
Design and Implementation of a

Wi-Fi Portal System

Tobias Asplund 36039

Supervisors: Annamari Soini, Dragos Truscan

Faculty of Science and Engineering

Åbo Akademi University 2021

Abstract

The goal of the thesis is to develop a proof-of-concept of a Wi-Fi portal service

to evaluate the feasibility and scope for creating a fully-fledged Wi-Fi portal solu-

tion. A Wi-Fi portal is the webpage that users are required to interact with to gain

access to a public Wi-Fi network. The focus of the work was to build the frame-

work for a Wi-Fi portal system to be deployed on Cisco Meraki access points and

create the user interfaces for editing and managing portals. The proof-of-concept

has support for creating and customizing portals in a WYSIWYG (what you see is

what you get) editor, with a live preview of the created portal. The portal page

has support for authenticating through email, SMS and Facebook authentication.

Additional third-party services can be implemented in a similar manner. Out of a

selection of alternatives for which technologies to use for the portal, Golang with

the Golang template packages was deemed to be the best solution for serving the

portal. Using Golang to generate the HTML on the server allows for moving most

of the logic away from users devices and moving possible points of failure to a

controlled environment. The proof-of-concept fulfilled the requirements set up at

the start of the project. A complete product can be developed using the findings

in the thesis and the proof-of-concept as a base.

Keywords: Wi-Fi, portal, splash page, public Wi-Fi

1

Acknowledgements

I would like to thank my supervisors Annamari Soini and Dragos Truscan for their

guidance in the writing of this thesis, especially for providing feedback more fre-

quently and thoroughly that anyone could expect. I would also like to thank my

friends who gave valuable feedback to provide another perspective when I got

stuck on my own writings. Last but not least I would like to thank my colleagues

for having patience with my sporadic days off for writing this thesis.

Tobias Asplund
Turku, May 22, 2021

2

Contents

1 Introduction 1

1.1 Background . 4

1.1.1 Walkbase Analytics . 4

1.1.2 Wi-Fi Portal . 6

1.1.3 Wi-Fi Access Points . 7

1.1.4 Cisco Meraki Access Points 9

1.2 Goal and Validation Criteria . 11

1.3 Project Requirements . 12

1.3.1 Portal Format . 12

1.3.2 Portal Editor . 12

1.3.3 Authentication . 13

1.3.4 General Requirements . 13

1.3.5 Portal Content Editing and Creation Requirements 13

1.3.6 Portal Assignment Requirements 15

2 Design Considerations 17

2.1 Browser Usage Statistics . 17

2.2 Evaluation of Technological Alternatives 19

2.2.1 Angular Ccomponent . 19

2.2.2 HTML With Pure JavaScript 20

2.2.3 HTML Without JavaScript 21

2.2.4 JQuery 1.x . 21

2.2.5 Hugo . 21

2.2.6 Django . 22

2.2.7 Golang . 22

2.2.8 Selected Alternative . 22

2.3 Authentication . 23

3

2.4 WYSIWYG Editor . 25

2.5 Portal Communication Flow . 26

3 Architecture and Implementation 28

3.1 Portal . 29

3.1.1 Configuration . 29

3.1.2 Portal Backend Service and Template 31

3.2 Portal Editor . 33

3.2.1 Portal Listing . 34

3.2.2 Settings . 35

3.2.3 Images . 36

3.2.4 Preview . 37

3.2.5 APIs . 46

4 Validation and Conclusion 47

5 Summary in Swedish - Svensk sammanfattning 50

A Wi-Fi Portal Evaluation 56

Glossary

Access point A device that allows wireless to connect to a network.

API Application Programming Interface.

Captive portal synonym for Wi-Fi portal, see Wi-Fi portal.

CRM Customer Relationship Management.

CSS Cascading Style Sheets.

Data cap Limitation on data transferred over a mobile connection.

DHCP Dynamic Host Configuration Protocol.

DNS Domain Name System.

GET A HTTP request used to request data from a specified resource.

HTTP HyperText Transfer Protocol.

HTTPS HyperText Transfer Protocol Secure.

JSON JavaScript Object Notation.

MAC Media Access Control.

MVP Minimum Viable Product.

POC Proof-of-concept.

POST A HTTP request used to send data to a server to create/update a resource.

PUT A HTTP request used to send data to a server to create/update a resource.

RFP Request For Proposal.

SDK Software development kit.

SSID Service Set Identifier.

UI User Interface.

URL Uniform Resource Locator.

WAI Walkbase Analytics Intelligence.

5

Wi-Fi portal A Wi-Fi portal is the webpage that users are required to interact with

to gain access to a public Wi-Fi network.

Wi-Fi splash page synonym for Wi-Fi portal, see Wi-Fi portal.

WLAN Wireless Local Area Network.

1. Introduction

Wi-Fi portals represent the de facto way to authenticate users in a public Wi-Fi

environment. A Wi-Fi portal, sometimes called a Wi-Fi splash page, is the page

that greets users when they try to sign on to a public Wi-Fi network that requires

authentication. The authentication can range from just agreeing to terms and

conditions to signing in with a social media account or buying access to the Wi-Fi

network.

Even with the required initial investment in infrastructure, public Wi-Fi is com-

monplace in today’s retail locations. Providing public WiFi in retail locations can

be an arguable investment, where both security concerns and the costs have to

be weighed against the benefits provided by offering it. The customer demand

for public Wi-Fi is due to the high rate of smartphone adoption. The GSMA 2019

report [1] states that smartphone adoption 2019 among the population in North

America was 80 percent and 72 percent in Europe, with a prediction of 90 and

82 percent respectively for 2025. Even though the use of personal mobile internet

connections such as 4G are common, there is no guarantee that they will work

at reasonable speeds in highly congested areas or inside structures such as shop-

ping centers where cellular reception can be limited. The connection speeds and

pricing of personal mobile connections also vary greatly between countries and

regions [2]. Many providers enforce data caps, which limits the data a user can

transfer over the connection, effectively steering users to use public Wi-Fi where it

is offered. In a survey done by Purple [3], 72 percent of recipients answered that

they use Wi-Fi in public spaces and 63.36 percent answered that they are more

likely to spend more in a venue that offers public Wi-Fi.

The benefit of getting customers to spend more time in a location by offering

public Wi-Fi is already a good starting point, but there are missed opportunities

if the only thing the public Wi-Fi does is provide Internet access. Adding a Wi-Fi

1

portal to the public Wi-Fi solution can help with both gathering useful metrics for

key performance indicators and adding new channels to reach customers. With

a Wi-Fi portal, useful information and marketing material can be placed on the

users’ screens as they join the network and contact information and user metadata

can be gathered during the sign-in process.

For venue proprietors to benefit the most from providing a public Wi-Fi network,

they need to be able to authenticate users and gather statistics about usage and

their customers. The authentication can range from asking the user to provide an

email or phone number, register an account on the venue owner’s online service to

using a third-party authentication provider such as Facebook or Google. The data

gathered during authentication can provide an insight into customer segments

and behavior. The portal page that users interact with when signing in to the

Wi-Fi network is also a valuable communication channel that can be utilized for

information or product recommendations.

The company Walkbase has started a project to develop an in-house solution for

providing a Wi-Fi portal system that can integrate with a multitude of Wi-Fi access

points from different vendors. The goal of this thesis is to develop a proof-of-

concept (POC) Wi-Fi portal service which can be incorporated into the Walkbase

Audience Intelligence product, enabling a direct-to-consumer marketing channel

for venue proprietors such as retailers and quick service restaurants. The proof-

of-concept includes an editor for creating and editing portal pages, a system to

manage and assign them to different locations and Wi-Fi access points, and the

necessary software infrastructure to render and serve the portals. A complete

product will support Wi-Fi access points from multiple manufacturers, however,

the proof-of-concept will focus on Cisco Meraki access points. Gathering of data

and providing analytics are not included in the proof-of-concept, but will be im-

plemented in future versions.

2

Figure 1.1: A Wi-Fi portal is a way to authenticate and communicate with users that
connect to a public Wi-Fi network. Users interact with the portal in the form of a
webpage on their device.

There are two different users referred to in this thesis. The end user is a user that

interacts with a Wi-Fi portal page while connecting to a Wi-Fi network. A typical

end user is an individual visiting a store or other public space. The other user is

an individual who creates and manages Wi-Fi portals with the solutions created in

this thesis. This person is typically working in a support role for a company that

provides the portal system, or in a role at a retailer that involves editing the portal

content.

3

1.1 Background

1.1.1 Walkbase Analytics

Walkbase analytics [4] is an in-store analytics solution that provides venue pro-

prietors with the tools to understand how their customers behave in the physical

space. It makes it possible to make data-driven decisions and adapt for sales per-

formance and customer loyalty. Walkbase analytics aggregates data from Wi-Fi,

Bluetooth beacons and other in-store sensor technologies. The Walkbase dash-

board is the main tool with which venue proprietors interact with Walkbase An-

alytics. The dashboard provides a summary of locations and key performance

indicators in one place as well as fine-grained analytics. A promotional image for

the Walkbase Analytics dashboard can be seen in Figure 1.2.

