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ABSTRACT 

 
The main goal of this study is to determine changes in mechanical properties using 
principal component analysis. This project included the main concept of principal 
component analysis and its implementation in determining changes in mechanical 
properties over time. 
 
The study is made using wind turbine as a user case in order to determine the changes 
in mechanical properties. Two Different data cases were used to address the different 
changes in mechanical properties failure. In this paper we used a fully functional and 
a broken 3MW wind turbines vibration measurements. 
 
MATLAB software was used to carry out the project. Mathematical algorithms were 
programmed and tested for the result to find the necessary output. In this project 
statistical analysis was the basic core.  
 
In order to find the main indicators of the changes of the specific mechanical wear, 
principal component analysis was used. Principal component analysis reduces the 
dimensionality of the datasets and retains the variation presented on the original 
dataset. In this paper statistical features from time domain and spectral kurtosis from 
frequency domain were extracted. Then Principal component analysis was used for 
dimension reduction and feature fusion. 
 
This study also used the principal components as health-indicators in order to 
determine the remaining useful life of the wind turbine. This project also suggested 
more research have to be done in many other fault detections in other rotating 
machineries to show the importance of principal component analysis in those 
implementations 
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1. INTRODUCTION 

 
1.1. Background 

 
Early humans used different technologies to gather foods and to survive predators. 

In order to survive, humans created different tools that could be used to hunt foods and 
protect themselves. These tools have evolved through time. Since the early days of 
humans, the tools made have either worn out or become useless. This property of 
materials has been the major problem 
.  
Today, engineers who build materials or components are trying to minimise the 

change in mechanical properties of materials. These changes can be detected by 
different methods. One of them is collecting data from the machineries and analysing 
the data and identifying the cause of the failures. 
 
Fault detection on rotating machineries includes diagnosis of items such as shafts, 

gears and pumps. There are different types of faults and the diagnoses are made in 
different ways. Some of the diagnosis methods include vibration analysis, model-
based techniques, and statistical analysis [1]. 
 
The goal of this thesis is to use principal component analysis to determine changes 

in mechanical properties. The wind turbine is used as a user case in the study to 
determine the changes in mechanical properties. To address the various changes in 
mechanical properties failure, two different data cases were used. PCA is used as a 
dimension reduction and feature fusion tool in this work to detect faults and determine 
the RUL of the bearings. 
 
For this thesis, high-speed wind turbine pinion data was used. The measurement 

was taken on a 3MW wind turbine with radial vibration for one week and a fault was 
found on the pinion gear. Similarly, other measurements were taken from two other 
machines and with no known faults [2]. 
 

 
1.2. Objective 

The main goals of this thesis are as follows: 
 
1. To discuss different fault types in rotating machineries. 
2. To understand wind turbine systems and the different fault cases. 
3. To use a prognostic approach to identify faults in wind turbines.  
4. To show the implementation of principal component analysis to determine 
faults in rotating machineries by taking wind turbine high-speed bearing data 
for our case study. 
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5. To determine the remaining useful life of the wind turbine after a fault is 
detected. 

 
1.3. Organisation of the thesis  

 
The second chapter defines machine faults and introduces the various algorithms 

used to detect them. The third chapter describes the wind turbine system, the general 
fault modes in wind turbines, and health monitoring methods. The fourth chapter 
discusses the fault detection implementation and the results obtained. Chapter 5 
contains the conclusion and additional work that has been proposed. 
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2. VIBRATION ANALYSIS ALGORITHMS AND ROTATING 
MACHINERY 

 
2.1. Background 

 
Rotating machineries, such as turbines, are key components to power plants and 

manufacturing industries. Since they are usually subjected to harsh environments, they 
are easily prone to defects or faults. Faults in these machineries could cause damages 
to the power-generating plants or other manufacturing industries. These damages 
could be economic, or even worse, life threatening. For example, a system failure in 
transportation machines such as cars, trains or airplanes could be deadly. Therefore, it 
is essential to identify the causes of faults and defects. 
 
The causes of faults in rotating machineries could arise from different components 

of the machinery, such as the gear, the shaft or the pinions. Once the faults in these 
components are identified, it could be easy to identify symptoms related to the faults 
analysis and detect the faults before they occur. 
 
Machine breakdowns generally are undesired for many reasons. As mentioned 

above, it causes additional cost for the machine owner by requiring materials and 
manpower. Efficiency loss, equipment downtime and customer service or comfort 
consume resources and even damages reputations. Faults could occur suddenly, 
gradually or due to incorrect set system. Preventing faults, detecting faults beforehand 
and designing a fault tolerant system are among the approaches taken to prevent the 
problem.  
 
 
2.1.1. Fault prevention 

 
Faults can be prevented through periodical maintenance during a statistically 

determined period of time. This periodical maintenance helps to minimise faults 
between those periods, ensures the correctness of the machine’s settings and minimises 
unexpected economic and life costs. These periodic maintenances require resources 
and downtime incurring costs. However, making the proper maintenance in 
accordance with manufacturers recommendations will actually increase energy 
savings and boost productivity. 
 
2.1.2. Fault detection   

 
In order to detect faults different measurement methods are used to monitor the 

conditions of machineries. Acoustic, vibration and temperature measurement are 
among the different techniques used. The signals collected from the machineries are 
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pre-processed and analysed for the presence of faults. Acoustic and vibration 
measurement methods are the most common in detecting faults in rotating 
machineries. Time and frequency domain vibration measurements, sound pressure and 
intensity, shock pulse, and acoustic emission methods are some of the methods used 
to measure the response from a defective machinery. 
 
Time and frequency domain methods are the most widely used methods for fault 

detection. Research shows that time domain methods were being used before the birth 
of frequency domain methods. Some of the well-known examples of time domain 
methods are root mean square (RMS), crest factor, peak value and kurtosis.  
 

 
2.1.3. Faults in rotating machines 

 
Faults in rotating machineries can be described as any change in the machine 

components that causes the machine to work inefficiently or puts it to a complete stop. 
These faults can be caused in one or more components of the machine.[4] Gomaa and 
Khader, in their article on fault diagnosis of rotating machinery, explain the causes for 
the failure in a rotating machine. They mention weakness in material design, misuse 
and mechanical wear of components as the causes. 
 
Faults in rotating machines are due to damaged gears, damaged bearings, bent shaft, 

and vibration of the machine itself. These faults should be detected as soon as they 
occur in order to minimise any damages and losses. For this purpose, different 
mechanisms are put forward by different researchers and scientists and are still being 
suggested. 
 
Different condition monitoring and fault detection systems are used for monitoring 

and fault detection in rotating machineries. These methods use measurements such as 
temperature, pressure, noise, vibration and oil analysis in order to monitor the 
condition of the machines. However, the most effective systems, both for condition 
monitoring and fault detection, use vibration measurements using transducers such as 
accelerometers, velocity pickups and displacement probes.[5] 
 

 
2.2. Signal processing techniques for fault detection 

 
This section discusses different signal processing techniques that are applied to 

rotating machineries. These different methods include the most widely used feature 
extractions from time domain, frequency domain and time-frequency domain and find 
patterns that are related to faults. Similarly, other methods that are more advanced 
signal processing techniques such as wavelet transform (WT), classification methods, 
envelop analysis and cyclostationary analysis are available. 
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2.2.1. Time domain methods 

 
Time domain feature extraction for fault detection is a traditional and most 

commonly used technique in rotating machineries. It is a simple method which 
involves the extraction of statistical features in order to analyse the changes in trends 
which is related to faults.   
 
