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Abstract

Glioma is a cancer which begins in the glial cells within the brain. The presence of
glioma tumors within the brain can cause a wide variety of symptoms, e.g. seizures,
headaches and nausea. The analysis of these tumors is a long and tedious process
yet it is essential in determining the correct line of treatment for patients whose
life expectancy ranges between a couple of years to a matter of months. Optimiz-
ing the process of diagnosing these tumors is of great interest to the medical field.
Furthermore, recent studies present new ways of categorizing these tumors by an-
alyzing the methylation type rather than grade and glial cell of origin. A possible
way of analyzing glioma tumors is found through the use of Raman spectroscopy.
The Raman spectra of the tumors contain information about the vibrations within
the molecules of the tumor material.

Machine learning is a technique which has helped in analyzing non-trivial pat-
terns and automating tasks previously thought impossible to perform with comput-
ers. The technique utilizes data to form models which have been successful to the
point of outperforming their human counterparts. It is evident that the models can
perform well in situations where tremendous amounts of data is available. Within
cancer research, the focus is on qualitative data gathering rather than quantitative.
This is because data gathering is often expensive and lacking due to a limited num-
ber of patients available for study.

In this thesis, we explain the process of analyzing the spectra extracted from the
tumors of glioma patients. The analysis is performed by sorting the spectra into
different groups which maintain minimal variance among the different frequencies
within the grouped spectra. This is done to separate tumor spectra from spectra
extracted from non-tumor material which may have been present during scanning
i.e. plastic, blood, necrotic tissue etc. We utilize machine learning methods to
group and examine the samples in detail. We also validate the analysis and pre-
processing by creating a model in an attempt to classify the tumors according to the
new categories based on the methylation types. Our findings and conclusions as to
how these methods can be utilized further for improved results are also presented as
a conclusion to this thesis.
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Chapter 1

Introduction

The mammalian brain contains so-called neurons and glial cells. Historically, it was
believed that the brain contained ten times as many glial cells as neurons, but recent
studies suggest the number of neurons is equal to the number of glial cells [1]. Glial
cells were also previously thought to be insignificant in terms of the brain’s compu-
tational functionality, only lending structural support to the neurons. Recent studies
have disputed this and suggest their contribution to the nervous system is greater
than once thought, though their actual function is still a research question. Glioma is
a type of brain cancer which manifests within the glial cells and disrupts brain func-
tions. The survivability of the cancer is extremely poor, with a life expectancy of a
few months (without treatment) to a few years depending on the patients health, the
tumor type and cancer severity; rarely do patient’s survive for longer than five years
[2, 3, 4]. Gliomas are categorized depending on their glial-cell of origin. There
are four main types of glial cells (also called neuroglia or simply glia): oligoden-
drocytes, astrocytes, ependymal cells and microglia. Oligodendroglioma originates
from oligodendrocytes, astrocytoma from astrocytes and ependymomas originate
from ependymal cells. Furthermore, astrocytoma-types may develop into glioblas-
toma multiforme (GBM), the most aggressive form of brain cancer; this may even
communicate with microglia to increase tumor growth [5]. It is also possible for
GBM to develop from other brain cells [2]. This cancer is particularly aggressive,
due to its quick reappearance in the brain, only a short period after surgery [3]. The
heterogeneity of GBM-cells further complicates the healing process, due to poor
response to targeted treatments [6].

The World Health Organization (WHO) has defined four levels (or "grades")
of cancer severity used to describe the cancer aggressiveness and tumor growth.
Grades I and II are considered low-grade and grades III and IV are considered high-
grade. Glioblastoma is categorized as a grade IV cancer [4, 7]; these grades are
used to determine an appropriate prognosis and line of treatment. A study by Vi-
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gneswaran et al. [7] suggests these grades could be divided further to better de-
scribe the features of the tumors. This suggestion is also supported by Hirose et al.
[8]. Ceccarelli et al. [9] introduce alternative subdivisions of these classes, which
show promise in expanding knowledge about glioma tumors and aid in treatment
selection. Such evaluations require in-depth knowledge about the tumor tissue in
addition to further examination of it, which may last for weeks after the tumor ex-
traction. Ceccarelli et al. define the subdivisions by six distinct classes, labeled
LGm1-6. Their analysis showed IDH mutations in LGm1-3; as the name suggests,
IDH mutations refer to mutations in the IDH1 or IDH2 genes. These mutations are
shown to be significant in a variety of cancers, including glioma [10]. These subdi-
visions are reinforced by the results produced by Vigneswaran et al. The process of
determining a prognosis and a line of treatment using the subdivisions shows great
promise in improving patient outcome.

This thesis is the result of a project whose purpose is to optimize the catego-
rization process, based on a deep learning model capable of predicting tumor-types
in a matter of minutes. The project relies on tissue from tumors extracted from 45
patients and scanned using Raman spectroscopy. Raman spectroscopy was intro-
duced by Chandrasekhara Venkata Raman and measures the vibrations of molecules
by spectral analysis. This method can be executed fairly quickly and can provide
chemical information from the spectral light. A laser emits a ray unto the tumor
tissue, causing the energy level of the molecules within to change, which in turn
changes their vibrations. These vibrations are gathered by the instrument and pro-
vide information regarding the molecular properties of the material [11, 12]. These
spectra is the data which the model uses as training and testing data. The choice of
using Raman spectra in this way is due to the method’s success in previous studies
of Raman spectra using machine learning [13, 14]. The use of Raman spectra is
further motivated by Liu et al. [15], whose work show promise for deep learning
models trained on raw Raman spectra. The advantage of this method in the context
of multilabel classification seems considerable, when compared to other machine
learning methods such as Support Vector Machines, Random Forest and K-nearest
neighbor [15].

This thesis aims to analyze the spectra extracted from all patient samples in an
attempt to automate outlier detection.We examine the samples by applying statisti-
cal methods, hierarchical clustering and K-means clustering; this produces subdi-
visions of spectra and identifies outliers. These results are compared to the results
of a criterion for finding outliers in the data (defined by the data provider). The
method most suitable for this purpose is subsequently used to remove the outliers.
Following the removal of the outliers, we present a pre-processing pipeline which
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will be used to prepare the data for machine learning applications such as Artificial
Neural Networks or Random Forests. The features which best divide the data into
the six LGm classes are extracted. These features drastically reduce the size of the
spectra which are analyzed for prognosis, which in turn reduces the examination
time. We thus aim to provide a clear way of preparing Raman spectra for machine
learning applications and provide the most important features those spectra consist
of. Suggestions for and discussion of how these methods may be improved, which
alternative methods could be tested instead and possible limitations of this project
are also presented for future consideration.

The thesis is structured as follows. Chapter 2 presents the preliminary back-
ground for the statistical methods used in the project, along with the necessary
mathematical definitions by which these methods are defined. Among these, we
discuss the notions of mean, standard deviation and analysis of variance (ANOVA).
Understanding the underlying definitions and consequences is necessary to validate
and confirm the results. Therefore, the chapter also presents the definition of su-
pervised and unsupervised learning. The formal definitions of K-means clustering
and hierarchical clustering are presented. In Chapter 3, we discuss the analysis
methods in detail, to give further understanding of the data on which this project
is based. The chapter begins by introducing the concrete shape of the data. Fea-
ture selection is applied to the data and the results are examined. The majority of
this chapter is based on the visual analysis of the outlier detection. This is done
by applying the statistical methods and the clustering methods to the samples. The
results of each method are analyzed in comparison to the criterion defined by the
data provider. This is done in great detail to form an argument for, or against, the
method under analysis. The chapter ends by removing the outliers using the optimal
method and performing feature selection once more on the data devoid of outliers.
In Chapter 4, we present our suggestion as well as arguments for the pre-processing
pipeline to prepare the data for machine learning. A Neural Network is created
and trained on the curated data. The performance of the architecture is measured
and presented. The thesis is concluded in Chapter 5, where we discuss improve-
ments to our methods and suggestions for alternative solutions to the problem at
hand. These suggestions extend to the feature selection and pre-processing stages
for future study.
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Chapter 2

Preliminaries

In this chapter we review the concepts on which this thesis is based. We first cover
the statistical concepts and unsupervised methods necessary for understanding the
analysis performed in Chapter 3. We then proceed by reviewing common concepts
and specific methods within machine learning which is the central theme in Chapter
4.

