UPPAAL is a subset of TCTL (timed computation tree logic) [53]. It consists of state

22

formulae to verify the states and path formulae to check safety, liveliness, and reachability

properties using paths of the model. These formula are defines as follows:

1. State Formula (¢) is an expression that describes the properties of a state in a
model.The deadlock freeness of a model can be checked using a special state for-
mula. A model is said to be in a deadlock state if in that state there are no enabled

outgoing transitions.

B AUl notdeadlock: Verifies that for all paths in the model, there is no deadlock

state.

2. Reachability properties are used to check if a certain state in a model can be reached

through any path from the initial state.

B E o @ : Verifies that there exists a path from the initial state, such that @ is
eventually satisfied along that path.

3. Safety properties are used to check that a system will continue to be in a safe state

and never violate a property which causes it to be unsafe.

B Al]o : Verifies that ¢ holds true in all reachable states.

B E0e : Verifies that there should exist a maximal path such that ¢ is always

true.

4. Liveliness properties of a system can be verified using a path formula to prove there
exists a path that will eventually activate a certain state in the model. If the model
has a communication protocol with a sender and receiver, the receiver will receive

the sent message.

B Ao @ : Verifies that ¢ is eventually satisfied.

B ¢ ~» ¢ : Verifies that there should exist a maximal path such that ¢ is always

true.

UPPAAL is widely used for the conformance testing of real-time systems [54, 57].
The practical applications of UPPAAL TA for verification and validation of real-time
systems have been studied and proven to be more effective than traditional testing methods
[19, 58, 47, 59].

23

2.4.6 Model checking using UPPAAL tool

UPPAAL is a tool used for model checking of real-time systems represented as networks
of timed automata [60, 55]. The UPPAAL tool has a graphical user interface for creating
/ editing a model, to simulate the model and to submit verification queries to the model
checker. The UPPAAL graphical user interface mainly consists of the following parts: a

system editor, a symbolic simulator, a concrete simulator, and a verifier.

2.4.6.1 System Editor

The system editor (Figure 2.11) is used to create and edit the model of the system under
test. The test model of a system is defined by a set of process templates, global declara-

tions, and a system definition.

File Edit View Tools Options Help
Da@dac adasqgR@—
Simulator ConcreteSimulator Verifier Yggdrasil

Project Name: Machine Parameters:
+ Dedlarations

[+ S EnvM

BES

[+ & Cargo

[+ LoadEnabler

[+ 8 EnvC
System declarations

statusOk==false
i_Machine1?
setStatus()

machinenumber!

statusOk==true machinecheckOK]!
N

@) © O
ACTIVATED

inactive

statusOk==false
i_Machine2?

nber!
setStatus() machinenumber!

Figure 2.11: UPPAAL Editor tab

The components of a system can be accessed using the navigation tree in the left
panel of the system editor. For drawing the automata model, drawing tools named Select,

Location, Branch, Edge, and Nail are present in the tool bar of the system editor.

2.4.6.2 Verifier

The verifier tab is used to verify the system for properties such as reachability, liveness,
deadlock-freeness, or safety. The verification queries can be entered and verified if the

system satisfies the properties checked using a query. The two editor fields Query and

24

Comment are used to enter/edit the query and add any comments related to the query.
Queries can be added using a button named Insert and deleted using the button named
Remove. Queries are verified using the button named Check and the output is displayed in
the Status field at the bottom of the verifier tab. Figure 2.12 shows the verification query
to check the reachability property that there exists a path from the initial state,such that

the machine reach the activated state.

File Edit View Tools Options Help
B = 2¢/RQq RQ e

Editor Simulator ConcreteSimulator| Verifier [Yggdrasil

Overview

E<> Machine .MACHINE CHECK COK
E<>» Cargo.CRRGO_CHECE OK
E<> Cargo.CHRNNELSRERDY

) Check
o
E<> LoadEnabler.ACTIVATED .
©
o

Insert

E[] Cargo.t>200 imply Cargo.CHRNNELERRCR Remove

A[]{ Cargo.CHANNELERRCR s& i_bypassVar ==1) imply Cargo.CARGO_CHECK OK Comments

Ca o setVar == molv Carao.CARGO CHECK O

2
Query
E<>Machine.MACHINE_CHECK_OK

Comment

aw

Status

|Property is satisfied.

E<> Machine.MACHINE_CHECK_OK
Verification/kernel/elapsed time used: 0s / 0s / 0.002s.
Resident/virtual memory usage peaks: 8,424KB [27,956KB.
Property is satisfied.

E<> Cargo.CARGO_CHECK_OK

Verification/kernel/elapsed time used: 0s / 0s / 0.001s.
Resident/virtual memory usage peaks: 8,324KB / 27,876KB.
Property is satisfied. v

Figure 2.12: UPPAAL Verifier tab

2.4.6.3 Symbolic Simulator

The simulator tab in the graphical interface is a validation tool to examine possible dy-
namic execution of the system during the modeling stage and to visualize the diagnostic
trace of executions generated by the verifier. The simulator has a simulation control,
variables panel, process panel, message sequence chart panel, and symbolic traces panel.
The simulation control panel is used to control the simulation, and to select the state or
transition to be visualized in the other two parts of the control panel. The upper part is

used for step-by-step simulation and the lower part is for displaying the generated trace.

25

Figure 2.13 shows the generated trace for the machine activation check query showed in
Figure 2.12.

File Edit View Tools Options Help
RaBlo2caaqR@= e
Editor ConcreteSimulator Verifier Yggdrasil

Enabled Transitions

i_activated: EnvC — Cargo ~

» Next D Reset

Simulation Trace

(-, inactive, -, inactive, -)
i_Machine1: EnvM[2] — Machine
(-, -, - inactive, -)
machinenumber: Machine — EnvM
(-, inactive, -, inactive, -)
i_Machine2: EnvM[2] — Machine
(-, -, - inactive, -)
machinenumber: Machine — EnvM
(-, inactive, -, inactive, -) [
Machine

(-, ACTIVATED, -, inactive, -)
machinecheckOK: Machine — EnvM

(-, MACHINE_CHECK_OK, -, inadive, -)

ToadEnabler
: 5
race Fite: /
/
4 Prev 1> Next » Replay {
———@
=Open @Save | Random / AcTvATED
v /\

Figure 2.13: UPPAAL Simulator tab

2.4.6.4 Model-based test generation using UPPAAL Yggdrasil

Yggdrasil is an offline test generation tool available in UPPAAL to generate traces from
the test model and translate them into test cases as per the test code entered in the model.
The test model should be deadlock-free for Yggdrasil to generate the test cases. Query-
based test case generation can also be done using this feature. UPPAAL Yggdrasil is
integrated into the UPPAAL main component [61]. The test code can be entered on
the locations and transitions in the model to achieve the coverage criteria (Figure 2.14).
Whenever model checking traverses that transition or location, it generates a trace and
translates them into test cases using the test code entered. The test cases are written into
files named testcaseN. code.

In a transition system, each state/location has two areas for entering the test code. For
a location in the model, the test code can be added in two areas, Enter and Exit. When
the trace reaches or leaves this location, the test code is added to the test case file. As the
test scripts are executed using Pytest testing framework, the test code dumped on the
location or transition is in Python programming language (Figure 2.15).

To dynamically populate the input and output value in the test code , the variables
can be used in the test code as $ (var) for global variable or $ (Process.var) for local
variables.