Root mean square (RMS) is the most common statistical feature extracted in 

vibrational signals. RMS can be mathematically defined as: 
 
 

𝑅𝑀𝑆 = 	& !
"!#""

∫ [𝑥(𝑡)]$"!
""

𝑑𝑡  (2.1) 

 
 

where 𝑥(𝑡) is a signal between the instants 𝑇! and  𝑇$ [17]. 
 
Energy is another statistical feature extracted from the time-frequency domain. It is 

the measure of true energy in the area defined by the signal curve. It is defined 
mathematically as  
 

 
𝐸 = 	∫ |𝑋(𝑡)|$𝑑𝑡%

#%     (2.2) 
 
 

where 𝑥(𝑡) is the signal [17]. 
 
Peak-to-peak is another feature extracted from the time domain. It is the distance 

from the top of one peak to the bottom of another or it can be generally explained as 
the maximum voltage value in the signal [17]. 
 
Crest factor (CF) is also a feature that is derived from peak-to-peak divided with 

the RMS. This feature is not effective when the degradation is significant in the rolling 
machinery. It is mathematically expressed as follows [17]: 
 

𝐶𝐹	 = 	
|'|#$%&
''()

   (2.3) 
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2.2.2. Frequency domain methods 

 
Fast fourier transform is a frequency domain spectral analysis technique that is used 

for detection of faults in vibrational signals. It is an extension of the fourier transform 
signal analysis method where we transform a time-based signal f(t) to a frequency-
based spectrum F(w) including all frequencies. 

  
 

𝐹(𝑤) = 	∫ 𝑓(𝑡)𝑒#($)*+,+%
#%    (2.4) 

 
 
FFT might be the most popular numerical algorithm in science and engineering, 

however, it has its own limitations since it is only applicable to stationary signals. Due 
to these limitations, many more non-stationary signals analysis methods were 
introduced. Short-time fourier transform (STFT) was later developed to determine the 
frequency content of a local section in terms of change in time [14]. 
 
Spectral kurtosis is a frequency domain feature extraction technique. It is the most 

powerful and most commonly used method for detecting degradation in rotating 
machineries. It is defined as the fourth-order spectral moment. It can be defined 
mathematically as: 

 
 

𝑆𝐾(𝑓) = 		 〈./
*(+,2).〉

〈/*(+,2)〉!
−2    (2.5)  

 
 
For a signal of x(t), where 𝑋5(𝑡, 𝑓) is the fourth order and  𝑋$(𝑡, 𝑓) is the second 

order of the band-pass filtered signal x(t) [14]. 
 
 

2.2.3. Wavelet transform 

 
Wavelet transform is a new and powerful technique which is applicable to 

nonstationary signals. Wavelet analysis can be done by multiplying a wavelet function 
to a signal that is going to be analysed. Then, the transform is computed for each 
segment created. The advantage of wavelet transform is that it helps us to use short 
time interval where there is a high-frequency information or a long-time interval with 
precise low-frequency information. This behaviour helps us to perform local analysis 
without losing spectral information. The disadvantage of this technique is that the 
frequency resolution might be poor for high-frequency signals. This simultaneous 
time-frequency representation of a signal helps us to identify faults in machineries. 
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2.2.4. Cyclostationary analysis 

 
Rotating machinery vibration signals feature modulations; thus, the cyclic 

correlation and cyclic spectrum are well suited to analyse their modulation 
characteristics to detect faults in their components. The cyclic correlation and cyclic 
spectrum for Amplitude modulation and frequency modulation (AM-FM) signals are 
derived and summarised [18]. 
The cyclic statistics is used to for signals with periodicity and multi-periodicity with 

respect to time. Cyclic correlation and cyclic spectrum are effective methods to extract 
features of cyclostationary signals. The cyclic function can be defined as: 
 

 

𝑅'6(𝜏) = 	∫ 𝑥 <𝑡 +	 7
$
>
∗
	𝑥 <𝑡 − 7

$
>%

#% 	𝑒𝑥𝑝(−𝑗2𝜋𝛼𝑡)	𝑑𝑡  (2.6) 
 
 

where 𝑥(𝑡) represents the signal, 𝜏 is time lag and 𝛼 is the cyclic frequency [18]. 
 
 

2.2.5. Envelope analysis 

 
Envelope analysis is a technique of extracting the modulating signal from amplitude 

of the signal and detects periodic variations in the amplitude of the signal. It is used 
for detection of faults in machineries, such as gearbox, turbines and induction motors 
where faults have an amplitude modulation effect on the characteristic frequencies. It 
is also a tool for diagnosing local faults like cracks and spalling in rolling element 
bearings. This technique is the Fast Fourier transform (FFT) frequency spectrum of 
the modulating signal. This technique uses the following steps: 
 
i. Band pass filter 
ii. Signal rectification 
iii. Hilbert transform 
iv. Spectral analysis 
 
In general, there are many other fault detection methodologies that are suggested 

by different scientists and researchers. The above-mentioned methods are the most 
important and the most applicable ones. In this paper, only time domain and frequency 
domain spectral kurtosis are implemented. 
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2.3. Principal component analysis (PCA) 

 
Principal component analysis (PCA) is a dimension reduction technique without 

losing much of the information and the variation within the original dataset. This 
technique is used for different purposes in high dimensional data, such as data 
compression, feature extraction, signal analysis, and fault diagnosis.  
 
Data with n number of samples and k -attributes can be represented as a matrix X, 
 

 

X = D
𝑥!! ⋯ 𝑥!9
⋮ ⋱ ⋮
𝑥:! ⋯ 𝑥::

H             (2.7) 

 
 

Once we represent the data as a matrix shown above, we then subtract the mean 
from each dimension, and this would produce a dataset with a zero mean. This 
subtraction of the mean is called mean-centring. The subtraction of the mean helps us 
to remove bias. 

 

M = I
𝑥!! − 𝑋! ⋯ 𝑥!9 − 𝑋9

⋮ ⋱ ⋮
𝑥:! − 𝑋9 ⋯ 𝑥:: − 𝑋9

J (2.8) 

 
 
Then we can calculate the covariance matrix as, 

 
 
 

𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒	𝑚𝑎𝑡𝑟𝑖𝑥 = ;∗;+

:
    (2.9) 

 
 

thus resulting,  
 
 

𝑆 = 	 D
𝐶!! ⋯ 𝐶!9
⋮ ⋱ ⋮
𝐶9! ⋯ 𝐶99

H				                   (2.10) 

 
 

where 𝐶<= expressed as, 
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𝐶<=	?		! :⁄ 	{(',#	/B-)C'.#/B.DE					(F,(?!,$,…9)          (2.11) 

 
Different scale measures of variance and covariance will result in different results. 