2.1 Statistics

In this section we discuss the basic statistical concepts required for understanding
the methods used in this thesis. We first explain the mean and the standard deviation.
The mean is a value used to describe the average value of a population. A population
is the term used to describe the complete collection of elements in some context e.g.
all people alive, all numbers in an interval etc. The mean is an important concept in
statistics as it is often used as a characteristic of the elements found in the population
under analysis when its elements are quantitative [16]. The mean is calculated by
the sum of each element divided by the number of elements in said population. The
mean µ of a population of n numbers L = {L1, ...,Ln}, is calculated as expressed in
formula (2.1).

µ =
n

∑
i=1

Li

n
(2.1)

The mean of a population is often used in association with the standard devia-
tion. The standard deviation is the square root of the variance of that population.
The variance is an expression for the scaled summed squares of differences from
the mean of the entire population. Calculating the square root then produces a value
expressing the dispersion of elements within the population around the mean. The
variance is calculated by measuring the summed squared distance between each el-
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ement within the population and the mean, divided by the number of elements in the
population to scale the sum. In the case where the entire population is impossible
to analyze or unknown, samples are extracted from the population (i.e. subgroups
of elements randomly taken from the population). The sample variance changes
slightly form the population variance; it divides the summed squares of differences
by the number of elements in the sample subtracted by one. Subtracting the original
denominator by one is called "Bessel’s correction". The correction is based on the
fact that, if the population mean is unknown (as is often the case when samples are
gathered), then the mean used in calculating the variance will only be an estimation.
Subtraction by one is performed to avoid bias towards the sample mean and get an
unbiased estimation of the population variance [17, 18]. The standard deviation σ

of a sample is thus calculated as expressed in formula (2.2).

σ =

√︄
∑

n
i=1(µ −Li)2

n−1
(2.2)

2.1.1 The standard deviation test

The mean and standard deviation can be used to detect outliers in a sample of data
points drawn from an unknown population. The Gaussian distribution (also called
the normal distribution) is used in association with the mean and the standard devi-
ation. If the frequency which elements appear within a sample are more likely to be
close to the mean than far away from it, we say that the elements within that sample
are normally distributed. If an element differs from the mean by more than three
standard deviations, the possibility of that element not belonging to that distribution
is extremely high. Such elements, which likely do not belong to the population,
are called outliers. The method which detects outliers by measuring the distance
between each element and the mean is referred to, in this thesis, as the standard
deviation test (SDT). The test assumes that elements within the collection are nor-
mally distributed with some mean µc and some standard deviation σc (where c is
the collection from which they are measured). By computing the z-score of the el-
ements, the data is transformed into a standardized form through standardization.
Z-score standardization subtracts the mean from all elements in the collection and
divides the difference by the standard deviation, as expressed in equation (2.3) [19].

Li −µc

σc
(2.3)

Following standardization, the entire sample will have a mean of zero and a
standard deviation of one. Each element in the sample can then be measured using
the standard deviation (one) as unit; outliers can then be discarded from the sample
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by removing elements which have an absolute value of 3 or higher.

2.1.2 The interquartile range method

An alternative method suited for outlier detection is the interquartile range method
(IRM). IRM is based on analyzing the sample by its median, which is the center ele-
ment of the sorted sample. It is applied by sorting the sample elements in ascending
order and organizing the sample into four percentiles, each percentile containing
25% of the sample. These percentiles are called the q25, q50, q75, q100 percentiles.
Two consecutive quartiles center around 50% of the sample contents, the 50% in
the center is referred to as the interquartile range. IRM requires two values from the
sample: the highest value of the 25th percentile and the highest value of the 75th
percentile. The former value is gained by taking the biggest value of the q25 first
elements from the sorted collection, where q25 is the first 25% of the number of
elements in L (calculated by 0.25 ·n). The latter value is gained in a similar fashion,
with the exception that the highest value is taken from the first 75% of the sorted
data. Two cut-off points are then defined, by multiplying each of the two values by
a constant k (which is called the cut-off constant). Elements can then be labeled
as outliers if those elements fall below the lower cut-off point or above the higher
cut-off point. [20, 21, 22].

2.1.3 Analysis of variance

The analysis of variance (ANOVA) is a method for statistical analysis developed
by Ronald Fisher to analyze the difference among sample means in a collection of
samples. It is based on the null-hypothesis stating that the sample means of two
or more samples are the same. The analysis then yields a F-value and a p-value
which are used with the F-distribution to accept or reject the null-hypothesis. The
analysis assumes the population samples drawn are normally distributed and that
the samples are independent of each other. It also assumes the standard deviations
and variances are roughly equal among the samples [23].

The analysis is performed by calculating the mean of each sample. The summed
square of differences from each mean are then calculated for their respective sample,
the result is then subtracted by the squared sum of the elements within the sample
divided by the number of elements in said sample. This calculation for sample S is
formally expressed in equation (2.4), where µS is the mean of sample S.

∑
s∈S

(s−µS)
2 − (∑S

s s)2

|S|
(2.4)
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This is performed once for all samples drawn from the population, the results
are then summed together into a sum of sample sums (SS). The calculation is also
performed once on the total collection of all elements from all samples, the result is
stored in the total sum of sample sums (SST). The total sum of squares is the sum
of SS and the sum of squared distances from each sample mean to the total mean
(SSM). SSM is therefore calculated by subtracting SST and SS. The analysis also
requires divisions by two values called the degrees of freedom. They are calculated
as follows: d1 is the number of samples subtracted by one and d2 is the number of
elements in the total collection subtracted by the number of samples. The F-value
is calculated by a fraction of two fractions. Let K1 be the fraction SSM

d1
and K2 be

the fraction SS
d2

, the F-value is defined as expressed in formula (2.5).

F =

SSM
d1
SS
d2

=
K1

K2
(2.5)

The quotient yielded by the fraction in formula (2.5) can then be inserted into a
pre-calculated table of the F-distribution using the degrees of freedom to yield the
p-value. A small p-value (i.e. lower than 0.05) indicates that the null-hypothesis
may be rejected with relative certainty whereas a high p-value indicates the null-
hypothesis holds and should be accepted with relative certainty [24].

2.2 Machine Learning

Machine learning is the practice of computing models for relationships between sets
of data. The field has garnered significant interest within academia and industry
alike due to the promising results in applications for which deterministic algorithms
have proven difficult or impossible to make. Examples of such applications are
computer vision, natural language processing and personalized advertising, to name
a few [25, 26, 27]. There are two main paradigms for learning: Supervised learn-
ing (using labeled data to approximate models) and unsupervised learning (finding
patterns within the data itself).

Models are used to great length within many scientific domains. In the context
of machine learning, a model can be seen as a data structure made out of constant
parameters combined with an algorithm which utilizes the data structure to produce
predictions given an input vector (the input can also be in the form of a multi-
dimensional matrix).

The model can be represented mathematically as a collection of structures in the
form of vectors or matrices, the elements of which are referred to as parameters. A
model can consist of learnable parameters θ and non-learnable parameters (often
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generated by stochastic initialization if used). The model computes a function f

to yield a prediction y by applying the algorithm to the parameters given an input
example x (which can be a vector or a matrix) drawn from the data set X . Let the
dimensionality of the input x be equal to the dimensionality of θ . An example of
a model prediction, where the algorithm produces predictions through addition, is
given by formula (2.6).

y = x0θ0 + x1θ1 + ...+ xnθn (2.6)

Machine learning then, is the practice of changing (also known as tuning) θ by
introducing small changes to the elements within θ . This is done to minimize a loss
function which computes the error (or loss) given y. The process of changing θ is
known as the training process and is central to machine learning.