Figure 1.2: Promotional image for the Walkbase Analytics dashboard.

Walkbase Audience Intelligence (WAI) adds a CRM (customer relationship man-

agement) and marketing layer to the Walkbase Analytics Product. Walkbase Audi-

ence Intelligence helps venue operators understand their customers by providing

deeper knowledge about visiting patterns by customer segments. It also adds the

4

possibility to communicate with customers through a variety of channels. Personas

can be created that represent a specific customer segment. These personas can be

used as target groups in campaigns to send marketing messages to through email,

SMS, push notifications, and third-party marketing solutions.

The Wi-Fi portal solution is planned as an addition to the Walkbase Audience

Intelligence package. It will allow retailers to keep track of how their Wi-Fi is used

and gain a better insight into their customer base and customer behavior. It can

also provide new channels for retailers to communicate with their customers, such

as providing information about bonus programs or acquiring customer contact

details through the portal page. Figure 1.3 displays a promotional image for WAI

in the Walkbase Analytics dashboard.

The existing Walkbase products already utilize Wi-Fi access points for in-store an-

alytics, which makes a portal system a natural extension of the current product

offerings. In contrast to standalone portal systems, an in-house system can eas-

ily be integrated with the rest of Walkbase analytics products. The data gathered

through the portal system can be used together with the currently available ana-

lytics data to provide an even deeper insight into how customers behave in retail

locations. The portal system is also a potential marketing channel for WAI cam-

paigns. The WAI campaigns feature is a tool that allows targeting specific personas

with marketing messages through available channels.

5

Figure 1.3: Promotional image for Walkbase Audience Intelligence in the dashboard.

1.1.2 Wi-Fi Portal

A Wi-Fi portal, commonly referred to as a captive portal or splash page, is a web

page that users are required to interact with to gain access to a public Wi-Fi net-

work. The interaction required to gain access to the network ranges from simply

viewing the page and agreeing to an end-user license agreement to paying for

access to the network. When the required interaction is completed, the user is

allowed to access the network. In addition to authentication, the portal page can

hold any other information desired by the operator of the Wi-Fi portal, such as

information about the venue or advertisements.

Most devices today automatically check for Wi-Fi portals when they connect to a

Wi-Fi network and can redirect the user to a Wi-Fi portal browser page for au-

thentication. They do this by performing a DNS (domain name system) check

to a known domain after connecting to a network. Apple iPhone devices use

captive.apple.com [5] and Android devices use connectivitycheck.gstatic.com [6][7]

and a few other domains. If the client device receives an HTTP (HyperText Trans-

fer Protocol) [8] redirect response from the DNS check, it assumes the connection

is behind a Wi-Fi portal. An HTTP redirect is a special response to a request that in-

6

dicates that the client should continue to another location. The device then opens

a browser window with the Wi-Fi portal for the user to interact with. If the device

does not check for Wi-Fi portals or fails to open the portal automatically, it will

still be shown when a web page is requested with a browser on the device. This

works since any HTTP requests made while not authenticated will be redirected to

the portal page by the access point. Figure 1.4 provides a high level visualization

of the captive portal check flow. HTTPS (HyperText Transfer Protocol Secure) re-

quests are still an issue, since they can not be redirected. Internet draft RFC 7710

[9] contains a solution to this by adding Wi-Fi portal options to HTTP requests

to more reliably inform devices that they are required to authenticate through a

portal.

Figure 1.4: Client device captive portal check.

1.1.3 Wi-Fi Access Points

Wi-Fi access points are a central piece of a Wi-Fi system, and there are a variety

of manufacturers. A wireless network access point is a physical hardware device

that allows wireless devices to connect to a network. It exposes a Wi-Fi network

associated with an SSID (service set identifier) that the client devices can wire-

7

lessly connect to. The SSID is seen by users as the network name. The access

point can handle DHCP (Dynamic Host Configuration Protocol) and routing on

the WLAN (wireless local area network) and provide access for the connected de-

vices to other networks or the Internet. Contrary to a network router that creates

a local network and communicates with other networks, an access point extends

an existing network and gives connected devices access to that network. Access

points can be individually managed for personal use or centrally managed for en-

terprise solutions. For the proof-of-concept of the Wi-Fi portal solution, this thesis

will focus on Cisco Meraki [10] access points and how to configure them. Fig-

ure 1.5 displays a picture of such a device. The long-term goal is to support most

of the other common brands on the market.

Figure 1.5: The Cisco Meraki MR32 Cloud-Managed - wireless access point used for
the proof-of-concept version of the portal system.

8

1.1.4 Cisco Meraki Access Points

The Cisco Meraki access points are managed through a cloud-based Meraki dash-

board. The part of their network management that is relevant for this thesis is

the ability to configure Wi-Fi portals. The access points already have a portal

page feature built in, but also have the possibility to configure a self-hosted portal

[11]. The built-in portal feature allows for customizing a theme, a message, and

a logo. The self-hosted portal is what we are looking at in this thesis, to provide

venue proprietors with full control over what is shown and how data related to

the portals is used.

To configure a custom portal in the Cisco Meraki dashboard the system needs a

URL (uniform resource locator) that points to where the custom portal service is

running. The URL also needs to be whitelisted in the walled garden in the Meraki

dashboard. A walled garden allows for restricting access to a specific set of IP

addresses or hostnames [12]. Any additional sources that are used in the portal

page, such as third-party authentication, need to be whitelisted as well. If these

addresses are not whitelisted the client device will not be able to access them,

since this happens before the device is given unrestricted access to the internet.

The whitelisting can be done either with IP addresses or domain names.

When an unauthorized end-user device connects to a Cisco Meraki access point

configured to use a custom portal page, any HTTP requests are intercepted and

forwarded to the Meraki cloud service. The service then forwards the request to a

preconfigured URL that hosts our portal service. Figure 1.6 provides a visualiza-

tion of how the access point handles a connection request.

9

Figure 1.6: 1) A client device makes a request which is intercepted by the access point
and forwarded to the Meraki cloud service. 2) When the required interactions are
completed the Meraki cloud service notifies the access point that the client device is
allowed to access the internet. 3) The client device can now access the internet.

If the portal service implementation needs any additional information from the

end-user device, that information can be added to the preconfigured URL as ad-

ditional parameters. It is up to the portal page to manage authentication and

interaction with the user. When the user has completed the required interactions,

which might be signing in through a third party or simply clicking a button, the

Meraki cloud service notifies the access point that the user is authenticated and

the access point gives the user internet access. This process is described in depth

in chapter 2.

10

1.2 Goal and Validation Criteria

The goal for this project is to extend the existing Walkbase platform to include

the necessary tools and infrastructure for the creation and management of Wi-

Fi portals. The work includes both formulating the necessary functionality for a

minimum viable product (MVP) and creating the proof-of-concept solution where

a user can create and manage the WiFi portal content for Meraki access points.

The requirements for both the proof-of-concept solution and the MVP are listed

in section 1.3. The focus of the work is to build the framework for the Wi-Fi

portal and create the user interfaces. This work was done in collaboration with

other Walkbase team members, with for example the necessary APIs (Application

Programming Interfaces) being implemented by other developers based on the

requirements presented in this thesis.

We need to create a user interface for venue proprietors to control the content

and configuration of their Wi-Fi portals. A single proprietor might have multiple

locations that need customized content in their Wi-Fi portals. The configurations

need to be saved somewhere and retrieved when a portal is served, and for that

we need a storage solution for storing the portal configurations. To serve a portal

page there needs to be a hosted backend service that generates the portal HTML

[13] according to the saved configurations and serves it to the end user.

Based on the proof-of-concept solution, Walkbase will be able to evaluate the feasi-

bility and scope of work for creating a fully-fledged solution where the Wi-Fi portal

content and interactions can be in their entirety managed through Walkbase Au-

dience Intelligence portal. The scope of this thesis will, however, be limited to

the proof-of-concept solution. The MVP solution requirements are listed here to

provide a complete picture of all the required components and functionality.

11

1.3 Project Requirements

1.3.1 Portal Format

The portal, or the configuration for a portal, needs to be created, stored, retrieved,

and edited. The configuration will be stored in the existing Walkbase infrastruc-

ture and accessed through an API created specifically for the portal service. The

storage and API are created by other parts of the team at Walkbase and are not

covered in depth in this thesis. While the portal editor is not concerned by the

format in which the configuration is stored in the backend, the format received

from the API should be a JSON (JavaScript Object Notation) object containing all

the necessary information needed to render the portal page. The actual format of

the configuration is developed together with the team at Walkbase.