Traces are generated in three phases:

26

statusOk==false
i_Machine1?
setStatus()

statusOk==false
i_Machine2?

setStatus()

mg

m3

m Edit Location

Location Comments Test Code

Enter

server.write_opc var(cbiects, ¥ A
server.write opc var(objects,v
time.sleep(delay time)
datal=server.read opc var (cbje ¥

Exit

Cancel

O

MACHINE_CHECK_OK

Enter

E]_r, Edit Location

Location Comments Test Code

server.write opc wvar (objects,v M
server.write opc war (objects,v
time.

sleep (delay time)

datal=server.read opc var(obkije v

Exit

X

Figure 2.14: Entering test code in UPPAAL Editor

Figure 2.15: Test code entered in the behavioral model

Query file: The first phase checks the query file loaded in the verifier for verifying the

properties.

Depth Search: The second phase performs a random depth-first search of the specified

number of steps, and the resulting trace is used as a test case. The process should be
repeated until the newly generated trace does not add to the coverage over the previous

traces. In this method, a global integer variable named __reach__ must be initialised to
zero and must not be used throughout the model.

Single step: The third phase covers any transition not covered by the previous phases.

27

It is done by formulating a reachability query to reach the uncovered transition. In this

method, a global integer variable named __single__ must be initialised to zero and must
not be used throughout the model.

Y ggdrasil tab (Figure 2.16) have the above options listed and pressing Generate but-
ton will generate the traces and translate them into test cases. Yggdrasil generates exe-

File Edit View Tools Options Help
RaMdC| Qe R@E e
Editor Simulator ConcreteSimulator Verifier| Yggdrasil

Options

[] Depth search Output

[]single step
Traces | Trace statistics

QOutout folder
C:\Users\gaadh\main\SUT\Model\uppaal-4.1.19\testcases Browse

Figure 2.16: Yggdrasil tab in UPPAAL GUI

cutable test cases that contain the oracle information, such as the expected output values
of the SUT.

2.5 Pytest

Pytest is an open-source Python-based testing framework [18] that supports both unit
testing and complex functional testing. Its ease of integration into a range of IDEs includ-
ing CODESYS makes it an ideal choice for test automation of PLC systems. It provides
flexibility in writing tests and finds the tests automatically in the test directory based on
naming conventions. As mentioned in section 2.3.2, Python OPC UA library is used to

connect Pytest framework to the SUT.

28

3. Design and implementation

The design and implementation chapter discuss the toolchain used for the model-based
testing process for modeling, test case generation, and test execution to verify and validate
PLC ICS:s.

3.1 Methodology

The proposed methodology and the workflow of the toolchain for the MBT process are
depicted in Figure 3.1.

Modeling : The scope, characteristics, and paradigm are defined to create the model
of SUT using the UPPAAL tool.

Scope: The scope of the model is designed to specify the expected input-output be-
havior of the SUT. An input-output model can predict the expected output of the SUT for
each input based on behavior as per the requirements specification. By defining the scope
based on requirements, it can be verified if the output from the SUT is in sync with the
model’s output.

Model characteristics: The model characteristics are chosen based on the aspects of
the system being tested. In this work, we deal with an event-discrete, real-time system
and choose those characteristics for the model.

Model paradigm: Model is described as UPPAAL TA consisting of locations, edges
and transitions. Transitions are specified using data variables or action symbols using
synchronization channels.

Test Generation: The test selection criteria and test generation technology are defined
to generate the tests using the UPPAAL Y ggdrasil tool.

Test selection criteria: For a transition-based model, structural model coverage is used
as a test selection criteria. Coverage criteria are defined for the locations and all transitions
in the model.

Test generation technology: The UPPAAL model checker is used for verifying if the
model satisfies the properties such as reachability, safety, and liveness. Y ggdrasil offline

test case generator is used to generate test cases based on traces produced by the verified

29

Requirements
Specification

Safety

Requirements

v v UPPAAL
Modeling Verification
(Editor) Rules
Verification Verification
wlogel 3 (Verifier) -)I&B%\I

!

Test generation

(Yggdrasil)

Trace Coverage
Report

ing three units:

Test execution

(Pytest)

Python OPC UA

SUT

Figure 3.1: Proposed toolchain for MBT of PLC system

3.2 Case study

properties and random depth search method.

to determine the verdict of the test.

30

Test Execution: Offline testing using the Python testing framework Pytest interacts
with the SUT to perform automated test execution of the created test cases. The OPC UA
data exchange protocol enables communication between the CODESYS OPC UA server
and the Python OPC UA client. The test summary report generated by Pytest is analyzed

The case study in this thesis is a Machinery control system (MCS) for loading and trans-
porting cargo using a machine unit based on different sensor readings and input com-

mands. MCS is implemented in the PLC FBD programming language and has the follow-

B Machine control unit: Activate the machine unit based on the identification num-

ber of the machine

B Cargo control unit: Activate the cargo unit when the rope channels associated
with the loading arm of the machine is ready, and the cargo is securely hooked to

the loading arm.

B Load enabler unit: Start the loading and transportation process when the machine

and the cargo units are activated.

Figure 3.2 shows an abstract schematic representation of the MCS.

MachineControl MachineCheck_OK

M_Id1 ——>

M_Id2) 1 LoadEnabler

Activate ——>] CargoControl
RightChannelA ———>|
RightChannelB ——>|
LefttChannelA ———>
LeftChannelB —» CargoCheck_OK

Reset —>
StationSelectMHouse —»
CargoCheckBypass —»|

—>» MachineCargoLift_OK

Figure 3.2: Abstract schematic representation of the MCS

Machine control unit: The machine control unit checks the identification number of
the machine received as input M_Id1 against that from the safety module M_Id2. If the
identification numbers received match and have a non-zero value, the selected machine is
ready to be activated for loading the cargo. The output from the machine control module
is a boolean variable MachineCheck_OK that is set to true if the identification numbers
match and vice-versa.

Cargo control unit: The cargo control unit checks if the cargo is ready for loading
based on the following criteria:

Criteria 1: All the channel inputs enabled to true indicates that the loading arm of the
cargo unit is ready. The timing constraint requires all the channel inputs (RightChannelA,
RightChannelB, LeftChannelA, LeftChannelB) be active within 200ms of activa-
tion of the first one.

Criteria 2: When any channel input remains disabled on the activated channel and
the wait time elapses, it results in a channel error. The channel error needs to be fixed by
an operator, and Reset should be enabled to true. The reset input set to true indicates the

channel error condition is corrected, and all channel inputs are enabled.

31

Criteria 3: When the channels are not in an error state, and the operator has verified
the channels, the bypass commands can set the cargo to enabled state. StationSelectMHouse
AND CargoCheckBypass set to true signifies that the manual check is performed and
cargo is ready for loading.

The above three criteria set the cargo as ready for loading, and when both machine
check and cargo check conditions are set to true, the loading process starts. All other
combinations of the input signals set the output to false (CargoCheck_0K), and MCS
remains in a stop state.

Load enabler unit: The load enabler unit can start loading the cargo when the output
signal MachineCargoLift_0OK gets enabled. It gets enabled when the MachineCheck_0K
AND CargoCheck_0K are set to true indicating that machine and cargo is ready to initiate
the movement of the MCS for the loading and transportation of the cargo. Figure 3.3

shows the detailed implementation of MCS using FBD.