In the training process for supervised learning, the data gathered for the model is
separated into three sets. These sets are referred to as the training set, validation set
and test set. They are randomly collected samples from the common data set such
that the intersection between any two sets is empty. The purpose of the training
process is to train the model on the training data and use the validation and test sets
as a means to validate the model performance on data not encountered during the
training process. Supervised learning requires that the examples used have a label
which the model tries to predict (data which possess labels are called labeled data).
We say that a model generalizes well to the data if the training process allows the
model to perform well on unseen data. If the model manages to perform well on the
training set but fails to generalize, the model is said to overfit to the data.

Unsupervised learning is a learning paradigm which does not rely on the use of
labeled data. Instead, the paradigm focuses on organizing the data in a way that min-
imizes the loss function. Predictions can then be performed by evaluating the way
the data has been organized by some method related to the problem context. The
problem context is usually framed by two problem categories. These categories are
regression and classification. Regression is the task of predicting continuous values
given either continuous or discrete data i.e. predicting stock prices given informa-
tion about the current economical situation or predicting the number of patients in a
hospital during a pandemic given the density of the population. Classification aims
to group different examples into categories (or classes) i.e. predicting whether an
image contains a dog or a cat or which category a given tumor belongs to. Both
supervised and unsupervised learning are used in this project.
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2.2.1 K-means Clustering

Clustering is an unsupervised learning method whose primary use is in grouping
data into sets. In this thesis we consider the K-means clustering algorithm. The
following is a formal definition of K-means clustering as defined by MacQueen
[28]. Given a set En of n-dimensional points (where n ∈N) and a desired amount of
partitions k of En, partition the elements of En into k sets. The partitions are stored
in a superset S such that S = {S1,S2, ...Sk}. The partitioning of En is performed by
randomly initializing k n-dimensional points as randomly selected points within En,
these are the initial clusters. We define the set of clusters V with elements v, where
vi is the i:th cluster center and i ∈ [1,k]∩N. The partitioning of the elements x ∈ En

into their respective partition Si is performed by computing the closest cluster center
for all elements in En. Let Ti where i ∈ [1,k]∩N be the set of elements x ∈ En such
that the distance from the element to the relevant cluster center is minimal; Ti is
defined by formula (2.7).

Ti = {x : x ∈ En|(|x− vi| ≤ |x− v j|)}( j ∈ [1,k]∩N) (2.7)

For centers that share equal distance to any given x, the cluster with the smallest
index is chosen as the containing set. This is performed by iteratively defining Si as
the intersection of Ti and the points which are not in any prior partitioned sets i.e.
for S j where j < i. This is denoted by the set complement Sc

i for all elements not in
Si. Let S1 be defined by T1, then the partitions Si ∈ S for i ∈ [2,k]∩N are defined by
formula (2.8).

Si = Ti ∩
(i−1)⋂︂
j=1

Sc
j (2.8)

A consequence to this definition is that outliers have a potential to drastically
change the quality of the clustering outcomes [29]. To remedy this and the stochas-
tic nature of the initialization process, the method is run several times on the same
dataset, yielding the optimal solution from those runs. This does not guarantee
the best solution for the problem, but the solution is approximated. The problem
K-means clustering attempts to solve is proven to be NP-hard [29, 30] but the algo-
rithm itself has a time complexity of O(n2) [31].

2.2.2 Hierarchical clustering

Hierarchical clustering is a deterministic clustering method. Each cluster formed
is based on the entire dataset, in contrast to K-means which approximates clusters
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by performing small changes to the cluster centers. The method produces clusters
by iteratively combining the closest clusters according to the given linkage criterion
(defined in section 2.2.2.2). The two primary strategies for forming clusters are
agglomerative and divisive. Agglomerative clustering initializes one cluster for each
data point and combines them in a hierarchy according to the linkage criterion until
all clusters are part of the hierarchy. Divisive strategies initializes one universal
cluster for all data points and proceeds to separate the points into distinct clusters
according to the linkage criterion. The method proceeds until all data points are
separated to their own cluster within the unifying hierarchy. The project described
in this thesis uses the agglomerative strategy. All strategies rely on specific distance
metrics and linkage criteria [32].

2.2.2.1 Distance metrics

Let u and v be vectors of the same dimension n ∈ N. The Euclidean distance (also
called L2-distance) metric can be used to measure distance between the vectors in
Euclidean space. The Euclidean distance between u and v is defined by formula
(2.9).

d(u,v) =

√︄
n

∑
i=1

(ui − vi)2 (2.9)

The Manhattan distance (also called L1-distance) metric is also a viable alter-
native, if the distance is to be measured in blocks. The distance is akin to finding
a shortest path among blocks and is therefore calculated as expressed in formula
(2.10).

d(u,v) =
n

∑
i=1

|ui − vi| (2.10)

Cosine similarity measures similarity between vector angles and suits situations
where certain vectors are expected to be similar. Should the vectors be sizable in
terms of dimensionality, this method will yield varying results, especially if the
elements have vary significantly in each dimension. It is calculated as expressed in
formula (2.11).

d(u,v) =
∑

n
i=1 uivi√︂

∑
n
i=1 u2

i

√︂
∑

n
i=1 v2

i

(2.11)
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2.2.2.2 Linkage Criteria

In order to measure distance between clusters it is essential to know between which
points the distance should be measured, since clusters often consist of several points.
Linkage criteria describe the method for determining how the distance metric will
be applied. In this project, we use the library SKlearn and the already defined meth-
ods within it to perform our analyses; the following criteria are therefore the only
focus for this subsection. SKlearn defines four criteria in the documentation: Single
linkage, complete linkage, average linkage and ward linkage [33]. Depending on
which criterion is applied, the results may differ considerably.

Single linkage goes through each pair of clusters measuring the distance among
all points within one with respect to the other. The distance between these clusters is
determined to be the distance between the two closest points. Let U be the elements
in the first cluster and V be the elements of the second. The distance between the
first and the second cluster is defined formally in formula (2.12).

d(U,V ) = min
(u,v)∈U,V

(d(u,v)) (2.12)

Single linkage tends to produce trivial results, forging a hierarchy in a chain
where individual elements slowly merge with the bigger cluster. In contrast, com-
plete linkage considers the largest distance between two points for every pair of
clusters. The distance between two clusters then becomes the distance between the
points which are the furthest apart, formally expressed in formula (2.13).

d(U,V ) = max
(u,v)∈U,V

(d(u,v)) (2.13)

By considering the largest possible distance between two clusters, this crite-
rion bypasses the setback of single linkage, allowing more clusters to form before
merging into one unifying cluster.

Average linkage calculates the average between all elements for every pair of
clusters and merges the ones possessing minimal average distance. It is formally
described by formula (2.14).

d(U,V ) =
1

|U ||V | ∑
u∈U

∑
v∈V

d(u,v) (2.14)

Ward linkage represents distance by how much the summed square would in-
crease by merging them. The method aims to merge the clusters such that the within
cluster variance is minimal. Let ca be the center of cluster a, then ward linkage is
expressed formally by formula (2.15) [34].
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d(U,V ) =
|U ||V |

|U |+ |V |
||cU − cV ||2 (2.15)

2.2.3 Feature Selection

In many cases, the data available contains numerous features; e.g. different frequen-
cies on a spectrum, which often helps to build sufficient classifiers, as the model may
find non-trivial patterns among the features. To avoid expanding the dependence on
large datasets and to minimize the computation time, it is often necessary to rid the
data of certain features. Ideally, the features selected for removal are those which
provide the least information or are completely uncorrelated with the subject under
study. An example for such a feature would be the color of someones clothes corre-
lated with the chances of said person seeing a squirrel on that day. In other words,
features are removed if they possess minimal correlation to other features or lack
correlation entirely [35]. Features that possess the necessary expressive information
are not always trivial, and there are several ways in which they may be found. In this
project we exclusively use one form of feature selection with the SKlearn library.
The SelectKBest method is a method which ranks features by their significance ac-
cording to some scoring function. In this project, we use the f-classif method to
score the features in the data set. The method computes the F-value using ANOVA
for each feature in the data provided, the features are then sorted according to the
F-value after which, SelectKBest returns the k features with the highest score.

