

Åbo Akademi

Learning autonomous maritime

navigation with offline reinforcement

learning and marine traffic data

Jimmy Westerlund 39053

Master’s thesis in Computer Engineering

Supervisors: Sebastien Lafond & Sepinoud Azimi

Rashti

 Åbo Akademi University

Faculty of Science and Engineering

 Information Technologies

2021

Abstract

Autonomous shipping is a heavily researched topic, and currently, there are large amounts of

ship traffic data available but unexploited. Autonomous ships have the potential to reduce costs

and increase safety. The challenge is achieving the correct maritime navigation behavior

according to the situation reliably, which may be possible by exploiting historical ship traffic

data. This thesis explores the possibility of using offline reinforcement learning based on AIS

data to learn autonomous maritime navigation.

The hypothesis that AIS data can be used for training a reinforcement learning agent is tested

by implementing an offline reinforcement learning agent. For comparison, an online agent that

learns without data is also implemented. Both agents are trained and evaluated in a simulator,

and the goal of both agents is to learn to navigate to a destination, given a starting point.

The results suggest that offline reinforcement learning can be used for automating maritime

navigation, but a more extensive and more diverse dataset is needed to conclude its

effectiveness.

Keywords: Reinforcement learning, offline reinforcement learning, autonomous navigation,

autonomous ship, AIS

Preface

I want to say a special thanks to my supervisors Sepinoud and Sebastien, for their guidance and

motivation throughout the project. Also, thanks to Richard Nyberg for helping me get started

with the project and explaining how to use the simulator.

Table of Contents

1. Introduction .. 1

2. Reinforcement learning .. 3

2.1 History .. 3

2.2 Markov Decision Process ... 5

2.3 Elements of reinforcement learning ... 6

2.3.1 Agent and Environment ... 6

2.3.2 Policy ... 7

2.3.3 Reward function .. 8

2.3.4 Value functions .. 9

2.3.5 Model ... 11

2.4 Offline reinforcement learning ... 11

2.5 Algorithms .. 12

2.5.1 Q Learning ... 13

2.5.2 Deep Q-learning .. 14

3. The project ... 16

3.1 Goal .. 16

3.2 The dataset.. 17

3.3 Ship terminologies.. 18

3.4 The ship simulator .. 19

4. Implementation .. 21

4.1 Libraries ... 21

4.1.1 TensorFlow .. 21

4.1.2 Keras and Keras-rl ... 22

4.1.3 PyTorch ... 22

4.1.4 d3rlpy ... 23

4.1.5 NumPy ... 23

4.1.6 Pandas .. 23

4.1.7 Gym ... 24

4.2 Setting up a scenario .. 24

4.3 Online agent design .. 25

4.4 Offline agent design ... 29

4.5 Changes during implementation... 33

5. Results .. 34

5.1 Online agent ... 34

5.2 Offline agent ... 36

6. Discussion .. 40

7. Future work .. 42

7.1 Online agent ... 42

7.2 Offline agent ... 44

7.3 General ... 46

8. Conclusion ... 47

9. Swedish summary .. 48

9.1 Introduktion .. 48

9.2 Förstärkt inlärning .. 49

9.3 Projekt .. 50

9.4 Implementation... 50

9.5 Resultat ... 51

9.6 Slutsats ... 52

References .. 53

1

1. Introduction

Over the past decade, there has been a dramatic development in the field of autonomous

technologies. Autonomous systems are being applied in transportation systems, and with the

technological breakthrough, the reality of fully autonomous transport systems may not be so

distant. Giants like Google and Tesla are two leading developers of fully self-driving systems

for road transport, and their partially self-driving systems are already available in many new

cars [23]. For air-based transport, uncrewed aerial vehicles (UAVs) are being used for delivery

services. In Helsinki, for example, a delivery system using drones is being developed by Wing

[24]. Maritime transport is the sector responsible for the majority of all transport. Among the

leading developers of autonomous maritime systems are Rolls-Royce and Kongsberg, but no

fully autonomous vessels are used commercially yet. Autonomous maritime navigation is an

area of broad and current interest, and it is also the topic of this thesis.

A study in the report Review of Maritime Transport 2020 [25] shows that over 80 percent of

global trade by volume is carried out by cargo ships. Moreover, shipping is the only viable

option for international trade, as it is by far the most cost-effective option for transporting large

volumes of merchandise [26]. However, the shipping industry faces immense economic,

environmental, and safety challenges as traditional solutions, such as building larger and more

optimized ships, reach their limits.

It is estimated that over 75 percent of maritime accidents involve human error [27].

Furthermore, an analysis of around 15 000 maritime liability insurance claims between 2011

and 2016 was done by Allianz Global Corporate & Specialty (AGCS) and concluded that

human error was a primary factor in 75% of all cases, equivalent to 1.6 billion dollars in losses

[27].

Crewless autonomous ship systems would enable new ship designs, as the bridge and the living

spaces on vessels could be removed to improve aerodynamics and reduce fuel consumption. It

would also lower crew costs and ultimately improve safety by removing the human element.

Autonomous ships are believed to be a potential solution to the difficulties the shipping

industry faces, offering safer and more cost-effective shipping [26].

Reinforcement learning used for autonomous driving and navigation is a reasonably new

approach. Even more recent is the idea of using data-driven reinforcement learning in maritime

navigation, which is enabled by the collection of automatic identification system (AIS) data.

2

According to Regulation 19, all cargo ships weighing over 500 tons and all passenger ships,

irrespective of size, must be fitted with AIS [28]. The AIS data contains information about the

vessel, such as the coordinates, speed, and heading. AIS data contains valuable information

that can, in theory, be used to learn autonomous maritime navigation. This thesis studies the

possibility of using offline reinforcement learning with AIS data to learn autonomous maritime

navigation.

3

2. Reinforcement learning

Reinforcement learning (RL) is the approach of computationally automating tasks by

specifying a goal and a set of rules to follow. What sets reinforcement learning apart from other

machine learning approaches is that the RL agent interacts directly with the environment and

learns to make decisions based on direct feedback from the environment [1]. Compared to

supervised learning, the strength of reinforcement learning lies in the lack of need of data. In

supervised learning, labeled data is used to learn a specific behavior. The data contains

information about what the correct action in a particular situation would be [1]. This approach

can yield successful results in cases where large amounts of data are available. Still, in

unexplored or partially unexplored environments with limited or no data available,

reinforcement learning is more applicable. However, there are also hybrid approaches;

recently, the interest in data-based reinforcement learning, also known as offline reinforcement

learning, has grown as it has shown great potential in solving various problems [5].

Navigating a ship from a starting point to a destination can be defined as a problem with a goal,

a set of possible actions, and a set of rules that the ship must follow while maneuvering its way

to the destination. With this definition, it can be thought of as a problem that can be solved

with reinforcement learning. The problem is, of course, more complex in reality, but the

essential idea of RL can be explained through this simple example. Maritime navigation with

reinforcement learning is the core of this thesis, and the possible actions, rules, and goal of the

thesis will be discussed in greater detail in the next chapter. In contrast, this chapter will review

the general history and elements of reinforcement learning.

2.1 History

In the book Reinforcement Learning: An Introduction, Sutton and Barton explain that modern

reinforcement learning has its roots mainly in two different methods, namely learning by trial-

and-error and optimal control [1]. The methods evolved independently and eventually

intertwined in the early 1980s to form what is known as reinforcement learning today.

Learning by trial-and-error stems from psychological studies of animal learning and is

generally regarded as the earliest studies in artificial intelligence [1]. The idea dates back to the

late 1800s when the British psychologist Conway Lloyd Morgan used the term “trial-and-error

learning” to describe animal behavior. In the early 1900s, American psychologist Edward Lee

Thorndike formulated a principle about trial-and-error learning, known as the “Law of Effect”

4

principle, which involved positive reinforcement and negative reinforcement. According to

Sutton et al., Alan Turing was among the first to approach the idea of implementing trial-and-

error learning in a computer [1]. In 1948, Turing wrote a report about a “pleasure-and-pain

system” based on Thorndike’s “Law of Effect” principle. In the report, Turing describes a

system that would take an action randomly and save the results temporarily. When a negative

reinforcement occurs, the system will discard all temporarily saved results, and when a positive

reinforcement occurs, it will save the results permanently [1].

Optimal control is a term that emerged in the 1950s and it describes the method of designing

controllers for dynamical systems [1]. Richard Bellman developed a proposed solution to

optimal control. The proposed solution uses a value function and the states of a dynamical

system to define a function that became known as the Bellman equation [1]. The methods that

solve this equation are categorized as dynamic programming.

Dynamic programming is the methodology of breaking down a complex problem into smaller

subproblems and solving them individually before combining them into a final solution [2]. A

dynamic programming algorithm saves the answers to all solved subproblems in tables [2]. The

algorithm will only have to calculate the answers to the subproblems once, as the answers can

be fetched directly from the table in case the subproblem needs to be solved again. However,

one of the most significant drawbacks with dynamic programming is that its computational

needs grow exponentially with the complexity of the problem since the number of subproblems

grows with the number of state variables [1].

In the early 1960s, the research in artificial intelligence shifted from reinforcement learning to

supervised learning, and the distinction between the two types was often confused [1].

Following the confusion, research in reinforcement learning stagnated in the 1960s and early

1970s, but in the mid-1970s, Harry Klopf recognized that the adaptive behavior in artificial

intelligence was fading due to most researchers focusing on supervised learning. Through this

realization, Klopf linked trial-and-error learning to reinforcement learning again and made a

clear distinction between reinforcement learning and supervised learning [1].

Apart from dynamic programming, two other reinforcement learning methods are commonly

used, namely Monte Carlo (MC) methods and temporal difference (TD) learning. Unlike

dynamic programming, Monte Carlo methods do not require a complete model of the

environment, but their downside is that they update the policy only after an episode has

terminated, not at every time step [1]. As stated by Sutton et al., MC methods are a way of

5

solving RL problems by averaging sample returns, and this approach is only suitable for

episodic tasks. Lastly, TD learning methods combine the strengths found in DP and MC

methods [1]. TD methods learn from experience without a model, and they can also make

predictions mid-training, as the policy is updated at each time step.

2.2 Markov Decision Process

Before delving into the elements of reinforcement learning, it is important to first explain the

core mathematics behind reinforcement learning, namely the Markov Decision Process (MDP).

In case the state and action space of the MDP is finite, it is called a finite Markov Decision

Process (finite MDP) [1]. According to Sutton et al., finite MDP is a vital part of reinforcement

learning. They state that a large amount of modern reinforcement learning can be understood

simply by understanding MDPs.

To express a reinforcement learning task as an MDP, it must first fulfill the requirement of the

Markovian property [1]. A task is said to have the Markov property if the next state 𝑠′ at time

𝑡 + 1 only depends on the state and action 𝑠𝑡, 𝑎𝑡 at time 𝑡. A task with the Markov property is

called an MDP, and it enables the predictions of the following state and the expected next

reward, given the current state and action [1]. With a given state 𝑠 and action 𝑎 the probability

of every next state 𝑠′ and reward 𝑟 is expressed with the following formula [1]:

𝑝(𝑠′, 𝑟|𝑠, 𝑎) = Pr{𝑆𝑡+1 = 𝑠′, 𝑅𝑡+1 = 𝑟 | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎}

This formula fully expresses the dynamics of a finite MDP, and it enables the computation of

other things regarding the interaction between the agent and the environment. An example is

the formula for calculating the state-transition probability, which gives the probability of

transitioning to state 𝑠′, given a state 𝑠 and an action 𝑎 [1]:

𝑝(𝑠′|𝑠, 𝑎) = Pr{𝑆𝑡+1 = 𝑠′ | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎}

6

An MDP is represented as a 5-tuple [1][3]: (𝑆, 𝐴, 𝑃, 𝑅, 𝛾) where:

• 𝑆 – a finite set of states

• 𝐴 – a finite set of actions

• 𝑃 – a set of state-transition probabilities

• 𝑅𝑎(𝑠 , 𝑠′) – the immediate reward distributed by a reward function when transitioning

from state 𝑠 to state 𝑠′ through action 𝑎

• 𝛾 ∈ [0, 1] – the discount rate

To clarify, a set of states are values that describe the situation the agent is in, and a set of actions

describes what actions the agent performs. The discount factor is a value between 0 and 1 which

determines the current value of future rewards, as discussed further in this chapter.