To be able to reach as large an audience as possible the webpage served to the

client device, hereby referred to as portal page, needs to be lightweight and load

reasonably fast even on old and outdated devices. To make these design decisions

we need to find out which browsers and devices are used and what limitations they

have. In section 2.1 we will look at browser and device statistics with a focus on

statistics gathered from the US market, since that is where the first customers will

be. We will also look at European and world-wide statistics where relevant.

1.3.2 Portal Editor

The portal editor is the tool used by venue proprietors to create and customize

the look and feel of their Wi-Fi portals. The editor will be incorporated into the

existing Walkbase dashboard, hence the same frameworks that are used in the

dashboard will be used to create the portal editor. A requirement for the editor

is that it is a WYSIWYG (what you see is what you get) editor. This means that

there needs to be a live preview of the portal that updates when the configuration

changes, so that it matches what the real portal looks like.

12

1.3.3 Authentication

The portal will allow users to authenticate through third-party authentication such

as Facebook, Instagram, Twitter, Linkedin, and Google, or email and SMS. For the

proof-of-concept version of the the portal only Facebook authentication will be

implemented. It should be possible to implement the other third-party authenti-

cations in a similar way once one of them is implemented.

1.3.4 General Requirements

The technologies chosen should work well with the current infrastructure used for

Walkbase products. Incorporating new technologies or programming languages

would require them to be substantially better than the currently available alterna-

tives to incorporate into the current technology stack used at Walkbase. The solu-

tion is aimed to work on the types of mobile devices and operating systems with

a large enough user base to capture the majority of users. The devices, browsers,

and operating systems to support should be based on usage statistics; there is no

need to specifically target support for a device if it is no longer commonly used by

end users.

1.3.5 Portal Content Editing and Creation Requirements

These requirements were provided at the start of the project and other require-

ments might arise during development. The requirements are given from a user

interface standpoint. Although not directly mentioned in the requirements, the

listed requirements imply that the features they describe should be supported in

the APIs as well. All of the requirements listed in Table 1.1 and Table 1.2 are rel-

evant for the MVP and a majority, but not all, are relevant for the POC. They are

split up between the management of portals and the editing of a portal.

In the portal management tool, a user of the portal system, such as a venue oper-

ator, needs to be able to create a new portal and define a descriptive name for the

13

portal. Allowing custom images to be uploaded and possibly edited is a part of the

MVP, but for the POC it is enough to provide a predefined set of images to choose

from in the editor. After having created a portal, it should be possible to open it

again and edit it. It should also be possible to delete or archive portals that are no

longer needed.

The editor should be a WYSIWYG editor with at least the feature set described

here. The portal should be visually customizable by allowing for either creating or

selecting a theme that includes colors, fonts, and other visual aspects. For the POC

it is enough to be able to customize the visuals, while predefined themes to choose

from are only required for the MVP. Sign-in options need to be customizable as

well, with the possibility of selecting from a list of available sign-in options. There

needs to be a gallery view for images from which they can be added to the portal

page in a desired location. There should be at least one area in the page where the

user can freely add content such as text. A requirement for the MVP but not the

POC is to simulate different types of screens in the editor preview, to give a preview

of what the portal will look like on a phone, tablet, and computer screen.

Table 1.1: Requirements related to the management of portals

Management requirements

1 Create new portal A user should be able to create a new
portal through the portal management
interface.

2 Name a portal A user should be able to add and change
the name of a created portal.

3 Upload images A user should be able to upload images
in the portal management interface and
use uploaded images in created portals.

4 Open existing portal for editing A user should be able view and edit al-
ready created portals.

5 Delete a portal A user should be able to delete or archive
created portals.

14

Table 1.2: Requirements related to the portal editor

Portal editor requirements

6 A content area with WYSIWYG
type editor

The editor should be a WYSIWYG type
editor. The user should see a real or sim-
ulated preview of the portal.

7 Selecting a dedicated area for
sign-up options

The user should be able to select where
on the page the sign in options should be
displayed.

8 Place images The user should be able to place images
on the portal page and specify size and
position.

9 Choose or create a visual theme The user should be able to create or
choose a visual theme to style the portal
in a desired way.

10 Simulate different device types The editor should be able to simulate
different screen types such as mobile,
tablet, and desktop in the preview.

1.3.6 Portal Assignment Requirements

The portal assignment system will not be implemented for the POC, but as it is

necessary for the MVP, the requirements listed in Table 1.3 to provide a complete

picture of the planned system, even though it is outside the scope of the POC

created in this thesis. For the POC the portal assignment system will be substituted

by manually assigning portal URLs (Uniform Resource Locator) to access points in

the Meraki cloud service.

The functionality of the portal assignment system consists mainly of assigning

created portals to Wi-Fi access points in physical locations. It should be possible

to assign a portal to a specific venue or a whole region or group of venues, instead

of having to assign it to every access point in a venue. In Walkbase systems, a

venue refers to a physical location with Walkbase solutions installed. It should

be possible to enable and disable assigned portals. It might not be desirable to

always have the portal accessible by customers, hence, it should be possible to

15

set active hours for a portal. The MAC (Media Access Control) addresses of the

access points are already used and available in Walkbase systems, therefore, using

the MAC address to identify which venue or region an access point belongs to and

which portal it should use can be figured out based on the MAC address for the

MVP instead of a hardcoded URL as in the POC.

Table 1.3: Requirements related to assigning portals to Wi-Fi access points in physical
locations

Assignment requirements

11 Connect a portal to venues If a portal is assigned to a venue, it
should be assigned to all access points in
the venue.

12 Connect a portal to regions Is a portal is assigned to a region, it
should be assigned to all access points in
venues in that region.

13 Enable/Disable a portal It should be possible to enable and dis-
able a portal access by venue. If a portal
is disabled the public Wi-Fi will be un-
available until it is enabled.

14 Choose active times for a portal It should be possible to enable and dis-
able a portal according to a schedule.

16

2. Design Considerations

This chapter discusses the different alternatives for the implementation. Possible

solutions range from using modern frontend frameworks; such as Angular [14] or

simply pure JavaScript, to managing the rendering of the application on the server.

The portal editor will be written in Angular, since it will be a part of the Walkbase

dashboard, which is made in Angular. With the portal editor, venue proprietors

must be able to define a configuration for their portals. The configuration consists

of authentication options, styles, colors, texts, and possibly images used in the

portal. For the editor to be a WYSIWYG editor, a preview of the portal in the

editor needs to update in real time when settings are changed. How the portal

adjusts to the changes depends on which technologies were chosen to create it. If

the portal is rendered on the client device, it can be included and served with the

dashboard, whereas if it is rendered on the server, the editor can either run the

real portal in a frame in the editor or use a mock portal that just mimics the look

and feel of the real one.

2.1 Browser Usage Statistics

Statistics for browser versions and devices are gathered from Statcounter Global

Stats [15]. Statcounter is a web analytics service which has tracking code run-

ning on over two million sites globally. For this project, the statistics are used to

determine if there are any common limitations in devices that might access the

Wi-Fi portal and how that impacts the decisions made for the project. Figure 2.1,

Figure 2.2, and Figure 2.3 display the collected data for browser, Android, and iOS

versions.

17

Figure 2.1: The browser usage for the US, the EU, and worldwide.

Figure 2.2: Android version statistics in the US, the EU, and worldwide.

Figure 2.3: iOS version statistics in the US, the EU, and worldwide

18

From Figure 2.1, we can see that the Chrome browser has an overwhelming ma-

jority, with Safari for iPhone and iPad in second place. The few top used browsers

already cover enough of the market not to need to go deeper into the limitations of

the browsers with a smaller market share. If there is any uncertainty during devel-

opment of how well a specific CSS (Cascading Style Sheets), JavaScript or HTML

feature is supported on older devices, it should be checked and possibly avoided

if there are better supported features that can be used instead. Figure 2.2 and

Figure 2.3 cover the distribution of Android and iOS versions. The oldest Android

version with any notable representation is 4.4 Kitkat, which is not supported by

some of the alternatives discussed in the next section. For iOS, an overwhelming

majority of devices are running one of the three latest versions of the operating

system and should not present any legacy-related support issues for the portal

development.

2.2 Evaluation of Technological Alternatives

The technologies listed in this section are the alternatives for creating the portal

itself. They are gathered based on existing knowledge within Walkbase and are

also limited by what can be integrated into the current infrastructure at the com-

pany. Some noteworthy technologies that have been left out are Node.js, Vue.js

and React. Node.js is a JavaScript runtime environment that executes JavaScript

on the server, but which does not fit into the current infrastructure. Vue.js and

React are both quite similar to Angular, which is already used within the company,

hence Angular is preferred if such a solution is selected. Some of the listed tech-

nologies include both backend and frontend solutions. Any alternative that only

includes one of these would have to be combined with a compatible match.

