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Abstract

In the recent decade, the interest in technologies enabling autonomous vehicles has

increased signi�cantly in both industry and academia. Spurred by this interest, an

autonomous boat research platform has been set up at Åbo Akademi University

to serve as a test bed for autonomous maritime vehicle-related technologies. As a

starting point, the boat platform needs a system to both enable remote monitoring

and control, as well as to interconnect the various hardware entities of the boat

such as sensors and motor. The autonomous vehicle-oriented software ecosystem

OpenDLV is used to build an initial control and communication system for the boat

platform.

In this thesis, the technologies relevant to the core building blocks of the OpenDLV

software ecosystem are explored, including the use of a standardized method of data

serialization, multicast communication, containerization, and a distributed system

based on the novel microservice architecture. A high-level diagram depicting the

planned distributed system of the boat platform is created to provide an overview of

the di�erent building blocks of the system and of how they communicate. A number

of microservice applications are developed using the OpenDLV software ecosystem

to handle the tasks of manual remote control of the boat, video streaming, collection

and display of GPS-derived data, and LTE telemetry data collection and display.

The applications developed for this thesis using the OpenDLV ecosystem form the

basis of a distributed communication and control system that seems well suited for

both an autonomous maritime vehicle in general and the development environment

of the boat platform at Åbo Akademi University. Ultimately, however, the strengths

of a distributed system such as the one developed for this thesis also come with

drawbacks in the form of increased system complexity, which should be carefully

considered before and during future development.

Keywords: Autonomous Maritime Vehicle, OpenDLV, Microservice Architecture,

Containerization, Distributed System
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1 Introduction

In the recent decade, the interest in technologies enabling autonomous vehicles has

increased signi�cantly in both industry and academia. Although a large part of

contemporary research and development is focused speci�cally on autonomous cars,

there is also a signi�cant amount of research taking place in the �eld of autonomous

maritime vehicles. An autonomous boat research platform at Åbo Akademi Univer-

sity has been created with the purpose of serving as a test bed for the design and

implementation of remote control and navigation infrastructure, situational aware-

ness and sensor technologies, and maritime oriented machine learning models.

1.1 Object of the Thesis

The object of this thesis is to design and implement an initial control and commu-

nication system for the boat project, which consists of an in�atable pontoon boat

equipped with various computing hardware and sensors, as well as control and mon-

itoring station on the shore. In lieu of creating such a complex system from the

ground up, an open source software ecosystem for autonomous vehicles, OpenDLV

[1], was through initial evaluation chosen as a suitable starting point from which

development of a control and communication system for the boat platform could

begin.

The intent of this thesis is to look into how the core features of the OpenDLV soft-

ware ecosystem a�ect both high-level system design as well as low-level application

design and implementation. A handful of applications will be developed for the boat

platform and shore control station using OpenDLV, which will perform varying tasks

such as controlling an outboard motor and gathering data from sensors. The thesis

seeks to evaluate the strengths and weaknesses of the OpenDLV architecture, par-

ticularly concerning communication, system design, and application development.

As the OpenDLV software ecosystem is realized using a relatively new and somewhat

immature technology, the microservice architecture, any implementation thereof is

likely to present some issues that will need to be worked out. At the same time,

designing and implementing a novel system such as this lays a good foundation for

innovation, and the lessons learned from the process of re�ning the architecture and
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�nding solutions to emergent problems will certainly be interesting from a research

viewpoint.

1.2 Thesis Structure

In Chapter 2 of this thesis, the technical background for the thesis is presented.

In Section 2.1, some general technological information concerning autonomous ve-

hicles is presented, including a maritime-oriented autonomous system application.

In Sections 2.2 and 2.3, some of the underlying technologies used by the OpenDLV

software ecosystem are discussed, while in Section 2.4, OpenDLV itself is presented.

In Chapter 3, the practical implementations and experiments performed for this

thesis are presented, opening with a system design description and continuing with

descriptions of the microservice-based functional application developed for the boat

platform as well as a description and discussion of the communication systems of

the boat platform. Chapter 4 contains the results of the thesis, including an evalua-

tion of OpenDLV, the applications developed, and some discussion and suggestions

concerning future development of the boat platform. In Chapter 5, the thesis is

concluded.
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2 Technical Background

2.1 Technologies in Autonomous Vehicles

An overview of key technologies for autonomous cars is presented by Zhao et al. in

their paper [2]. In the paper, environmental perception is identi�ed as an important

mechanism to provide data for the control systems of a vehicle. Three sensor types

are presented, each with di�erent use cases and weaknesses: LiDAR (Light Detection

and Ranging), a laser sensor capable of providing location, shape, and velocity data

of surrounding objects, a sensor impaired by its high cost and the large amount of

complex data generated; radar, a sensor useful for long range detection; and visual

perception, i.e. using camera sensors to gather data about the environment, useful

for parsing environmental objects intended for humans such as tra�c signs. Data

from camera-based visual perception systems is noted as being di�cult to exploit,

necessitating the use of machine vision and machine learning technologies for the

extraction of useful information.

In their article, Kuutti et al. [3] present an overview and comparison of di�erent

localization techniques for land-based autonomous vehicles, such as LiDAR, radar,

GPS, and camera-based. In the article, localization is used in the context of posi-

tioning either a vehicle or an object or road �xture near the vehicle with respect

to a reference map. The di�erent localization methods are compared using metrics

for e.g. computational and monetary cost, accuracy, reliability, and general sensor

performance limitations. Accurate localization data is established as being crucial

to the operation of other functional systems of an autonomous vehicle; speci�cally

perception, control, and (path) planning.

The authors conclude that the best solution is a hybrid approach of fusing data from

multiple di�erent sensors. The analysis performed suggests that no sensor technology

used alone can provide the accuracy and reliability in di�erent conditions needed for

a truly autonomous vehicle, and that a sensor fusion approach can potentially pro-

vide an accurate and robust solution while keeping the system cost-e�ective. As an

example, the authors note that while a combination of integrated GPS, IMU (Inertial

Measurement Unit), and camera sensors can provide high accuracy localization at a

low cost, the accuracy of this combination is not su�cient for autonomous vehicles,
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and should be supplemented by LiDAR or radar sensor-based techniques.[3]

2.1.1 Maritime-Speci�c Application

The RSOA (Robot System Onboard Architecture) developed by Barbier et al. [4] is

an attempt to produce a modular, generic, and decentralized software architecture

for a �eet of autonomous maritime vehicles. The architecture is one of three parts

of a larger control system for a number of cooperating, heterogeneous autonomous

vehicles, with the other two parts being a distributed middleware system for com-

munication, and a central mission management tool used in a remote command and

control station.

The architecture presented is based on the ROS (Robot Operating System) frame-

work. In the developed architecture, each vehicle communicates with the remote

control station using radio, Wi-Fi, or acoustic signals (in the case of underwater

vehicles). The communication is implemented using an open DDS (Data Distribu-

tion Service) protocol. The architecture was tested �rst using pure simulations, then

simulations with hardware in the loop, and �nally by experimentation on the open

sea using near-complete systems, with some functionalities simulated due to safety

concerns. [4]

In the presented system, the usage scenarios consist of a human operator remotely

assigning high level tasks to the system, tasks being transit to a location, survey of

an area, inspection of an object, etc. The tasks are then decomposed into generic

actions, e.g. motion, perception, and manipulation, and relayed to a number of

available vehicles, which then set out to perform the tasks given. The vehicles

themselves do not have any onboard planning systems, and rely on the simpli�ed

action instructions provided to them from the mission management tool. [4]

During a real-life experiment, the authors encountered di�culties in implementing

the DDS-based communication system on some of the processing hardware used,

but report that the developed onboard architecture performed the received high-

level tasks correctly. The authors conclude by stating that the modularity of the

developed on-board architecture provided great bene�ts for both development and

integration, as the genericity of the architecture facilitated deployment on the het-

4



erogenous hardware platforms of both vehicles and control stations, and the mod-

ularity of the framework allowed for platform development being done by several

di�erent project partners. [4]

2.2 Microservice Architecture

Microservice Architecture (MSA) is a relatively new software architectural style that

has started seeing a lot of use in recent years. The style itself is considered by some

to be either an improvement upon or a re�ned subset of a slightly older architecture,

Service-Oriented Architecture (SOA).

2.2.1 Characteristics of a Microservice Architecture

While the microservice architectural style is yet lacking any clear de�nition, there

are a number of common characteristics that can be used to outline the architecture.

One characteristic that suggests an MSA being a distinctly di�erent architecture

from an SOA is decentralized control. A common part of an SOA application is

the Enterprise Service Bus (ESB), a central message bus that manages application

work�ow, choreography, and communication. Microservice architectures, however,

typically lack such a central governance mechanism, relying instead on the services

themselves to apply their own communication and business logic etc. while leaving

all the thinking out of the message bus, which is left to simply act as a router. [5]

The characteristic communication structure of �smart endpoints and dumb pipes�, as

Fowler and Lewis put it [5], results in an application that is ideally very cohesive and

loosely coupled. This in turn provides bene�ts in evolvability, as the independent

components (services in this case) are easier to develop, test, and deploy. Evolvability

is especially bene�cial in a novel system such as that of a research platform, as parts

of the system are likely to change frequently.

Loose coupling means that a service should know as little as possible about other

services it collaborates with, and that services are integrated into the system in such

a way that changes to one service do not require changes to another. High cohesion

is achieved by having related behavior collected in one place, and unrelated behavior

elsewhere. Thus, if some behavior in the system needs to be changed, changes have

to be made in as few places as possible. [6, p. 30]
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Dragoni et al. [7] de�ne a microservice as a �minimal independent process interacting

via messages� and a microservice architecture as a �distributed application where all

its modules are microservices�. The term minimal is used to mean that a service

should only be responsible for functionality to serve a speci�c purpose, such as a

calculator service only providing functionality to perform calculations.

While there are no standards governing the size of microservices, a term often seen

where best practices are discussed is �small enough�. As the sizes of services grow

smaller, the bene�ts from low interdependence increase, and managing a single ser-

vice becomes easier. However, the resulting increase in the number of services does

make the system more complex. The size of the individual services thus also depends

on how well the overall architecture can handle the increased complexity. [6]

2.2.2 Advantages of a Microservice Architecture

Whether the intention is to migrate an existing system from a monolith to a mi-

croservice architecture or to develop a microservice-based system from the bottom

up, it is worth considering what is to be gained by doing so. There are a number

of issues and disadvantages with monolithic architectures that are either absent or

whose impact can be minimized when using a microservice architecture, as presented

in [7]:

� The complexity of large monolithic systems can limit their maintainability and

evolvability, as adding and updating libraries can result in unwanted behavior

in the system due to dependencies. With microservices, gradual transition to a

new version is possible. New and old versions of a service can be deployed and

run in tandem, and any dependency issues can be solved gradually, fostering

continuous integration.

� Bugs can be hard to track down in a monolithic system due to the large code

base. Conversely, the small size and independent nature of microservices can

limit the impact of bugs while making �nding and �xing them easier.

� Changes to a part of a monolithic system require a reboot of the entire system.

In a microservice architecture, changes to a part of the system typically only

involve a number of microservices, which can be rebooted without disrupting
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the rest of the system. This reduces overall system downtime when rebooting,

and greatly improves testability and maintainability.

� Developing a monolithic application entails being locked in to certain frame-

works and programming languages. Microservices o�er a bit more leniency in

this regard, as only the communication technologies and protocols used be-

tween the services need to stay consistent; the technologies, languages, and

frameworks used for the microservices themselves are up to the developers.

� The modules in a monolithic system may have signi�cantly di�erent needs

regarding resources such as memory or computational capacity and may even

require some additional components e.g. databases. Optimal deployment of

such an application is di�cult as a single deployment environment must satisfy

all the needs of the system. Microservices, on the other hand, are inherently

suitable for containerization, which enables a more �exible and con�gurable

deployment environment.

2.2.3 Pitfalls in a Microservice Architecture

As with any system architecture, a microservice-based system does present some

challenges that need to be acknowledged. Being an architectural style that is still

considered to be in its infancy [7], an implementation of a system using microservices

is especially vulnerable to bad design practices stemming from inexperience and from

the use of a somewhat immature architectural style.