Since these results cannot be compared, we have to normalise the data by dividing 
each matrix by its standard deviation. Hence this results in a normalized matrix 
element 𝐶F(, 
 

 
𝐶F( =	

H,.
IJKL(F)	.JKL(()

   (I,j = 1,2,……,k)    (2.12) 

 
 

where 𝑣𝑎𝑟(𝑖)	 and 𝑣𝑎𝑟(𝑗)	 are the variance of ith and jth elements respectively. Both 
variances are the maximum variations a variable can have, and the correlation can 
never exceed S𝑣𝑎𝑟(𝑖)	. 𝑣𝑎𝑟(𝑗) . This will result in the maximum value of covariance 
matrix (equal to one). For variables which are uncorrelated the covariance is zero i.e., 
𝐶F( = 𝐶(F = 0 

 
As mentioned above, the main goal of PCA is to reduce dimensions of a data set 

while keeping the variation of the original dataset. Covariance matrix defines both the 
spread (variance) and orientation (covariance) of a dataset. 
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3. SYSTEM OVERVIEW AND FAULTS OF WIND TURBINES 

 
3.1. System overview 

A wind turbine is an electromechanical system that converts wind energy to 
electrical energy. It is made of different subsystems and components such as blades, 
rotor, gearbox, generator, yaw, tower, controller, anemometer and break. 
 
 

 
 
Figure 3.1 Typical wind turbine system [9] 
 
 
As we can see from the figure above, a typical wind turbine is made of different 

parts. Its functionality can also be explained as follows. As the wind blows, it causes 
the blade and the rotor to run and causes the main shaft to rotate and speed up the 
gearbox to drive the generator and change wind energy to mechanical and finally to 
electrical energy. The anemometer is used to identify the wind direction to help the 
yaw system to align the turbine to the direction of the wind. The controller is used to 
make sure the wind turbine generates the needed electricity [9]. 
  

Wind turbine components are vulnerable to faults due to short-lived malfunctions or 
aging, causing system interruption. There is a difference between faults and failure. A 
fault is when a system is in a mode where it keeps its functionality, but it is in an 
unacceptable stage. However, failures in a system or its component mean a complete 
inability to function. The figure below shows the different causes of failures and their 
relative percentage of occurrences in wind turbines [9]. 
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Figure 3.2 The total share of faults shown in percentage [9] 
 

 
 
Table 3.1 Wind turbine fault types [11,12,13] 
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The percentages of typical faults in wind turbines are shown in the above diagram 

(Figure 3.2). As one can see from the above pie chart, the faults in the wind turbines 
are mainly caused by mechanical and electrical components [10]. 
  
Table 3.1 lists the main causes of typical fault types in wind turbines and causes for 

the faults. As can be seen, all the faults mentioned are either mechanical or electrical 
faults. The faults occur at different parts of the wind turbine, such as the blade, 
gearbox, bearing, generator, tower and sensors. 
 
 
3.2. Fault modes of wind turbines 

 
Both onshore and offshore wind turbines have become one of the fastest growing 

Both onshore and offshore wind turbines have become one of the fastest growing 
sources of electricity production. There is a growing need and use of wind turbines all 
over the world, especially in Europe due to its clean energy production. In Europe, it 
has been recorded that it is the second source of energy next to gas and oil. With the 
increasing use of wind turbines, an evolution in quantity and size of the wind turbines 
has taken place. This has caused an increase in cost of maintenance due to failures in 
wind turbines [5]. 

  
There are two types of maintenance: corrective and preventive. These are referred 

to as traditional maintenance strategies by Abid et al., and they have a significant 
disadvantage in that the fault is experienced by the system. The other strategies are 
called prognostics and health management or predictive maintenance strategies that 
provide an advanced maintenance strategy that can increase reliability and availability 
while reducing unexpected fault and maintenance cost [5]. 

  
The performance of the wind turbine or the condition of components, especially 

critical components such as rotating machinery (e.g., generator), are used to track the 
health of wind turbines. Fault prognostic or predictive maintenance is a useful strategy, 
since we are predicting when a failure will take place, or it estimates the remaining 
useful life (RUL) of the wind turbine. RUL prediction estimates the time remaining 
between the degradation detection and failure threshold. Most of the time, the 
prediction of critical components is very difficult due to noise, system complexity and 
prediction uncertainty caused by operating conditions of the wind turbines, such as 
wind speed and direction [5]. 
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Figure 3.3 General approach of prognostic [5] 
 

Figure 3.3 depicts a general approach to prognosis. The figure suggests the steps 
for the approach, i.e., health indicator (HI) construction, degradation indicator and 
RUL estimation (prognostics). The health indicator is constructed by the pre-
processing of the data and monitoring the evolution of the system performance. The 
degradation indicator is then triggered as soon as the health indicator HI falls below a 
predefined threshold. Finally, we predict the remaining useful life by forecasting the 
degradation evolution and estimating the time when the system will fall below the 
threshold [5]. 

  
 
3.3. Health indicator 

 
A change in system performance is evaluated using a health indicator. The main 

and the most important step toward achieving prognostic is the health indicator. If the 
system’s performance deviates from its normal condition, we can say it is heading 
towards failure. These indicators are drawn by studying the system pattern from the 
collected data from the sensors. There are two types of health indicators: indicators 
based on a single feature and indicators based on multiple features. Those with single 
features, such as using sensor data, residuals-based features, and time domain or time-
frequency features are extracted from data collected by monitoring sensors[5]. 
  
The other health indicator is based on multiple features. This health indicator 

method helps to identify complex degradations. These complex degradations are 
difficult to identify and construct a health indicator that follows the degradation over 
time to allow a reliable remaining useful life. Therefore, we have to fuse different 
features in order to identify and draw the health indicator. This fusion has its own 
drawbacks, such as information loss, which can lead to a lack of interpretability of 
health indicators to represent the virtual description of the system's health performance 
[5]. 
  
Abid et al. in their literature proposed several methods for health indicator 

construction on single and multiple features, as shown in the table below. Various 
methodologies are proposed in the table based on the number of features. These 
features, which are extracted from the vibration signals of damaged bearings, 
frequently exhibit varying modulation characteristics. As a result, the features 
extracted from one bearing may not correlate with the features extracted from another 
bearing, which occurs due to different trends from different cases. As a result, we must 
apply and validate various bearing fault indicators, such as Kurtosis and root mean 
square, for various applications [14]. 
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Table 3.2: Health indicator construction methods [14] 
 

 
 
Different methodologies are suggested based on the number of features, as seen in 

the table above. These features, which are extracted from the vibration signals of 
damaged bearings, frequently exhibit different modulation characteristics. As a result, 
the features extracted from one bearing may not correlate with the features extracted 
from another bearing, which occurs due to different trends from different cases. As a 
result, we must apply and validate various bearing fault indicators, such as Kurtosis 
and root mean square, for various applications [14]. 
 

 
3.3.1. Feature extraction 

 
The vibration signal is employed in the computation of features in the time, 

frequency, and time-frequency domains. Different statistical features are generated 
from vibration signals to indicate faults in bearings, shafts, and gears, which are 
components of a gearbox. Bearings frequently operate in harsh environments and are 
subject to various types of faults. The advantages of the time-frequency domain have 
been demonstrated in numerous research papers and journals [15]. 
 
 

3.3.2. Time domain feature extraction 
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As previously stated, one of the most important methods for identifying faults in 
bearings is time domain analysis. It is a simple and powerful tool for identifying faults 
in mechanical vibrations by computing statistical features. These statistical features 
are implemented in this paper and are shown in the table below. 
 
 
Table 3.3 Time domain features [15] 
 

 
 
In the table above, 𝑥 represents the sampled time signal, sample index, and 𝑁 

represents the number of samples. As shown above, several statistical fault-indicating 
features are used to diagnose faults using vibration signals. The most commonly used 
fault indicators are RMS and Kurtosis. In this paper, we implement all of the features 
for prognostic analysis. 
 