2.3 Elements of reinforcement learning

According to [1], reinforcement learning is defined by the following elements: agent,

environment, policy, reward function, value function, and model. These are the building blocks

that define what reinforcement learning is, and they are explained in greater detail in the

following sections.

2.3.1 Agent and Environment

In reinforcement learning, the two first elements are the agent and the environment. The

learner, which is also the decision-maker, is called the agent [1]. What it interacts

with, containing everything outside the agent, is called the environment. State and action are

two terms used to describe what situation the agent is currently in. A state contains information

about where in the environment the agent is at a given moment, and the action describes what

action the agent takes. The agent and the environment are connected through their interactions;

the agent takes an action, and the environment reacts to the action by presenting a new state to

the agent. The interaction between the agent and the environment occurs at each time step,

where the discrete time step is a sequence [1]: 𝑡 = 0, 1, 2, 3, … As stated by Sutton et al., time

steps can also be continuous, though continuous time steps involve more complex calculations

compared to discrete time steps. In this thesis, only discrete time steps are considered as they

are simpler to deal with, and it applies well to ship log files, where each row in the data

7

corresponds to 1 second. The use of discrete time steps will be more explicit in the next chapter,

where the ship log files from Aboa Mare are explained in further detail.

Figure 1 is a visualization by Sutton et al., and it is widely used to illustrate the interaction

between the agent and the environment. The agent starts in time step t and takes an action 𝐴𝑡

based on the initial state 𝑆𝑡 and reward 𝑅𝑡. The environment responds to the action by providing

the agent with a new state 𝑆𝑡+1 and a new reward 𝑆𝑡+1 and the interaction continues. The

environment generates rewards that the agent tries to maximize over time. In some cases, it can

be difficult to define the boundary between agent and environment, but the general rule is that

anything that the agent cannot change is considered outside of it and thus part of its

environment. In the case of an autonomous ship, the ship is the agent, and everything else,

such as the water, the land, and the sea marks combined, make up the environment.

Figure 1: Agent and environment interaction visualized by Sutton et al. [1]

2.3.2 Policy

The policy defines the agent’s behavior in any state; in other words, the policy is the agent’s

strategy. It is a mapping from each state and action in the environment to the probability of

taking a specific action when being in a particular state [1]. The policy is an essential part of a

reinforcement learning agent, as it alone is enough to define the behavior of the agent.

Essentially, solving a reinforcement learning task is to find the policy that brings the largest

number of rewards over a long time. As stated by Sutton et al., this policy is called the optimal

policy [1].

8

Reinforcement learning methods are usually categorized as being either on-policy or off-policy,

depending on how the agent achieves the optimal policy [1]. In on-policy methods, the agent

learns how good actions are based on a specific policy 𝜋 by observing the rewards generated

when following that policy. In off-policy methods, the agent learns how good actions are based

on a behavior policy 𝜋1 by observing the rewards generated when following a different policy

𝜋2 called the target policy.

2.3.3 Reward function

A reward in reinforcement learning is a numeric value that the agent receives at each time step

of the training, and it is also what defines the goal of a reinforcement learning problem [1]. The

objective of the reinforcement learning agent is to maximize the total reward over a longer

time. The reward function defines what behavior should be rewarded and what behavior should

be punished. With a well-made reward function, the agent will thus be able to learn the desired

behavior. The reward is also a deciding factor for altering the policy since the agent will

recognize that an action followed by a low reward may not be optimal. As a result, the policy

might change to make the agent take a different action if faced with the same situation in the

future [1].

In some reinforcement learning scenarios, the interaction between the agent and the

environment naturally breaks up into segments. These segments are called episodes and what

divides one episode from another is a reset of the environment. In the example earlier described

where an agent must learn to navigate a ship from a starting point to a destination, an episode

would end if the agent reached the goal, but it would also end if the agent did not reach the

destination within a specific time limit, in case there was a time limit defined. Every episode

ends with a state called the terminal state, which is always followed by resetting the

environment to a default starting state [1].

The expected return is the total amount of rewards that the agent is expected to gather, and for

the most straightforward cases, it can be expressed as the sum of the rewards [1]:

𝐺𝑡 = 𝑅𝑡+1 + 𝑅𝑡+2 + 𝑅𝑡+3 + ⋯ + 𝑅𝑇

9

where 𝑅𝑡 is the reward in time step 𝑡 and 𝑇 is the last time step. To avoid dealing with infinite

rewards, the formula can be further developed by introducing a discount rate 𝛾, a value within

the bounds of 0 ≤ 𝛾 ≤ 1. The discount rate tells the current value of future rewards, which

helps the agent choose between immediate and future rewards [1]. A discount rate of 0 will

result in the agent prioritizing to maximize the immediate rewards from the next time step, but

when the discount rate approaches 1, the agent will also take future rewards into account [1].

Without a discount rate, the agent is at risk of getting stuck doing the same actions repeatedly

but never reaching the goal. The discounted return is represented by [1]:

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + ⋯ = ∑ 𝛾𝑘𝑅𝑡+𝑘+1

∞

𝑘=0

The formula says that a reward received 𝑘 time steps into the future is only worth 𝛾𝑘−1 times

what it would be worth immediately [1].

Like several other aspects of reinforcement learning, the idea of discounting is also based on

human psychology. As presented by Leonard Green and Joel Myerson [4], an example of

human discounting is when faced with the option of receiving 100€ now or 120€ in a month,

the immediate reward might seem more appealing. However, if both rewards are shifted one

year into the future, the choice is to receive 100€ in one year or 120€ in 13 months. The larger

reward suddenly seems like the obvious choice, as the sooner reward has become discounted

because it is so far in the future.

2.3.4 Value functions

Closely related to the reward function are the value functions. While the reward function

defines what action yields the best reward in the current state, the value functions specify what

actions are best for collecting the most rewards over a longer time. The value of a state is the

total amount of rewards an agent can be expected to collect in the future, given a starting state

𝑠 and a policy 𝜋. This value is calculated through the state-value function and is expressed as

[1]:

10

𝑣𝜋(𝑠) = 𝐸𝜋[𝐺𝑡|𝑆𝑡 = 𝑠] = 𝐸𝜋 [∑ 𝛾𝑘𝑅𝑡+𝑘+1 | 𝑆𝑡 = 𝑠

∞

𝑘=0

]

where 𝐸𝜋 is the expected value, 𝐺𝑡 is the discounted return and 𝑡 is any time step. Another

value function is the action-value function, which gives the value of taking an action 𝑎 in state

𝑠 with a policy 𝜋 [1]:

𝑞𝜋(𝑠, 𝑎) = 𝐸𝜋[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] = 𝐸𝜋 [∑ 𝛾𝑘𝑅𝑡+𝑘+1 | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

∞

𝑘=0

]

The value functions 𝑣𝜋 and 𝑞𝜋 are needed because states that yield low immediate rewards

might lead to states with high rewards. The reverse can also be true; states which produce high

immediate rewards might lead to states with low or even negative rewards.

The state-value function 𝑣𝜋 can be used to derive the formula called the Bellman equation [1]:

𝑣𝜋(𝑠) = ∑ 𝜋(𝑎|𝑠) ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝑣𝜋(𝑠′)]

𝑠′,𝑟𝑎

The Bellman equation expresses the relation between the value of a state and the value of future

states. Essentially, it is the product of the sums of two probabilities. The first, 𝜋(𝑎|𝑠), is the

probability of taking action 𝑎 in state 𝑠 while following policy 𝜋 and as earlier discussed,

𝑝(𝑠′, 𝑟|𝑠, 𝑎) is the probability of ending up in a state 𝑠′ with reward 𝑟 while being in state 𝑠

and taking action 𝑎. The value is calculated with the sum over the values of the actions 𝑎 ,

future state 𝑠′ and reward 𝑟. For each 𝑎, 𝑠′, 𝑟 the probability 𝜋(𝑎|𝑠)𝑝(𝑠′, 𝑟|𝑠, 𝑎) is calculated

and weighted by the quantity [𝑟 + 𝛾𝑣𝜋(𝑠′)]. Finally, the expected value is given by the sum of

all possibilities [1].

11

2.3.5 Model

The model is the sixth and final element of some, but not all, reinforcement learning systems.

As the name indicates, it is a model of the environment, and it can be used in various ways to

enhance an RL system. For example, with the input of a state and an action, the model can

predict what the next state and next reward will be [1]. A model enables planning, meaning

that we can decide what actions to take by considering future situations. Reinforcement

learning methods utilizing a model are called model-based, while the methods purely built on

trial-and-error style learning are called model-free [1].

2.4 Offline reinforcement learning

Reinforcement learning methods that utilize previously collected datasets for training without

interaction with an environment are categorized as offline reinforcement learning [5]. Offline

reinforcement learning algorithms have shown great promise in teaching optimal decision-

making based on large datasets. In this section, the main goal is to explain the core idea of

offline reinforcement learning and the benefits and drawbacks.

In traditional reinforcement learning, also known as online reinforcement learning, the agent

explores the environment and learns by trial and error. This is not an issue with small, simple

tasks that can easily be simulated, but a problem arises when dealing with large and complex

tasks with no access to a realistic simulated environment in which the online agent can be

trained. Building simulated environments for autonomous driving and healthcare tasks, for

example, can be both expensive and dangerous. The challenge lies in building accurately

simulated environments for the agents to train in, as the tasks can be complex and very different

from each other. Furthermore, there is always a risk of error when transferring an agent from

training in a simulated environment to solving real-world tasks.

In offline reinforcement learning, the agent does not have to interact with the environment, and

instead of exploring the environment, it must exploit the dataset. With a large enough dataset,

the idea is that the agent will be able to learn the optimal policy both reliably and quickly. The

algorithm is given a static dataset of transitions 𝐷 = {(𝑠𝑡, 𝑎𝑡 , 𝑠𝑡+1, 𝑟𝑡)} and must try to learn the

optimal policy based on it [5]. Ultimately, the goal of offline reinforcement learning is to find

the optimal policy that performs better than the behavior observed in dataset 𝐷.

12

The great benefit of a successful offline reinforcement learning implementation is the lack of

need for a simulated environment, in addition to the possibility to learn based on previously

collected data. An added benefit is not having to address the exploration-exploitation trade-

off. This is the dilemma of choosing between exploring new actions or exploiting known actions

[1]. The agent must exploit known action to collect rewards, but it must also explore new action

to make more optimal choices in the future. When learning based on a static dataset, the agent

can only exploit the transitions found in the dataset.

However, there are a couple of issues as well that need to be considered. One of the biggest

challenges in offline reinforcement learning is the fact that the training relies solely on the

transitions in the dataset. This means that the agent will not be able to explore the environment

to learn possible high-reward regions that exist outside of the dataset [5]. Another issue is the

amount of data required to train an offline reinforcement agent. It is impossible to say an exact

amount of data required for successful training as it depends on the complexity of the problem

and the complexity of the algorithm, but generally, a larger dataset gives the potential for more

successful results. With a small dataset, there is a risk that the agent is never able to find an

optimal policy [5].