MachineControl MachineCheck_OK
M_ld1 —> (SEL)

M_ld2 ——>

Activate > CargoHookRightCheck
) (AND) CargoHookRightCheckOk LoadEnabler
RightChannelA ——» \ (AND) MachineCargo
RightChannelB ——> . LeftRightCheck Lift_ OK

Reset —— (AND) — >

CargoCheck
(OR)
. CargoHookLeftCheck

Activate ——» (AND) CargoCheck_OK
LeftChannelA ———»|
LeftChannelB > CargoHookLeftCheckOk

Reset —

ManualOverride
CargoCheckBypass ———>| (AND)

StationSelectMHouse ——>

Figure 3.3: Detailed implementation of the MCS using FBD

Safety rules in MCS
The safety rules in MCS are defines as follows:

1. Machine unit: The machine control unit should ensure that the machine remains
in deactivated state until the the machine identification numbers match and have a

non-zero value.
2. Cargo unit: The cargo control unit follows the below safety rules:

I The cargo unit should move to active state only when right and left rope chan-

nels are ready within 200ms of activation of the first one to pull the loading

32

arml.

I When any of the rope channels are in an overlap state, it indicates that the
channels are not ready and the cargo unit should remain in channel error state

until the overlap issue is fixed by a manual intervention.

III When any overlap issue in the rope channels are fixed, and a manual reset is
done by the operator, the cargo unit should move into ready state and start

operating safely.

IV A manual verification of the cargo unit and the issuance of a bypass and station
select request from the machine house should activate the cargo unit for its safe

operation.

3. Load enabler unit : The load enabler should get activated only when both the ma-
chine and cargo ready are active. If any of them remain inactive, the load enabler

should remain deactivated.

Above mentioned safety rules enforces the safety of MCS and ensures that the units in

MCS operates in a safe state and never moves to an unsafe state in its operational phase.

3.3 Modeling and verification

In this section, we focus on building the model of the MCS and verifying the model for

properties such as reachability, safety, and liveness.

3.3.1 Building the model

An abstract behavioral model of the MCS is created using UPPAAL editor as a set of
process templates, global declarations, and system declarations. The behavioral model
comprises of the processes Machine, Cargo, and LoadEnabler and its environment EnvM
and EnvC. These processes contain locations corresponding to the states of the system
and transitions to move from one state to another. Transitions between states are enabled
using binary synchronization channels. The channel names with the suffix °?” denotes
input actions and the ones with the suffix ’!” denotes the corresponding output actions.
Machine The UPPAAL TA model for machine control unit and its environment EnvM
interacts with each other to identify and select the machine to be activated. It accepts
the input signals,executes a function setStatus, and writes the output. The function
setStatus checks if the machine identification numbers received as input match and have

a non-zero value. If the condition is satisfied, the machine check activates the machine,

33

otherwise the machine remains in inactive/stop state. Figure 3.4 shows the TA model for

machine unit.

i MachinelD1? machinenumber!

setStatus()

== i 1
inactive statusOk==true o machinecheckOK! O

N
) &
ACTIVATED MACHINE_CHECK_OK

i_MachinelD2?

i !
setStatus() machinenumber!

(a) Behavioral model for Machine unit

i_MachinelD1!

i_Machine1Var = c1

i_MachinelD2!
i_Machine2Var =c2

machinenumber?

machinecheckOK?

(b) Environment model for Machine unit

Figure 3.4: Timed Automata model for Machine unit

Cargo The UPPAAL TA model for cargo control unit and its environment EnvC inter-
acts with each other to to check the readiness of rope channels, and any incoming request
for reset,bypass and station select from machine house. Time invariant ¢+ < 200 in the
location WaitingForChannel enforces the system to wait 200 milliseconds to check the
readiness of rope channels, before it takes an outgoing transition. The transition from
WaitingForChannel to CHANNELERROR location reflects that the all input signals from
the rope channels on left and right are not received and there is a rope channel over-
lap condition indicating an error in rope channels, when the time condition is ¢t > 200.
The cargo model accepts the input signals,executes a function setChannelStatus, and
writes the output. The function setChannelStatus checks if the channel inputs on left
and right channels are enabled and decides if the cargo unit can be enabled or require a

manual intervention to issue a reset or bypass and station select commands to overcome

34

the channel error state.

Figure 3.5 shows the TA model for machine unit.

i_rightChannelVar == false i_leftChannelVar == false
i_rightChannel? i_leftChannel?

setChannelStatus() setChannelStatus()

i_rightChannel?
i_rightChannelVar := true,
t:=0

inactive /\

statusRightLeftOk == true && t<200
channelsready! PN cargocheckOK!

t<=200

i leftChannel? WaitingForChannel

CHANNELSREADY
i_leftChannelVar := true,

CARGO_CHECK_OK

t:=0)
. . _ i_Reset?
i_activated? Cham:;—;r?oor‘ o_CargoReadyVar :=1 cargocheckOK!
channelActive! '
C
i_BypassCheck?
CHANNELERROR o_CargoReadyVar :=1
(a) Behavioral model for Cargo unit
c2:int[0,1]
i_leftChannel!
c1:int[0,1] i_leftAVar = c2,
i | i_leftBVar = c2 i_Reset!
i_rightChannel! i resetVar = 1
i_rightAVar = c1,
i_rightBVar = c1 i_BypassCheck!
i_bypassVar := 1
channelsready?
i_activated! channelActive?
O— A e
i_activeVar := 1
channelerror?
cargocheckOK?
o_MoveOK?

(b) Environment model for Cargo unit

Figure 3.5: Timed Automata model for Cargo unit

LoadEnabler The UPPAAL TA model for the cargo control unit takes the output
signals from machine control and cargo control units and checks if the machine unit and
cargo unit is activated and ready to load the cargo. The system requirement states that the
load enabler should get activated only when both the machine and cargo ready are active.

If any of them remain inactive, the load enabler should remain deactivated. Figure 3.6
shows the TA model for LoadEnabler unit.

35

cargocheckOK?

chanReady = true

chanReady && machinestart

O

0_MoveOK! ACTIVATED

machinecheckOK?

machinestart = true

Figure 3.6: Timed Automata behavioral model for LoadEnabler unit

The input and output signals in the behavioral model of MCS are listed in the Ta-
ble 3.1.

Model Inputs Output
1_MachinelD1
1_MachinelD2
1_activated
i_rightChannel
Cargo i_leftChannel cargocheckOK
i_Reset
i_BypassCheck
machinecheckOK

LoadEnabler cargocheckOK o_MoveOK

Machine

machinecheckOK

Table 3.1: Input output structure of UPPAAL TA behavioral model of MCS.

The FBD blocks are translated into predefined UPPAAL operators as below:

B The Logical Operator blocks are translated using the logical UPPAAL operators

and, not, or.

B The Arithmetic Operator blocks are translated using the arithmetic UPPAAL oper-
ators +, =, -, /, *.

B The Comparison blocks are translated using the relational operators UPPAAL <, >,
<=, >=, =

B The Selection blocks are translated using if-then-else statements.

36

3.3.2 Verification

Reachability properties: The reachability properties checks if a location/state in the
model is reachable, e.g.:

1. E<> Machine. MACHINE CHECK_ OK: Checks if the machine check is done and

the machine is activated and ready to pick the cargo.

2. E<> Cargo.CARGO_CHECK_OK: Checks if the cargo check is done and the cargo

is ready for loading.