In a study conducted among developers experienced with microservice architectures,

a number of so-called architectural �bad smells� are identi�ed. The term bad smells

is de�ned as �indicators of situations�such as undesired patterns, antipatterns, or

bad practices�that negatively a�ect software quality attributes such as understand-

ability, testability, extensibility, reusability, and maintainability of the system under

development� [8]. The �ve smells that are reported as most harmful are wrong cuts,

hard-coded endpoints, cyclic dependency, shared persistency, and API versioning.

The wrong cuts smell occurs when microservices are split on the basis of horizontal

layers (e.g. presentation, business, and data layers) instead of according to processes.

This can lead to wrongful separation of concerns and increased complexity stemming
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from unnecessary data-splitting. This smell can be avoided by analyzing the business

processes and resource needs of the system.

Hard-coded endpoints refer to hardcoded IP addresses and ports between intercon-

nected microservices. These become an issue when the location of a microservice

needs to be changed, and can be avoided by using a service discovery approach

instead of hardcoding.

Cyclic dependency is a result of an existing cyclic chain of calls between microservices

such that e.g. service A calls service B, B calls C, with C �nally calling A again. This

smell can be avoided by detecting cycles and re�ning the data �ow and dependencies

in the system, as well as by applying the API gateway pattern [8]. The latter involves

having microservices exposed to each other through a gateway layer that manages the

connections between services [9]. The related smell not having an API gateway is also

mentioned in the study [8], though reportedly this smell only becomes an issue when

the amount of microservices in a system becomes so large that the communication

between them becomes hard to manage.

The shared persistency smell occurs when multiple services access the same (rela-

tional) database, resulting in high coupling and reduced service independence. Pro-

posed solutions include private data stores for each service or private tables in a

database that di�erent services have exclusive access to. Similarly, loss of service

independence can also result from di�erent microservices using the same libraries,

indicated by the shared libraries smell. Modi�cation of the shared libraries requires

coordination between developers, and the resulting loss of independence could either

be accepted or, alternatively, the common functionality from the shared libraries

could be extracted to a new service.

A lack of semantic and consistent API versioning (e.g. v1.1, 1.2 etc.) can result in

connection issues and unexpected behavior between services when API changes are

made, e.g. data are sent in a di�erent way or need to be requested in a di�erent

way than before. Consistent versioning will help indicate if services need to adapt

to changes made in the way other services communicate.
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2.2.4 Smells in the Automotive Domain

Lotz et al. posit in [10] that not all of the bad smells listed in [8] are necessarily

applicable in automotive or embedded systems. In some cases, the bad smells are still

relevant even in automotive or embedded applications, but the proposed solutions

are less than ideal.

As presented in [10], the negative impact of the wrong cuts smell is signi�cantly

lessened in automotive or embedded systems. Since the capabilities in e.g. the car

industry are typically separated along clear boundaries such as powertrain, chassi-

, comfort, and entertainment systems, embedded systems operating within these

clear boundaries are less a�ected by issues stemming from cross-functionality. As

an example, if the services are assigned to perception (sensing), data processing,

and �nally actuation, the service boundaries are quite clear. The services can be

developed and deployed independently, and the only cross-functionality required is

the exchange of data.

Whether hard-coded endpoints are an issue or not is heavily dependent on the method

of message transfer between services. In the automotive industry the commonly used

method is broadcasting, where messages are sent to all control units and a message

identi�er tells the receiving microprosessor if the message is to be processed. This

means that the issue of hard-coded endpoints never comes up.

Just like in more general applications, shared persistency (multiple microservices

sharing data-storage spaces) can lead to problems even in the automotive domain

due to decreased system independence and higher coupling. However, due to resource

constraints and cost issues, private data storage for each service is not always feasi-

ble. Private data storage could nonetheless be advantageous in some safety-critical

systems and in systems where resource constraints are less of an issue.

The usage of shared libraries could pose signi�cant risk through the introduction of a

single point of failure, as any faults in a shared library could lead to issues in multiple

subsystems. In the case study by Lotz et al. this problem was entirely avoided by

fully integrating the required common libraries into the deployment image of the

service, leading to preserved independence.

9



2.2.5 Service-to-Host Mapping

In their case study [9], Taibi et al. found that the most prevalent deployment pattern

in microservice architectures is themultiple services per host pattern. In this pattern,

multiple microservices are deployed on a single host (node), each running either in a

container or a virtual machine. This �ts well with the general principles of an MSA,

as it promotes scalability and performance; containerized service instances are easy

to deploy according to the system's needs. Containerization and virtual machines

will be discussed at more length in the next section.

An alternate method, the single service per host pattern is also mentioned in [9]. In

this pattern, each service is deployed on a separate host. The authors note that while

this could eliminate resource con�icts by way of isolation, overall system performance

and scalability would be drastically reduced. Additionally, this pattern is considered

counterproductive, as deploying each service on a separate node violates the basic

principles of the microservice architectural style.

As Newman points out [6, pp. 116-118], deploying multiple services on a single host

does have some drawbacks. For one, it makes resource monitoring more complicated,

as tracking e.g. the CPU usage of a host as a whole might not be enough; a single

service using an inordinate amount of resources could lead to throttling the other

services sharing the same host. To detect this, the resource usage of the individual

services also needs to be tracked. Multiple services per host also introduces somewhat

of a single point of failure, as a host failing can take out multiple services.

2.3 Virtualization

In order to deploy multiple services on the same host, the hardware needs to be split

up somehow. A common way to achieve this is the use of virtual machines (VM).

2.3.1 Virtual Machines

When using virtual machines, a hypervisor , also called a virtual machine manager

(VMM), runs on top of the native (host) operating system (OS) of a machine, pro-

viding one or more VMs with a share of the system's resources (CPU, I/O, memory

etc.) through virtualization. The VMs in turn run a guest OS and kernel, which
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are able to run as if they were running on physical hardware thanks to the resource

abstraction provided by the hypervisor. [6, pp. 123-124 ] The kernel is the central

part of an OS and handles most of the crucial tasks in a system, such as memory,

process, and disk management. Every OS needs a kernel, and e.g. the Linux kernel

is used in many di�erent operating systems.

Figure 1: Comparison of type-2 virtualization and lightweight containers [6]

A hypervisor running on top of the OS of the host machine is called type-2 virtu-

alization, in contrast to type-1 virtualization, where the hypervisor instead operates

directly on top of hardware. An illustration of type-2 virtualization can be seen in

Figure 1a.

Virtual machines seem a good �t for microservices at a glance; the isolation provided

by a VM can easily provide the operational independence which is a characteristic

of services in an MSA [7], but there are some drawbacks. Both the hypervisor and

the VMs need to set aside resources to do their jobs, and as the number of VMs

increases, so does the overhead from managing them. At some point, this overhead

becomes a limit to the number of times a physical infrastructure can be sliced up.

[6] As one of the core principles of a microservice architecture is a small service size,

even a moderately sized, MSA-based application might run into signi�cant overhead

if VMs are used.
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According to [11], cyber-physical systems (CPS) such as those found in a self-driving

vehicle can bene�t greatly from the isolated environment and encapsulation pro-

vided by a VM. A cyber-physical system is comprised of a number of computerized

systems that control physical resources to interact with their surroundings through

collaboration and coordination, e.g. the collision avoidance and various autonomous

driving functions in a self-driving vehicle. The ease of deploying new features and

easier rollback in case of unwanted behavior are also mentioned as advantages in

favor of virtualization. However, the prevalence of real-time systems and strict re-

source constraints in the automotive domain make VMs seem less appealing due to

their resource overhead. Response time violations can lead to system failures, which

can have disastrous consequences in the operating environment of a vehicle.

2.3.2 Containerization

An alternate method of virtualization is the use of container-based virtualization, also

known as containerization. Container management tools such as Linux containers

(LXC) and Docker provide bene�ts similar to VMs, but are much more light-weight

and do not use a hypervisor, thus removing some of the issues with VMs that were

mentioned earlier. Linux containers share the same kernel as the host machine and

can run any OS as long as it uses the same kernel as the host. The containers work by

operating in a separate subtree of the overall system process tree and are allocated

physical resources by the kernel. [6] Linux containers are depicted in Figure 1b.

More precisely, the Linux kernel features responsible for the isolated user space in-

stances used in containerization are cgroups (control groups) and namespaces [12].

Cgroups allow processes to be organized into hierarchical groups whose resource

usage can be monitored and limited. The resource assignment and tracking are im-

plemented in a number of subsystems (also called resource controllers) that each

operate on a single resource (CPU, memory etc.). The hierarchical structure of

cgroups enables imposing di�erent limits on di�erent levels of the hierarchy, with

lower-level groups not being able to exceed limits set on higher levels but possibly

having stricter resource limits of their own. [13]

Namespaces wrap global system resources in an abstraction, providing processes

within a namespace a seemingly isolated instance of the resource in question. Figure
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Figure 2: List of Linux namespace types [14]

2 lists the namespace types available and what resources they isolate. Changes made

to a global resource are visible to the other members of a namespace and invisible

to other processes. [14]

2.3.3 Docker

Docker is an application management and development platform focused on sepa-

rating applications from infrastructure through containerization. To containerize an

application, it is �rst made into an image using a Docker�le, which is a read-only

template containing build and run instructions for a Docker container. Typically,

an image is based on an operating system image, which can then be customized by

adding e.g. an application or a web server on top. The image can then be run,

turning it into a container ; the runnable instance of an image [15]. Built images can

be stored locally or in the Docker registry , a repository which is used to hold and

distribute user-submitted images. Images can also be pulled from the Docker Hub;

a service provided by Docker which hosts images for community-driven projects, ap-

plications from external vendors, and o�cial images such as operating systems and

programming language runtimes [16].

Docker uses a client-server architecture, in which a user-interactive Docker client

communicates with a local or remote Docker daemon using the Docker API through

e.g. UNIX sockets or a network interface. The Docker daemon is responsible for

managing images, containers, networks, and volumes. Linux kernel features such as

the aforementioned namespaces are used to deliver functionality and isolation to the

Docker architecture. [15]
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2.3.4 Comparison of KVM, Xen, and Docker on ARM

In their study, Raho et al. [12] presented a performance comparison between Docker

and two open-source hypervisors, KVM (Kernel-based Virtual Machine) and Xen,

which was conducted on ARM platforms. Xen on ARM is a bare metal (type-

1) hypervisor that only supports paravirtualization, i.e. the guest OS is aware of

the virtualization and uses drivers and extensions to talk to the hypervisor. The

hypervisor implementation of KVM on ARM is split into two parts, a 'highvisor'

and a 'lowvisor', for security and portability reasons. The highvisor operates in

kernel space and handles most of the typical hypervisor functionalities, while the

lowvisor handles context switches and enforcing isolation.

The performance overhead of the three virtualization methods was tested using

benchmarks for system performance (�oating-point operations, system call overhead,

process creation overhead etc.), network performance, scheduling, and I/O. The ex-

perimental results showed that there was very little performance overhead overall for

all three virtualization solutions, with slight variations depending on the benchmark

used. [12]

The authors note that while containers are nowadays preferred because of their ease

of use and faster deployment due to multiple containers sharing an operating system,

they do not provide the same level of isolation as hypervisors and are thus considered

less secure. Because both methods have comparably low performance overhead,

the authors suggest using a combined approach of containers running inside virtual

machines to provide the bene�ts of both technologies. [12]

No scalability tests with multiple concurrent virtual machines or containers were

performed during the study. While single instances using the di�erent virtualization

methods may have comparable performance overhead, the question still remains of

whether containers are more resource e�cient when the number of instances on a

single host machine increases.

2.3.5 Virtual Machines and Containers at Scale

In a study by Zhang et al. [17], virtual machines and containers were compared

within a big data environment. Although a big data environment is not strictly
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relevant to e.g. autonomous vehicles, the study does provide some valuable insight

into how VMs and containers behave at scale, as well as how the virtualization

methods behave under heavy load.