2.5 Algorithms

Essentially all reinforcement learning algorithms implement the same learning loop: the agent

interacts with the environment while following a behavior policy. The agent observes the state,

picks an action, observes the next state and the reward. This loop may repeat multiple times,

and the policy is updated using the observed transitions [5].

There are many well-built algorithms for solving reinforcement learning problems, and

choosing which one to use is not necessarily straightforward. In this thesis, the Deep Q-

Network algorithm is used because it is a well-known algorithm. It has successfully been

applied to solve tasks in simplified environments with discrete action spaces, such as vehicle

navigation among pedestrians [8] and path planning of ships [9]. Additionally, several libraries

with the Deep Q-Network algorithm implemented are available, which further speed up the

development process.

13

2.5.1 Q Learning

Many new algorithms have emerged throughout the years, and most are improved versions of

older ideas and approaches. Q-learning is regarded as one of the most important breakthroughs

in the history of reinforcement learning, and it is the base of several modern algorithms [1].

In 1989, Anthony Watkins presented Q-learning, which is a model-free reinforcement learning

algorithm based on dynamic programming methods [6]. It enables the agent to learn by

evaluating the consequences of its actions in the environment. The agent tries all possible

actions in all possible states and learns which actions are best based on the discounted return

[1][6]. As stated by Watkins and Dayan [6], the object in Q-learning is to estimate the Q-values

for an optimal policy. If the agent can successfully learn the Q-values, it can also decide the

optimal actions in states. The Q-values are given by the Q-function 𝑄(𝑆𝑡 , 𝐴𝑡), which is

equivalent to the action-value function earlier discussed. Each calculated Q-value is updated in

a look-up table used in future calculations [6]. The Q-learning algorithm is represented by [1]:

𝑄𝑛𝑒𝑤(𝑆𝑡, 𝐴𝑡) ⟵ 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼[𝑅𝑡+1 + 𝛾 max
𝑎

𝑄(𝑆𝑡+1, 𝑎) − 𝑄(𝑆𝑡 , 𝐴𝑡)]

As seen in the formula, the Q-value, which is updated each time step, is the sum of three factors:

• 𝑄(𝑆𝑡 , 𝐴𝑡) + 𝛼 : The current Q-value weighted by the learning rate

• 𝛼𝑅𝑡+1 : The reward in the next time step, weighted by the learning rate

• 𝛼max
𝑎

𝑄(𝑆𝑡+1, 𝑎): The action with the highest estimated action value based on all

possible actions in the following state

The learning rate 0 ≤ 𝛼 ≤ 1 determines at what rate the agent should overwrite previously

learned behavior; in other words, it determines how quickly the agent should learn a behavior.

A value of 0 will make the agent learn nothing, while a value of 1 makes the agent overwrite

all previously learned information on each time step [1].

14

2.5.2 Deep Q-learning

Q-learning’s main problem is that the look-up table also quickly grows in size in tasks

involving many states and actions. Additionally, to accurately estimate the value of an action,

the agent must explore every state in the environment, which is unrealistic for larger

environments. As an answer to these problems, Minh et al. propose the Deep Q-Network

(DQN) in the research paper Human-level control through deep reinforcement learning,

published in 2015 [7]. The proposed algorithm is a combination of Q-learning and deep neural

networks, and its advantage over Q-learning is the ability to approximate the optimal action-

value function using a deep convolutional neural network instead of a look-up table [7]. With

DQN being able to approximate the action-value function, it is more effective than Q-learning

in tasks involving large state- and action spaces.

A deep convolutional neural network (DCNN) is a type of feed-forward neural network (FNN)

[9], illustrated in Figure 2. A neural network of this kind works by distributing the input to the

hidden layers, which will make decisions from previous layers and weigh whether a stochastic

change within itself will be good or bad for the final output [9]. A neural network becomes a

deep neural network when the architecture contains multiple hidden layers.

Figure 2: A three-layered feed-forward neural network (FNN), comprised of an input layer, a hidden layer, and an output

layer.

15

Reinforcement learning methods are notoriously unstable when neural networks approximate

the action value [7]. According to Minh et al., the reason behind the instability is caused by

two things. Firstly, due to minor updates to Q may significantly change the policy, and

secondly, due to the correlations between the action-values and the target values. To stabilize

the learning, Minh et al. introduce experience replay and a target network [7].

Experience replay is the method of storing an agent’s experience into a replay memory, and at

each time step, the replay memory is updated. During the training, random samples from the

replay memory are picked out and used for training the agent [7]. Experience replay improves

training because it breaks the correlation between consecutive samples. Furthermore, it

smoothes out learning and avoids oscillations because the behavior is averaged over past

experiences. To further improve the stability of Q-learning, a target network is introduced. At

a set interval, the network is cloned to obtain a target network, which is used for computing the

estimated Q-values.

16

3. The project

The idea for this thesis project came from The Institute of Maritime Software Technology

(MAST! Institute), a collaboration between Åbo Akademi University and Novia University of

Applied Sciences. Research projects in the MAST! Institute focus on maritime digitalization

and autonomous ships. With a combination of software expertise from Åbo Akademi

University and the tools and knowledge at Novia’s Maritime Academy, Aboa Mare, the goal

is for the MAST! Institute to contribute to maritime research and develop new solutions for

autonomous shipping [10].

The implementation and the testing of reinforcement agents are done in the Simple Ship

Simulator, a ship simulator developed by Ivan Porres, Kim Hupponen [11], and Sebastian

Penttinen [12]. The simulator was built for evaluating machine learning algorithms for

autonomous ships.

3.1 Goal

This thesis explores the possibility of training an offline reinforcement learning agent based on

previously collected ship data. The ship log data were collected from the simulator at Aboa

Mare. The collection process was part of two other master’s theses projects done by Richard

Nyberg and Tatjana Cucic.

Evaluating an offline agent’s performance can be difficult, and as a means of comparison, an

online agent was developed alongside the offline agent. The online agent enables comparing

performance and training times between the two agents, which can help make a final verdict

about the offline RL agent’s performance. Both agents are tested in the Simple Ship Simulator,

where they are faced with solving the same seemingly simple task: navigate to a destination,

given a starting point. The ultimate goal is for both agents to learn to solve the task successfully,

followed by analyzing the data logged during training to reach a conclusion about offline

reinforcement learning used in autonomous maritime navigation.

17

3.2 The dataset

The dataset contains ship traffic data collected from a realistic simulator during the training of

students at Aboa Mare. In its raw format, the data came in Automatic Identification System

(AIS) format encoded by the National Marine Electronics Association (NMEA) standard.

Richard Nyberg and Tatjana Cucic extracted the raw data from the simulator at Aboa Mare and

converted it into Comma Separated Value (CSV) files. Compared to raw data, CSV files are

much easier to work with as they contain distinct rows and columns with informative headers.

CSV files can also be visually inspected in Microsoft Excel, as it is a supported file format.

The CSV files are referred to as “the dataset,” and they are the starting point of the offline

reinforcement learning agent.

Before preprocessing, the dataset contains 54 columns of parameters that hold information

about the ship, such as the location, the speed, the direction, and the weather. However, only a

fraction of the parameters are relevant for a proof-of-concept offline reinforcement agent, and

the data preprocessing is discussed in the next chapter. Each CSV file holds information about

the trajectory of one ship. Each row in the files corresponds to a second, and the state space is

naturally discretized into one-second time steps. The dataset contains recorded behavior from

four different areas: The North Sea, the Channel to Felixstowe, Dover Strait, and Rotterdam.

The traffic recorded in the Rotterdam area was selected as the best of these locations, because

it contained the most concentrated coordinates. The traffic in the Rotterdam area involves

simulation data from 102 separate ships. Importing the data from the Rotterdam area into a

GPS visualizing tool [14] generated Figure 3. The tool draws a red dot on a nautical map for

each coordinate contained in the dataset. As seen in the figure, the traffic is heavily

concentrated in a specific area, which is beneficial, given the small dataset. An offline

reinforcement learning agent with a starting point and a destination within the area of

concentrated data points should have a good chance of learning to navigate to the destination

successfully.

18

Figure 3: Data points from 102 separate ship simulation runs imported into a GPS visualizing tool [14].

A critical remark about the dataset is that it is recorded human behavior, which means that it

may contain non-optimal behavior or errors that can affect the agent’s learning. For this thesis,

though, the quality of the data is not considered.

3.3 Ship terminologies

The names of the parameters in the dataset are not self-explanatory. Therefore, a subchapter

explaining the relevant parameters and ship terminologies related to the parameters is

necessary. A ship is affected by several external forces, which also affect the route it travels.

The term “heading” is used to express the direction a ship is pointing. Still, because the ship

can drift sideways due to environmental factors, such as the wind and the current, the term

Course over Ground (COG) is used to express the ship’s trajectory accurately. COG is the

direction the boat travels relative to the bottom [13]. Similarly, Speed over Ground (SOG) tells

the vessel’s true speed, as it expresses the ship’s relative to the ground.

The motion of a ship is expressed through six terms: surge, sway, yaw, heave, pitch, and roll.

The SSS supports surge, sway, and yaw. For further simplification purposes, only surge and

yaw are used in this implementation. Surge expresses the forward and backward movement of

a ship, which is controlled by the throttle. Yaw describes the side-to-side movement of the stern

and bow and is controlled by the rudder angle.

19

3.4 The ship simulator

The Simple Ship Simulator (SSS) is strictly software-based and must not be confused with

Aboa Mare’s simulator. Though the simulator at Aboa Mare is realistic and sophisticated, it is

not well suited for testing and deploying custom machine learning solutions. SSS was

developed to enable quick development and evaluation of machine learning algorithms of

autonomous ships. The simulator is roughly divided into seven parts: the agent, the gym

environment, the configuration file, the ship object, the simulation, the user interface, and the

helper module [12].

The agent module contains all the code necessary for the reinforcement learning agent to learn

to decide what actions to take. Suppose the agent is learning online, i.e., through trial-and-error.

In that case, it will interact with a gym environment module that describes the agent’s

environment, and it gives rise to rewards each time the agent takes an action. Like real ships,

the simulated ships also have many different properties, such as length and maximum engine

RPMs. A configuration file is the starting point for every simulation. It contains all information

needed to initialize a simulation, such as a map, a starting point, and a destination. The

configuration file also contains initial values for the ship’s properties, such as the initial speed

and heading. The ship module contains all the properties of the ship object. The main properties

are the x and y coordinates, the bearing, the speed, and the rudder angle. These five main

properties are used in several other parts of the simulator, such as when calculating the distance

between the ship and the destination. The simulation module transforms the states and actions

into actual movement in the simulator. An important part of the simulator is the user interface

(UI) seen in Figure 4. Using a UI is not mandatory, but it is greatly beneficial for the

development process of reinforcement learning agents because trained agents can be imported

into the simulator, and their behavior can be studied through the UI. As seen in the figure, the

UI displays relevant information about the vessels, and it also contains several buttons for

controlling the simulator. Lastly is the helpers module, which was made to reduce code

duplication. It contains frequently used functions that can be imported instead of re-written.

20

Figure 4: UI of SimpleShipSimulator

21

4. Implementation

When implementing a reinforcement learning solution, one can choose between two

approaches. The implementation can be done either by developing a custom algorithm or by

using an already implemented algorithm. For this thesis, the latter option was chosen because

it is within the scope of the thesis, and suitable libraries that cover both online and offline

reinforcement learning are available.