3.4. Frequency domain feature extraction 

 
In this paper, we used frequency domain feature extraction, which is one of the most 

widely used methods in bearing fault diagnosis. Since it can be obscured by other 
causes of vibration such as gears, shafts, and other mechanical faults, spectral kurtosis 
(SK) is one of the most effective tools for detecting faults.  
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Ben Ali et al. define the SK signal as the normalised fourth-order spectral moment 
and can be mathematically written as: 

 
 

𝑆𝐾(𝑓) = 		 〈./
*(+,2).〉

〈/*(+,2)〉!
− 2   (3.1) 

 
 
For x(t) signal, where 𝑋5(𝑡, 𝑓) is the fourth order and  𝑋$(𝑡, 𝑓) is the second order 

of the band-pass filtered signal x(t). 
 
 
3.5. Health indicator evaluation criteria 

 
Lei et al. proposed various criteria for assessing the suitability of the constructed 

health indicators for RUL estimation. Many researchers have proposed different 
metrics for evaluation of prognostic health indicators. Lei et.al. have summarised those 
in a table shown below. 
 
 

Table 3.4. Summary of metrics of evaluating prognostics health indicators. 
 

 
 

 
The most important health indicator criteria, according to Abid et al., are 

monotonicity, prognosability, and trendability. 
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3.5.1. Monotonicity  

 
Monotonicity is the property that evaluates the positive or negative trend of a health 

indicator based on the assumption that the faulty component is unable to recover on its 
own. Based on the derivatives of the health indicator, two metrics of monotonicity 
were proposed. As shown below, the absolute difference between negative and 
positive derivatives is used to calculate the first monotonicity. 
 

𝑀𝑜𝑛!(𝑋) = 	
!

N#!
|𝑁𝑜. 𝑜𝑓	 𝑑 𝑑𝑥 > 0 − 𝑁𝑜. 𝑜𝑓	 𝑑 𝑑𝑥⁄⁄ < 0|   (3.2) 

 
 

where 𝑋 = 	 {𝑥9}9?!:N is the health indicator sequence, 𝑥9 is the health indicator value 
at time 𝑡9, 𝑑 𝑑𝑥⁄  represents the derivative of the health indicator, K represents the total 
number of health indicator values;	𝑑 𝑑𝑥⁄ = 	𝑥9P! − 𝑥9 denotes the difference of the 
health indicator sequence. 𝑁𝑜. 𝑜𝑓	 𝑑 𝑑𝑥 > 0⁄  0 and 𝑁𝑜. 𝑜𝑓	 𝑑 𝑑𝑥 < 0⁄  represent the 
number of positive and negative differences respectively. The monotonicity score 
ranges from 0 to 1, with a higher score indicating better monotonicity performance. 
 
The other metric is presented as  
 
 

                \
𝑀𝑜𝑛$P(𝑋) = 	

QR.R2	, ,'ST⁄
N#!

	+ 	QR.R2	,
! ,!'	S	T⁄
N#$

𝑀𝑜𝑛$P(𝑋) = 	
QR.R2	, ,'⁄ 	UT

N#!
	+ 	QR.R2	,

! ,!'⁄
N#$

       (3.3) 

 
 

where 𝑑$ 𝑑$𝑥	⁄  denotes the second order derivatives of X; 𝑀𝑜𝑛$P(𝑋) represents 
positive monotonicity and 𝑀𝑜𝑛$#(𝑋) represents negative monotonicity [6]. 
 
A function 𝑓 can be monotonically increasing or decreasing depending on its 

values. It may be trivial to check the monotonicality of a single failure progression 
sample by examining the difference between consecutive points. The function is said 
to be non-decreasing, if all of the difference values are greater than or equal to 0. 
However, rather than individual sample analysis, monotonicality over all samples 
representing failure progression should be considered [7]. 
 
 

3.5.2. Prognosability 

 
Prognosability is a measure of a feature’s variability at failure in relation to the 

range between its initial and final values. The prognosability of each path is determined 
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by dividing the standard deviation of the final failure values by the mean range of the 
path. This is exponentially weighted to achieve the best zero to one scale. 
 

𝑃𝑟𝑜𝑔𝑛𝑜𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑒𝑥𝑝 <− V+,(2KFW*LXJKW*XV)
(|2KFW*LXJKW*X#V+KL+F:YJKW*X|)

>  (3.4) 

 
 
This metric takes into account failure values that are well clustered, i.e., failure 

values with a low standard deviation and wide parameter ranges [17]. 
 

 
3.5.3. Trendability 

 
Trendability is a measure of the similarity of a feature's trajectories measured in 

multiple run-to-failure experiments. It is the measurement with the smallest absolute 
correlation. As compared to the other two metrics, determining the trendability of a 
population of parameters is even more complicated. If the same underlying functional 
type can model each parameter in the population, a candidate parameter is trendable. 
Trendability can be expressed as follows: 
 
 

𝑇𝑟𝑒𝑛𝑑𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑚𝑖𝑛cd𝑐𝑜𝑟𝑟𝑐𝑜𝑒𝑓F(de  (3.5) 
 
 
The trendability is determined by the smallest absolute correlation measured across 

the entire population of prognostic parameters [17]. 
 
 

3.6. Degradation detection 

 
As previously stated, the health indicator provides information about the system's 

performance or health. When there is a degradation, the health indicator changes its 
trend, causing the prognostic module to predict the remaining useful life. There are 
various methods for detecting degradation. One method is to divide the health indicator 
into two or more stages by using a threshold. 
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Table 3.5 Methods for detecting degradation and their drawbacks 
 

 
 
The division of the health indicator allows us to improve the reliability of the 

degradation and the estimation of the RUL. 
 
 
3.7. Remaining useful life (RUL) estimation 

 
When a degradation is detected using the health indicator with a change from 

normal performance, the remaining useful life estimation begins. In general, the RUL 
is the amount of time between the time we discovered the fault and the end of the 
useful life. According to Lei et al., this time is expressed as 𝑙9 =	 𝑡Z[\ −	𝑡9, where 
𝑡Z[\ is time at the end of life, 𝑡9 is the current time, and 𝑙9 is the remaining useful time 
at 𝑡9 	[7]. 
 
Forecasting a wind turbine's remaining useful life provides us with information on 

how much time remains before the wind turbine loses its operational capacity. The two 
main challenges in predicting the remaining useful time of wind turbines are how to 
predict based on the given data and the accuracy of the prediction [7]. 
 
 

3.8. Degradation modelling 

 
As previously stated, estimation or prediction is accomplished through the use of 

various approaches. According to Abid et al., these approaches are broadly classified 
into two types: experience-based approaches and degradation modelling approaches. 
The experience-based approaches rely on maintenance and inspection data, whereas 
the degradation approach relies on physical or data-driven approaches. This model-
based approach models degradation using physical and mathematical relationships. 
The wind turbine condition monitoring sensors provide us with accurate information 
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about our system and assist us in developing data-driven approaches to predicting 
system degradation. Statistical and artificial intelligence tools are primarily used in 
these data-driven approaches [6]. 
 
 
Table 3.6 Different RUL prediction approaches [7] 
 

 
 
 
The table above shows that different researchers used different approaches to 

predict RUL. Lei et al., however, further subdivided the model-based approaches into 
four categories: physics model-based approaches, statistical model-based approaches, 
Artificial Intelligent (AI) approaches, and hybrid approaches. 
 

