

Isak Jansson 42605 / 1800439

Master of Science (Technology), Master’s thesis in computer engineering

Faculty of Science and Engineering, Information Technologies

Åbo Akademi

21.05.2021

Supervisor: Marina Waldén

Continuous Compliance Automation

in AWS cloud environment

Isak Jansson

i

Abstract

Compliance is increasingly growing as an area of importance in the Information

Technology sector to compete and deliver applications that follow regulatory

requirements and standards. The scrutiny of auditors and regulators in some parts of

the Information Technology sector has increased significantly during the last years due

to the increasingly hostile environment. Compliance has become required by

customers and needed if engaging in specific activities in the Information Technology

sector, especially when working in the financial industry.

This thesis investigates compliance for Information Technology systems in the

financial sector. More specifically, the thesis examines how to remain in compliance

using the methodology of continuous compliance. Achieving compliance can be

challenging, especially when moving Information Technology infrastructure to a

public cloud service provider from a strictly on-premises solution. However, by

introducing automation into the process, this thesis tries to show how compliance work

can be decreased with the possibilities of automation in the cloud. Both to improve the

compliance posture as well as security and minimize the involvement of human beings

in the ever-changing compliance process. Automating the compliance process is done

using different services provided by Amazon Web Services and introducing other tools

even to remediate compliance problems wherever possible automatically. This thesis

shows that it may be beneficial to introduce an automated continuous compliance

process when working with strict regulation to help with reoccurring issues. The

implemented solution focuses on compliance frameworks like CIS benchmark and

PCI-DSS requirements in relation to Information Technology infrastructure. The proof

of concept implemented focuses on the advantage and possibilities to automate

compliance work in Amazon Web Services cloud environment as well as investigates

the possible use of the idea in a full-scale solution.

Keywords: Continuous Compliance, Compliance, Cloud, AWS, Automation

Isak Jansson

ii

Preface and Acknowledgements

This Master’s thesis was written for Crosskey Banking Solution. The work has been

fascinating and inspiring. I especially want to thank my supervisor, Jonathan

Klingberg at Crosskey, for making this thesis possible and for helping me in the

process. I also want to thank the AWS team for the help and guidance provided. Thanks

to my team at Capital Markets for the support and for making this possible by letting

me shortly leave the team to complete my studies. I also would like to thank the

Crosskey Security Department for the guidance regarding compliance processes and

security. I also would like to thank my supervisor Marina Waldén at Åbo Akademi

University for helping me and providing me with valuable ideas for improving the

thesis as well as good guidance through the process. Last but certainly not least, I

would like to thank everyone at Datateknologerna vid Åbo Akademi r.f for the support

and the good times during my Master’s studies.

Mariehamn 21.05.2021

Isak Jansson

Isak Jansson

iii

Acronyms

IT - Information Technology

CSE - Continuous Software Engineering

CI - Continuous Integration

CD - Continuous Delivery

AWS - Amazon Web Services

CIS - Center for Internet Security

PCI DSS - Payment Card Industry Data Security Standard

SDK - Software Development Kit

Isak Jansson

iv

Table of Contents

List of Figures ... vi

List of Tables... ix

1. Introduction .. 1

1.1. Purpose of the thesis .. 1

1.2. Thesis structure .. 2

2. Background .. 3

2.1. Compliance and Security Compliance .. 3

2.2. Momentary Assessment to Continuous Compliance 3

2.3. Continuous Software Engineering CSE .. 5

2.3.1. Infrastructure as Code and Automation ... 6

2.4. CSE in relation to Continuous Compliance .. 6

2.5. Continuous Compliance Automation .. 8

2.6. Cloud solutions and Hybrid Cloud .. 9

2.7. Compliance in On-Premises versus Cloud Solutions 10

2.8. Compliance in the Financial sector ... 12

3. Compliance frameworks, services and tools used.. 13

3.1. Compliance frameworks .. 13

3.1.1. Center for Internet Security Benchmark .. 13

3.1.2. Payment Card Industry Data Security Standard 14

3.2. Amazon web services and tools .. 16

3.2.1. Shared responsibility model ... 17

3.2.2. A brief overview of AWS services used .. 18

3.3. Ansible and CSE ... 24

3.4. Programming Languages ... 26

3.4.1. Python .. 26

3.4.2. YAML and JSON ... 27

Isak Jansson

v

4. Related work and current solutions .. 28

4.1. Cloud solutions and Compliance frameworks ... 28

4.2. Solutions in Continuous Compliance .. 29

5. Compliance and AWS .. 32

5.1. AWS strategies for compliance ... 32

5.2. AWS Services to help with Compliance for customers 36

5.2.1. Compliance Certified Services in AWS ... 37

5.3. CIS for AWS ... 38

5.4. PCI DSS for AWS ... 40

5.5. Mapping of Compliance frameworks .. 41

5.5.1. Mapping CIS controls to PCI-DSS in AWS .. 42

6. Proof of concept: Continuous Compliance Automation in AWS 45

6.1. Continuous Compliance Automation Architecture, a brief overview 45

6.2. Implementation of Continuous Software Engineering concept 48

6.2.1. Infrastructure implementations with Ansible and CloudFormation..... 48

6.2.2. Enabling Continuous Compliance Monitoring 51

6.3. Compliance Automation and Remediation ... 52

6.3.1. Remediation of Compliance events ... 58

6.3.2. Implemented Compliance Remediation ... 66

6.3.3. Unsupported events .. 69

6.4. Design alternatives .. 71

7. Evaluation and future work .. 74

7.1. Improvements and future work ... 74

7.2. Evaluation .. 75

8. Conclusion ... 78

9. Swedish summary – Svensk sammanfattning .. 79

10. References ... 84

Isak Jansson

vi

List of Figures

Figure 1 Momentary Assessment ... 3

Figure 2 Continuous Assessment ... 4

Figure 3 Continuous Compliance .. 4

Figure 4 Continuous Compliance Automation .. 9

Figure 5 AWS Global Infrastructure, with Regions, Availability zones and local zones

[20] ... 17

Figure 6 AWS Shared responsibility model [21] ... 18

Figure 7 Example of using Boto3 in Python code [30] .. 23

Figure 8 Example playbook [31] ... 24

Figure 9 Best practices for Ansible playbooks [33] ... 25

Figure 10 Example of Python code [36] .. 27

Figure 11 YAML example ... 27

Figure 12 JSON example ... 27

Figure 13 IAM Policy for S3 bucket with public read/write 34

Figure 14 ZELKOVA warning for public policy on S3 bucket 35

Figure 15 IAM Policy for S3 bucket with read/write to a specific principal 35

Figure 16 ZELKOVA as a Label for AWS Config Rules in the AWS Console 36

Figure 17 AWS Security Hub related requirements example 43

Figure 18 Example of ASFF for Compliance Finding [25] 43

Figure 19 Continuous Compliance Automation Architecture 46

Figure 20 role_name the included task that is referenced from the master playbook 49

Figure 21 roles\role_name\tasks\main.yml .. 49

Figure 22 roles\role_name\vars\main.yml ... 50

Figure 23 roles\role_name\tasks\role_name the configure-securityhub.yaml file 50

Figure 24 Shell Command for activating Security Hub ... 51

Figure 25 CloudWatch Events on Security Hub Findings ... 52

Figure 26 CloudWatch Event Rule for catching specific Security Hub findings based

on Compliance requirements.. 53

Figure 27 Compliance Automation Step Function State machine 54

https://abofi-my.sharepoint.com/personal/isak_jansson_abo_fi/Documents/MastersFinal.docx#_Toc72962760
https://abofi-my.sharepoint.com/personal/isak_jansson_abo_fi/Documents/MastersFinal.docx#_Toc72962767
https://abofi-my.sharepoint.com/personal/isak_jansson_abo_fi/Documents/MastersFinal.docx#_Toc72962767

Isak Jansson

vii

Figure 28 Compliance Choice State ... 55

Figure 29 Compliance Choice State with reference to Next task 55

Figure 30 Task State with reference to Lambda resource in the console after creation

 .. 55

Figure 31 Task State with reference to Lambda resource in CloudFormation stack . 56

Figure 32 Architecture of the ContinuousComplianceAutomationStateMachine 57

Figure 33 Compliance_CIS_4-1_4-2_Remediation: Extracting Finding information

and call fix_security_group() function ... 58

Figure 34 Compliance_CIS_4-1_4-2_Remediation: fix_security_group() AWS Boto3

SDK to access resources and configurations ... 58

Figure 35 Compliance_CIS_4-1_4-2_Remediation: fix_security_group() Revoke

ingress for non-compliant resource .. 59

Figure 36 Security Group before and after revoked ingress in the console 59

Figure 37 Compliance_CIS_4-1_4-2_Remediation: Update Security Hub finding with

note text .. 60

Figure 38 Security Hub finding note text of remediation attempt 60

Figure 39 Compliance_CIS_4-1_4-2_Remediation: Information collection and return

result ... 60

Figure 40 State Machine FinalAutomationState Task ... 61

Figure 41 Step Function State machine flow of Corrected Compliance event for CIS

recommendation 4.1 ... 62

Figure 42 ComplianceAutomationFinalState Collecting information and forward to

publish_compliance_sns() .. 62

Figure 43 ComplianceAutomationFinalState: publish_compliance_sns() function for

publishing messages on SNS queue ... 63

Figure 44 CloudFormation Configuration of SNS queue and specific subscriber

endpoint .. 63

Figure 45 ComplianceTeamsWebHook Lambdafunction, creation of Teams chat

message .. 64

Figure 46 Teams message about Corrected Compliance event 64

Figure 47 Teams message about Non-Correctable Compliance event 65

Figure 48 Compliance_CIS_1-5_1-11_Remediation: updating the password policy 68

https://abofi-my.sharepoint.com/personal/isak_jansson_abo_fi/Documents/MastersFinal.docx#_Toc72962776
https://abofi-my.sharepoint.com/personal/isak_jansson_abo_fi/Documents/MastersFinal.docx#_Toc72962776
https://abofi-my.sharepoint.com/personal/isak_jansson_abo_fi/Documents/MastersFinal.docx#_Toc72962777
https://abofi-my.sharepoint.com/personal/isak_jansson_abo_fi/Documents/MastersFinal.docx#_Toc72962778
https://abofi-my.sharepoint.com/personal/isak_jansson_abo_fi/Documents/MastersFinal.docx#_Toc72962778
https://abofi-my.sharepoint.com/personal/isak_jansson_abo_fi/Documents/MastersFinal.docx#_Toc72962779

Isak Jansson

viii

Figure 49 Compliance_PCI_S3-4_Remediation: Using AWS Systems Manager for

enforcing S3 Encryption .. 69

Figure 50 Compliance_PCI_IAM_3_Remediation: Deleting too liberal IAM policy

 .. 69

Figure 51 Custom Action target in Security Hub .. 70

Figure 52 Step Function State machine flow of unsupported compliance event 70

Figure 53 Teams message about unsupported compliance event 71

Figure 54 AWS Config directly forwarding the event to CloudWatch 71

Figure 55 CloudWatch event rules forwarding events directly to Lambda functions 72

Figure 56 Different ways of notifying about result of the compliance remediations 73

https://abofi-my.sharepoint.com/personal/isak_jansson_abo_fi/Documents/MastersFinal.docx#_Toc72962790
https://abofi-my.sharepoint.com/personal/isak_jansson_abo_fi/Documents/MastersFinal.docx#_Toc72962790

Isak Jansson

ix

List of Tables

Table 1 PCI-DSS Requirements and their goals [17] .. 15

Table 2 Example of Compliance Mapping between CIS and PCI DSS [16], [18] 42

Table 3 Example of Mapping requirements between CIS and PCI DSS in AWS [25],

[48] ... 44

Table 4 Implemented compliance requirements and mappings 67

1

1. Introduction

Following and implementing compliance frameworks has become an everyday task

for many companies in many sectors of Information Technology (IT), especially in the

financial sector. The significance of following these compliance frameworks is not

only to follow regulations but also to be able to engage in specific business sectors that

require compliance with international standards and regulations. The need to enforce

compliance requirements and the need to prove that these requirements are fulfilled is

a constant task for IT service providers affected by any compliance framework. [1]

1.1. Purpose of the thesis

Customers of IT service providers are increasingly demanding better quality and safety

from the purchased applications. Requirements of following specific compliance

frameworks are often wished for and, in some industries, mandatory for conducting

operations in the market. One such industry is the financial sector, with tight

regulations and many compliance frameworks required for operation. The tight

regulations are not only to make the applications more secure but also to ensure the

quality of the services provided to the end customer. To fulfil customer expectations,

more compliance frameworks that try to promote security are introduced and enforced,

often leading to increased overhead for proving that the systems and the company itself

are compliant with the customer's compliance requirements.

In some cases, introducing manual verification in different processes to ensure

compliance of the systems. This especially if new systems or a new compliance

framework needs to be implemented. Costs can often be minimized by moving

applications hosted previously on on-premises servers to a public cloud provider. But

this introduces both new processes and new systems as well as the complexity of

proving compliance. The previously set routines and processes for proving compliance

are impacted and the workload often increases. However, by introducing automated

continuous compliance tools to do some of the workloads, the impact on the

compliance work can be reduced and only the required manual tasks increase. The

thesis aims to introduce automated continuous compliance tools and processes for

remediation in AWS to reduce the compliance work of moving some of the

Isak Jansson

2

infrastructure to a public cloud provider. The thesis focuses on compliance and

security from an infrastructure point of view and only includes minor insights into

application compliance. Introducing cloud solutions to an already existing compliance

process often introduces new complexity, but by using automation, some of the

complexity can be reduced over time. The constant changes to infrastructure in the

public cloud environment will complicate the implementation of previously used

compliance processes. Therefore, it is crucial to focus on implementing automatic

processes for handling infrastructure changes that lead to compliance changes. The

application compliance processes do not suffer to the same degree from the move to

the cloud and are only touched upon in this thesis.

1.2. Thesis structure

The thesis is divided into chapters that range from theory to practical work. Chapter 2

describes the background and theory behind compliance, security, and continuous

compliance as well as Continuous Software Engineering. Furthermore, a brief

description of what cloud solutions are and how compliance is connected to the

financial sector are presented. In Chapter 3, different compliance frameworks, services

and tools used are shortly explained to give an understanding of what they are. The

next Chapter 4 introduces the already existing research in cloud solutions and

compliance as well as a couple of previous continuous compliance solutions available.

Chapter 5 discusses and presents the available solutions for compliance in AWS

(Amazon Web Services) cloud environments and how different compliance

frameworks are considered in the different AWS services. Here also mapping between

different compliance frameworks is presented. Chapter 6 the proof of concept that

continuous automated compliance is presented, starting with a brief description of the

architecture followed by infrastructure implementations. Compliance automation in

code is then presented and remediation of different compliance events is explained.

Different alternatives to design and possible improvements are also discussed. Chapter

7 gives a short evaluation of the proof of concept, discussing problems and possibilities

for use in the future. The final Chapter 8 presents some concluding remarks about the

work presented.

Isak Jansson

3

2. Background

2.1. Compliance and Security Compliance

In today’s IT world, where the increasing complexity is becoming the norm, securing

the systems is becoming increasingly difficult. Therefore, different customers and

vendors have mandated the suppliers to follow a set of rules that often make the IT

systems more likely to be safe, often called Security Compliance. “Security is the state

of being safe from threats. By contrast, security compliance means conformance with

a given set of security requirements” [1]. The security requirements can be set by any

given entity like regulators, governments, or groups of experts. Compliance can also

be defined as complying with a wish or a demand from, for example, a customer. To

fulfil the delivery requirements, a company needs to comply with the regulatory

requirements and comply with customer requirements.

2.2. Momentary Assessment to Continuous Compliance

In compliance work, the concept of Momentary Assessment is often the method of

choice. The system or application assessed is observed at a specific time. A user often

requests a report or compiles a report manually from data available for that exact

moment. In this case, the compliance evaluation is based on manual labor or manual

triggering a system to produce a compliance report that can be shown to the assessor.