This chapter is dedicated to explaining the libraries used in the implementation, followed by

developing an online and an offline agent.

4.1 Libraries

Libraries are pieces of reusable code that can be easily imported and used in a project. The

massive benefit of using popular libraries is that they are thoroughly tested and often broadly

applicable. Finding relevant libraries can be of great help, as they enable the developer to focus

on the essential tasks instead of developing code that eventually leads up to the task. Usually,

a large portion of programming is spent on troubleshooting faulty behavior caused by a bug in

the code. Using time-tested libraries minimizes the risk of running into time-consuming errors

and significantly speeds up the development process.

4.1.1 TensorFlow

TensorFlow is one of the most prominent frameworks for developing, training, and deploying

machine learning systems. It was developed by Google and released as open-source in 2015,

along with the paper “TensorFlow: Large-Scale Machine Learning on Heterogeneous

Distributed Systems” [15]. Computation in TensorFlow is represented by data flow graphs that

define the order in which the computations must be performed. A node in the graph represents

a mathematical operation, such as add, subtract or divide. Each edge in the graphs is a

multidimensional array called a tensor, on which the mathematical operations are done [15].

TensorFlow can be used independently for developing custom machine learning solutions, but

it can also be used as the backend for other libraries.

22

4.1.2 Keras and Keras-rl

Keras is a deep learning Application Program Interface (API) developed in Python and running

on a Tensorflow backend. As stated on the website, “Being able to go from idea to result as

fast as possible is key to doing good research,” and the focus of the library is to enable fast

experimentation [16]. Essentially, Keras is a library that makes machine learning more

approachable through its high-level API.

Keras-rl is a library containing state-of-the-art deep reinforcement learning algorithms and was

built as an extension to the Keras library [17]. Developing and evaluating a reinforcement

learning agent with Keras-rl is convenient, as functionality with OpenAI Gym is already

integrated. Additionally, it includes several valuable callbacks and metrics to assess the

performance of the agent.

Keras-rl was used for developing the online reinforcement learning agent because the

SimpleShipSimulator included a collision avoidance agent implemented with this library.

Thus, the collision avoidance agent provided a great starting point for developing an online RL

agent for maritime navigation.

4.1.3 PyTorch

Like TensorFlow, PyTorch is a popular machine learning framework that has gained traction

in recent years. It was developed by Facebook and released as open-source in 2017, along with

the paper “Automatic differentiation in PyTorch” [18]. PyTorch is based on Torch, a tensor

computation library, and the calculations are similar to TensorFlow. PyTorch and

TensorFlow’s critical difference is that PyTorch uses dynamic data flow graphs, while

TensorFlow uses static data flow graphs. Dynamic data flow graphs add flexibility, as they are

generated when the program executes, eliminating the need for defining graphs before

execution [18]. Additionally, PyTorch’s documentation is comprehensive and its API is easy

to use. The use of PyTorch has grown exponentially recently, and it is showing great potential

in becoming an industry-standard machine learning framework.

23

4.1.4 d3rlpy

The library used for developing an offline reinforcement learning agent is d3rlpy. It is one of

the very few deep reinforcement libraries that provide both online and offline reinforcement

learning algorithms. D3rlpy uses PyTorch for the backend and provides an impressive number

of implemented algorithms and features, with more updates constantly being added. As stated

by the developer, Takuma Seno, the library is the first of its kind and not only meant for

researchers but also for real-world applications [19].

D3rlpy was used for the offline RL agent because of its easy-to-use API and extensive

documentation. In addition to the algorithms, the library also includes functionality for creating

MDPDatasets, which are the datasets used as input for the offline reinforcement learning

agents. The online agent could also be implemented with the d3rlpy library, enabling setting

up comparable scenarios and quick experimentation with different algorithms. Unfortunately,

converting the online agent from using keras-rl to d3rlpy is time-consuming and could not be

prioritized.

4.1.5 NumPy

NumPy is an essential library for scientific computing. It provides multidimensional array

objects, known as ND Arrays, and routines for performing fast operations on arrays, such as

mathematical operations or shape manipulation [21]. As previously discussed, tensors are

essentially multidimensional arrays, which makes NumPy central in machine learning systems.

In addition to the framework libraries TensorFlow and PyTorch using NumPy in core

calculations, NumPy is also used for creating the dataset for the offline reinforcement learning

agent, later described in detail.

4.1.6 Pandas

Pandas is a lightweight but powerful library built on the Numpy library and is frequently used

in machine learning projects. Pandas can read various data formats, such as CSV, and convert

them into data frame objects. A data frame is a 2-dimensional data structure with rows and

columns, similar to a spreadsheet [22]. Data frames are used for analyzing and manipulating

data in different ways. In this project, Pandas is used in the data preprocessing stage for reading,

manipulating, and saving the CSV files containing ship log data.

24

4.1.7 Gym

Gym is a library for developing and evaluating reinforcement learning algorithms. It is a very

versatile toolkit that is compatible with both TensorFlow and PyTorch [20]. The library

includes several pre-built environments for testing reinforcement learning agents, e.g., Atari

games and robotics tasks. Arguably the most crucial feature of Gym is that all environments

share the same structure. This means that developers can build completely custom

environments for testing new ideas in reinforcement learning. Because the

SimpleShipSimulator is a custom implementation, it also requires a custom-made Gym

environment to enable benchmarking RL agents.

4.2 Setting up a scenario

The map which defines the navigatable space in the SimpleShipSimulator was created using

OpenSeaMap [31]. Based on the minimum and maximum coordinates in the dataset, an area

shown in Figure 5 was selected. An essential step in making the map is taking notes of the

longitude and latitude coordinates of the corners of the map. These coordinates are used for

converting the format of the dataset coordinates, as explained later in the chapter.

In addition to the map being created, a training scenario must also be chosen carefully since

the offline agent learns solely on the dataset. The starting point and destination must thus be

contained in the area of traffic. Based on the traffic seen by visualizing the data points in the

dataset, a starting point (square) and destination (circle) seen in Figure 5 were chosen. The

same scenario can be used for training both agents.

25

Figure 5: SSS map showing starting point (square) and destination (circle).

4.3 Online agent design

Before implementing an offline reinforcement learning agent, a decision was made first to

develop an online RL agent that learns entirely through trial and error. The decision was made

mainly because of two reasons. Firstly, the Simple Ship Simulator contains an online RL agent

used for collision avoidance, which could be used as a starting point for a navigation agent.

Secondly, an online RL agent’s performance can potentially be compared to an offline RL

agent’s performance. The collision avoidance agent implemented by Sebastian Penttinen [12]

was an excellent way to learn about the SSS and reinforcement learning in general. Though

there is an evident difference in the functionality of a collision-avoidance agent and a

navigation agent, the same code structure can be used for both agents. Penttinen’s collision

avoidance agent provided the structure for an online RL agent seen in Figure 6. The structure

is made of nine functions that together fully describe the parts of the agent. As a start, the train

function defines the algorithm to be used while training, but first, it calls the init_model

function to initialize a neural network. The get_action_space and get_observation_space return

the action space and the state space, and they are called when initializing the neural network.

In the step function, the current state is fetched through the get_state function, and the neural

network model that was initialized at the beginning of the training predicts the best action to

take in the current state. With a predicted action, the take_action function executes the action,

and the get_reward function is called to deliver a reward based on the action made. With the

26

code structure stated, the functions are ready to be implemented to fulfill the functionality

described by the comments in Figure 6.

class DQN:
 def load_from_file():
 # Loads a trained model

 def init_model():
 # Returns the neural network model

 def train():
 # Defines the algorithm and initializes training

 def get_action_space():
 # Returns the action space

 def get_observation_space():

Returns the state space

 def get_state():
 # Returns the current state of the ship in the environment

 def step():

Make a prediction of best action to take in the current state

 def take_action():
 # Set rudder angle according to prediction

 def get_reward():
 # Returns the reward of an action taken in a time step

Figure 6: Code structure of online reinforcement learning agent.

The first and foremost things to define are the action and state spaces. In this case, the agent is

designed to predict what the heading should be. The rudder angle will then be adjusted to move

the ship towards the predicted heading. Experiments with predicting the rudder angle were

conducted, but the approach of predicting the heading proved to be more successful. This might

be because setting a rudder angle is not instantaneous. If the agent predicts to set a certain

rudder angle, the simulator will execute setting that rudder angle, but the full effect comes with

a delay because the rudder turns gradually to a set angle. Therefore, the agent will make false

associations between an action and its effect, and the agent will consequently learn a

counterproductive action-value function.

The predicted heading is a number between 0 and 359 degrees, with 1-degree increments. Thus,

the action space is 360. The observation space, or state space, contains minimum and maximum

values for the coordinates, the heading, the speed, and the rudder angle. In this case, the x

27

coordinates are between 0 and 10150, and the y coordinates are between 0 and 6000. This is

because an image with 1015x600 resolution was used with a 0.1 scale. The image scale is set

in the configuration file, which loads when initializing a simulation. The heading can be

between 0 and 359 degrees, the speed is set to be between 0 and 22 knots, and lastly, the rudder

angle can take values between -35 degrees and 35 degrees. A neural network can be initialized

with the action space and state space defined. The action space is used to express the input

layer’s size, and the state space is used for expressing the output layer’s size. In this case, four

hidden layers were used, with 32,64,128 and 256 tensors.

Rewards are received at every time step through the reward function seen in Figure 7. First,

the Boolean parameters outOfBounds and destinationReached are checked. If the ship is out of

bounds, a negative reward will be distributed based on how far from the goal the agent is at the

time step when going outside the map. The Pythagorean theorem can be written as d =

√((x_2 − x_1)² + (y_2 − y_1)²) [29]. It is used in the distanceTo function for calculating the

distance between the ship and the destination. If the ship has reached the destination, the

destinationReached parameter will be true, and a positive reward will be distributed. The agent

will also receive rewards at each time step based on the direction and distance to the destination.

Calculating the angle between the ship’s location and the destination is done with the

math.atan2 function [30]. It enables giving rewards to the agent when it is heading in the right

direction. A small positive reward is given if the agent’s Course over Ground is within 15

degrees of the direction of the destination. Otherwise, a small negative reward is given.

Additionally, the agent also receives a reward based on the distance to the destination, and this

reward is always negative. This reward is negative because the agent will try to maximize the

total rewards received, and it must thus minimize the distance to the destination. If this were a

positive reward instead, the agent would try to move as far away as possible from the

destination.

28

def get_reward(self, ship, state, world, outOfBounds, destinationReached):
 """Returns the reward for a taken action """
 reward = 0

 # Ship is outside map
 if outOfBounds:
 reward += -0.02 * (distanceTo(ship.x, ship.target_destination_x, ship.y,

ship.target_destination_y))

 if destinationReached:
 self.nb_completed += 1
 reward += 10

 slope = helpers.theta(ship.y, ship.target_destination_y, ship.x,

 ship.target_destination_x)

 # Give a small positive reward if ship is heading towards the destination
 if (-15 <= slope <= 15):
 reward += 0.01

 else:
 reward += -0.01

 # Reward for getting closer to the destination
 reward += (
 -0.00001 * (distanceTo(ship.x, ship.target_destination_x, ship.y,

ship.target_destination_y))
)

 ship.set_reward(reward)

 return reward

Figure 7: Online agent’s reward function

Before beginning the training, a train function shown in Figure 8 is defined. At the beginning

of the function, the custom gym environment is called, and the neural network is initialized.