2.3 Deep Learning

Deep Learning (DL) is part of machine learning and concerns the use of massive
models. DL is commonly used in association with Artificial Neural Networks (or
simply Neural Networks) which have been used to great success in classification and
regression tasks alike. In this section, we review the preliminary methods central to
Neural Networks in the context of DL. The concepts of activation functions, layers
and optimizers are covered in context of what the project requires.

2.3.1 Neural Networks

Neural Networks are machine learning models which have been used to great suc-
cess during the 21st century; in no small part due to the increase in computational
power over the past decade. With the use of Neural Networks, several fields includ-
ing Natural Language Processing, Encoding and Image classification have under-
gone revolutionary leaps in performance regarding optimization due to the predic-
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tive power of these networks [36, 37, 38, 39]. At the same time they are heavily
criticized for their complexity, yielding a structure much more akin to a so-called
"black box" than a reliable and deterministic method for prediction. This complex-
ity is due to numerous different structural typologies available at present and an
awesome number of learnable parameters [40]. A consequence of this is hard skep-
ticism regarding the correctness of their functionality within practical use. While
these models have shown great promise when compared to their human counter-
parts, the question remains whether or not perfect performance can be yielded from
the constructed models.

A Neural Network consists of a set of learnable parameters Wn, n = 1, ...,k for a
model possessing k layers. These parameters are commonly referred to as weights
and are matrices with arbitrary dimensionality, with a set number of parameters for
each element in the input x. The first set of weights have one dimension set to the
shape of x and the other shapes are chosen according to the size of the layers spec-
ified by the user. The last set of weights Wk has the size of the expected output
signal i.e. the number of different categories available in the context of classifica-
tion. The layers denote the size of the different shapes the input is transformed into
as the input propagates through the architecture. The input is propagated through
the architecture via the dot product of the weights and the layer signals, yielding a
new vector of shape ln. Layers can also be convolutional, meaning they are multi-
dimensional structures which can be used in the context of image classification and
Natural Language Processing, where input can be read in sequences, rather than gi-
ant data structures. This is managed by initializing smaller kernels which are able to
compute signals from the input by only observing the defined size, they move over
the entire input by steps called strides after which a pooling layer is used to sum-
marize the final layer signal. Between each transformation, an activation function is
used to transform the signal further in a non-linear fashion. Each layer transforma-
tion fn is then the yielded signal from the activation function given the dot product
between the current and preceding layer. The signal of layer li where 1 < i ≤ k is
then the result of the activation function σ of the dot product of the preceding layer
signal li−1 and the weights Wi. This layer function is denoted by the output of the
nested function call of all functions f0, f1, ... fi of input x as expressed in formula
(2.16) [41].

fi( fi−1(... f1(x))) = li = σ(Wi · li−1 +bi) (2.16)

The variable bi is the bias term for the activation. Its inclusion allows the acti-
vation curve to be moved along the x-axis. This shift in position of the activation
allows the model to further change its own behavior through the learning process.
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It avoids bias towards the y-intercept of the activation function.

2.3.2 Activation functions

Activation functions are used in neural networks to transform the input in a non-
linear fashion. The function can be any function on numerical elements, the only
requirement is that it must be derivable for all possible inputs. The functions usually
transform the signal to be in a certain interval such as the hyperbolic tangent func-
tion (tanh) or the sigmoid function σ . The sigmoid function was originally used
due to the similarities with the activation of biological neurons. The "s"-shaped
curve of the function transforms any signal to the interval [0,1]. It is comparable to
tanh, which transforms signals into the interval [−1,1]. The functions are formally
expressed in formula (2.17) and (2.18), respectively.

σ(x) =
1

1+ e−x (2.17)

tanh(x) =
ex − e−x

ex + e−x (2.18)

Choosing an activation function depends on what range the user wants the sig-
nals to fall into. Sigmoid and tanh work sufficiently well for many models, giving
promising results for many different tasks within DL. One flaw is that they are com-
putationally expensive to calculate. The rectified linear unit (ReLU) is an activation
function which is easily computed for many elements without the necessity for sig-
nificant amounts of computational resources. The ReLU function returns the input
itself if the input is greater than zero, and zero otherwise. The derivative of ReLU is
similarly efficient to compute, the derivative is one for input greater than zero, and
zero otherwise. The function is shown to outperform sigmoid and tanh as activation
function in many cases, which has promoted its use in several applications. The
drawback of ReLU is the derivative of 0 for signals of zero and below. The deriva-
tive is used during the training process to introduce changes to the model. With
ReLU, the activation signal will become zero if the signal is smaller than zero. The
neurons which suffer from this problem are referred to as "dead", since the weights
used for their activation always bring the signal to or below zero. A possible fix
for this is the leakyReLU function, which introduces a slight slope to the ReLU
curve for values below zero. The ReLU function may then be defined through the
leakyReLU function with a slope of zero for signals below zero. The derivative of
leakyReLU then becomes one for values greater than zero, and a small real number
for values below zero [42, 43].

The final activation function introduced in this section is the softmax function.
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Softmax is a method which transforms the signal in the output into a probability
distribution i.e. scales the signals according to the maximum element and trans-
forms the data to have a sum of one. This is done using Euler’s constant e as base,
dividing e raised to the power of each element in the input signal by the sum of all
exponents. This is formally expressed in formula (2.19) [44].

σ(x)i =
exi

∑
k
j=1 ex j

(2.19)

2.3.3 Regularization

Regularization methods are used during the training process to aid in generaliza-
tion for Neural Networks. One such method is dropout, which assigns a dropout
rate to specifically selected layers. Dropout randomly reduces signals of individ-
ual neurons in the selected layers to zero which prevents the model from enforcing
connections which become heavily affiliated with certain types of predictions. This
is especially important in large architectures where layers can consist of hundreds
of neurons where strong reinforcements are easily established [45]. Gaussian noise
may also be added to all signals in any layer to shift the signals in them sporadi-
cally. However, this method requires some knowledge about the range of the signals
within the layers, as large additive noise can remove any necessary information from
the input which affects the gradient significantly. The model will learn to reduce
dependency on noise during training, provided the noise is not "destructive". For
example, adding Gaussian noise drawn from a normal distribution with a standard
deviation of five to signals returned by the sigmoid activation function. This will
shift the distribution of signals which removes valuable signal information. Batch
normalization is a regularization technique which normalizes the change applied to
Wn during training over several batches of input and helps regularizing the model
[46].

2.3.4 Optimization

Neural Networks have many usable loss functions depending on context. In the
context of classification with multiple categories, categorical cross-entropy is com-
monly used to measure error between the prediction of the network (usually pro-
duced with softmax or sigmoid activations) when the prediction is meant to catego-
rize the input. The cross-entropy loss is calculated as the sum of negative elements
of the true label yt multiplied by the logarithm of the predicted label y. Let k be
the number of elements in the output signal y, the cross-entropy loss is formally
expressed in equation (2.20).
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−
k

∑
i=1

yt
ilog(yi) (2.20)

Equation (2.20) measures the entropy between two distributions, entropy being
the loss of information between two different distributions. The equation assumes
the values within y are elements of a probability distribution, i.e. the sum of the
elements within y equals one. The negation of the logarithm is used to bring the
elements of the sum to a positive scope. This ensures the loss will be positive, since
all elements in y and yt are in the interval [0,1]. The sigmoid function may also be
used in association with cross-entropy, as the values will be transformed into the
zero-to-one interval. Other activation functions such as tanh and ReLU run the risk
of bringing elements in the sum to the negative scope or undefined (as the logarithm
is undefined for values less than zero) [47, 48].