3.9. Prognostic metrics 

 
When predicting the remaining useful life, we need some metrics to compare the 

various approaches mentioned above. These metrics are divided into three categories 
because the remaining useful life prediction can be evaluated from a variety of 
perspectives. The first metrics categories are based on RULs from the field. The 
second metric is based on run-to-failure data, while the last is based on available 
measurements. In the table below, Lei et al. summarised some of the metrics. 
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Table 3.7 A summary of the RUL prediction metrics [7] 
 

 
 

 
The root mean square error (RMSE) and mean absolute percentage error (MAPE) 

are the most commonly used metrics for RUL evaluation (MAPE). However, other 
new and relevant metrics for evaluating prognostics performance were proposed. 
Prognostic horizon, 𝛼 − 	𝜆 performance, relative accuracy, and cumulative relative 
accuracy are a few of them. 
 
 

 
3.9.1. Root mean square error (RMSE) 

 
The root mean square of the prediction in the interval between the first prediction 

period and the end of lifetime is called the root mean square error (RMSE). 
 
 

𝑅𝑀𝑆𝐸 = 	&"
/
∑ (𝑟W(𝑡) −	𝑟∗W(𝑡))$:
+?!              (3.6) 

 
where 𝑛 is the number of observations in the interval from the first prediction time 
and end of lifetime, 𝑡 is the time index, 𝑟W(𝑡) is the predicted RUL, and 𝑟∗W(𝑡) is the 
ground true RUL. A higher RMSE value indicates a larger prediction error [6]. 
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3.9.2. Mean absolute percentage error (MAPE) 

 
Similarly, the mean absolute percentage error (MAPE) is a popular metric for 

evaluating RUL as RMSE. 
 
 

𝑀𝐴𝑃𝐸 = 	 "00%/ ∑ iL
2	(+)#L∗2	(+)
L2	(+)

i:
+?!              (3.7) 

 
where 𝑛 denotes the number of observations between the first prediction time and 
end of lifetime, 𝑡 denotes the time index, 𝑟W(𝑡) denotes the predicted RUL, and 𝑟∗W(𝑡) 
denotes the ground true RUL [6].  
 
 

3.9.3. Prognostic horizon 

 
The prognostic horizon (PH) or prediction horizon is the time between the detection 

of degradation and the end of life (EoL). It can be expressed as  
 
 

𝑃𝐻 =	 𝑡ZR\ −	𝑡F45                (3.8) 
 

where 𝑖6] =is the first-time index when prediction 𝛽 criteria for a given 𝛼 and 𝑡ZRW is 
the predicted end of lifetime EoL [6]. 
 
 

3.9.4. 𝜶 − 	𝝀	performance 

 
𝛼 − 	𝜆 is a binary metric used to evaluate RUL prediction where the result falls 

within a specified limit at a given time. 
 

 𝛼 − 	𝜆		performance = 	 w1									𝑖𝑓		𝜋(𝑝c𝑙+6)e|#6
P6 ≥ 𝛽

0									𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																	
         (3.9) 

 
where 𝜆 is a time window modifier; 𝜋(𝑝c𝑙+6)e|#6

P6 ≥ 	𝛽 is the probability mass of the 
prediction PDF in the 𝛼-bound [6].  
 

 
 



 
 
 

 

28 

3.9.5. Relative accuracy 

 
Relative prediction accuracy is the relative prediction error between the predicted 

RUL to the actual RUL at a specific time. 
 

𝑅𝐴^ = 1 −	
_W76
∗ 	#	W76_

W76
∗ 	           (3.10) 

 
where 𝑙+6

∗ is the RUL’s truth value and 	𝑙+6is the predicted RUL at time 𝜆 [6]. 
 
 

3.9.6. Cumulative relative accuracy 

 
Cumulative relative accuracy CRA evaluates the RUL at multiple time instances by 

aggregating the relative accuracy values at a specific time instance. It is computed as 
a weighted sum of the relative accuracies at multiple time instances. 

 
	𝐶𝑅𝐴^ =	

!
|`6|

∑ 𝑤(𝑙+&)𝑅𝐴^9X`6    (3.11) 

 
where 𝑤(𝑙+&) is a weight function depending on the predicted RUL, Ω^is the set of all 
time indexes and |Ω^| is the cardinality of the set [6]. 
 
According to Lei et al., two other metrics that rely on the ground truth URLs are 

convergence and exponential transformed accuracy. Among the metrics that are 
affected by run-to-failure results are predictability, mean prediction error and standard 
deviation, overall average bias, overall average variability, and reproducibility. 
Metrics based on available measurements, such as online root mean square error, 
online coverage, online width, and Epilog, are also discussed. 
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4. WIND TURBINE HIGH SPEED BEARING PROGNOSIS 

 
In this thesis paper, we use PCA to detect faults in a wind turbine and build an 

exponential degradation model to predict the remaining useful life (RUL) of the wind 
turbine. The chosen model helps us to detect the significant degradation of the wind 
turbine. Generally, the general steps of prognosis include: Data import and exploration, 
feature extraction, feature post processing, training data, feature importance ranking, 
dimension reduction and feature fusion, building model, model fitting and analysing 
performance. 
 

4.1. Dataset 

The dataset in this study is taken from a high-speed gear dataset by Eric Bechhoefer 
and is licensed under a creative Commons attribution-non-commercial share Alike 4.0 
international License.  The dataset has two cases: case 1 with fault and case 2/3 with 
good condition. The dataset is collected from a 3MW wind turbine high-speed shaft 
driven by a 32-tooth pinion gear with a sample rate of 97656 Hz. A vibration signal of 
6 seconds was acquired in both cases. 
 

4.2. Data Import 

The data used for this project are in the form of  MAT files which are a binary 
binary data container format that a MATLAB program uses. Therefore, in this 
implementation we used MATLAB and implemented MATLAB codes.  
 

 
 
Figure 4.1 Imported data  
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In the above figure, the shown dataset contains a constant vibration signal (gs), 
sampling rate(sr), constant angular sampling(pp), number of teeth on pinion(teeth) and 
tachometer signal (tach). 

 
 

4.3. Data Exploration 

Data exploration is one of the most important steps for data understanding, 
preliminary data quality evaluation and learning from the domain. The visualisations 
usually reveal patterns or exceptions that would suggest that there is something 
interesting in the dataset. In our case we explore the data in both time domain and 
frequency domain in order to figure out what features we need to extract for prognosis 
purposes. 
 
 

 
 
Figure 4.2 Vibration signal in time domain 
 
The above figure shows the vibration signal in time domain. The dataset contains 

24 vibration signals of 6 seconds measured on 24 different days. It shows some 
exceptions and trends of signal impulsiveness. From the figure above, we can suggest 
that indicators of statistical features such as kurtosis, crest factors, peak-to-peak value 
are potential indicators of impulsiveness of signals in the wind turbine bearing dataset. 
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Similarly, kurtosis is the most powerful tool in frequency domain wind turbine 
prognosis. The figure below depicts the evolution of spectral kurtosis over time. 
 

 
 
 
Figure 4.3 Visualisation of change in spectral kurtosis  
 
We can see from the above frequency domain visualisation that we used a colour-

bar to denote the magnitude of the fault, which is normalised into a 0 to 1 scale. The 
kurtosis value around 5kHz gradually increases as the machine condition deteriorates, 
as shown in the figure. This means that spectral kurtosis features such as mean standard 
deviation and others could be potential indicators of bearing degradation. 
 