Experience replay is introduced through a replay memory, storing the observations, actions,

rewards, and terminal flags of the latest 50 000 time steps. The policy used is a ɛ-greedy

(epsilon greedy) policy linearly annealed over 100 000 time steps. With the ɛ-greedy policy,

the agent will choose the action with the maximum expected reward, but with probability 1 −

ɛ, the agent will choose a completely random action [1]. A target network is defined to increase

the stability of the training, as suggested by Minh et al. [7]. With these parameters defined, the

online DQN agent is initialized using the Keras-rl library [17]. The agent is compiled with the

Adam optimized using a learning rate of 0.0001 and mean absolute error metrics. Lastly, the

training is started with the fit function. After training, the weights and the model are saved. The

saved weights are used for building the neural network after training to visualize the behavior

in the simulator. The saved model can be used to continue training the agent where the last

29

session ended. However, any changes made to the parameters mean that the saved model

cannot be used for further training, and the training must start over.

def train(self, numberOfSteps, warmup=10000):
 env = gym_env.ShipGym(self)
 self.init_model()
 model = DQN.model
 memory = SequentialMemory(limit=50000, window_length=1)
 policy = LinearAnnealedPolicy(EpsGreedyQPolicy(), attr='eps', value_max=1.0,

 value_min=0.1, value_test=0.05, nb_steps=100000)
 dqn = DQNAgent(
 model=model,
 nb_actions=self.get_action_space().n,
 memory=memory,
 nb_steps_warmup=warmup,
 target_model_update=10000,
 policy=policy,
)

 # Callback to get loss of each step
 loggedMetrics = Metrics(dqn)

 dqn.compile(Adam(lr=0.0001), metrics=['mae'])

hist = dqn.fit(env, nb_steps=numberOfSteps, nb_max_episode_steps = 800,
visualize=False, verbose=2, callbacks=[loggedMetrics, es])

 dqn.save_weights(
 "Weights/DQN/Navigation/LinearAnnealedPolicyWeights" +

str(numberOfSteps) + ".h5f", overwrite=True
)
 model.save("Model/latest")

Figure 8: Online agents train function

4.4 Offline agent design

Though the algorithm used for the online and the offline agent is the same, the agents are

entirely different from each other. The online agent estimates the Q function based on trial-

and-error by exploring the environment. In contrast, the offline agent estimates the Q function

solely on historical data without any exploration. Therefore, arguably the most critical part of

an offline reinforcement learning agent is the data.

Similar to the previous chapter, this chapter will explain the implementation of the offline RL

agent. However, since the offline RL agent relies on the dataset containing relevant information

and being in the correct format, the chapter will begin with reviewing how the data was

interpreted and preprocessed.

30

Historical AIS data collected from ships can be used for training an offline reinforcement

learning agent, but first, it must be cleaned and edited. This stage is also called data

preprocessing and is necessary because an unprocessed dataset often contains missing values

that must be added or irrelevant values that must be removed. Data preprocessing is considered

a crucial part of a data-based machine learning implementation and can significantly affect the

results.

As previously discussed, the AIS dataset originally contained 54 columns of data. A large

portion of the columns are irrelevant for a proof-of-concept agent, and only the minimal

number of columns needed to express the ship’s state was selected. The state-space of the

online reinforcement learning agent was used for reference when determining the relevant

columns. For a proof-of-concept offline agent, the parameters needed are latitude, longitude,

Speed over Ground, Course over Ground, and the rudder angle. Selecting only the relevant

columns from the CSV files was straightforward with the pandas library.

After irrelevant columns have been removed, the remaining data must be edited. More

specifically, the format of the coordinates must be modified. There are two reasons for the

modifications. Firstly, with the changes, it is possible to evaluate the agent with the

SimpleShipSimulator. Secondly, with x and y coordinates, it is possible to introduce rewards

to the dataset with the reward function from the online agent. The SSS uses an image of a map,

and a location in the simulator is expressed with x and y coordinates according to the resolution

and scaling of the image. Therefore, original longitude and latitude coordinates in the dataset

must be converted to x and y coordinates. The conversions require knowledge about the image

resolution, the scaling, and the minimum and maximum values for the longitude and latitude

of the area in the image. With these values, the conversions are done with the two formulas in

Figure 9. The longitude_range and latitude_range are the differences between the maximum

and minimum coordinates:

Conversion from longitude to x
x = ((lon * res_width) - (min_longitude * res_width))/longitude_range

Conversion from latitude to y
y = - (((lat * res_height) - (max_latitude * res_height))/latitude_range)

Figure 9: Formulas for converting longitude and latitude to x and y

31

The formulas in Figure 9 were derived from the reverse conversion done by Richard Nyberg,

who developed the formulas seen in Figure 10. Nyberg’s formulas were created with the logic

that the image’s lowest longitude is when 𝑥 = 0, and the highest when 𝑥 = 𝑟𝑒𝑠_𝑤𝑖𝑑𝑡ℎ ∗

𝑠𝑐𝑎𝑙𝑖𝑛𝑔. The same logic applies for 𝑦 , but in reverse, the image’s maximum latitude value is

when 𝑦 = 0, and the lowest when 𝑦 = 𝑟𝑒𝑠_ℎ𝑒𝑖𝑔ℎ𝑡 ∗ 𝑠𝑐𝑎𝑙𝑖𝑛𝑔.

x to longitude
long = min_long + (x/res_width * lon_range)

y to latitude
lat = max_lat - (y/res_height * lat_range)

Figure 10: Richard Nyberg’s formulas for converting x and y coordinates to longitude and latitude

Rewards are an essential part of reinforcement learning, and as mentioned, the dataset does not

contain rewards initially. Therefore, rewards must be introduced manually. The same reward

function used for the online agent was also used for introducing rewards to the dataset. A

column with terminal flags was also added to the dataset. A terminal flag is a Boolean value

that indicates whether an episode is running or if it has terminated. A terminal flag value of 0

indicates that the episode is running, and a value of 1 indicates that the episode has ended. The

format of the dataset at this stage is seen in Figure 11.

Figure 11: Dataset before MDPDataset conversion.

32

Lastly, the dataset was converted into batches of tuples containing state, action, next reward,

next state, and terminal flag using the d3rlpy MDPDataset class [19]. One tuple in the

MDPDataset corresponds to one row in the dataset in Figure 11.

The train function for the offline agent, shown in Figure 11, is similar to the training function

of the online agent seen previously in Figure 8 but simpler. The dataset is first loaded and split

into a training set and a testing set, with a training set size of 80 percent and a testing set size

of 20 percent. The agent is trained with the training set and evaluated with the testing set.

Typically in offline reinforcement learning, a gym environment is not used, but d3rlpy includes

a convenient function for evaluating the agent using the environment. The offline agent trains

without an environment, but after each episode, the evaluate_on_environment function runs.

The function tests the agent’s model in the environment by selecting actions and returns the

rewards collected during that episode.

def train(self):
 dataset = MDPDataset.load('E:/Data/MDPDatasets/dataset.h5')
 env = gym_env.ShipGym(self)

 # split into train and test episodes
 train_episodes, test_episodes = train_test_split(dataset, test_size=0.2)

 dqn = DoubleDQN(use_gpu=True)

 # start training
 dqn.fit(train_episodes,
 eval_episodes=test_episodes,
 n_epochs=100,
 scorers={
 'environment': evaluate_on_environment(env),
 'td_error': td_error_scorer,
 'value_scale': average_value_estimation_scorer
 })

Figure 11: Offline agents train function

A significant advantage with the offline agent is that the model is saved after each episode

during the training. This means that when the training has ended, the metrics can be assessed,

and the best-performing model can be used. The saved models can also be used for training an

agent further if the training was cut short.

33

4.5 Changes during implementation

During the implementation of the agents, a couple of noteworthy changes were made. Initially,

the agent predicted the rudder angle directly, and the ship’s rudder angle was set according to

the prediction. This approach may seem logical, but the problem is that changing the rudder

angle takes some time, and the agent is therefore at risk of making false correlations between

actions and their effects. An example would be when the agent sets the rudder angle to 25

degrees, the rudder angle turns to 25 degrees gradually, not instantly. This could lead to the

agent making incorrect correlations between setting the rudder angle to 25 degrees and the state

it ends up in because of that action. The agent was changed to predict a desirable heading

instead of directly predicting the rudder angle to prevent false correlations. The ship’s rudder

angle is then calculated and set in the take_action function seen in Figure 12. The difference

between the predicted heading and the ships heading is calculated, and the rudder angle is set

based on that difference.

def take_action(self, action, ship: Ship):

 assert action >= 0 and action <= 359

 heading = ship.heading
 predicted_heading = action
 diff = predicted_heading - heading

 if diff > 180:
 diff = heading - predicted_heading

 # Rudder angle to steer towards the predicted heading
 rudder = min(max(-35, diff), 35)

 ship.set_target_rudder(rudder)
 ship.set_action("Setting rudder: "+str(r))

Figure 12: Take action according to predicted heading

The reward function also underwent several changes during the implementation before arriving

at the final version. Initially, a straightforward version was made that defined rewards for

closing the distance to the destination, reaching the destination, and going out of the map’s

bounds. Adding out-of-bounds penalties based on the distance to the destination and rewards

for heading towards the destination seemed to improve the agent’s learning.

34

5. Results

This chapter will review the results of training the two agents in the area outside Rotterdam. A

majority of the chapter is dedicated to the offline agent’s results, but first, the results of the

online agent are presented briefly.

Evaluation of the agents was done using two approaches: visually inspecting the behavior of

the trained agent in the simulator and interpretation of the metrics saved during training.

Primarily, the metrics are the total rewards per episode and loss. The loss tells how accurate

the agent’s predictions are, and a value close to zero is desirable.

5.1 Online agent

The online agent learned to navigate from a starting point to a destination. However, the

training was unstable and inconsistent. Attempts of stabilizing the training by tuning the

parameters, also known as hyperparameter tuning, were made but only stabilized the training

marginally. Hyperparameter tuning means finding more optimal values for the parameters,

such as the learning rate, discount factor, and target network update interval. Finding suitable

values for the hyperparameters is time-consuming because a small change to one parameter

can make a huge difference. Therefore, only one parameter can be adjusted at a time, and after

each adjustment, the agent must be trained again. Additionally, finding the correct values is

done through trial and error, similar to the training of an online agent.

The agent showed clear signs of learning but would suddenly “forget” all training and return

to performing actions leading to undesirable scenarios, such as going outside the boundaries or

getting stuck doing circles. In reinforcement learning, this is referred to as “catastrophic

forgetting” and can be combatted by introducing experience replay [32]. However, as seen in

Figure 13, the agent continued performing inconsistently even after introducing a replay

memory. The upper graph visualizes the cumulated rewards of all episodes and should ideally

show a clear upwards trend as the agent learns to navigate to the destination and receives higher

rewards. However, as seen in the graph, the highest amount of rewards are gathered in the

middle of the training. The lower graph in Figure 13 shows the loss och each time step, and as

seen, the training becomes unstable towards the end. Because of this, the training was ended

prematurely at around episode 2800 while the loss was low and rewards were high.

35

Figure 13: Online agent metrics

Loading the weights of the trained online agent into the simulator shows the behavior

visualized in Figure 14. The green line shows the path taken by the agent. In the beginning, the

agent has learned that it must turn left to avoid receiving a penalty for going outside the map.

The trajectory also shows that the agent has learned that heading towards the destination is

rewarding. After the sharp left turn, the agent corrects its course towards the destination with

very slight oscillation before reaching the goal.

