On Measuring Randomness

Karel Lang 37754

Master's thesis in computer science
Supervisor: Jan Westerholm
Faculty of Science and Engineering

Abo Akademi University

Table of Contents

F N 0] 1 v To] AP 2
I TNEEOAUCTION ...ttt ettt et e e et e st e e bt e e sbe e seessbeessseesbeenssesnsaenseeanseessesnseens 3
1.1 Randomness and Quantum RandOmNESsc..ccovuiiieiuiiiiiiieieiiieeeiee ettt eeereeeeareeens 4
1.2 True Randomness and AXIOMIS.cccuueieruiieeiuireeiiiiesitieeeieeesreeesseeesseeesseeessseeessseesssseesssseesssseeans 5
1.3 Types Of RANAOMNESSoooviiiiiieiieiiiciieeie ettt ettt e et eestaeesbeessaeensaesnaeenne 7
1.4 Explaining the Random SE@QUENCEcc.cevuiiiiieiiiiiiieiie ettt ettt e 10

2 Measuring RANAOIMNESScccveiiiiieiiiieeiieeesieeeiiee et eesteeeetaeeseaeesaaeessseeessseeessseeessseeensseeensseesnnns 12
2.1 Statistical Hypothesis TStccviiiiiiriiiiieiie ettt ettt e b e stee e beesaaeesseenenes 13
2.2 SigmMa and P-VAIUCSocuvieiiieiieiieee ettt ettt et et e b et e teeeaaeenneenneas 16
2.3 Inner workings 0f @ PRINGcc.oiiiiiiiiceeeeee et e 18
2.4 Defining @ 200d PRINGocouiiiiiiiieiecieese ettt ettt ettt et e sba e saeesseenenas 19

3 RANAOMNESS TESS ...eeuvvieiiieiiieiieiieeite ettt ettt ete et e et e e et eeabeeseeesseessaesssaesaeesseesaeensaenseeasseensnas 21
3.1 Defining a good Randomness Test.........c.coruiiiiiiiiiiiiiiieeieeee e 23
3.2 Pearson’s Chi-SQUATE TES......c.eevuieriiieiiieeieeiieete et et ete et e et e sereebeesteeebeessaeenseessnesnseenssesnseens 24
3.3 XOR SCIambIINg......ccccvieiiiiiieiieeie ettt ete ettt et s e beeseaeebeeesaeeseessaeenseessseanseesssesnseens 27

4 The SOftware, SPECTIICALIONeitiiiiieiieeie ettt ettt ettt et e et e et e et e e saeeenbeeseeas 31
4.1 The Software, IMPlementation..........ccc.eecuierieiciieiieeieerie ettt ere e e beeseeesreesaneesseenenes 32
4.2 The Random NUMDET GENETALOTSceecvieriierrieriieeieeneeeiteesieeteeseeeeseessaeeseesseesseesssessseensns 33
4.2.1 Congruential GENETALOTcoeiriiriirrieieet ettt ettt ettt sttt et ae e 33
4.2.2 RUNS GENETALOT ..eueviieiiieeiiieeiiieeitieeesiteeesiteeetteeseaeesseeeasaeesssaeessseesssseeessseesnsseesssseesnsseesns 35
4.2.3 Java Random NUmMDber GENETAtOrSccccueeeriiieeiiieeiiieeiieeeieeeeieeeereeesreeesreeesnseeennreeens 35
4.2.4 XOTShift GENETALOTSeeiuiieitieiiieeiieeie ettt ettt ettt et e st e et e et e et e e st e eabeesseeenseesnnas 38
4.2.5 Permuted Congruential GENETALOTcccuieeiiiieeiiieeiieeeiee et e eieeeeaeeesreeesreeeseaeeenareeens 39

4.3 The RANAOMNESS TESESeiiiiiiiiiieeiiie ettt ettt tee e st e e st e e sbeeeeeseeenbeesnseesnnees 39
4.3.1 FrequenCY TEST ...ccuviiiiiiieeieeiee ettt sttt s 39
4.3.2 RUN Len@th TStueiiieiiiiiii ettt et e e e e e e eenseeenseeens 41
4.3.3 ComMPATISON TESL.....uiiieiiiiiiiieeiieesieeeetee et et e et e et e e et e e st e e sabeeessbeeesaseeessseesnsseeennseeens 43
4.3.4 RANKS TESTveieieieiieeiieiie ettt ettt ettt et e st et e et e e bt e et e e bt e enbeeseesabeesneeenseenenas 43
4.3.5 One-Dimensional Random Walk TeSt..........ccccuieeiiiiiiiieeiieeeieecie e e 44

B] 1 LSRR 46
5.1 Patterns found in Linear Random Number Generators............cocueeveerieeniienieeniienieeieesie e 47
5.2 Unknown Probability DIiStribULIONScccuvieeiiiieiiiieeiieeeiie et seae e 52

6 FUIther RESEATCHccueiiiiiiiieciiece et e e e st e e st e e ssaeeenaeeenseeenneeas 53
7 Summary in Swedish — Métandet av STumpmassighet...........ccceeviiiiiieniiiiienieeee e, 54
B RETEIEIICESenieeiie ettt ettt et e et e et e e et e e et e e ateessteeabe e sbeeabeenneeenbeenseeenneens 57

Abstract

Is it possible to determine what randomness is let alone measure and classify it? Can random
number generators be tested and then compared with each other? How can we know if a
randomness test is useful? These are questions that are thoroughly studied in this thesis.

One of the main goals of this thesis is to explain interesting details that can be found in
randomness and to study how pseudorandomness compares to real randomness. Alongside this
paper, a program will be created in order to study and measure pseudorandom number generators
and randomness tests. The program will allow the combination of random number generators and
randomness tests in order to study any hidden similarities of different generators and tests. The
classification of randomness and randomness tests will also be studied.

The first chapter reviews the more philosophical discussions concerning randomness and its
types. The second chapter is slightly more practical, as it explains in which ways randomness can be
measured and defines what a good pseudorandom number generator should look like. The second
chapter also reviews concepts and terminology which are crucial in order to understand later
chapters. The third chapter studies randomness tests and tries to define an ideal randomness test.
The fourth chapter explains the software that is created along with this paper to study randomness
tests and pseudorandom number generators and the fifth chapter shows the results of experiments

done with the software.

1 Introduction

Randomness offers unique concepts for study. It is a purely mathematical concept, as it can
be defined precisely within specific axioms, yet the act of measuring randomness (or the lack of it)
can only be done through statistical methods, the same methods that are used in applied
mathematics. It is rather interesting that some concepts within mathematics need to be dealt with in
the same manner as observations of the real world. Using statistical methods on perfectly defined
mathematics sounds like a contradiction, as one can only obtain an approximation from statistics,
yet it is required in order to study randomness. Randomness by definition cannot be studied
analytically, since it cannot even be generated with a function.

Randomness is useful in almost all sciences. Examples include simulations, quantum
mechanics, realistic terrain generation, cryptography and much more. Where statistics is needed,
randomness is often also needed. Since randomness is used often, researching it should be of at least
some importance. This is where random number generators (RNG), pseudorandom number
generators (PRNG) and randomness tests appear.

As creating true randomness is difficult (if not impossible) the use of PRNGs is popular.
These PRNGs are algorithms which create seemingly random numbers, but they are completely
deterministic. In most, if not all use cases, the use of a PRNG is preferred over the use of a true
RNG due to it being much faster for generating random numbers. It is also important that the
‘randomness’ of the PRNG should be as similar to real randomness as possible. The first PRNGs
were simple and fast but the output they generated was of poor quality. Some examples are the
Middle-square method [1] from 1951 or possibly earlier, Lehmer random number generator [2]
from 1951 and the Linear Congruential Generator [3] (LCG) from 1958. The LCG was thought to
be a very good PRNG as it passed all randomness tests but if values generated from an LCG are
mapped into two or higher-dimensional plots, the points will always fall into planes. A randomness
test called the Spectral test [4] was created just to study this behavior of LCGs in order to choose
better parameters for LCGs, as they were otherwise still good enough for most applications
requiring random numbers. Many applications require random numbers of better quality than what
any LCG can offer. Thus, the development of new PRNGs has not died out. It is an arms race
between PRNGs and randomness tests, which will most likely never end. This makes randomness
so fascinating and is part of the reason why I decided to write my paper about measuring

randomness.

1.1 Randomness and Quantum Randomness

For a commonly used word, defining ‘random’ is surprisingly difficult. For starters, something that
can be predicted is not random. Something that cannot be predicted would mean that there is no
inner process to it and no inner process would mean that it lacks the cause-and-effect relationship.
Therefore, randomness is above cause-and-effect. This is a good but not a perfect definition, as will
be later explained in chapter 1.2.

The day-to-day use of the word random consists of anything that we perceive to be random,
such as implausible events and rare occurrences. This is a fallacy, as the outcome of a random event
is no longer random. Even if we could say that the outcomes themselves are ‘random’, there is no
such thing as different amounts of randomness. Winning in the lottery is as ‘random’ as not winning
in the lottery, only the probability is different. Things that are deterministic but too complicated to
predict perfectly are also perceived as random, like the weather or a coin toss. As such, the common
use of the word random has very little to do with the scientific definition of it. Shortly explained,
the common use of the word random is for outcomes which are unlikely to happen and/or deemed
odd. What, then, is the scientific definition?

As with many fundamental properties of different sciences, the study of these properties is
akin more to philosophy than science, since the questions about these properties are often
impossible to answer. Examples of fundamental properties include causality in physics, axioms in
mathematics, computability in computer science and randomness in probability theory. Probability
theory uses randomness but how does it describe it? This will be studied chapter 1.2.

Even if we had an exact definition of randomness, this does not say that true randomness
exists in the real world. Current research in quantum mechanics does actually suggest that true
randomness exists [5]. There is an ongoing debate concerning the deterministic or nondeterministic
nature of the universe. However, it will still be impossible to prove that true randomness exists in
the quantum world, as hidden variables (of some level of complexity, which might as well be above
human understanding) would always be a possible explanation for the perceived randomness found
in quantum mechanics. There is also the possibility of someone inventing a test which would render
it impossible to explain the behavior with hidden variables. There is a multitude of possible
outcomes in the struggle to prove or disprove true randomness in quantum effects. Below are the
three different outcomes that I think are most likely to happen if we will ever advance in this matter.

1. A test is made which is then proven to render the existence of hidden variables
impossible.

2. We prove that such a test as explained in 1 is possible to make, but it will always remain

a non-practical test.

3. We prove that such a test cannot be made.
Of these three outcomes, the third one is most likely, as such a test seems implausible since it feels
similar in scope to the halting problem. Note that true randomness exists only if outcome one is

true. Even if outcome two is true, it does not mean that the result of the test is one or the other.

1.2 True Randomness and Axioms

Which are the basic properties of true randomness? How can we use the abstract concept of true
randomness in mathematics? In order to understand how randomness is used, we need to look at the
basics of probability theory, its axioms. Here are three of the five Kolmogorov axioms [6].

Axiom 1: P(A) >0, forallA€ F

Axiom 2: P(Q) =1

Axiom 3: P(AU B)=P(A) + P(B) forall A, B€ Fsuchthat AN B=0
Q is the sample space set, F is the event space set (powerset of Q), P is the probability measure and
@ is the empty set. Note that in his book, Kolmogorov specifies five axioms, but the first two are
often left out since they are definitions rather than axioms (the second axiom simply states that F
contains the set Q).

Interestingly, randomness is not defined in the axioms. Actually, the concept of randomness
is not even mentioned in the axioms, only probability is mentioned. This is because probability
theory does not need the concept of randomness to work. The system built on the three axioms
creates a branch of mathematics which can be seen as separate from randomness in the same way as
the Peano axiom of addition is separate from counting. The scientific definition of randomness
could then be something that satisfies the three Kolmogorov axioms.

The idea 1s that the Kolmogorov axioms are not the same as randomness, but they describe
the behavior of randomness perfectly. The Peano axiom of addition defines exactly that, addition.
Counting is not the same as addition, but it can be precisely defined by addition.

Note how this randomness that is tied to the three Kolmogorov axioms is above cause-and-
effect, but in an extremely precise way. Is it possible to define a type of randomness that is above
cause and effect but does not follow the Kolmogorov axioms? What sort of randomness would that
even be, and do we have any use for it?

Quickly glanced at the concept it seems that such randomness simply cannot exist. For
example, axiom 1 specifies that the probability of an event occurring must be larger or equal to

zero. If we were to break this axiom and claim that something has negative probability, what would

5

that even mean? Interestingly, negative probabilities have been studied since the 1930s [7] because
they seem to appear in, not surprisingly, quantum mechanics [8]. This led to the definition of the
quasiprobability distribution which allows the use of negative probabilities [7]. Note that in the
paper, the quasiprobability distribution does not yet have a specific name but is instead mentioned
as a wave function. However, even if there is some use of negative probabilities in quantum
mechanics, one could still ask, whether such a thing truly exists or whether it is only a neat way of
calculating something that would otherwise be too difficult to work with. This will inevitably lead
to the question of whether mathematics itself truly exist. Do negative values exist, what does it
mean to have a negative number of apples, let alone an imaginary number of apples? Thus, the
question of how real negative probabilities are will be left alone.

If axiom 1 can be left out, what about axiom 2 and 3? Even if we were to deal with negative
probabilities, this would break neither of the two remaining axioms, not to mention that breaking
the two remaining axioms would be even more exotic compared to the first one. Imagine that you
are throwing a die; if the probability of obtaining an outcome would not be 1, what would the
remaining part be? If this remaining part were the probability of not obtaining an outcome from
throwing the die, one could add this to the probabilities as it would also be an outcome. Would not
the chance for that happening be zero? Thus, we would immediately have a paradox if we were to
not follow axiom 2. However, should not choosing 1 to represent absolute certainty have to be an
arbitrary decision? Thus, if we were to say that absolute certainty would be represented by 2, what
would happen concerning the mathematics of probability theory?

If we have a fair coin, the chance of obtaining heads would be 1 and for tails it would also
be 1. Thus, the chance of obtaining two heads in a row would be 1 * 1 = 1, but what would that
mean? We know that the chance should be one fourth. Furthermore, if we were to sum the sample
space set according to axiom 3, we would obtain 4 which is more than what axiom 2 allows as
absolute certainty should be 2. What went wrong? In fact, we made a mistake in the calculation, as
we did not take into account that absolute certainty is 2. Our calculation should actually have been
(1/2)*(1/2)=0.25 to obtain the correct answer. However, the value 0.25 is correct only when
P(Q) = 1, so what happened here? As we did the multiplication, we actually calculated “one of two”
times “one of two” which would then be “one of four”. Since P(Q) = 2, though, we need to change
“one of four” into “x of two” to obtain the correct value. Thus, by dividing by two we obtain the
correct value, which is 0.5. All ratios remain the same if P(Q2) = 2, but the calculations are slightly
more tedious. Thus, P(Q) = 1 is not an arbitrary decision, but it is used because it is the easiest to
work with.