The computed loss between the data labels and the predicted labels is then used
by the optimizer to change the learnable parameters. The backpropagation algo-
rithm calculates the partial derivatives of the computed loss with respect to each
learnable parameter. The collection of the derived parameters are called the gra-
dient. The gradient is scaled by the learning rate (usually a value less than 0.01)
defined in the optimizer, this allows for small changes to each parameter which
allows the model to approach the minimum of the loss function at a speed propor-
tional to the learning rate. Using the gradient in this way is called gradient descent
and it is the common method of learning all optimizers use. Adam is an optimizer
introduced by Kingma and Lei Ba [49] which has proven to be efficient in contrast
to other optimization methods such as Gradient Descent, AdaGrad and RMSprop.
Adam uses an adaptive learning rate to approach the minimum of the loss function.
Adam requires four different parameters for the algorithm to run. These are the
learning rate α , stochastic decay rates β1 and β2 and a small constant ε used to
avoid division by zero for the update equation. The algorithm described by Kingma
and Lei Ba also requires two vectors m and v used to describe the "moment" of
the gradient and the squared gradient respectively (initialized as zero vectors). The
gradient update at timestep t is expressed by the following formulas:

t = t +1
gt = ∇Lt(Wt−1)

mt = β1 ·mt−1 +(1−β1) ·gt

vt = β2 · vt−1 +(1−β2) ·g2
t

m′
t =

mt
1−β t

1
v′t =

vt
1−β t

2
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Wt =Wt −α · m′
t√

v′t+ε

Each vector at timestep t uses the values for the "moments" at the previous
timestep t −1. Each "moment" is then updated using the previous timestep and the
stochastic decay rates. Each "moment" vector is normalized by element-wise divi-
sion of the "moment" vectors and their respective decay rates to the power of t. β1

and β2 are initialized to be 0.9 and 0.999 respectively, this ensures that subtraction
by one will maintain the relative scope between the "moment" vectors and their
corrected counterparts. The parameters themselves are then updated by subtracting
the current parameters by alpha multiplied by the decay rate (calculated by the frac-
tion of the "moment" vectors with the ε parameter added to the denominator). The
"moment" vectors then give each feature a unique learning rate which accelerates
training.
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Chapter 3

Data Exploration

Machine learning assumes that the data possess sufficient characteristics to approx-
imate the sample population from which it was extracted. Therefore, we examine
the data in an attempt to remove outliers and to determine if the data is sufficient
for classification. In addition, in a particular case study, certain tumors have been
shown to be heterogeneous [50]. This can be problematic for a classifier, as hetero-
geneous samples lack in shared characteristics.

In this chapter, we examine the data available to the project. In particular we
investigate how the Raman spectra have been prepared, as their processing is es-
sential for analysis. We undergo several steps as follows. First, we describe the
mathematical representation of the samples. Since the number of samples is rather
small for learning, we explain how each sample may be separated into individual
spectra; this separation yields a drastic increase in the number of available train-
ing examples. Second, we explain how to balance the data; an unbalanced dataset
would likely introduce bias during learning, rendering the model’s desired predic-
tive capabilities uncertain. We achieve this by duplicating samples belonging to un-
derrepresented categories in the dataset. Furthermore, this balancing is performed
to maintain majority and minority categories, thus retaining some distributional in-
formation from the original dataset. The main goal of our analysis is to analyze the
data using different methodologies for detecting spectra which have been altered
due to non-tumor material affecting them (henceforth called outliers). As a start-
ing point for our analysis, we have defined the frequency criterion. The criterion
is used to separate tumor spectra from outliers in each sample. The outliers cap-
tured by this criterion are compared to outliers detected by other outlier detection
techniques such as the Standard Deviation Test (SDT) and the Interquartile Range
Method (IRM). The unsupervised machine learning methods K-means clustering
and hierarchical clustering are also used to detect outliers in each sample. The re-
sults from each method are then compared to select the one which best separates
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outliers from the tumor spectra, after which the data is curated by that method.
Another point of interest in this project is the identification of representative

frequencies within the spectra. Each spectrum belongs to a tumor which can be cat-
egorized by six different categories. Our hypothesis states that certain frequencies
should be sufficient in determining which category the tumor belongs to. Feature
selection is used for this purpose, representing each frequency within the spectra as
distinct features. However, in order to extract such features reliably, the data must
be devoid of outliers. Should outliers exist within the dataset, the features given by
the methods used will be influenced by the outliers. To prepare for this, the data
is plotted for visual inspection. It is confirmed by the data provider that the major-
ity of samples include outliers. These outliers are influenced by a variety of other
materials found on the tissue’s surface, e.g., spectra of blood drops, plastic which
may be reflected form underneath thin tissue or necrotic tissue, which is shown to
affect the spectral signal. Using the extracted features, a model can be trained on
the data faster, this is essential, as many machine learning methods require a sig-
nificant number of computing resources and data. The features are extracted before
and again after the removal of problematic spectra. This is done to compare the
impact of the outliers in feature selection. We expect the features yielded to vary
significantly for different subsets of the available data. Feature selection is suited
for cases where different subsets of the data can be described by the same same
set of features extracted from part of the data set. In this particular case, should
the extracted features vary tremendously among different subsets, the model may
accidentally be trained to disregard features relevant for unseen data. This would
yield a model unfit for use in a medical environment, where the predictions must
rival that of trained professionals.

3.1 Data Representation

The data consists of the Raman spectra extracted from the tissue of glioma tumors
from 45 patients. Multiple samples of tissue were extracted from the same patient in
some cases, yielding several samples for the respective patient. To maintain separa-
tion among the patients, the samples are sorted by their respective patient of origin.
This is necessary due to the heterogeneity of each tumor. The data will be separated
into three separate datasets. These sets are referred to as the training set, the valida-
tion set and the test set. Due to the expected heterogeneity, all datasets will consist
of unique patients to avoid scenarios in which the model overfits to a patient’s tumor
sample. This structure also allows for easier handling of the number of patients in
each sample category, allowing for analysis on each category separately from the
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others.
There is also large variation with regard to the sample shape within the data.

Each sample is a three-dimensional array of shape (w,h,1738) where w and h are
the width and height of the sample, respectively. This formalization is necessary,
as width and height have non-zero variance among different samples. The shape is
a result of how the tissue was scanned. In each case the tissue was placed inside
the Raman spectrometer and scanned successively from side to side. This makes
it possible to display each sample as an image, by substituting the third dimension
(denoted above by 1738) with a color value denoted by which category the spectra
belong to. The number 1738 is constant through all samples and represents the
length of a modified Raman spectrum. The spectra has been modified by the data
provider; the data consist of spectra resulting from a linear function on the extracted
spectra. This is done to omit unnecessary frequencies and allow focus on parts
of the spectra which we believe are sufficient for this project. Furthermore, each
element inside these arrays is a real number without clear bounds. The largest
absolute element found within the complete dataset is 79427.0625. Some values
are negative, which is confirmed by the data provider to have significance for the
project’s purpose. The project aims to prepare these spectra for use in machine
learning methods. Predictions should be performed on individual spectra extracted
from the dataset. We choose this strategy since each spectrum is independent of
all other surrounding spectra, ideally sharing in some characteristics from the other
spectra belonging to the LGm category we wish to predict, i.e., one spectrum should
describe which LGm category the sample belongs to. There are six distinct LGm
categories as defined by Ceccarelli et al. [9], denoted LGm1 - 6. The model will
take as input one vector of shape (1,1738) and produce one vector of shape (1,6).
This strategy is inspired by Liu et al. [15], who managed to achieve satisfactory
performance by training a model on raw spectra i.e. spectra without pre-processing
or outlier removal. Restructuring of the data to represent all samples as a list of
spectra rather than 3-dimensional matrices yields a dataset with more than 300,000
datapoints, which is a sufficiently large dataset for machine learning.