36

Figure 14: Behavior of trained online agent visualized

5.2 Offline agent

While the training of the online agent was unstable, the offline agent performed surprisingly

well, given the small dataset. The offline agent reached the goal within 90 episodes with

converging loss and temporal difference (TD) error, as seen in Figure 15. Low TD error is

desirable, as large values indicate that the Q function overfits the training set [19]. With both

the loss and TD error converging, the training is stable. As seen in the upper graph, the agent

reaches the goal three times, indicated by the peaks in the graph. As discussed earlier, the

dataset is scarce, and these graphs perfectly reflect that more data is needed for more effective

learning. The graphs indicate stable training, but the agent does not have access to enough data

to learn to reach the destination consistently. Although the agent struggles to learn to navigate

to the destination, the results are useful, and the behavior can be visualized. Because the agents

model is saved after each training episode, the best-performing model can be selected. As seen

in Figure 15, the agent reached the destination at episode 86 with minimal loss and TD error.

37

Figure 15: Offline agent metrics

Loading the agent’s model from episode 86 into the simulator yields the behavior shown in

Figure 16. The trajectory, marked by the dotted green line, is almost identical to the path

learned by the online agent. A slight difference between the two trajectories is expected since

the reward function is not very specific to speed up training, and both paths yield almost the

same rewards.

38

Figure 16: Offline agent behavior visualized

The trained offline agent’s behavior was further tested by setting a few different starting points

and starting directions. A successfully trained agent is expected to know how to navigate to the

destination if the starting point is set within the trained area. The results of several different

starting scenarios within the area are visualized in Figure 17. In Figure 17 a), the agent’s

starting point is set closer to the destination, and the agent’s heading is set farther away from

the direction of the destination. To correct the heading, the agent turns left until the course is

straightened towards the destination. In Figure 17 b), the agent starts with a heading almost in

course with the destination, and as expected, the agent only alters the course slightly before

heading towards the destination. In Figures 17 c) and d), the agent is presented with scenarios

that it could not solve, and the destination was missed. In Figure 17 c), the agent is set to start

navigating south. Still, it nearly manages to correct the course and only barely misses the

destination. In Figure 17 d), the agent’s heading is set in the opposite direction of the

destination. In this case, the agent starts with a sharp turn right to steer the ship in the opposite

direction but does not manage to straighten out the course.

The agent performed poorly in the last two cases, probably caused by the narrow distribution

of the ship traffic in the dataset. The traffic is very concentrated, and all traffic is headed in the

same direction, as seen earlier in Figure 3, Chapter 3. Levine et al. [5] stated that in offline

reinforcement learning, a narrow distribution of state-action pairs usually results in a brittle

and non-generalizable solution, explaining the behavior in Figure 17 c) and d). When the agent

was set with such a heading that it was forced outside the trained area, it encountered unfamiliar

states and could not take the correct actions.

39

a) Steeper heading b) Heading towards the destination

c) Heading south d) Heading opposite of destination

Figure 17: Trained offline agent tested in four different scenarios in the simulator.

The agent’s ability to generalize, i.e., to perform in scenarios outside the trained area, was

further tested, but the agent’s performance was deficient. Poor performance outside the trained

area was expected, as an offline reinforcement learning agent cannot explore the environment,

and consequently, it cannot learn to generalize.

Overall, the offline agent performed well. However, the metrics visualized earlier in Figure 14

clearly show that the agent has trouble learning the desired behavior. This can indicate that the

agent is not well optimized and could benefit from hyperparameter tuning. Nevertheless, since

the training is stable, it most likely suggests that the amount of data is insufficient. The lack of

data was recognized as an upcoming challenge in this project and is discussed in Chapter 7.

40

6. Discussion

The findings of this thesis suggest that AIS data can be used for teaching an offline

reinforcement learning agent maritime navigation. As presented in the previous chapter, the

offline reinforcement learning agent learned to navigate from a starting point to a destination

relatively quickly despite the small dataset. However, the results strongly suggest that the

learning of the offline agent is limited by the size and diversity of the dataset. This was

expected, as it is known that a small dataset may result in a brittle solution. The results also

indicate that compared to an online agent, the offline agent learns faster and is less

computationally costly. Still, because the agents are implemented using two different libraries,

they are not entirely comparable, and therefore a thorough comparison would not be

meaningful at this time. Additionally, it is believed that the learning of both agents is limited

by a false state representation, further explained in the next chapter.

Implementation-wise, the agents are very different. The offline agent requires a relatively small

amount of code, and the majority of time spent developing the offline agent was during data

preprocessing. An interesting remark about the offline agent is that it does not require an

environment for training. In this case, an environment was used for evaluation since it is

difficult to know what the agent has learned without it. Still, the agent is fully capable of

learning entirely without an environment. This is a significant advantage if the agent is known

to learn the desired behavior successfully because not using an environment speeds up the

training.

Another interesting remark is the agents’ abilities to learn to solve the task at all. Despite the

flawed state representation, the agents understood the ship’s steering dynamics in some cases

and found the way to the destination. More successful results can be expected with the effects

of actions being expressed correctly through changes in the state representation.

As earlier discussed, hyperparameter tuning can be tedious as it can be done only one parameter

at a time. Compared to an online agent, an offline agent benefits from faster training iterations

and fewer hyperparameters. Therefore, optimizing an offline agent can be quicker and easier.

Hyperparameter tuning was not relevant due to the limited results caused by false state

representation and small dataset size but could be pursued once those issues are addressed.

Developing an autonomous navigation system involves breaking the system down into smaller

subproblems that can be solved with different methods. Offline reinforcement learning shows

potential and can likely be used in a larger autonomous path planning system when combined

41

with other machine learning methods. The need to utilize existing AIS data is evident as large

amounts of valuable historical data are available. Furthermore, expressing a reward function

that teaches an agent to navigate a ship in all possible real-world scenarios correctly is

unreasonable. Meanwhile, that behavior may lie hidden in historical AIS data, with the

possibility of being exploited. However, further work is required to make conclusions about

the effectiveness of offline reinforcement learning.

42

7. Future work

Several aspects of ship navigation were simplified or overlooked during the implementation of

these proof-of-concept agents due to lack of time. These aspects must be addressed in the future

if these approaches are to be used in more realistic automated navigation systems. This chapter

is meant to provide a baseline for future research. It is dedicated to discussing the possible

improvements left untested due to late discoveries and time constraints.

7.1 Online agent

To pinpoint the exact reason for the online agent’s stability issues is not easy. As earlier

discussed, the primary and most probable cause is the delayed effect of the actions. A possible

solution would be to change the state representation to capture the effect of an action fully. The

current implementation represents the agent’s current state with the coordinates, heading,

speed, and rudder angle but does not consider the turning rate of the rudder. Without the

knowledge of the turning rate, the agent is at risk of making false assumptions about the effect

of setting a certain rudder angle.

One approach to introduce knowledge about the turning rate is the Constant Delayed Markov

Decision Process (CDMDP), as proposed by Walsh et al. [33]. The CDMDP is represented by

the 6-tuple (𝑆, 𝐴, 𝑃, 𝑅, 𝛾, 𝑘). The 6-tuple is an extension of the 5-tuple MDP discussed in

Chapter 3 but with the addition of 𝑘, which represents the delay. The value of 𝑘 tells how many

time steps there are between taking an action and the effect of the action. In this case, 𝑘 would

be the number of time steps between setting a rudder angle and reaching the desired rudder

angle. The value of 𝑘 can be calculated by multiplying the turning rate of the rudder with the

absolute value of the difference between the target rudder angle and the current rudder angle,

according to the formula:

𝑟𝑢𝑑𝑑𝑒𝑟𝑟𝑎𝑡𝑒 ∗ |𝑡𝑎𝑟𝑔𝑒𝑡𝑟𝑢𝑑𝑑𝑒𝑟 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑟𝑢𝑑𝑑𝑒𝑟|

The rudder turning rate is specific for each ship and is usually expressed in rad/s. However, it

is unclear if CDMDP is applicable because the rudder turning rate is not delayed but gradual,

meaning that the effect of an action occurs gradually rather than with a delay. The ship is

affected immediately in the following time step after the agent sets a rudder angle, but the full

effect does not occur until 𝑘 time steps. Additionally, traditional MDP algorithms, such as

DQN, cannot be used directly with a CDMDP because the MDP formulation relies on the

43

assumption that an action is executed immediately. Therefore, the MDP must be modeled,

which can be done in several ways. One method is to augment the state-space, though this

approach may yield limited results for large state-spaces [33].

A more promising approach would be to define the ship steering dynamics according to the

first-order Nomoto model developed by Nomoto et al. in 1957 [35]. The Nomoto model defines

the relationship between the rudder angle and ship motion. It takes a rudder angle as input and

outputs the ship motion change. In their paper A knowledge-free path planning approach for

smart ships based on reinforcement learning, Chen et al. use the Nomoto model to define the

state of their agent [36]. The first-order Nomoto equation can be expressed as

𝑇𝑟̇ + 𝑟 = 𝐾𝛿 (1)

with the notation 𝜓̇ = 𝑟 , where 𝜓 is the heading of the ship. Equation 1 can be written as

𝑇𝜓̈ + 𝜓̇ = 𝐾𝛿 (2)

where 𝑇 is the turning lag coefficient, 𝐾 is the turning ability coefficient, 𝑟 is the yaw rate, and

𝛿 is the rudder angle. The yaw rate 𝑟 at time 𝑡 can be calculated with the equation

𝑟 = 𝐾𝛿0 (1 − 𝑒−
𝑡
𝑇) (3)

The yaw rate 𝑟 is the time derivative of the ship heading 𝜓. Therefore, 𝜓 can be calculated with

𝜓 = 𝐾𝛿0 (𝑡 − 𝑇 + 𝑇 ∗ 𝑒−
𝑡
𝑇) (4)

Lastly, as explained by Chen et al., these formulas coupled with a ship motion coordinate

system can be used to express Equation 5, which can be used for calculating the position and

heading of a vessel at any time:

44

{
𝑥(𝑡) = 𝑥(0) + ∫ 𝑣 sin 𝜓 𝑑𝑡

𝑦(𝑡) = 𝑦(0) + ∫ 𝑣 cos 𝜓 𝑑𝑡

(5)

where 𝑥(0) and 𝑦(0) are the initial coordinates, 𝑣 is the speed, and 𝜓 is the heading of the ship.

Using these formulas for state representation should give the agent adequate knowledge about

the ship steering dynamics. With this knowledge, the agent has a much better chance of learning

the desired behavior.

In addition to the state representation improvements, the online agent would also benefit from

being implemented with d3rlpy, the same library used for implementing the offline agent.

D3rlpy is frequently updated with fixes and new methods, and it provides valuable metrics for

evaluating and comparing agents. Additionally, d3rlpy includes several new and powerful

reinforcement learning algorithms, such as Batch Constrained Q-learning (BCQ) [37] and

Conservative Q Learning (CQL) [38], which could be evaluated.

7.2 Offline agent

Currently, the biggest obstacle with the offline agent is the limited size and diversity of the

dataset. The agent clearly showed that it is capable of learning navigation based on ship traffic

but could not learn beyond a certain point because the data was not enough. The dataset could

be enlarged by either further collecting AIS data or by data augmentation. Still, both

approaches come with new challenges.

A technique used widely for increasing the size of datasets is data augmentation. It involves

different ways of slightly modifying existing data to create new and valuable data for training.

Image data is relatively easily augmented through techniques such as flipping, rotating, or

cropping images. The problem with AIS data is that it is not easily augmented, as it requires

extensive knowledge about navigation and the parameters within the dataset. For example,

modifying coordinates to create new paths is possible. Still, it must be done precisely to achieve

useful ship trajectories and avoid trajectories in certain areas, such as in restricted areas or on

land. Trajectories can be modified by, e.g., flipping the starting point and destination or

introducing a slight deviation to the heading of a ship to create a new trajectory. These methods

of slightly modifying trajectories can result in a much larger dataset but at the cost of low

45

diversity. Methods for augmenting diverse and realistic ship trajectories must still be developed

to increase AIS datasets’ size successfully.