3. E<> LoadEnabler. ACTIVATED: Checks if the loading process starts when the ma-

chine and cargo are ready.

Safety properties: The safety properties verified in the MCS model are:

1. AlJ(i_MachinelVar==0 && i_Machine2Var==0) |
(i_MachinelVar !=i_Machine2Var) imply !Machine.statusOk: Ensures that the ma-
chine remains in a deactivated state when machine identification numbers do not

match or when they are set to zero.

2. E[](Cargo.statusRightLeftOk && Cargo.t < 200) imply
Cargo.CARGO_CHECK_OK: Ensures that the cargo unit should move to active
state only when right and left rope channels are ready within 200ms of activation of

the first one to pull the loading arm.

3. E[] Cargo.t>=200 imply Cargo. CHANNELERROR: Ensures that the cargo system
moves to channel error state when any of the rope channels are in an overlap state

and the time-invariant ¢ >= 200 while waiting for all the channel inputs to arrive.

4. A[](Cargo.CHANNELERROR & & i_resetVar==1) imply
Cargo.CARGO_CHECK_OK: Ensures that when overlap condition in the rope chan-
nels are fixed, and a manual reset is done by the operator, the cargo unit should move

into ready state and start operating safely.

5. A[](Cargo.CHANNELERROR & & i_bypassVar==1) imply
Cargo.CARGO_CHECK_OK: Ensures that a manual verification of the cargo unit
and the issuance of a bypass and station select request from the machine house

should activate the cargo unit for its safe operation.

Liveness properties: The liveness properties verified in the MCS model are:

37

1. A<> Machine. MACHINE_CHECK_OK && Cargo.CARGO_CHECK_OK imply
LoadEnablerACTIVATED: Ensures that the load enabler unit starts the loading pro-

cess when the machine and cargo units are activated.

2. A<> (Cargo.statusRightLeftOk && Cargo.t<200) imply
Cargo.CHANNELSREADY: Ensures that the cargo unit moves to channels ready
state when the left and right channel inputs are received within the time-invariant
condition <200

The verification queries are executed using UPPAAL’s verification engine verifyta.
Figure 3.7 shows the verification results in the UPPAAL verifier tab.
File Edit View Tools Options Help

Ra@Eo¢/aae R@-e

Editor Simulator ConcreteSimulator Verifier Yggdrasil

Overview
E<> Machine.MACHINE_CHECK_OK 9 A
. [+ Insert
A[](i_MachinelVar==0 ss i_Machine2Var==0) || (i_MachinelVar != i_Machine2Var) imply !Machine.statusOk [+] R
E[](Cargo.statusRightLeftOk <& Cargo.t < 200) imply Cargo.CARGO_CHECK OK [+] emove
E[] Cargo.t>=200 imply Cargo.CHANNELERROR (] Comments
Query
A(Cargo.CHANNELERROR && i_bypassVar ==1) imply Cargo CARGO_CHECK_OK
Comment
Status
Verification/kernel/elapsed time used: 0s / 0s / 0.001s. A

Resident/virtual memory usage peaks: 8,076KB / 27,584KB.

Property is satisfied.

E<> Cargo.CARGO_CHECK_OK

Verification/kernel/elapsed time used: 0s / 0s / 0.002s.

Resident/virtual memory usage peaks: 8,088KB / 27,600KB.

Property is satisfied.

E<> LoadEnabler. ACTIVATED

Verification/kernel/elapsed time used: 0.031s / 0s / 0.032s.

Resident/virtual memory usage peaks: 8,436KB / 28,188KB.

Property is satisfied.

A[1(i_Machine1Var==0 && i_Machine2Var==0) || (i_MachinelVar != i_Machine2Var) imply 'Machine.statusOk
Verification/kernel/elapsed time used: 0.016s / 0s / 0.019s.

Resident/virtual memory usage peaks: 8,436KB / 28,188KB.

Property is satisfied.

E[](Cargo.statusRightLeftOk && Cargo.t < 200) imply Cargo.CARGO_CHECK_OK
Verification/kernel/elapsed time used: Os / 0s / 0.001s.

Resident/virtual memory usage peaks: 8,436KB / 28,188KB.

Property is satisfied.

Figure 3.7: Verification of queries using UPPAAL Verifier

3.4 Test generation

A model-based offline test generator UPPAAL Yggdrasil [59] is used for generating test
suites. It uses a three-step strategy to achieve the coverage criteria: Requirements based
test purposes formulated as reachability, safety, and liveness properties, random execu-

tion, and structural coverage of the transitions in the model.

38

The test cases are generated using Y ggdrasil tool from the requirements based verifi-
cation queries entered in the model and random depth-first search specifying the number
of steps as 10. Figures 3.8 and 3.9 show the seven test case files containing 30 test cases

created in the output test directory and a test case to test the machine unit identity module.

Ees

Name Type

g;rtestcaseo CODE File
g;rtestcase1 CODE File
g;rtestcaseE CODE File
g;rtestcaseS CODE File
g;rtestcase4 CODE File
g;_* testcaseb CODE File
g;rtestcase6 CODE File

Figure 3.8: Test case files generated using Y ggdrasil

def test u cr 000():
objects=server.getvar (client)

server.write opc var (objects,varpath, tag struct[0], 3)
server.write opc var(objects,varpath, tag struct[l], 3)
time.sleep(delay time)

datal=server.read opc var(objects, varpath,tag struct[2])
dataZ=server.read opc var(objects, varpath,tag struct[3])
assert datal==1 and dataZ==

server.end test(client, tag struct, varpath, reset tag)

Figure 3.9: Tests in the test case file

Figure 3.9 shows a test case generated for the machine identity check function in the
POU for MCS. The test case sends the machine identification number generated by the
behavioral model of machine unit to the SUT, and collects the output from SUT. The
model dynamically generated an input value 3 for MachinelD1 and MachinelD?2. 1t is
passed using write function to the variable structure defined in the program Tags.py,
tag_struct[0] and tag_struct[1] corresponding to MachinelDI and MachinelD2.
A delay time of 2s is added between the write inputs and read outputs using Python time
function to represent the PLC execution cycle time. The output values returned from the
application program running on the simulated device is collected using the read function.
An assert statement in the Python program checks if the output from the application

program matches the output defined in the test model.

39

Each test case file contains executable tests with the input values to be send to SUT and
checks the output value from SUT against the output generated by the behavioral model.
A Python script named gen_tests.py combines the multiple test case files generated by
UPPAAL Yggdrasil to a single Python test file.

3.5 Test execution

The offline testing method is used for automated test execution of the generated test cases
by interacting with the SUT. A Python script converts the test case files generated by
UPPAAL Yggdrasil to a Python test file. Automatic execution is performed by setting up
an adapter to connect to the SUT.

OPC UA: OPC UA is a platform-independent standard based on TCP that can be used
as a data exchange protocol for industrial automation. OPC UA is used as the adapter to
connect to the CODESYS development environment where the FBD PLC implementation
code resides (Figure 3.10).

[|) (")
@ python’ N

CODESYSv.3.5

Test Scripts OPC UA Client [« > OPC UA Server PLC_PRG

N J - J
Figure 3.10: OPC UA adaptor layer for test execution

CODESYS OPC UA Server: CODESYS OPC UA server communicates with the
OPC UA client that is set up using the Python OPC UA library. CODESYS V3.5 SP16
Patch 4 is used as the development environment for hosting the SUT as it supports the
OPC UA features.