The process is illustrated in Figure 1. We can also call this Momentary Compliance

because of the nature of the reported data. The report only contains the compliance

state of the system at a specific moment. [2]

Figure 1 Momentary Assessment

Isak Jansson

4

If the Momentary Assessments are in some ways automated to the degree of being able

to assess the Compliance state of the system at least periodically, we can call it

Continuous Assessment. The user does not request an assessment of the system state,

and instead the system tries to show that it is compliant at least with periodical

intervals, the process shown in Figure 2. In the perfect world, the checks should not

only be periodical, but event driven for continuously detecting change in the system

and compiling an always up to date picture of the compliance state of the system. This

can be called Continuous Compliance and the process is shown in Figure 3. But in

some cases, Continuous Compliance is not feasible and periodical checks are the only

solution. With large systems the process of compiling a report or gathering data for all

compliance requirements can be hard, this is due to high workloads and the frequency

of change. If the resources monitored are small in numbers, a periodical report can be

sufficient for getting an overview of the compliance state of the system. Therefore,

when the resources monitored are large in numbers and change occurs often the

preferred way to achieve compliance is event driven compliance monitoring or, even

better, implementing some kind of Continuous Compliance process. [2] [3] [4]

Figure 2 Continuous Assessment

Figure 3 Continuous Compliance

Isak Jansson

5

2.3. Continuous Software Engineering CSE

Continuous Software Engineering (CSE) is a debated topic in academic work and the

definition of continuous software has many different approaches. However, the

importance of solutions for rapid software development strategies is becoming

increasingly important. CSE contains many practices used to describe processes that

increase automation and the continuous development of applications. Some of the

principles build on the agile software development practices introduced in the agile

manifesto, but many advocates that the tools used have greater importance than the

actual individuals and interactions focused on in the agile manifesto [5].

CSE's most commonly used practices include Continuous Integration (CI) and

Continuous Delivery (CD). The constant demand for decreasing the time between

release cycles, fixing bugs faster, and increasing changes to the code base requires

automation of the processes to deliver a functioning application. To get short release

cycles and closer to achieving CD the concept of CI needs to be achieved. CI means

that as soon as a developer introduces code and uploads it to the version control

repositories, an automated process compiles the code, runs tests, and deploy

applications to staging environments. CI does not necessarily mean that the code is

deployed into production when the process is ready. In many cases, the process needs

some kind of human intervention when necessary. However, the latest version of the

application can be deployed to production environments automatically if the process

does not run into any problems. A fully automated release pipeline that has no human

intervention can also be defined as Continuous Deployment. [6] [7]

These CSE concepts together are often referenced as Code Automation in day-to-day

conversations and often indicates that a CI process and some form of CD are used in

the development process of the applications or infrastructure.

Releasing early and often will also decrease the effort of the teams needing to switch

to operational tasks, leaving more time for development and improvements. To

improve the development process, it is essential to detect problems early and correct

them immediately. It is also essential to automate the correction if possible and if the

problem ever occurs again the automation should take care of the task.

Isak Jansson

6

To get a completely automated process is almost unachievable in large companies with

already established processes. But, automating as much as possible when it comes to

development lifecycle and infrastructure maintenance is essential for delivering better-

performing applications. Leading to more stable application updates and better

performing operations of the applications. The goal is to minimize the downtime of

the customer applications and minimize loss in revenue or customer satisfaction. But

achieving full automation is not always possible. However, automating as much as

possible is the ultimate goal. [8]

2.3.1. Infrastructure as Code and Automation

The power of using code for infrastructure is that the CSE concept can be applied even

to the infrastructure, not only for the application layer. When moving towards cloud

environments, the possibility to have infrastructure written in code is appealing. To be

able to automatically deploy and version-control infrastructure code means that the

infrastructure can also respond faster to the constant changes needed in delivering an

application. Enabling automation for the infrastructure where the applications are

running enables the application layer to be more flexible to change and customer

needs. Therefore, automation is the key.

Infrastructure is not always easy to get into code and there will always be some manual

work, often regarding static networking or hardware limitations. However, everything

that can be changed using infrastructure as code should also be automated. To at least

a degree, the whole infrastructure can be deployed again in case of misconfiguration.

This is often achievable in cloud environments and can be implemented in some form

in a hybrid cloud solution with consideration of some hardware limitations. [9]

2.4. CSE in relation to Continuous Compliance

When implementing CSE workflows, the security aspect of the development process

is often forgotten. Before releasing an application to the public, the security team

comes in and assesses the solution, demanding fixes for critical security

vulnerabilities. The nature of only checking for vulnerabilities at the end of the

development process often leads to missing some critical parts of the system, which

then causes a serious security hazard. The same can be said about compliance. Often

Isak Jansson

7

the compliance checks are considered in the later part of the development process and

fixed after the solution is ready. Therefore, the importance of automating the security

controls as well as the compliance controls during development is vital for keeping the

good health of the applications when they are released. [7]

Continuous Compliance Monitoring (CCM) can be directly correlated to Continuous

Assessment and focuses on always having an overview of the compliance state of the

system. Either with periodical checks or event driven monitoring of the compliance

state of the system. With a CCM tool detecting compliance issues within your systems

is easy and actions to solve these issues can be taken quickly as the development of

the applications proceed. As well as be well informed about the risks the development

introduces. It is not only important to have a CCM tool for detecting problems.

However, the tool should also support the concept of CSE; the solution should be

implemented using the same development approach as the rest of the applications.

Always having infrastructure and code that supports finding compliance problems that

will improve the state of the system. [10]

By implementing infrastructure that supports CCM, the system should now be able to

detect compliance and security problems and by using CSE, the system should be

ready for Continuous Deployment at any time. However, one automation step could

still be introduced. The Continuous Assessments results of CCM findings in the

systems still need human intervention to be resolved. Automating these kinds of

findings is not easy in on-premises only solution and taking action on findings can be

time consuming and repetitive. However, by moving to a cloud solution or a hybrid-

cloud solution, the possibilities to automate the actions taken on the compliance or

security findings become possible. The automated actions can, if possible, remediate

the finding, mitigate the risk of becoming non-compliant or at least notify about the

finding, so that correct actions can be taken if human intervention is needed. This

allows the automation of repetitive tasks that can be remediated or mitigated through

code. Only findings that need human intervention or findings that have not yet been

automated are sent to manual processes for further investigation. This is what the thesis

will call Continuous Compliance Automation.

Isak Jansson

8

2.5. Continuous Compliance Automation

Compliance in today’s IT climate is a simple compliance report with checkboxes that

indicates the compliance state of the system at a given time. However, this is not

always enough to prove compliance. A Compliance Assessment is not considered

complete when the assessment is done, and the systems are compliant until the next

auditing. Compliance needs to be interpreted as a continuous process where the

resources and conditions constantly change. [7]

To be continuously compliant with any framework, there must be some kind of

automation. Both collecting data for the compliance assessment as well as

continuously remediate the compliance problems. Using CCM tools to monitor your

compliance state is the first step to getting an overview of the environment. However,

the CCM tool should continuously check for changes at a periodical rate but preferably

on an event basis. The events should be forwarded to an automation process that can

Remediate the compliance problems and at least involve human beings if it is

necessary. Remediating compliance problems can be a daunting task. However, by

introducing automation to do so, the reoccurring problems can be fixed, and the time

can be focused on the more demanding tasks that require human intervention and

cannot be automated in any way.

Continuous Compliance Automation should be part of every step of delivering an

application, not only looking at security when a product is ready for production but

also during the whole development. This means that even in the development and

staging process, compliance problems should be fixed and detected automatically,

continuously improving the compliance state of the environment. If the development

process is focused on CSE concepts also the security and compliance aspects should

be automated as much as possible. Every finding that can improve the security or

compliance state of the system should be automated if possible. Here Continuous

Compliance Automation can be a way to minimize the need for human intervention

and as long as the non-compliant or non-secure state can be fixed to some degree by

code. The Continuous Compliance Automation solution should be implemented using

the same approach as the rest of the applications, meaning using CSE development

strategies. This can often be done quickly using different cloud solution services in a

combination of already established techniques.

Isak Jansson

9

Figure 4 Continuous Compliance Automation

2.6. Cloud solutions and Hybrid Cloud

On demand delivery of IT resources over the internet that often functions as a pay-as-

you-go service can be called a Cloud solution. There are many Cloud providers in

today’s IT market; however, all functions on the principle of providing computing

power, storage and other technologies to customers at a pay-as-you-use service without

an upfront cost. The ability to deploy an application without the hardware needed on

hand is advantageous for start-ups or companies that want to test new solutions. Also,

many companies are considering moving to the cloud for better scalability against

fluctuating demand and faster delivery of solutions to the customers. [11]

The agility of using a cloud solution can be beneficial for applications that have high

variability in usage. On an on-premises service an increase or decrease in server

capacity is difficult. This often leads to either having too much or a lack of resources

to meet the demand. In cloud environments can scale more efficiently by allocating

more resources when the demand is high and release the resources when demand is

low, leading to a more cost-effective model than always provision the hardware for the

demand. The commercially available services are often called public cloud. The public

cloud solutions on the market today all have their differences but follow the same rule

of offering a more cost-effective solution to deal with fluctuating demand. There is a

solution for on-premises sever configurations that handle the demand fluctuations in

some ways using different virtualization solutions. However, the hardware needs to be

maintained and exist when peak demand is present, this can be called private cloud.

There are many questions and concerns when moving from an on-premises solution to

a cloud provider. The general opinion about moving to the cloud often concerns

Isak Jansson

10

security aspects, how can you verify that your data is secure and how can you trust the

cloud providers to keep availability at the same level as in an on-premises solution.

Therefore, a market for a hybrid cloud solution has emerged. Many cloud providers

offer some solutions to having an on-premises datacentre that handles some of the

operations.[12]

Hybrid cloud is when using services both from private cloud and public cloud solution

in parallel, connecting the on premises serves to external located servers for

infrastructure that is flexible both for applications and workloads. These solutions are

often highly individual to companies and can be for both flexibility and cost

optimization. Hybrid cloud solutions often use the public cloud to handle applications

that need scalability and portability meanwhile using the on-premises existing

solutions for security, latency and convenience of having the existing solutions in-

house. Hybrid cloud solutions often lead to a better response to market change with

the scalability and cost-optimization of the public cloud and the safety of on-premises

solutions already existing. A hybrid cloud can also be a step for developing new

services for existing applications to be more flexible in the marketplace by using the

existing on-premises hardware and only paying for what the new services use in the

public cloud. [13]

2.7. Compliance in On-Premises versus Cloud Solutions

On-Premises

Compliance is often on an infrastructure level, a very manual process in on-premises

environments, hardware and servers are tracked using manual processes and notes

about what servers are available at the moment. The developers often do not have the

power to introduce new hardware; therefore, the inventory remains somewhat static.

The inventory changes are always needed to be manually updated when something

changes. Even though some processes are automated, they always require some

manual processing. Managing compliance in an on-premises solution is traditionally

handled by taking an inventory of the resources in use. The resources are then reviewed

one by one by the requirements from the compliance regulation framework and

mapped to the existing controls to prove compliance.

Isak Jansson

11

Cloud solutions

Manual compliance management falls short in a cloud environment because of the

fast-changing infrastructure and the possibilities for developers to change the

infrastructure by, for example setting up own “Hardware”. These infrastructure

changes are not reviewed by the security or compliance teams, this increases the

possibility of the environment not being compliant. The compliance status of the

environment cannot be monitored at only one point in time as before in an on-premises

solution. Because of the fast pace changes the compliance status of the system quickly

becomes inaccurate. This increases the need for automatic compliance checks and

checks on the infrastructure as the developers work not to overwhelm the security or

compliance teams when deployment is scheduled to production.

Many of the existing cloud providers have taken into account the fast pace

environment changes that can occur in a cloud environment. Therefore, many solutions

are integrated into the core offering of these cloud providers and many third-party tools

and solutions for tracking compliance in cloud environments exist on the market. The

importance of providing solutions that ensure easy compliance in the cloud has become

an important offering of the public cloud providers. As well as proving that the services

already follow several compliance frameworks from the beginning are of great

importance by the customers that may want to utilize the opportunities in the public

cloud sector.

Amazon Web Services (AWS) that is used in this thesis, has a proven track record of

both enforcing and achieving compliance related tasks. By having a large range of

tools and solutions for building a scalable and secure infrastructure that facilitates the

implementation of the followed compliance requirements. Many of the tools provided

by AWS are already certified by many compliance frameworks as well as the clear

responsibility structure that is used by the shared responsibility model created by

AWS. More information about AWS and its services is taken up later in the thesis, for

example in section 3.2. [12]

Isak Jansson

12

2.8. Compliance in the Financial sector

As discussed in the introduction, the demand for compliance to different compliance

frameworks has increased, both for ensuring quality and safety. This can easily be

observed in the financial sector, where demands for proving compliance constantly

increase and, in many cases is mandatory for operations in the industry. This not only

proving integrity, availability and confidentiality but also ensures customer

satisfaction and transparency. [3]

The compliance of the financial sectors includes much more than only the IT solutions

used and is often heavily independent on where operations reside. With international

frameworks and regulations are shaping the more local regulations to a certain degree.

The cost of maintaining compliance has increased significantly and with more

compliance frameworks to follow the complexity also increases [14]. The process of

analyzing the different compliance requirements and this concerning changes in the

application or infrastructure in IT systems often imposes high costs and increased

workloads. Often some of the requirements of the different compliance frameworks

are overlapping and mapping the requirements to each other has become an important

step of being able to prove compliance. [10]

With these things in mind, it becomes clear that a manual process of proving

compliance may not be the best solution and hopefully, by introducing automation into

the process, the cost and labor can be minimized.

Isak Jansson

13

3. Compliance frameworks, services and tools used

This chapter will briefly explain the different compliance frameworks, services and

tools used in the thesis and the proof of concept. The thesis is focused on two

frameworks that provide recommendations and requirements for improving security

for an IT system. The Center for Internet Security Benchmark focuses on

recommendations in security best practices and Payment Card Industry Data Security

Standard focuses on providing requirements for a safe and secure environment for

handling credit card data.

The main service used is Amazon Web Services (AWS) and its underlying services,

which provides a cloud computing environment with many services focused on

automation and on-demand computing power. For managing the AWS services and

resources, the service AWS CloudFormation is used. CloudFormation uses a template

format written in JSON or YAML to provision infrastructure and configure resources.

The CloudFormation templates are then deployed to AWS using Ansible. Ansible is

an infrastructure management and configuration management tool that can manage

more than just AWS services and is used in the proof of concept as a continuous

integration and continuous delivery tool for high level orchestration. Furthermore, to

be able to perform Continuous Compliance Automations, Python is used and to get

access to AWS resources and remediate compliance problems the AWS SDK Boto3

is used.

All these services and tools combined enable an entire infrastructure as code solution

that supports a Continuous Compliance Automation Architecture and can help with

compliance tasks imposed by the Compliance frameworks.

3.1. Compliance frameworks

3.1.1. Center for Internet Security Benchmark

Center for Internet Security (CIS) Benchmark is a global standard and best practices

for securing IT systems and data. CIS is a non-profit community-based organization

that aims to improve and promote best security practices for IT environments in

cyberspace. The CIS controls are developed for best security practices and

Isak Jansson

14

configurations for a specific target system. These controls are then mapped to a

benchmark for every target system called CIS Benchmarks. Today there are more than

140 different benchmarks for existing technologies. The benchmark is a community

developed by achieving consensus between involved actors and experts on best

practices to develop and configure different target IT systems securely. The proposed

recommendations are published when every party of the development team has

reached a consensus about best practices. The CIS benchmark framework is always

improved and updated; however, updates depend on community activity for the

specific technologies. [15]

CIS controls are divided into three distinct categories. Basic, Foundational and

Organizational. These categories contain 20 different controls that help, prevent and

detect security issues with a defence in depth model. These controls can be easily

mapped to other compliance frameworks and by following the CIS controls or CIS

Benchmarks for the system in question the work of implementing other compliance

frameworks can be facilitated. [16]

3.1.2. Payment Card Industry Data Security Standard

Payment Card Industry Data Security Standard (PCI DSS) is an information security

standard created by four credit card companies: Visa, MasterCard, Discovery and

American Express. The PCI Security Standards Council (SSC) was formed in 2006 to

act as a global forum for improving, maintaining and raising awareness of security in

the payment card industry. The PCI standards are a set of rules that help global

organizations improve, maintain, and evolve security measures to protect cardholder

data. The standard is enforced by large payment card brands for ensuring safety of

cardholder data and mitigating risk of credit card fraud as well as improving the safety

of the financial institutions involved in the payment card industry. The standard cover

areas are connected to cardholder data both from an operational and technical point of

view. The areas are divided into six different categories and these categories define a

goal for the requirements. These categories then contain twelve requirements that need

to be followed to achieve compliance. The requirements can be found in the table

below in Table 1. The key to achieving compliance is to define a scope for the

assessment, the scope defines the flow and locations of card holder data as well as all

Isak Jansson

15

connected systems that can compromise the data. The scope is important for being able

to describe the environment as well as reduces the assessor’s ability to verify the

compliance of the environment.