Initially, we choose to examine each sample visually by observing the spectral
lines in a graph. This allows us to examine the general shape and visually deduce if
any common patterns are present in the samples and identify problematic samples.
As expected from analogue measurements, significant amounts of noise are present
in each plot. Despite this, many spectra share some general characteristics with a
few spikes appearing on a mostly flat spectral line. An example of the plots created
for this examination be seen in Figure 3.1.
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(a) Spectra from patient HF-1293.
The rest of the samples available
share in this pattern with some

deviations

(b) Spectra from patient HF-1887.
The frequencies tilt towards the

upper part of the plot. The example
is decidedly removed from the

analysis.

Figure 3.1: Examples of samples drawn from the data: sample HF-1293 displays a
common pattern across all samples, sample HF-1887 is removed due to the skewed
baseline. The range of the values are normalized between -1 and 1 to more easily
display the spectra.

Figure 3.1 shows two collections of spectra, the spectra belonging to sample
HF-1293 are shown in Figure 3.1 (a) and spectra from sample HF-1887 are shown
in 3.1 (b). The spectra form HF-1293 follow a general pattern visible in the vast
majority of sample plots. Sample HF-1887 is an example of one sample which we
deem too sporadic for this project, and which we remove, due to the skewed baseline
of all spectra in the sample; the data provider agrees with our decision. After visual
examination, we can confirm that some characteristics are present, but they are
not sufficiently different among the different LGm categories to be classified by a
human being in this case. Machine learning is needed to detect precise differences
among the samples by observing the spectral lines.

Another reason to remove samples is their size. The analysis we aim to per-
form requires considerable computational power and memory space. Many of the
samples available have a manageable size, as they consist of approximately 3600
spectra i.e. width and height are approximately 60 and 60 respectively. In case the
number of spectra in a sample is extravagant, we may simply extract random sub-
samples from the larger sample and analyze those. However, applying that method
at this stage would potentially ruin the form of the samples which is used to eval-
uate the outlier detection methods in a later section. Fortunately only one sample
suffers from this problem. Sample HF-3097, shown in Figure 3.2, shows a concern-
ing number of spikes in contrast to the other samples and is the only sample which
requires considerable memory space (the number of spectra exceeds 40000).
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Figure 3.2: Sample HF-3097 from LGm2, the spectra spikes are extremely rare. The
range of the values are normalized between -1 and 1 to easier display the spectra.

The values inside the spectra are also considerably bigger than the values found
in the other samples. The methods SDT and IQM require statistical constants to
be extracted on the entire dataset, including this sample would affect the standard
deviation and the mean of the frequencies tremendously (even if the constants were
evaluated within the scope of the sample itself). K-means clustering is also an un-
supervised machine learning model which can be trained on data before predictions
are performed on unseen data. Since the aim is to use the training set for training
the model, inclusion of the sample would affect the performance considerably. If
the sample was put in the test set for testing, the noise in the signals would affect
predictions considerably, which would affect testing accuracy due to what appears
to be noise in the frequencies. To avoid these statistical issues and to reduce the
computational requirements, the sample is discarded following the data provider’s
approval.

3.2 Balancing the Data

The model will, as a consequence of the learning algorithm, become biased towards
certain predictions if presented with frequent examples of a particular category. As
the model encounters frequent training examples, the connections which produce
such predictions will strengthen. Overexposure to examples of a certain category
will force the model to associate features with that category, redirecting focus from
categories for which that feature could be significant. This is why it is important
to train models on balanced data. Having a balanced dataset means the number
of examples in each category is uniform in the entire training set. Training on a
balanced dataset also avoids bias towards data distribution, where certain categories
may be predicted more frequently than others simply because the distribution was
used in training. The initial data suffers heavily from this problem. Training on the
data would result in a model which produces frequent predictions for the majority
category (the category which has the most spectra) and performs inconsistently for
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the other categories. The initial data distribution is shown in Table 3.1.

Category LGm1 LGm2 LGm3 LGm4 LGm5 LGm6

# Of samples 5 11 4 10 11 4
# Of spectra 37319 71846 31931 50660 62256 20176
Percentage 14% 26% 12% 18% 23% 7%

Table 3.1: The distribution of data in the initial dataset after removing the problem-
atic samples.

Table 3.1 shows the categorical separation in the data, the header row shows
the labels of each category. The first row shows the number of samples belonging
to each category, these are the tumors which will be analyzed. The second row
displays the total number of spectra across each category; these must be considered
for balancing. Note the equal amount of samples in LGm3 and LGm6, but the
difference in number of spectra within them. This is due to the varying size of all
samples drawn from the tumors. Some samples share the same size, however the
important fact is that the samples lack a uniform shape, which must be considered
during the analysis. The last row shows the percentage each category makes of the
entire dataset. Initially, LGm2 is the majority category while LGm6 is the minority
category, consisting of only 7% of the entire dataset.

Before the data is balanced, the testing data is selected and separated from the
rest. This is done by separating at least one patient and all their samples from the
rest of the data. This way, we ensure the possibility to test if the model develops
bias towards the patients in training and if the patient samples are heterogeneous
with respect to the other samples of the same category. Samples are chosen with the
criterion that approximately 30% of each category is represented in the test set. Bal-
ancing the categories which contain less elements by a factor larger than or equal to
two compared to the majority category (LGm2) is done by repeating the spectrum in
each sample by that factor. This method does not perfectly balance the data to have
a uniform distribution of categories, but it does make the underrepresented category
frequent enough to circumvent the issue of unbalanced datasets. The multipliers
for each categories are chosen so as to retain the majority category i.e. LGm2 will
remain the majority category after balancing is done. There is also a need for the
validation set; the validation set will be used to monitor the models performance on
unseen data during training. The samples for this set are chosen such that one sam-
ple from each category is allocated to the set. The separation of the entire dataset
into three distinct sets is arbitrary and so can be performed automatically. How-
ever, we choose to perform this separation manually to maintain consistency in this
analysis. The resulting separation is shown here as it is the training set from which
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the features are extracted in this project. We discover that the results will differ
slightly depending on which samples are chosen for which set. The distribution of
all datasets is shown in Table 3.2.

Category LGm1 LGm2 LGm3 LGm4 LGm5 LGm6

# Training 17689 47602 37557 30180 33396 9376

# Validation 3600 4096 3600 4096 4096 3600

# Test 14945 20140 11296 16384 24764 7200

Table 3.2: Distribution of the three datasets

Table 3.2 shows the distribution of the different datasets used in this project.
The training set is then balanced exclusively. This is not required in the test set
or the validation set, since they will have no direct effect on how the model is
developed through training. It is also important that the validation and test sets
are not uniform, since it will prove whether the model can generalize to different
prediction distributions. The training set is balanced by replicating each spectra in
every patient of the categories which are under-represented. The number of sample
replications per category can be computed by the following method. Let m be the
LGm category which contains the majority of spectra in the set and |LGmn| be the
number of spectra in LGm category n. The number of replications for each category
can then be computed by ⌊ |LGmm|

|LGmn| ⌋. The distribution of the training set after applying
the replication method is shown in Table 3.3.