Python OPC UA Client: Python OPC UA client connects to the CODESYS OPC
UA server and browse the address space in the PLC program. When the connection is
established, the Python tests can send values to the input variables while the application
program is running in CODESYS development environment.

Pytest: An open-source Python-based testing framework Pytest [18] is used to ex-
ecute the Python test file. The test directory consists of the following three Python pro-

grams:

40

B OPC.py: Contains the function to connect to OPC UA client, read, write, and reset

the value of the variables in the address space. The code below shows the function

to connect to OPC UA client and read read the data objects from the root node in

the address to access the variables in the PLC program.

def

def

OPC_Connect(client)

client.connect ()
getvar(client):
root = client.get_root_node()

objects = client.get_root_node()

return objects

Tags.py: Contains the variable structure in the PLC program, and the variable

path defined in it. The code below shows the mapping of variables in the machine

unit PLC program (MachineTestTags) and the variable path to reach them (Ma-

chineTestpath).
MachineTestTags = ["MacineID1", #0
"MacineID2", #1
"MachineStatus", #2
"MachineNumber", #3

]

CalibTags = {
}

MachineTestpath = ["0:0bjects", "2:DeviceSet","4:CODESYS Control Win V3",
"3:Resources" , "4:Application" , "3:Programs","4:PLC_PRG","var"]

B test_cases.py: Contains the test cases generated by the UPPAAL Yggdrasil tool.

The test cases are then executed by invoking Pytest utility with the command pytest.
This command will execute all tests in the files named as test_x*. py in the test directory.
The test cases are executed on the SUT. The application program runs on a standard
installation of CODESYS V3.5 SP16 Patch 4 that includes an OPC UA server. Python
OPC UA client communicates with the CODESYS OPC UA server, and the test scripts
send the values to input variables in the application program. There is also a delay time
added in the Python code after sending the input values. This delay time represents the

program execution time. Following this, the output values are sent back to the Python

41

program. An assert statement in the Python program checks if the output from the
application program matches the output generated from the test model. The test results
are analyzed to determine the verdict of the test.

The test execution is initiated by invoking Pytest utility with the command pytest
(Figure 3.11). The test suite contains the functions to connect and disconnect to OPC

client and the 30 test cases generated by Y ggdrasil.

(base) C:\Users\gaadh\spyderProjec in\OPC\u_test>pytest

test session starts
platform win32 -- Python 3.8.5, pytest- , py-1.9.8, pluggy-0.13.1
rootdir: C:\Users\gaadh\spyderProjects\Main\OPC\u_test

plugins: html-3.1.1, metadata-1.11.8, cov-2.11.1
collected 32 items

test_cases.py

Figure 3.11: Test execution using pytest

Each test case has a test condition stated in the requirement specification. The input
values for the test condition generated by the behavioral model is sent to the application
program, and the output is collected. The output values produced during the application
program’s execution are collected and compared to the output defined in the behavioral
model. A passed test indicates that the SUT and behavioral model conforms to the ex-

pected input-output behaviour specified in the requirements.

42

4. Results and Evaluation

In this chapter, the case study results and the findings from the verification, test generation,

and coverage measurements collected from the test execution are discussed.

4.1 Verification effort

The behavioral model of MCS is verified for the reachability, safety, and liveness prop-
erties using UPPAAL’s verification engine verifyta. Figure 4.1 shows the result of

executing Memtime to measure the memory usage and time for verification in UPPAAL.

S memtime ./bin-Linux/verifvta -t2 -f tracefile MCS UPPAAL.xml MCS.a
options for the verification:

Generating fastest trace

Search order is breadth first

Using conservative space optimisation

Seed is 1623607539

State space representation uses minimal constraint systems

Verifying formula 1 at line 1
-- Formula is satisfied.
Writing example trace to tracefile-1.xtr

Verifying formula 2 at line 2
-- Formula is satisfied.
Writing example trace to tracefile-2.xtr

Verifying formula 3 at line 3
-- Formula is satisfied.
Writing example trace to tracefile-3.xtr

Verifying formula 4 at line 4
-- Formula is satisfied.

Verifying formula 5 at line 5
-- Formula is satisfied.
Writing example trace to tracefile-5.xtr

Verifying formula 6 at line 6
-- Formula is satisfied.
Writing example trace to tracefile-6.xtr

Verifying formula 7 at line 7
-- Formula is satisfied.

Verifying formula 8 at line 8
-- Formula is satisfied.

Verifying formula 9 at line 9
-- Formula is satisfied.

Verifying formula 10 at line 10
-- Formula is satisfied.

Exit [0]

0.07 user, 0.01 systenm,

0.20 elapsed -- Max VSize = 24376KB,|Max RSS_= 5112KB

Figure 4.1: Memory usage and running time measurement

43

Memtime is a utility program developed by the UPPAAL group to record the peak
memory usage and running time [62]. It can be used with the Linux version of verifyta

to measure the peak memory usage and verification time using the following command:

$ memtime verifyta -t2 -f tracefile MCS_UPPAAL.xml MCS.q

where the parameters are defined as follows:

-12: Instructs UPPAAL to find the shortest simulation trace to the target location de-
fined in the query file MCS.q

-f: Dumps out the trace into a file specified by tracefile upon successful completion
of the model checking and verification of the behavioral model MCS_UPPAAL . xml

The verification process takes 0.20s to complete, and the peak memory usage is
24376 KB.

4.2 'Test efficiency

The reachability, safety, and liveness properties defined for MCS comprising ten verifica-
tion queries (Section 3.3.2) took 0.20s to complete. The test generation using query file
provided 88% location coverage, whereas random depth-first provided 77% while gen-
erating the test cases using each approach separately. However, selecting both query file
and random depth search options generated 30 test cases in 0.10s which provided 100%

location coverage (Figure 4.2).

Eile Edit View Tools Options Help
GaB@d¢/aae R@-iwe
Editor Simulator ConcreteSimulator Verifier Yggdrasil

(Options

P
= .
Query file Generate
Depth search Qutput
10

— [Isinglestep—

Traces Trace statistics
-- Query - Locations: 18/13 = 100% A
Trace coverage: 24/35 ‘Mactrime MECHINE _CHECK 0K~
Trace coverage: 18/35 Hachine.Ll: 1l
. Machine.inactive: 22
[Trace coverage: 17/35 Machine ACTIVATED: 2
Trace coverage: 26/35 Machine.Ld: &
-- Depth - EnvM.L0: 5
Trace coverage: 12/35 carge.Lo: L

Cargo.Ll: 5
) Cargo.CARGO_CHECK_OK: 3
Cazgo. CHAINELSREADY: 2
M~ Cargo.WaitingForChannel: 5
Cargo.inactive: 10
Cargo.CHANNELERROR: 4
EnvC.LO0: &
EnVC.L1: §
EnvC.L2: 5
LoadEnabler .DONE: 1

-> MACHINE_CHECK OK: 2
e: 11

: 6 v
< >

Qutout folder

LC:\USers\gaadh\loUlchain\main\SUT\Mudel\uppaal-4. 1.19\testcases W Browse
e

Figure 4.2: Test case generation using Y ggdrasil

44

These 30 test cases are generated from the trace created based on the reachability,
safety, and liveness queries defined for the MCS in section 3.3.2 and the random depth
search based on specified number of steps. Yggdrasil trace statistics shows a total cover-
age of 91% as edge coverage and 100% location coverage.