Table 1 PCI-DSS Requirements and their goals [17]

Goals PCI DSS Requirements

Build and Maintain a

Secure Network

1. Install and maintain a firewall configuration to

protect cardholder data

2. Do not use vendor-supplied defaults for system

passwords and other security parameters

Protect Cardholder Data 3. Protect stored cardholder data

4. Encrypt transmission of cardholder data across open,

public networks

Maintain a Vulnerability

Management Program

5. Use and regularly update anti-virus software or

programs

6. Develop and maintain secure systems and

applications

Implement Strong Access

Control Measures

7. Restrict access to cardholder data by business need-

to-know

8. Assign a unique ID to each person with computer

access

9. Restrict physical access to cardholder data

Regularly Monitor and

Test Networks

10. Track and monitor all access to network resources

and cardholder data

11. Regularly test security systems and processes

Maintain an Information

Security Policy

12. Maintain a policy that addresses information

security for employees and contractors

Different vendors can have variations in how they enforce the PCI DSS; however, all

requirements created by the PCI SCC are mandated by the card brands. To get certified

a company needs to be assessed using a Qualified Security Assessor (QSA), Internal

Security Assessor (ISA) and Approved Scanning Vendor (ASV) that is certified by the

PCI SSC. However, if a merchant only handles a small number of card transactions, a

Isak Jansson

16

Self-Assessment Questionnaire (SAQ) can be sufficient to achieve compliance. There

are four distinct levels of PCI compliance that directly correlate with the number of

transactions the merchant has and assessed risk level. The assessments are done

annually, but some parts of the process are done at least quarterly.[17] [18]

3.2. Amazon web services and tools

Amazon Web Services (AWS) is a public cloud provider owned by Amazon that

provides an on-demand cloud computing platform that started operation in 2006. The

cloud provider offers pay-as-you-use pricing and no upfront cost with long

commitments. The solution offered to customers is scalability, high availability and

low-cost infrastructure for operating in 190 countries globally. The customer can

instantly deploy new applications on new servers as well as scale to the demand

flexibly using the built-in scalability of the solution. AWS offers more than 200

services that help developers and businesses create applications for their own needs.

These services include networking, computing, storage, management tools, developer

tools and security solutions, among others.[19]

The cloud infrastructure is divided into different regions that is in a different

geographical area. These regions are then divided into availability zones that are

individual failure domains. The domains have their own local zones that can host

services at replicated locations. Within a local zone the latency is low. Within an

availability zone the infrastructure is isolated, and each region is completely

independent of each other. A visualization of the different zones can be found in Figure

5. This infrastructure enables the customers to choose between high availability and

low latency while being able to implement fail safe infrastructure by choosing the

optimal deployment strategies. [20]

Isak Jansson

17

Figure 5 AWS Global Infrastructure, with Regions, Availability zones and local zones [20]

3.2.1. Shared responsibility model

AWS has created a concept to enforce the proper security and compliance model for

customers using the service. The model is created to clearly define the responsibilities

of the cloud provider and the customers. With using the model and the documented

functionalities of the services the customer is using, the security implementations

needed can vary. However, by defining two separate areas of responsibility, the

customers can focus on the right security aspects and leave the other parts to AWS

responsibility. The model is divided into AWS responsibility of “security of the cloud”

and Customer responsibility of “security in the cloud”. AWS is responsible for the

overall infrastructure of the cloud service provided, with security of physical location,

hardware, networking, and some software solutions. The customer is responsible for

the security in the product they use and the implementation of applications in the cloud,

including safe configurations, operating systems, applications, and data processing.

AWS tries to visualize the difference between Customer responsibility and AWS

responsibility using Figure 6.

Isak Jansson

18

AWS provides services in which the customer directly inherits the security

responsibilities. Some services are shared responsibilities where AWS is responsible

for some of the security controls. However, the customers are responsible for applying

or enforcing the controls and configuring the services correctly as recommended by

AWS. The security controls can also be completely customer specific and in complete

responsibility of the customer. Based on the different levels of responsibilities, the

customers can use the provided documentation and controls to evaluate compliance

accordingly using the guidelines in the Shared Responsibility model. [21]

Figure 6 AWS Shared responsibility model [21]

3.2.2. A brief overview of AWS services used

As described in the chapter beginning, many AWS services are used for the proof of

concept. Managing all the resources used, the service CloudFormation functions as an

infrastructure and configuration manager and to manage access between the resources

and users the Identity and Access Management service is used. For monitoring changes

and events of the resources AWS Config is used. For finding compliance problems in

conjunction with AWS Config, the CCM tool, AWS Security Hub, is used.

Furthermore, CloudWatch is used to filter out events caused by non-compliant

resources and forward the information to AWS Step function for orchestration of

computing resources like AWS Lambdas and message resources like Simple

Isak Jansson

19

Notification Service. For creating remediations, the AWS SDK Boto3 is used,

allowing manipulation of the resources and their configurations. All these services are

stitched together and used. To give an understanding of what they are and how they

function a brief overview is presented in this section.

AWS CloudFormation

One way of managing AWS resources is to use the service AWS CloudFormation, a

template format that describes and configures AWS resources. The template code

describes the infrastructure and configurations wanted in the AWS environment,

specifying provisioning and much more. CloudFormation is often called infrastructure

as code that can deploy application infrastructure and services directly in AWS. Using

CloudFormation, the infrastructure can be versioned and deployed using pipeline

solutions or manual deployment to automate and securely manage AWS resources.

The templates are written in JSON or YAML format. CloudFormation creates a stack

that constructs and configures the stack resources. The stack keeps track of changes

and deconstructs the resources as well as builds them up again after code changes.

Using CloudFormation automation of creating infrastructure can be achieved, creating

secure configurations that can be repeated as well as controlling changes that can be

reverted in a simple manner. [22]

Identity and Access Management IAM

To control access to AWS and AWS resources the Identity and Access Management

(IAM) service is used. The IAM allows for controlling access across different accounts

and manages access and permissions of the resources used. When starting to use AWS,

a root account is the first setup that has permissions to the whole AWS infrastructure

that is needed. However, it is recommended that an IAM account is setup even for

managing administrative tasks as well as accounts for managing the services used on

appropriate levels. With IAM, a user can specify what a certain account, group or role

can do and cannot do by assigning granular permissions using permission policies. The

permission policies are often defined on different levels in JSON format. Using

identity-based policies, a user or group can be managed by defining rules that control

what that identity can perform on a certain resource and under what conditions. If a

policy only controls permissions for one user, the user can be described in the policy

Isak Jansson

20

as a Principal. There are also resource-based policies that are applied on a resource

level. On this level the user can specify what actions and under what condition a certain

resource or principal can perform on that resource. Service Control Policies are

policies that manage all accounts across the organization and are the highest policy

level. However, this feature is only enabled if the organization does not use the

consolidated billing feature. The policies are handled on many levels and multiple

policies can be applied to a certain resource. AWS evaluates all policies starting with

the assumption that everything is denied and only allows access if a policy explicitly

defines access to the resource or identity. [23]

AWS Config

AWS Config is an AWS service that tracks and keeps a detailed view of your AWS

resources as well as their configurations. The service enables monitoring of the

resource configurations as well as evaluating resources with rules that check the

desired configurations. The monitoring can function as an audit of what has happened

to the resources in the AWS account, acting as a change management tool as well as

compliance auditing and security analysis using continuous assessment. The

evaluation of configurations is done using an AWS Config Rule that defines desired

configurations and checks them against resources and changes to resources in your

AWS environment. The rules can be evaluated when resources are changed, triggering

a Config Rule evaluation or the rule can be triggered to check resources at a selected

time interval. Some resources can only be monitored through periodical checks

because changes do not trigger Config events in the AWS environment. The evaluation

result or auditing result is then sent to other AWS services like Amazon S3, Amazon

CloudWatch and are displayed in the Config console. [24]

AWS Security Hub

AWS Security Hub is a service that aggregates findings of security concerns in the

whole account, using different integrated AWS services or AWS partner integrations.

The service is focused on collecting security and compliance events and prioritizing

them for decision-making actions. Security events of large environments can easily

become cluttered with false positives and Security Hub ties to prioritize the critical

security compliance events of the environment. Security Hub uses a Finding Format

Isak Jansson

21

that is a standardized format of information about the findings Security Hub has

detected, that then can be sent to different services for notifications or Security

Orchestration Automation and Response tools as well as other services can send their

result to Security Hub using the AWS Security Finding Format (ASFF). Security Hub

can be enabled to run automated compliance checks on the AWS account for some

industry standards and best practices, like CIS AWS Benchmark and PCI-DSS for

improving compliance in the environment. The compliance checks are based on AWS

Config rules that Security Hub sets up automatically when the standards are enabled.

[25]

Amazon CloudWatch

For monitoring of the AWS services in use the service Amazon CloudWatch observes

and collects information about resources, applications and even on-premises data if

integrated. CloudWatch collects data in the form of logs, metrics and events from all

services used in the environment. Using different features in CloudWatch a user can

set alarms, visualize logs and metrics, and take action on events and trouble-shoot

applications. This enables response actions on events in different ways and creates

workflows based on event-driven architecture and notifying about anomalies

happening in the environment. The service can also collect metrics about CPU usage

from some services and can be configured to notify about the operational health of

servers. [26]

AWS Lambda

One of AWS services for computing is AWS Lambda, a serverless computing unit

running without provisioning or managing servers. The code is automatically executed

in response to triggers or events and is scaled by automatic processes as more

computing power is needed as well as being able to run parallel executions. AWS

Lambda automatically manages all configurations and scaling, leaving only the

responsibility of coding to the user. Lambda supports several languages, including

Python, Java, and Node.js. [27]

Isak Jansson

22

Amazon Simple Notification Service

Amazon Simple Notification Service (SNS) is a messaging service that handles

publish and subscription messaging between services in AWS. SNS is highly available

and managed by AWS, giving a reliable push-based message service that can be used

for serverless architecture and application integration. SNS can also publish messages

on a topic with parallel subscriber endpoints for processing and sending SMS and

email. The message published in the topic can be customized to fit any service as long

as the message is published in JSON format. [28]

AWS Step Function

To coordinate many AWS services into workflows AWS Step Functions stitches the

services together. By using Step Functions many services can be combined into an

easily managed workflow that also can be visualized for added visibility of the

workflow. This enables application-like structures for coordinating, for example,

serverless computing units. The individual step in the function performs a discrete

function, and the Step Function records each step and result, including errors, making

debugging and problem solving easy. The Step Function is written in JSON-based

Amazon States Language, resulting in a State Machine that can easily be visualized

and changed. [29]

AWS SDK Boto3

To be able to change and manage AWS resources from code, the AWS software

development kit Boto3 is used. Boto3 allows for creating, updating, and deleting

certain resources and services in AWS with Python code. The SDK provides access to

resources through the object-oriented API and allows for low level access to these

resources. Boto3 supports a range of different AWS resources and accessing these is

done by importing the library as well as specifying which client to use. The code can

access the specified resource with functions as describe, update, or delete. A simple

example of how to use Boto3 is shown in Figure 7. [30]

Isak Jansson

23

Figure 7 Example of using Boto3 in Python code [30]

Isak Jansson

24

3.3. Ansible and CSE

Ansible is an automation engine that automates configuration management, cloud

provisioning, application deployment and infrastructure orchestration. Ansible uses an

automation language that is written in playbooks that describe the infrastructure of an

application or task. The tasks in a playbook can be called plays and are executed in

sequence. The Ansible automation engine executes the playbooks on every node that

is included in the inventory list. The playbooks are written in YAML, a human-

readable automation language that is easy to understand. An example of the format is

shown in Figure 8.

Figure 8 Example playbook [31]

Ansible uses agentless deployment and connects to the nodes using SSH, pushing out

small programs, and after the programmes are completed, the files are removed. The

small programs are called Ansible modules, there are many modules to choose from

and the modules can be directly incorporated into custom playbooks extending the

capability of the playbooks as well as creating complex task executions and

configurations. For more complex tasks, an Ansible role can be created, that is a

playbook that is self-contained. The role has tasks like any other playbook, but it can

also have specific variables, configuration templates and other files. The different

levels of roles, tasks and files are shown in Figure 9 where best practices for organizing

these are shown. [32]

Isak Jansson

25

Figure 9 Best practices for Ansible playbooks [33]

In this thesis the ansible module “cloudformation” is used, that is a module for

creating, updating, and deleting an AWS CloudFormation stack to and AWS

environment. With this module it is easy to create custom CloudFormation templates

that can provision and configure resources into the AWS cloud environment.

CloudFormation can in this case, be used as an infrastructure management tool and

Ansible is used as a configuration management tool. Combining both Ansible and

CloudFormation gives more flexibility and possibilities for managing infrastructure.

The entire process can be further automated for Continuous Integration and

Continuous Delivery using higher-level orchestration systems. This can be done using,

for example, Jenkins, other services like AWS CodeCommit in combination with

AWS CodeBuild or Ansible Tower. [31] [34]

Isak Jansson

26

Ansible Tower is an automation hub for automating Ansible tasks to manage

deployments and visualize them. Ansible Tower uses a Web-based console design for

easily visualizing and management of the IT infrastructure. Ansible jobs can be

scheduled to run full continuous delivery pipelines running automated Ansible tasks

and in this way manage infrastructure by version-controlled code. The possibility to

fully automate infrastructure by code and integrate this with a continuous delivery

pipeline is therefore easy to achieve using a product like Ansible Tower. [35]

3.4. Programming Languages

The primary Programming language used in the proof of concept is Python. Python

was chosen mainly used because of its readability and highly supported libraries for

AWS resource manipulation like Boto3. And as discussed in previous sections the

serializing languages JSON and YAML are heavily used by both AWS services and

Ansible templates and therefore have a heavy presence in the proof of concept.

3.4.1. Python

Python is a high-level programming language that was created by Guido van Rossum.

The language is focused on code readability and has an object-oriented approach. The

biggest difference from other programming languages in the same category is that

Python uses new lines for command completion instead of semicolons and other

characters. The language also relies on indentations for defining scope, as can be seen

in the example of a function in Figure 10. Python has a comprehensive library and is

often used due to its versatility and modularity. As well as its readability because of

its resemblance to the English language. It also does not require compilation and

therefore, all code is executed at program start. Therefore, minimize the edit-test-

debug cycle. [36][37]

Isak Jansson

27

Figure 10 Example of Python code [36]

3.4.2. YAML and JSON

YAML is a serializing language that is human readable and is often used for

configuration files, but it is easily serializable for any data structure. The format is

often used for its readability and broad support in many languages. YAML can easily

be converted into JavaScript Object Notation (JSON), but they are not completely

interchangeable. YAML cannot contain duplicated keys, but JSON allows duplicates,

meaning a JSON-object cannot always be converted into YAML, but almost every

time a JSON-object can be converted into YAML. JSON is often used for its simple

form and ease of use, as well as faster processing. YAML is often used for its better

readability and ease of serialization of arbitrary data structures. YAML can in some

cases, be more complex and therefore harder to parse than JSON. This is due to

relations between different sections in YAML. JSON uses bracket syntax but YAML

uses indentations. A small example of the syntax can be found in Figure 11 and Figure

12 .[38][39]

Figure 11 YAML example

Figure 12 JSON example

Isak Jansson

28

4. Related work and current solutions

There are many compliance tools on the market, with different philosophies and

solutions to continuous compliance and security problems. Every solution has positive

and negative sides, as well as supports cloud solutions or hybrid cloud to a different

degree. Also, the discussion on security and compliance in cloud solutions is a topic

of debate. How good are current cloud providers to ensure safety and compliance?

How can a cloud provider be compliant? Therefore, many discussions on compliance

and safety in cloud environments have taken place over the years.

In this chapter, several solutions that inspired the thesis are explained and investigated

and the topic of cloud solutions in relation to the compliance framework.

4.1. Cloud solutions and Compliance frameworks

When public cloud providers started to emerge, there was a common consensus that

the cloud was not as safe as on-premises solutions. However, there have been a number

of improvements to how cloud providers handle security and compliance in this area

as well as research on how cloud solutions can be safer or easier to maintain compliant

than on-premises solutions.