According to the authors, VMs have an issue w.r.t. scaling in that they are not very

good at sharing resources; multiple VMs can easily share the same hardware but can-

not easily shift resources between each other. This can lead to an imbalance at high

loads, where application performance degrades even though there are free resources

available. Multiple VMs requiring their own operating systems and corresponding

images without the ability to share them between VMs are also factors that can lead

to ine�cient scaling. Containers avoid these issues by sharing the host OS and by

using layered images, respectively. [17]

The study used KVM and Docker to manage the VMs and containers respectively;

an open-source cluster computing system, Apache Spark, was used as a platform to

perform the computation workloads for the study by running a variety of compute-

intensive Spark applications. In addition to investigating the convenience and ease

of setting up a system using containers vs. using VMs, the study sought to evaluate

the impact VMs and containers have on the performance and scalability of di�erent

big data workloads. [17]

The deployment convenience comparison was carried out by measuring the time

it took to set up a Spark cluster comprised of three VMs or containers on a single

machine. Setting up a containerized cluster took on average 23 minutes, while setting

up a cluster using VMs took on average 46 minutes. The di�erences in setup times

were mostly in the image building phase, where setting up the VMs took longer

because of the need to install an OS for every VM and because the VM images

needed to be copied multiple times. [17]

Signi�cant di�erences were also observed w.r.t. bootup e�ciency. A single machine

could reasonably hold many more containers than VMs with a machine starting

to become unusable at 250 deployed VMs compared to the same machine happily

running 512 Docker containers. When sequentially booting up the images, it took

479 seconds to boot up 256 containers while the same amount of VMs took over 50

times longer to boot up. [17]
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Figure 3: Average CPU utilization, pagerank workload [17]

Performance-wise, there were few di�erences between VMs and containers when the

number of instances was low. At a cluster size of 4, i.e. one instance on each of

the four physical machines used, the measurements of task execution times, CPU

usage, and memory usage were comparable between the two virtualization methods.

When the cluster sizes increased further, however, the di�erences started growing

larger with containers performing noticeably better than VMs. At a cluster size of

around 40, the tasks performed in the VM environment took over ten times longer

to complete than those performed in a containerized environment. Beyond a cluster

size of 48, execution of the workloads in the VM environments failed to complete

altogether while the containerized applications still managed to complete their tasks

in a reasonable amount of time. [17]

Figures 3 and 4 illustrate average CPU and memory utilization measurements for

clusters of di�erent sizes running the pagerank workload. Pagerank is an algorithm

that counts the number and quality of links to a webpage in order to provide an
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estimate of how important a given page is. The input data used for the workload

consists of 300 000 pages, with the job running for three iterations. [17] The �g-

ures are cropped to only include the larger clusters, as the smaller clusters show

comparable results for both VMs and containers.

Figure 4: Average memory utilization, pagerank workload [17]

As the pagerank workload is a user-level application, most of the CPU usage is at

the user level, away from the kernel. As the cluster size grows larger, however, the

CPU wait times increase signi�cantly, mostly due to long disk I/O latency and mem-

ory swap. As seen in Figure 3, at the cluster sizes of 32 and 48 (8 resp. 12 VMs

or containers per machine) the CPUs in the VM environment in particular spend

a signi�cant amount of time waiting, leading to prolonged execution times. The

proportional increase in CPU wait time is also true for the containerized environ-

ment, albeit to a much lesser extent. At high cluster sizes (≥ 48), tasks in the VM

environment started failing due to timing out, likely because the CPUs spent most

of their time waiting. [17]
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The average memory utilization statistics paint a similar picture to the CPU utiliza-

tion measurements, but the better scaling capabilities of containers become apparent

earlier, at smaller cluster sizes. Because containers are generally better at memory

allocation than VMs, the di�erence in memory usage is already apparent at two con-

tainers/VMs per machine, with the containers using less than 2 GB and VMs using

4 GB. As seen in Figure 4, the di�erences increase as the cluster size grows, and at

8 instances/machine the VMs are already using up all the available memory while

the containers still have some free memory available. [17]

2.3.6 Combining Containers and Virtual Machines

Despite the advantages of using containers, there are situations where they might

not be the best approach for virtualization. Firstly, containers are less secure as they

are not as isolated from the host machine as VMs are, since containers use the same

kernel as the host machine. It is thus easier to e.g. gain access to a container as a root

user on Linux. Secondly, some applications on a host might need to use entirely dif-

ferent operating systems, which is not achievable with containers. [18] The negative

aspects of the trade-o� between containerization and virtual machines could feasibly

be minimized by using a combined approach of running containers inside a VM. This

approach could, however, come with the added cost of signi�cant resource overhead,

which may prove to be prohibitive especially for resource-constrained systems.

According to Mavridis et al. [19], containers perform best when run on bare metal

as one of their main advantages is low performance overhead. In their study, the au-

thors sought to investigate how much additional overhead is introduced by running

containers inside virtual machines, and whether the resulting bene�ts of increased

security and �exibility were enough to justify any additional overhead. The com-

parison in the study was performed between containers on their own and containers

running within VMs, and the benchmarks used tested network performance, disk

I/O, memory I/O, and CPU usage.

The study results showed that there was indeed a performance penalty that occurred

when running containers inside VMs; containers on their own performed best during

all the benchmarks, though the extent varied. The biggest overheads were observed

in the benchmarks for disk I/O and network throughput, with performance reduc-
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tions as high as 28% for disk I/O and 33% for network throughput. The biggest

performance di�erences between just containers and VMs + containers were gener-

ally observed during the execution of smaller tasks, such as transmitting small (4-16

byte) packets with TCP during the network benchmark or solving smaller linear

equation sets (200x200 matrices) during the CPU benchmark. [19] These results

indicate that while running containers inside VMs does cause additional overhead,

the amount is dependent on both the task performed and its size.

2.4 OpenDLV

OpenDLV (Open DriverLess Vehicle) [1] is an open-source software environment

created to support the development and testing of self-driving vehicles. The system

is entirely microservice-based, where applications are designed to be as self-contained

as possible. In addition to source code, in order to facilitate deployment and ease-of-

use the environment is also distributed in the form of Docker images, which contain

all the libraries necessary to run the microservice in question.

2.4.1 Communication

Most of the communication that takes place within OpenDLV is in the form of UDP

multicast . In multicast, information is sent to multiple recipients at once; in con-

trast to broadcast , where messages are sent from a single source to all members of a

local network, and unicast , where messages are sent to a single recipient. When an

OpenDLV microservice is started, it is given a numerical session ID from within the

range [1,254] as a parameter. This ID is in fact part of an IP address; OpenDLV mi-

croservices exchange data by sending messages to UDP multicast address 225.0.0.X,

where X is the session ID. All microservices within an OpenDLV session are able to

communicate with each other, while services located in di�erent sessions do not see

each other and are thus separated.

It is worth noting that the term session in the context of the OpenDLV system carries

a slightly di�erent meaning than what is usually meant. In computer networking,

a session typically refers to a limited-time communication, often stateful, between

two parties or systems. In OpenDLV, a session is more akin to a communication

group; by default, messages sent by a participant in a session are sent to all other
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participants in that same session. Unless stated otherwise, the term session is used

in this thesis to mean the latter.

2.4.2 Data Format

OpenDLV services communicate by sending message envelopes , which in addition to

the actual payload (e.g. sensor readings, actuation requests, or information requests)

contain metadata, i.e. some information about the contents of the message. The

metadata contains timestamps indicating when the message was sent and received

as well as when the contents (payload) were sampled, and also a message identi�er

which identi�es the contents of the message.

An integral part of the OpenDLV software ecosystem is the OpenDLV standard mes-

sage set [20]. All the data sent between the microservices in OpenDLV are encoded

in Google's Protobuf [21] format. Protobuf is a platform- and language-neutral

mechanism to serialize structured data. Serialization is the process of translating

data structures into a format �t for storage or transmission so that they can be

reconstructed later through deserialization. In Protobuf, the desired data structures

are de�ned in a �le, from which data access classes can be generated for various

platforms and programming languages.

Figure 5: OpenDLV AccelerationReading message speci�cation

OpenDLV natively implements Protobuf, and the data structure de�nitions are

stored in a single �le called the OpenDLV standard message set . The �le itself

is portable and is intended to be bundled with each service to enable the serializa-

tion and deserialization of data in a manner that is consistent between the di�erent

parts of the system.
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As an example, Figure 5 shows an excerpt from the standard message set. The

ID 1030 uniquely identi�es the message as an acceleration reading, and the �elds

numbered 1-3 identify the readings themselves, in this case acceleration readings for

each of the three axes. The number 1030 is the message identi�er which is part

of the metadata of an envelope, and the �elds 1-3 are accessed when the envelope

is deserialized at the receiving end. A message can thus be identi�ed either by its

name, or by its unique ID.

By convention, OpenDLV imposes one additional restriction upon its data structures

which is not a standard part of Protobuf. To preserve backwards and forwards

compatibility, message identi�ers are unique across the system and should not be

changed. This is to prevent future issues, e.g. a service receiving a message with the

ID 1030 containing something else than an acceleration reading.

The standard message set is one of the system's great strengths as it creates a layer

of abstraction between the hardware-level components and the higher-level system

functions. As an example: Suppose a service C expects to receive latitude and

longitude data from a GPS service in the form of a GeodeticWgs84Reading message,

which is one of the standard messages. Initially the messages are provided by service

A which interfaces with a GPS module. Then, the GPS module is changed, and a new

service B is created to interface with it. The two GPS modules need to be interfaced

with in di�erent ways, e.g. one could be providing NMEA data via TCP and the other

via a serial interface, but because both services A and B send GeodeticWgs84Reading

messages, the change has been made in a completely transparent manner to service

C. A change in one service not requiring a change in another is an example of loose

coupling, which is one of the cornerstones of a microservice architecture. On the

other hand, if both services A and B are used simultaneously, the messages they

send can be assigned unique sender identi�ers, so that the receiver can di�erentiate

between the two senders.

2.4.3 Libcluon

Libcluon [22] is a single-�le, header only C++ library which is used to realize the core

functionality of OpenDLV. The main features of Libcluon primarily revolve around

data representation and a portable implementation of publish/subscribe communi-

21



cation. Libcluon natively supports multiple data serialization formats such as JSON,

csv, Protobuf, and OD4. OD4 is a data serialization format used by OpenDLV. Run-

time conversion between these formats is also supported, and the message compiler

implementation of Libcluon solely depends on a modern C++ compiler, i.e. C++14

or newer.

The Libcluon library is designed around compatibility and portability; all OpenDLV

microservices use the single-�le library, and developing microservices compatible with

the OpenDLV software ecosystem is as simple as including the library in a project.

The Libcluon GitHub page [22] includes a link to the API documentation of the

library, as well as a set of tutorials covering some basic features.
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3 Implementation

In this chapter, the practical implementation done for this thesis will be presented,

beginning with the high-level design of the overall system and continuing with the

design and function of the individual microservices.

3.1 System Design

Figure 6: Excerpt from the system speci�cation diagram

In the early stages of development, a high-level system design diagram, with some

accompanying documentation, was created for the boat platform. This was not pri-

marily intended to provide a comprehensive description of a �nished system. Rather,

it was made to be used as a tool to get a rudimentary overview of the di�erent

systems on the envisioned autonomous boat platform, be they planned or already

partially implemented. The diagram would also serve to illustrate the communica-

tion pipelines in the system and to identify where in a pipeline a data-processing

microservice should be placed. This system description could then be used to guide

the development on the autonomous boat platform. The full diagram can be found

in Appendix A.

The system diagram was fully expected to change rapidly during the early design

process as understanding of the software ecosystem improved and new hardware

acquisitions were planned, and was as such developed and re�ned in an iterative
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process. As the envisioned system is a decentralized one, the diagram re�ects that

design as well. Each blue element in the diagram (as seen in the excerpt in Figure 6)

is assumed to have a microservice associated with it, responsible for the functionality

of the element. As an example, the microservice associated with the SparkFun GPS

module in Figure 6 would be responsible for receiving GPS data, possibly combining

positional data with a correction stream received over the internet, and performing

a conversion into the format expected by other parts of the system.