Test summary report generated using pytest testing framework (Figure 4.3) shows

the verdict of each test case and the execution time.

Summary

32 tests ran-in-124.00 seconds.

(Un)check the boxes to filter the results.

32passed, 0 failed, 0 errors, 0 unexpected passes

Results

Show all details / Hide all details

. Result Test Duration
Passed (show details) test_cases.py::test_init_prg 3.96
Passed (show details) test_cases.py::test_u_cr_000 3.93
Passed (show details) test_cases.py::test_u_cr_001 4.02
Passed (show details) test_cases.py::test_u_cr_002 4.02
Passed (show details) test_cases.py::test_u_cr_003 3.97
Passed (show details) test_cases.py::test_u_cr_004 4.01
Passed (show details) test_cases.py::test_u_cr_005 3.97
Passed (show details) test_cases.py::test_u_cr_006 4.02
Passed (show details) test_cases.py::test_u_cr_007 4.01
Passed (show details) test_cases.py::test_u_cr_008 3.97
Passed (show details) test_cases.py::test_u_cr_009 3.97
Passed (show details) test_cases.py::test_u_cr_010 3.95
Passed (show details) test_cases.py::test_u_cr_011 3.98
Passed (show details) test_cases.py::test_u_cr_012 3.96
Passed (show details) test_cases.py::test_u_cr_013 3.98
Passed (show details) test_cases.py::test_u_cr_014 4.00
Passed (show details) test_cases.py::test_u_cr_015 3.99
Passed (show details) test_cases.py::test_u_cr_016 4.05
Passed (show details) test_cases.py::test_u_cr_017 4.01
Passed (show details) test_cases.py::test_u_cr_018 3.95
Passed (show details) test_cases.py::test_u_cr_019 4.00
Passed (show details) test_cases.py::itest_u_cr_020 3.96
Passed (show details) test_cases.py::test_u_cr_021 4.01
Passed (show details) test_cases.py::test_u_cr_022 3.98
Passed (show details) test_cases.py::test_u_cr_023 3.97
Passed (show details) test_cases.py::test_u_cr_024 3.93
Passed (show details) test_cases.py::test_u_cr_025 3.98
Passed (show details) test_cases.py::test_u_cr_026 3.99
Passed (show details) test_cases.py::test_u_cr_027 3.97
Passed (show details) test_cases.py::test_u_cr_028 3.99
Passed (show details) test_cases.py::test_u_cr_029 3.96
Passed (show details) test_cases.py::test_u_disconnect 0.00

Figure 4.3: Test summary from pytest

The test execution took 124s to execute, and all of them passed, according to the

test summary report generated by pytest . The verification, test generation, and test

45

execution process took 124.30s to complete. The test summary shows that the SUT
passed all the tests generated based on the functional and safety features defined in the
specification and achieved 100% code coverage at the PLC program level. The testing
approach followed is black-box MBT, and code coverage is used as a metric for measuring

the test effectiveness.

4.3 Evaluation of test effectiveness

The tests are executed on the PLC FBD program running on a standard installation of
CODESYS V3.5 SP16 Patch 4. To measure the code coverage at module level, CODESYS
Profiler 1.3.1.0 is used. Figure 4.4 shows the code coverage measurements from
CODESYS Profiler during the test execution on the SUT.

<l | (i{j Device _g] C 8 Symbol Configuration 2] T I profiler
Method: = CodeCoverage I

F Settings | @y Online | g Snapshots

[E)'Open POU | ¥ Reset X Save Snapshot...

a Name Number of state... Statements not ex... Coverage (%)
=} Application
5] covnemme——— 4 1 75.0
[7] Pc_PrG 10 0 100.0
(] ewpem——— 25 0 100.0
] cnmmmy——— 12 0 100.0
@] o> H 0 100.0

(a) Code Coverage= 75%
«lgmm | (] Device £‘|] ®8 Symbol Configuration £‘| C 7] profiler x

Method: = CodeCoverage l

settings | 5 Onine | gy Snapshots
[E]'OpenPOU | Reset & Save Snapshot...

a Name Number of state... Statements not ex... Coverage (%)
=1} Application
(E] covm———— 4 0 100.0
4] PLC_PRG 10 0 100.0
] o 25 0 100.0
0] cmm——— 12 0 100.0
] o> 6 0 100.0

(b) Code Coverage= 100%

Figure 4.4: Code coverage measurement using CODESY'S Profiler

When the test inputs are executed on the SUT running on CODESYS via the OPC UA
data exchange protocol, the CODESYS Profiler measures the percentage of code executed
in the PLC program. CODESYS Profiler shows the number of statements covered and
the statements that are not executed along with the percentage of code coverage achieved

during test execution.

46

In this experiment, the initial code coverage achieved for one module was 75% while
the location coverage in Yggdrasil was 94%. The code coverage measurement is used to
check the adequacy of generated tests. Upon regenerating the test cases from Y ggdrasil
with a location coverage 100%, the code coverage achieved for the PLC program under
test is 100%.

4.4 Advantages and disadvantages of using UPPAAL Yg-

gdrasil for test generation

For our approach we have used Y ggdrasil tool for generating tests from UPPAAL models.
As any other tool, Yggdrasil comes with some advantages and disadvantages, which we
discuss in the following.

Advantages: Yggdrasil provides the option to generate test cases from traces created
by verification queries. This feature, along with the possibility of entering test code on
either a transition or entry or exit of the location, gives the advantages of generating tests
for specific test purposes. It also serves to generate targeted test cases for locations that
remain uncovered during test execution. As the tester only need to dump test code once
and the tool generates tests automatically for repeating the testing process, the testing
effort s reduced considerably. The tool’s design enables the tester to generate tests that
provide good structural coverage of the behavioral model.

Disadvantages: There is limited documentation available describing the features of
the tool. The tool needs the tester to design the tests and dump the skeleton test code for
automatic test generation. When the test cases are generated by selecting multiple options
such as query file, depth search, and single step, it is difficult to map the generated tests
to the corresponding requirements. While testing the model for its timing properties,
the specific properties defined using timing constraints are not reflected in the test cases.
Further more, based on our trials, Yggdrassil can only generate test from reachability
queries and not from the other ones. It is a limitation while testing the TON function
block in a PLC FBD program.

47

48

5. Conclusions and Future work

This chapter summarizes the work done, recall the research questions, and discuss the

future work.

5.1 Conclusions

In this thesis, a toolchain is presented for automatic test generation based on model check-
ing to test PLC industrial control software systems. The approach considered the SUT as
a black box, and the behavioral model of the system is built based on the requirements
specification. Model-based testing techniques using the tool UPPAAL and Pytest test-
ing framework is used to test PLC program written in IEC 61131-3 FBD programming
language. The UPPAAL model checking tool is used for modeling, simulation and veri-
fication of the functional and safety properties of the system. The safety properties of the
model are verified before generating the tests. The verification of safety properties and
timing constraints allows to check the correctness of the behavior model and allows to
modify the model if it fails the verification. The Python tests are designed to represent the

read-execute-write cyclic task behaviour of the POU in a PLC application.

The study results show that model checking of the behavioral model allows to verify
that the model satisfies the safety requirements in the specification. The proposed ap-
proach for automated test generation and execution approach is also significantly faster
than the manual testing process. The test execution is performed offline on the SUT using

the test suite generated automatically and achieved a code coverage of 100% in 124s.