In the master thesis, "Can PCI DSS compliance be achieved in a cloud environment”

by Durkin, Patrick the topic of achieving compliance of PCI DSS in different cloud

environments are discussed. The thesis investigates every part of the environment and

the use of different cloud providers and how the cloud solutions are affected by the

compliance requirements. The thesis concludes that with the right approach to

implementing compliance requirements and the awareness of cloud architecture, PCI

DSS compliance can be achieved. The implementation is heavily dependent on the

ability of the security professionals and some increased workloads for logging network

access can be expected. Therefore, a hybrid solution is proposed where payment

processing is not done in the cloud. [40]

Isak Jansson

29

4.2. Solutions in Continuous Compliance

The concept of continuous compliance is a relatively new concept even for cloud

providers. However, there are many different solutions on the market to support the

compliance related work with a continuous process. The tools and companies that

supply continuous compliance solutions all define the continuous compliance concept

differently, resulting in different approaches in the end product. Many of the

continuous compliance products are an addon to an existing product that companies

may use, which is often the case when it comes to cloud services.

There are not that many research papers available on the subject. However, the paper

“Continuous Compliance: Experiences, Challenges, and Opportunities” introduces the

concept of Continuous Compliance and its use in real-time infrastructure compliance

states. The paper provides an implementation using a tool called Chef for real time

monitoring of infrastructure resources or endpoints and their configuration states,

comparing them to a compliance policy using the Chef recipe language. The

compliance checks are run automatically, and reports are compiled of the compliance

state of the systems. Also, remediation monitoring of the fixed compliance issues was

tracked. The solution is an automated process for both the developers and security or

compliance personnel. However, the specifics of the solution are not discussed. [3]

In the Pluralsight educational video “Managing Inventory, Change, and Compliance

with AWS Config” by Paul Kirby the Continuous Compliance concept is discussed in

a solution based on an AWS service called AWS Config. The solution explained

contains the explanation of why compliance is important to continuously monitor and

track as well as the benefit of using automation in AWS for achieving the compliance

goals. When achieving compliance, the different stages of assessments are presented

and the possibilities to achieve Continuous Compliance with either a fully managed

AWS solution or a customized solution using either third-party-developed

functionality or self-developed solutions is presented. Also, a solution for

implementing automation into the remediation process for non-compliant resources is

presented using AWS Config, AWS SNS and AWS Lambda. The solution presented

is sufficient for small applications and can be seen as a good starting point for any

Continuous Compliance Automation solution. However, the solution has some

Isak Jansson

30

drawbacks in the design as well as it cannot be scaled to no more than a few automatic

remediation tasks.

This was the initial idea for automating compliance tasks that inspired the thesis topic.

The solution proposed in the course had to be improved, and no specific compliance

requirements were targeted. The concept of automating the entire process from finding

a compliance problem to fixing the problem inspired the thesis. [2]

In an AWS blog post by Jonathan Rau called “Continuous compliance monitoring with

Chef InSpec and AWS Security Hub” the concept of using Chef InSpec as a

Continuous Compliance Monitor in AWS is discussed. The solution uses Chef

compliance checks and ingests the results of them to AWS Security Hub. This

improves the customizability of compliance checks for the customer and with this

solution an extension to Security Hub default compliance checks can be achieved. [41]

In other AWS educational materials, product slides at conferences and blog posts

solutions variations on Continuous Compliance processes have been shown. The

possibilities to use AWS services to detect, respond and remediate security and

compliance problems are advertised in the documentation to some extent [42]. Some

concepts of Continuous Compliance solutions have been shown. However, the code

and implementation are often not given. Also, the lack of automation beyond the

compliance solution itself is often missing. With the release of Security Hub in the

summer of 2019, a complete offering supports Continuous Compliance Monitoring

solutions. The possibilities of remediations are a hot topic for the time being and

implementing an automatic remediation functionality in AWS using different services

has been shown as possible during case studies. These have not yet been released as a

service and only the possibility to use AWS services for the purpose of remediating

compliance change has been discussed in the solutions [43].

An open-source tool was released during the thesis implementation and writing that is

a Continuous Compliance Monitoring tool for AWS infrastructure as well as

containing a module for automatic remediation actions in the AWS environment. The

tool is called ElectricEye, released on16.03.2020 by Jonathan Rau. [44] The solution

Isak Jansson

31

presented in ElectricEye is a real contender to the Proof of concept in this thesis, with

the multiple compliance checks as well as complete remediation of many more

compliance requirements.

The solution lacks some of the functionalities implemented in the proof of concept,

such as error handling and notifying the team of compliance problems. The solution

was not possible to integrate into the proof of concept done for the company due to

using an already existing method for CSE. The purpose of the proof of concept was to

automate every part of the process using already available methods and infrastructure.

The possibilities for implementing Continuous Compliance Automation in AWS are

advertised across the platform and other forums. However, a solution that is ready to

be used directly does not exist yet. Also, a solution that uses infrastructure as code and

concepts of CSE is not directly available on the market without purchasing a complete

service. In addition, the topic is not discussed in academic work in general.

Implementing a Continuous Compliance Automation solution using AWS and

automating the whole process is a relatively new approach and all the above examples

inspired the idea to make such proof of concept.

Isak Jansson

32

5. Compliance and AWS

Compliance and security considerations are the highest priority of AWS solutions. The

architecture of the solutions provided is built to comply with many Certifications,

Laws, Regulation requirements and best practices using different compliance

frameworks as a foundation for achieving that. AWS aims to enable the customer to

comply with their required compliance programs with as little effort as possible by

using the correct AWS service and recommended architecture for best practices.

However, by simply using these services, the system is not automatically compliant,

the architecture, configurations, applications, and data storage is up to the

user/customer to manage for achieving compliance. AWS supplies tools and

guidelines on managing and creating an environment that is compliant and by

following these guidelines, the compliance process can be easier. [42]

In this section, the different security concepts of AWS are briefly discussed and

explained concerning the Proof of Concept done in the thesis. AWS Security and

Compliance is a vast area, and the information is constantly improved. Therefore, this

section is limited to understanding the used services and tools in relation to the proof

of concept and compliance frameworks.

5.1. AWS strategies for compliance

As discussed in section 3.2.1 the Shared Responsibility model is a tool for clearly

defining boundaries where the customer has responsibilities and where AWS is

responsible for the security implementation. The responsibility of AWS itself is to

maintain and provide a secure platform for the customer to use as well as tools for the

customer to improve their security posture. The platform needs to facilitate and

promote secure operations so that the customer can easily configure and use the AWS

services securely and according to the relevant compliance requirements they need to

follow. Examples of tools to help customers with their security posture are AWS

Identity and Access Management (IAM), Amazon Inspector, Amazon Macie, AWS

Security Hub, AWS Config, AWS CloudTrail and AWS CloudWatch.

For securing the cloud platform itself, AWS uses commonly used practices such as

Continuous monitoring, Penetration testing, Compliance certification and secure

Isak Jansson

33

coding practices. Automated Reasoning is used to secure the cloud platform itself and

help secure the customer's implementations to further improve security. Automated

reasoning can be described as mechanical reasoning in mathematical logic to provide

additional assurance, in short, proving mathematically and logically that a resource

fulfils a set of rules. This is a kind of formal verification that things work as expected.

AWS uses these techniques to create tools for verifying internal code as well as

customer related implementations for improving security.

One of the Automated Reasoning tools used is ZELKOVA, a policy analyzing engine

that reason about AWS access control policies and their validity. The policies are

converted into Satisfiability Modulo Theories (SMT) that can then be solved and

verified for easy-to-understand answers about the correctness of different access

policies. AWS uses IAM (Identity and Access Management) policies that consist of a

Policy language that defines access to resources and interactions between resources as

well as access for users. Policies in AWS define access control across various services

and can become quite complex when combining these services. As a user, you often

need to ask yourself questions about what the policy that was created means, what

users can or cannot do with the policy restrictions. However, ZELKOVA tries to

automatically reason over all possible contexts if the policy complies with common

best practices. A policy evaluating engine handles all requests to an AWS service,

comparing the context to existing policies, granting or denying access to the service.

ZELKOVA reasons over all possible requests and can easily determine if a policy

change can lead to more access to a resource than before and from this the user can be

informed that a policy needs changing to increase security. This information facilitates

security improvements that are easy to correct and can significantly improve the

security and compliance of the service used by the customer.

Previously users and AWS have used different kinds of checks to detect dangerous

patterns in the access policies using all kinds of pattern checking and static comparing

the policies. But, these heuristic-based syntactic checks, pattern matching, or

simulation checks are of no use when involving multiple services and multiple access

control policies. They also become difficult to maintain, especially if we try to create

patterns for all possible scenarios and resources change quickly.

Isak Jansson

34

An example of what kinds of checks ZELKOVA can do is whether you have the

correct permission set on an S3 storage bucket. As a principle you should never have

public read and write access to a S3 bucket, instead, you should define who and what

has access to the bucket. This is also a compliance rule in PCI DSS 7.2.1 and CIS AWS

Foundations 1.22. In Figure 13, a user has created an S3 bucket with the intent to

restrict the read/write access to the bucket to only one specific principal. However, a

human error has occurred, and the policy states the principal in the key value pair

“NotPrincipal”. This causes the policy to allow public read/write access to the bucket

but not for the intended principal.

{

 "Effect": "Allow",

 "NotPrincipal": { "AWS": "111122223333" },

 "Action": "*",

 "Resource": "arn:aws:s3:::test-bucket"

}

Figure 13 IAM Policy for S3 bucket with public read/write

When the user saves the policy, ZELKOVA will process the policy and compare it to

all known combinations of access requests, a known policy that uses public access.

Using mathematics and SMT, ZELKOVA can determine that your policy is more

permissive than allowed and therefore label the policy as Public, as can be seen in an

example of the console in Figure 14. The evaluation is done using AWS Lambda and

takes only a few milliseconds in most cases. Then a red label “Public accessible” is

almost instantly displayed to the user to indicate that something is not correct.

Isak Jansson

35

Figure 14 ZELKOVA warning for public policy on S3 bucket

{

 "Effect": "Deny",

 "Principal": { "AWS": "111122223333" },

 "Action": "*",

 "Resource": "arn:aws:s3:::test-bucket"

}

Figure 15 IAM Policy for S3 bucket with read/write to a specific principal

The recommendation is not to allow Action: ”*” with Effect: “Allow”. In Figure 15,

we have fixed the human error and specifies that only this principal has no access to

the bucket. As there can be many IAM policies to every resource on different levels,

the complexity can be challenging for a human to understand and using ZELKOVA

AWS can mathematically prove that some things can be a security hazard.

ZELKOVA is integrated into many AWS services, one of them AWS Config, where

configuration changes trigger Config rules that uses AWS Lambda with ZELKOVA

in the background to evaluate if a resource is compliant or not. In the above example

the Config rules triggered where s3-bucket-public-write-prohibited and s3-bucket-

public-read-prohibited for that specific resource, in the console they have the label

Zelkova as can be seen in Figure 16. Config triggers the rule either on resource creation

or on a configuration change, in this case, policy change. The other services like

Amazon Macie and Trusted Advisor service are also using ZELKOVA in similar

ways.

Isak Jansson

36

Figure 16 ZELKOVA as a Label for AWS Config Rules in the AWS Console

ZELKOVA is also used in many internal AWS security auditing tools to evaluate

compliance of all internally made resources as well as misconfigured policies. Some

of the evaluations are done with configuration change, but there are also periodical

scans for compliance problems. ZELKOVA is not the only tool used to improve

security across the platform but an essential improvement to the already extensive

existing policy checks in place for both the infrastructure as well as for the customer

used services. [45] [46]

5.2. AWS Services to help with Compliance for

customers

As discussed in the previous chapter, AWS facilitates different tools and services to

help a customer with compliance and security issues. However, compliance is often

more advanced than only looking into security. There are other areas that may need

documentation and manual assessment for reaching a compliant state. AWS Config

records configuration changes and can be used as a change management service to

view past configuration changes and evaluate them easily. AWS Config has config

rules as discussed in earlier sections, that check compliance. The rules can be managed

rules created by AWS, but it is also possible to create your own config rules. The

managed rules are used by other services like AWS Security Hub that is a centralized

hub for security and compliance events. Multiple AWS services findings, not only

AWS Config, are ingested into AWS Security Hub and there are also possibilities for

ingesting similar kinds of findings by third-party tools. In AWS Security Hub, events

can be sorted, filtered, and prioritized to improve your environment's security posture.

AWS Security Hub is discussed in more detail in the proof-of-concept section. AWS

Isak Jansson

37

Config can also be integrated with AWS CloudTrail for logging configuration changes

done through API calls. AWS CloudTrail can log changes across deployments and

accounts to get a better understanding of the user activity done through AWS

management console, AWS SDKs and command line tools. This to increase visibility

for possible security analysis and compliance auditing tasks. With the integration of

CloudWatch events, monitoring of security events found in the CloudTrail logs can be

handled. CloudWatch is a complete application and infrastructure monitoring solution

that supports monitoring of most resources and logs and can notify on specific logs or

events in the environment. CloudWatch Events can be forwarded to other AWS

services for processing, creation of notification to different channels, auto-scaling,

resource optimization and Remediations.

These are only some of the services to help customers with compliance and security

when using AWS services. However, it is still the customer's responsibility to use these

services to help with compliance. As well as using the available services in a way that

compliance can be reached towards different frameworks according to the security

responsibility model. [24][25][26]

5.2.1. Compliance Certified Services in AWS

As the shared security responsibility model implies, AWS has the responsibility to

remain compliant and is responsible for the security of the cloud. That means that

AWS also needs to comply with industry standards and laws and undergo assessments

independently. To ensure that the customer can operate in an accredited environment.

AWS computing environments are certified by accredited bodies and are continually

audited to ensure that the customers can take advantage of not having to do the whole

assessment themself. Therefore, the customers can reduce their scope as well as cost

by using already accredited services. The services certified by a specific compliance

framework can be different depending on the operational region. However, most

regions are certified with SOC 1/SSAE 16/ISAE 3402(formerly SAS 70), SOC 2, SOC

3, ISO 9001 / ISO 27001, FedRAMP, DoD SRG, and PCI DSS Level 1. When using

a service, AWS provides compliance certificates for the different services to the

customer, enhancing transparency between the parties. The customer will find most of

the certificates needed for compliance assessments in the AWS Artifacts self-service

Isak Jansson

38

portal. Therefore, the customer can inherit the controls needed to be compliant with a

certain framework from AWS. Further, AWS also supplies guidelines, templates, and

compliance mappings to facilitate the process of the customer becoming compliant to

a framework when using different AWS services. [47]

One thing that is important to remember is that a customer can still choose to use the

service in an uncompliant way. The customer is responsible for using and configure

the service for the compliance requirements that they face. In other words, an AWS

compliant service enables the customer to be compliant and by only using the service

the customer is not automatically compliant.

5.3. CIS for AWS

CIS benchmarks areas discussed in chapter 3.1.1 a self-imposed guideline for safe

operations of IT systems. AWS has put together a series of requirements that are based

on the CIS controls for AWS services. The recommendation is for configuring best

practices as well as hardening used services by the customer. This guide is called AWS

CIS Foundational Benchmark and contains a series of recommendations to be followed

to be compliant with the CIS recommendation. The guide is divided into two levels.

Level 1 for necessary recommendations that provide clear security benefits and are the

best practices. Level 2 for recommendations that are necessary if the security needs

are essential to the environment and these recommendations are advanced in-depth

measures. Furthermore, the guidelines are separated into different sections and areas

of interest, like Identity and Access Management, Storage, Logging, Monitoring and

Networking.

Recommendations in Identity and Access Management focus on IAM configurations,

password management and management of roles and groups. In this section, there are

22 recommendations, for example, 1.5 to 1.10, that focus on password hardening. The

recommendation “1.5 Ensure IAM password policy requires at least one uppercase

letter” is recommended in combination with the other recommendation to ensure

password policy complexity.

The three Storage recommendations are focused on the storage services in AWS like

S3, and the importance of safe handling of data. Where recommendation “2.1.1 Ensure

all S3 buckets employ encryption-at-rest” is for ensuring that data at rest is in an

Isak Jansson

39

encrypted state for safe long storage, ensuring that if data is exposed, the impact can

be minimized.

The next section of recommendations is Logging configurations that will improve

visibility of what is happening in the AWS accounts. For example, one of the eleven

recommendations is “3.1 Ensure CloudTrail is enabled in all regions" which will

ensure that all AWS API calls can be logged and monitored. This enables compliance

and security work with analysis, compliance auditing and change tracking across the

AWS accounts.

The Monitoring section contains 15 recommendations that will improve the visibility

of what is happening in the environment and inform personnel of particular concerns.

The recommendation is to setup different CloudWatch alarms with log metric filters

to find different events that can be deemed dangerous or compliance breaching. For

example, “4.3 Ensure a log metric filter and alarm exist for usage of "root" account”

that introduces an alarm that notifies if the “root” account is used, highlighting the

frequency or unwanted use of this powerful account.