3.1.1 The Brain

The most signi�cant change between diagram versions was the expansion of the cen-

tral element, labeled �The brain/AI� in the main diagram, into a separate diagram,

which can be seen in Figure 7. While the overall system is at its core decentralized,

many of the mission-critical elements in the system, i.e. those responsible for naviga-

tion, path planning, situational awareness, and steering, are closely connected among

themselves and together form an arguably central element in the system. This ele-

ment is also the recipient of a majority of the data �ow in the overall system. While

this somewhat blurs the line between centralization an decentralization, the overall

system can still be considered a decentralized one as all of the other elements operate

independently. In addition, the system speci�cation makes no assumption regarding

what hardware each of the elements will be running on. Even the software of the

central navigation/situational awareness module is likely to consist of a number of

microservices running on multiple discrete pieces of computing hardware.
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Figure 7: Diagram of the central element of the system, �the brain/AI�

The primary purpose of the diagram is to depict what data are needed from the rest

of the system as well as which elements need what data to operate. A few key pieces

of functionality are de�ned as microservices and placed into the diagram to illustrate

their position in the information pipeline, but otherwise the diagram is kept at high

level of abstraction. As an example, the navigation system in Figure 7 uses route

and mission de�nition data to perform long-term navigation, while the situational

awareness and collision avoidance modules provide data needed for short-term path

planning to the navigation system. In turn, the situational awareness module needs
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data from a number of on-board sensors to perform its tasks. The data �ow de�ned

in the system design diagram can then be used to guide the development of the

di�erent modules.

While the diagram in Figure 7 shows the microservice responsible for controlling the

motor receiving input from an (autonomous) navigation subsystem, the motor control

system developed for this thesis is somewhat di�erent in design. As the eventual goal

of the boat platform is autonomous operation, the system design diagram re�ects

that fact. However, the implementation of an autonomous control system is beyond

the scope of this thesis, and the manual remote control system presented in this thesis

is intended as an intermediate step on the path towards autonomous operation, and

will be discussed in more detail in Section 3.2.

Figure 8: Motor remote control system overview

A system diagram over the remote control system can be seen in Figure 8, where a

microservice interfacing with a controller device on the shore sends control messages

over to the boat, and the motor control microservice actuates the motor. The blue

arrow labeled �N2K� in Figure 8 indicates the placement of an NMEA2000 bus, which

will be discussed in Section 3.2.4. The common elements between the system design

diagrams depicted in Figures 7 and 8 are the motor control microservice, i.e. the

software that actuates the physical motor, and the future navigation system. The

di�erence is what element sends control messages to the motor control microservice.

26



For autonomous control, the messages are sent by the navigation system, and for

remote control, the messages are sent by the remote control microservice. The motor

control microservice is designed in such a way that the transition from manual control

to autonomous control will require no changes to the motor control microservice,

which will be used in both cases.

3.1.2 Video Streaming

Along with some of the elements providing e.g. maps/charts, IMU data, and GPS

data to the navigation/object detection part of the system, the system design dia-

gram excerpt in Figure 9 also includes one of the most crucial parts of the system

of the boat platform, i.e. video streaming. While the hardware con�guration of

the video streaming system is clear in that a 360 degree video view is de�ned as a

requirement for autonomous operation, there are some options when it comes to the

data �ow and architecture of the video streaming system, as indicated by the dashed

lines coming out of the camera module element in Figure 9.

Figure 9: System overview diagram, video streaming
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The existence and placement of the video stitching microservice, the purpose of

which would be to stitch together and eliminate overlap from four video streams

into one single 360 degree video, depend on whether e.g. object detection can be

feasibly performed on 360 degree video, or whether it is to be performed on a number

of discrete video streams instead. Likewise, there are some options regarding video

display on the shore; while a display of four video streams is enough to provide the

required 360 degree view, a stitched-together 360 degree video could e.g. be used

in conjunction with a virtual reality headset. Finally, the system design also leaves

room for the object detection being performed either on the boat itself or on the

shore side. In the latter case, raw video data would be sent to the shore or edge to

be processed before the relevant information needed for e.g. collision avoidance is

sent back to the boat. It should be noted that implementing object detection, video

stitching, and a 360 degree video display are beyond the scope of this thesis, and

only the implementation of sending the four discrete video streams from the boat to

the shore will be presented.

3.1.3 System Requirements

Table 1: List of requirements for thesis-related implementations
1: Motor control and Remote control

1.1: The boat should be controlled remotely from the shore
with the operator having a visual contact with the boat.
1.2: Input from a controller on the shore should be translated
to motor actuation.
1.3: The relation between controller input and actuation
should be de�ned and consistent.
2: Visualization

2.1: The remote control operator should have a display of the
information required to operate the boat:
2.1.1: Heading
2.1.2: Position
2.1.3: Speed
2.1.4: Location of nearby obstacles (video feed)
2.1.5: Network diagnostics with color-coded lines

During project planning, a preliminary requirements analysis was performed for the

boat project. The analysis primarily focused on the functionality needed for what
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were de�ned as the two �rst major milestones in the development of the boat project;

remote control operation, i.e. steering the boat from the shore with a direct line of

sight to the boat itself, and remote control using visualization, i.e. steering the boat

using a combination of a live video feed and telemetry data instead of direct line-of-

sight. The requirements concerning the implementations discussed in this thesis are

largely functional in nature, and can be seen in Table 1.

3.2 Motor Control

The purpose of the motor control subsystem is to enable manual remote control of

an electric outboards motor which is situated on the boat. The subsystem consists

of two microservices; one for sending steering information to the boat, and one for

translating the steering requests into motor actuation on the boat.

3.2.1 System Description

The boat platform is equipped with an electric outboard motor, an Xi5 trolling motor

manufactured by Motorguide. A trolling motor is typically used as a secondary means

of propulsion on a �shing boat, to facilitate precision maneuvering. The motor is

equipped with a magnetometer/GPS module and has some rudimentary navigation

capabilities in the form of recording a route being traversed by logging position data

which can then be used later to automatically traverse the same route. The motor

can also be controlled externally through an NMEA 2000 (NMEA2k) bus.

3.2.2 Motivation

The implementation of motor control was considered a good �rst step towards au-

tonomous operation, primarily because it could be developed and implemented well

before any actual navigation systems were in place. The eventual navigation system

of the boat platform will be implemented using machine learning models, and as such

it is beyond the scope of this thesis. Similar situations, where a system is to be im-

plemented with future extensions in mind, are expected to arise as the development

of the boat platform continues.

Another deciding factor was that tests of the motor control system could be per-

formed on dry land and indoors, unlike a navigation system that relies on e.g. GPS;
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indoor tests of a navigation system would be problematic because GPS positioning

requires an unobstructed view of the sky. Additionally, because the position of the

boat platform would remain static, the position would have to be simulated somehow

for any realistic tests to take place.

The intent is that the lessons learned from the development and implementation

of the motor control subsystem will be useful in the further development of the

boat platform. The subsystem as it is designed will encompass multiple aspects

and features that can be reasonably assumed to also be present in other, future

subsystems on the boat platform:

� The receiver service takes direct action based on the messages from the sender.

� The subsystem is comprised of multiple microservices.

� The subsystem contains a microservice that is shipped as part of the OpenDLV

ecosystem, which would have to be modi�ed to better suit the boat platform.

� The subsystem contains a microservice that is not shipped as part of OpenDLV,

but would still have to be developed with interoperability in mind.

� Creating one of the microservices requires integrating OpenDLV source code

with source code not part of OpenDLV.

3.2.3 Remote Control Microservice

The purpose of the remote control microservice is to enable manual control of the

boat platform's outboard motor. Initially, the service would be used for testing and

tuning both the manual control of the motor and the rudimentary control loop of

the steering subsystem as a whole. The microservice will also eventually be used

during the late stage development and operation of the boat platform. Depending

on the current mission of the boat, the ability to manually control it would either be

required for the mission (e.g. during the �eld testing of some onboard equipment or

systems) or useful as a fallback in case of a failure of the navigation system during

autonomous operation.
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To start the development of the remote control microservice, the microservice opendlv-

device-gamepad was used as a starting point. The original microservice and its source

code are distributed as part of OpenDLV, but as it is intended for steering a car, it

would have to be modi�ed in order for it to be used to control the outboard motor

of the boat platform.

Figure 10: Control schemes for the original vs. the modi�ed gamepad microservice.
Base controller image from [23].

First, the control scheme would have to be changed. Figure 10a) illustrates the origi-

nal control scheme, which is reminiscent of the controls used to steer a small remote-
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controlled car. In the original scheme, the left analog joystick controls the steering

and the right one controls the acceleration and braking. The amount of steering and

acceleration is determined purely by the distance of the tilted joysticks from the cen-

ter axes; the horizontal axis in the case of acceleration/braking and the vertical axis

in the case of turning. When the joysticks are tilted, the input is then continuously

translated into appropriate steering/acceleration requests by mapping joystick in-

put to a range between minimum and maximum acceleration/deceleration/steering.

These minima and maxima are given as parameters when the microservice is started.

The control requests are then serialized into ActuationRequest messages, each of

which contains both the desired acceleration and steering in addition to a boolean

value indicating whether the message contents are valid. As it is the standard for

most OpenDLV microservices, the messages are then sent using UDP multicast to

the session to which both the gamepad microservice and any intended receiver mi-

croservices belong. As discussed in Section 2.4.1, multicast is similar to broadcast

but the intended message recipients are a select group of nodes on a network instead

of all of them. The rate at which the messages are sent over the network is also given

as a parameter (in Hz) when the microservice is started, but the internal check for

whether there is new input data to be processed and serialized into a message occurs

at a �xed rate of 50 Hz.

The new control scheme is illustrated in Figure 10b). The directional pad buttons

on the left (indicated in green and blue in the �gure) were designated for stepwise

control; a single press of either the up or down button would change the propeller

speed by some set amount and a press of the left or right button would rotate the

motor by a set amount. Because step control was deemed adequate for changing the

propeller speed (i.e. the speed of the boat), the acceleration and braking controls on

the right joystick were removed entirely.
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Figure 11: ActuationRequest message speci�cation

Initial testing suggested, however, that stepwise control of the motor's rotation was

insu�cient. If a single increment or step were too large, �ne-grained control and

subtle adjustments of the rotation would be di�cult. Conversely, if a single increment

were too small, large changes in the motor's rotation would be di�cult. To resolve

this issue, the left joystick was assigned for continuous control. During continuous

control, keeping the left joystick tilted in either direction will result in the continuous

creation and sending of ActuationRequest messages, with the intent of turning the

motor at a steady rate. The exact rate of steering is determined by the distance

between the tilted joystick and the vertical center axis. The maximum and minimum

steering rates, which determine how fast the motor will turn when the joystick is

tilted all the way to the left or right, are given as parameters when the microservice

is started. The contents of the ActuationRequest message are shown in Figure 11.

Because the outboard motor can freely rotate 360 degrees and can thus be placed on

either the bow or the stern of the boat, and because the ultimate placement of the

motor was unknown at the time of development, it was decided that the values of

the steering �eld would represent counterclockwise and clockwise turns of the motor

in degrees for positive and negative values respectively. As the correlation between

the turning direction of the boat and the direction the motor rotates depends on the

placement of the motor, the intent is that the translation of motor rotation into boat

turn direction will be implemented later, in the navigation subsystem. For similar

reasons, the acceleration �eld solely represents the desired speed of the propeller of

the motor and not the speed of the boat as a whole. This distinction is important

since adjusting the propeller speed can have multiple e�ects on the speed of the boat

depending on the position and rotation of the motor.
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Figure 12: State diagram for the controller input thread
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In the remote control microservice, the reading of controller input and the sending of

messages are conducted in two separate threads. Multithreading is used to facilitate

setting di�erent rates for the sending of messages e.g. to lower network usage while

maintaining the ability to quickly react and respond to controller input.

To prevent race conditions where the two threads attempt to access and/or modify

the same information simultaneously or in the wrong order, a mutex is used. The

mutex class provides a mechanism to protect shared data from simultaneous access

by way of a locking mechanism [24]. Figures 12 and 13 depict state diagrams for

the threads that handle controller input reading and message sending respectively.

Before anything else happens in a thread, an attempt to lock the valuesMutex is

made. If the mutex is locked, thread execution blocks until the mutex is unlocked.