2.2.1 Angular Ccomponent

Creating the portal in Angular is an obvious alternative to consider, since some of

the existing Walkbase products are written in Angular. It would require no new

19

technologies to be learned and maintained by Walkbase developers. Since the

dashboard that the portal editor will be a part of is written in Angular, the WYSI-

WYG part of the editor for portals could be easily implemented by including the

actual portal Angular component in the editor, passing it the configuration object

to be rendered live in the dashboard. Angular is also one of the popular frontend

frameworks [16] and allows for more advanced features to be implemented in

the future, if the need should arise. The drawback of using Angular is the limited

official browser version support [17] and the fact that a fully-fledged frontend

framework such as Angular can be heavy on the client device compared to less

complex alternatives. Only the latest versions of major browsers are officially sup-

ported. On Android devices, the official support goes as far back as KitKat (4.4)

which was released in October 2013. The Android versions older than KitKat only

stand for 1.16 percent, as can be seen in Figure 8. Support on iOS is worse where

only the two latest major versions are supported, which leaves out about seven

percent of iOS users, as can be seen in Figure 9. The term “supported” in Angular

assures that new versions of Angular are tested in those browsers and operating

systems, although they might work adequately in older versions as well, but there

is no guarantee of that.

2.2.2 HTML With Pure JavaScript

Pure JavaScript [18], often referred to as vanilla JavaScript, is JavaScript without

additional frameworks. Refraining from modern frameworks and their advanced

features would allow JavaScript to be run in almost any browser, even as far back

as Netscape. Some users choose to disable JavaScript in their modern browsers to

prevent all types of tracking enabled by JavaScript. Going down this road leaves

out all nice-to-have and quality-of-life features provided by modern frameworks.

This alternative could be combined with a backend solution that would handle the

generation of the portal page, leaving out the need for advanced features of large

frameworks.

20

2.2.3 HTML Without JavaScript

Supporting exactly all browsers is only possible to do without any JavaScript at

all. This requires the use of server-side rendering to apply the configuration for

the portal. Leaving out JavaScript also leaves out third party authentication op-

tions that do not have a JavaScript-free alternative for their authentication page,

although the JavaScript-powered authentication options only need to be left out

for those users who have disabled JavaScript in their browsers. This solution

would leave all the interactivity of the portal to be handled by the backend.

2.2.4 JQuery 1.x

JQuery 1.x [19] could be used as a compromise between pure JavaScript and a

modern framework. JQuery 1.x is the first major version of JQuery, which was

developed for browsers that today are considered old. It is still used today to

make web applications with support for legacy browsers. JQuery is a JavaScript

framework that simplifies HTML document traversal and manipulation for the de-

veloper, without forcing or even encouraging the use of specific programming pat-

terns. JQuery is a good option if the frontend requires more advanced features that

are tedious to create with only JavaScript without supporting frameworks.

2.2.5 Hugo

Hugo [20] is a static site generator written in Golang [21]. It allows rendering the

HTML webpage on the server instead of using JavaScript frameworks that put a

larger load on the client device. After a quick prototype, it became clear that Hugo

was not a good choice for the requirements of this project. Hugo works by creating

static HTML files every time there is a change in the content. Since the portals need

to be edited and saved, to then be fetched from a database would require keeping

track of any changes in the configurations and somehow triggering a rerender of

the HTML files.

21

2.2.6 Django

The Walkbase administration tool is written in Django [22], which means no new

backend technologies would be required if the portal should be written in Django.

Django is a web framework written in python. Django is a large robust framework

with a big feature set. With features relating to most parts of web development it

claims to be scalable from small to large projects. The portal page itself is a very

minimalistic project compared to large data-driven websites. Since the services

handling and storing the data for the portal system are separate from the service

providing the user interface, the large set of features provided by Django might

not be necessary.

2.2.7 Golang

Golang [21] is already used in the Walkbase backend and it can be incorporated

into an existing Walkbase project without the need for supporting new technolo-

gies. The Golang template packages [23][24] provide data-driven templates for

generating text and HTML output. The Golang text/template package implements

data-driven templates for generating textual outputs based on a data structure.

The Golang html/template package wraps the text/template package for protection

against HTML injection. Many Walkbase services are already written in Golang

and Golang has strong acceptance within the company.

2.2.8 Selected Alternative

With server-side rendering it is possible to keep the state and logic on the server-

side instead of having to do it in JavaScript on the client device. Not having to

run JavaScript on the client device also removes any compatibility issues with

devices that do not support or have limited support for JavaScript. If the logic

that would require JavaScript to run on the client device can be executed on the

server instead, more possible points of failure on unknown devices are moved

to a controlled environment. Considering that, only the alternatives with server-

22

side rendering solutions remain for consideration. The remaining contenders are

Django and Golang with the template packages. Both of those alternatives are

good options for the project, moving as much of the logic as possible from the

frontend to the backend. There is no clear stronger alternative between those two.

With Django being a full stack framework while the portal service is a relatively

simple service, we decided to use Golang with the Golang template packages.

With the majority of the logic moved to the backend there is no need for a complex

framework on the frontend. The frontend will simply run the HTML generated by

the Golang template packages and if any need for interactivity arises it can be

solved with vanilla JavaScript. Some third party authentications might require

their own JavaScript bundles to be included, which are discussed more in sec-

tion 2.3.

2.3 Authentication

For the proof-of-concept of the portal; only Facebook authentication will be sup-

ported, together with basic email and SMS forms. Email and SMS will be available

as options in the user interface but will not send any actual emails or text mes-

sages.

An issue for email- and SMS-based authentication is that a user might not always

have access to these services to receive a verification code. It is possible to whitelist

email traffic to allow a user to access emails before authenticating through the Wi-

Fi portal, although this is not always desired. For the proof-of-concept, both SMS

and email will just require a basic sanity check of the format instead of sending an

actual verification code.

To notify the access point that the chosen authentication process is completed,

the portal redirects the user to a URL provided by Meraki that tells Meraki that

the user should get access to the internet. This URL is added to the request that is

forwarded to the portal URL when an unauthenticated user tries to make a request

through the access point.

23

For third-party authentication, the access points need to be configured to let re-

quests through to domain names used by the third-party authentication. This is

done by whitelisting the relevant authentication URLs in the Meraki dashboard

walled garden.

Facebook provides two ways of doing third-party authentication in browsers. The

recommended way is to include the Facebook JavaScript SDK (software develop-

ment kit) in the page and manage authentication through the APIs in the SDK.

The other way to provide Facebook authentication is to manually build a login

flow based on redirects [25].

When implementing Facebook authentication in the recommended way using the

SDK, I noticed that Firefox and possibly other modern browsers block the Facebook

SDK as a part of content blocking. The content blocking is intended to protect

users from excessive tracking and harmful content. Therefore, I had to implement

a manual flow instead.

The Facebook SDK provides a user interface for users to sign in with Facebook and

handles the communication with Facebook. When setting up the manual flow no

external JavaScript needs to be included; instead, the authentication is managed

by sending the user to a Facebook sign-in page (Figure 2.4) hosted by Facebook.

When the user has signed in with a Facebook account, the sign-in page sends the

user back to the initial page with the required information.

To start the manual login the user is redirected to a Facebook authentication ad-

dress that takes three parameters, client_id, redirect_uri, and state. The ID is the

app identifier that can be found in Facebook’s developer dashboard. This requires

a developer to sign up for a Facebook developer account [26]. The redirect URI is

the address where the user will be redirected after a successful or failed sign-in.

This page will have to handle the success or failure to sign in with an appropriate

response. The state parameter is there for the portal page to keep track of the

state, such as any user or session identifiers necessary to identify the user through

the redirects. There are also optional parameters, response_type and scope. Re-

24

sponse_type is used to determine if the data included when redirected back occurs

in URL parameters or fragments. Scope is a list of permissions requested by the

portal page, the default permissions provide access to the public Facebook pro-

file and friends list. To check if a user has canceled the sign-in, check for error

parameters which are error, error_reason, and error_description.

Figure 2.4: The Facebook login page to which a user is directed to authenticate with
Facebook.

2.4 WYSIWYG Editor

A WYSIWYG editor (what you see is what you get) is an editor that provides a

preview of how the edited content will be displayed in its published environment.

The preview can be an exact match or a very close resemblance. There are three

possible ways to implement the WYSIWYG editor for the portal page, depending

on the technologies used to create the portal. The first alternative is to load in the

actual portal in a frame in the preview area. To be able to show the real portal page

in a frame the configuration of the portal needs to be passed to the service that

serves the portal. This requires that the portal backend either supports applying a

configuration per request, or that a mode for editing is supported where the edited

configuration is saved in the same way as when saving a portal and then loaded

in the preview frame. In that case, the portal would not need to be aware that it

is showing a preview and would just behave the same as it would in a production

environment.