The experiment results also suggest that the proposed toolchain for automatic test
generation using model checking can be adopted in the industry for automation testing
of ICS systems. The toolchain is suited for industrial adoption as it uses the open-source
testing framework pytest and OPC UA as a communication protocol, which is already
supported in CODESYS IDE for IEC 61131-3 PLC programming languages.

49

5.2 Future work

In this thesis, a toolchain is presented for automatic test generation using the model-
based testing technique to verify PLC ICS systems. The system is mainly verified for
its reachability, liveness, and safety properties. There are several tools for automatic test
generation such as COMPLETETEST [40], CPTest+ [63], and FPCCTestGen [64]. There
is a plan to explore these tools in the future and compare them to our methodology.

Even though automatic test generation using model checking effectively reduces hu-
man effort and enables faster test suite generation, its effectiveness in terms of fault de-
tection capabilities needs to be evaluated. Research on automatic test generation for PLC
ICS systems based on model-based mutation testing is also of interest. There are mutant
generation tools such as ECDAR [65], MuUTA [66] for the generation of mutants from a
model using selected mutation operators. It is also of interest to investigate the best-suited
mutation operators for PLC FBD programs that can improve the fault detection capability
of the model-based mutation testing in comparison to manual testing.

The test execution is performed offline on the application program running on the
SoftPLC system in the current study. Online testing of the application program running
on PLC hardware will be part of future work.

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement No 957212.

50

References

[1]

[10]
[11]

K. Stouffer, J. Falco, and K. Scarfone, “Guide to industrial control systems (ics)
security,” NIST special publication, vol. 800, no. 82, pp. 16—16, 2011.

Industrial Control System,2021. [Online]. Available: https://www.trendmicro.

com/vinfo/us/security/definition/industrial-control-system/.

E.R. Alphonsus and M. O. Abdullah, “A review on the applications of programmable
logic controllers (plcs),” Renewable and Sustainable Energy Reviews, vol. 60, pp. 1185—
1205, 2016.

B. Krebs, “Cyber incident blamed for nuclear power plant shutdown,” Washington
Post, June, vol. 5, no. 2008, p. 5, 2008.

B. Kesler, “The vulnerability of nuclear facilities to cyber attack,” Strategic In-
sights, vol. 10, no. 1, pp. 15-25, 2011.

H. Park, “Detailed analysis report for stuxnet,” IBM Korea, 2010.
B. Lim, D. Chen, Y. An, Z. Kalbarczyk, and R. Iyer, “Attack induced common-

mode failures on plc-based safety system in a nuclear power plant: Practical ex-
perience report,” in 2017 IEEE 22nd Pacific Rim International Symposium on De-
pendable Computing (PRDC), IEEE, 2017, pp. 205-210.

H.-s. Eom, G.-y. Park, S.-c. Jang, H. S. Son, and H. G. Kang, “V&v-based remain-
ing fault estimation model for safety—critical software of a nuclear power plant,”
Annals of Nuclear Energy, vol. 51, pp. 38-49, 2013.

T. Ovatman, A. Aral, D. Polat, and A. O. Unver, “An overview of model checking
practices on verification of plc software,” Software & Systems Modeling, vol. 15,
no. 4, pp. 937-960, 2016.

PLCopen org,2021. [Online]. Available: https://plcopen.org/what-plcopen.

M. Tiegelkamp and K.-H. John, IEC 61131-3: Programming industrial automation
systems. Springer, 2010.

51

[12] S. Brown, “Overview of iec 61508. design of electrical/electronic/programmable

electronic safety-related systems,” Computing & Control Engineering Journal, vol. 11,
no. 1, pp. 6-12, 2000.

[13] M. Vuori, H. Virtanen, J. Koskinen, and M. Katara, “Safety process patterns in the
context of iec 61508-3,” 2011.

[14] V&V IEC-61508-3:2010, 2021. [Online]. Available: https://assets.vector.
com/cms/content /products/VectorCAST /Docs/Whitepapers/English/
Understanding _Verification _Validation _of _Software_Under _ IEC -
61508_v2.0.pdf.

[15] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-based testing
approaches,” Software testing, verification and reliability, vol. 22, no. 5, pp. 297-
312, 2012.

[16] V. R. Basili and B. T. Perricone, “Software errors and complexity: An empirical
investigation(,” Communications of the ACM, vol. 27, no. 1, pp. 42-52, 1984.

[17] D Alexandre and G. Kim, A tutorial on uppaal, formal methods for the design of
real-time systems: 4th intern school on formal methods for the design of computer,
comm and software systems. sfm-rt 2004, no 3185 in Incs, 2004.

[18] J. Hunt, “Pytest testing framework,” in Advanced Guide to Python 3 Programming,
Springer, 2019, pp. 175-186.

[19] E. P. Enoiu, D. Sundmark, and P. Pettersson, “Model-based test suite generation
for function block diagrams using the uppaal model checker,” in 2013 IEEE Sixth
International Conference on Software Testing, Verification and Validation Work-
shops, IEEE, 2013, pp. 158-167.

[20] S.-H. Leitner and W. Mahnke, “OPC UA-service-oriented architecture for indus-
trial applications,” ABB Corporate Research Center, vol. 48, pp. 61-66, 2006.

[21] CODESYS Profiler, 2021. [Online]. Available: https://store. codesys. com/
codesys-profiler.html.

[22] W Bolton, Programmable logic controllers, newnes, 2009.

[23] D. H. Hanssen, Programmable logic controllers: a practical approach to IEC 6113 1-
3 using CODESYS. Wiley Online Library, 2015.

[24] M. H. Schwarz and J. Borcsok, “A survey on OPC and OPC-UA: About the stan-
dard, developments and investigations,” in 2013 XX1V International Conference on
Information, Communication and Automation Technologies (ICAT), IEEE, 2013,

pp. 1-6.

52

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

CODESYS OPC UA, 2020. [Online]. Available: https://www. codesys . com/
products/codesys-runtime/opc-ua.html (visited on 05/18/2021).

CODESYS Online help, 2021. [Online]. Available: https : //help . codesys .
com/api-content/2/codesys/3.5.14.0/en/_cds_runtime_opc_ua_
server/ (visited on 05/18/2021).

O. Roulet-Dubonnet, Python OPC-UA Documentation, 2021. [Online]. Available:
https://python-opcua.readthedocs.io/en/latest/index.html.

P. Ammann and J. Offutt, Introduction to software testing. Cambridge University
Press, 2016.

M. Felderer, P. Zech, R. Breu, M. Biichler, and A. Pretschner, “Model-based secu-
rity testing: A taxonomy and systematic classification,” Software Testing, Verifica-
tion and Reliability, vol. 26, no. 2, pp. 119-148, 2016.

F. Siavashi and D. Truscan, “Environment modeling in model-based testing: Con-
cepts, prospects and research challenges: A systematic literature review,” in Pro-
ceedings of the 19th International Conference on Evaluation and Assessment in

Software Engineering, 2015, pp. 1-6.

O. Pavlovic and H.-D. Ehrich, “Model checking plc software written in function
block diagram,” in 2010 Third International Conference on Software Testing, Veri-
fication and Validation, IEEE, 2010, pp. 439-448.

T. Bochot, P. Virelizier, H. Waeselynck, and V. Wiels, “Model checking flight con-
trol systems: The airbus experience,” in 2009 31st International Conference on

Software Engineering-Companion Volume, IEEE, 2009, pp. 18-27.