Overall, it seems that while working with randomness through probability theory, the

calculations do not require a definition for true randomness to work, but instead something that

seems to be similar to true randomness, until it is not when it comes to the quasiprobability
distribution. Thus, the concept of true randomness becomes even more difficult to define. One could
say that true randomness is something that we can only define by limiting what it is not. That is to
say, true randomness lies within the Kolmogorov axioms but its truest nature, about not following

cause and effect will always remain a mystery.

1.3 Types of Randomness

What does one mean by types of randomness, should something not be either random or not
random? This is surely true, when looking from the cause and effect point of view. Lumping
everything that is above cause and effect into the same group may be counterproductive.
Furthermore, what about randomness that is tied to cause and effect, can we even say that such a
thing is random? According to our definition at the beginning of chapter 1, it would not be random,
but something that is deterministic yet behaves as if it were random could still be useful. This
deterministic “randomness” is called pseudorandomness and it is useful in many sciences. It is the
randomness or lack of randomness of pseudorandom number generators that we mostly want to
measure with the use of randomness tests.

A pseudorandom sequence is a sequence that appears to be random but actually follows
some pattern. The term “appears to be random” is unscientific, as it cannot be defined, and as such,
any possible sequence that is not random can be seen as pseudorandom. Thus, everything that
generates outcomes can be placed in one of the two following boxes: random generators and
pseudorandom generators. The incremental algorithm is also a pseudorandom generator, albeit an
inferior one. Why is it inferior and can this “inferiority” be scientifically determined? Note that for
all scientific research, the results are never completely certain, meaning that we will require some
sort of cutoff point where we can conclude that a result is clear enough to claim it to be true. This
cutoff point for certainty is completely arbitrary and can be compared to the arbitrariness of when a
deterministic sequence is deemed to be random enough to be called pseudorandom. This is one of
the main questions that this thesis tries to answer, and the detailed analysis for this question can be
found in chapter 2.

We can divide randomness first into randomness and pseudorandomness. Randomness can
be further divided into definable and undefinable randomness. In order to understand what these
types of randomness truly are, we need to start from the lowest level. This would be the simplest

random generator. Note that we will be using numbers as the output to make the explanations easy

to understand.

What is the simplest random number generator? This would arguably be the generator that
generates a discrete uniform distribution consisting of two numbers: zero and one. The likelihood of
a zero is the same as a one, and it follows the Kolmogorov axioms. We will call this random number
generator Ro. One could argue that the continuous counterpart would be better since the discrete
form can only approximate a continuous value. However, infinite precision behaves in unintuitive
ways. Even if such precision could exist in the probabilities of half-lives and other quantum-related
randomness, it would be impossible to store the number since infinite precision leads to infinite data
and, thus, the discrete version is arguably more useful.

Note that the concept of randomness can be understood even without defining a specific
probability distribution. However, in order to make use of randomness, a probability distribution is
required.

With the random number generator Ry, it is possible to create almost any probability
distribution. This can be achieved by using a Turing machine to transform the output. Let us call the
set of all random number generators that can be imitated with our random number generator
“definable randomness”. Below are some examples.

We define the random number generator as the function Ro, where Ro will give as output a 0
or a 1. We now want to create the continuous counterpart of Ro, which we will call R;. R; will have
the output range [0, 1) (where [is the closed interval and) is the open interval). Since R is
continuous, we can only approximate its probability density function, but we can do so to any

precision we want.

Roa(N) = Y _ Ro*27*

PDF(R,) = I\IIi_Y)T.}OPDF(ROJ(N))
where PDF is the probability density function, lim is limit and)’ is summation. Note that PDF is a
function that runs the function that is given as input an infinite number of times and creates the
probability density function from that information.

We could split definable randomness into continuous and discrete definable randomness as
creating R with the help of R with infinite precision is a supertask. However, this would also mean
that we could not do anything with R due to R requiring infinite memory in order to handle its
output. A Turing machine is not capable of dealing with infinite data and, thus, it is more useful to
define imitation as obtaining any desired level of precision instead of using infinite precision.

Ro can also create any type of discrete distribution. Having an equal probability to obtain a
0, 1, 2 and 3 is trivial, since we can combine two Ry to produce this distribution. We set [0, 0] =0,

[0,1]=1,[1,0]=2and[1, 1]=3. We call this R> and its PDF can be created in the following way:

PDF (R2)=PDF (R *2+R1)

If we want to create an equal probability of obtaining a 0, 1 and 2, the process becomes more
complicated. One method would be to use the following method:

Ro2=Ri *2+R;

Ro 3=1f Ro 2 1s 3, generate a new Ro 2, otherwise return it.

PDF (R2)=PDF (Ro 3)

The main problem with this approach is that we cannot determine how long it would take for a
Turing machine to run this algorithm. If we are unlucky, Ro 2 could generate 3 multiple times in a
row, at worst, an infinite number of times. Therefore, another method must be found.

Is there another method? Each time we use Ro we will obtain one of two outputs, and no
matter how many times we run Ro we will always create a power of two number of possible
outputs. No matter what integer power of two we have, it is never divisible by three, meaning that
creating a perfect method is impossible. However, we can always approximate the output of R> to
any precision we want with the help of Ri:

PDF (R2) =PDF (Floor (R; *3))
where Floor is the floor function. The floor function rounds a given value down to the nearest
integer. Since we already know how to create R with the help of Ro, we can now conclude that this
is a valid way to approximate R using Ro.

Now that we have defined what “definable randomness™ is, the concept “undefinable
randomness” can be explained. The key difference is that in undefinable randomness the probability
distribution is incomputable. A simple example of a random number generator that would generate
undefinable randomness would be Ru:

Ru = 1 with the probability of Qu

Ru = 0 with the probability of 1 - Qu
where Qu is Chaitin’s constant [9] for some universal Turing machine U. A universal Turing
machine is a Turing machine which takes as input both a Turing machine and the input of the
Turing machine. PDF (Ry) would be undefinable, since Qu is an incomputable constant. We know
that Qu must be within]0,1[[10]. Therefore, Qu can be used to create a probability distribution for
Ru.

What makes this even more mind-boggling is that Chaitin’s constant itself is random [9].
Thus, the random number generator Ry is a random number generator with a random probability
distribution. This means that we could create the algorithm Ra(s).

Ra(s) = the s:th bit in Qu
Ra(s) has the state s, meaning that it is a random number generator with a state and its probability

distribution is also random, or is it? What can we know about PDF (Ra(s))? Interestingly, even if
9

we cannot calculate Qu we know that it is a normal number. This means that PDF (Ra(s)) is equal

to PDF (Ro). This is because a random decimal must, by definition, be normal.

1.4 Explaining the Random Sequence

Understanding what a random sequence is and what it is not is a daunting task due to all the
semantics that needs to be fully understood, yet it is crucial to fully comprehend random sequences.
In the paper “Randomness: quantum versus classical” [11], Andrei Khrennikov aims to explain the
basics of the classical theory of randomness and compare it to quantum randomness. One of the
goals of the paper is to demonstrate why it is necessary to distinguish between probability and
randomness. In chapter 2 of his paper, Khrennikov explains how some sort of “formal theory of
randomness and its interrelation with probability has to be developed” [4.5 page 3]. He further
states, as an example, that a sequence of bits which appears random could be the first digits of pi in
binary form. Generating a sequence of one hundred bits only to receive a string of ones does not

2100 gutcomes that exist.

seem random, yet it has the same chance of occurring as any other of the

It is easy to understand how one can claim that one sequence appears to be less random than
another, but this whole concept simply amounts to predetermined randomness tests and
retrospective randomness tests. In the same way as all numbers have some unique property to them,
so do random sequences. There is a countably infinite number of deterministic algorithms which
could create the same finite sequence of numbers. Thus, one could always invent an algorithm for
generating a finite sequence which makes the finite sequence appear nonrandom. This is, however,
only after the fact. If we were to come up with the deterministic algorithm in advance, it would be
far more surprising. If we in advance create some binary sequence of length one hundred and the
apparently random sequence that is then generated matches the sequence, it could, in some sense, be
seen as unlikely as a string of ones. However, if that sequence were generated without it being
specified in advance, the sequence would be unremarkable.

I aim to claim that determining if a finite sequence appears to be nonrandom should only be
done with randomness tests that have been chosen before seeing the sequence. In other words,
without randomness tests, all possible outcomes are equally ‘random’. The one hundred sequential
ones is not a special outcome if we have not predetermined what counts as a special outcome. Only
with context can we claim that an outcome is unlikely. The Kolmogorov complexity algorithm,
which is mentioned at the end of chapter 2 of Khrennikov’s paper, is simply a randomness test,

albeit slightly too effective for measuring the quality of PRNGs, not to mention that the algorithm is

10

also incomputable. The Kolmogorov algorithm will be discussed in detail in chapter 3.1.

Where this logic will not work are the infinite sequences. The chance of a random infinite
sequence to appear nonrandom is zero. This can be proven by thinking of an infinite random
sequence as a real number. As Cantor’s diagonal argument proves, the set of real numbers is
uncountably infinite. If a sequence appears nonrandom, there must be a way to prove that it is
nonrandom, meaning that an algorithm to verify this must exist. Since the set of all programs is
countably infinite (the set of all natural numbers is countably infinite, and each program can be seen
as a natural number), we can conclude that the probability of having an infinite sequence appear
nonrandom is zero. We can also conclude that the Kolmogorov complexity of a nonrandom infinite
sequence must always be finite, as an infinite program cannot be executed and therefore is
incomputable.

Chaitin himself remarks in his paper “A Theory of Program Size Formally Identical to
Information Theory” [12] on page 19 concerning random strings (which can be seen as sequences):
“In the case of infinite strings there is a sharp distinction between randomness and non-randomness.
In the case of finite strings it is a matter of degree”, where the method for measuring non-

randomness is in fact Kolmogorov complexity (which is called program-size complexity in his

paper).

11

2 Measuring Randomness

At first it may seem unreasonable to discuss measuring randomness. What is there to measure in
true randomness? The results would never change nor would they differ from any analytical
calculations. We do not need to measure true randomness, since it is already mathematically
precisely defined. However, as discussed earlier we are still unsure and will always remain unsure if
true randomness exists as something more than just an abstract mathematical concept. Thus, the
actual objective is not to measure randomness, but the lack of it. This can be done with the help of
randomness tests.

It is impossible to prove that something is random, but measuring the lack of randomness
could be done with the help of statistics. Thus, the goal of a randomness test is to measure the lack
of randomness in a sequence of numbers. A randomness test can be seen as a criterion that is well
defined. All a randomness test does is that it checks if the given sequence of numbers meets its
criteria. The measurement is done with the help of statistics. The output given by a randomness test
is a variable which is as random as the input the randomness test evaluates. The output variable is a
real value between 0 and 1 where the higher the value, the better the tested sequence of numbers
matches the criteria. Note that an output of 1 does not mean that the sequence appears to be random.
If the sequence truly were random, the output value should have a uniform continuous distribution
between 0 and 1. The output value tells how likely the outcome of the randomness test is, if the data
which was tested were random. Thus, the result of a randomness test should be different each time it
is used to test the same random number generator. This will be explained in depth in chapter 2.2.

Even if we can measure the lack of randomness, the output values will still only be
probabilities. As long as the sequence of random numbers could be generated by a true random
number generator, it is still possible that the sequence truly is random. A finite sequence that a true
random number could not generate cannot exist. We can always calculate the probability of a finite
sequence being created by a true random number generator to be above zero. Working with a
discrete uniform distribution, where the only outcomes are one and zero, we could always calculate
the probability for any sequence. As long as the sequence is finite, the chance of it happening is
above zero. Thus, even if we were given a sequence of ten thousand ones, we cannot be certain that
it is nonrandom.

This makes measuring the lack of randomness complicated. Ultimately, we can never be
sure of anything, yet we still need to conclude something. The same problem exists outside random
number testing. In any branch of science where experiments are done, the results can never be
certain. Due to all of the factors which influence the results of an experiment but cannot be

controlled, the results of most, if not all, experiments can never reach absolute certainty. A method
12

called the statistical hypothesis test is used to provide a sort of confidence. The statistical hypothesis

testing method is explained in the next chapter.

2.1 Statistical Hypothesis Test

In an experiment where absolute certainty cannot be achieved, a level of confidence can be used
instead. This level of confidence can be represented as a sigma or p-value. Sigma and p-value
represent more or less the same thing, but in opposite directions. The higher the sigma the higher
the confidence, and the lower the p-value the higher the confidence. They are explained in chapter
2.2 “Sigma and p-values” in more detail. For a statistical hypothesis test, we will need to define
what level of confidence we want to reach in order to accept the research data. This means that a
sigma or p-value needs to be defined before performing the statistical hypothesis test.

A statistical hypothesis test consists of a hypothesis that can be tested with research data.
The counterpart of the hypothesis is the null hypothesis. The null hypothesis is that the research
data lack the required statistical significance to reject our current conclusions and, therefore, we
should remain in status quo. Sigma and p-value can be seen as cutoff points. If we come to the
conclusion that our research data remained below sigma or above the p-value, we accept the null
hypothesis. If our research data were statistically significant enough to be above sigma or under the
p-value, we reject the null hypothesis. Below is an example of how to use the statistical hypothesis
test. This example is based on the discovery of the Higgs boson.

A team of researchers at CERN claimed that they have discovered the Higgs boson with the
significance level of five sigma. Note that this is not exactly how the discovery progressed, but this
explanation is sufficient as an example. The accepted significance level for such a discovery is four
sigma. This means that the discovery had a statistical significance high enough to reject the null
hypothesis. The null hypothesis was that they did not make a new discovery. This does not mean
that the team discovered the Higgs boson, it only means that their findings are statistically
significant enough to conclude that they did, in fact, discover the Higgs boson.

For all statistical hypothesis tests there are four different outcomes. See the table below.

Data were not significant Data were significant enough to
enough to reject the null reject the null hypothesis
hypothesis

Higgs boson does not exist™* The right outcome Type I error

Higgs boson does exist™* Type II error The right outcome

13

In the Higgs boson case, we are in the column ‘Data were significant enough to reject the null
hypothesis’, but we will never know in which row we lie. We can only become more certain about it
being the bottom row. In the table, we also see two types of errors: the Type I error where
something which is not true is believed to be true, and the Type II error where something which is
true is not believed to be true.

It is important to understand that the Type I error is much more harmful for scientific
research than the Type II error. Experiments can be seen as building blocks, which new experiments
rely on. It is also important to note that accepting the null hypothesis does not mean that we become
more certain of the null hypothesis being true, it only means that the data were not statistically
significant enough to reject it. The stricter the sigma or p-value we require, the smaller the chance is
that we end up in the Type I error cell. The more data we use in the test, the smaller the chance is
that we end up in the Type II error cell. Thus, in order to minimize the chances of making the wrong
conclusion, we need as much data as possible and a strict sigma or p-value.