 

4.4. Feature extraction 

 
We used frequency domain and time domain visualisations to analyse the vibration 

signals in the previous section. We have concluded that we will derive statistical 
features from time domain and extract spectral kurtosis from the frequency domain. 
The extracted statistical features are depicted in the diagram below. 
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Figure 4.4 Statistical features extracted from both time domain and frequency 

domain  
 
Mean, skewness, standard deviation, kurtosis, peak-to-peak, root mean square, crest 

factor, shape factor, impulse factor, margin factor, and energy are some of the time 
domain statistical features shown in the figure above. In contrast, we included 
statistical features from the frequency domain, specifically spectral kurtosis. These 
include mean, standard deviation, skewness and kurtosis of the spectral kurtosis. 
 
 

4.5. Feature postprocessing 

 
Typically, the above-mentioned extracted time domain and frequency domain 

features are associated with noise. The occurrence of noise will harm our RUL 
prediction. In the following section, we will discuss Monotonicity, a feature 
performance metric. We must use the classic moving mean filter since this metric is 
sensitive to noise. The feature is shown in Figure 4.5 before and after smoothing. In 
this paper, we implemented a casual moving mean with a lag window of 5 steps. This 
signal delay for smoothing can be achieved by selecting the appropriate RUL 
prediction threshold. 
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Figure 4.5 Before and after smoothing features 
 
 

4.6. Training Data and feature importance ranking 

 
When designing the prognostic algorithm, keep in mind that some data was 

obtained at the beginning of the entire life cycle. As a result, we must assume that 
some percentage of the data will be treated as training data. In this paper we have used 
66.67% of the data for training. 
 
Figure 4.6 shows that the margin factor is the most important feature based on 

monotonicity, and that we used a minimum of 0.3 feature importance score to select 
features for feature fusion. 
 
Similarly, figure 4.7 displays features that were chosen based on a feature 

importance score greater than 0.3. This feature selection is critical for feature fusion 
following dimension reduction with principal component analysis (PCA). 
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Figure 4.6 Feature selection scores based on monotonicity 
 

 
Figure 4.7 Features with feature importance score larger than 0.3 
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4.7. Dimension reduction and feature fusion 

Dimensionality reduction is a critical step in the selection of important statistical 
features. This is also the primary focus of this research paper. We chose a few 
important features in the preceding section by using a minimum feature importance 
score value of 0.3. This has resulted in the removal of more than half of the statistical 
features proposed for determining the detection of faults in wind turbine bearings. 
These statistical features are always correlated and contain redundant information. We 
have a higher computational complexity because of the correlations and redundancies 
among the statistical features, so we must use principal component analysis for 
dimensional reduction while retaining important data information, as explained in the 
introduction of this paper section 2.2.3. 
 
In this experiment, we normalized the features into the same scales before 

implementing the principal component as dimension reduction and feature fusion. 
These normalized PCA coefficients, mean, and standard deviation were derived from 
training data and applied to the entire dataset. 
 
 

 
 
Figure 4.8 Principal components  
 
The plot in figure 4.8 shows that the second principal component increases as the 

wind turbine approaches failure. Therefore, the second principal component is 
considered as a promising fused health indicator. 
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The second principal component is then visualized, as shown in figure 4.9. 
 

 
Figure 4.9 Visualisation of health indicator  

 
 

4.8. Exponential degradation models for remaining useful life (RUL) estimation 

 
The following step will be to create a model for high-speed bearing prognosis. It is 

the second critical step in determining the remaining useful time (RUL) after a fault 
has been detected. In this study, we used the exponential degradation model to 
demonstrate the exponential degradation process and estimate the RUL. Degradation 
models, in general, estimate the RUL by predicting when a signal exceeds a predefined 
threshold. 
 
The exponential degradation model can be defined mathematically as follows: 
 

𝑆(𝑡) = 			𝜙		 + 	𝜃(𝑡)	𝑒(](+)P	a(+)	#	
b!
$ ) 

 
where 		𝜙 is a constant model intercept that can be a lower or upper bound depending 
on the sign of 𝜃. 𝜃(𝑡) is a random variable with theta mean and variance that is 
modelled as a lognormal distribution.𝛽(𝑡) can also be modelled as gaussian 
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distribution with beta mean and variance.𝜖(𝑡) is a noise modelled as a normal 
distribution with zero mean and variance, 𝜎$is the called the noise variance [16]. 
 
  

 
 
Figure 4.10 RUL estimation using exponential model  
 
 

4.9. Performance analysis 

 
There are various performance metrics used for prognostic performance analysis, 

as discussed in section 3.8. We used the 𝛼 − 𝜆 metrics in this paper, where we set the 
𝜆 to 20% and estimated the RUL within the 𝛼 bound. In the figure 4.11 we have plotted 
the prognostic performance analysis. 
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Figure 4.11  𝛼 − 𝜆 plot for prognostic performance analysis 
 
 
The probability within 𝜆 to 20% bound is plotted in the figure 4.12 below. we have 

plotted the probability within 𝜆 to 20% bound. As more data points become available, 
the prediction becomes more accurate. 
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Figure 4.12 Probability of the predicted RUL within the 𝛼-bound 
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5.  CONCLUSION AND FUTURE WORK 

 
5.1. Summary of the research  

 
This paper generally discussed faults and fault detection in rotating machineries, 

taking wind turbine high-speed bearings as a test case.  In this work, PCA is used as 
dimension reduction and feature fusion tool to detect faults and determine the RUL of 
the bearings. A general prognostic approach with steps such as health indicator (HI) 
construction, degradation indicator and remaining useful life (RUL) estimation is 
discussed in section 3.2. This paper implemented this prognostic approach in real time.  
 
In this paper, statistical features of time domain such as mean, standard deviation, 

peak-to-peak, crest factor, skewness, kurtosis, energy, margin factor, RMS, shape 
factor and impulse factor were used. Similarly, statistical features were extracted from 
the frequency domain, specifically spectral kurtosis. After selecting the important 
features, one of the features is selected as a PCA component. The selected PCA 
component is used as HI and as a trigger for the degradation indicator, if the HI goes 
below a predefined threshold. 
 
Generally, the approach discussed in this paper is very important and applicable in 

different real-life situations. Future works can be done using different machineries 
depending on the availability of data. Further research can be done on different topics 
such as: 
 

• Further investigation of the effectiveness of the implementation of PCA in 
large datasets of wind turbines 

• Fault detection using PCA in other machinery datasets 
• Condition monitoring techniques and comparison among the techniques 

 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

 

41 

6. REFERENCES 

[1] S.Edwards, A.W. Lees and M.I. Friswell Fault Diagnosis of rotating machinery 
[2] N. Tandon, A.Choudhury A review of vibration and acoustic measurement 

methods for the detection of defects in rolling element bearings, 
TribiologyInternationsl 32(1999) 469-480 

[3] http://data-acoustics.com/measurements/gear-faults/gear-1/ 
[4] Dr. f. R, Gomaa , Dr.k.M. Kahder, Eng M.A.Eissa Fault Diagnosis of Rotating 

Machinery based on vibration analysis. International Journal of Advanced 
Engineering and Global Technology vol-04, issue-01, January 2016ß 

[5] Koceila Abid, Moamar Sayed Mochaweh, and Laurence Cornez, Fault 
Prognostics for the Predictive Maintenance of Wind Turbines: State of the Art, 
5July 2019 

[6] Yaguo Lei, Naipeng Li,Liang Guo,Ningbo Li, Tao Yan, Jing Lin, Machinary 
health Prognostics: A systematic review from data acquisition to RUL prediction 

[7] F. Camci, K. Medjaher, N. Zerhounib, P. Nectouxb, Feature evaluation for 
effective bearing prognostics, Qual. Reliab. Eng. Int. 29 (2013) 477–486. 