25

The second alternative is to only use the same or similar HTML template and CSS

for both the preview and the portal. The preview would then only mimic the look

and feel of the portal. This alternative avoids the added complexity of the other

solutions; instead, it requires maintaining duplicate versions of the visual parts of

the portal.

The last alternative is to have a portal that supports both server side and client-

side rendering. This could be done by using server side JavaScript to apply the

configuration for the portal while also being able to run the same code client-side

in the dashboard. This alternative is heavily restricted by the choice of technology

for creating the portal.

2.5 Portal Communication Flow

This section describes the full portal communication flow, from the end-user device

through the Wi-Fi access point to the portal service and other services involved.

It starts when the end-user device connects to a public Wi-Fi network and sends

out an HTTP request to a known address. The Wi-Fi access point to which the

device is connected forwards the request to the Meraki cloud service which, in

turn, forwards it to the preconfigured URL pointing to the portal service. The

portal service generates a portal according to the portal configuration and serves

it as an HTML web page to the client device. The user can now see the portal and is

able to select a way to authenticate. If the user selects a third-party authentication

method, such as Facebook, the user is sent to that service for authentication. If the

user selects a non-third-party authentication method, such as email or SMS, the

relevant form is fetched from the portal service.

When the user has provided the relevant information for authentication, the in-

formation is sent to the portal service for validation. The user is then redirected

to the base_grant_url, which is a URL defined by Meraki cloud service to which a

user will be directed to be granted internet access. When the user accesses that

URL, the Meraki cloud service notifies the Wi-Fi access point to allow the client to

26

access the internet. The user is then redirected by the Meraki cloud service to the

continue_url which is the success page of the portal. Figure 2.5 describes the full

portal communication flow.

Figure 2.5: The portal communication flow, starting from the first connection and
ending with internet access for the user.

27

3. Architecture and Implementation

The implementation consists of parts developed in this thesis and parts that are

only touched on in the thesis and developed by other parts of the team at Walk-

base. The portal editor, which will be incorporated into the Walkbase Dashboard,

and the portal service that serves the portal to the client device are implemented

in this chapter. The APIs and the underlying storage are developed by other mem-

bers of the team at Walkbase and incorporated into existing backend solutions.

Figure 3.1 describes the portal editor, service, and APIs to provide a high-level

representation of the implemented solution.

Figure 3.1: High-level overview of the project.

28

3.1 Portal

3.1.1 Configuration

The portal, or the configuration of a portal, needs to be stored in a format that is

both easy to edit in the portal editor and easy to render. Backwards compatibility

also needs to be considered when extending the portal configuration in the future.

The configuration used when editing and rendering the portal is a JSON object

with all the necessary information. In this section, we will discuss the different

attributes in the configuration.

There are four attributes used for identification in the configuration. These are

id, uuid, revision_id, and current. The ID is used for internal identification within

the portal system. The uuid stands for universal unique identifier and is a 128 bit

number used for external identification such as when specifying which portal an

access point should request. The reason for using a uuid is that a larger identifier is

less error prone than a simple short number. It is difficult to generate a valid uuid

by mistake or by guessing, compared to a normal identifier that usually starts from

zero and is incremented by one for each new entry. The revision_id is used to keep

track of revisions of the portal configuration. A new revision_id is generated every

time the portal is edited and saved. This allows for going back to a previous version

of the configuration, if any unwanted changes are made. The current attribute

simply indicates if the configuration is the current one, since newer versions are

kept even if the configuration is reverted to a previous one.

The attribute which contains configurations for visual style is layout_options. For

the initial version it will contain max_width, padding, margin, background_color

and background_image. These are used for the overall layout and are discussed

more in the context of live preview. It is likely that more attributes will be needed

in the future and adding more attributes will not break backwards compatibil-

ity.

29

Each authentication option will have its own top-level attribute in the portal con-

figuration. The initial version will only have the attributes email_auth, SMS_auth,

and facebook_auth, since those are the initially supported authentication options.

Each one of these contains an attribute enabled that indicates whether that authen-

tication option is enabled for the portal or not. In case there are any additional

settings needed for future authentication options, they can be added as attributes

to that option. The email_auth attribute contains additional attributes for how

the email address should be validated, but the validations are not implemented

at the time of writing. The options are check_valid_email, check_valid_mx and

check_query_smtp_server. They indicate whether the email should be validated at

all on the server and, if so, how it should be validated.

The content_blocks attribute contains settings for the blocks that form the visual

layout of the portal. It contains a list of blocks that are rendered from the top down

in the order they appear in the list. Each block has attributes that indicate the type

of block and the contents of that block. The block_type attribute can be image,

text, or sign_in. The other attributes on the block are text and image; they only

contain information if it is relevant for that specific block type. The text attribute

has a text_type and a content attribute. The text_type attribute indicates which type

of content is present in the content attribute, which is either text or HTML. The

distinction between text and HTML is there because HTML can contain JavaScript

and should not be injected into a webpage without first checking for malicious

content, while raw text cannot be executed and is shown as it is. The image

attribute contains image information if the block is an image block. It contains

the ID of an image in the database and the visual settings for the image, such as

width, height, and alignment.

The remaining attributes are metadata for the configuration. The archived at-

tribute is used for archiving portals if they are no longer needed. By archiving a

portal instead of just deleting it, no data is truly lost and the configuration can

still be unarchived. The configuration also has attributes for name and notes. The

remaining attributes, created and updated, contain the date and time of when a

portal is created and the last time it was updated.

30

3.1.2 Portal Backend Service and Template

The backend that serves the portal is written in Golang with Go templates. It

generates a server-side dynamic page for each state in the portal, based on the

portal configuration. Any necessary session data is stored in memory on the server

and identified with a session ID that is bundled with each request. The different

states are represented with different URL paths. A URL path is the part of the URL

trailing the host name in the URL as seen in Figure 3.2.

Figure 3.2: The building blocks of a uniform resource locator.

A router invokes the correct Golang function based on the HTTP method and the

request URL path as seen in Figure 3.3. These functions check credentials, if rele-

vant, and generate an HTML portal page matching the current state of the applica-

tion. In the graph below, it is worth noting that the email and SMS authentication

requests use POST while the Facebook authentication request uses GET. The rea-

son for this is that email and SMS are sending form data from the portal page

while the Facebook authentication request is a forward from the Facebook manual

authentication flow with the necessary information as GET parameters.

31

Figure 3.3: When the server receives an HTTP request, a router invokes the correct
function based on HTTP method and URL path of the request.

The HTML page is generated with Go templates. Every state in the portal uses the

same main template as base. The main template generates the page by looping

over the list of content_blocks in the portal configuration. Each block is rendered

according to the settings for that block. All blocks except for the sign-in block are

rendered in the same manner for each state in the portal. In the default state, the

sign-in block lists the sign-in options enabled in the configuration. When a user

selects one of the options, the user is taken to the relevant path for that option.

If email or SMS is selected, the sign-in block shows a form to enter the relevant

information. If a third-party sign-in is selected, either a third-party SDK will be

used to authenticate the user or the user will be redirected to that third-party

for authentication. After submitting the login form or completing the third-party

authentication process, the user is taken to the relevant path that validates the

data and forwards the user to a success page.

32

3.2 Portal Editor

The portal management is incorporated into the existing Walkbase Dashboard.

The portal management UI (user interface) consists of three different views. The

first view is the portal listing that provides an overview of existing portals and the

possibility to make new ones. The second view is the editor view that allows edit-

ing the configuration of a portal in a WYSIWYG editor. The third view, the portal

assignment view, will not be implemented for the proof-of-concept version of the

system. The portal assignment view will allow portals to be assigned to different

customer sites and access points. At the time of writing the necessary services

for assigning portals are not yet planned, however, the portal system works by

manually configuring the access points as described in chapter two.

As mentioned, the portal editor will be incorporated into the existing Walkbase

dashboard. Therefore, it will use the same technologies and frameworks as the

dashboard. In practice, this means that the editor will be implemented as an An-

gular component. The portal editor will be incorporated into the dashboard under

a portals tab in the Audience Intelligence page. Figure 3.4 shows a screenshot

of the portal editor as it looks in the dashboard at the current stage of develop-

ment.

33

Figure 3.4: A screenshot of the full page in the Walkbase dashboard, the screenshots
later on that do not include the full dashboard are cropped to only show the relevant
part of the dashboard.

3.2.1 Portal Listing

The first view in the portal editor is the portal listing view. This is where the

portals available to the currently signed-in user are listed. The user in this case

is a user of the Walkbase analytics dashboard, the portal editor component does

not need to manage user permissions since this is done behind the API used in the

dashboard. In this view, the user is able to see a list of portals, open a portal to

edit it, and add new portals. The portal listing can be seen in Figure 3.5.