If the mutex is found to be unlocked, it is subsequently locked and thread execution

proceeds. When thread execution is �nished, the mutex is automatically unlocked.

As illustrated in Figure 12, after the mutex is locked the input reading thread pro-

ceeds to update the appropriate steering and acceleration variables. In the case of

button events, which occur when the directional pad buttons on the controller are

pressed, the variables are changed by a set amount of ten, indicating a requested

change in motor rotation by ten degrees or propeller speed by ten percent. In the

case of joystick events, which occur when the left joystick is tilted, the steering is up-

dated by an amount which corresponds to how much the joystick is tilted. Lastly, one

of two input updated variables is updated, signaling to the message sending thread

that there is new information to process and whether the objective is step control or

continuous control.

The execution of the message sending thread is time-triggered, and it occurs at a

variable frequency given as a parameter to the microservice. When there is new input

to process, the message sending thread �rst di�erentiates between requested step

control and continuous control, as seen in Figure 13. The distinction is important

mainly in the case of continuous input as the objective with continuous control is

to rotate the motor at a set rate rather than by a set amount. Because the rate at

which steering requests are sent to the motor can vary while the steering rate should

stay the same, the value of the acceleration �eld in the constructed ActuationRequest

is modi�ed relative to the message sending frequency before the message is sent.
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Figure 13: State diagram for the message sending thread
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For step control, all the steering and acceleration requests from the controller that

occur between iterations of the message sending thread can be packed into a single

ActuationRequest , and after the message is sent a �ag is reset indicating that there

are no more requests to process. For continuous control, messages are continually

created and sent as long as there are unsent requests as a result of the joystick being

tilted.

3.2.4 Motor Control Microservice

The purpose of the motor control microservice is to receive ActuationRequest mes-

sages from other microservices, deserialize them and translate them into actuation

instructions for the outboard motor. Initially, the only source of messages will be

the remote control microservice, but in the future these messages will also be sent by

an (autonomous) navigation system. The motor control microservice was designed

in such a way that the eventual move from manual remote control to autonomous

control would be as painless as possible from a development standpoint. Essen-

tially, this was done by having the motor control microservice make no assumptions

about whether or not the origin of received ActuationRequest messages is the remote

control microservice described in Section 3.2.3. This means that the motor control

microservice will readily accept actuation requests from e.g. a future navigation

subsystem.

Before the development of the motor control microservice could begin, there was an

obstacle that needed to be removed. Apart from a wireless remote controller, the

only way to control the motor is through the use of NMEA2k messages sent over the

NMEA2k bus. Therefore, for programmatical control of the motor to be at all pos-

sible, the use of NMEA2k messages would be unavoidable. There was no public API

for the motor to be found, nor could a speci�cation of the manufacturer-proprietary

NMEA2k messages used to control the motor be found. Thus, the messages needed

to be reverse-engineered, which was done purely for interoperability purposes, and

in cooperation with Dr. Sébastien Lafond.

The NMEA 2000 (NMEA2k or N2K) standard describes a serial data communi-

cations network based on the CAN (Controller Area Network) used primarily in

automotive applications, and is designed to interconnect devices on marine vessels.
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The network is bi-directional and supports multiple transmitters and receivers with-

out the need for a central controller. [25] The network consists of a backbone or

bus, which provides both power and a communication interface for up to 50 physical

devices, or up to 252 network addresses. NMEA2k messages consist of one or more

CAN frames, which each contain up to 8 bytes of data with a 29-bit identi�cation

�eld and some additional bits reserved for e.g. acknowledgment and error detection.

NMEA2k messages are organized into parameter groups based on their function, and

the group identi�er PGN (Parameter Group Number) is included in the header of

the message frame as part of the CAN identi�er. [26]

It should be noted that the NMEA2k bus was included on the boat platform strictly

by necessity, due to it being the only way to programmatically control the motor.

If the motor is ever replaced with another model, the NMEA2k bus will likely be

removed. Nevertheless, the presence of an NMEA2k bus does provide an interesting

integration challenge to the project.

For the reverse-engineering setup, the following were connected to the NMEA2k bus:

� A �sh�nder/chart plotter display unit capable of controlling the motor

� An Actisense NGT-1 NMEA2k-to-PC interface module

� The outboard motor

� A Raspberry Pi single board computer equipped with a Pi2CAN module ca-

pable of recording and replaying CAN messages over an NMEA2k bus

� A battery to power all of the above as well as the bus itself

Once the hardware setup was completed and with everything up and running, the

NMEA2k messages sent over the idle system were observed through a PC connected

to the bus via the Actisense NGT-1 module. By observing the headers of the mes-

sages sent on the bus (e.g. status messages to and from the motor) �rst when the

system was idle and subsequently when the motor was controlled via the display

unit, some NMEA2k messages were �agged as interesting i.e. likely to contain the

sought-after motor control messages.
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The next step was to attempt to verify that the previously �agged messages were in

fact motor control messages. This was done by recording CAN messages from the bus

during short time intervals while certain control actions of the motor were performed,

e.g. increasing propeller speed by one step or rotating the motor clockwise for one

second. The display unit was then disconnected and the recordings were replayed over

the system. The software applications Actisense NMEA reader and Actisense EBL

reader were used for recording and replaying NMEA network tra�c, respectively.

During the replays, bus tra�c was observed on a PC and special attention was paid

to the messages �agged as interesting in the previous step.

Figure 14: The 8-byte payload of the NMEA2k message with the PGN 65332

The NMEA2k message with the PGN 65332 was discovered to be used for all the

desired actuation requests to the motor: propeller speed up, propeller speed down,

turn motor clockwise, and turn motor counterclockwise. The byte of the message

payload that determines the control action is marked with blue in Figure 14.

What determined the amount of actuation, however, was not readily apparent. After

some more recording and replaying of NMEA2k bus tra�c, it seemed that there

was some relationship between the amount of actuation and the rate at which PGN

65332 messages were sent. Additionally, it was observed that for each discrete control

action, the value of another byte in the payload was changing between 0x01 and 0x00

(marked with green in Figure 14). The assumption was made that a full actuation

request consists of two parts; a start and a stop message, with the delay between the
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messages determining the amount of e.g. turning the motor. To attempt to con�rm

this, an ad-hoc program to send the two-part messages with varying intervals was

created.

To create the above program, a C++ library for creating NMEA2k bus devices and

sending messages was used [27]. The library includes several tools related to the

NMEA2k bus, but for now only the ability to create a PC-to-NMEA2k interface and

to construct and send NMEA2k messages were needed. By using the ad-hoc program,

it was con�rmed that the assumption described above was true; sending a pair of

PGN 65332 messages with a delay in between did result in actuation proportional

to the delay. During testing, a slight inconsistency was noticed, however; turning

the motor in one direction and then back in the other direction with the same delay

between the start and stop messages did not result in the motor turning back to the

starting position as expected. The di�erence was small, but still perceptible.

What remained was to create the actual motor control microservice to translate

OpenDLV messages into motor actuation. The purpose of this microservice is to

serve as the glue between OpenDLV and the NMEA2k bus, and its functionality is

roughly as follows:

1. Receiving ActuationRequest messages either from the remote control microser-

vice described in Section 3.2.3, or some other source, such as an autonomous

navigation system.

2. Translating actuation requests into the desired motor rotation and propeller

speed using a control loop.

3. Creating PGN 65332 messages and sending them to the motor over the NMEA2k

bus.

The main libraries used for the motor control microservice are Libcluon and the

NMEA2k C++ library mentioned above. The former provides OpenDLV-related

functionality such as message receipt and deserialization, and the latter is used to

facilitate communication over the NMEA2k bus. The extent of the NMEA2k-related

functionality of the motor control microservice is registering the microservice as a

device on the NMEA2k bus to enable communication, and sending control messages
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to the motor. Any messages from the bus to the microservice are ignored, but

functionality to receive e.g. status messages from the bus is planned to be added in

the future.

Similarly to the remote control microservice, the motor control microservice makes

use of multiple threads. Multithreading is in this case necessary, because the motor

turns relatively slowly; rotating the motor 180 degrees takes several seconds. During

the time the motor is turning, the desired motor rotation could change, and the

motor being in the process of turning should not prevent changes in the variable that

holds the current desired rotation. For similar reasons, the actuation of the motor

is undertaken in multiple steps, with a limit for the maximum amount of actuation

that can occur at once. Essentially, this means that small changes in motor rotation

and propeller speed remain una�ected while big changes have checkpoints in between

which allows for periodical re-evaluation of the current desired rotation. Also like

with the remote control microservice, a lock guard in the form of a mutex is used to

prevent multiple threads from accessing the same variables simultaneously or out of

order.

The four main control variables of the motor control microservice are currentPower,

targetPower, currentRotation, and targetRotation. As motor actuation is controlled

by a delay between start and stop messages, the unit of the values stored in the

control variables is a unit of time (microseconds) for ease of comparison. On startup,

these variables are all initialized to a value of zero. It should be noted that this

results in any changes in the rotation or the propeller speed of the motor being

relative instead of absolute, i.e. there is currently no way for the motor control

microservice to know in which direction the motor is pointing relative to the boat.

Only the changes made to the rotation and propeller speed of the motor since startup

are tracked. The total change in rotation is measured by tracking the total time

that has elapsed between the start and stop NMEA2k messages, and is thus only an

approximation. This issue and possible solutions to it are discussed in the conclusion

of this thesis, in Chapter 4.
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Figure 15: State diagram for the control loop of the motor control microservice

The �rst thread of the motor control microservice is event-triggered, with the event

in question being the receipt of an ActuationRequest message. When the event is

triggered, a mutex is locked, and the contents of the received ActuationRequest are

written into targetPower and targetRotation, indicating that changes are to be made

to the propeller speed and/or the rotation of the motor, respectively. The message-

receiving thread then yields, and the mutex is unlocked.
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The second thread of the microservice houses the actual control loop, a state diagram

for which can be seen in Figure 15. One iteration of the control loop consists of two

sequential iterations of the loop depicted in the state diagram; the �rst iteration

controls the propeller speed and the second controls the rotation of the motor. In

the beginning of the loop, the current value of the control variable is compared

against the target value of the control variable. If there is a di�erence between the

two values, a start message is sent over the NMEA2k bus, which is the �rst of the

two messages that are required to actuate the motor.

The time at which the message is sent is also recorded. On subsequent iterations of

the loop, the current time is compared against the previously recorded time to see

if it is time to send a stop message. There are two states in the control loop that

trigger the sending of a stop message:

� Su�cient time has passed since the start message was sent, which means send-

ing the stop message will result in e.g. the motor rotating to the target position.

� A set time limit is reached. As mentioned previously, large actuations are split

into stages to facilitate responsive control of the motor.

If the time limit is reached, the motor will actuate towards the target position, but

will not reach it yet. On the next iteration of the control loop, the comparison

between the target and current positions will trigger the sending of another start

message, provided there is still a di�erence between the current position and target

position. Both motor rotation and propeller speed are controlled by the same control

loop, although di�erent NMEA2k messages are sent for the two control variables.

Tests of the motor control microservice during development resulted in some interest-

ing unexpected behavior. Frequently, when the motor was rotated, it started making

minute back-and-forth movements close to the intended end position. It seemed that

the motor was unable to reach the precise desired end position, and tried to correct

back and forth repeatedly. This resulted in the control thread in the microservice not

yielding, and the microservice was subsequently unable to receive and process further

actuation requests. The exact source of this issue is unknown, and was believed to

have something to do with the internal control mechanism of the motor. This could

also be the cause of the inconsistent amount of rotation observed in earlier tests. To
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Figure 16: Top-down diagram of the error margin for motor rotation

prevent this behavior, a bu�er zone was added to the control loop, as depicted in

Figure 16.

The bu�er is designed in such a way that if, after a pair of start and stop messages

has been sent and the motor has rotated, the motor is within some set distance

from the precise desired position, it will stop turning to prevent the back-and-forth

correcting behavior. Note that this bu�er is very small, and the size of the sector

marked with green in Figure 16 is exaggerated for clarity. In reality, the motor will

end up within approximately a few degrees of the precise target position. The bu�er

is implemented by removing one millisecond from the delay between each start and

stop message, resulting in the motor rotation stopping just before the target position

is reached. The bu�er size was determined through trial-and-error, with the intended

size being large enough to prevent the problem but still small enough so that the

steering could be considered reasonably accurate.