The last section is Networking, with four very basic recommendations. For example,”

5.2 Ensure no security groups allow ingress from 0.0.0.0/0 to remote server

administration ports” limiting public access to a remote server to minimize attack

surface or reduce risk of compromise of a resource.

All these recommendations are defined as automatic or manual, depending on what

the guidelines can offer for the process of implementing them. [48]

All the requirements are integrated into compliance checks in AWS Security Hub and

the real checks can be found in the AWS Config module. Many of the

recommendations explained can be automated using these services and the manual

tasks are only setting up the different configurations and alarms. [25]

Isak Jansson

40

5.4. PCI DSS for AWS

AWS provides guidelines that inform about PCI DSS compliance state of AWS

services. AWS also provides recommendations on architecture, services, and

configurations for customers to follow. This is to be able to achieve compliance when

following these guidelines. The core principles of compliance for PCI DSS in AWS

are to provide an environment where compliance can be achieved. The certified

services assume that cardholder data and sensitive data can end up in AWS services.

Therefore, datacentres and services are assessed as if they would process, store, or

transmit that kind of data. This is according to the PCI DSS scope on behalf of the

customer. But the customer is still responsible for how they use the services and

implement their applications according to the shared responsibility model. As

discussed in chapter 3.1.2, the scope of the assessed environment is essential and AWS

guidelines try to minimize the scope by providing standardized architecture to follow

for reducing the scope of the cardholder data processing. There are also available

CloudFormation templates with basic infrastructure and networking for a possible PCI

compliant architecture that can be used as a starting point for any customer that needs

a PCI DSS compliant environment.

The 12 different PCI DSS requirements all have a recommendation or guidelines on

how configuration should be done to be compliant in AWS or what AWS service

should be used for achieving compliance. One easy example of a requirement that

AWS guidelines provide a solution for is “3. Protect stored cardholder data” and

subcategory 3.4 where according to the PCI DSS, all data that might contain

cardholder data needs to be encrypted to the degree that if the data is exposed that data

cannot be decrypted, this both at rest and in transit. This can be achieved by using, for

example the AWS S3 storage service that supports encryption for both storing the data

as well as data in transit. Furthermore, the sub requirement 3.5 is to use secure key

management for the encryption keys where AWS Key Management Services provides

automatic key rotation and key policies. Also, with CloudTrail enabled on these

services, the requirement “10. Track and monitor all access to network resources and

cardholder data” can be satisfied in this example. The customer still needs to

implement the compliance requirements on an application-level if they use another

database service other than the certified AWS Data Base services. [49] [50]

Isak Jansson

41

As mentioned in the previous chapter about CIS benchmarks, AWS has integrated all

automated checks for PCI DSS into AWS Security Hub using AWS Config for all

automated compliance checks with guidelines on manual tasks for solving the

compliancy problem. [25]

5.5. Mapping of Compliance frameworks

A central part of implementing a continuous compliance workflow and automation of

the continuous compliance process is to map different compliance frameworks. This

will decrease the duplicated work if many compliance frameworks need to be

followed. The number of compliance frameworks that a company needs to comply

with can wary, but often they are more than one. The requirements for the different

frameworks can be completely different and some of the compliance requirements can

exactly have the same goal. Therefore, it is essential to have a complete picture of

which compliance frameworks are used and how they relate to each other. If a

requirement can either be completely covered or partially covered by another

compliance framework requirement, the workload can be minimized. [10]

There are many guides and mapping tools or mapping matrixes existing for many of

the available compliance frameworks. However, it is always important to look at the

specific usage of the compliance framework in a solution and how the mapping can be

different with using specific services. The Center of Internet security has an easy tool

where the CIS Controls are mapped to other compliance frameworks or regulations

like PCI-DSS, ISO27001 and NIST. This mapping is done from a CIS perspective and

only explains to which controls the requirement directly are related. Therefore, it can

be beneficial to compare the mappings to other similar mappings and verify that the

systems and services the company uses are covered by the mapping. [51]

One example of requirements or recommendations from both CIS and PCI DSS that

are the same is encryption of data at rest. These requirements are as an example

compared to each other in Table 2.

Isak Jansson

42

Table 2 Example of Compliance Mapping between CIS and PCI DSS [16], [18]

CIS PCI DSS

CIS Control: 14.8 PCI: 3.4, 3.4.1

- 14.8 Encrypt Sensitive Information at

Rest. Encrypt all sensitive information at

rest using a tool that requires a secondary

authentication mechanism not integrated

into the operating system, in order to

access the information.

- 3.4 Render PAN unreadable anywhere

it is stored by using any of the following

approaches: One-way hashes based on

strong cryptography, Truncation, Index

tokens and pads or Strong cryptography

with associated key-management

processes and procedures.

- 3.4.1 If disk encryption is used, logical

access must be managed separately and

independently of native operating

system authentication and access control

mechanisms. Decryption keys must not

be associated with user accounts.

5.5.1. Mapping CIS controls to PCI-DSS in AWS

As discussed in chapter 5.2.1 AWS tries to help the customers in many ways, this is

also for compliance mappings. If the customer chooses to use AWS Security Hub the

documentation and console interface help with mapping different compliance

requirements to the compliance checks that the service use. In the console, the

compliance requirements information is displayed for CIS recommendations in the

title and for PCI DSS in the related requirements tab as seen in Figure 17 or in the

findings tab when looking at a specific finding.

Isak Jansson

43

Figure 17 AWS Security Hub related requirements example

The documentation for the PCI DSS compliance checks also gives a bit more

information about related requirements and the relevant services connected to these

requirements. For developers, there are possibilities to analyze the ASFF information

that AWS Security Hub creates. The Compliance tag the RelatedRequirements contain

various requirements related to that specific compliance check, as seen in Figure

18.[25]

Figure 18 Example of ASFF for Compliance Finding [25]

These requirements are directly checked by the compliance checks done in AWS

Security Hub. However, there can be indirect mappings between the requirements,

especially more complex requirements that involve many services.

Mapping between different compliance frameworks or recommendations is not

available in the console or in the developer resources directly. This leaves the customer

to handle the actual mappings, but there are many tools and mappings available, as

discussed in the previous sections. Also, a part of the compliance process in a company

is to map the compliance requirements to internal processes and this mapping often

can extend to map compliance requirements for other systems. In Table 3, an example

of mapping the different compliance checks to different compliance frameworks is

shown.

Isak Jansson

44

Table 3 Example of Mapping requirements between CIS and PCI DSS in AWS [25], [48]

CIS AWS Foundations Benchmark PCI DSS AWS

[S3.4] S3 buckets should have server-side

encryption enabled (2.1.1 Ensure all S3

buckets employ encryption-at-rest)

[PCI.S3.4] S3 buckets should have

server-side encryption

enabled

Related recommendation: CIS Control 14.8

Encrypt Sensitive Information at Rest

Related requirement: PCI DSS 3.4:

Render Primary Account Numbers

(PAN) unreadable anywhere it is stored

Isak Jansson

45

6. Proof of concept: Continuous Compliance

Automation in AWS

The proof of concept for the Continuous Compliance Automation architecture

implemented is influenced by currently used methods and techniques as well as the

chosen cloud provider by the company this thesis was done for. As discussed

previously in this thesis, AWS has many services that can help achieve specific goals

in the AWS environment. The proof of concept tries to take advantage of the already

existing solutions that AWS manages for minimizing the development needed for

implementing such a solution. AWS managed services and solutions that are available

directly when activating these services are maintained by AWS and can often be

modified or customized to their own preferences with a small amount of work.

Therefore, the standard solution is used as a base for implementing the proof of

concept. The ability to use already existing solutions reduced the development scope

drastically, but the possibility of creating similar solutions that can be customized

further is still there and supported by the implemented architecture with only minor

changes. The drawbacks are that there may be breaking changes and updates by AWS

need to be monitored for these breaking changes.

6.1. Continuous Compliance Automation Architecture, a

brief overview

The architecture that was chosen is a flexible solution that can be modified and

customized as needed. However, the overall functionality is simple, with some more

complex services to handle exceptions and exceptional cases. Some services can feel

excessive, but the benefit of using them can be justified by the negative complexity or

cost they create. In Figure 19 the architecture is shown in a diagram that explains the

data flow as well as the different AWS services used. By having the diagram as

support, this section tries to give a brief overview without going into more details. The

details are discussed later in this chapter, with code snippets as support. 1

1 All code can be found at https://github.com/ijansson/masters-continuous-compliance-automation

https://github.com/ijansson/masters-continuous-compliance-automation

46

Figure 19 Continuous Compliance Automation Architecture

47

The solution starts with the service AWS Security Hub that is used as a CCM tool for

the environment of the account. Security Hub uses the CIS benchmarks and the PCI

DSS compliance checks that are enabled by the code as a base for the compliance

checks that this solution monitors. Security Hub uses AWS Config for finding resource

changes or Config rule changes, Security Hub sets up Config rules that correspond

with the included checks for CIS and PCI. The rules monitor resource changes live on

events or periodically and determine if they are compliant or non-compliant. The

results of these rules are then ingested into Security Hub.

Security Hub displays and analyses the findings as well as marks priority of the

findings to highlight what compliance problems that should be fixed first easily.

Security Hub also displays other findings from other AWS services like GuardDuty or

Inspector and integrated partner solutions that can be enabled if these services are

already used. All results are then shown as Security Hub findings; the findings have

labels for different levels of severity, resource type, and a specific resource.

An AWS CloudWatch Event Rule is then used to trigger on specific Security Hub

findings, filtering out the FAILED compliance checks and the monitored rules that are

defined in the event. In this case there is only one CloudWatch Event rule that contains

all the compliance checks and one CloudWatch Event rule that handles unsupported

events triggered by Custom Action in Security Hub. The Custom Action is activated

manually by sending the finding to the event rule.

The CloudWatch Event rule sends the Security Hub finding to an AWS Step Function

that contains a State Machine. The State Machine has different states and uses server-

less functions AWS Lambdas to execute different task states. The Step Function State

Machine is written in Amazon states language. The first state is a Choice state where

the different monitored rules are separated into groups ending up in different states.

The chosen state based on the compared rule triggers a Task state that calls a Lambda

function with the Security Hub finding as an event input. The Lambda function then

tries to remediate and correct the compliance issue. If the function returns without

errors or controlled errors, it enters an Evaluation or Final state. If the Lambda fails

with unexpected errors, the CatchAllFallBack state handles the exception and sends

the event with a controlled error message to the Evaluation state. If no matching state

can be found in the Choice states, it sends the event to a default state where the event

Isak Jansson

48

is forwarded with a flag to the Evaluation state. The Evaluation state then decides what

to do with the result, either error or corrected compliance checks. The corrected and

failed corrections are sent to an SNS topic that delivers the message to a Lambda with

a webhook into a Microsoft Teams channel of choice. This also happens to non-

supported events with a different kind of message. There are endless possibilities for

creating tickets into a ticketing system on unsupported events or failed remediation’s

or sending Emails to mail recipients.

6.2. Implementation of Continuous Software Engineering

concept

The goal with the proof of concept is to use the CSE concept regarding code

automation as much as possible. Whenever the solution is used, full code automation

can be implemented. As soon as a version control system like Git is used in cooperation

with a pipeline that supports Ansible, the environment can be provisioned and created

with a CI/CD process. The architecture and code for the AWS environment

implemented is then created by the CloudFormation templates. This leads to complete

automation of code deployment in the different environments managed by the ansible

framework and complete version control solution. Everything can be created and

updated with code changes, which, in turn, will lead to a more stable environment that

does not need human intervention when the environment architecture is built. The

possibilities to monitor changes made to the environment and the possibility to roll

back changes if they do not work as intended introduces a significant improvement

over manual change and configurations.

6.2.1. Infrastructure implementations with Ansible

and CloudFormation

To enable code automation, Ansible and the Ansible module “cloudformation:” are

used. In this section, the structure of the project and the use of the Ansible framework

for configuration management as well as the use of CloudFormation for infrastructure

management, are shown. The Ansible playbooks and role structure enable complex

configuration and management of multiple resources as well as multiple

Isak Jansson

49

configurations for multiple AWS accounts. As discussed earlier in chapter 3.3 and

Figure 9, the roles often have the same file structure as the Ansible best practices

example. The proof of concept tries to follow these recommendations. The \site.yml is

the master playbook that includes other playbooks. The included playbooks are often

more complex tasks that are divided into roles. The included playbooks in a role are

often located in a folder with the name of the role, roles\role_name as seen in Figure

20.

- name: Configure the AWS securityhub and AWS config

 hosts: localhost

 connection: local

 gather_facts: false

 roles:

 - configure-securityhub

Figure 20 role_name the included task that is referenced from the master playbook

The configure-securityhub role is located at roles\role_name\tasks\main.yml seen in

Figure 21 the code is executed with the variables stored in a file accessible for all roles,

in this case, information about the different AWS {{accounts}} that are used. This

information is sensitive information and is not shown in any figures. The

included_tasks variable in Figure 21 is a list of included tasks that need to be executed

for each account.

- name: Configure default security hub document properties

 include_tasks: configure_securityhub.yaml

 with_items: "{{ accounts }}"

 loop_control:

 loop_var: account_item

Figure 21 roles\role_name\tasks\main.yml

Additional variables that are specific to the role can be included in the additional file

\roles\role_name\vars\main.yml as seen in Figure 22 and these are included in the

roles\role_name\tasks\ namespace for easy use in that role. The passed variables from

other files can also be used as long as they are located in the task’s namespace and

changed if needed.

Isak Jansson

50

region: "eu-west-1"

s3BucketName: "{{ account_item.account_name }}-{{ region }}-config"

kmsKeyId: "alias/{{ account_item.account_name }}-config-KMSKey"

SNSTopicName: "{{ account_item.account_name }}-config-sns-topic"

Figure 22 roles\role_name\vars\main.yml

The tasks themselves can include different ansible modules; in this case, the

“cloudformation:” module is used for creating and updating an AWS

CloudFormation stack. The stack information and all variables needed to create the

CloudFormation files are passed in the tasks file configure-securityhub.yaml. In the

task roles\role_name\tasks\role_name(configure-securityhub.yaml), which is the main

task in the role as seen in Figure 23, a final file configure_config.yaml with a template

for the CloudFormation code is included.

- name: Configure AWS Config CF-stack for all accounts

 cloudformation:

 profile: "{{ account_item.account_name }}"

 stack_name: "{{ account_item.account_name }}-config-cf"

 state: "present"

 region: "{{ account_item.default_region | default('eu-west-1') }}"

 disable_rollback: true

 template: "roles/configure-securityhub/files/configure_config.yaml"

 template_parameters:

 AccountName: "{{ account_item.account_name }}"

 EnvironmentPrefix: ""

 S3BucketName: "{{ s3BucketName }}"

 KmsKeyId: "{{ kmsKeyId }}"

 SNSTopicName: "{{ SNSTopicName }}"

 tags:

 Account: "{{ account_item.account_name }}"

 Stack: "{{ account_item.account_name }}-config-cf"

 Contact: "{{ account_item.owner_email }}"

 CostCenter: "{{ account_item.owner_costcenter }}"

 register: register_config

Figure 23 roles\role_name\tasks\role_name the configure-securityhub.yaml file

The file in roles\role_name\files\template_name takes the variables as previously

defined as template parameters, enabling usage of the parameters in the

CloudFormation code. When a playbook is executed, Ansible uploads the

CloudFormation service through Boto3 to an AWS CloudFormation stack that is then

Isak Jansson

51

deployed in the AWS environment that configures the resources defined in the

template.

All code and structure of the Ansible framework are then version controlled by using

some form of version control system. When the code is committed, builds are triggered

in a build system, such as Jenkins or Ansible Tower, which are automation servers that

can handle CI processes or complete continuous delivery processes.

6.2.2. Enabling Continuous Compliance Monitoring

Several services need to be enabled and configured to implement the continuous

compliance architecture in AWS, as has been discussed previously. Among those is

Security Hub that also needs the service Config enabled and configured. To configure

and enable these services an ansible role configure_securityhub was created as well as

a subtask to enable Config using a CloudFormation stack. The Ansible playbooks for

setting up the configure_securityhub role are shown in Figure 20, Figure 21, Figure 22

and Figure 23.

The prerequisite to enabling Security Hub is to have Config enabled and configured.

Therefore the first task in the playbook is configuring AWS Config as shown in Figure

23. The CloudFormation template used configure_config.yaml uses variables

previously defined in the playbooks as parameters and configures different AWS

services to be able to activate the Config service. The components needed for enabling

Config are an S3 bucket, SNS topic, Config Delivery Channel, Config Configuration

Recorder, a KMS key for encryption, an IAM role and the required policies. More

about how these services are configured can be found in the code.