34

Figure 3.5: The portal listing view provides an overview of created portals and allows
for the creation of new ones.

3.2.2 Settings

The settings in the editor are almost directly mapped to the configuration. The

settings are separated into categories in an accordion style list. The details cate-

gory contains the name and toggle boxes for the available authentication options.

The background category contains a setting for the background color. Once image

uploads are implemented it will support choosing a background image as well.

The images category contains the available images which can be dragged and

dropped onto the portal in the edit mode. The advanced settings category con-

tains padding, margins, and maximum width. The integration category contains

the URL needed to set up and access the portal. A collection of screenshots of the

different settings can be seen in Figure 3.6.

35

Figure 3.6: Collection of screenshots of the different settings.

3.2.3 Images

For the proof-of-concept, the image gallery only consists of a default set of stati-

cally hosted images. These images are referenced with an ID. The long-term goal

is to allow for uploading and possibly editing images in the editor. The images can

be dragged onto the portal in the edit mode. The specific settings for an image

can be changed by clicking an image, after which the image settings appear in the

top bar. The size of the image is relative to the width of the portal page. An image

with a width of 100 percent would cover the whole width of the screen, up to the

maximum allowed width of the portal. The alignment options specify whether the

image should be left, right, or middle aligned. Figure 3.7 displays the different

image settings.

36

Figure 3.7: Three images added in the editor with different settings. Left, middle and
right alignment in different sizes.

3.2.4 Preview

There are two preview modes in the portal editor: edit mode and live mode. The

edit mode allows for editing the portal by dragging and adding blocks, with visual

cues on what changes different settings make. The live preview mode loads the ac-

tual portal from the URL where the portal is served. It is loaded in an HTML iframe

element as a separate page. An iframe is an HTML element that allows rendering

a different webpage within a webpage. The settings are appended to the request

as a GET parameter and used by the portal instead of loading a saved portal from

the database. Since the portal is the actual portal running in an iframe, it allows

clicking through the different steps as it would in production. What the live mode

lacks in comparison to the edit mode are the visual cues for what has changed

and the controls for adding and removing blocks. When settings are edited from

the side panel, the page will simply reload with the new configuration. It is not

37

possible to drag and drop components onto the preview area when running it in

live mode. Figure 3.8 and Figure 3.9 display the live and edit preview modes in

the editor.

Figure 3.8: Live mode in the portal editor, a real instance of the configured portal is
loaded in an iframe.

38

Figure 3.9: Edit mode in the portal editor, a close approximation of the real portal.
The edit mode allows for editing the content directly in the preview.

To simulate different devices the editor supports scaling the preview area to simu-

late a phone, tablet, or desktop resolution. To be able to simulate a high resolution

in the relatively small preview area, the preview is scaled to a specific factor for

each size. The CSS transform scale [27] is used to scale the preview down while

keeping the aspects it has in the intended resolution. Screenshots of the preview

mode can be seen in Figure 3.10.

39

Figure 3.10: The preview buttons in the user interface with the corresponding preview
sizes, scales, and screenshots.

The edit mode creates a preview of what the portal will look like, with the correct

styles and content, as well as incorporated controls to add, remove, and edit items.

It is not a perfect match, since it is just a representation of what the page will

look like on an end-user device. The edit mode allows dragging and dropping

components to add and move them. If an image block is clicked in the preview,

the settings for that image are shown in the toolbar. If a text field is selected, the

text editor tools are shown in the toolbar. To add a sign-in or text block while in

edit mode, the user can drag one in from the top menu bar to the desired position

in the preview. Image blocks can be dragged in from the image tab in the side

menu. When hovering over a block, icons for removing and moving the block are

displayed in the top corners, as seen in Figure 3.11. Only one sign-in block can be

added to a portal.

40

Figure 3.11: An image is hovered in the edit view, controls for moving and removing
the image are visible.

Tinymce is a text editor that is used for editing the text blocks. It allows for

formatting text in a way similar to common text editors. It generates HTML and

styling for the edited content. When a text block is selected in the preview, text

formatting options for the Tinymce editor are displayed in the top bar and the text

can be edited and styled as in a normal text editor. Figure 3.12 displays a text

block being edited.

41

Figure 3.12: A text block is selected. The text can be edited in the portal preview and
styled from the toolbar.

The edit mode supports showing visual cues when settings are changed. When

the input element for paddings (Figure 3.13), margins (Figure 3.14), or maximum

width (Figure 3.15, Figure 3.16) is active, the preview will highlight the area that

is changing. This helps in cases where the changes might not be obvious due to

other settings, such as changing padding if the width is set in such a way that the

empty space on the sides is wider than the changing padding.

42

Figure 3.13: Padding is the minimum empty space between the screen edge and the
content.

Figure 3.14: The chessboard pattern between sections visualizes the margins chang-
ing. The margins are empty space between the sections.

43

Figure 3.15 and Figure 3.16 show a relatively narrow and a wide width respec-

tively. Using a narrow width will ensure that the content is laid out in a similar

way on both mobile and larger devices, while a wider width will allow the con-

tent to use the available screen real estate in a more efficient manner on larger

screens. A narrow width will leave the sides empty on a large screen, with the

selected background. On large screens, if a very wide width is used, images might

become very large and shorter texts might turn into one line instead of a few lines.

It is important to use the preview modes for both smaller and larger screen sizes

when using wider maximum widths.

Figure 3.15: The chessboard pattern visualizes the area outside of the content. The
content is restricted by the max width parameter. In this figure the max width is
relatively narrow.

44

Figure 3.16: A relatively wide max width gives large images on wide screens and text
sections might be displayed as a single line due to the available width.

45

3.2.5 APIs

To be able to save and edit the portals created in the editor there needs to be

a number of new API endpoints for portal-related requests. The new endpoints

for saving and editing portal content are implemented by other members of the

team at Walkbase. Figure 3.17 lists the new endpoints with the corresponding

HTTP method, URL, and result. The URLs are prefixed by WAI, since they are

incorporated into the same APIs used for Walkbase Analytics Intelligence. The

GET method requests allow for fetching all the images and portals or a specific one

by ID. The POST and PUT method request takes a portal or image configuration

in the form of a JSON object as request payload. If it is a POST request a new

configuration is saved with a new ID, if it is a PUT request the configuration is

saved with the same ID but the revision_id is incremented and the new revision is

set as current.

Figure 3.17: New endpoints implemented by the Walkbase team.

46

4. Validation and Conclusion

The project aimed to produce a proof-of-concept version of a Wi-Fi portal system

to allow Walkbase to evaluate the feasibility and scope of work for creating a fully-

fledged Wi-Fi portal solution. The produced POC in its current state serves as a

good base from which to develop the final product. The POC contains all the

necessary building blocks except for the portal assignment functionality which is

needed to be able to deploy the portal on a larger scale.

The POC covers the laid-out requirements well and also includes some features

that were not included in the original POC requirements. Portals can be cre-

ated, edited, and archived. The content of a portal can be customized freely with

both text and predefined images. The MVP will still require backend and front-

end support for uploading and managing custom images. The editor contains the

requested functionality, although the layout and UX (user experience) need addi-

tional fine-tuning and optimization. Only Cisco Meraki access points are supported

at the time of writing, but other common manufacturers need to be supported as

well. The urgency of additional hardware support depends on what hardware is

available or installed at venues where the portal system is taken into use. Addi-

tional third party authentication options need to be added, as well as completing

the email and SMS authentication systems. Table 4.1 lists the remaining tasks

and an estimation of the workload for each task. Beyond the POC requirements

the portal editor also has modes for previewing the portal simulated for different

screen sizes, which was a requirement for the MVP.

47

Table 4.1: Scope of work to implement a minimum viable product based on the proof-
of-concept. An estimation of the percentual workload per task.

Task Workload Description

1 Management tool 30% The tool for assigning portals to access
points needs to be created.

2 Image gallery 15% APIs and UI for uploading custom im-
ages in the portal editor.

3 Editor UX 20% The layout and user experience need to
be fine-tuned.

4 Additional hardware
support

15% Support for additional access point
manufacturers.

5 Third party authenti-
cation

10% Additional third party authentication
options, such as Google, Twitter, Apple.

6 Email and SMS au-
thentication

10% Email and SMS authentication need to
be finalised.

The project was evaluated by the team at Walkbase, with a verdict available in

Appendix A. The verdict concluded that the solution fulfilled the expectations of

a portal system. The main evaluation consisted of setting up the system and hav-

ing users connect to the Wi-Fi network though the portal. The devices used for

testing were the same set of devices that are used for testing web development

within the company, with both Apple and Android devices from a wide range of

generations. While not as in-depth as quantitative testing, qualitative testing with

users simply using the system with different devices was considered sufficient to

evaluate the proof-of-concept. Based on the testing the system was deemed ready

to be used for demo purposes, for example when competing for RFPs (request for

proposal).