[8] Saxena, A., Celaya, J., Balaban, E., Goebel, K., Saha, B., Saha, S., Schwabacher, 
M.: Metrics for evaluating performance of prognostic techniques. In: 
Prognostics and health management, 2008. phm 2008. international conference 
on. pp. 1–17. IEEE (2008) 

[9] Gao, Z.; Liu, X. An Overview on Fault Diagnosis, Prognosis and Resilient 
Control for Wind Turbine Systems. Processes 2021, 9, 300 

[10] Hahn, B.; Durstewitz, M.; Rohrig, K. Reliability of Wind Turbines. Wind 
Energy Eng. 2007, 329–332 

[11] Verbruggen, T. Wind turbine operation & maintenance based on condition 
monitoring. In ECN Wind Energy; Technical Report ECN-C-03-047; ECN: 
Petten, The Netherlands, 2003. 

[12] Qiao, W.; Lu, D. A survey on wind turbine condition monitoring and fault 
diagnosis-part I: Components and subsystems. IEEE Trans. Ind. Electron. 2015, 
62, 6536–6545. [CrossRef]  

[13] Lau, B.; Ma, E.; Pecht, M. Review of offshore wind turbine failures and fault 
prognostic methods. In Proceedings of the IEEE Conference on Prognostics and 
System Health Management (PHM), Beijing, China, 23–25 May 2012; pp. 1–5. 

[14] Elasha F, Shanbr S, Li X, Mba D. Prognosis of a Wind Turbine Gearbox Bearing 
Using Supervised Machine Learning. Sensors (Basel). 2019;19(14):3092. 
Published 2019 Jul 12. doi:10.3390/s19143092 

[15] Ali, Jaouher Ben, et al. "Online automatic diagnosis of wind turbine bearings 
progressive degradations under real experimental conditions based on 
unsupervised machine learning." Applied Acoustics 132 (2018): 167-181. 

[16] Gebraeel, Nagi. "Sensory-Updated Residual Life Distributions for Components 
with Exponential Degradation Patterns." IEEE Transactions on Automation 
Science and Engineering. Vol. 3, Number 4, 2006, pp. 382–393. 

[17] Coble, J. "Merging Data Sources to Predict Remaining Useful Life - An 
Automated Method to Identify Prognostics Parameters." Ph.D. Thesis. 
University of Tennessee, Knoxville, TN, 2010. 



 
 
 

 

42 

[18] Tang, S.; Yuan, S.; Zhu, Y. Cyclostationary Analysis towards Fault Diagnosis 
of Rotating Machinery. Processes 2020, 8, 1217. 



 
 
 

 

43 

7. APPENDICES 

Appendix 1. MATLAB code 
 
filenames = 
{'case2_1.mat','case2_2.mat','case2_3.mat','case2_4.mat','case2_5.ma
t','case2_6.mat','case2_7.mat','case3_1.mat','case3_2.mat','case3_3.
mat','case3_4.mat','case3_5.mat','case3_6.mat','case1_1.mat','case1_
2.mat','case1_3.mat','case1_4.mat','case1_5.mat','case1_6.mat','case
1_7.mat','case1_8.mat','case1_9.mat','case1_10.mat','case1_11.mat'}; 
  
for kk = 1:numel(filenames) 
    load(filenames{kk}) 
end 
  
x1=load('case2_1.mat');x2=load('case2_2.mat');x3=load('case2_3.mat')
;x4=load('case2_4.mat');x5=load('case2_5.mat');x6=load('case2_6.mat'
); 
x7=load('case2_7.mat');x8=load('case3_1.mat');x9=load('case3_2.mat')
;x10=load('case3_3.mat');x11=load('case3_4.mat');x12=load('case3_5.m
at');x13=load('case3_6.mat');x14=load('case1_1.mat');x15=load('case1
_2.mat');x16=load('case1_3.mat');x17=load('case1_4.mat');x18=load('c
ase1_5.mat');x19=load('case1_6.mat'); 
x20=load('case1_7.mat');x21=load('case1_8.mat');x22=load('case1_9.ma
t');x23=load('case1_10.mat');x24=load('case1_11.mat'); 
  
t1=struct2table(x1,'AsArray',true);t2=struct2table(x2,'AsArray',true
);t3=struct2table(x3,'AsArray',true);t4=struct2table(x4,'AsArray',tr
ue);t5=struct2table(x5,'AsArray',true);t6=struct2table(x6,'AsArray',
true);t7=struct2table(x7,'AsArray',true);t8=struct2table(x8,'AsArray
',true);t9=struct2table(x9,'AsArray',true);t10=struct2table(x10,'AsA
rray',true);t11=struct2table(x11,'AsArray',true);t12=struct2table(x1
2,'AsArray',true);t13=struct2table(x13,'AsArray',true);t14=struct2ta
ble(x14,'AsArray',true);t15=struct2table(x15,'AsArray',true);t16=str
uct2table(x16,'AsArray',true);t17=struct2table(x17,'AsArray',true);t
18=struct2table(x18,'AsArray',true);t19=struct2table(x19,'AsArray',t
rue);t20=struct2table(x20,'AsArray',true);t21=struct2table(x21,'AsAr
ray',true);t22=struct2table(x22,'AsArray',true);t23=struct2table(x23
,'AsArray',true); t24=struct2table(x24,'AsArray',true); 
  
  
  
T=[t1;t2;t3;t4;t5;t6;t7;t8;t9;t10;t11;t12;t13;t14;t15;t16;t17;t18;t1
9;t20;t21;t22;t23;t24] 
  
fs = sr; % Hz 
  
tstart = 0; 
figure 
hold on 
for i=1:24 
     
    v = T.gs{i}; 
    t = tstart + (1:length(v))/fs; 
    % Downsample the signal to reduce memory usage 
    plot(t(1:10:end), v(1:10:end)) 
    tstart = t(end); 



 
 
 

 

44 

end 
hold off 
xlabel('Time (s), 6 second per day, 24 days in total') 
ylabel('Acceleration (g)') 
  
  
hsbearing.DataVariables = ["vibration", "tach", "SpectralKurtosis"]; 
colors = parula(24); 
figure 
hold on 
day = 1; 
for i=1:24 
   
    data2add = table; 
    % Get vibration signal and measurement date 
    v = T.gs{i}; 
     
    % Compute spectral kurtosis with window size = 128 
    wc = 128; 
    [SK, F] = pkurtosis(v, fs, wc); 
    data2add.SpectralKurtosis = {table(F, SK)}; 
     
    % Plot the spectral kurtosis 
    plot3(F, day*ones(size(F)), SK, 'Color', colors(day, :)) 
     
    % Write spectral kurtosis values 
    % writetable(hsbearing, data2add); 
    hsbearing=table2struct(data2add,'ToScalar',true); 
  