After the configuration of the Config service, enabling Security Hub is done using

shell command from the AWS CLI as seen in the Figure 24. When enabling Security

Hub from the API, the security standards are automatically enabled by default.

- name: Enable securityhub

 shell: aws securityhub enable-security-hub --profile "{{ account_item.account_name }}"

 register: securityhub_output

 ignore_errors: True

Figure 24 Shell Command for activating Security Hub

Isak Jansson

52

In the console, the results of the compliance evaluations can then be monitored and

resources that fail compliance evaluations can be found using the Security Hub

findings.

6.3. Compliance Automation and Remediation

To create an automated solution that does not require human intervention every time

a compliance problem occurs is the key. AWS resources constantly change and the

possibilities to create new resources, like servers in a couple of minutes, make the

manual corrections of compliance and security problems impossible for a human being

to comprehend. The fast-paced environment and constant change generate endless

compliance and security problems that may be critical to fix for the environment to

remain compliant.

Figure 25 CloudWatch Events on Security Hub Findings

Using the CloudWatch service the Security Hub findings can be captured by creating

a CloudWatch Event rule as seen in Figure 25 (the figure is a subset of Figure 19). The

CloudWatch event rule defines an action to take automatically when a finding is

imported or updated by Security Hub. The CloudWatch Event rule can be triggered by

every finding or triggered by only specified event patterns in the findings. By

specifying an event pattern, a filter can be created to catch only desired Security Hub

findings by for example specific failed compliance requirements. The event pattern is

written in JSON format, but CloudFormation takes care of the conversion from the

Template code written in YAML format. The “GeneratorId” is unique for every rule

Isak Jansson

53

that Security Hub checks and can therefore be used to filter out the specific events that

the solution can handle. The CloudFormation code for creating the CloudWatch event

rule is shown in Figure 26.

The CloudWatch event rule allows for forwarding the event, in this case the findings

to an action target. The action target can be any resource invoked by events, like

Lambdas, Step Functions, Batch Jobs and much more. The events in this solution are

each forwarded to one AWS StepFunction State Machine

ContinuousComplianceAutomationStateMachine that handles the event, as seen in the

code for the CloudWatch event in Figure 26. The event JSON itself can also be

modified in the CloudWatch event rule to filter out the desired information. However,

in this solution the default Security Hub event is forwarded.

Figure 26 CloudWatch Event Rule for catching specific Security Hub findings based on Compliance requirements

Isak Jansson

54

The Security Hub event JSON contains information about the breached compliance

requirement and available information about the resource. Some resource information

is limited, but for most events the resource information is enough, AWS constantly

improves the resource information.

Figure 27 Compliance Automation Step Function State machine

The ContinuousComplianceAutomationStateMachine StepFunction is written in

Amazone States Language. Still, as with other code it can be included in the

CloudFormation template as inline code and Lambda functions created in the same

CloudFormation stack can easily be referenced for the state machine to use. The

purpose of the step function is to separate the different compliance requirements based

on GeneratorId and forward the finding to a Lambda for remediation. A visualization

of the StepFunction and its architecture is shown in Figure 27. The separation between

different compliance events is done in a Choices step as seen in Figure 28 where

choices are made on the GeneratorId. The choices then reference a next step to be

executed with the key value “Next”: ”ComplianceCIS4142R” that is called when a

matching string is found, as seen in Figure 29. In this case the next step is a “Type”:

“Task” step and the task itself has a reference to the actual resource, in this case, a

Lambda Compliance_CIS_41_42_Remediation as seen in Figure 30.

Isak Jansson

55

Figure 28 Compliance Choice State

Figure 29 Compliance Choice State with reference to Next task

Figure 30 Task State with reference to Lambda resource in the console after creation

Isak Jansson

56

Figure 31 Task State with reference to Lambda resource in CloudFormation stack

The CloudFormation code shown in Figure 31 and be compared to the StepFunction

code in the console seen in Figure 30. The Task itself in CloudFormation is referenced

with lambdaCIS4142RArn, an alias for the Compliance_CIS_41_42_Remediation

Lambda function executed when the step is triggered. The task also is configured to

handle uncontained errors experienced in the Lambda and forwards the results of the

Lambda execution to the next step that in this case is the “FinalAutomationState”. The

architecture of the StepFunction State Machine

ContinuousComplianceAutomationStateMachine can be seen in Figure 32.

Isak Jansson

57

Figure 32 Architecture of the ContinuousComplianceAutomationStateMachine

An execution flow through the compliance architecture up to the execution of the

remediation Lambda can be as follows. Security Hub has found a non-compliant

resource that triggers the compliance rule cis-aws-foundations-

benchmark/v/1.2.0/rule/4.1 that states “Security groups provide stateful filtering of

ingress/egress network traffic to AWS resources. It is recommended that no security

group allows unrestricted ingress access to port 22.”. The non-compliant resource is a

Security Group for EC2 that allows unrestricted ingress to that instance. The

CloudWatch event rule picks up the Security Hub finding and forwards the finding to

the State Machine. The Choice State filters out the specific rule that was triggered, as

shown in Figure 29 and calls the next task in Figure 30. The triggered tasks start

executing the Compliance_CIS_4-1_4-2_Remediation Lambda that it has as a

resource, as seen in Figure 30.

Isak Jansson

58

6.3.1. Remediation of Compliance events

The task of finding a non-compliant resource or configuration is handled automatically

in this case by Security Hub. Often CCM solutions only inform about the compliance

events. However, by also trying to remediate or fix the non-compliant resources, we

can automate this process further. By using Lambdas that can execute code on demand

and the extensively available AWS SDKs/APIs to access non-compliant resources.

Remediation

To continue from the example in the previous section the

Compliance_CIS_4-1_4-2_Remediation Lambda handles remediation of CIS

recommendations 4.1 and 4.2. The Lambda code starts automatically with the function

lambda_handler(event, context) that gets the event from the Security Hub finding. The

event is a JSON object that contains all information collected by Security Hub. The

functions extract the needed information from the event into more manageable

variables, as seen in Figure 33.

Figure 33 Compliance_CIS_4-1_4-2_Remediation: Extracting Finding information and call fix_security_group()

function

Figure 34 Compliance_CIS_4-1_4-2_Remediation: fix_security_group() AWS Boto3 SDK to access resources and

configurations

Isak Jansson

59

To remediate the compliance problem the needed information is forwarded to a

fix_security_group(), as seen in Figure 33. The fix_security_group() function uses the

Boto3 python AWS SDK to access resources and information about the resource, as

seen in Figure 34. Using the acquired security group resource, we can try to revoke

ingress for that specific inbound rule. This is done by calling the revoke_ingress()

function in the Boto3 SDK with parameters about the specific rule to revoke, as seen

in Figure 35. If the revoke is unsuccessful, an error is thrown and caught by the

fix_security_group() error handling.

For the user, the Security Group is removed from the list of inbound rules for the

Security Group in the console as seen in Figure 30, where the Security Group on top

contains an inbound rule and at the bottom, the remediation Lambda has removed the

inbound rule after execution.

Figure 35 Compliance_CIS_4-1_4-2_Remediation: fix_security_group() Revoke ingress for non-compliant resource

Figure 36 Security Group before and after revoked ingress in the console

Isak Jansson

60

Remediation notification process

To be able to inform the user of the invoked remediation event and the result of the

remediation the Security Hub finding sent to Lambda is updated with a note text that

describes the event and the result of the event. This is done by using the

update_finding() function in the Boto3 SDK as seen in Figure 37 and the note text in

the Security Hub finding is updated as seen in Figure 38.

The Compliance_CIS_4-1_4-2_Remediation Lambda function then collects

information about the execution and formats the information into a JSON object that

can be forwarded to other tasks in the StepFunction State machine. This using a

standardized format that all similar Lambda functions follow, as seen in Figure 39.

Figure 39 Compliance_CIS_4-1_4-2_Remediation: Information collection and return result

Figure 37 Compliance_CIS_4-1_4-2_Remediation: Update Security Hub finding with note text

Figure 38 Security Hub finding note text of remediation attempt

Isak Jansson

61

Figure 40 State Machine FinalAutomationState Task

When the Compliance_CIS_4-1_4-2_Remediation Lambda is done the StepFunction

starts the next step referenced in the Task, this is the FinalAutomationState as seen

previously in Figure 31. The FinalAutomationState Task forwards the JSON object

from the previous Lambda into the next Lambda

lambdaComplianceAutomationFinalStateArn for processing, as seen in Figure 40. The

ComplianceAutomationFinalState Lambda is a final handler of the Compliance

Automation Flow that determines what to do with the results of the compliance event

and the executed remediation.

The whole flow of a corrected compliance event can be visualized in the console

execution details shown in Figure 41. The execution details for the StepFunction in

this example show a correction of a compliance event regarding CIS recommendation

4.1 triggered by a Security Hub finding as previously discussed. Triggering the

referenced ComplianceCIS4142R Lambda.

Isak Jansson

62

Figure 41 Step Function State machine flow of Corrected Compliance event for CIS recommendation 4.1

Figure 42 ComplianceAutomationFinalState Collecting information and forward to publish_compliance_sns()

The ComplianceAutomationFinalState can be configured and coded in many ways.

The possibilities are many. In this proof of concept, the Lambda code extracts the

relevant information from the compliance events and compliance remediation results.

Then publish the collected information as a message on an SNS queue for notifying

the concerned parties. In ComplianceAutomationFinalState, as seen in Figure 42 the

information is extracted and a message JSON is created with the relevant information

needed for creating a notification.

Isak Jansson

63

Figure 43 ComplianceAutomationFinalState: publish_compliance_sns() function for publishing messages on SNS

queue

The message is then published on an asynchronous SNS message queue on a specific

topic sns-team-compliance-topic that any subscriber can listen to, as seen in Figure 43.

The message queue, in this case is a specific topic created in the CloudFormation stack

as seen in Figure 44. The subscribers can be one of many, for example, Email, mobile

push notification, and other AWS services. One of those services is AWS Lambdas

that also can be assigned as a subscriber for these kinds of events.

Figure 44 CloudFormation Configuration of SNS queue and specific subscriber endpoint

The Lambda registered as a Subscriber to the SNS topic is referenced in the

CloudFormation template and will listen to messages sent over the specified topic.

Once a message is published to the topic, the Lambda code executes with the message

as a parameter. The Lambda then contains code for sending compliance events as chat

messages to a Microsoft Teams channel. The chat messages are injected into Teams

through a webhook that listens for messages sent to a specific address. In the

ComplianceTeamsWebHook Lambda, the SNS message from the

ComplianceAutomationFinalState is extracted and formatted into a message object

that the Teams webhook can handle, as seen in Figure 45.

Isak Jansson

64

Figure 45 ComplianceTeamsWebHook Lambdafunction, creation of Teams chat message

The TEAMS_HOOK_URL variable is set as an environment variable for the Lambda

and can be changed manually in the console by editing the environment variables for

the Lambda ComplianceTeamsWebHook.

The Teams channel members are then notified about the compliance event that either

was corrected or could not be corrected by the continuous compliance automation flow

according to the implemented compliance requirements. A notification message for a

corrected compliance problem for the previously discussed example CIS benchmark

4.1 is shown in Figure 46.

Figure 46 Teams message about Corrected Compliance event

Isak Jansson

65

If the remediation fails or the continuous compliance automation flow encounters any

problems during execution, a notification message about the failed event is created.

An example of this is a security group that is not part of the proof-of-concept example

shown in Figure 47.

Figure 47 Teams message about Non-Correctable Compliance event

Isak Jansson

66

6.3.2. Implemented Compliance Remediation

The compliance remediations implemented are few due to the nature of the proof of

concept, focusing on the architecture and automation of the entire process. But with

the implemented remediations, this proof of concept shows that different resources and

configurations can be remediated by code and automated almost completely. Fixing

the compliance requirements or recommendations without involving human

intervention.

The first remediation focuses on network related requirements with restricting ingress

or egress to specific ports in a security group. This example was discussed earlier in

section 6.3.1 as an example of the flow through the whole architecture. The overall

structure of the code in all remediations follows the previous example with only minor

deviations and changes in the way remediations are done. The critical part of the code

in this example is revoking the ingress or egress to specific ports, as shown in Figure

35. This is done in the Compliance_CIS_4-1_4-2_Remediation lambda. This

requirement is covered by both CIS recommendations and PCI DSS requirements as

shown in Table 4 that contains the compliance mapping done for the proof of concept.

67

Table 4 Implemented compliance requirements and mappings

Compliance requirements AWS Security Hub Title AWS Security Hub rule

CIS AWS Foundations 4.1, 4.2

PCI DSS 1.2.1, 1.3.1, 2.2.2

▪ [CIS.4.1] Ensure no security groups allow

ingress from 0.0.0.0/0 to port 22

▪ [CIS.4.2] Ensure no security groups allow

ingress from 0.0.0.0/0 to port 3389

- arn:aws:securityhub:::ruleset/cis-aws-foundations-

benchmark/v/1.2.0/rule/4.1

- arn:aws:securityhub:::ruleset/cis-aws-foundations-

benchmark/v/1.2.0/rule/4.2

CIS AWS Foundations 1.5, 1.6,

1.7, 1.8, 1.9, 1.10, 1.11

PCI DSS 8.1.4, 8.2.3, 8.2.4,

8.2.5

▪ [CIS.1.5] Ensure IAM password policy requires

at least one uppercase letter

▪ [CIS.1.6] Ensure IAM password policy requires

at least one lowercase letter

▪ [CIS.1.7] Ensure IAM password policy requires

at least one symbol

▪ [CIS.1.8] Ensure IAM password policy requires

at least one number

▪ [CIS.1.9] Ensure IAM password policy requires

minimum password length of 14 or greater

▪ [CIS.1.10] Ensure IAM password policy

prevents password reuse

▪ [CIS.1.11] Ensure IAM password policy expires

passwords within 90 days or less

- arn:aws:securityhub:::ruleset/cis-aws-foundations-

benchmark/v/1.2.0/rule/1.5

- arn:aws:securityhub:::ruleset/cis-aws-foundations-

benchmark/v/1.2.0/rule/1.6

- arn:aws:securityhub:::ruleset/cis-aws-foundations-

benchmark/v/1.2.0/rule/1.7

- arn:aws:securityhub:::ruleset/cis-aws-foundations-

benchmark/v/1.2.0/rule/1.8

- arn:aws:securityhub:::ruleset/cis-aws-foundations-

benchmark/v/1.2.0/rule/1.9

- arn:aws:securityhub:::ruleset/cis-aws-foundations-

benchmark/v/1.2.0/rule/1.10

- arn:aws:securityhub:::ruleset/cis-aws-foundations-

benchmark/v/1.2.0/rule/1.11

PCI DSS 3.4

CIS AWS Foundations 2.1.1

[PCI.S3.4] S3 buckets should have server-side

encryption enabled

- pci-dss/v/3.2.1/PCI.S3.4

PCI DSS 7.2.1

CIS AWS Foundations 1.22

[PCI.IAM.3] IAM policies should not allow full

"*" administrative privileges

- pci-dss/v/3.2.1/PCI.IAM.3

68

The second remediation implemented is enforcing password policy according to the

CIS recommendations and PCI DSS requirements. This can also be done with code by

simply updating the password policy if Security Hub notices change or too weak

password policies. This Config rule is not triggered by config change and therefore

only runs twice a day. If the password policy is not enforced properly, the remediation

Lambda Compliance_CIS_1-5_1-11_Remediation updates the policy with compliant

values, as seen in Figure 48.

Figure 48 Compliance_CIS_1-5_1-11_Remediation: updating the password policy

The third remediation created is to enforce server-side encryption on S3 buckets. As

mentioned in chapter 5.5 and Table 2. there is a requirement that data at rest needs to

be encrypted to ensure that information even if stolen is safe. This requirement is a bit

trickier to fix with code, but AWS has a service called AWS Systems Manager for

automation of management tasks that can be called from the Boto3 SDK. There is a

Systems Manager task that enables encryption on S3 buckets that can be used. This is

used in the Compliance_PCI_S3-4_Remediation Lambda by calling the

start_automation_excexution() function with the Document Name

“AWS-EnableS3BucketEncryption” and the non-compliant s3 bucket as a parameter.

We can assume that the execution was successful or, as the code does, wait for the

response, this is not the best solution but a straightforward way to confirm success.

The code can be seen in Figure 49

Isak Jansson

69

The last remediation created is an AWS policy enforcer that tries to remove liberal

access policies with full administrative privilege; this is done in the

Compliance_PCI_IAM_3_Remediation Lambda by using the Boto3 SDK to remove

the policy as seen in Figure 50. To be able to remove a policy, all the previous policies

need to be deleted first. Also, we should detach different resources and users as such.