Note that the table contains asterisks. This is because the rows “Higgs boson does not exist”
and “Higgs boson does exist” are not entirely correct. The observed outcome could occur even if
the Higgs boson did not exist. Something else could be the cause for the discrepancy between the
simulated data, which lacks the anomaly, and the generated data. Thus, one could change “Higgs
boson does not exist” to “discrepancy does not exist” and “Higgs boson does exist” to “discrepancy
exists”.

Randomness tests also use the statistical hypothesis testing method. A randomness test
outputs a p-value which tells how close the sequence of numbers used as input was to reaching its
criteria. The p-value is then compared to a predefined cutoff point. If the p-value is below the cutoft
point, we can conclude that the sequence of numbers used as input matches the criteria of the

randomness test and, thus, the null hypothesis is rejected.

Below is the statistical hypothesis test outcome table used by randomness tests:

Accept the null hypothesis test
(conclude that the data were not
statistically significant enough
to be believed to be
nonrandom)

Reject the null hypothesis test
(conclude that the data were
statistically significant enough
to be believed to be
nonrandom)

Data is random

The right outcome

Type I error

Data is not random

Type II error

The right outcome

There is, however, a significant problem concerning this table, and it is that a randomness test can

never meet the requirements of the statistical hypothesis test shown in the table. No matter how

14

good a randomness test is, it is always possible to construct a nonrandom sequence which will meet

its criteria.

Imagine a perfect randomness test which can be run on a Turing machine. In order for it to

be completely certain that a sequence is not random, the sequence needs to be infinite in length. The

perfect randomness test cannot accomplish this, since traversing an infinite sequence would take

infinite time on a Turing machine. In other words, the program would never halt. A Turing machine

cannot complete such a task. Therefore, the ideal randomness test cannot be certain that a sequence

1s not random.

Consider the perfect randomness test. For any sequence of finite length as the input, the

perfect randomness test will give as output a Boolean value. If the output value is true, it means that

the null hypothesis was rejected and if it is false, the null hypothesis was accepted. Depending on

what sigma used in the test, after having passed a sequence of some length N, the perfect

randomness test will be able to return the output ‘true’. Imagine a random number generator which

goes through all sequences of length N (note that this is still a finite number of computations),

evaluates them with the perfect randomness test and outputs the first sequence that passes the

perfect randomness test. In other words, the first sequence of length N, which when evaluated by

the perfect randomness test, results in the output ‘false’. Such a random number generator is

definitely not random, as all it uses are completely deterministic algorithms that can be run on a

Turing machine. Therefore, we have a random number generator which, when evaluated by the

perfect randomness test, will always result in the Type II error. In short:

For any sequence of finite length N, a nonrandom sequence can be generated using a Turing

machine which will not result in the null hypothesis being rejected when evaluated by the best

randomness test that can be run on a Turing machine.

Thus, the table for a randomness test is actually the following.

Accept the null hypothesis test
(conclude that the data were not
statistically significant enough
to be believed not to meet the
criteria)

Reject the null hypothesis test
(conclude that the data were
statistically significant enough
to be believed not to meet the
criteria)

Data should match the criteria

The right outcome

Type I error

Data should not match the
criteria

Type II error

The right outcome

If the input were truly random, it should always match the criteria, no matter what randomness test

1s used.

15

2.2 Sigma and p-values

Sigma, most often written as lowercase o, and p-value are both used for rejecting the null
hypothesis of a statistical hypothesis test (see chapter 2.1). In a statistical hypothesis test, the
objective is to gather enough evidence in order to reject the null hypothesis. The data can be
converted into a single value: the p-value or sigma. Then, by comparing the value to the
predetermined p-value or sigma cutoff point (common ones are p-value less than or equal to 0.05
and sigma more than or equal to 2), we can determine whether to reject the null hypothesis or not.

P-value stands for probability value. The smaller the p-value the lower the probability of the
outcome. The p-value is a real value between 0 and 1. A p-value of 0.01 means that if the null
hypothesis is true, the chance of an outcome equally or more unlikely as the one obtained is 1%. A
common p-value used as the cutoff point for rejecting the null hypothesis is 0.05. Below is a simple
example of how to use the p-value in a statistical hypothesis test.

We have a coin which we think is biased in such a way that when we toss it, the chance of
heads is greater than tails. We toss the coin three times. The outcome is two heads and one tails.
There are a total of eight different combinations: HHH, HHT, HTH, HTT, THH, THT, TTH and
TTT. Our result was HHT. There are four different throws where the number of heads matches or is
more than our result: HHH, HHT, HTH and THH. Thus, our p-value is 4/8 = 0.5, meaning that if the
coin is fair, there is a 50% probability of two heads or more. Note that this was a one-tailed test
where only larger than the excepted number of heads would have been able to reject the null
hypothesis. The null hypothesis was that the number of heads is less than or equal to half of the
throws and, therefore, even if the coin only landed on tails, the null hypothesis could not have been
rejected. The coin landing only on tails would actually have resulted in the p-value 8/8 = 1, since
zero heads would have been the complete opposite compared to the statistical hypothesis test in
question.

If we were to change the null hypothesis to heads and tails being equally likely, our p-value
would have been one. This is because two heads and one tail or one head and two tails is the closest
that three tosses can reach a uniform distribution. This two-tailed test requires a result that deviates
from the mean more than the one-tailed test since both high and low values are tested for, instead of
only the high or only the low value.

If our result were HHH instead of HHT, the one-tailed test would result in a p-value of
0.125. Out of all eight possible outcomes, only HHH has more or the same number of heads as
HHH. If we throw HHH during the two-tailed test, there would exist two outcomes that match HHH
in [number of heads — expected number of heads| (absolute value of the subtraction). These are

HHH with the value 1.5 and TTT with the value 1.5. This means that our p-value would be 2/8 =
16

0.25. In both cases, the p-value was above 0.05, meaning that the null hypotheses could not be
rejected. It was actually impossible to reject the null hypotheses for all sequences of length three,
because three tosses is too few to result in p-values below or equal to 0.05, no matter what the
sequences were. When testing random number generators, it is not uncommon to use millions of
random bits in order to be able to reject the null hypotheses.

As experiments are often much more complicated than the simple coin toss bias experiments
explained earlier, the use of sigma instead of the p-value has typically been favored, both because it
is easier to use compared to the p-value when using very low probabilities and because it indicates
that the data of the experiment was normally distributed. Sigma stands for the standard deviation
used in a normal distribution. The data obtained from most experiments follow the normal
distribution, making it intuitive to use sigma to explain how unlikely the results are if they were
solely created by random fluctuation. Sigma can also be converted into a p-value. However, in order
to convert a p-value into sigma, we must first ensure that the data follow the normal distribution.
Note that for sigma we also need to define if the test was one- or two-tailed, since a one-tailed
sigma and a two-tailed sigma result in different p-values. The sigma value starts from 0 and can be
any positive real number, although integers are mostly used when discussing the results of
experiments. For example, when the Higgs boson was discovered, they claimed the certainty to be
of 5 sigma in a one-tailed test [13], which corresponds to a p-value of 2.867*107". In order to show
where sigma is useful, we need a more advanced example.

We test if a coin is biased by tossing it a hundred times and then count the number of times
it lands on heads. Our null hypothesis is that the coin is fair. The expected number of heads is 50, as
this 1s the mean when tossing a fair coin a hundred times. Since we only want to know if the coin is
biased, the test will be two-tailed. A significantly low number of heads would reject the null
hypothesis as well as an abnormally large number of heads. We choose two sigma as the cutoff
point.

The number of heads when tossing a fair coin a hundred times follows the following pattern:

100(100) x0 5k %0 5—k =1
E X . .
k=0

where (120) is the combination, defined by: () =

X x!
y] — yl(x—y)!

In this sum, k represents the number of heads we received from tossing the coin one hundred times.
By adding up all of the 101 possible results (0 to 100 heads) we understandably arrive in the
probability 1. The calculation takes a long time to complete by hand and concerning larger
experiments, it can even be difficult for a computer. Luckily, this type of calculation, the binomial
distribution, when using large numbers, has an asymptotically precise approximation, the normal

distribution.
17

Let us say that the results from the 100 coin tosses was 68 heads. Our cutoff point was two

sigma in order to reject the null hypothesis. The mean number of heads from tossing a fair coin one

hundred times is 0.5 * 100 = 50 and the standard deviation is V0.5 * 0.5 * 100 = 5. Throwing 68
heads is (68 — 50) / 5 = 3.6 standard deviations away from the mean. Since 3.6 sigma is greater than
or equal to 2 sigma, we reject the null hypothesis. Note that the result 3.6 sigma was only obtained
from this single test and that the resulting sigma will most likely differ in subsequent tests. Actually,
if the coin is unbiased, the resulting sigma would be random, following the normal distribution. If
we were to calculate the p-value from sigma, it should also be random, following the uniform

continuous probability distribution between 0 and 1.

2.3 Inner workings of a PRNG

Most pseudorandom number generators have many properties in common. These properties will be
utilized when random number generators are analyzed and compared in subsequent chapters,
meaning that a good understanding of these properties is required to understand the rest of the
thesis. Thus, the goal of this chapter is to explain the many common properties of RNGs.

In order for a pseudorandom number generator to generate a number it requires at least two
properties: a state and a formula, which creates the output number from that state and updates the
state. Once the PRNG has generated a new number, it will then update the state in order not to
generate the exact same number again. Depending on the PRNG, the state may be the last generated
number, a simple counter or something completely different. The number generated may even be
created only from a part of the state. A simple example would be the Lehmer random number
generator, which was mentioned in chapter 1. Its general formula is the following:

Sn+1 =A* Sy mod M

where A is the multiplier used on the state S and M is the modulus. For example, if A is 5, M
1s 31 and Sn is 17, Sn+1 could be calculated with (5*17) mod 31, which is 23. Thus, if the state was
17, the new state (and number generated) would for this Lehmer random number generator always
be 23.

Pseudorandom number generators are algorithms, which are by definition deterministic.
This should mean that the same PRNG will always generate the same output. However, this is not
true, since most PRNGs use a seed. A seed is the initial state of a random number generator. Its
purpose is to ensure that a PRNG does not generate the same values each time the PRNG is used for

the first time. In the Lehmer PRNG example, the seed would be state zero, So. The seed is usually

18

created from something that appears partially random. Examples include current time, key timings
and mouse movements or other human input. In operative systems using Linux, a kernel random
number generator exists, which places “environmental noise from device drivers and other sources
into an entropy pool” [14], which can then be used for creating seeds or even for generating random
numbers. A common method is to use current time, and then use a hash function on it to create the
seed.

A defining feature of a PRNG is how much space it uses. Space is measured in bits and
consists mostly of the PRNG’s state. In the case of the Lehmer random number generator, the state
is limited by modulus M, meaning that in our example we would need five bits to store the state.
PRNGs have a specific number of bits of randomness they generate in one pass. Most PRNGs
generate either 32 of 64 bits in one pass. The example Lehmer random number generator would
generate loga(31) = 4.95 bits of randomness in one pass (if M would have been 32, it would be
exactly 5).

Another defining feature of a PRNG is its period length. The period length is the number of
values it can create before the PRNG repeats itself. The period length is closely related to how
much space the PRNG uses, since an upper limit on the period length of a PRNG can be calculated
from how much space it uses. As the PRNG will always generate the same values from a specific
state, the number of states it can reach is the same as its period length. In our example, the state is
limited by M, which was 31, meaning that the state could only be an integer between 0 and 30,
which, if it were able to traverse all those integers, would result in a period length of 31. We could
also use its space usage to calculate the maximum possible period length, which in this case would
be 2° = 32. PRNGs try to use their space as efficiently as possible, trying to reach this largest
possible period length. Note that it is possible to create a PRNG which does not have a period
length, but such a PRNG would either require more true randomness (as in an ever-changing seed)
or increasing amounts of space. PRNGs without period lengths tend to be slow compared to those

with a fixed period length and, thus, they are used for more specialized tasks, such as cryptography.

2.4 Defining a good PRNG

Now that we have defined randomness and some methods for measuring it, the next step is to define
what a good pseudorandom number generator entails. Any number generator can be seen as a
pseudorandom number generator, although potentially a really inferior one. Before trying to create a

decent definition, we need to specify what the use case is for the random number generators, as this

19

can greatly affect the definition of ‘good’.

There are two types of pseudorandom number generators: those that are cryptographically
secure and those that are not. The cryptographically secure PRNGs are usually slower and require
more true randomness than just a single seed. The cryptographically secure random number
generators (CSPRNG) have a special condition which other random number generators do not need
to fulfill. A CSPRNG must generate a sequence which cannot be used to calculate its current state,
given that one knows how the random number generator works. In other words, it should not be
possible to predict the outcome of a CSPRNG only by examining its output. This means that no
PRNG that uses its state as the generated number can ever be a CSPRNG. As this thesis has so far
handled PRNGs in general, we will also create the definition for PRNGs instead of only CSPRNGs.
Therefore, not being able to calculate the current state from the sequence generated is not one of the
requirements used in our definition of a good pseudorandom number generator. The optimal PRNG
should be good enough for simulations and computer games, that is, the non-gambling type games.

Thus, a good PRNG needs to fulfill four requirements: it needs to be fast, use as little space
as possible, have a long period length and generate pseudorandomness of good quality. Note that
pseudorandomness of good quality is a very vague description. Note also that pseudorandomness of
good quality requires a long period length, but a long period length does not imply
pseudorandomness of good quality. Long period lengths cannot be tested by brute-force, meaning
that one needs to prove that a PRNG really has the claimed period length. In order to ensure that a
PRNG generates pseudorandomness of good quality, a battery of randomness tests is required to
ensure that it passes at least some sort of check. Randomness tests will be discussed in detail in

chapter 3.

20

3 Randomness Tests

A randomness test can be seen as a function. The input comprises a stream of bits of a
predetermined length and the output is a single real value between zero and one. The input is the
random sequence that we want to test and the output is the p-value. The resulting p-value should
follow the continuous uniform distribution if the given random sequence truly is random. Therefore,
the p-value tells how likely the outcome was; the smaller the p-value the less likely the outcome. If
the p-value is extremely small, it could mean that the given random sequence is not random at all.

Given that the actual test can be anything, it is important to try to define what a useful
random number test would be. A random number test which takes as input only one bit and checks
if it is a one is far from useful. If the random bit which we test is a one, we would obtain the p-value
0.5 and if it is a zero the p-value would be one, meaning that we cannot even achieve the standard
0.05 p-value in any of the two possible test outcomes. Note that this is a one-tailed test. If we were
to make the test into a two-tailed test, where we check how far from a half the given bit is, the p-
value would be one for both zero and one. One can argue that there cannot exist a more useless
random number test than one which gives the p-value one for all inputs. One can also argue that a
random number test which cannot reach a low enough p-value is useless. Although it is difficult to
define ‘low enough’, it is still always possible to define it to be equal to or less than the p-value
required to reject the null hypothesis in question. This, however, is difficult to use since the p-value
required to reject the null hypothesis is arbitrarily chosen and thus varies considerably. Therefore,
useful randomness tests might be completely useless in other experiments. A much better solution
would be to say that given any p-value x you can always define a finite sequence of bits, which
would, when submitted to the random number test, result in a p-value less than x. I call this the
requirement of any desired p-value.