With the limited laid-out requirements the project consisted to a large extent of

exploratory work. When looking back at the development process it is clear that

the defined requirements could have been expanded to provide a more extensive

picture of the target product. Based on the provided requirements and in-person

discussions the team had a clear vision of the target solution and the vision did not

change during the development process. If the project had involved outside parties

48

in addition to the in-house team it would have been a higher priority to establish

well documented goals at the start of the project. While the project in this case

was a success, having limited requirements is not a method I would recommend

outside of development within well-established teams.

While the development process did not include any outside influence through sur-

veys or user testing, this lack of outside influence is not a notable issue since the

project focused on the technical solutions for the system. The produced POC can

in turn be used for such surveys and customer demos to tailor the product in the

future. Having a product that is modifiable and expandable provides a good base

for rapid development based on feedback and future customer requirements.

To continue the work, I would suggest starting with the management tool, since

it involves parties throughout the company, together with a considerable amount

of planning. The APIs for the image gallery can be developed separately or in

tandem with the image gallery features in the UI. The user interface of a prod-

uct such as the portal editor needs to be maintained and developed continuously

to cater to customer needs, hence the user interface can very well be developed

further together with customers that can provide feedback based on their own

requirements.

This thesis focused on the technical part of creating the Wi-Fi portal system, but

to reach the full potential of the system, the data it gathers need to be incorpo-

rated into Walkbase Analytics and Walkbase Audience Intelligence. The additional

data gathered from end-users will provide an even deeper insight into customer

behaviour. The Wi-Fi portal page will also provide a good communication channel

for reaching end-users with venue information and marketing material.

49

5. Summary in Swedish - Svensk sammanfattning

Design och Implementation av ett Wi-Fi-portalsystem

Introduktion

Wi-Fi-portaler utgör standarden för hur man autentiserar användare i publika

nätverk. En Wi-Fi-portal är den webbsida som en användare ser när hen ansluter

till ett publikt nätverk som kräver autentisering. Autentiseringen kan variera från

att endast godkänna ett slutanvändaravtal till att logga in med ett socialt me-

diekonto eller köpa tillgång till internet. Avhandlingen redogör för processen för

skapandet av en sådan portal och tillhörande infrastruktur. Målet med avhan-

dlingen är att skapa en prototyp för Wi-Fi portalsystemet, men den behandlar

även kraven för en fullständig produkt. I prototypen ingår ett verktyg för att

editera portalsidor, ett system för att hantera portaler och ansluta dem till Wi-Fi

accesspunkter och den nödvändiga mjukvaruinfrastrukturen som krävs för att ren-

dera och leverera portalerna. En färdig produkt behöver stöda accesspunkter från

de största tillverkarna, prototypen kommer dock endast fokusera på accesspunkter

av märket Cisco Meraki.

Wi-Fi-Portal och Accesspunkt

En Wi-Fi accesspunkt är en fysisk hårdvaruenhet som möjliggör trådlös anslutning

till ett nätverk. För en slutanvändare syns nätverket som ett Wi-Fi-nätverk med

ett SSID (Service Set IDentifier) som syns som ett nätverksnamn. En accesspunkt

skapar inte ett eget nätverk såsom en router utan utvidgar ett existerande nätverk

och ger anslutna enheter tillgång till det nätverket. En accesspunkt kan konfig-

ureras enskilt för personligt bruk eller centralt för företagsbruk. För prototypen

av portalsystemet kommer accesspunkterna hanteras manuellt, men för en full-

ständig produkt behövs ett system för att konfigurera Wi-Fi-portaler för en hel

verksamhetsplats där portaler ska användas.

50

Cisco Meraki-accesspunkten som används för projektet konfigureras via ett moln-

baserat Meraki-användargränssnitt. I användargränssnittet finns möjligheten att

konfigurera en adress varifrån Wi-Fi-portalen serveras. När en slutanvändare

ansluter till ett trådlöst nätverk med en mobilenhet försöker mobilenheten kon-

trollera ifall nätverket ligger bakom en portal eller inte. Det gör enheten genom att

göra en HTTP-förfrågan till en specifik webbadress. Ifall nätverket ligger bakom

en portal kommer accesspunkten omdirigera förfrågan till portalens adress och

mobilenheten har då verifierat att nätverket ligger bakom en portal. Ifall mobilen-

hetens förfrågan omdirigeras öppnar mobilenheten webbsidan från den slutgiltiga

adressen, det vill säga portalen, i en webbläsare för att låta slutanvändaren ut-

föra nödvändig autentisering. Ifall mobilenheten inte registrerar en omdirigering

öppnas inte en webbläsare och nätverket kan användas som vanligt.

Kravspecifikation

Teknologierna som väljs för att skapa portalsystemet bör fungera väl tillsammans

med redan existerande infrastruktur vid företaget. Att ta i bruk nya teknologier

eller programmeringsspråk kräver att de är märkbart bättre än de teknologier som

redan används inom företaget. Lösningen bör fungera väl även på äldre mobilen-

heter för att maximera den nåbara användarbasen. Det är dock inte ett krav att

stöda enheter som har en mycket liten användarbas ifall enheterna i fråga kräver

lösningar som gör systemet mer komplext.

Designprocess

En handfull teknologier har valts ut baserad på popularitet inom branchen och

kännedom inom företaget. Teknologierna kan grupperas som sådana som renderar

portalen på servern och sådana som renderar portalen i webbläsaren på mobilen-

heten. Hur portalerna sparas och hanteras är beroende av vilka teknologier som

används för att skapa portalsystemet. Portalediteraren ska bli det verktyg som

används för att skapa och editera portaler. Portalediteraren kommer att integr-

51

eras i företagets existerande användargränssnitt och kommer därför vara baserat

på samma teknologier som använts där. Den kommer byggas som en Angular-

komponent och ska även kunna lista existerande portaler och arkivera gamla eller

oanvända portaler. Av teknologierna som utvärderats för själva portalen valdes

programmeringsspråket Golang med sina text- och HTML-mallpaket. Denna lös-

ning möjliggör rendering på servern och minimerar därför möjliga problem som

kan uppkomma vid rendering på en mobilenhet. Själva portalkonfigurationen blir

ett JSON-objekt som innehåller all information som behövs för att rendera por-

talen. Portalkonfigurationen skickas från portalediteraren till en databas, varifrån

den begärs av Golang-applikationen som renderar och serverar portalen till slu-

tanvändaren.

Slutsats

Resultatet av avhandlingen fyller kraven för en prototyp bra och även en del av

kraven för en fullständig produkt. En hel del fortsatt arbete krävs dock för att nå

slutmålet, i nuläget saknas hela den automatiserade hanteringen av accesspunk-

ter, vilket kan kräva en betydande del arbete att implementera för att stöda flera

tillverkares hårdvara. Användargränssnittet i portalediteraren har alla de listade

funktionerna för prototypen, men den grafiska delen och användarvänligheten be-

höver utvecklas för en slutgiltig produkt.

52

References

[1] GSMA, “The mobile economy 2019,” GSMA, 2019.

[2] Niall McCarthy, “The cost of mobile internet around the world,” Forbes,

2019. [Online]. Available: https://www.forbes.com/sites/niallmccarthy/

2019 / 03 / 05 / the - cost - of - mobile - internet - around - the - world -

infographic/ (visited on 05/18/2021).

[3] J. L. Lloyd Gofton, “Purple wifi – using wifi in public places,” 2014. [On-

line]. Available: https://www.realwire.com/writeitfiles/Using-WiFi-

in-public-Places-Survey-data-overview-Purple-WiFi.pdf (visited on

05/18/2021).

[4] Stratacache Oy. (2021). “Audience intelligence,” [Online]. Available: https:

//www.walkbase.com/audience-intelligence/ (visited on 05/18/2021).

[5] Apple Inc. (2018). “Use captive wi-fi networks on your iphone, ipad, or

ipod touch,” [Online]. Available: https://support.apple.com/en-us/

HT204497 (visited on 05/18/2021).

[6] Google LLC. (2021). “Captive portal api support,” [Online]. Available: https:

//developer.android.com/about/versions/11/features/captive-

portal (visited on 05/18/2021).

[7] L. Miarka. (2020). “Dns fix to keep android splash page and the captive

portal notification active,” [Online]. Available: https : / / socifi - doc .

atlassian.net/wiki/spaces/SC/pages/94371841/ (visited on 05/18/2021).

[8] Mozilla and individual contributors. (2021). “Http,” [Online]. Available:

https://developer.mozilla.org/en- US/docs/Web/HTTP (visited on

05/18/2021).

[9] E. K. W. Kumari. (2019). “Captive-portal identification in dhcp / ra draft-

ekwk-capport-rfc7710bis-02,” [Online]. Available: https://tools.ietf.

org/html/draft-ekwk-capport-rfc7710bis-02 (visited on 05/18/2021).