However, to complete the objective of the proof of concept, this was not necessary and

therefore this is a future improvement.

Figure 50 Compliance_PCI_IAM_3_Remediation: Deleting too liberal IAM policy

6.3.3. Unsupported events

To further improve the proof of concept and be aware of unsupported compliance

events, a mechanism for notifying about these events was also added. The CloudWatch

event rule shown earlier in Figure 26 only filters out already implemented remediations

and unsupported events are not ingested in the continuous compliance automation

flow. Therefore, a manual way of handling unsupported events from the Security Hub

Figure 49 Compliance_PCI_S3-4_Remediation: Using AWS Systems Manager for enforcing S3 Encryption

Isak Jansson

70

findings was created. This by adding a custom action target to the Security Hub

findings console that triggers a CloudWatch event rule. The custom action target

ComplianceAutomation can be selected in Security Hub when a finding is selected, as

shown in Figure 51.

Figure 51 Custom Action target in Security Hub

The CloudWatch event rule catches the event and forwards the compliance event to

the Step function ContinuousComplianceAutomationStateMachine. The compliance

event is not present in the ComplianceChoiceState and therefore, the event is sent to a

Task called DeafultState. The DeafultState adds information about the unsupported

compliance event and forwards the information to the FinalAutomationState, as seen

in Figure 52.

Figure 52 Step Function State machine flow of unsupported compliance event

The FinalAutomationState forwards the information to the

ComplianceAutomationFinalState Lambda that extracts the information and formats

the information as discussed previously. The message is then published on to the SNS

queue and the ComplianceTeamsWebHook Lambda creates a message that is sent to

Isak Jansson

71

the Teams channel also as discussed previously. An example of the notification

message for an unsupported event can be seen in Figure 53.

Figure 53 Teams message about unsupported compliance event

6.4. Design alternatives

As with many projects, there are many design alternatives and ways of solving issues.

The proof of concept is only an example of how a continuous compliance automation

architecture can be created. There are many ways this can be achieved by using the

different services provided by AWS in different combinations. However, the proof of

concept tries to provide an easy and flexible way of solving compliance problems and

automate the remediations.

As discussed previously, the service Security Hub can be skipped and the AWS Config

rules can be directly forwarded to the CloudWatch event rule for further handling, as

shown in Figure 54.

Figure 54 AWS Config directly forwarding the event to CloudWatch

Isak Jansson

72

The problem with this solution is that the AWS Config Evaluation does not directly

contain information about compliance requirements and there is no easy way of

tracking the different findings of Config rule evaluations. Security Hub provides more

information on the non-compliant resource, what compliance rule was breached and

severity level. Security Hub also provides a user-friendly interface for exploring

compliance findings.

Another design alternative could be to skip the Step Function State machine used.

Many CloudWatch event rules could instead be used for separating the differently

implemented compliance remediations. This means creating one CloudWatch event

rule for each compliance rule monitored. The alternative reduces the complexity and

the tools used. However, this will decrease the visibility of the flow and the Lambda

that handles the result needs to handle both errors and unsupported events in an

efficient way. Also, failed Lambda executions could potentially cause problems if not

handled correctly. This design alternative is illustrated in Figure 55.

Figure 55 CloudWatch event rules forwarding events directly to Lambda functions

There are also many ways of handling the result of the continuous compliance

automation flow. The possibility to send email instead of Teams messages is easily

interchangeable by simply reconfigure the SNS queue. And unsupported/non-

correctable events could be sent to a ticketing system like Jira for further investigation

or the creation of new remediations. These alternatives can be seen in Figure 56.

Isak Jansson

73

Figure 56 Different ways of notifying about result of the compliance remediations

Isak Jansson

74

7. Evaluation and future work

7.1. Improvements and future work

As the name says, the proof of concept is a solution that only shows that the theory

works. Therefore, there are many possibilities to improve the solution and make it

more efficient or manageable. Some of the possible improvements are technical and

some are purely preferences as discussed in 6.4 Design alternatives.

The immediate technical improvements that should be made are to the code structure

and the Ansible file structure. All the functions in the CloudFormation template are

inline code and every resource included in the architecture is in the same file due to

references between resources. CloudFormation has a limit of 51,200 bytes on the file

size of a stack uploaded to AWS and by expanding the solution, the limit will be

reached quite fast. The file size could easily be fixed by separating the Lambda code

and creating an Ansible task that uploads the Lambdas to an S3 bucket in AWS. Also,

separating code into different Ansible tasks where possible and using a parameter to

pass references to the next task decreases the file size and creates better code

separation.

When looking at code improvements, the most critical thing for improving the solution

is compliance. Due to only focusing on proving that the proof of concept works, the

issue of creating non-compliant resources was not checked; this means the proof of

concept creates non-compliant resources itself. In some cases, this cannot be correct

due to technical limitations, for example when a resource needs to be accessible from

any IP address. However, tagging or marking the resources for exclusion in the

remediation flow needs to be implemented. Also, verifying that the solution itself is

compliant with the imposed compliance frameworks is a task that needs to be

addressed when implementing the continuous compliance automation architecture.

Depending on what compliance frameworks are needed, these improvements can vary.

When looking at implementing the continuous compliance automation architecture,

there are also some considerations if this is done in a multi-AWS account setup for an

organization. The proof of concept focuses on enabling all the services on one AWS

account. However, some parts of the solution are ready for multi-account support, as

Isak Jansson

75

the enabling of AWS Config and Security Hub. To get all findings from other accounts

to the Security Hub master account, the accounts must either belong to an AWS

organization or accept invitations sent by the master account. Code changes are needed

for this to work and a clear plan for handling everything from permissions, executions

of remediations and logging is needed. This introduces complexity to the whole

continuous compliance automation architecture but can be done by carefully planning

and using the AWS services.

Also, for further work, the supported compliance frameworks and implemented

compliance rules can be expanded and improved upon. This depends on the needs of

the organization and what compliance frameworks they need to comply with. As

discussed, the compliance process in the organization is highly dependent on what

industry they operate in and what kind of infrastructure they have. Here, introducing

third-party integrations into Security Hub can be an alternative if the organization

already has any supported CCM tools or processes that can produce compliance

events.

The possibilities for improving the proof of concept are many. But the idea was to

create a solution that can easily be modified for different needs and show the strengths

of implementing a continuous compliance automation architecture in a public cloud

environment.

7.2. Evaluation

The evaluation of the proof of concept was done by implementing the continuous

compliance automation architecture on an AWS account in the organizational

infrastructure that this thesis was done for. The continuous compliance automation

solution then automatically found and remediated any compliance problems in that

AWS account within the implemented requirements. The solution was monitored and

tested for a while and evaluated by the supervisor as well as other concerned parties in

the company. The implemented solution worked as intended and remediated the found

compliance problems that were supported. During the testing period, a couple of

drawbacks were found that may need to be resolved if the solution is to be used in a

larger scale organization.

Isak Jansson

76

The most relevant problem of the solution is that remediations take place automatically

and, without exceptions, remove all non-compliant resources. The removal of non-

compliant resources may cause problems for users who are not aware of what they did

wrong. The solution does not currently support notifying individual users of their

misconfigurations and the only way for a user to be notified if the resource was non-

compliant is to look at the Security Hub findings or in the Teams channel. This does

not stop the solution from working but can cause problems for unaware users. An

immediate solution for this was not found, but AWS support provided information

about possibilities to parse logs for identifying which user created the non-compliant

resource, which would be a possible way of notifying specific users. However, this

was not explored further due to the organizational setup with centralized logging and

permission restrictions that are needed.

In some cases, the strict removal of non-compliant resources in combination with

manual modifications can cause CloudFormation drift and mismatches during

CloudFormation stack deployments. This problem is solved by being informed of the

compliance remediations active and analyzing as well as resolving the drift when

deployments fail. These kinds of problems are manageable and can be resolved by

manual processes and by the developers being informed about how things work.

The continuous compliance automation architecture also does not remove all manual

processes from the compliance work. There still need to be manual processes for

resolving unhandled exceptions and fixing non-supported compliance events. Also,

mappings of different compliance frameworks as well as defining what rules that need

to be followed are still a requirement for the overall compliance process. However,

repetitive tasks of proving compliance can be automated and remediated by the

continuous compliance automation solution. The solution also supports continuous

compliance with event-driven checks done in real-time instead of only snapshots of

the compliance state at specific times when auditing occurs. The continuous

compliance automation process ensures that the compliance posture is better

maintained between audits and which is a welcomed feature to the compliance and

security department. Current compliance processes are mainly focused on proving

compliance at a specific point in time, but by using continuous compliance automation,

the compliance state of the system can be more closely followed.

Isak Jansson

77

As there was already a plan for moving to public a cloud provider, this solution's

increased work and cost are marginal. During the testing period, the cost of the

continuous compliance automation solution was below $5, with the highest cost being

for AWS Config rules and Security Hub. The Step Function and Lambda executions

were minimal and ended up being under the Free Tier included in the AWS accounts

used. However, an accurate estimate for a large solution with many accounts is hard

to give. The highest cost will be from AWS Config rule triggers on resources and the

more resources there are, the more cost it will accumulate.

In addition, the move to public cloud providers is often regarded as a risk for losing

control of the hardware and the data processing control. However, the move enables

exclusive services like AWS Config and Security Hub for improving safety and

compliance. The risk can often be rectified by the possibility of improving the

compliance posture and reducing many other security risks. Also, the possibility to

implement a solution like continuous compliance automation is not possible in a

private cloud solution to the same extent.

As discussed, the continuous compliance automation architecture does not solve the

whole compliance process but can be used as an additional tool for solving compliance

problems and improving the compliance posture. This especially when implementing

new solutions built in AWS environments.

Isak Jansson

78

8. Conclusion

The purpose of the thesis was to reduce the compliance work needed when moving

applications to an AWS environment by introducing automated continuous

compliance tools and processes for remediations of compliance problems. When

introducing new systems to an already existing compliance process, the work needed

can be complex and challenging. The thesis highlight the most essential processes and

tools available in AWS to reduce the overall compliance work. Most importantly, this

thesis creates a proof of concept for a continuous compliance automation solution. The

continuous compliance automation is constantly monitoring for non-compliant

resources in the AWS environment as well as tries to remediate the found compliance

breaching resources. By combining different tools in AWS and creating a flexible

architecture, resources and configurations can be monitored for compliance breaching

configurations almost in real-time. The event-driven compliance checks combined

with automated remediations for non-compliant resources try to minimize human

involvement in the compliance process. This goal is reached by fixing reoccurring

compliance breaching resources with code. The benefits of using a public cloud

provider are often overlooked and can be beneficial for the financial sector to improve

both security and compliance problems.

The continuous compliance automation solution is not perfect but serves as a

satisfactory proof of concept for showing that automatic remediation of compliance

problems in a public cloud environment is possible. The possibilities and flexibility

for implementation are also shown and the solution is a good start on architecture for

supporting an automated continuous compliance flow. It does not fix all compliance

problems itself but is a helpful tool to improve the compliance postures of the system

and minimize repetitive tasks.

Isak Jansson

79

9. Swedish summary – Svensk sammanfattning

Introduktion

Behovet av att följa olika regelverk och bestämmelser har ökat inom

Informationsteknologisektorn (IT) under de senaste åren. Antalet regelverk som skall

följas och deras rekommendationer ökar också i komplexitet hela tiden, detta leder till

ett ökat arbete inom IT-branschen för att tillfredsställa både kundernas och

myndigheternas krav. Inom vissa branscher kan man inte ens utöva verksamhet om

man inte följer dessa krav. En sådan bransch är finanssektorn där mycket stränga krav

finns från flera aktörer.

I detta arbete studeras krav från några förordningar och deras inverkan på IT-system

inom finanssektorn, samt vilken anpassning som måste utföras i processen för att

kunna följa krav från förordningar när man flyttar IT-system från privata serverhallar

till en publik molntjänst. I en publik molntjänst kan det ske stora förändringar i

infrastruktur och konfigurering fort, vilket skapar problem om en människa skall följa

dessa förändringar samt se till att förändringarna inte bryter mot någon förordning.

Därför måste automation införas i förordningsprocessen för att klara av hanteringen

av de många kraven. Diplomarbetet introducerar automation både när det gäller

förordningsprocessen men också när det gäller återkommande åtgärder av resurser

som inte följer kraven, detta med hjälp av kod. För att kunna skapa denna automation

används Amazon Web Services (AWS) olika verktyg och mjukvarubibliotek.

Förordningarna och kraven som detta arbete tar upp är ”Center for Internet Security

(CIS) benchmark” och ”Payment Card Industry Data Security Standard (PCI-DSS)”.

Bakgrund

Bakgrunden till att det finns förordningar och krav som skall följas är att säkerställa

att man har ett tillräckligt säkert IT-system. När man pratar om säkerhet är det ofta

kopplat till att kunna känna sig trygg i sin verksamhet med de hot som finns, medan

säkerhetsmålen med en förordning ofta försöker se till att alla skall följa vissa krav på

ett visst sätt för att säkerställa en viss nivå på säkerhet. [1] För att kunna följa dessa

förordningar behövs en process som går igenom kraven och säkerställer att alla delar

av ett IT-system följer dessa krav. För de flesta företag finns det någon sådan process

Isak Jansson

80

men den är till stor del manuell. Det vill säga man försöker verifiera och evaluera ett

system manuellt vid en viss tidpunkt för att få en överblick över hur bra man följer

kraven. Detta ofta i samband med en auditering. Detta illustreras i Figure 1. [2]

För att förbättra denna process kan man introducera automation som går igenom

kraven och jämför dessa mot existerade resurser, för att få en överblick av vilka

resurser som bryter mot kraven. Om man också gör detta på en periodisk basis kan

man få en bättre bild av systemet under alla dessa tidpunkter och då bättre förhålla sig

till förändringar i resurserna samt till kraven. Detta illustreras i Figure 2. För att

ytterligare förbättra denna process kan man om möjligt introducera händelsebaserade

jämförelser som kan utvärdera en resurskonfigurering genast efter att den har ändrats

och på detta vis snabbt fånga upp resurser som bryter mot kraven som ställs. En sådan

process illustreras i Figure 3. [2] [3] [4]

För att underlätta arbetet med att bevisa för en auditör att ett system följer de krav som

förordningarna ställer så skulle man föredra att alla resurser och konfigureringar

verifieras så fort de ändras. Dock är detta inte alltid möjligt, men genom att försöka

automatisera så mycket som möjligt kan arbetsbördan minskas något. Genom att

fortsätta automatiseringen efter att man jämfört kraven mot en resurs kan man minska

arbetet ytterligare, detta genom att automatiskt försöka åtgärda resursen som inte följer

kraven, speciellt återkommande problem. Ett sådant flöde illustrerats i Figure 4. [7]

Om man automatiserar flera steg i förordningsprocessen behöver man också

automatisera kodleveranserna. Detta för både infrastrukturkod och kod som åtgärdar

infrastruktur samt konfiguration som bryter mot kraven. Detta kan göras med olika

verktyg för kontinuerlig integration och leverans av kod, samt

kodversionshanteringssystem.

Utförande

För att kunna bevisa att man kan automatisera förordningsprocessen och även

automatisera åtgärdande av krav, utfördes en konceptvalidering. Konceptvalideringen

gick ut på att använda olika verktyg för kodautomation samt olika verktyg i AWS för

att automatisera förordningsprocessen. Infrastruktur som kod användes och därmed

kan alla delar av konceptet skapas med versionshanterad kod.

Isak Jansson

81

För att kunna skapa infrastruktur som kod användes verktyget Ansible, som är ett

automationsverktyg för konfigurering och hantering av IT-infrastruktur. För att kunna

skapa resurser och infrastruktur i AWS används Ansible-modulen ”cloudformation”

som möjliggör hantering av AWS CloudFormation kod som sedan kan laddas upp i

AWS för att skapa AWS specifika resurser med dess konfigureringar. CloudFormation

är ett mallverktyg som fungerar som resurshanterare i AWS och med en mall kan man

skapa samt konfigurera resurser i sin AWS-infrastruktur. I detta fall används Ansible

enbart som ett konfigureringsverktyg medan CloudFormation mallen används för att

hantera infrastruktur samt dess specifika konfigurering. Genom att kombinera dessa

kan koden hantera mer komplex infrastruktur samt hantera flera ”CloudFormation

templates” och där med mer AWS-infrastruktur med samma automationslösning. All

kod är sedan versionshanterad med Bitbucket och exekveras av Ansible Tower som är

ett kontinuerligt integrationsverktyg.