  
    % Increment the number of days 
    day = day + 1; 
end 
hold off 
xlabel('Frequency (Hz)') 
ylabel('Time (day)') 
zlabel('Spectral Kurtosis') 
grid on 
view(-45, 30) 
cbar = colorbar; 
ylabel(cbar, 'Fault Severity (0 - healthy, 1 - faulty)') 
  
k=[T.gs{1,1},T.gs{2,1},T.gs{3,1},T.gs{4,1},T.gs{5,1},T.gs{6,1},T.gs{
7,1},T.gs{8,1},T.gs{9,1},T.gs{10,1},T.gs{11,1},T.gs{12,1},T.gs{13,1}
,T.gs{14,1},T.gs{15,1},T.gs{16,1},T.gs{17,1},T.gs{18,1},T.gs{19,1},T
.gs{20,1},T.gs{21,1},T.gs{22,1},T.gs{23,1},T.gs{24,1}];  
  
A = array2table(k); 
C = table2array(A); 
D = mean(C,1); 
E = std(C,1); 
F = skewness(C,1); 
G = kurtosis(C,1); 
H = peak2peak(C,1); 
I = rms(k); 
J= peak2rms(k,1); 
L=max(k); 
M=bsxfun(@rdivide,I,L); 
N=abs(D); 



 
 
 

 

45 

O=bsxfun(@rdivide,I,N); 
P=bsxfun(@rdivide,I,N.^2); 
P=bsxfun(@rdivide,I,(N.^2)); 
P=N.^2; 
Q=bsxfun(@rdivide,I,P); 
R= sum(k.^2,1); 
  
S 
=[pkurtosis(T.gs{1,1},fs),pkurtosis(T.gs{2,1},fs),pkurtosis(T.gs{3,1
},fs),pkurtosis(T.gs{4,1},fs),pkurtosis(T.gs{5,1},fs),pkurtosis(T.gs
{6,1},fs),pkurtosis(T.gs{7,1},fs),pkurtosis(T.gs{8,1},fs),pkurtosis(
T.gs{9,1},fs),pkurtosis(T.gs{10,1},fs),pkurtosis(T.gs{11,1},fs),pkur
tosis(T.gs{12,1},fs),pkurtosis(T.gs{13,1},fs),pkurtosis(T.gs{14,1},f
s),pkurtosis(T.gs{15,1},fs),pkurtosis(T.gs{16,1},fs),pkurtosis(T.gs{
17,1},fs),pkurtosis(T.gs{18,1},fs),pkurtosis(T.gs{19,1},fs),pkurtosi
s(T.gs{20,1},fs),pkurtosis(T.gs{21,1},fs),pkurtosis(T.gs{22,1},fs),p
kurtosis(T.gs{23,1},fs),pkurtosis(T.gs{24,1},fs)]; 
  
MS= mean(S,1); 
STS= std(S,1); 
SKS= skewness(S,1); 
KUS= kurtosis(S,1); 
  
feature=[D.',E.',F.',G.',H.',I.',J.',M.',O.',P.',R.',MS.',STS.',SKS.
',KUS.']; 
feature_table = array2table(feature); 
feature_table.Properties.VariableNames = {'mean', 'std', 'skewness', 
'kurtosis', 'peak2peak','RMS', 'CrestFactor', 'ShapeFactor', 
'ImpulseFactor', 'MarginFactor', 
'Energy','SKMean','SKStd','SKSkewness','SKKurtosis'}; 
hsbearing.SelectedVariables = ['mean', 'std', 'skewness', 
'kurtosis', 'peak2peak','RMS', 'CrestFactor', 'ShapeFactor', 
'ImpulseFactor', 'MarginFactor', 
'Energy','SKMean','SKStd','SKSkewness','SKKurtosis']; 
variableNames = feature_table.Properties.VariableNames; 
featureTableSmooth = varfun(@(x) movmean(x, [5 0]), feature_table); 
featureTableSmooth.Properties.VariableNames = variableNames; 
figure 
hold on 
plot(feature_table.kurtosis) 
plot(featureTableSmooth.kurtosis) 
hold off 
xlabel('Time') 
ylabel('Feature Value') 
legend('Before smoothing', 'After smoothing') 
title('kurtosis') 
trainData = featureTableSmooth(1:24, :); 
featureImportance = monotonicity(trainData); 
helperSortedBarPlot(featureImportance, 'Monotonicity'); 
trainDataSelected = trainData(:, featureImportance{:,:}>0.3); 
featureSelected = featureTableSmooth(:, featureImportance{:,:}>0.3) 
meanTrain = mean(trainDataSelected{:,:}); 
sdTrain = std(trainDataSelected{:,:}); 
trainDataNormalized = (trainDataSelected{:,:} - meanTrain)./sdTrain; 
coef = pca(trainDataNormalized); 
PCA1 = (featureSelected{:,:} - meanTrain) ./ sdTrain * coef(:, 1); 
PCA2 = (featureSelected{:,:} - meanTrain) ./ sdTrain * coef(:, 2); 
figure 
numData = size(feature_table, 1); 
scatter(PCA1, PCA2, [], 1:numData, 'filled') 
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xlabel('PCA 1') 
ylabel('PCA 2') 
cbar = colorbar; 
healthIndicator = PCA2; 
figure 
plot( healthIndicator, '-o') 
xlabel('Time') 
title('Health Indicator') 
healthIndicator = healthIndicator - healthIndicator(1); 
threshold = healthIndicator(end); 
mdl = exponentialDegradationModel(... 
    'Theta', 1, ... 
    'ThetaVariance', 1e6, ... 
    'Beta', 1, ... 
    'BetaVariance', 1e6, ... 
    'Phi', -1, ... 
    'NoiseVariance', (0.1*threshold/(threshold + 1))^2, ... 
    'SlopeDetectionLevel', 0.05); 
  
  
% Keep records at each iteration 
totalDay = length(healthIndicator) - 1; 
estRULs = zeros(totalDay, 1); 
trueRULs = zeros(totalDay, 1); 
CIRULs = zeros(totalDay, 2); 
pdfRULs = cell(totalDay, 1); 
  
% Create figures and axes for plot updating 
figure 
ax1 = subplot(2, 1, 1); 
ax2 = subplot(2, 1, 2); 
  
for currentDay = 1:totalDay 
     
    % Update model parameter posterior distribution 
    update(mdl, [currentDay healthIndicator(currentDay)]) 
     
    % Predict Remaining Useful Life 
    [estRUL, CIRUL, pdfRUL] = predictRUL(mdl, ... 
                                         [currentDay 
healthIndicator(currentDay)], ... 
                                         threshold); 
    trueRUL = totalDay - currentDay + 1; 
     
    % Updating RUL distribution plot 
    helperPlotTrend(ax1, currentDay, healthIndicator, mdl, 
threshold); 
    helperPlotRUL(ax2, trueRUL, estRUL, CIRUL, pdfRUL) 
     
    % Keep prediction results 
    estRULs(currentDay) = estRUL; 
    trueRULs(currentDay) = trueRUL; 
    CIRULs(currentDay, :) = CIRUL; 
    pdfRULs{currentDay} = pdfRUL; 
     
    % Pause 0.1 seconds to make the animation visible 
    pause(0.1) 
end 
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alpha = 0.2; 
detectTime = mdl.SlopeDetectionInstant; 
prob = helperAlphaLambdaPlot(alpha, trueRULs, estRULs, CIRULs, ... 
    pdfRULs, detectTime); 
title('\alpha-\lambda Plot') 
figure 
t = 1:totalDay; 
hold on 
plot(t, prob) 
plot([0 1], 'k-.') 
hold off 
ylabel('Probability') 
legend('Probability of predicted RUL within \alpha bound', 'Train-
Test Breakpoint') 
title(['Probability within \alpha bound, \alpha = ' 
num2str(alpha*100) '%']) 
 
 
 