Category LGm1 LGm2 LGm3 LGm4 LGm5 LGm6

# Training 35378 47602 37557 30180 33396 46880
Percentage 15.32 20.6 16.26 13.07 14.46 20.29

Table 3.3: Distribution of the testing data following balancing

As is shown by the last row in Table 3.3, the data does not have a uniform
distribution as LGm2 is still significantly larger than LGm4. However, the important
thing is that the distribution is better balanced relative to the original distribution.
The biggest difference between the categories is by approximately seven percent.
We assume this distribution is good enough and proceed to the next step of the
analysis.

3.3 Feature Selection and Visual Analysis

Following the balancing, the first step in the analysis is to find the frequencies which
best describe the data with respect to the different categories. Each number in the
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spectra is a frequency at which the scattered light is gathered. This number is ex-
pected to be sufficient for predicting the categories of the tumor-tissue. We assume
that, to sufficiently categorize the spectra into the categories, only certain frequen-
cies are required. For this reason, the most significant features are extracted with
SelectKBestfeatures [33], which is given the f-classif method for ranking the fea-
tures in order of their significance. Following this step, we may pick any arbitrary
number of features by extracting them in the order given by f-classif. The 70 best
features are extracted from the training set in which there are outliers present still.
The features are displayed in Appendix A. The extracted features show that regions
of interest do exist on the spectra. This can be seen by the integers which have a suc-
cessive difference of one, suggesting that the region of interest exists somewhere in
specific parts of the spectra. It is worth noting here that the features selected might
be correct, provided the amount of outliers is sufficiently small to be ignored by the
feature selection method. Due to this uncertainty, the data will be separated from
the outliers and feature selection will be performed a second time at the end of this
section.

All data is subject to this analysis as all samples must be curated before the
model can be trained. In the methods where statistical constants must be calculated,
the training data is used, this avoids bias towards the other datasets whose primary
purpose is to evaluate the model. The goal of the analysis is to find a uniform cri-
terion which each spectrum must fulfill to be considered clean. Spectra which fail
to satisfy this criterion will be discarded from the project entirely. In this section
the methods of analysis used are described and their results examined. The sec-
tion begins by examining the frequency criterion, which is a confirmed criterion all
spectra must satisfy to be considered "clean". This criterion was provided by the
data provider. SDT and IRM are compared to the frequency criterion for validation;
these are deterministic methods that rely solely on the values found within the data
and are commonly used to detect outliers in data. K-means clustering and hierar-
chical clustering are then performed on the data in the attempt to capture potentially
complex patterns within the data. These methods are specifically designed to allow
for grouping of data based on the similarities between data points within the dataset.
The section ends by selecting the method which best detects outliers; this method is
then added to the pre-processing stage, i.e., all samples must be curated using this
method before they can be used by the machine learning model. In the following
figures, the yellow parts represent spectra which the the method in question labels
as tumor spectra. The darker color represents outliers.
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3.3.1 The frequency criterion

The frequency criterion is a criterion specified by the data provider dr. Adrian Lita,
for separating outlier spectra from tumor spectra. The criterion states that, should
any value of frequencies between 1463 and 1473 of any spectrum be below 5000,
then that spectrum is defined to be an outlier. Given that this criterion is defined
by the provider, together with the lack of knowledge regarding where outliers may
be positioned on the samples, we choose this criterion as the starting point of this
analysis. The extracted features in Appendix A include parts of the range on which
the criterion is based, which is promising. The range being present in the extracted
features can also mean that the outliers work to influence the relationship between
the spectra and the categories we want to predict. Hence, the removal of outliers is
essential for building an unbiased model. We examine the results of the criterion
to gain insight into where these outliers are positioned. The criterion is confirmed
to miss some outliers and so it mainly functions as an initial approximation of the
areas where outliers are present. An example of this is in sample HF-2849 of LGm3
shown in Figure 3.3.

Figure 3.3: Sample HF-2849 from LGm3. The yellow parts of the image represents
the tumor spectra saved by the criterion, and the dark spots are outliers. The sample
is confirmed to have necrotic tissue present in the upper part which the criterion
fails to detect.

The criterion is satisfactory for capturing areas in the lower parts of the sample.
However, the upper part of the sample is guaranteed to have spectra from necrotic
tissue which is unreliable for describing the LGm Category of the tissue. Necrotic
tissue is tissue which has died and cannot yield helpful information through Raman
spectroscopy, hence, it must be removed. It appears the criterion is well suited for
detecting liquid material on the tissue, since many samples show smaller spots of
interest and fail to completely capture larger areas of outliers. This is evident in
Figure 3.3, as multiple small spots are detected. This is one of several examples
for how the criterion fails to detect all outliers reliably, but in the majority of the
samples, the outliers are detected sufficiently well. One such case can be seen in
sample HF-868 displayed in Figure 3.4.
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Figure 3.4: Sample HF-868 from LGm1. The areas detected are confirmed outliers.

According to the data provider, the outliers present in HF-868 are sufficiently
captured by the frequency criterion. The outliers form as small, sporadic areas on
the surface of the tissue. This shape is what the outliers are expected to have in the
samples which are known to include them. However, since the frequency criterion
fails to capture outliers in certain samples (possibly due to the material informa-
tion of those outliers), we explore changes to the criterion, e.g. making the interval
greater (checking frequencies ranging from 1458 to 1478) and checking for frequen-
cies which are below 20000 within the interval the criterion concerns. The results
vary greatly from the original criterion. Though some of the spectra originally ig-
nored by the criterion now become visible, not all regions are sufficiently captured.
This indicates the necessity to use other parts of the spectra which appear to be
relevant for outliers. The spectra are too big for further manual inspection, which
greatly motivates the application of machine learning methods. The frequency cri-
terion will, however, serve as a ground truth in this analysis. Going forward in this
section, we aim to evaluate all the following methods by comparing them to the
results of the frequency criterion. Examples which best reflect the method’s per-
formance in outlier detection will be displayed for comparison with this criterion.
This way, we have some knowledge about where outliers are detected. While the
criterion is insufficient in detecting all outliers (as demonstrated in this subsection),
the general patterns discovered here must be present in the results yielded by the
other methods. If the method under analysis fails to produce results corresponding
to the frequency criterion, we opt to disregard that method. The desired method
optimally produces similar results as the frequency criterion and finds more areas
on the samples where we know outliers are present. Ideally, the methods also aid in
discovering new outliers.

29



3.3.2 The standard deviation test

We investigate the data using SDT, a test in which the data is centered around the
mean and given a standard deviation of one. With this setup, outliers are defined as
points which are separated from the mean by three standard deviations or more. We
measure the mean and standard deviation on each frequency from the unbalanced
training set; we ignore the balancing to avoid changes to the mean and standard de-
viation which the balancing helps produce. The values are then used to standardize
the spectra belonging to each tumor. A spectrum is deemed to be an outlier if the
number of frequencies in that spectrum exceeds an arbitrary value. We approxi-
mated the value by performing the test once while monitoring the average number
of frequencies which lie three or more standard deviations from the mean. In any
given sample, each spectrum includes on average 111 frequencies which fail the
test. We specify that a spectrum fails the test if more than 111 of its frequencies are
three or more standard deviations away from the mean.

Using this test, many small areas are detected in each sample; it suggests there
is something present in those places, but they do not possess a clear shape by which
we can decide whether to discard them or not. An example of such a sample is
shown in Figure 3.5.

(a) The result of SDT for
sample HF-448, Several

points are labeled as outliers

(b) The frequency criterion
outliers for HF-448

Figure 3.5: A comparison between the SDT and the frequency criterion for sample
HF-448.