[10] Cisco Systems, Inc. (2020). “MR - Wireless LAN,” [Online]. Available: https:

//documentation.meraki.com/MR (visited on 05/18/2021).

53

https://www.forbes.com/sites/niallmccarthy/2019/03/05/the-cost-of-mobile-internet-around-the-world-infographic/
https://www.forbes.com/sites/niallmccarthy/2019/03/05/the-cost-of-mobile-internet-around-the-world-infographic/
https://www.forbes.com/sites/niallmccarthy/2019/03/05/the-cost-of-mobile-internet-around-the-world-infographic/
https://www.realwire.com/writeitfiles/Using-WiFi-in-public-Places-Survey-data-overview-Purple-WiFi.pdf
https://www.realwire.com/writeitfiles/Using-WiFi-in-public-Places-Survey-data-overview-Purple-WiFi.pdf
https://www.walkbase.com/audience-intelligence/
https://www.walkbase.com/audience-intelligence/
https://support.apple.com/en-us/HT204497
https://support.apple.com/en-us/HT204497
https://developer.android.com/about/versions/11/features/captive-portal
https://developer.android.com/about/versions/11/features/captive-portal
https://developer.android.com/about/versions/11/features/captive-portal
https://socifi-doc.atlassian.net/wiki/spaces/SC/pages/94371841/
https://socifi-doc.atlassian.net/wiki/spaces/SC/pages/94371841/
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://tools.ietf.org/html/draft-ekwk-capport-rfc7710bis-02
https://tools.ietf.org/html/draft-ekwk-capport-rfc7710bis-02
https://documentation.meraki.com/MR
https://documentation.meraki.com/MR

[11] ——, (2020). “Configuring a custom-hosted splash page to work with the

meraki cloud,” [Online]. Available: https://documentation.meraki.com/

General_Administration/Cross- Platform_Content/Configuring_a_

Custom-Hosted_Splash_Page_to_Work_with_the_Meraki_Cloud (visited

on 05/18/2021).

[12] ——, (2020). “Walled garden,” [Online]. Available: https://documentation.

meraki.com/zGeneral_Administration/Cross-Platform_Content/Walled_

Garden (visited on 05/18/2021).

[13] WHATWG. (2021). “Html standard,” [Online]. Available: https://html.

spec.whatwg.org/ (visited on 05/18/2021).

[14] G. Inc. (2021). “Https://angular.io/,” [Online]. Available: https://angular.

io/ (visited on 05/18/2021).

[15] StatCounter. (2021). “Statcounter global stats - browser, os, search en-

gine including mobile usage share,” [Online]. Available: https : / / gs .

statcounter.com/ (visited on 05/18/2021).

[16] Y. Xing, J. Huang, and Y. Lai, “Research and analysis of the front-end frame-

works and libraries in e-business development,” in Proceedings of the 2019

11th International Conference on Computer and Automation Engineering,

ser. ICCAE 2019, Perth, WN, Australia: Association for Computing Machin-

ery, 2019, 68–72, ISBN: 9781450362870. [Online]. Available: https://

doi.org/10.1145/3313991.3314021.

[17] Google Inc. (2021). “Angular - browser support,” [Online]. Available: https:

//angular.io/guide/browser-support (visited on 05/18/2021).

[18] JavaScript.com. (2021). “Javascript.com,” [Online]. Available: https://

www.javascript.com/ (visited on 05/18/2021).

[19] OpenJS Foundation. (2021). “Jquery,” [Online]. Available: https://jquery.

com/ (visited on 05/18/2021).

[20] Hugo Authors. (2021). “Hugo documentation,” [Online]. Available: https:

//gohugo.io/documentation/ (visited on 05/18/2021).

[21] Golang.org. (2021). “The go programming language,” [Online]. Available:

https://golang.org/ (visited on 05/18/2021).

54

https://documentation.meraki.com/General_Administration/Cross-Platform_Content/Configuring_a_Custom-Hosted_Splash_Page_to_Work_with_the_Meraki_Cloud
https://documentation.meraki.com/General_Administration/Cross-Platform_Content/Configuring_a_Custom-Hosted_Splash_Page_to_Work_with_the_Meraki_Cloud
https://documentation.meraki.com/General_Administration/Cross-Platform_Content/Configuring_a_Custom-Hosted_Splash_Page_to_Work_with_the_Meraki_Cloud
https://documentation.meraki.com/zGeneral_Administration/Cross-Platform_Content/Walled_Garden
https://documentation.meraki.com/zGeneral_Administration/Cross-Platform_Content/Walled_Garden
https://documentation.meraki.com/zGeneral_Administration/Cross-Platform_Content/Walled_Garden
https://html.spec.whatwg.org/
https://html.spec.whatwg.org/
https://angular.io/
https://angular.io/
https://gs.statcounter.com/
https://gs.statcounter.com/
https://doi.org/10.1145/3313991.3314021
https://doi.org/10.1145/3313991.3314021
https://angular.io/guide/browser-support
https://angular.io/guide/browser-support
https://www.javascript.com/
https://www.javascript.com/
https://jquery.com/
https://jquery.com/
https://gohugo.io/documentation/
https://gohugo.io/documentation/
https://golang.org/

[22] Django Sofrware Foundation. (2021). “The web framework for perfection-

ists with deadlines | django,” [Online]. Available: https://www.djangoproject.

com/ (visited on 05/18/2021).

[23] Golang.org. (2021). “Package template,” [Online]. Available: https : / /

golang.org/pkg/text/template/ (visited on 05/18/2021).

[24] ——, (2021). “Package template,” [Online]. Available: https://golang.

org/pkg/html/template/ (visited on 05/18/2021).

[25] Facebook. (2021). “Manually build a login flow - facebook login,” [Online].

Available: https://developers.facebook.com/docs/facebook-login/

manually-build-a-login-flow/v2.3 (visited on 05/18/2021).

[26] Facebook. (2021). “Facebook for developers,” [Online]. Available: https:

//developers.facebook.com/ (visited on 05/18/2021).

[27] Mozilla and individual contributors. (2021). “Scale(),” [Online]. Available:

"https://developer.mozilla.org/en-US/docs/Web/CSS/transform-

function/scale()" (visited on 05/18/2021).

55

https://www.djangoproject.com/
https://www.djangoproject.com/
https://golang.org/pkg/text/template/
https://golang.org/pkg/text/template/
https://golang.org/pkg/html/template/
https://golang.org/pkg/html/template/
https://developers.facebook.com/docs/facebook-login/manually-build-a-login-flow/v2.3
https://developers.facebook.com/docs/facebook-login/manually-build-a-login-flow/v2.3
https://developers.facebook.com/
https://developers.facebook.com/
"https://developer.mozilla.org/en-US/docs/Web/CSS/transform-function/scale()"
"https://developer.mozilla.org/en-US/docs/Web/CSS/transform-function/scale()"

A. Wi-Fi Portal Evaluation

56

Wi-Fi Portal Evaluation
The system that Tobias built was part of a bigger project where we are building a suite
of solutions for customer engagement. Wi-Fi portals being one of the key pieces.

The challenges of building a portal system that can be used on multiple Wi-Fi systems
are many. Each mobile device and web browser have different ways of handling the
portal sign-in process, which makes creating a cohesive experience difficult. In addition
to this, each Wi-Fi system has a different method for handling Wi-Fi sign-on.

The solution that was delivered as part of the work done for this thesis more than
fulfilled our expectations of a portal service with user customizable landing pages and
different authentication methods. We were able to run the solution in our demo
environment and demo it to internal stakeholders and potential customers. The project
is built so that it can be expanded to additional Wi-Fi systems if the need arises. For
Stratacache the main outcome from this project is that we now have a system that we
can use to compete for RFP’s where this is a requirement.

Björn Sjölund

VP Product & Data

Stratacache Oy

www.walkbase.com

	Introduction
	Background
	Walkbase Analytics
	Wi-Fi Portal
	Wi-Fi Access Points
	Cisco Meraki Access Points

	Goal and Validation Criteria
	Project Requirements
	Portal Format
	Portal Editor
	Authentication
	General Requirements
	Portal Content Editing and Creation Requirements
	Portal Assignment Requirements

	Design Considerations
	Browser Usage Statistics
	Evaluation of Technological Alternatives
	Angular Ccomponent
	HTML With Pure JavaScript
	HTML Without JavaScript
	JQuery 1.x
	Hugo
	Django
	Golang
	Selected Alternative

	Authentication
	WYSIWYG Editor
	Portal Communication Flow

	Architecture and Implementation
	Portal
	Configuration
	Portal Backend Service and Template

	Portal Editor
	Portal Listing
	Settings
	Images
	Preview
	APIs

	Validation and Conclusion
	Summary in Swedish - Svensk sammanfattning
	Wi-Fi Portal Evaluation