This is, of course, far from what is needed for a random number test to be useful. Consider
the following random number test. The test checks if the given random bits are all equal to one. If
we were to give the test ten bits, for 1023 of all of the 1024 combinations of bits, it would give the
p-value one and for only one of the combinations, the one consisting of only ones, it would give the
p-value 1/1024, a little less than 0.001. A random number test that is too specific, like the given
example, is also useless since it will only be able to give a p-value low enough in very few
situations. For any given p-value x, as the length of the random numbers being tested tends to
infinity, the fraction of all combinations of that specific length which result in a p-value below x
should not tend to zero. I call this the requirement of nonzero p-values.

Using these two constraints as the base requirements for a random number test is not enough

for the random number test to be useful, but it is a good start. The remaining requirements that I
21

have pondered on are much more difficult to define mathematically, if not impossible, and some are
practically completely dependent on which random number generator you want to test. The
remaining requirements are defined in chapter 3.1.

One of the simplest useful random number tests is the Monobit test. This is the same test as
the one used in chapter 2.2 to explain how p-value and sigma work. In the Monobit test, we
measure the occurrence of ones and zeros compared to what would be the excepted value from a
true random sequence of the same length. The two-tailed test is deemed to be much better, since we
can test for both extremes, although we will most often need more bits to test in order to obtain the
p-value we want in the cases where we would be able to reach the desired p-value. It is rather trivial
to prove that this random number test satisfies both the requirement of any desired p-value and the
requirement of nonzero p-value. Given a sequence of length k, the sequence containing only ones,
the p-value would be 2/2* (if the test were one-tailed, the p-value would be 1/2¥) which can be
smaller than any given value since k can be arbitrarily large and, thus, the requirement of any
desired p-value is fulfilled. In order to prove that the test fulfills the requirement of nonzero p-value
we will use sigma. Since the Monobit test, given enough bits, tends towards the normal distribution,
it is trivial to choose any sigma and with the help of it calculate both the p-value and the two ratios
of ones and zeros which will give that p-value (since the test is two-tailed).

The Monobit test is a very simple example of a random number test, yet still very useful.
Several tests have been created over the years, including the diehard tests and the tests found in the
NIST Statistical Test Suite [17]. When testing a random number generator, multiple tests are used.
Multiple tests are used because different tests test different aspects of non-randomness of a random
number generator. It is actually more useful to have multiple smaller tests than one larger test, since
it makes it much easier to pinpoint where the random number generator contains flaws and clues
might even exist concerning how to correct these flaws.

Many of the randomness tests are rather complicated. A single test could have been an effort
of multiple people working together for months or even years. This is mainly because the
mathematics in randomness tests becomes quite complicated rather quickly. It is often required to
integrate functions which do not have any analytical function to express the integral of the function.
This makes it rather difficult to calculate precise values, even with the use of a computer, requiring
multiple optimizations and approximations in order to even come close to a correct p-value. In order
to tackle this problem, the software I have made will mostly be using Pearson’s chi-square test to
calculate p-values. The idea is to transform any interesting randomness tests into a variant of

Pearson’s chi-square test. The chi-square test is explained in detail in chapter 3.2.

22

3.1 Defining a good Randomness Test

In chapter 3, two important qualities concerning randomness tests were explained with examples.
These were “requirement of any desired p-value” and “requirement of nonzero p-value”. These two
requirements are, however, far from enough to determine what a good randomness test is. The

29 <¢

remaining methods I have devised are “requirement of minimizing value usage”, “requirement of
more is more”, “requirement of not being too specific”, “requirement of not being too complex” and
“requirement of not being perfect”.

The requirement of minimizing value usage means that a randomness test should never
require a large number of generated random values in order to calculate the p-value. For example, a
Monobit test which checks every tenth bit in a sequence would throw away nine tenths of all
generated bits, which seems wasteful, even if this type of Monobit test might detect lack of
randomness in cases where the Monobit test which uses all bits fails to do so. Since we do not know
how fast a PRNG that we test is, a good randomness test should waste as few bits as possible.

The requirement of more is more is tied to the requirements of any desired p-value and
nonzero p-value. The idea is that for a PRNG which behaves in a manner which leads to a
randomness test T to conclude that it is not random after being ran X times, should be able to give a
more extreme p-value after having run for more than X times, since it failed when it was run X
times. The reason why this requirement cannot be mathematically defined is that it simply will not
work for all PRNGs when it comes to large X values. A PRNG that uses the Champernowne
constant to generate its pseudorandom numbers will at first fail any frequency test (see chapter
4.3.1) but since it ultimately is a normal number, it will pass the tests given enough runs. Thus, this
requirement can be applied only when the PRNG tested has a finite period length.

The requirement of not being too specific has to do with creating a test that tests something
very specific. A randomness test specifically designed for some type of pseudorandom number
generators, such as the spectral test, is most likely not a good randomness test outside of testing that
type of pseudorandom number generator. Another example would be to use the exact same
algorithm the PRNG uses to test it and to use the same initial seed. This would result in a perfect
match for that specific PRNG but most likely no matches concerning other PRNGs, and as such, it
is much too specific.

The requirement of not being too complex has to do with algorithm runtime. We might be
able to create a very good randomness test which runs in O(N!) time complexity, where N is the
number of bits tested by the randomness test. Due to the complexity of the test, it will always be far

from feasible. Randomness tests should never go below O(N), as then they fail to follow the

23

requirement of minimizing value usage, nor should they go above polynomial time. Some new
interesting randomness tests may be created using quantum computers, where something that would
have a non-polynomial runtime on a classical computer, would have a polynomial runtime on a
quantum computer. Some of the best randomness tests have a big-O notation above linear, such as
the ranks test which, when calculated with Gaussian elimination, has a running time complexity of
O(N?).

The requirement of not being perfect is a more abstract one, since a perfect randomness test
cannot be created, as the Kolmogorov complexity test is incomputable. The idea of this requirement
is that one should not even try to create the perfect randomness test, as it defeats the point of testing
pseudorandom number generators. If the goal is to try to measure the quality of randomness in a
PRNG, what is the use of a randomness test which only tells us that the PRNG was not random with
100% accuracy? This places randomness tests in an odd light, since perfection is not desirable,
which sounds slightly too philosophical for being a mathematical concept, or better yet, a statistical

concept.

3.2 Pearson’s chi-square test

Pearson’s chi-square test [15], which we will call the chi-square test from now on, is a test in which
the randomness that is to be tested is separated into a predetermined finite number of categories,
and then compared to the theoretical mean values of these categories in order to calculate a p-value.
The chi-square test can also be used to compare two or more samples, but we are only interested in
comparing one sample to the theoretical categorical distribution it should have. The chi-square test
is an approximation in the same sense as the normal distribution is an approximation of the
binomial distribution. The more bits that are tested, the better the approximation is. This means that
p-values calculated using the chi-square test differ from the true values, but this difference is
minimal when using a large number of bits, since the relation between the p-value obtained from
the chi-square test and the true p-value is asymptotic.

The chi-square test is more than a test. It is a tool that can be used to calculate p-values for
almost all kinds of randomness tests. As long as we test for discrete distributions of finite size, it
should be possible to turn it into a chi-square test. A simple example would once again be the
Monobit test. We have two categories, one containing the zeros and the other containing the ones.
The theoretical categorical distribution is 50% for each of the two categories. The chi-square test is

always a two-tailed test and, thus, it will always detect all types of extremes in a distribution.
24

In the way the chi-square test was defined earlier, it is possible to have any finite number of
categories. Imagine a version of the Monobit test where we have four categories: 00, 01, 10 and 11.
This could be called the Twobit test. The categorical distribution is 25% for each of the four
categories. In this case, the chi-square test is a two-tailed test in three dimensions. This is because
knowing the total number of bits tested and the number of values in three of the four categories, it is
trivial to calculate the number of values in the fourth category. Thus, there is a dependency. If there
are N categories, there exists N-1 independent values. The concept is often referred to as the test
following the chi-square distribution with X degrees of freedom, where X is the number of
independent values. The chi-square distribution is a family of distributions where the X degrees of
freedom dictate what the distribution looks like. The chi-square distribution is used by the chi-
square test to calculate the p-values. The Monobit test follows the chi-square distribution with one
degree of freedom and the Twobit test follows the chi-square distribution with three degrees of
freedom. It is useful to look at the degrees of freedom as dimensions in which the test is two-tailed.
Given some p-value as the cutoff range to reject the null hypothesis, it could be seen as a three-
dimensional object in the case of the Twobit test. If the values in the four categories lead to a value
outside the aforementioned three-dimensional object, the null hypothesis is rejected.

Note that the categorical distribution must be discrete but does not have to be uniform. A test
where we count the number of ones in two bits would have three different categories, a category
containing zero ones consisting of 00, a category containing a single one consisting of 01 and 10
and a category containing two ones consisting of 11. Thus, the probabilities are 25% for zero ones,
50% for a single one and 25% for two ones. This is a valid chi-square test where the categorical
distribution is not uniform. This test follows the chi-square distribution with two degrees of
freedom.

Since the idea of the chi-square test is to be an X-dimensional two-tailed test, we can apply
the law of large numbers. Say that we have a true random number generator which generates ones
51% of the time and zeros 49% of the time, we could, given enough bits, obtain a p-value as close
to zero as we want by using the Monobit chi-square test. This means that the Monobit chi-square
test can be used to detect differences in the probability distribution of a true random number
generator. Even if the random number generator is a true random number generator, as long as its
distribution is not precisely what we compare it to, (most often the uniform discrete distribution
with zero and one) we could reject the null hypothesis. If the Monobit chi-square test can fail a
random number generator, it can be argued that the Twobit chi-square test can also fail the same
random number generator. This, however, only applies to true random number generators, as only
they have true probability distributions, as a probability distribution technically does not exist for

something that is pseudorandom.
25

If we have the same true random number generator which generates bits with the
distribution 51% probability for ones and 49% probability for zeros, it will be possible to detect the
difference compared to the uniform discrete distribution with the Twobit chi-square test. We have
four categories: 00, 01, 10 and 11. In order for the test to detect non-randomness we need to
guarantee that the probability for at least one of the four categories is different from the expected
probability. We will actually guarantee that at least two values are different, since changing the
probability of one category will change the probability of at least one of the other categories. The
law of large numbers will handle the rest. Therefore, the objective is to distribute 51% ones and
49% zeros so that all four categories have the correct probabilities. This can be proven to be
impossible since 25% of 00 gives 25% zeros, 25% of 01 gives 12.5% zeros and 12.5% ones, 25% of
10 gives 12.5% ones and 12.5% zeros and 25% of 11 gives 25% ones. Adding up 25% + 12.5% +
12.5% gives us exactly 50% zeros, and 12.5% + 12.5% + 25% gives exactly 50% ones, meaning
that there is no way of disguising 51% ones and 49% zeroes so that the distribution would not
change. This is true also for the test that counts ones in two bits.

However, the opposite of this does not work. If we had a case where the Twobit chi-square
test rejects the null hypothesis because all of the bits have landed in the 01 category, the Monobit
chi-square test would not detect any non-randomness since both zero and one would still have the
correct distribution. An N-bit chi-square test should detect non-randomness that all M-bit chi-square
tests can detect, where M < N. This is true as long as the number of bits is large enough, and the
random number generator is a true random number generator. Things become rather complicated if
we are not testing a true random number generator as a probability distribution is required, which as
earlier explained, is something that a PRNG lacks.

The main drawback for the chi-square test is that in situations, where we have a several
degrees of freedom or the probability for one or more of the categories in the distribution is really
low, plenty of data is needed to ensure a valid p-value. As the chi-square test is only an
approximation, the use of many categories and categories with low probabilities will make the
approximation less accurate, which means that more data was required to achieve a decent
approximation. This, however, is not an issue, since randomness tests which use a multitude of
categories in their distributions are often breaking the “requirement of not being too specific’-rule.
Interestingly, any randomness test created with the chi-square test follows at least three of the rules
explained in chapters 3 and 3.1. These rules are “requirement of any desired p-value”, “requirement

of nonzero p-values” and “requirement of more is more”.

26

3.3 XOR Scrambling

The main objective of analyzing randomness tests is to determine if the test can detect lack of
randomness in RNGs of high quality. In order to provide more RNGs to test, it would be useful to
be able to combine generators to create new RNGs. This is the main idea of XOR scrambling.
Imagine two random number generators R; and R» and two randomness tests T and T».
Presume that R passes the test T1 but not the test T2 and Rz passes the test T2 but not the test T;.
Could we somehow combine the output from R; and R in order to create a random number
generator Rz, which would pass both tests? One option would be to take the output from R and R»

and calculate the bitwise XOR (exclusive or). Below is the truth table for XOR:

Ri R» R3=R; xor Ry

S| == O

1
0
1
0

OO | = =

As we can see from the table, as long as one of the two random number generators generates true
randomness, the XOR will also be truly random. What if both R; and R> do not generate true
randomness? Is there anything we could still say about XOR scrambling them?

There are a couple of things that can be deduced analytically. XOR will always try to even
out the number of zeros and ones if one of R; and R, generates true randomness. The true

randomness does not need to be uniform. This is proven below:

If Ry generates the bit 0 with a probability of X and the bit 1 with the probability of 1-X and R>
generates the bit 0 with a probability of Y and the bit 1 with the probability of 1-Y, we can combine

them in order to obtain the probabilities of R3. We use the table from earlier and add the

probabilities:
R R» R3=R; xor Rz
1: (1-X) 1: (1-Y) 0: (1-X)(1-Y)
1: (1-X) 0:Y 1: (1-X)Y
0: X 1: (1-Y) 1: X(1-Y)
0: X 0:Y 0: XY

The probability of R3 generating a zerois (1 - X)(1 -Y) + XY =2XY-X-Y +1

27

The probability of R3 generatingaoneis (1 - X)Y + X(1 -Y)=-2XY+X+Y

What we now want to prove is the following statement:

The probability distribution of R3 is closer or equally close to the discrete uniform distribution

compared to both R and R,.

If the probability of Ry generating one as an output is closer or equally close to half of the time
when compared to both Ry and R, the statement would be proven true, as there are only two

discrete values.