S Lampériere-Couffin and J.-J. Lesage, “Formal verification of the sequential part

of plc programs,” in Discrete Event Systems, Springer, 2000, pp. 247-254.
E. Jee, S. Jeon, S. Cha, K. Koh, J. Yoo, G. Park, and P. Seong, “Fbdverifier: Interac-

tive and visual analysis of counter-example in formal verification of function block
diagram,” Journal of Research and Practice in Information Technology, vol. 42,
no. 3, pp. 171-188, 2010.

J. Yoo, S. Cha, and E. Jee, “A verification framework for fbd based software in
nuclear power plants,” in 2008 15th Asia-Pacific Software Engineering Conference,
IEEE, 2008, pp. 385-392.

A. Guignard, J.-M. Faure, and G. Faraut, “Model-based testing of plc programs
with appropriate conformance relations,” IEEE Transactions on Industrial Infor-
matics, vol. 14, no. 1, pp. 350-359, 2017.

53

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

B. FE. Adiego, E. B. Vifuela, J.-C. Tournier, V. M. G. Sudrez, and S. Bliudze,
“Model-based automated testing of critical plc programs,” in 2013 11th IEEFE In-
ternational Conference on Industrial Informatics (INDIN), IEEE, 2013, pp. 722—
7217.

S. Rosch, D. Tikhonov, D. Schiitz, and B. Vogel-Heuser, “Model-based testing of
plc software: Test of plants’ reliability by using fault injection on component level,”
IFAC Proceedings Volumes, vol. 47, no. 3, pp. 3509-3515, 2014.

A. Ferrari, A. Fantechi, G. Magnani, D. Grasso, and M. Tempestini, “The metrd rio

case study,” Science of Computer Programming, vol. 78, no. 7, pp. 828842, 2013.
E. P. Enoiu, A. Cauéevié, T. J. Ostrand, E. J. Weyuker, D. Sundmark, and P. Petters-

son, “Automated test generation using model checking: An industrial evaluation,”

International Journal on Software Tools for Technology Transfer, vol. 18, no. 3,
pp- 335-353, 2016.

B. F. Adiego, D. Darvas, J.-C. Tournier, E. B. Viifiuela, J. O. Blech, and V. G.
Sudrez, “Automated generation of formal models from st control programs for ver-
ification purposes,” CERN, Internal Note CERN-ACC-NOTE-2014-0037, 2014.

A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R.
Sebastiani, and A. Tacchella, “Nusmv 2: An opensource tool for symbolic model

checking,” in International Conference on Computer Aided Verification, Springer,
2002, pp. 359-364.

A. Basu, B. Bensalem, M. Bozga, J. Combaz, M. Jaber, T.-H. Nguyen, and J.
Sifakis, “Rigorous component-based system design using the bip framework,” IEEE
software, vol. 28, no. 3, pp. 4148, 2011.

E. M. Clarke Jr, O. Grumberg, D. Kroening, D. Peled, and H. Veith, Model check-
ing. MIT press, 2018.

K. Sacha, “Verification and implementation of dependable controllers,” in 2008
Third International Conference on Dependability of Computer Systems DepCoS-
RELCOMEX, IEEE, 2008, pp. 143—151.

H. B. Mokadem, B. Berard, V. Gourcuff, O. De Smet, and J.-M. Roussel, “Verifi-
cation of a timed multitask system with uppaal,” IEEE Transactions on Automation

Science and Engineering, vol. 7, no. 4, pp. 921-932, 2010.

D. Soliman and G. Frey, “Verification and validation of safety applications based
on plcopen safety function blocks,” Control engineering practice, vol. 19, no. 9,
pp. 929-946, 2011.

54

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

G. Frey and L. Litz, “Formal methods in plc programming,” in Smc 2000 confer-
ence proceedings. 2000 ieee international conference on systems, man and cyber-

netics. cybernetics evolving to systems, humans, organizations, and their complex
interactions’(cat. no. 0, IEEE, vol. 4, 2000, pp. 2431-2436.

S. Klein, G. Frey, and M. Minas, “Plc programming with signal interpreted petri
nets,” in International Conference on Application and Theory of Petri Nets, Springer,
2003, pp. 440-449.

E. M. Clarke and J. M. Wing, “Formal methods: State of the art and future direc-
tions,” ACM Computing Surveys (CSUR), vol. 28, no. 4, pp. 626643, 1996.

G. J. Holzmann, “The model checker spin,” IEEE Transactions on software engi-
neering, vol. 23, no. 5, pp. 279-295, 1997.

M. Leuschel and M. Butler, “Prob: A model checker for b,” in International sym-
posium of formal methods europe, Springer, 2003, pp. 855-874.

R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical computer sci-
ence, vol. 126, no. 2, pp. 183-235, 1994.

A. Hessel, K. G. Larsen, M. Mikucionis, B. Nielsen, P. Pettersson, and A. Skou,
“Testing real-time systems using uppaal,” in Formal methods and testing, Springer,
2008, pp. 77-117.

G. Behrmann, A. David, and K. G. Larsen, “A tutorial on uppaal 4.0,” Department

of computer science, Aalborg university, 2006.

T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, “Symbolic model checking
for real-time systems,” Information and computation, vol. 111, no. 2, pp. 193-244,
1994.

J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi, “Uppaal—a tool suite
for automatic verification of real-time systems,” in International hybrid systems
workshop, Springer, 1995, pp. 232-243.

D. Truscan, T. Ahmad, F. Siavashi, and P. Tuuttila, “A practical application of
uppaal and dtron for runtime verification,” in 2015 IEEE/ACM 2nd International
Workshop on Software Engineering Research and Industrial Practice, IEEE, 2015,
pp- 39-45.

J. H. Kim, K. G. Larsen, B. Nielsen, M. Mikucionis, and P. Olsen, “Formal anal-
ysis and testing of real-time automotive systems using uppaal tools,” in Inter-
national Workshop on Formal Methods for Industrial Critical Systems, Springer,
2015, pp. 47-61.

55

[60]

[61]

[62]
[63]

[64]

[65]

[66]

F. Siavashi, D. Truscan, and J. Vain, “On mutating uppaal timed automata to assess
robustness of web services.,” in ICSOFT-EA, 2016, pp. 15-26.

K. G. Larsen, F. Lorber, and B. Nielsen, “20 years of uppaal enabled industrial
model-based validation and beyond,” in International Symposium on Leveraging
Applications of Formal Methods, Springer, 2018, pp. 212-229.

Z. Gu, M. Yuan, and X. He, “Tutorial for the uppaal model generater,”

M. Jamro, “Pou-oriented unit testing of iec 61131-3 control software,” IEEE Trans-

actions on Industrial Informatics, vol. 11, no. 5, pp. 1119-1129, 2015.

Y.-C. Wu and C.-F. Fan, “Automatic test case generation for structural testing of
function block diagrams,” Information and Software Technology, vol. 56, no. 10,
pp- 1360-1376, 2014.

K. G. Larsen, F. Lorber, B. Nielsen, and U. M. Nyman, ‘“Mutation-based test-case
generation with ecdar,” in 2017 IEEE International Conference on Software Test-
ing, Verification and Validation Workshops (ICSTW), IEEE, 2017, pp. 319-328.

F. Siavashi, J. Igbal, D. Truscan, and J. Vain, “Testing web services with model-

based mutation,” in International Conference on Software Technologies, Springer,
2016, pp. 45-67.

56