Collecting additional AIS data from the simulator at Aboa Mare is possible, but the process is

tedious and involves many stages. Additionally, the question arises if the available data at Aboa

Mare is enough in size and diversity. A straightforward solution would be to buy a large amount

of AIS data from a data selling platform. The downside of buying AIS data is that it may prove

costly. Additionally, data augmentation might still be necessary despite acquiring a relatively

large and diverse dataset since it is unclear how much data is needed for effective learning.

Another essential aspect of offline reinforcement learning is the rewards and datasets collected

from real-world applications seldomly contain rewards initially, which also is the case with

AIS data. Rewards are the core stimulus to a reinforcement learning agent. Therefore, if the

rewards are missing, they must be added to the dataset during the preprocessing stage. As

discussed in Chapter 4, the rewards in the AIS dataset used for this offline agent were added

using the reward function of the online agent. This approach is not ideal because the reward

function is relatively simple and only meant for proof-of-concept. The reward function could

be further developed to account for more advanced navigational scenarios, such as sea channels

and sea marks. However, a human-made reward function can be wrong, resulting in the agent

learning undesirable behavior.

A method for avoiding a lousy reward function could be to use Inverse Reinforcement Learning

(IRL) to find the optimal reward function. The idea of IRL is to use an expert’s demonstrations

regarded as the optimal policy, which has been derived according to some reward function 𝑅,

and the goal of IRL is to learn this unknown reward function [34]. When using AIS data, the

expert’s demonstrations would be the trajectories within the dataset. After an optimal reward

function has been learned, it could be used for introducing rewards to the dataset. Moreover,

the optimal reward function could also be used for training an online reinforcement learning

agent.

Though it seems like the offline agent is not as sensitive as the online agent regarding delayed

effects of actions, it would undoubtedly also benefit from an improved state representation

using the first-order Nomoto model to express the ship steering dynamics.

46

7.3 General

On a general note, there are several opportunities for further research on topics closely related

to this thesis. Given that both the online and the offline agents are implemented comparably

and trained successfully, it would be interesting to see the differences in training times,

performance, and computational requirements. Optimization through hyperparameter tuning

would be required before such comparisons can be made. Prerequisites to hyperparameter

tuning are correct state representation for both agents and a more prominent and diverse dataset

for the offline agent. A comparison of different reinforcement learning algorithms would also

be intriguing and highly relevant, as new and powerful algorithms, such as BCQ and CQL, are

rising in popularity.

47

8. Conclusion

In this thesis, the possibility of using historical AIS data with offline reinforcement learning

for autonomous ship navigation was researched, implemented, and evaluated. The project was

done as part of a larger research project led by the MAST! Institute. The data used was

previously collected from a realistic ship simulator at Aboa Mare. The reinforcement learning

agents were implemented, tested, and evaluated in a separate simulator, the

SimpleShipSimulator. The evaluation was done by visually inspecting the agents’ behavior in

SSS and analyzing metrics collected during the training.

An online RL agent that learns by exploring the environment was implemented first. The online

agent was implemented as an introduction to the SimpleShipSimulator and for comparison

purposes. The online agent provided limited results with unstable training. The unstable

training was determined to be caused by the delayed effect of actions. Specifications about the

false state representation were discussed, and improvement ideas were formalized.

An offline RL agent learning based on AIS data was also implemented and was the core of the

thesis project. The AIS data was preprocessed into an MDPDataset and used as input when

training the agent. The offline agent proved to be stable during training and successfully learned

to solve the task of navigating from a starting point to a destination. Still, the agent had trouble

solving the task consistently. Undoubtedly the offline agent suffered from false state

representation caused by the delayed effect of actions. However, stable training also indicates

that the offline agent’s trouble learning is caused by the dataset’s small size and variance. Ideas

for tackling the limited size and distribution of the dataset were presented.

In conclusion, autonomous navigation with offline reinforcement learning based on AIS data

is possible but requires more work. The project unveiled both expected and unexpected

challenges. Some of the challenges were overcome, while the remaining discovered challenges

were left for future research, along with suggested approaches.

48

9. Swedish summary

Autonom sjöfartsnavigering med fartygsdata

och datadriven förstärkt inlärning

9.1 Introduktion

Autonoma system har utvecklats drastiskt under det senaste årtiondet, och alltmer avancerade

system appliceras inom alla möjliga områden. Inom transport läggs en stor vikt på att

automatisera fordon, exempelvis bilar, flygplan och fartyg. Företag som Tesla och Google är

bland de ledande utvecklarna av autonoma system för självkörande bilar, och deras delvis

självkörande system finns redan i vissa nya bilar [23]. Inom flygtransport används autonoma

system bland annat i obemannade luftfarkoster som transporterar varor [24]. Den största delen

av varor transporteras dock via sjötransport och autonoma system utvecklas även inom detta

område. En undersökning visar att över 80 procent av den globala handeln sker via sjötransport

[25]. En annan undersökning visar även att fartyg är det enda rimliga alternativet för att frakta

varor i stor volym, eftersom det är överlägset mest kostnadseffektivt [26].

Autonoma fartyg kan innebära stora besparingar, eftersom obemannade fartyg kan konstrueras

utan kommandobrygga och bostadsutrymmen för besättning. Detta ger möjligheten att bygga

fartyg med mer utrymme för last och med förbättrad aerodynamik, vilket reducerar

bränsleförbrukningen. Utöver förminskade kostnader förknippade med underhåll och

bemanning har autonoma system även potential att minska antalet olyckor, eftersom

uppskattningsvis 75 procent av alla sjöfartsolyckor är orsakade av mänskliga fel [27].

Autonom sjöfart är således ett område av stort och aktuellt intresse. Denna avhandling

undersöker möjligheten att använda förstärkt inlärning baserat på historiska fartygsdata för att

automatisera navigeringen av ett fartyg.

49

9.2 Förstärkt inlärning

Förstärkt inlärning är ett område inom maskininlärning som fokuserar på att automatisera

uppgifter genom att definiera ett mål och regler som måste följas för att uppnå målet. Skillnaden

mellan förstärkt inlärning och andra metoder inom maskininlärning är att förstärkt inlärning är

baserat på belöningar och straff som ges till följd av handlingar. Handlingar utförs av en agent

och den interagerar med en miljö [1]. Traditionell förstärkt inlärning är baserad på att agenten

utforskar miljön genom att välja en handling enligt den situation agenten befinner sig i och

utdelas en positiv eller negativ förstärkning, beroende på om handlingen är önskvärd eller ej.

En handling ger upphov till en förstärkning och en ny situation, varpå agenten igen väljer en

handling. På detta vis fortsätter interaktionen mellan agenten och miljön tills agenten nått målet

eller tills en definierad gräns uppnåtts. Träningen av en förstärkt inlärningsagent är typiskt

indelat i episoder. En episod är över när agenten antingen når målet eller när den når en

definierad gräns, oftast uttryckt som en tidsgräns. Målet med förstärkt inlärning är att agenten

ska lära sig en optimal regel som anger hur agenten ska handla för att få maximal belöning. En

optimal regel definierar vilken handling som leder till mest belöning, i alla möjliga tillstånd

[1]. En väsentlig del av ett förstärkt inlärningssystem är belöningsfunktionen, som måste

definieras av utvecklaren. Belöningsfunktionen består av matematiskt formulerade uttryck som

beskriver belöningarnas storlek och vilka situationer som ger upphov till belöningar.

Traditionell förstärkt inlärning kan användas när en miljö finns tillgänglig för agenten att

utforska, och dess styrka ligger i att agenten kan tränas trots att data saknas.

Förutom traditionell förstärkt inlärning finns också en relativt ny metod, nämligen datadriven

förstärkt inlärning, vilket också är fokuset för denna avhandling. Inom datadriven förstärkt

inlärning lär sig agenten en regel genom att enbart utnyttja en datamängd, istället för att

utforska en miljö. Fördelen med datadriven förstärkt inlärning är att agenten kan lära sig utan

att använda en miljö. I många verkliga fall, exempelvis inom sjukvård och robotik, saknas

träningsmiljöer och det kan vara för dyrt eller rent av farligt att låta en traditionell förstärkt

inlärningsagent testa sig fram utan en träningsmiljö. Ifall relevant data har blivit insamlat över

en längre tid finns det dock potential att använda datamängden för att träna en agent utan någon

miljö.

Den matematiska grunden till all förstärkt inlärning är en Markovian Decision Process (MDP).

En MDP består av en samling matematiska formler som bland annat gör det möjligt att förutspå

nästa tillstånd och nästa belöning, givet ett tillstånd och en handling [1]. En MDP uttrycks som

en 5-tupel: (𝑆, 𝐴, 𝑃, 𝑅, 𝛾), där 𝑆 är en samling tillstånd, 𝐴 är en samling handlingar, 𝑃 är en

50

samling sannolikheter för tillståndsövergångar, 𝑅 är en samling belöningar och 𝛾 är en

diskonteringsfaktor.

9.3 Projekt

Projektet i denna avhandling är en del av ett större forskningsprojekt mellan Åbo Akademi och

Yrkeshögskolan Novia. Samarbetet kallas ”The Institute of Maritime Software Technology”

(MAST! Institute) och forskningen berör digitalisering av sjöfart och autonoma fartyg [10].

Vid Novias utbildningslinje för sjöfart, Aboa Mare, används en realistisk fartygssimulator vid

skolning av studeranden. Målet med denna avhandling är att använda historiska data från Aboa

Mares fartygssimulator med datadriven förstärkt inlärning för att uppnå autonom

sjöfartsnavigering. Att utvärdera en datadriven förstärkt inlärningsagent kan vara svårt utan

referens. Därför implementeras även en agent med traditionell förstärkt inlärning, som lär sig

genom att testa sig fram i miljön. Träning av den traditionella agenten och evaluering av båda

agenterna sker i en separat simulator, SimpleShipSimulator (SSS), implementerad av Kim

Hupponen [11] och Sebastian Penttinen [12]. Simulatorn blev implementerad som ett tidigare

MAST! Institute projekt och är gjord för att utveckla och utvärdera

maskininlärningsalgoritmer.

9.4 Implementation

Implementationen av den traditionella agenten gjordes med hjälp av Keras-rl biblioteket [17]

och den datadrivna agenten gjordes med hjälp av d3rlpy [19] biblioteket. Biblioteken består av

välutvecklad och återanvändbar kod som täcker grundläggande matematiska beräkningar

involverade i en MDP. Biblioteken användes för att möjliggöra ett större projekt och för att

försnabba utvecklingsprocessen. Båda agenterna använder Deep Q-Network (DQN)

algoritmen, som utnyttjar ett neuralt nätverk för att estimera värden för olika handlingar i olika

tillstånd [7].

Den traditionella agentens belöningsfunktion definierades så att agenten ständigt får en liten

negativ bestraffning baserat på avståndet mellan agenten och målet. Agenten försöker då att

minimera bestraffningen och därmed närmar den sig mål. Dessutom får agenten belöning om

riktningen mot mål är inom 15 grader från agentens kurs och en större belöning utdelas när

agenten når destinationen. Utgående från belöningsfunktionen lär sig agenten att förutspå

51

vilken handling som lönar sig i vilket tillstånd. Tanken är att agenten lär sig att förutspå vilken

riktning den bör ha för att ha kurs mot destinationen och baserat på detta justeras fartygets

roder.