3.3 Networking

The networking hardware of the boat platform consists of a pair of Teltonika RUTX11

routers, which can connect to the internet using 4G LTE and are capable of gigabit

Ethernet speeds on the local network. One router (RUTX11-DASBOAT) is located

on the boat itself and the other (RUTX11-LAND) is to be used as part of the shore

control station, as illustrated in Figure 17.
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As the development of the boat platform is still at an early stage, the requirements

related to the network are only loosely de�ned. Communication latency should be

kept minimal, preferably at around 50 ms or less. The bandwidth requirements of

the Ethernet network on the boat are determined by the high outgoing data rate of

the onboard LiDAR, which necessitates the aforementioned gigabit Ethernet. The

bandwidth requirement of the communication link between the boat and the shore

control station depends largely on whether e.g. video processing and LiDAR data

processing are to take place on the boat or on the shore, as the data rate of most of the

other communication in the system is relatively low. Generally, the communication

between the boat and the shore should be kept at a minimal data rate, as the

available bandwidth of the link between the two nodes can �uctuate heavily due to

the nature of the 4G network used. Latency and network throughput measurements

were taken during an on-water test of the boat platform, which showed that while

the latency was su�ciently low, the network throughput varied between 5 Mbits/s

and 25 Mbits/s over the course of two hours, with the average available throughput

at any given time being roughly 20 Mbits/s.

Figure 17: Network and IPSec con�guration of the boat and shore LANs
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To facilitate secure communication between the two routers, and thus between the

boat and the shore control station, the routers are con�gured with an IPSec tunnel

(Internet Protocol Security) between them. IPSec is a security protocol suite for

IPV4 that enables the encryption and authentication of data packets over IPV4 net-

works, and uses cryptographic key negotiation and mutual authentication to secure

the communication between hosts or networks [28]. In cryptographic key negotia-

tion, a combination of public keys and private keys is used to encrypt communication

between two parties. With the IPSec tunnel, the LANs of each router become sub-

networks in a single local network, with an added layer of security for communication

taking place between devices on the shore and the boat, respectively. Though the

communication between the boat and the shore is su�ciently secure thanks to the

IPSec tunnel, the security requirements of the internet connections of the boat and

shore networks need some additional work, to prevent outside interference; at the

very least, unused ports should be closed.

3.3.1 OpenDLV communication in practice

As mentioned in Section 2.4.1, OpenDLV microservices are grouped into communica-

tion groups called sessions , where all the participating microservices are recipients to

all the messages sent within that session, regardless of whether the di�erent microser-

vices are hosted on a single or multiple devices. The exception is that a microservice

will never receive its own messages. An example can be seen in Figure 18, which

illustrates the propagation of messages in the motor control system.
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Figure 18: Message propagation in the motor control subsystem

During the development of the two microservices that make up the motor control

subsystem, both microservices were located in the same session and on the same

local network, and only one router was used. When the microservices were moved

to separate LANs, however, the messages from the remote control microservice no

longer reached the boat as intended. It was soon discovered that while the LANs of

the two routers were bridged by the IPSec tunnel, messages from one subnet were not

reaching the other, despite all microservices belonging to the same session. Evidently,

the UDP multicast communication groups used by OpenDLV microservices are not

only constrained to one session, but also to one subnet.

To remedy this unwanted behavior, a tool called OpenDLV-proxy was used. OpenDLV-

proxy is a message �ow control tool that can be used to either combine two sessions

into one, or to act as a bridge between two sessions to tunnel OpenDLV messages

between them even if they are on separate networks, or in this case subnets. [29] As

depicted in Figure 18, one instance of OpenDLV-proxy is running in each session.

On startup, both instances of the proxy microservice are given as a parameter a port

number and the IP-address of the device where the other instance is running. This

pair will then relay messages between the two sessions as if they were on the same

network and session, and send any incoming messages to all other microservices in

the session they belong to.
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Figure 19: The single session problem

Figure 18 illustrates the message �ow in the motor control system when the proxies

are used. As the remote control microservice receives input from a controller, the

input is serialized into messages which are then sent to all other microservices in the

same session on the shore LAN, including one instance of the proxy microservice.

The proxy microservice then sends the messages over to the boat LAN through the

IPSec tunnel, where another instance of the proxy microservice relays the messages

to all microservices in a session on the boat, including the motor control microservice.

While the communication structure in OpenDLV is decidedly simple to implement

thanks to the sessions, there is one potential issue; having a large amount of microser-

vices in the same session could potentially lead to a problem wherein high-output

microservices end up throttling other microservices in the session with unwanted

messages. This could end up in wasting network bandwidth or processing power

in the devices hosting receiving microservices when they discard a large amount of

unwanted messages.

An example of the above is illustrated in Figure 19. The boat is equipped with

two modules that are capable of generating tremendous amounts of data; a 64-

beam LiDAR and a set of four full HD 60 fps video cameras. Any microservice

in the same session as the microservices that operate the LiDAR or cameras will

be on the receiving end of a large amount of unwanted data. In Figure 19, the

critical remote control microservice is in the same session as the aforementioned high-

output microservices. If the normal operation of the remote control microservice
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were disrupted, it could have a serious negative impact on the operation of the

whole boat. The outgoing messages of the remote control microservice are small and

infrequent, and are thus unlikely to cause any issues related to unwanted receipt by

other microservices in the system.

This problem could be solved using another communication control tool called Cluon-

relay. Cluon-relay is a microservice realized with Libcluon, and has the following

features:

� message �ltering through keeping/dropping envelopes with certain message IDs

� downsampling in the form of only forwarding every nth envelope, with function-

ality to set di�erent downsampling levels for di�erent message IDs, potentially

useful for sending low-frequency diagnostics data from the boat to the shore

� sending messages over TCP instead of the standard UDP, with optional MTU

(maximum transmission unit) and timeout parameters

Figure 20: Cluon-Relay as a possible solution the single session problem

Cluon-relay could be used to isolate a microservice, as illustrated in Figure 20. A

microservice that is critical to the operation of the boat could be placed in a separate

session, and cluon-relay could be used to forward it only the messages it needs to

prevent resource expenditure that results from discarding unwanted messages. Ad-

ditionally, the TCP mode of cluon-relay could be used to make message transmission

more robust, at the cost of lower data rates.
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Cluon-relay will undoubtedly be useful for controlling what messages are transmitted

between the boat and the shore control station. Many microservices will only need

to send messages to other microservices on the same subnet, as is the case for the

communication taking place between the microservices in the navigation subsystem

of the boat, for example. The link between the boat and the shore is the most

bandwidth-restricted link in the network, and unnecessary communication between

the boat and shore should be kept to a minimum, to lessen the risk of mission-critical

messages to the boat being lost.

3.4 Video Streaming

The purpose of the video streaming system is to stream a video feed from a set of

camera sensors on the boat over to the shore monitoring station for display.

3.4.1 System Description

The boat platform is equipped with an Nvidia Jetson AGX Xavier GPU development

kit and the e-con SurveilsQUAD, a set of four camera sensors. While video data from

the cameras is eventually planned to be internally used on the boat for e.g. object

detection and situational awareness, the �rst steps in development have focused

on a rudimentary system to grab video frames from the four camera modules and

streaming them to the shore control station for display. This would then enable

more advanced testing of the implemented systems on the boat platform by remotely

controlling the boat from a distance using a video feed instead of line-of-sight.

The initial evaluation of the OpenDLV video streaming pipeline was done using

other video cameras than those on the boat, and the results seemed promising.

Unfortunately, none of the OpenDLV camera microservices were compatible with the

camera modules on the boat, and the video streaming was eventually implemented

using the open source multimedia framework Gstreamer. [30]

3.4.2 Video Streaming with OpenDLV

The process of streaming video using OpenDLV microservices is roughly as follows:

1. A camera microservice interfaces with a camera device, writing captured frames

to a shared memory area.

50



2. Another microservice on the same device attaches to the same memory area,

encodes them into some format (e.g. h.264) and sends them as ImageReading

messages to an OpenDLV session.

3. On the receiving end, a microservice decodes video frames from an ImageRead-

ing message into shared memory.

There are a few di�erent choices o�ered by OpenDLV as far as the video streaming

microservices are concerned, as the framework is designed with modularity in mind.

For the purposes of the boat platform, opendlv-camera-opencv was chosen as the

camera-interfacing microservice, and opendlv-video-h264-encoder and opendlv-video-

h264-decoder were used for encoding on the sender end and decoding on the receiver

end.

The camera-interfacing microservices use a third-party library called libyuv [31] to

facilitate pixel format conversion. Libyuv is an open source library that provides

functionality for YUV color space conversion and scaling. Opendlv-camera-opencv

uses functions from libyuv to convert the image frames grabbed from the camera

into the ARGB and i420 formats, which are then stored into two separate memory

areas on the device; the former format is useful for local image processing and video

display, while the latter is used for encoding and transmission.

Figure 21: Diagram of the OpenDLV video streaming process
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The memory area which now contains image data in the YUV i420 format is then ac-

cessed by the encoder microservice, in this case opendlv-video-h264-encoder , and the

frames are encoded into h264 and subsequently serialized into OpenDLV ImageRead-

ing messages and broadcast to the communication session to which the encoder mi-

croservice belongs. The opendlv-video-h264-encoder microservice supports several

con�guration parameters allowing for granular control of both the h264 encoding

and transmission rates. On the receiving end, an instance of the opendlv-video-h264-

decoder microservice then deserializes any received ImageReading messages, decodes

the h264 frames and saves them in the ARGB format into shared memory for pro-

cessing or display. A diagram illustrating the OpenDLV video streaming process can

be seen in Figure 21.

When streaming from multiple cameras, the encoder/decoder pair can make use

of OpenDLV's sender ID to di�erentiate between camera streams. When running

multiple instances of the camera and encoder microservices, the shared memory

area(s) used by each pair need to be given di�erent identi�ers as parameters when

the microservices are started, otherwise the default identi�ers would be used which

would cause con�icts.

3.4.3 Containerization

The process of implementing a video streaming system using OpenDLV was thought

to be a good opportunity to test out the containerization of microservices. One

instance of each of the three microservices needed for the video streaming pipeline

would be needed per camera used, the possible exception would be the third mi-

croservice, e.g. if the messages containing video frames are simply recorded locally

instead of displayed or used for post-processing on the receiving end. The total

amount of microservices needed would thus be between 8 and 12 if all cameras are

used.

Unlike many of the ready-made microservices provided in the OpenDLV repository,

no pre-built Docker images are provided for the h264 encoding and decoding mi-

croservices due to patents around the AVC/h264 format used. Instead, the build

process involves using a Docker-compose �le, which is a YAML-formatted (YAML

Ain't Markup Language) �le containing automatic build and startup instructions
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for a number of Docker images. In the case of opendlv-video-x264-encoder , the �les

needed for using h264 encoding are downloaded during the build process of the con-

tainer, as de�ned in the Docker-compose �le. Building the Docker images from

the source code using the provided Docker-compose �les for the opendlv-video-h264-

encoder microservice did not work, however. The build process involved downloading

some other additional packages and libraries from the internet, and their locations

had seemingly changed so that their sources in the Docker�les were incorrect. Be-

cause of this, the encoding microservice used for the video streaming setup was

changed to opendlv-video-x264-encoder , whose Docker build �les did not have the

aforementioned build problem. The di�erence between the two encoding microser-

vices is the h264 encoding library used, otherwise their function is the same.

With a single Docker-compose �le, multiple containers can be built and started easily,

with individually set startup parameters for each container if needed. Additionally,

creating di�erent container con�gurations is as simple as creating a Docker-compose

�le for each con�guration. For the purposes of the boat platform, a total of two

Docker-compose �les would be needed for the whole video streaming setup. On

the boat, a compose �le would be used to start four pairs of camera and encoding

microservices. On the shore side, a compose �le would be used for the four decoding

and display microservices. Only one Docker image is needed to start each type of

microservice, i.e. the same image would be used to start each copy of the encoding

microservice. The Docker-compose �les proved particularly useful in testing the

video streaming system, as multiple di�erent streaming con�gurations could easily

be set up and started. This method was used to �ne-tune the streaming primarily

by visually comparing what e�ect the multitude of encoding parameters had on the

latency and framerate of the video.