This can be written as the following equations:

equation 1: [-2XY+X+Y-05[<]1-X-0.5]

equation 2: [-2XY +X+Y-0.5]|<|1-Y-0.5]|

where 0<X<1land0<Y<I

We only need to prove one of the two equations since equation 1 is equal to equation 2, where X
and Y have swapped places. Therefore, we only prove equation 1:

| 2XY+X+Y-05|<]1-X-0.5] simplify

| -2XY+X+Y-05[<]0.5-X]|

Now we need to split the equation into two parts, one where X < 0.5 and one where X > 0.5

Here we prove the statement to be true when X > 0.5

|-2XY+X+Y-05]<]05-X]| X>0.5

|-2XY+X+Y-05|<X-0.5 rewrite

X+05<52XY+X+Y-05<X-05 addX-0.5

0<-2XY +2X+Y-1<2X-1

Next, we look at the case 0 <-2XY +2X +Y -1

0<-2XY+2X+Y-1 rewrite

0<Y(-2X+1)+2X-1 rewrite 2X — 1 to become Z, which is a value that can
vary between [0, 1]

0<-YZ+Z rewrite

0<Z(1-Y)

Since Z is within [0, 1] and 1 — Y cannot be less than zero, we conclude that 0 < Z(1 —Y) is true.

Next, we prove -2XY +2X +Y-1<2X -1

2XY+Y<0 add -2X + 1

Y(1-2X)<0

28

Since Y is a value in [0, 1] and (1 — 2X) <0 is true, since X > 0.5, the result will always be negative

or equal to zero, proving the second half of the case where X > 0.5.

Next, we prove the statement when X < 0.5

|-2XY+X+Y-05]<]05-X]| X<05

|-2XY+X+Y-05]|<05-X rewrite
05+X<2XY+X+Y-05<05-X add05-X

0<-2XY+Y<1-2X

Next, we look at the case 0 <-2XY +Y

0<-2XY+Y rewrite

0<Y(1-2X)

Since Y is a value in [0, 1] and 1 — 2X is always larger or equal to zero, since X < 0.5, we can
conclude that the result will always be positive or equal to zero.

Finally, we prove -2XY +Y <1 -2X

2XY+Y<1-2X add -1 +2X

2XY+Y+2X-1<0 rewrite

Y(-2X+1)+2X-1<0 rewrite 2X — 1 to Z, a value in [-1, 0]
YZ+7Z<0 rewrite

Z(1-Y)<0

Since Zisin[-1,0]and 1 — Y isin [0, 1], Z(1 — Y) must be smaller or equal to zero.
Thus, | -2XY+X+Y—-0.5]|<|1-X-0.5]1s proven to be true.

This would mean that at least for the Monobit test, combining two random number
generators should improve the results. If XOR scrambling helps in more complicated tests is

unknown.

Another thing which can be deduced analytically is that as long as one of the two generators outputs
true randomness, the resulting combined RNG will also generate true randomness. The proof is

much simpler than the previous proof.

Assume that R; is a true random number generator and R, generates pseudorandom numbers. What
we want to prove is that the combination R3=R; XOR R, will remain random.

By looking at the first table in this chapter we can see that if R> generates a zero, there are
two outcomes depending on what R chooses: 50% probability of R3 being zero and 50%
probability of being one. This can also be seen if R; generates a one. Combining these two possible

outcomes we can see that no matter what R, generates, R3 will remain random.
29

The interesting part about the XOR scrambling is that no matter the outcome, the results will
still be very useful. If XOR scrambling would actually worsen the quality of pseudorandomness,
that is to say make the new random number generator fail more tests, this information could perhaps
be used to create better randomness tests. The two PRNGs that were XOR scrambled should then
have some sort of hidden property in common. If combining two pseudorandom number generators
in this manner could create a generator, which passes at least the union of the set of tests which each

of the generators passed separately, will be tested.

30

4 The Software, Specification

In order to study randomness tests, a program is developed in Java. The goal of the program is to
provide an interface in which the user can create tests by choosing specific random number
generators and randomness tests. The user can also combine multiple random number generators
and randomness tests in order to study the inner workings of said generators and tests. The random
number generators and randomness tests will provide methods for changing parameters which will
change their behavior. Allowing the combination and changing of generators and tests provides the
user with a very flexible tool for testing almost any aspect of a randomness test. If the inclusion of
parameters and the use of multiple tests is not enough, the user can also create his own randomness
tests from scratch using the interfaces that can be found in the source code. This should give the
user practically limitless possibilities for testing randomness tests.

The program allows full support for using multiple threads, speeding up tests of larger scale.
Single tests may not be sped up due to the fact that most random number generators cannot be
parallelized reliably. Thus, the speedup of using multiple threads is limited by how many different
random number generators are being tested. For example, if we give the program eight threads, but
we are only running tests for five random number generators, five of those eight threads will be in
use. Since some tests require more random numbers, and random number generators vary in
execution speed, the tests may be split into smaller chunks so that all threads will finish their
execution in approximately the same time.

In some cases, larger tests may be needed. Tests may take from only seconds up to hours or
even days to finish. When a test may take several hours to complete, regular backups of the data are
needed. The user should be able to pause the tests and resume at a later point or save finished tests
and load tests to look at the results at a later point. In order to allow all of these functions, the
random number generators need to have a state that one can go back to. Java has an interface called
‘serializable’. With the help of this interface the exact state of any object, including random number
generators and randomness tests, can be saved and loaded. Almost all classes found in the Java
standard library implement serializable, meaning that the random number generators found in the
standard library can have their state saved and loaded. Other random number generators may be
found in third party libraries or they need to be implemented from scratch, meaning that as long as
one remembers to have the random number generators implement serializable, loading and saving
should not be a problem.

Since most random number generators in use pass all but the most complicated tests, some
of the random number generators that can be tested have been deliberately made to fail in even the

simplest of tests. These deliberately bad random number generators can also be used for trying to
31

find out what sort of lack of randomness different randomness tests can detect.

4.1 The Software, Implementation

The name of the program is RATT, which stands for RAndomness Test Tester. Below is a picture of

the main page of RATT. It contains three sections, one for the generators, and another for the tests

and a third one for executing tests and for viewing test results in real time.

B RATTvO.1

Random Number Generatars

Add

Name

ADD
Al
Ap2
AD3
Apd
ADS
ADB
A07
Apg

AlS
AlB
A7
Alg

Edit || Remove || Clear

Type
Additive Congruential Generatar
Additive Congruential Generator
Additive Congruential Generator
Additive Congruential Generator
Additive Congruential Generator
Additive Congruential Generator
Additive Congruential Generator
Additive Congruential Generator
Additive Congruential Generator
Additive Congruential Generator
Additive Congruential Generatar
Additive Congruential Generator
Additive Congruential Generator
Additive Congruential Generator
Additive Congruential Generator
Additive Congruential Generator
Additive Congruential Generator
Additive Congruential Generatar

Additive Congruential Generator

initial: 0

initial: 0

initial: 0,
initial: 0,

initial: 0
initial:
initial:

initial:

initial:
initial:

initial:

initial: 0,
initial: 0,

initial: 0

initial: 0,
initial: 0,

initial: 0

initial: 0

0
0
0
initial: 0,
0
[}
[

Description
moduls: 1, addition: 1
module: 2, addition: 1
modulo: 4, addition: 1
modulo: 8, addition: 1
moduls: 16, addition: 1

, modulo: 32, addition: 1
, module: B4, addition: 1

modulo: 128, addition: 1
module: 256, addition: 1

, module: 512, addition: 1

moduls: 1024, addition: 1
modulo: 2048, addition: 1
modulo: 4096, addition: 1
modulo: 8192, addition: 1
moduls: 16384, addition: 1
module: 32768, addition: 1
modulo: 655386, addition: 1
module: 131072, addition: 1
modulo: 262144, addition: 1

Randomness Tests

Add
Name
FO2
FO3
FO4
FO5
FO6
F07
FO8
F09
F10
1
F12
F13

Edit

Remove
Type

Frequency Test
Frequency Test
Frequency Test
Frequency Test
Frequency Test
Frequency Test
Frequency Test
Frequency Test
Frequency Test
Frequency Test
Frequency Test
Frequency Test

Frequency Test

Figure 1. The main page of RATT version 0.1

Clear
Description
values:
values:
values:
values:
values:
values:
values:
values:
values:
values:
values:
values:

values:

3

5

9

17
33
65
129
257
513
1025
2049
4097
8193

Tasks

Add Task
Task X
Threads:

12 Runs 500000000

Pause | | Reset

F02 | FO3 | FO4 | FO5 | FO6 | FO7 | FO8 | FO9 | F10 | Fi11 | Fi2 | Fi3 | Fi4

AD2

AD3

1.0000 1.0000 1.0000
0o 00 00

mmo 1.0[[10

AD4

AO3

AOS

999 1.UII!0 1.0[[]0 1.0000 1.0000 1.0000 1.0000

A8 0
.0000 1.0000
- 'D Y
Al0 .99983 1.0000 1.0000 1.0000 1.0000
7 00 00
1.0000 1.0[[]0 .0000
A . '
o
A2 .99987 1.0000 1.0000 1.0000 mmu mmo
2 0o 00 0o
A ‘ﬂmn u]mn 'nmo
0
.09752 99993 1.0000 1.0000 1.0000
Al4 6 s

o oo 00
1

1.0000 0000 1

o 0 o

.60025 99997 99999 1.0IDU 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
00 00 00 00 00 00 00 00 00

1.0[[]0 mmo I.OIIID 1.0[[]0 1.0001
A17
0
Al8 09658 99997 mmu mmo I.OIIID 1.0[[]0 1.0[[]0 1.0000 1.0000
0 0o

Al5 (99957

A16

RATT uses a library called apache commons-math3 in order to calculate the chi-square tests. The

library contains a method where two arrays of values are given as input, one containing the

expected distribution in percentiles, and the other containing the observed data. The library uses

these two arrays to calculate the p-value.

32

4.2 The Random Number Generators

In order to test how well randomness tests work, a multitude of different random number generators
are required. This includes both good generators and ones that create random numbers of poor
quality. Thus, RATT contains both good and intentionally bad generators.

When explaining the different random number generators a couple of abbreviations will be
used. PL stands for Period Length, gcd for greatest common divisor and mod for modulus. Any
abbreviations not mentioned here will be explained when used.

Since PL is an important part of a PRNG, attempts will be made to calculate and prove

different random number generator PLs.

4.2.1 Congruential Generator

The congruential generator (CG) is a random number generator that follows the following
recurrence relation:

Xn+1 = (f(Xn)) mod M
where X, is the current state of the generator and, thus, X is the seed given to the generator. In the
RATT implementation, Xo needs to be greater or equal to zero. M is the modulus. The function f(x)
defines the congruential generator. The Linear Congruential Generator (LCG) is a subset of the
congruential generator where the recurrence relation is of the type:

X1 =(A* Xy +C) mod M
This means that the function f(x) for LCG is f(x) =A*x+ C

The congruential generator defined in RATT allows for the following recurrence relation:
The values that can be changed are S, A, C and M. In addition, one can define which bit range

should be the output since the least significant bits can often provide randomness of lower quality.

Depending on how the congruential generator is configured, the period length can be difficult to
calculate. The highest possible period length is M. In the special case that S is 0 and A is 1, the
exact period length can be calculated with the simple formula:

PL = M/gcd(C,M)

This is the case when the recurrence relation X,+1 = (X, + C) mod M.

33

Proof:
Since we can have at most M states, and the states are deterministic, we can say that if we have two
states Xm and X, where m does not equal n, the period length is at most abs(m-n). Thus, in order to

calculate the period length we need to minimize abs(m-n).

When calculating (X, + C) mod M the result can be one of two values, X, + C or X, + C— M.
Therefore, the result could be written as X, + C —b * M, where b is some integer larger or equal to
zero. This procedure can be continued, for example, the next value would be X, +2 * C—b * M.
The value that C is multiplied by tells us how many iterations we have done since X,. If we have a
situation where some X, +a * C —b * M = X, it means that a is a multiple of the period length. In

order to calculate the period length, we need to find the smallest possible a.

Thus, the equation to solve will look like this:
Xo=Xot+ta*C-b*M
where all values are integers, a > 0 and a is minimized.
As we can see, the Xy cancel out, meaning that our starting location will not matter concerning the
period length. The equation can therefore be simplified into the following Diophantine equation:
a*C-b*M=0
which can be further simplified to:
C/M =bl/a
One solution would be b = C and a = M, but could a be smaller than M? In order to find the smallest
possible a, we simply need to reduce C/M into their lowest terms, which is calculated with the use
of the greatest common divisor, thus, a = M/gcd(C,M) and b = C/gcd(C,M). This means that if and
only if C and M are coprime (as in gcd(C,M) = 1), we have the period length of M.

In case S is not equal to 0 or A is not equal to 1, calculating the period length becomes more
difficult. Things become even more complicated since, depending on the seed used, the period
length may vary. A simple linear congruential generator defined below has this property:

Xn+1 =2 * Xn+2) mod 7
If Xo= 0, the period length is three: 0, 2, 6, 0, 2, 6...
If Xo =1, the period length is three: 1, 4, 3, 1, 4, 3...
If Xo = 5, the period length is one: 5, 5, 5, 5, 5, 5...

The Dull-Dobell Theorem [16] explains when a linear congruential generator has the highest

possible period M if C is not equal to 0. The theorem states that PL = M if and only if:
34

(1) M and C are coprime (same as the requirement when A = 0)
(2) 1 =(A) mod P, for any P that is a prime factor of M
(3) 1 =(A) mod 4, if 4 is a factor of M
This means that if M is a power of two, the only requirements are that C and A should not be

divisible by two in order to reach the maximum period length M.

The congruential generator should be useful for testing randomness tests, since it can take the form
of multiple random number generators that have been used in actual programs. This includes all
linear congruential generators, quadratic congruential generators, Lehmer random number

generators and even a version of the binary Champernowne sequence.

4.2.2 Runs Generator

The runs generator is a simple generator meant to generate a stream of a specific length consisting
only of either ones or zeros. The stream is reset by appending one bit of the opposite value. For
example, if we were to generate streams of length three consisting of ones, the output of the runs
generator would be:

11101110111...
As a generator which will immediately fail the Monobit test ([17] 2-2), it will be useful to determine

whether a randomness test might be a superset of the Monobit test or not.

4.2.3 Java Random Number Generators

There are a couple of random number generators in the Java standard library, meaning that no
programming language translation needs to be done. The random number generators that have been
added to RATT are java.util. Random and java.util.SplittableRandom. A class exists called
java.security.SecureRandom which I would have wanted to add to RATT, but could not. Random
and SecureRandom are both serializable but SplittableRandom is not. This problem can be easily
solved, since the source code of SplittableRandom can be copied into its own
SerializableSplittableRandom class, and then have it implement serializability. The state of the
SplittableRandom consists of two values of type long, meaning that serializability should not be a

problem.