Implementationen av den datadrivna agenten gick till stor del åt att förbehandla datamängden

före den kunde användas för inlärning. Ur den ursprungliga datamängden valdes endast

relevanta kolumner som behövdes för att uttrycka fartygets tillstånd. Ytterligare ändrades

formatet av koordinaterna för att stämma överens med SSS. Datamängden saknade även

belöningar och för att introducera belöningar användes samma belöningsfunktion som för

traditionella agenten. Slutligen konverterades datamängden till satser av tupler för att motsvara

formatet av en MDP. Likt den traditionella agenten lär sig den datadrivna agenten att förutspå

hur kursen ska justeras för att ha riktningen mot destinationen.

9.5 Resultat

Båda agenterna tränades på ett område utanför Rotterdam med samma startpunkt och

destination. Området valdes eftersom datamängden innehöll tät trafik i det området, vilket är

en förutsättning för att den datadrivna agenten ska lära sig. Den traditionella agenten lärde sig

navigera till destinationen, men träningen var inkonsekvent och varierade kraftigt. Försök till

att stabilisera träningen gjordes men utan större framgång. Däremot visade den datadrivna

agenten större potential och den lärde sig att navigera till mål snabbare. Trots goda resultat

visar den datadrivna agenten tydliga tecken på att datamängden inte är tillräckligt stor. En klar

nackdel med den datadrivna agenten är också att den inte kan generalisera, vilket betyder att

den inte klarar av att navigera på områden utanför datamängden. Detta innebär att en stor

mängd data krävs för att få ett bra resultat.

För stabilare och framgångsrikare resultat för båda agenterna krävs att styrningen av fartyget

uttrycks matematiskt. I nuläget är inte agenterna medventa om att rodret svängs gradvis, utan

de antar att rodret kan svängas till en viss vinkel omedelbart. Detta leder till att agenterna kan

göra falska antaganden om hur fartyget påverkas av att svänga rodret.

52

9.6 Slutsats

En traditionell förstärkt inlärningsagent och en datadriven agent implementerades. De

utvärderades baserat på utvärderingsvärden och på deras beteenden visualiserade i

SimpleShipSimulator. Resultatet för den datadrivna agenten är hoppingivande och tyder på att

insamlad fartygsdata och datadriven förstärkt inlärning kan användas för autonom

sjöfartsnavigering eller som en del av ett större system. Resultaten begränsas dock av den

minimala datamängden och är inte tillräckligt för att dra slutsatser om hur effektivt datadriven

förstärkt inlärning för sjöfartsnavigering är. En större datamängd krävs för att möjliggöra mer

omfattande testning och utvärdering. Datamängden kunde utökas genom dataförstoring eller

genom ytterligare insamling av fartygsdata. Förutom diskussioner kring förstoring av data

föreslogs även metoder för att förbättra båda agenternas inlärningsförmågor. Det mest centrala

förbättringsförslaget är att uttrycka fartygets styrning enligt första ordningens Nomoto-

modellen.

53

References

[1] R. Sutton and A. Barto, Reinforcement Learning: An Introduction, 2nd ed. Cambridge:

The MIT Press, 2015.

[2] T. Cormen, C. Leiserson, R. Rivest and C. Stein, Introduction to algorithms, 3rd ed.

Cambridge: The MIT Press, 2009, pp. 359-414.

[3] D. Marinescu, Cloud computing, 2nd ed. Cambridge: Elsevier, 2017, pp. 482-487.

[4] L. Green and J. Myerson, "A Discounting Framework for Choice With Delayed and

Probabilistic Rewards.", Psychological Bulletin, vol. 130, no. 5, pp. 769-792, 2004.

Available: 10.1037/0033-2909.130.5.769 [Accessed 6 March 2021].

[5] S. Levine, A. Kumar, G. Tucker and J. Fu, "Offline Reinforcement Learning: Tutorial,

Review, and Perspectives on Open Problems", arXiv.org, 2020. [Online]. Available:

https://arxiv.org/abs/2005.01643v3. [Accessed: 13 March 2021].

[6] C. Watkins and P. Dayan, "Q-learning", Machine Learning, vol. 8, no. 3-4, pp. 279-292,

1992. Available: 10.1007/bf00992698 [Accessed 24 March 2021].

[7] V. Mnih et al., "Human-level control through deep reinforcement learning", Nature, vol.

518, no. 7540, pp. 529-533, 2015. Available: 10.1038/nature14236 [Accessed 24 March

2021].

[8] N. Deshpande and A. Spalanzani, "Deep Reinforcement Learning based Vehicle

Navigation amongst pedestrians using a Grid-based state representation*", 2019 IEEE

Intelligent Transportation Systems Conference (ITSC), 2019. Available:

https://hal.inria.fr/hal-02409042. [Accessed 24 March 2021].

[9] K. O'Shea and R. Nash, "An Introduction to Convolutional Neural Networks", arXiv.org,

2021. [Online]. Available: https://arxiv.org/abs/1511.08458v2. [Accessed: 29 March 2021].

[10] "MAST Institute!", [Online]. Available: https://mastinstitute.fouprojekt.novia.fi/.

[Accessed: 29 March 2021].

[11] K. Hupponen, "A simulator for evaluating machine-learning algorithms for autonomous

ships", Doria.fi, 2020. [Online]. Available: https://www.doria.fi/handle/10024/177441.

[Accessed: 30 March 2021].

54

[12] S. Penttinen, "COLREG compliant collision avoidance using reinforcement

learning", Doria.fi, 2020. [Online]. Available: https://www.doria.fi/handle/10024/177467.

[Accessed: 30 March 2021].

[13] W. Porter, "How To Calculate Course Over Ground (Illustrated

Guide)", ImproveSailing. [Online]. Available: https://improvesailing.com/guides/how-to-

calculate-course-over-ground-illustrated-guide. [Accessed: 30 March 2021].

[14] "GPS Visualizer", Gpsvisualizer.com. [Online]. Available:

https://www.gpsvisualizer.com/.

[15] M. Abadi et al., "TensorFlow: Large-Scale Machine Learning on Heterogeneous

Distributed Systems", arXiv.org, 2015. [Online]. Available: https://arxiv.org/abs/1603.04467.

[Accessed: 31 March 2021].

[16] "Keras: the Python deep learning API", Keras.io, 2021. [Online]. Available:

https://keras.io/. [Accessed: 31 March 2021].

[17] M. Plappert, Keras-rl, 2016. [Online]. Available: https://github.com/keras-rl/keras-rl.

[Accessed: 31 March 2021].

[18] A. Paszke et al., "Automatic differentiation in PyTorch", OpenReview, 2017. [Online].

Available: https://openreview.net/forum?id=BJJsrmfCZ. [Accessed: 05 April 2021].

[19] T. Seno, "d3rlpy: An offline deep reinforcement library", 2020. [Online]. Available:

https://github.com/takuseno/d3rlpy. [Accessed: 05 April 2021].

[20] "Gym: A toolkit for developing and comparing reinforcement learning

algorithms", Gym.openai.com. [Online]. Available: https://gym.openai.com/. [Accessed: 06

April 2021].

[21] "NumPy", Numpy.org. [Online]. Available: https://numpy.org/. [Accessed: 06 April

2021].

[22] "pandas - Python Data Analysis Library", Pandas.pydata.org, 2021. [Online]. Available:

https://pandas.pydata.org/. [Accessed: 06 April 2021].

[23] Y. Gu, J. Goez, M. Guajardo and S. Wallace, "Autonomous vessels: state of the art and

potential opportunities in logistics", International Transactions in Operational Research, vol.

55

28, no. 4, pp. 1706-1739, 2020. Available:

https://onlinelibrary.wiley.com/doi/10.1111/itor.12785. [Accessed 7 April 2021].

[24] Wing. [Online]. Available: https://wing.com/fi_fi/. [Accessed: 23 March 2021].

[25] UNITED NATIONS CONFERENCE ON TRADE AND DEVELOPMENT., REVIEW

OF MARITIME TRANSPORT 2020. [s.l.]: UNITED NATIONS, 2020.

[26] Y. Gu, S. Wallace and X. Wang, "Integrated maritime fuel management with stochastic

fuel prices and new emission regulations", Journal of the Operational Research Society, vol.

70, no. 5, pp. 707-725, 2018. Available:

https://www.researchgate.net/publication/322267651_Integrated_maritime_fuel_management

_with_stochastic_fuel_prices_and_new_emission_regulations. [Accessed 7 April 2021].

[27] Allianz, "SAFETY AND SHIPPING REVIEW 2020", 2020. [Online]. Available:

https://www.agcs.allianz.com/news-and-insights/reports/shipping-safety.html. [Accessed: 07

April 2021].

[28] Consolidated text of The 1974 SOLAS Convention, The 1978 SOLAS Protocol, The 1981

and 1983 SOLAS Amendments. London: Imo, 1986.

[29] "Distance in the Coordinate Plane", Courses.lumenlearning.com. [Online]. Available:

https://courses.lumenlearning.com/waymakercollegealgebra/chapter/distance-in-the-

plane/#:~:text=Derived%20from%20the%20Pythagorean%20Theorem,the%20length%20of

%20the%20hypotenuse. [Accessed: 09 April 2021].

[30] "math — Mathematical functions — Python 3.9.5 documentation", Docs.python.org.

[Online]. Available: https://docs.python.org/3/library/math.html. [Accessed: 09- Apr- 2021].

[31] "OpenSeaMap: Startseite", Openseamap.org. [Online]. Available:

http://openseamap.org/. [Accessed: 09 April 2021].

[32] M. Rostami, S. Kolouri and P. Pilly, "Complementary Learning for Overcoming

Catastrophic Forgetting Using Experience Replay", arXiv.org, 2019. [Online]. Available:

https://arxiv.org/abs/1903.04566. [Accessed: 14 April 2021].

[33] T. Walsh, A. Nouri, L. Li and M. Littman, "Learning and planning in environments with

delayed feedback", Autonomous Agents and Multi-Agent Systems, vol. 18, no. 1, pp. 83-105,

2008. Available: https://link.springer.com/article/10.1007%2Fs10458-008-9056-7. [Accessed

14 April 2021].

56

[34] S. Zhifei and E. Meng Joo, "A survey of inverse reinforcement learning

techniques", International Journal of Intelligent Computing and Cybernetics, vol. 5, no. 3,

pp. 293-311, 2012. Available: 10.1108/17563781211255862 [Accessed 14 April 2021].

[35] K. Nomoto, T. Taguchi, K. Honda and S. Hirano, "On the steering qualities of

ships", International Shipbuilding Progress, vol. 4, no. 35, pp. 354-370, 1957. Available:

10.3233/isp-1957-43504.

[36] C. Chen, X. Chen, F. Ma, X. Zeng and J. Wang, "A knowledge-free path planning

approach for smart ships based on reinforcement learning", Ocean Engineering, vol. 189, p.

106299, 2019. Available:

https://www.sciencedirect.com/science/article/abs/pii/S0029801819304706. [Accessed 3 May

2021].

[37] S. Fujimoto, D. Meger and D. Precup, "Off-Policy Deep Reinforcement Learning

without Exploration", arXiv.org, 2018. [Online]. Available: https://arxiv.org/abs/1812.02900.

[Accessed: 05 May 2021].

[38] A. Kumar, A. Zhou, G. Tucker and S. Levine, "Conservative Q-Learning for Offline

Reinforcement Learning", arXiv.org, 2020. [Online]. Available:

https://arxiv.org/abs/2006.04779. [Accessed: 05 May 2021].