3.4.4 Video Streaming with Gstreamer

While running the prepared OpenDLV video streaming setup worked without issue

using ordinary webcams, running the same setup on the Xavier board using its

cameras resulted in garbled green video on the receiving end, suggesting either a

pixel format mismatch or an encoding issue. The problem was narrowed down to

the pixel format of the frames captured by the cameras on the Xavier board. A few

lines of code were added to the camera-opencv microservice to print out the FourCC
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code identifying the image format that OpenCV detects the incoming frames to

be. A FourCC (Four Character Code) is a sequence of four bytes used to uniquely

identify a data format. The output in this case was `YUYV' also known as YUY2.

This format is also supported by libyuv, and an attempt to �x the problem was

made by changing what pixel format conversion function was used in the camera

microservice. This did not work either, and it seemed that OpenCV detected the

format incorrectly.

Using the command $v4l2-ctl -d[X] --list-formats-ext (replacing X with the video de-

vice number) the actual pixel formats of the frames from the Xavier-connected cam-

eras were revealed to be BG10 and BG12, i.e. 10-bit and 12-bit Bayer GBGB/RGRG;

an image format that is not supported by libuyv. The two workarounds to this is-

sue would be to either develop additional functions to libyuv that could perform

the correct pixel format conversion, which would be somewhat laborious, or to im-

plement the video streaming using another framework than OpenDLV. After some

deliberation, the multimedia framework Gstreamer was chosen as the basis for the

video streaming system for the boat platform, at least for the time being; support

for the BG10 and/or BG12 formats could be added to libyuv in the future, or the

camera hardware on the boat platform could change. In either case, a revisit to the

OpenDLV video streaming framework could be made.

Gstreamer is a framework that is designed for creating streaming media applications.

The fundamental building blocks of Gstreamer are elements, pads and pipelines. An

element is an entity with one speci�c function, such as encoding, reading data from

a �le or stream, or outputting data to a screen. Chains of elements are connected

together through pads, which are essentially connectors between elements. A number

of connected elements form a pipeline, through which data �ows in one direction from

a source to a sink. [32]

An example of a Gstreamer pipeline can be seen in Figure 22, which depicts the

shell script containing the single-line Gstreamer pipeline that runs on the Xavier

and interfaces with one of the four camera sensors on board.
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Figure 22: Shell script for launching a Gstreamer pipeline

The Gstreamer pipelines used for the sender and receiver work in much the same way

as the OpenDLV video streaming setup. The element nvvidconv performs format

conversion from the native format of the camera sensor to the format needed for

encoding, and the x264enc element performs the encoding, which is con�gured for

minimal latency using the tune=zerolatency option of the encoding element. The

rtph264pay element then packages the encoded data into RTP (Real-time Transport

Protocol) packets, and the udpsink element sends the packets to a socket over UDP.

On the receiver side, a Gstreamer pipeline does essentially the same thing in reverse;

the incoming packets are received, depayloaded, and decoded in that order, after

which they are displayed on screen. One instance of the camera-interfacing pipeline

is used for each camera sensor and one instance of the receiving pipeline is used for

each stream, for a total of four senders and four receivers.

3.5 GPS and LTE Telemetry

The Teltonika RUTx11 router on the boat runs an operating system called RutOS,

which is based on OpenWRT, a Linux OS aimed for embedded systems. The operat-

ing system of the router can be accessed using SSH (Secure Shell), and its �rmware

includes a pair of utilities that can provide useful data to the systems of the boat

platform and shore control station; gsmctl , which provides GSM- and LTE-related

telemetry data, and gpsctl , which is used to query the GPS module of the router

for positioning data, provided an external GPS antenna is connected to the router.

For the purpose of aggregating the GPS and LTE telemetry data and converting

it into a format which would coincide with the OpenDLV communication structure

used by most of the other systems on the boat platform, a GPS and LTE telemetry
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microservice called opendlv-device-router was created.

Table 2: Data exctracted using the gsmctl and gpsctl utilities on the boat router
Data Additional information

Time Epoch timestamp
GSM RSSI Received Signal Strength Indicator,

a measurement of radio signal power
RSRQ Reference Signal Received Quality,

a measure of LTE signal quality level
RSRP Reference Signals Received Power, same as above
SINR Signal-to-Noise Ratio

Operator Name
Data Carrier Type e.g. LTE, GSM, or no carrier
Module Temp Temperature of the modem
Network Info Information related to the mobile network,

such as frequency band and channel ID
Datetime GPS date and time
Lat, Long Latitude and Longitude
Speed Speed over ground
Angle North-relative heading

Altitude Altitude over sea-level

As the hardware of the router would likely not be able to run the microservice due to

resource constraints, the GPS and LTE telemetry system was designed such that the

actual microservice would be running on another device on the local network, and

a shell script on the router would send the data over to the microservice for further

processing. A shell script running on the router periodically executes a number of

gsmctl and gpsctl commands and sends the data to a socket over UDP using the

netcat utility. The opendlv-device-router microservice attaches to the socket, parses

the incoming data, serializes them into the appropriate OpenDLV messages, and

�nally sends the messages to the OpenDLV session. A list of the data acquired using

the gsmctl and gpsctl utilities on the boat router can be seen in Table 2. The script

on the router can be found in Appendix B.

Where possible, the data acquired from the script on the router are serialized into

OpenDLV messages already supported by the OpenDLV standard message set; as is

the case for the values for altitude, speed, heading, and position, which are serialized
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into AltitudeReading , GroundSpeedReading , GeodeticHeadingReading , and Geodet-

icWGS84Reading messages, respectively. The utilization of messages already part of

the OpenDLV standard message set for the GPS-related data was done speci�cally

because the opendlv-vehicle-view web interface, which will be discussed in Section

3.6, has some built-in map functionality which requires the latitude and longitude

contained in the GeodeticWGS84Reading message.

Figure 23: Message speci�cation for the RouterDataMessage

Additionally, a new message was added to the OpenDLV standard message set. The

RouterDataMessage contains all the data obtained from the gsmctl commands in

the script on the router, as seen in Figure 23. All �elds in the message are single

values, with the exception of the networkInfo �eld, which is a string containing a

few comma separated values which can be parsed as needed on the receiving end.

The script on the router runs the gsmctl and gpsctl utilities once per second and

concatenates all the data into a single string with a delimiter between each �eld,

after which it is sent to a socket using netcat. On the receiving end, the opendlv-

device-router microservice reacts to incoming data on the socket, and the data is

converted to the correct type, as de�ned by the entries for each message in the

standard message set. The appropriate OpenDLV messages are then constructed,
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after which they are sent using the OpenDLV-standard method of UDP multicast to

the session in which the microservice belongs.

3.6 Visualization

One of the milestones in the development of the boat project was de�ned as remote

control using visualization, i.e. remotely operating the boat without having a direct

line of sight to it. With the remote control system implemented and tested and with

a rudimentary live video streaming system in place, the next step was to implement

an informative interface for the shore control station. The purpose of the interface is

to not only provide the remote control operator of the boat the information needed

to steer the boat, but to also provide a good overview of the system, including but

not limited to a real-time map, a list of messages being transmitted in the system,

a network status display, etc. The system overview would be especially important

during the later stages in the development of the boat project, when the development

eventually starts to shift from manual control to autonomous operation.

Early on during project planning, it was agreed upon that at some point a system

overview/visualization interface would be built from the bottom up so that it could be

better tailored to the needs of the boat project. As an intermediary step, however,

the opendlv-vehicle-view [33] microservice included in the OpenDLV distribution

would, with some modi�cation, serve as a good temporary substitute for a bespoke

interface. The features of opendlv-vehicle-view include:

� Display of a real-time list of OpenDLV-messages received from the session.

� Display of video frames and LiDAR point clouds sent using OpenDLV Im-

ageReading and PointCloudReading messages, respectively.

� A virtual joystick for remote control operation.

� A map drawn around the position obtained from a message.

� Plotting functionality for OpenDLV messages.

� Functionality to record and replay all messages sent in a session over a period

of time.
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The microservice creates a web page displaying the information listed above, which

can be viewed locally using a web browser.

3.6.1 Message Overview

Figure 24: Message overview in vehicle-view

The message overview tab depicted in Figure 24 displays a regularly updated list

of all the OpenDLV messages that have been received from a running session since

startup, along with the message contents. The messages seen in Figure 24 come

from the GPS and LTE telemetry microservice described in Section 3.5, which was

the only other microservice running at the time. The list in the message overview,

along with the map and plot tabs, is updated after a certain (hard-coded) number of

messages have been received. The reason for this is presumably that the web page

would update too rapidly if messages were arriving at a high frequency. This led

to a slight issue, however, when the frequency of received messages was low. With

only the GPS and LTE telemetry microservice running, the view only updated once

every several seconds, and the update threshold had to be reduced in the code of

opendlv-vehicle-view so that the view would update more often.

3.6.2 Plotting

The plotting functionality of opendlv-vehicle-view is realized using a built-in im-

plementation of Gnuplot [34], a freely distributed graphing utility. The plotting

interface consists of two parts, the plotting code pane as seen in Figure 25, and
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the plot output, depicted in Figure 26. A plot of any received OpenDLV message

can be drawn using a pre-made plotting template by pressing a button on the mes-

sage overview tab, and the plotting code can be edited during run-time using the

code pane, after which the plot will automatically update. Prede�ned plots can be

created by storing the Gnuplot code in a JavaScript variable in the main.js �le of

opendlv-vehicle-view and adding an element to the drop-down menu using html.

Figure 25: Plotting code user interface in vehicle-view

Figure 26: Signal-to-noise ratio plot in vehicle-view

A number of prede�ned plots were created for the boat project, most notably to draw

plots of data related to the network of the boat platform. The parameters for these
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plots are obtained from RouterDataMessages. An example can be seen in Figures 25

and 26, which depict the plotting code and resulting plot for the signal-to-noise ratio

of the router on the boat, respectively. The line of the SINR and other signal-quality

related plots change color based on thresholds de�ned by the router manufacturer

[35], as the relation between the actual value and the quantity being measured are

dependent on the hardware used.

3.6.3 Map

Figure 27: Map pane in vehicle-view

The map pane of opendlv-vehicle-view displays a map, which is centered on the co-

ordinates obtained from the GeodeticWgs84Reading message. A zoom-able map is

drawn by using the open-source javascript library Maptalks [36] to query the Open-

StreetMap [37] database for map data. A base layer is drawn containing the map

itself, and a small cross is drawn in the center, indicating the current position. As a

display of the boat heading was also needed for the boat platform, this functionality

was added to vehicle-view, also using Maptalks. To display the heading, a vector

layer is drawn on top of the map layer, containing a small sector originating from the

current position and pointing in the direction of the heading value obtained from a

GeodeticHeadingReading message. While the variables containing the position and

heading values are updated whenever the appropriate messages are received, the map
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is only redrawn whenever the view updates, as discussed in Section 3.6.1. The map

can be seen in Figure 27.
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4 Results and Evaluation

In this Chapter, the microservices developed for this thesis and the OpenDLV soft-

ware ecosystem as a whole is summarized and evaluated. Some future improvements

to the systems of the boat platform are also discussed.

4.1 Motor Control System

The current motor control system implementation ful�lls its requirements in that the

boat can be remotely controlled using visual contact. However, a substantial issue

with the motor control subsystem as it is implemented is that there is currently no

way to get the exact status of the motor, i.e. rotation and propeller speed. Having

visual contact with the boat and its motor lessens the need for motor status infor-

mation, but for autonomous navigation or remote control without visual contact to

be at all possible, this information is essential. Reasonably accurate propeller speed

information can be inferred from the status of the motor control microservice, and if

needed, functionality to read the NMEA2k status messages the motor independently

sends out could be added to the microservice. As the status message concerning pro-

peller speed is simply a measure in percent of how much power the propeller motor

is receiving, it can be considered reliable.