Java.util.Random is a linear congruential generator that could be created with the congruential

35

generator explained in chapter 4.2.1, but it is added to the list of random number generators, since it
is found in the Java standard library and, therefore, is most likely being frequently used. The class
uses the recurrence relation:

X1 =(A*Xp+C) & B
where B is 2*-1, A is 645 534 673 and C is 11 and & is the bitwise AND-operator. The bitwise
AND-operator is used to calculate mod B+1 much faster, since 2*¥-1 consists of 47 ones when
represented in binary. Thus, the recurrence relation is equal to the LCG:

Xnt1 = (645 534 673 * X, + 11) mod 2%
Since C is not equal to zero, we can check if the random number generator has the maximum period
length of 2*® with the Dull-Dobell Theorem, which was explained in chapter 4.2.1. The first
requirement is that M and C should be coprime, which is the case since ged(11,2*%) = 1. The second
requirement is that A mod P should be one for any P being a prime factor in M. The only prime
factor of 2*% is 2. A mod 2 is 1, meaning that the second requirement is fulfilled. The third
requirement is that if four is a factor of M, A mod 4 should be 1, which is also true. Therefore, the
period length of java.util. Random is 2*%. The output of the generator leaves out the 16 least
significant bits, meaning that the total number of bits the generator can generate before the sequence
repeats itself is 2** * 32. This number of bits should be enough for some applications, as long as the
generated randomness is not of poor quality. It would take approximately 300 hours for a single

threaded program run on an AMD Ryzen 7 3700X to generate all of the 2*® * 32 bits.

Java.util.SplittableRandom uses two values of type long to store its state, the seed and gamma. The

internal state of SplittableRandom works like a congruential generator with 2% as the modulus:
Seedn+1 = (Seed, + Gamma) mod 2%

Then, the seed is mixed by a function to generate the output. The algorithms for mixing the seed are

different for 32 and 64 bit outputs. Below are the two functions taken directly from the source code:
VAL

* Computes Stafford variant 13 of 64bit mix function.
*/
private static long mix64(long z) {
z = (z ™ (z >»> 30)) * oxbf58476d1lcede5boL;
z = (z ™ (z >> 27)) * 0x94de49bb133111ebl;
return z ~ (z >>> 31);

}

/x*
* Returns the 32 high bits of Stafford variant 4 mix64 function as int.
*/
private static int mix32(long z) {
z = (z ™ (z >>> 33)) * 0x62a9d9ed799705f5L;
return (int)(((z ~ (z >>> 28)) * Oxcb24d@a5c88c35b3L) >>> 32);

36

Here, the » stands for the bitwise XOR operator and >>> for the zero fill right shift operator.

The period length of SplittableRandom can be determined with the use of the proof in 4.2.1, which
states that the period length of Xn+1 = (Xn + C) mod M is M/ged(C,M). In the case of
SplittableRandom, M is 2% and C is by default the value 10 437 801 985 508 215. Since M is a
power of two and C is odd, gcd(C,M) must be one. Thus, the period length is M, which is 2%¢. This
is, however, only true for the internal ‘counter’ of the SplittableRandom class. The documentation
of SplittableRandom claims that the period length is at least 2%* but a proof is not included. There
seems to be no public documentation containing the proof. In order to ensure that the period length
is 264 the functions mix64 and mix32 need to be analyzed.

Since the state has the period length 2% the only possible period lengths for
SplittableRandom are ones that divide 2%, which are the powers of 2 all the way from 2° up to 2.
This means that if we can prove that the period length cannot be any of 2° up to 2%, the period
length must be 2%, Since the internal state follows Xn+1 = (X + C) mod M, it is trivial to calculate
the state X, if we start with some value Xo:

Xn=(Xo +n*C) mod M
As was stated earlier, the Xo is of no importance in this calculation, thus, we can set Xo= 0. In order
to test mix64 and mix32 for periodicity, we need to first calculate the values mix64(0) and
mix32(0). Interestingly both of them are zero, which means that the following statement must hold
in order for the periodicity to be of length 2%*:

If we for all 2™, where m is an integer and 0 <= m < 64, prove that

mix64((2™ * C) mod 2%%) does not equal zero.

If this can be proven, it means that the period length for SplittableRandom, using the algorithm
mix64 and the gamma value C, is 2. Note that this is not an ‘if and only if” statement. Even if
mix64((2™ * C) mod 2°) for some value m equals zero, it still might not mean that the period length

is not 2%,

If we use the constructor for SplittableRandom, where we choose the seed, it will use the gamma
value 10 437 801 985 508 215. Below is the code that was created in order to prove that a given

gamma value ensures a periodicity of 2%
public static void testForFullPeriodicity(long gamma) {

boolean mix32failed false;
boolean mix64failed false;
for (int 1 = 9; i < 64; i++) {
BigInteger value = BigInteger.valueOf(gamma)
.multiply(BigInteger.TWO.pow(i));
if (mix32(value.longValue()) == 0) {
mix32failed = true;

37

}
if (mix64(value.longValue()) == 0) {
mix64failed = true;

}
}
System.out.println("Mix64 failed: "+mix64failed
+", mix32 failed: "+mix32failed);

The result, when running the program using the value 10 437 801 985 508 215, is:

Mix64 failed: false, mix32 failed: false

Note that SplittableRandom allows only specific values for gamma. It uses a function to ensure that
the gamma value is odd (in order to reach the full period length of 2%%) and that it contains enough
0-1 or 1-0 bit transitions (for example 0011 would contain only one transition). Therefore, small
gamma values, for example one, cannot be used. Even if the default SplittableRandom class does
not allow the use of these small values, they might be of interest when testing randomness tests.

Therefore, the user can define any gamma value for the splittable random generator in RATT.

The SecureRandom class is different from the other generators, as it is meant to be a
cryptographically secure pseudorandom number generator (CSPRNG). Therefore, not that much
information can be found of the actual implementation of SecureRandom, let alone any information

about period lengths and, thus, it is not added to RATT.

4.2.4 Xorshift Generators

The xorshift generator was discovered by George Marsaglia to be used as a fast random number
generator with randomness of good quality [18]. The initial random number generators only used
two bitwise operators: the XOR-operator and bitshifting. This is why the name of the generator is
xorshift. The xorshift family of random number generators have been shown to be statistically
unreliable. This has led to new types of xorshift generators, which have introduced for example
multiplication to the set of operators [19]. These have, however, also been proven to fail some
randomness tests, often due to their least significant bits being of poorer quality of randomness.

Note that the java class SplittableRandom is a xorshift generator with some changes made to it.

RATT contains some of the xorshift random number generators that Marsaglia mentioned in his

paper “Xorshift RNGs” [18].

38

4.2.5 Permuted Congruential Generator

The permuted congruential generator (PCG) is a random number generator algorithm developed in
2014 by Melissa O'Neill [20]. PCG is not one single algorithm, but a family of algorithms, which
are defined by a group of transformations. These transformations include multiplications of
constants and multiple types of xorshift operations. The defining feature of a PCG is that its state is
handled by an LCG, and the output is created by transforming this state with one or several
transformations. The generated number is therefore not the state of the algorithm, which makes
calculating the state more difficult, but not impossible. RATT contains the algorithm PCG-XSH-
RR, which is one of the PCGs defined by O’Neill [21]. The algorithm has a 64-bit state and a 32-bit
output.

Since PCG relies on an LCG, the PL of a PCG is at best the same as the LCGs, but it
depends on the transformations used on the state, which for a general PCG is a more complicated
calculation, but can be trivially calculated for a specific PCG, using the same method that was used

for SplittableRandom in chapter 4.2.3.

4.3 The Randomness Tests

In this chapter, all of the randomness tests that are created for the software will be explained.
Several of the tests are defined in the publication “A Statistical Test Suite for Random and
Pseudorandom Number Generators for Cryptographic Applications” [17]. The tests from the
aforementioned publication that have been included in RATT will have their specific pages
mentioned in the following explanations. As calculating p-values of randomness tests is rather
difficult, and since RATT only supports Pearson’s chi-square test, the tests will differ somewhat
from the tests mentioned in the paper. The changes were made only to make the tests use the chi-
square test. Thus, by having failed known RNGs, they should prove useful in testing the XOR

scrambling theory explained in chapter 3.3.

4.3.1 Frequency Test

The simplest test to implement is the frequency test, where one simply divides the given input into
N containers, and then calculates the p-value. The simplest frequency test is the Monobit test ([17]

39

2-2), where the input is divided into two containers: one containing all zeros and the other
containing all ones. As we want to test a discrete uniform distribution, our null hypothesis is that the
two containers are filled in a way that matches the uniform distribution. If we were to distribute N
random bits, approximately half of them should be zeros and the other half ones. The paper contains
a method for calculating the p-value with the Pearson’s chi-square test. Therefore, only small
changes had to be made in the calculations so that they would work with the interface RATT
provides.

An example of the test in use has been provided in the paper. Four zeros and six ones were
used as input, and the test resulted in a p-value of 0.527089. When tested with RATT, using
java.util.random to create bits and Frequency Test with two values, the same p-value could be
obtained when java.util.random generated four zeros and six ones. With the expected array being
[0.5, 0.5] and the observation being [4, 6], the ChiSquareTest class provided the exact same result
as was described in the publication.

The publication explains only the Monobit version of the frequency test, but RATT allows
the user to divide data into any number of containers. In cases where the number of containers does
not match a power of two, the test uses only the required number of bits to calculate a value, and if
the value goes above the container count, it discards the value. Here is an example.

If the Frequency test uses five values (containers), then, the five containers would be: 000,
001, 010, 011 and 100. See figure 2 for an image taken from RATT showing the probability
distribution of this configuration. In the case that the received random bits is 110011000111010 and

we are using five values, the following steps would take place:

(1) Remove three bits from the beginning of the sequence. In this case, we would remove 110 and
the remainder would be 011000111010. Next, go to step 2. If there are no more bits to remove, go to
step 3.

(2) If the removed bits match a container, increase the count in that container and return to step 1. If
the removed bits did not match a container, discard them and return to step 1. If we discard the

removed bits a specific number of times in a row, stop the test and throw an exception.

(3) Use the chi-square test on the container data to calculate the p-value.

40

|87 RATT - Graph View - | x

Logarithmic View

0225

Chi-Squared Test Information

1] 1 2 3

Cutcomes

0.200

0175

0150

0125

Armount

0100

0.075

0.050

0025

0.000

. Expected

Figure 2. The statistical distribution of a Frequency test where the value count is five.

Albeit being a very simple test, the frequency test should prove useful as a rudimentary test which
ensures that the implementations of random number generators, which surely should pass the

frequency test, are correct.

4.3.2 Run Length Test

Similar to the Runs Test ([17] 2-3), the run length test measures the length of runs compared to
calculating how many runs there are. A run is a sequence of bits of the same value. The run lengths
are placed into N containers, where each run length, up to N, will be stored in a separate container.
The Nth container stores all run lengths of length N and longer.

Calculating the expected statistical distributions is rather trivial, as the shortest possible run
length is 1 and for each new bit and the probability of the run ending is always 50%. Thus, the
probabilities will follow the simple formula below:

Run length of 1: 50%

Run length of N: (probability of run length of N-1)/2

Run length of anything longer than N: 100% minus the sum of all previous run lengths,

41

which is always the same as the run length of N.

Below is a simple example of the run length test. We use as input data the sequence
110011000111010, which was the same sequence used in the frequency test example. We will use
three containers, for run lengths of one, two and three and above. There are three run lengths of two,
two run lengths of three and two run lengths of one in the bit sequence. Note that the last bit in the
sequence is not included, since we do not know how long its run length would have been. The
expected array is [0.5, 0.25, 0.25] and the observed array was [2, 3, 2], resulting in a p-value of
0.455794.

The probability of a run of length N is subject to exponential decay, meaning that long runs
are extremely rare. Therefore, the run length test should measure run lengths of at most 20,
assuming that the number of random bits that can be provided is in the billions. Figure 3

demonstrates how the longer run lengths have a very small probability of occurring.

B RATT - Graph View — O X

Logarithmic View

Chi-Squared Test Information

0.50
045
040
035
0.30
0.25
0.20
015
010
- |
0 1 2 3 4 L3

Cutcomes

Armount

. Expected

Figure 3. The statistical distribution of a run length test where the run lengths of up to 9 have their
own container. The bar named 0 displays the probability of a run length of 1, bar 1 shows the

probability of a run length of 2 and so forth.

42

4.3.3 Comparison Test

A test similar to the comparison test cannot be found in the publication “A Statistical Test Suite for
Random and Pseudorandom Number Generators for Cryptographic Applications”. The comparison
test is somewhat similar to the frequency test 4.3.1. It selects values of some bit length S in the
same way as the frequency test, but instead of selecting one value, it selects N of them. The test
uses N containers. The N values are compared in size, and the largest value is placed into its
container. If the largest value is shared by several of these N values, none of the values are placed
into their containers. Below is an example.

If the bit length S is 2, the values range from 00 to 11. If N is 5, it would mean that we need
to generate five values of size S, for example:

Value 1: 01

Value 2: 01

Value 3: 11

Value 4: 00

Value 5: 10
In this example, the third value was the largest, meaning that we increment the third container. Once
we have generated enough data, we can compare the distribution found in the containers to the
expected distribution and calculate the p-value.

The expected probability distribution is trivial to calculate. Since there is nothing that differs
between the N values, all of them should have the same probability of being the largest value. There
is no need to show a graph of the statistical distribution of the comparison test, since a comparison
test, which uses N values, would have the exact same statistical distribution as a frequency test
using N as its value. See figure 2 for an example of what the probability distribution for the

comparison test would look like if N was five.

4.3.4 Ranks Test

The ranks test uses matrix ranks in order to create a randomness test. The idea is to create a binary
matrix of some size using the Galois field 2, and then calculate its rank. Calculating the rank of an
N by N matrix is a O(N?) operation which makes the ranks test the test with the highest complexity
explained in this thesis. An algorithm exists that calculates the rank of a binary matrix, with Galois
field 2, with the time complexity O(N?) [22]. There are a couple of specific ranks tests which are
used more than others, namely the binary rank test for 31 by 31 matrices, binary rank test for 32 by

43

32 matrices and the binary rank test for 6 by 8 matrices. These three tests can be found in the
diehard test suite, which was developed by George Marsaglia [23]. The probability distribution of
the ranks test is approximative, since it is impractical to calculate the rank for every possible 32 by

21024 respective 2°! of them.

32 and 31 by 31 binary matrix, as there are
I have implemented the 31 by 31 and 32 by 32 ranks tests in RATT, using the probability
distributions found in the diehard source code. See figure 4 for the probability distribution of the 32

by 32 ranks test.

Logarithmic View

0.60

Chi-Squared Test Information

055
0.50
045
0.40
035

020

Armnount

0.25

0.20

015

010

0.5

Q 1 2 3

0.00

QOutcomes

. Expected

Figure 4. This is the probability distribution for the rank of a 32 by 32 binary matrix with the Galois
field 2. 0 displays the probability of rank 32, 1 displays 31, 2 displays 30 and 3 displays 29 and

lower.