För att skapa en hållbar lösning för att automatisera förordningsprocessen användes

olika verktyg som AWS tillhandahåller och så små förändringar i dessa verktyg som

möjligt. Detta för att minska på utveckling samt hålla lösningen så flexibel som

möjligt. Det finns många designalternativ men en lösning som är flexibel och har lätt

översikt valdes. En överblick av lösningens alla delar och arkitektur är illustrerad i

Figure 19.

Lösningens första verktyg är AWS Security Hub, som är en samlingshub för krav ur

olika förordningsramverk. Security Hub sammanfogar och samlar andra verktygs fynd

och information om resurser som inte följer krav från olika förordnings ramverk. Ett

av de verktyg som Security Hub använder är AWS Config som använder sig av Config

Rules (konfigureringsregler) som är funktioner som övervakar förändringar av

konfigureringar i resurser. AWS Security Hub använder dessa regler för att jämföra

resurserna mot krav som ställs av de förordningar man har valt att använda. Om en

resurs inte följer ett krav, skapas ett fynd som visas till användaren med indikationer

på allvarlighet och vilket krav resursen bryter emot, denna information sparas också i

ett JSON-objekt.

För att kunna använda sig av dessa fynd använder sig lösningen av AWS CloudWatch,

som kan monitorera och reagera på fynd och information från flera verktyg i AWS. Ett

av dessa verktyg är Security Hub och dess fynd. Lösningen använder sig av en tjänst i

Isak Jansson

82

AWS CloudWatch som heter CloudWatch Events för att fånga upp dessa fynd och kan

filtrera ut fynd till enbart de implementerade kraven i lösningen. Dessa fynd skickas

sedan vidare som information i ett JSON-objekt till nästa verktyg som är AWS

StepFunction. AWS StepFunction är ett verktyg som hanterar arrangeringen av

serverlösa funktioner, men hjälp av verktyget kan man skapa kedjor med funktioner

och hantera olika händelsebaserade exekveringar. Med hjälp av detta verktyg kan

lösningen reagera på olika krav, filtrera ut dem, samt starta en AWS Lambda-funktion

som försöker åtgärda resursen som inte följer kraven.

En AWS Lambda är en funktion som serverlöst kan exekvera kod baserat på en

händelse, vilket i detta fall är ett fynd som skickats från Secuirty Hub via AWS

CloudWatch till AWS StepFunction som startar funktionen. Koden i Lambda-

funktionen försöker sedan automatiskt åtgärda resursens konfigurering så att resursen

inte bryter mot ett förordningskrav. Resultatet skickas sedan vidare till nästa Lambda-

funktion i AWS Stepfunktion och koden evaluerar om resursen gick att åtgärda eller

inte. All information samlas ihop och beroende på resultatet av åtgärden formateras ett

meddelande på olika sätt i JSON-format som skickas vidare till en ”Amazon Simple

Notification Service” (SNS) kö. SNS är en meddelandeservice som kan hantera olika

meddelandetyper och olika kösystem för dessa meddelanden. En Lambda-funktion

lyssnar på denna kö och startar en exekvering av kod så fort ett meddelande skrivs till

kön. Lambda-funktionen formaterar om informationen till ett format som kan skickas

till en så kallad Webhook, i detta fall en webbadress som kan hantera inkommande

webbegäran i Microsoft Teams. Detta resulterar i en notifiering och ett meddelande i

en chattkanal i applikationen Microsoft Teams som en användare sedan kan ta del av.

Hela denna process är automatisk och användaren behöver inte göra något förutom att

reagera på icke-åtgärdade resurser, ifall lösningen inte klarade av att hantera dessa.

Detta möjliggör att man kan skapa kod för att åtgärda återkommande problem med

resurser som inte följer förordningskraven och på detta sätt minska återkommande

arbete.

Resultat

Konceptvalideringen och lösningen implementerades i en aktiv AWS-miljö och konto,

samt testades en tid med de implementerade förordningskrav som skapades. Lösningen

Isak Jansson

83

fungerade som den skulle och åtgärdade resurser som inte följde kraven. Dock stötte

man på problem med användare som inte förstod varför vissa resurser slutade fungera

som tänkt, samt att lösningen inte tog hänsyn till resurser som behöver bryta mot krav

på grund av olika orsaker. En nyttig förbättring skulle vara att meddela resursskaparen

om omkonfigurering av resursen, så att användaren kunde vara medveten om

förändringen. Dessa problem kunde inte lösas under konceptvalideringen men det

hindrar inte heller lösningen från att fungera. Ett fullskaligt test på flera AWS-konton

gjordes inte heller, vilket ger en ofullständig bild av hur lösningen skulle fungera i en

stor miljö. Dess ackumulerade kostnad kan inte heller förutspås. Kostnaden av

konceptvalideringen var minimal med de tester som gjordes.

Lösningen togs emot som en positiv förbättring av arbetet som utförs med förordningar

och krav när det gäller flytt till en publik molntjänst. Lösningen visar också möjligheter

och flexibiliteten av att utnyttja verktyg i en publik molntjänst för att underlätta och

automatisera arbetet med förordningsramverk och dess krav.

Isak Jansson

84

10. References

[1] K. Julisch, “Security compliance: The next frontier in security research,” Proc.

New Secur. Paradig. Work., pp. 71–74, 2009, doi: 10.1145/1595676.1595687.

[2] P. Kirby, “Managing Inventory, Change, and Compliance with AWS Config |

Pluralsight.” [Online]. Available: https://www.pluralsight.com/courses/aws-

config-inventory-change-compliance. [Accessed: 31-Mar-2020].

[3] R. Filepp, C. Adam, M. Hernandez, M. Vukovic, N. Anerousis, and G. Q.

Zhang, “Continuous compliance: Experiences, challenges, and opportunities,”

Proc. - 2018 IEEE World Congr. Serv. Serv. 2018, no. Cc, pp. 21–22, 2018,

doi: 10.1109/SERVICES.2018.00029.

[4] J. Jarvinen, D. Hamann, and R. van Solingen, “On integrating assessment and

measurement: Towards continuous assessment of software engineering

processes,” in International Software Metrics Symposium, Proceedings, 1999,

pp. 22–30, doi: 10.1109/metric.1999.809722.

[5] R. V O’connor, P. Elger, and P. M. Clarke, “Continuous Software Engineering-

A Microservices Architecture Perspective,” 2017.

[6] T. Karvonen, “Continuous software engineering in the development of

software-intensive products towards a reference model for continuous software

engineering Teemu Karvonen,” 2017.

[7] B. Fitzgerald and K. J. Stol, “Continuous software engineering: A roadmap and

agenda,” J. Syst. Softw., vol. 123, pp. 176–189, Jan. 2017, doi:

10.1016/j.jss.2015.06.063.

[8] Ansible, “WHITEPAPER CI/CD with Ansible.” [Online]. Available:

https://www.ansible.com/hubfs/pdfs/ContinuousDelivery-with-Ansible-

WhitePaper.pdf. [Accessed: 31-Mar-2020].

[9] M. Artac, T. Borovssak, E. Di Nitto, M. Guerriero, and D. A. Tamburri,

“DevOps: Introducing infrastructure-as-code,” in Proceedings - 2017

IEEE/ACM 39th International Conference on Software Engineering

Companion, ICSE-C 2017, 2017, pp. 497–498, doi: 10.1109/ICSE-C.2017.162.

Isak Jansson

85

[10] D. C. Cheng, J. B. Villamarin, G. Cu, and N. R. Lim-cheng, “Towards end-to-

end Continuous Monitoring of Compliance Status Across Multiple

Requirements,” vol. 9, no. 12, pp. 456–466, 2018.

[11] I. Amazon Web Services, “What is Cloud Computing.” [Online]. Available:

https://aws.amazon.com/what-is-cloud-computing/?nc1=f_cc. [Accessed: 30-

Mar-2020].

[12] S. Narula, A. Jain, and Prachi, “Cloud computing security: Amazon web

service,” in International Conference on Advanced Computing and

Communication Technologies, ACCT, 2015, vol. 2015-April, pp. 501–505, doi:

10.1109/ACCT.2015.20.

[13] IBM, “What is Hybrid Cloud? | IBM,” 2020. [Online]. Available:

https://www.ibm.com/cloud/learn/hybrid-cloud. [Accessed: 30-Mar-2020].

[14] ICF and Centre for European Policy Studies(CEPS), Study on the costs of

compliance for the financial sector, no. July. 2019.

[15] Center for Internet Security, “CIS BenchmarksTM FAQ.” [Online]. Available:

https://www.cisecurity.org/cis-benchmarks/cis-benchmarks-faq/. [Accessed:

08-Mar-2020].

[16] CIS, “CIS Controls,” Cent. Internet Secur., no. 7.1, 2019.

[17] PCI Security Standards Council, “Payment Card Industry (PCI) Data Security

Standard Requirements and Security Assessment Procedures Version 3.2.1

Document Changes Date Version Description Pages,” 2018.

[18] PCI Security Standards Council, “Official PCI Security Standards Council Site

- Verify PCI Compliance, Download Data Security and Credit Card Security

Standards.” [Online]. Available:

https://www.pcisecuritystandards.org/pci_security/maintaining_payment_secu

rity. [Accessed: 08-Mar-2020].

[19] I. Amazon Web Services, “About AWS.” [Online]. Available:

https://aws.amazon.com/about-aws/. [Accessed: 03-Apr-2020].

[20] I. Amazon Web Services, “Regions, Availability Zones, and Local Zones -

Isak Jansson

86

Amazon Elastic Compute Cloud.” [Online]. Available:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-

availability-zones.html. [Accessed: 07-Mar-2021].

[21] I. Amazon Web Services, “Shared Responsibility Model - Amazon Web

Services (AWS).” [Online]. Available:

https://aws.amazon.com/compliance/shared-responsibility-model/. [Accessed:

03-Apr-2020].

[22] I. Amazon Web Services, “What is AWS CloudFormation? - AWS

CloudFormation.” [Online]. Available:

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcom

e.html. [Accessed: 03-Apr-2020].

[23] “What is IAM? - AWS Identity and Access Management.” [Online]. Available:

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html.

[Accessed: 14-Feb-2021].

[24] I. Amazon Web Services, “AWS Config Developer Guide,” 2021. [Online].

Available: https://docs.aws.amazon.com/config/latest/developerguide/config-

dg.pdf. [Accessed: 21-Feb-2021].

[25] I. Amazon Web Services, “AWS Security Hub User Guide,” 2021. [Online].

Available:

https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub.pdf.

[Accessed: 21-Feb-2021].

[26] I. Amazon Web Services, “What Is Amazon CloudWatch? - Amazon

CloudWatch.” [Online]. Available:

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsC

loudWatch.html. [Accessed: 03-Apr-2020].

[27] I. Amazon Web Services, “What Is AWS Lambda? - AWS Lambda.” [Online].

Available: https://docs.aws.amazon.com/lambda/latest/dg/welcome.html.

[Accessed: 03-Apr-2020].

[28] I. Amazon Web Services, “What is Amazon SNS? - Amazon Simple

Notification Service.” [Online]. Available:

Isak Jansson

87

https://docs.aws.amazon.com/sns/latest/dg/welcome.html. [Accessed: 03-Apr-

2020].

[29] I. Amazon Web Services, “What Is AWS Step Functions? - AWS Step

Functions.” [Online]. Available: https://docs.aws.amazon.com/step-

functions/latest/dg/welcome.html. [Accessed: 03-Apr-2020].

[30] I. Amazon Web Services, “Boto3 documentation — Boto3 Docs 1.17.22

documentation.” [Online]. Available:

https://boto3.amazonaws.com/v1/documentation/api/latest/index.html#.

[Accessed: 07-Mar-2021].

[31] “amazon.aws.cloudformation – Create or delete an AWS CloudFormation stack

— Ansible Documentation.” [Online]. Available:

https://docs.ansible.com/ansible/latest/collections/amazon/aws/cloudformation

_module.html. [Accessed: 14-Feb-2021].

[32] “How Ansible Works | Ansible.com.” [Online]. Available:

https://www.ansible.com/overview/how-ansible-works. [Accessed: 14-Feb-

2021].

[33] “Best Practices — Ansible Documentation.” [Online]. Available:

https://docs.ansible.com/ansible/2.8/user_guide/playbooks_best_practices.htm

l#directory-layout. [Accessed: 14-Feb-2021].

[34] “Managing AWS Infrastructure as Code using Ansible, CloudFormation, and

CodeBuild | Programmatic Ponderings.” [Online]. Available:

https://programmaticponderings.com/2019/07/30/managing-aws-

infrastructure-as-code-using-ansible-cloudformation-and-codebuild/.

[Accessed: 14-Feb-2021].

[35] Ansible, “Ansible Tower | Ansible.com.” [Online]. Available:

https://www.ansible.com/products/tower. [Accessed: 14-Feb-2021].

[36] “About Python · HonKit.” [Online]. Available:

https://python.swaroopch.com/about_python.html. [Accessed: 14-Feb-2021].

[37] “What is Python? Executive Summary | Python.org.” [Online]. Available:

https://www.python.org/doc/essays/blurb/. [Accessed: 14-Feb-2021].

Isak Jansson

88

[38] “YAML Ain’t Markup Language (YAMLTM) Version 1.2.” [Online].

Available: https://yaml.org/spec/1.2/spec.html#id2759572. [Accessed: 14-Feb-

2021].

[39] “JavaScript Object Notation (JSON).” [Online]. Available:

https://www.ietf.org/rfc/rfc4627.txt. [Accessed: 14-Feb-2021].

[40] P. Durkin and P. Durkin, “Project final version Can PCI DSS compliance be

achieved in a cloud environment?”

[41] A. Jonathan Rau, “Continuous compliance monitoring with Chef InSpec and

AWS Security Hub | AWS Security Blog.” [Online]. Available:

https://aws.amazon.com/blogs/security/continuous-compliance-monitoring-

with-chef-inspec-and-aws-security-hub/. [Accessed: 06-Apr-2020].

[42] AWS, “Cloud Security – Amazon Web Services (AWS).” [Online]. Available:

https://aws.amazon.com/security/. [Accessed: 14-Apr-2020].

[43] AWS, “Continuous Compliance with AWS Security Hub | AWS Online Tech

Talks.” [Online]. Available: https://pages.awscloud.com/Continuous-

Compliance-with-AWS-Security-Hub_2019_0601-

SID_OD.html?&trk=ep_card-el_a131L000005v8UeQAI&trkCampaign=NA-

FY19-AWS-DIGMKT-WEBINAR-SERIES-June_2019_0601-

SID&sc_channel=el&sc_campaign=pac_2018-

2019_exlinks_ondemand_OTT_e. [Accessed: 14-Apr-2020].

[44] J. Rau, “jonrau1/ElectricEye: Continuously monitor your AWS services for

configurations that can lead to degradation of confidentiality, integrity or

availability. All results will be sent to Security Hub for further aggregation and

analysis.” [Online]. Available: https://github.com/jonrau1/ElectricEye.

[Accessed: 14-Apr-2020].

[45] J. Backes et al., “Semantic-based Automated Reasoning for AWS Access

Policies using SMT,” Proc. 18th Conf. Form. Methods Comput. Des. FMCAD

2018, pp. 206–214, 2019, doi: 10.23919/FMCAD.2018.8602994.

[46] Andrew Gacek, “How AWS uses automated reasoning to help you achieve

security at scale | AWS Security Blog,” 2018. [Online]. Available:

Isak Jansson

89

https://aws.amazon.com/blogs/security/protect-sensitive-data-in-the-cloud-

with-automated-reasoning-zelkova/. [Accessed: 07-Feb-2021].

[47] A. Web Services, “Introduction to AWS Security,” 2020. [Online]. Available:

https://d1.awsstatic.com/whitepapers/Security/Intro_to_AWS_Security.pdf?di

d=wp_card&trk=wp_card. [Accessed: 07-Feb-2021].

[48] Center for Internet Security, “CIS Amazon Web Services Foundations

Benchmark 1.3.0,” pp. 0–157, 2020.

[49] I. Amazon Web Services, “Payment Card Industry Data Security Standard (PCI

DSS) 3.2.1 on AWS Compliance Guide,” 2021.

[50] A. Web Services, “Standardized Architecture for PCI DSS on the AWS Cloud

Quick Start Reference Deployment,” 2020.

[51] Center for Internet Security, “CIS Controls Navigator.” [Online]. Available:

https://www.cisecurity.org/controls/cis-controls-implementation-groups/.

[Accessed: 21-Feb-2021].