The same cannot be said about the motor rotation status message. During network

tra�c observation of the NMEA2k bus in the lab, the motor rotation readings in

the status messages from the motor were found to be �uctuating even when the

motor was static. This is likely due to the source of the rotation status information

being a magnetometer in the GPS module of the motor, and the readings having

been in�uenced by external magnetic �eld disturbances from surrounding electronic

equipment. This issue could be solved by either evaluating the reliability of the mag-

netometer readings or by installing another, for instance mechanical rotation sensor

on the motor. If the magnetometer readings were through evaluation found to be

acceptable, i.e. within some small range, the status messages from the motor could

be used and any �uctuations could be accounted for within the microservice. Adding

a dedicated rotation sensor such as a rotary encoder or hall e�ect sensor implemen-

tation would likely be more accurate, but would also be more labor intensive.
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The control loop in the motor control system contains a parameter for the current

motor position, which is currently an approximation of the amount the motor has

turned since service startup. If this parameter would be changed to instead hold

accurate readings from a rotation sensor, the accuracy of the motor control system

would improve dramatically. This addition is likely to be one of the next steps in

the further development of the boat platform.

4.2 Video Streaming and Visualization

Though the video streaming implementation using OpenDLV was eventually scrapped

due to a hardware con�ict, it was found to work quite well in preliminary testing.

The stream latency between camera and screen was acceptably low, considering the

wireless connection between the boat and the shore. Splitting the video stream-

ing pipeline into three microservices (camera sensor interface, encoding, and receiv-

ing/display) facilitated granular control over the whole pipeline, which was particu-

larly useful for the encoding microservice and its many parameters.

The OpenDLV web view microservice provides a good overview of the system, with

its map, message overview, and plotting functionality. As the web view by default

only supports video display if the frames arrive in the form of OpenDLV messages,

support for other methods of video streaming will have to be added later, if it is

needed. The web view also has support for displaying LiDAR point clouds, which

will be useful in the future as a LiDAR system is one of the planned additions to the

boat platform, as per the system design diagram.

4.3 OpenDLV

An important aspect to consider when evaluating a system architecture is how it

handles complexity. The current system of the boat platform consists of a relatively

low number of microservices, and has yet to present any major issues stemming from

complexity. The high-level system design created as part of this thesis predicts a

much higher level of complexity in the future, and the question of how OpenDLV

and its tools could be used to handle this is hard to answer. While the standardized

communication structure of OpenDLV makes setting up the communication links

between elements in a system easy, it is hard to discern the intent of the developers

of OpenDLV when it comes to some issues. These issues include the potentially high
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computational cost of a service discarding unwanted messages, and messages in a

large communication group potentially failing to arrive due to low available network

bandwidth.

Correspondence with the developers revealed that typical systems on their platforms

are supported by powerful hardware, and are thus unlikely to run into these issues.

Therefore, while developing an implementation of OpenDLV on a more resource-

constrained platform such as the boat platform, complexity is de�nitely an issue that

needs to be considered. It should be noted that problems arising from complexity

are by no means unique to OpenDLV but are inevitable in distributed systems and

especially microservice-based systems, as discussed earlier in this thesis.

Generally, development using OpenDLV su�ers somewhat due to lack of documen-

tation; getting started with the system could be made signi�cantly easier if the

information about the system and its features were consolidated in one place and doc-

umented more extensively. At the time of writing, the documentation for OpenDLV,

its microservices, and its main library Libcluon, is scattered over a number of GitHub

pages and di�cult to piece together. Many of the ready-made OpenDLV microser-

vices were not in the main repository, including some very useful communication

�ow control microservices. The developers seem to be aware of this, however, as

the landing page for OpenDLV includes a message indicating that a web page is in

development.

Disregarding the documentation issues, developing completely new functionality to a

system using the OpenDLV architecture is relatively straight-forward. The de�ning

features of the communication structure, i.e. the data structure de�nition in the

standard message set and the reliance on UDP multicast for transport, both serve

to simplify incremental additions of new functionality to an established system. Lib-

cluon, the small yet �exible main library, provides a host of useful basic features to

microservices, and the use of Docker containers provides �exibility to deployment by

separating the applications from the underlying hardware.
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5 Conclusion

The purpose of this thesis was to implement and evaluate a rudimentary commu-

nication and control system for an autonomous boat platform using the OpenDLV

software ecosystem and its microservice-based architecture. In order to lay theo-

retical foundation for the development of the system, some of the key aspects of

OpenDLV, e.g. the microservice architecture, distributed systems, and container-

ization, were explored in more detail. A high-level diagram of the planned system

was created for the purpose of mapping planned system functionality into small ele-

ments that would later be developed into microservices. The system design diagram

was developed with a distributed system in mind, and was also used to describe the

communication �ow of the system.

A number of OpenDLV microservices were then developed to handle the tasks of

manual remote control, video streaming and display, collection and display of GPS-

derived data, and LTE telemetry data collection and display. Some of the mi-

croservices were built from the ground up and some were built by using an existing

OpenDLV microservice as a starting point.

The focus on small, contained applications in lieu of a more monolithic approach

makes OpenDLV a particularly good �t for the development environment of the

boat platform. Because the bulk of the development is intended to be done by many

di�erent researchers as well as project and thesis workers, the ability to easily de-

velop small additions to the system is invaluable. While OpenDLV and the systems

developed using it for this thesis have their drawbacks, these can and should be

mitigated by careful system planning before and during future development. In con-

clusion, the bene�ts that are to be gained from the �exibility of a distributed system

implementation for an autonomous vehicle platform should not be underestimated.
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6 Svensk Sammanfattning - Swedish Summary

6.1 Inledning

Under det senaste årtiondet har intresset för teknologier som möjliggör autonoma

fordon ökat avsevärt både inom industrin och i den akademiska världen. Även om

uppmärksamheten ofta fästs speciellt på självstyrda bilar, kan man också se ett

ökat intresse för teknologi ämnat för autonoma sjöfartsfordon. På fakulteten för

naturvetenskaper och teknik vid Åbo Akademi har en forskningsplattform för en

självstyrd båt grundats för att experimentera med och utveckla olika teknologier

som kunde göra framsteg inom området autonoma sjöfartsfordon.

Syftet med denna avhandling är att implementera ett grundläggande mjukvarusy-

stem till båtplattformen. Till systemets uppgifter hör bl.a. datainsamling från olika

sensorer, styrning samt dataöverföring mellan olika hårdvaruenheter och delsystem.

Eftersom ett heltäckande styr- och kommunikationssystem för ett autonomt fordon

är rätt så invecklat och eftersom ett �ertal av de till plattformen planerade systemen

är tillsvidare bara konceptuella, kommer avhandlingen mestadels att handla om ett

fåtal delsystem. Målsättningen är att utvecklingen och implementeringen av dessa

delsystem kan användas som en bra grund för att sporra framtida vidareutveckling

av båtplattformen.

6.2 Systembeskrivning

Den grundläggande teknologin som tillämpas i denna avhandling är OpenDLV [1].

OpenDLV (eng. Open DriverLess Vehicle) är en mjukvarumiljö med öppen källkod

skapat för att främja utvecklingen och testandet av system för autonoma fordon.

Även om miljön är ursprungligen avsedd särskilt för självstyrda bilar, �nns det de

facto inga hinder för att tillämpa den till ett system för ett autonomt sjöfartsfordon.

Den största skillnaden mellan bilar och sjöfartsfordon är i detta sammanhang syste-

mens kommunikationsteknologier; emedan enheter inom datasystem i bilar typiskt

kommunicerar via en CAN-buss (Controller Area Network), använder sjöfartsfordo-

net som denna avhandling berör ett lokalt Ethernet-nätverk. I praktiken har valet

av kommunikationsteknologi dock en liten betydelse.
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OpenDLV har ett antal egenskaper som är utmärkande för systemets uppbyggnad:

OpenDLV Standard Message Set, Microservices och Libcluon.

OpenDLV Standard Message Set är en �l som beskriver hur data struktureras och

serialiseras för kommunikation mellan olika enheter i ett system. Filens huvudsakliga

uppgift är att upprätthålla en standard för kommunikation som gör det lätt att

utveckla ny funktionalitet till systemet.

Miljön är fullständigt baserat på microservices, en modulär mjukvaruarkitektur där

de diskreta enheterna i ett system eller en applikation är minimala dvs. varje enhet

har en enda, väl begränsad funktion. Enheterna är också sinsemellan frånkopplade

och kommunicerar självständigt med varandra över ett nätverk utan någon form av

central styrning.

En stor del av funktionaliteten som erbjuds av OpenDLV ligger i programbibliokte-

ket Libcluon. Biblioteket innehåller en stor mängd generella funktioner som förenklar

utvecklingen av programvara till distribuerade system och speciellt system för auto-

noma fordon. Själva källkoden i biblioteket delas ut i form av en enda �l, vilket gör

det enkelt att använda i t.o.m. små program.

6.3 Metoder

I avhandlingen utarbetas en grundlig helhetsbild om vad som bör uppmärksammas

vid utformningen, utvecklingen och implementeringen av ett distribuerat system för

ett sjöfartsfordon. Innan någon praktisk tillämpning förverkligas, studeras de grund-

läggande egenskaperna av OpenDLV i detalj för att få en uppfattning om varför

OpenDLV är uppbyggt som det är, samt för att försöka identi�era vilka element är

kritiska till systemets funktionalitet.

Speciell uppmärksamhet fästs på microservice-arkitekturen och virtualisering, ef-

tersom dessa teknologier anses vara speciellt viktiga med tanke på en välfungeran-

de praktisk implementation av ett distribuerat system. Microservice-arkitekturen är

dessutom en något ung teknologi, och en implementation därav kan ha brister som

kunde leda till negativa konsekvenser i ett system ämnat för ett autonomt fordon.
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6.4 Implementation

Den praktiska implementationen som valdes till utgångspunkt är ett delsystem för

motorkontroll. Delsystemet för motorkontroll ansågs vara en bra utgångspunkt ef-

tersom det är av en lämplig storlek och för att det omfattar �era funktioner som

kommer att vara närvarande i många andra delsystem på plattformen. Förutom del-

systemet för motorkontroll utvecklades också ett antal mindre delsystem för bl.a.

direktuppspelning av video samt insamling och uppvisning av GPS-data. För att

skapa en grundläggande helhetsbild av systemet, utvecklades därtill ett diagram på

hög nivå över båtplattformens system.

Delsystemet för motorkontroll består av en microservice som läser inmatningar från

en spelkontroll (eng. gamepad) och översätter dem till instruktioner för styrningen

av en utombordsmotor. Styrinstruktionerna mottas av en annan microservice som

översätter instruktionerna till meddelanden som kan skickas över en NMEA2000 buss

för att driva själva motorn. Kommunikationen i delsystemet sker m.h.a. UDP över

ett lokalt nätverk, vilket består av två trådlösa nätverksväxlar. Även om delsystemet

tillsvidare enbart stöder manuell styrning, är det är uppbyggt med tanke på eventuell

automatisk styrning; microservicen som driver utombordsmotorn är konstruerat för

att göra en framtida implementation av självstyrning möjligast smärtfri.

6.5 Resultat

Implementationen av motorkontroll fungerade som väntat. Den teoretiska utred-

ningen av viktiga systemegenskaper ledde till gynnsam information som påverkade

utvecklingen av båtplattformens olika delsystem. Det tillgodogjordes t.ex. att både

microservicen för inmatning och den för motorkontroll borde kunna agera som bu�ert

för meddelanden eftersom frekvensen med vilken meddelanden skickas kunde sänkas

för att lätta på nätverkets belastning. Under utvecklingen av motorkontroll och de

andra delsystemen ökade förståelsen för OpenDLV och distribuerade system i allmän-

het, vilket förde med sig erfarenheter som kommer att vara nyttiga då båtplattformen

utvecklas vidare i framtiden.
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A System Diagram

Figure 28: Latest high-level system diagram
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B Router Script

Figure 29: Router script for sending GPS and LTE-telemetry data using NetCat
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