4.3.5 One-Dimensional Random Walk Test

The one-dimensional random walk test is a simple yet potentially powerful randomness test. The
bits used as input are used as movement commands. Draw the integer line, set the starting location
to 0 and for each bit either move to the right of the current position by one if the bit was one, or
move to the left of the current position by one if the bit was zero. Do this N times, store the final
position and start from the beginning. This one-dimensional movement should produce a specific
pattern, which can be verified with the chi-square test. The pattern in question is a version of
Pascal’s triangle. This can be deduced in the following way:

After step one, there is a 50% chance of being on -1 and a 50% chance of being on 1. Each

44

step doubles the number of walks that could be made. In order to avoid fractions we choose to
multiply the probabilities by 2 where N is the step count. Below is a table showing how the

distribution unfolds as we increase the number of steps:

N 2V 6 5 4 3 2 - 0 1 2 3 4 5 6 Sum

0 1 1 1
1 2 1 1 2
2 4 1 2 1 4
3 8 1 3 3 1 8
4 16 1 4 6 4 1 16
5 32 1 5 10 10 5 1 32
6 64 1 6 15 20 15 6 1 64

We can use this table to see what the probability is for each location depending on the number of
steps taken. For example, after the sixth step has been taken, there is a 20/64 probability that we are
at zero. Interestingly, after having taken an odd number of steps in total, one must be on an even
integer, and after having taken an even number of steps in total, one must be on an odd integer. In
order to make the distribution readable in RATT, the possible values that one can be in after N steps
are indexed from 0 to up to N+1. For example, for four steps, -4 would be indexed as 0, -2 as 1, 0 as
3,2 as 4 and 4 as 5. Figure 5 shows of the distribution for eight steps. The more steps that are taken,

the closer to the normal distribution the distribution will be.

Logarithmic View
Chi-Squared Test Information
0.300
0.275
0.250
0.225
0.200
4+« 0175
C
g 0150
g0
- 0125
Q.100
0.075
0.050
0,000 — | — R
0 1 2 3 4 5] 7 B
Cutcomes
. Expected

Figure 5. The probability distribution for a random walk of eight steps.

45

5 Results

Unsurprisingly, obtaining decent results from the tests proved to be difficult. The battle for
superiority between pseudorandom number generators and randomness tests is tilted in favor of the
generators as even the simple linear congruential generators pass most randomness tests provided
its period length is large enough. The random number generators and the randomness tests that have
been evaluated, as well as the results, can be seen in figure 6.

The outcome of this thesis could be seen in two different ways: either we have not yet found
the holy grail of randomness tests or creating a PRNG that outputs random bits of high quality is
surprisingly easy. If the latter is true, it seems PRNGs cannot be improved significantly more. For
example, the 64-bit xorshift generator specified in George Marsaglia’s paper “Xorshift RNGs” [18]
does not require many binary operations to generate bits.

public long calculateNextValue() {

stater=(state<<13);
stater=(state>>>7);
return state”=(state<<17);

}

A total of three bit shifts, three bitwise xor operations and three store operations on a 64-bit value is
simple enough that it could be implemented in hardware instead of software. Other than that, there

is not much more that can be improved concerning generation speeds. The period length will most

2256

likely never have to be larger than which is easily achieved with newer xorshift-based

generators or permuted congruential generators (PCG) [20].

Comp | Comp | Comp | Comp | Comp | Comp | Comp | Comp | Comp Rank | Rank | Walk | Walk | Walk | Walk | Walk | Walk | Walk | Walk | Walk
2-2 |2-4 [2-6 |3-2 |3-4 |3-6 |4-2 |4-4 |46 | P12 [F® e F = R4 RS | i3 | 32a2 |1 2 3 4 5 6 7 8 9

MINSTD 894330 364511 886045 152004 433660 218655 844562 681993 832355 .141420 247242 209630 603289 582911 .686019 .663831 .221007 695166 092505 483222 140039 433722 566324 .748042 296660 327723 993533

MINSTOv2 879353 101793 401755 .154720 .148415 767881 .285137 .708632 DEZQDE.‘ZSTZQ} 854475 0988629 648171 933678 .996128 .811017 064112 924419 663624 785487 .500089 283860 .232712 .284365 183441 .534826

';E\Cnxis;oﬁ’: 231954 935394 765172 490586 .589667 884410 617329 427320 253043 576724 .168168 .239448

e _ e

RANDU -
Xorshift 32-bit

083199 299630 .554488 191424 383132 446337 .685369 .276917 723591 .309969

e _

855198 604071 052334 914102

637960 168817 367804 .564030 041149 679447 382778 .525276 561584 646455 372708 034114 501199 086843 474431 150471 793756 .107654 635256 881518 642021 029077 755220 .720828 681159 135712 .835109

RANDU

Mantissa 667145 222523 850571 254045 620260 .103645 019397 .729741 458838 .B83562 .795052 .582157 696503 377551 .874384 500408 692343 048031 527080 728680 526131 489184 084033 410106 710875 .238635
Runs 011
Xorshift 32-bit | 939502 656998 .838622 552172 .B02200 475789 676371 478382 .112730 .B08658 078378 647424 125046 451472 598220 497768 819397 967036 254141 394976 401361 .144322 .105979 236462 .897T195

Korshift 64-bit | 106796 309577 926298 .671752 .972580 .828213 .502601 .335743 .195500 .127696 493234 .819892 .700031 .037603 .619633 .524556 .305668 205857 254945 894160 870353 918691 625306 .031010 642384 358445 .180578

javautilRando
m

500862 797942 977830 .160304 .284137 402270 834674 .181412 925595 .764353 021701 .186224 644161 158360 .524035 129236 .958062 619683 .704336 873166 496301 .247835 .103835 481697 .121786 .089910 476081

java.util Splittab

leRandomiz 064688 031924 704338 950647 718807 482094 648845 303391 051444 .721544..265656 838397 405002 633081 794146 .546013 147342 148303 437574 541103 .205447 156118 .066375 079500 694132 .194585

java.utilSplittab
leRandomB4

Figure 6. Each column is a randomness test. Comp X - Y is the comparison test where Y number of

049191 129739 367468 .079791 .806285 896031 .162195 .187913 911755 .570815 .142160 .573513 054474 607495 737332 857086 .647308 249251 041069 252880 .733418 .787824 766202 .260733 824637 497148 .308560

X bits are compared. F is the frequency test where the value after it denotes how many values are

46

used. Rank is the rank test. Walk is the one-dimensional random walk test. RL is the run length test.
Each row is an RNG. MINSDT, MINSTDv2 and RANDU are specific Lehmer random number
generators. RANDU mantissa discards the first eight bits that RANDU generates in one pass.
RANDU + Xorshift 32-bit is an XOR combination of RANDU and Xorshift 32-bit. Xorshift and the

java RNGs are self-evident.

As was explained earlier in this chapter, the random number generators seem to be winning the
battle, when even the simplest random number generators can pass all of the randomness tests
specified in figure 6. This made it difficult to test the XOR combination hypothesis but, luckily,
xorshift 32-bit fails the 32x32 rank test and RANDU passes it, but fails at almost all other tests. The
combination of xorshift 32-bit and RANDU managed to pass all tests, showing that at least for
some PRNGs, an XOR scrambling of two generators will result in a better PRNG.

5.1 Patterns found in Linear Random Number Generators

Consider the frequency test for N values and the counting function:

Xn+1 = (Xn+ 1) mod M
where modulus M is some power of two. If N and M are equal, the result should never fail, but what
about situations where they differ?

We define a counting function of modulus M to be Cv and a frequency test for N values to
be Fn. What sort of pattern can be found if we have a group of counting functions, which have
moduli of different powers of two, tested with a group of frequency tests with value counts also
being different powers of two? Interestingly, the pattern is not trivial. Of course, we can quickly
assume that for some Fn and Cy, Fn will pass if N and M are the same, and that Fy will fail if N is
larger than M, but what about situations where N is smaller than M?

We need to look at this from a more analytical standpoint. We have Cg tested with F4. Since
Cs has a period length of only eight, we can easily check what the result is if we were to use an
infinite number of bits on this test. The sequence of Cs is:

000 001 010011 100 101 110 111
Once split with F4 the sequence will look like this:

000001010011100101 110111
which is a total of three 00, five 01, one 10 and three 11, yet the expected distribution should have

been three of each of the four values. This means that for a Cy and Fny where N is less than M,

47

situations may exist where Cw fails the test.

This result is rather exciting since it means that, at least for some very specific random
number generators, that is the counting functions, a larger frequency test does not encompass
smaller frequency tests. The reason for this is, of course, divisibility.

For all Cm and Fx where loga(N) divides log(M), Cwv will pass the Fy test. This can be
called the divisibility rule. We know that a full period of Cwm contains exactly one of each value
between 0 and M and that Cuw is a superset for any Ck, where K is equal to or smaller than M and a
power of two. This can be seen by removing leading bits in Cy. Below is an example of Cg and Ca:

000 becomes 00

001 becomes 01

010 becomes 10

011 becomes 11

100 becomes 00

101 becomes 01

110 becomes 10

111 becomes 11
It does not even have to be the trailing bits, we could also use the first two bits:

000 becomes 00

001 becomes 00

010 becomes 01

011 becomes 01

100 becomes 10

101 becomes 10

110 becomes 11

111 becomes 11
Since log2(8) cannot be divided by log>(4) we cannot equally divide Cs, but if we had Cj this could
be done and it would result in an equal distribution for all values, which means that Ci¢ passes Fa.
Therefore, using frequency tests with value counts of 2N where N is a prime number could be
recommended. This, interestingly, means that the worst possible frequency test is the Monobit test
since all integers are divisible by one.

If Cg cannot pass F4, could we instead order the eight three bit values in some order which
will pass F4? Here is one solution:

000 001 010011 100 110 101 111

0000010100111001101011 11

48

Since eight tree-bit values exist, the number of combinations is 8! which is 40320. Out of these
40320, only 5952 manage to pass F4. We call the PRNG which has a state of M bits, uses its state as
the number output and has the period length of 2M, which is the maximum possible for a state of M
bits, Pm. The set of all Py for some M is 2M!, and the number of bits Py creates during a full period
is M*2M. This means that in order to check by brute-force if some Pu passes a test Fx we will need
to generate M*2M*log>(N)/gcd(M*2M, loga(N)) bits, where ged is the greatest common divisor. This
means that for the set containing all Py for some M, we would need to go through a total of
M*2M#]ogy(N)/ged(M*2M, Toga(N))*2M! bits, which for P3, when tested with Fa, is already 967 680
bits. This makes calculating the percentage of all Py for some M which pass Fn for some N
extremely difficult. P4 tested with Fs would already require going through 4 * 10'° bits, or 446
tebibytes and already for Ps brute-forcing would be impossible. Calculating P3 tested with F4 took
around one second with the following python 3 program:
import itertools, re, math, collections
c_value = 8;f_value = 4
c_length = math.log(c_value, 2) * c_value
parts = c_length / math.log(f_value, 2) / f_value
multiplier = int(int(math.log(f_value,2))/math.gcd(int(math.log(c_value, 2)),
int(math.log(f_value,2))))
counter = 0; total = ©
for i in itertools.permutations(range(0,c_value,1)):
current = ""; total += 1
for j in 1i:
current += format(j, '@'+str(int(math.log(c_value, 2)))+'b")
tmp = current
for j in range(1,multiplier):
current += tmp
d = dict(collections.Counter(re.findall("'. " '*int(math.log(f_value,2)),current)))
if (all(v == (parts * multiplier) for v in d.values())):
counter += 1

print(str(counter)+"/"+str(total))
If P4 were to be tested with Fg using this program, it would take approximately 50 years to
complete. With the help of optimizations and a faster programming language, P4 with Fg should still
be practical.

Even if calculating exact values is impossible, which leaves the whole idea more or less as a
theoretical interest, the fact that Cv may pass Fx but fail at Fx even if N = 24*K for some positive
integer A and N and K are powers of two means that multiple frequency tests might be better than

one single large test. More than that, it implies that one should use frequency tests of powers of J

49

bits, where J is a prime number. For example, if we were to test a large enough number of bits that
frequency tests of up to Fiooo are practical, we could then conclude that the only worthwhile
frequency tests are F32, Fesa™®, Fi28, F256 and Fs12, since F2, F4 and Fi¢ are subsets of F2s56 and Fg is a
subset of Fsi2. Note that Fe4 has a star. This is because I am not sure if a combination of data
provided from the tests F2s¢ and Fs12 would encompass Fes. Why I think this could the case is that
64 = 2 =23"2 Fys6 contains 22 and Fs12 contains 2°.

I created with RATT a table consisting of Ca, C4, Cs..., Cess3s and F2, F4, Fs..., Fess36 and ran
each test 47 233 105 920 times in order to ensure that each test is divisible by the bit length of the
period of each random number generator (calculated with lem(1*2!, 2%22, 3*23, ... 16*2!6), where
lcm is the least common multiple). This ensures that the p-values are precise. The calculation took
10 hours and 45 minutes using 14 threads on a R7 3700X processor. See figure 7 for the results of

this calculation.

50

C00002

C00004

00008

C00016

Coo032

00064

coo128

C00236

€00512

C01024

coz048

C04096

co8192

C16384

C32768

C65536

FOOOO | FOOOD | FOOOD | FOOO1 | FOOO3 | FODOG | FOO12 | FOO25 | FOO51 | FO102 | FO204 | FO409 | FO819 | F1638 | F3276 | F6553
2 4 8 6 2 4 & 6 2 4 8 6 2 4 8 6

1.000000 1.000000 1.000000 1.000000

1.0[[)[1'10.1 000000

1.000000 1.000000 1.000000|

1.0[[][1']0.1 000000

1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000|

1.0[[][.‘(10.1 .000000| 1.0[[1&'10. 1.000000

1.000000 1.000000 1.000000 1.000000 1.000000 1.000000|

1.0[[)[1'10.1 000000 1.0[[)(!)0. 1.000000

1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000|

1.0[[]['.'.'10.1 000000 1.0[[1(.'(10. 1.000000

1.000000 1.000000 1.000000) 1.000000 1.000000 1.000000) 1.000000 1.000000 1.000000|

1.0[[1[!10.1.0[[](.‘(]0 1.0[[1(‘!10.1.0[[][!10 1.0[[][.‘(]0.1.0[[1(.‘!‘.10

1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1,000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

1.000000 1.000000 1.000000 1.000000

1 .(J[II](I]O. 1.000000

Figure 7. Each row in the table represents a counting function of a specified length. Each column

represents a frequency test of a specified length. Green means that the counting function on that row

passed the frequency test on that column, and red means that it failed the test. The decimal values

seen in the red and green areas are p-values.

It seems that for any Cm where M is 2°(2*) and where A is an integer larger or equal to 0, Cym will

pass all frequency tests Fx, where N is 2B and smaller than or equal to M. I, however, do not know

how to prove this. It also seems that a Cm, where M is 2™, will fail all tests Fx, where N is 22 and

smaller or equal to M.

What makes this table interesting is that it follows the divisibility rule, yet in most cases

where C is not divisible by F, it still passes the test. What the divisibility rule claims is that for

51

situations where C can be divided by F, it is not possible for C to fail F.

5.2 Unknown Probability Distributions

While creating these random number generators and studying how the calculations are made for
them, I realized that creating analytical calculations for the probability distributions is both difficult
and tedious. What makes this even worse is that the complexity of calculating the probability
distribution is no guarantee of the randomness test being useful. In some cases, the probability
distribution is too complicated to calculate analytically and, thus, only an approximation can be
calculated (see the ranks test in chapter 4.3.4 as an example of one which is widely used).
Therefore, when developing new randomness tests, the chi-square two sample test should be used
before trying to calculate the probability distribution for the test.

Here are some simple rules of thumb when considering new randomness tests. Have one
RNG which creates true randomness or pseudorandomness of the highest quality. Have it run the
test along with a PRNG which does not need to be of high quality. Use the chi-square two sample
test to determine if the two random number generators create differing distributions when tested
with the new potential randomness test. The null hypothesis is that both random number generators
create the same distribution, meaning that if the p-value is low, at least one of the random number
generators would fail the test, if the test were to be properly implemented.

In this way, if most of the random number generators generate distributions similar enough
that they do not fail the chi-square two sample test, we know that it would not be worth it to

continue the development of that specific randomness test.

52

6 Further Research

As chapter 5 pointed out, random number generators are largely winning over their tests. Even the
best of randomness tests can fail to detect simple congruential generators. More research should be
focused on understanding why these really simple PRNGs manage to bypass tests with ease, as this
would most likely also result in better randomness tests being discovered. According to the
kolmogorov complexity test, the sequences the PRNGs generate are of inadequate quality due to
how simple the algorithms are, yet according to all computable randomness tests made so far, the
pseudorandomness they create is of a very high quality. The XOR combination hypothesis needs
much more testing, since only one combination could be tested in this thesis.

The tool RATT works well, and multiple threads can be used to speed up larger tests. What
the tool now needs is more customizability, more PRNGs to use for testing and more randomness

tests.

53

7 Summary in Swedish — Matandet av Slumpmassighet

Slupmaissighet ar ett svarforstatt begrepp, fraimst for att den saknar en algoritm. En berdkningsbar
algoritm klarar inte av att skapa annat dn pseudoslumpmassighet. Da man jamfor slumpmassighet
med pseudoslumpmassighet ar skillnaden teoretiskt sett mycket klar men blir praktiskt sett mycket
svar, da enda sittet att urskilja dem &r med slumpmaéssighetstester, som dr mycket ineffektiva.
Algoritmer som skapar pseudoslumpmaéssighet kallas for PRNG och stér for “pseudorandom
number generator”, pseudoslumptalsgenerator.

Slumpmassighetstester anvinder sig av statistik for att sdga hur séllsynt ett resultat ar. Ifall
resultatet ar tillrdckligt séllsynt for att nd en viss forutbestimd troskel kan man sdga att den PRNG
som testades blev forkastad. Troskeln for forkastandet méts med hjélp av p-virdet. Ju mindre p-
vérdet dr desto osannolikare dr resultatet. P-virdet kan vara mellan 0 och 1. Om p-vérdet &r till
exempel 0.05 betyder det att om slumpmaéssighetstestet har testat riktig slumpmaissighet, skulle ett
resultat som 4r lika extremt eller mer extremt som det vi fitt hinda med 5 % sannolikhet. Ddrmed
kan mycket l4ga p-vérden tyda pé brister i en PRNG som testas.

Om malet dr att skapa bra slumpmaissighetstester méaste man forst definiera vad ett bra
slumpmaissighetstest innebar. Detta dr inte en enkel uppgift dé ett slumpmaissighetstest inte fir vara
for bra. Vilken nytta har man av ett slumpmaéssighetstest som forkastar alla PRNG:n dé de inte
skapar riktig slumpmaéssighet? Diarmed &r ett slumpmaéssighetstest som anvénder sig av
Kolmogorovkomplexitet [4.5 sida 9] for att berdkna ett p-virde inte vad vi soker efter (darutover
saknar ett sddant test en algoritm).

Av de krav som jag kom pa ér de tre viktigaste “kravet pd onskat p-virde”, “kravet pa
nollskilt p-véarde” och “kravet pd mera dr mera”. Kraven pa onskat p-virde betyder att ett
slumpmaissighetstest, som ges nagot p-virde x, skall ha atminstone en inmatning som far den att ge
ut ett p-viarde mindre dn x. Kravet pd nollskilt p-vérde betyder att vid ndgot p-virde x skall chansen
att man fér ett p-virde mindre dn x inte bli noll d4 inmatningen vixer mot odndligheten och
inmatningen ar slumpmaéssig. Med hjilp av dessa tva krav kan man forsékra sig att ett
slumpmaissighetstest kan klara av vilket som helst for krav pa p-virdet. Kravet pa mera ar mera ar
mycket likt de tva tidigare kraven, men ldgger till en mycket viktig sak. Om vi har ett
slumpmassighetstest som forkastar en PRNG da vi anvént N stycken vérden, borde testet ocksa
forkasta ssmma PRNG om vi anvénder fler 4n N stycken vérden, och da borde vi ocksa fa ett lagre
p-vérde. Da tredje kravet ocksa uppfylls vet man att ju storre antal virden man analyserar, desto
lagre kommer p-virdet att bli, ifall den PRNG som testas kan forkastas av slumpmassighetstestet
som anvénds.

Jag har skapat programmet RATT (namnet hérleds fran “RAndomness Test Tester”) for att
54

studera slumpmassighetstester och algoritmer som skapar pseudoslumpmaissighet. Med hjélp av
RATT gér det att jamfora olika PRNG:n sinsemellan och olika slumpmaissighetstester sinsemellan.
Jag har implementerat ett antal olika PRNG:n och slumpméssighetstester, jimfort dem och skrivit
slutsatser om detta.

Alla slumpmassighetstester som RATT innehaller anvédnder sig av Pearsons chi-tva-test [15]
for berdknandet av p-virdet vilket gor skapandet av fler tester enkelt, dd de matematiskt krdvande
delarna alltid hanteras pa samma sétt. Detta leder till vissa restriktioner géllande
slumpmaéssighetstester men samtidigt uppfylls de tre viktigaste kraven som beskrevs tidigare.

Med RATT kan man ocksa kombinera tva stycken PRNG:n med hjdlp av XOR-operationen.
Om vi har tvd PRNG:n, R och R, och tva slumpméssighetstester, T1 och T, for vilka R klarar av
T1 men inte T> och R klarar av T2 men inte T, har jag foljande hypotes; om man kombinerar R; och
R> med hjilp av XOR-operationen kommer kombinationen att klara av bdde T och T».

I figur 1 ses resultaten da jag jaimfort alla PRNG:n med alla slumpmaéssighetstester. Varje
kolumn ir ett slumpmaissighetstest och varje rad d4r en PRNG. Vérdet som stér i rutorna &r p-véardet
for de givna kombinationen av slumpmaéssighetstest och PRNG. I figur 1 ser man att dd PRNG:n
RANDU (klarade inte av virst ménga slumpmaissighetstester) och Xorshift 32-bit (klarade av alla
forutom Rank 32x32 testen) kombineras med hjilp av XOR-operationen, klarar denna kombination
av alla test som den utsattes for. Detta betyder att atminstone i vissa fall ndr man kombinerar
PRNG:n med hjélp av XOR-operationen, kommer resultatet att skapa slumpmassighet av béttre

kvalitet.

Comp | Comp | Comp | Comp | Comp | Comp | Comp | Comp | Comp Rank | Rank | Walk | Walk | Walk |Walk | Walk | Walk | Walk | Walk | Walk
2-2 |2-4 [2-6 |3-2 |3-4 |3-6 |4-2 |a-4 [4-¢ | P12 [F® 2 F 2 R RIS 331 | 322 |1 2 3 4 5 6 7 8 9

MINSTD .804339 364511 886045 .152904 433660 218655 844562 681993 832355 .141420 247242 299630 .603280 582011 686010 .663831 .221007 695166 092505 483222 140039 433722 566324 748042 .206669 327723 .993553

MINSTCv2 879352 101793 401755 154729 148415 767881 285137 .708632 ‘092906.‘281293 .854475 988629 648171 933678 096128 211017 064112 924419 .663624 .785487 .500089 283860 232712 .284365 183441 .534826

PCG-XSH-RR

64in, 32 out .231954 935504 765172 490386 .589667 884410 617320 427320 253943 576724 168168 239448 855198 604071 .052334 814102 083199 299630 .534488 .191424 383132 446337 685369 .276917 723591 .309969

e _‘9]9397 o ‘425513_
}i::l:gt;lb\t (657969 168817 367804 564930 .041149 670447 382778 535376 561584 648455 372708 034114 .501199 086843 474431 150471 793756 .107654 635256 .881518 642021 020077 755220 .729828 681159 135712 .835100
:At:?ia 667145 222523 830571 .254945 629260 .105645 919397 729741 458838 883562 .795052 582157 .696503 377551 874384 500408 692343 (048031 .527089 .728680 .526131 480184 984033 410106 710875 .238635

Runs 011

Xorshift 32-bit | 939503 656998 .838622 .552172 .802200 475789 676371 478382 .112730 .B08658 078373 647424 125046 451473 598220 497768 919397 967036 .254141 394976 401361 144322 .105079 236462 .89T195

Xorshift 84-bit .106796 309577 .926298 .671752 .972580 828212 502601 .335743 .195500 .127696 493234 219892 .700031 .037603 619633 524556 .205668 .205857 254945 .894160 .870353 .918691 625306 .031010 .642384 358445 .180578

javautilRando
m

.500862 .707042 977830 160304 .284137 402270 834674 .181413 025505 764353 921701 186224 644161 158369 524935 120236 958062 619683 704336 .873166 406301 .247835 103835 481697 .121786 .089910 .476081

javautilSplittab

leRandom3? 964688 031924 704588 959647 718807 482994 648845 303591 051444 721544 023520 265656 838397 405002 633081 794146 .546013 147342 148303 437574 541103 205447 156118 066375 079300 694132 .194585

javautilSplittab
leRandom&4

Figur 1. Varje rad dr en slumptalsgenerator och varje kolumn ett slumpmassighetstest. Virden som

049191 129730 367468 079791 .806285 8096031 .162195 .187912 911755 .570815 .142160 .573513 .054474 607495 .737532 857086 .647308 849251 041069 .252880 .723418 787824 766202 .260733 .824637 497148 .308560

syns dr p-virdet da slumptalsgeneratorn 1 specifika raden blivit testad av slumpmaissighetstesten 1

55

specifika kolumnen.

Malet med RATT var inte att hitta brister i olika PRNG:n utan att jamfora
slumpméssighetstester. Ifall ett slumpmassighetstest forkastar en delméngd av testade PRNG:n som
alltid ar en 6verméangd till de PRNG:n som ett annat slumpméssighetstest forkastar, finns det ingen
nytta av att anvinda bada slumpmaissighetstesterna. D& de flesta PRNG:n som testades klarade av
antingen alla tester eller ett fatal gick det inte att komma fram till nagon slutsats angdende
slumpmaéssighetstester som skulle forkasta 6verméngder av vad andra slumpmaéssighetstester har
forkastat.

Ur figur 1 framgér hur svart det ar att skapa bra slumpmaéssighetstester. DA PRNG:n oftast
bestar av ett litet antal bitvisa operationer, additioner och multiplikationer, blir det svéart att hitta
snabbare PRNG:n. PRNG:n som skulle skapa slumptal av bittre kvalitet dr ocksa en utmaning da
slumpmassighetstester inte &r tillrickligt utvecklade for att méta nuvarande PRNG:n med hog
standard. Det skulle l6na sig att forska varfor dessa enkla PRNG:n klarar av néstan alla
slumpmaissighetstester, da enligt Kolmogorovkomplexiteten dr de fortfarande av 14g kvalitet, men

enligt berdkningsbara slumpmissighetstester skapar dessa PRNG:n slumpmaéssighet av hog kvalitet.

56

8 References

[1] Von Neumann Various techniques used in connection with random digits, National Bureau of
Standards Applied Mathematics Series, Volume 12, pages 36-38, 1951

[2] D.H. Lehmer Mathematical Methods in Large-Scale Computing Units, Symposium on Large-
Scale Digital Calculating Machinery, pages 141-146, 1951

[3] W.E. Thomson 4 Modified Congruence Method of Generating Pseudo-random Numbers, The
Computer Journal, Volume 1, Issue 2, page 83, 1958

[4] Donald E. Knuth The Art of Computer Programming — Seminumerical Algorithms, Third
Edition, page 93, 1997

[5] Manabendra Nath Bera et al. Randomness in Quantum Mechanics: Philosophy, Physics and
Technology, arXiv 1611.02176v2, page 2, 2017

[6] A. N. Kolmogorov, Foundations of the Theory of Probability, page 2, 1950

[7] E. Wigner, On the Quantum Correction for Thermodynamic Equilibrium, Department of
Physics, Princeton University, page 751, 1932

[8] Dirac, P. A. M. Bakerian Lecture. The Physical Interpretation of Quantum Mechanics, pages 1
and 7-8, 1942

[9] Gregory J. Chaitin, Exploring Randomness, page 113, 2001

[10] Cristian S. Calude et al, Computing A Glimpse of Randomness, page 1, 2002

[11] Andrei Khrennikov, Randomness: quantum versus classical, arXiv:1512.08852v1, 2015

[12] Gregory J. Chaitin, A Theory of Program Size Formally Identical to Information Theory,
Journal of the ACM 22, page 19, 1975

[13] The CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS
experiment at the LHC, arXiv:1207.7235v2, pages 1 and 6, 2013

[14] man 4 random, can be found at Attps.//linux.die.net/man/4/random

[15] Pearson, Karl, On the Criterion that a given System of Deviations from the Probable in the
Case of a Correlated System of Variables is such that it can be reasonably supposed to have arisen
from Random Sampling, Philosophical Magazine, pages 157-175, 1900.

[16] T.E. Hull; A.R. Dobell Random Number Generators, SIAM Review, Vol. 4, No 3, page 233,
1962

[17] Rukhin A. et al. A Statistical Test Suite for Random and Pseudorandom Number Generators
for Cryptographic Applications, Special Publication 800-22 Revision 1a, 2010

[18] George Marsaglia Xorshift RNGs, Journal of Statistical Software, 2003

[19] Daniel Lemire, Melissa E. O’Neill Xorshift1024*, Xorshift1024+, Xorshift128+ and

Xoroshirol 28+ Fail Statistical Tests for Linearity, Computation and Applied Mathematics 350,
57

2019

[20] Melissa E. O'Neill, PCG: A Family of Simple Fast Space-Efficient Statistically Good
Algorithms for Random Number Generation, 2014

[21] Melissa E. O'Neill, PCG: 4 Family of Simple Fast Space-Efficient Statistically Good
Algorithms for Random Number Generation, page 43, 2014

[22] Cetin K. Kog¢ and Sarath N. Arachchige 4 Fast Algorithm for Gaussian Elimination over GF(2)
and Its Implementation on the GAPP*, Department of Electrical Engineering University of
Houston, page 118, 1991

[23] George Marsaglia, originally cited as http://stat.fsu.edu/pub/diechard/NOTES but now only
found in https://web.archive.org/web/20160119080058/http://stat.fsu.edu/pub/diechard/NOTES,
1998

58