SDT does not produce results similar to the frequency criterion, some spectra
do correspond among the results, but the amount of outliers falsely labeled as out-
liers by SDT is troublesome. Roughly 50% of the samples in the entire dataset
yield similar results with SDT. The method would, as a result of this, discard too
much from most samples, depriving the dataset of a great number of tumor spectra.
Some areas are formed around the individual spectra, suggesting the presence of an
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unknown material, but the sporadic points in the surrounding area make it unclear
where that material begins and ends. Furthermore, we must develop a criterion for
which points to discard. Such a criterion would need to distinguish between spo-
radic points which are miss-classified and areas of real outliers. However, within
some samples there are areas of outliers correctly labeled, but those areas are not
sufficiently defined. One sample with this result is shown in Figure 3.6.

(a) The result of SDT for
sample HF-868

(b) The frequency criterion
outliers for HF-868

Figure 3.6: A comparison between the SDT and the frequency criterion for sample
HF-868. Many spectra correspond to the frequency criterion.

Sample HF-868 is less sporadic compared to HF-448, the outliers are instead
formed around common points of interest which strongly suggests outliers are present
in that area. The lack of definition in each area however, is not sufficient. The out-
liers must form concrete shapes with clear definition. The sample suggests outliers
are present in the different areas, but all points are not present to make the shapes as
defined as they are by the frequency criterion. The sporadic results show that this
method is insufficient to detect the majority of outliers in all samples. It must be
noted that, despite this underwhelming result, some outliers are detected, suggesting
further changes to the method could yield better results, though greedy application
is not going to work for all samples. Throughout all the six LGm categories, the
method yields the best results for LGm6 where it shares many patterns with the
patterns produced by the frequency criterion. Another example of the promise the
method has is in sample HF-2852 of LGm3, shown in Figure 3.7.
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(a) The result of SDT for
sample HF-2852

(b) The frequency criterion
outliers for HF-2852

Figure 3.7: A comparison between the SDT and the frequency criterion for sample
HF-2852.

Sample HF-2852 has a large area in the upper part which consists of necrotic
tissue. The spectra of that tissue differs from other spectra sufficiently well, al-
lowing the method to distinguish between tumor and non-tumor with considerable
accuracy. This is due to the amount of otherwise healthy tissue present in the sam-
ple. The inability of the method to capture all outliers is also apparent despite this,
as it allows several smaller spots in the area of the necrotic tissue to be classified
as healthy tumor tissue. The area at the bottom of the sample is filled with outliers
according to the frequency criterion. These results suggest that the method is best
used in detecting necrotic tissue, but not in the context of detecting other kinds of
outliers.

3.3.3 The Interquartile range method

Similar to SDT, IRM is a purely statistical analysis method, detecting outliers in
terms of which percentile the spectra belong to. The 25th and 75th percentiles are
calculated on each frequency for the entire training set. Like SDT, this method
yields a varying amount of outliers for each sample. We instead define the allowed
number of outlier frequencies within one spectra to be equal to the average number
of outlier frequencies within the analyzed sample. Many regions are better repre-
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sented by IRM, showing well defined areas where outliers are clearly present. The
amount of individual spots are less frequent which shows promise in the method, as
e.g. blood is expected to cover a larger area if present. The improvement from the
standard deviation test is seen in Figure 3.8.

(a) The result of the
interquartile range for
HF-448, Several well

defined areas are separated
form the majority of spectra

(b) The frequency criterion
for sample HF-448

Figure 3.8: A comparison between IRM and the frequency criterion for sample HF-
448.

SDT failed to separate outliers adequately in sample HF-448 while IRM is better
suited to detect the outliers in this sample. The upper part of the sample has a well
defined line where the sample is presumably cut, meaning the plastic underneath
the tissue might be visible. We also note that many outliers detected by IRM also
appear to be captured by SDT. While the areas are hard to distinguish among all spo-
radic spots, the larger spots in Figure 3.8 (a) seem to have some trace in Figure 3.5.
The correspondence with the frequency criterion in Figure 3.8 (b) further shows the
methods capability in contrast to SDT as the method seems to possess greater ability
in defining the areas where outliers are present. There are still some spots appearing
randomly around the sample surface which would ideally be ignored, but while we
have some confirmation on where outliers are present in certain samples, we do not
know exactly where the outliers are. The individual points being labeled as outliers
suggests the method struggles with the same issue SDT suffers from. Though it
appears to be less severe in all samples belonging to LGm1, there are still a consid-
erable number of spots through all samples within the category. Especially LGm4
have samples for which both methods perform poorly, with a considerable amount
of sporadic spots appearing in some samples when applying IRM and a significant
lack of spots when applying SDT i.e. None of the methods works sufficiently well
to detect the outliers. It should be noted that both methods detect outliers in areas
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which the frequency criterion also produces. But the areas are not corresponding
well in either method. This issue is apparent in sample HF-2802 of LGm4, shown
in Figure 3.9.

(a) The result of the
interquartile range for

HF-2802, some larger areas
are detected with sporadic

spots around the entire
spectra.

(b) The result of the standard
deviation test for HF-2802.
Few outliers are detected

Figure 3.9: A comparison between the interquartile range and the standard devia-
tion test for sample HF-2802. In comparison, the interquartile range locates better
defined areas than the standard deviation test, but many sporadic spots are present.

In Figure 3.9, the results of IRM and SDT are compared on sample HF-2802.
Both methods yield poor separation between the outliers and tumor spectra. IRM is
capable of detecting a large mass of some material on the sample, however, many
sporadic spots appear around it, the majority of these spots are tumor spectra which
would be discarded by the method. In stark contrast, SDT struggles to detect any-
thing in the sample, only yielding small spots in the larger areas found with IRM.
Fewer samples suffer from the stochastic results present in SDT, however all sam-
ples are not strictly improvements from SDT. One such example is sample HF-1010
belonging to LGm2, shown in Figure 3.10.

The comparison in Figure 3.10 shows one of few samples where IRM fails to
sufficiently separate outliers from tumor spectra. A considerable number of spectra
are falsely labeled as outliers, and those spectra seem to form many smaller areas
without sporadic points in the surrounding area. In this rare case, SDT exhibits
sufficient separation of the outliers, as the detected areas correspond well with the
position of known outliers found by the frequency criterion.

Few samples follow the same conclusion however, these varying results show
clear signs that neither of the methods are suitable to perfectly rid each sample of
outliers. We therefore dismiss them from the analysis, while keeping the results
for comparison with the other methods. We continue the analysis by analyzing
unsupervised machine learning methods for outlier detection.
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(a) The result of the
interquartile range for

HF-1010

(b) The result of the
standard deviation
test for HF-1010.

Figure 3.10: A comparison between the interquartile range and the standard devia-
tion test for sample HF-1010, LGm2.

3.3.4 Hierarchical clustering

The next method for outlier detection is hierarchical clustering, we choose to utilize
the agglomerative version of the algorithm. Due to the algorithm’s demanding time
complexity and memory constraints, we analyze each sample separately to avoid
memory errors. Each sample must be given one unique model which then divides
the data into the number of clusters specified. This means there will not be a univer-
sal model designed to separate all samples. We investigate the results of different
distance metrics and choose the Euclidean distance as distance metric to measure
distance among the clusters. This conclusion is due to the uncertainty in vector
shape and angles on which Cosine similarity is dependent. The Manhattan distance

would be a better choice compared to Cosine similarity; however, Euclidean dis-

tance magnifies long distances, which should aid the algorithm in selecting clusters
for agglomerative merging. Next we examine the linkage criteria available. In each
case, the algorithm is set to run multiple tests where it separates the data into dif-
ferent amounts of clusters. We choose to initialize six different models to compute
between two and seven clusters respectively. Due to the deterministic nature of
the algorithm, the results in one cluster will be present in the other clusters as the
number of clusters increases.

Single linkage merges clusters which possess points with minimal distance.
Should the spectra within the samples be significantly "far apart" in the data, the
criterion might start producing many unique clusters in a "chain". If the number
of clusters are sufficiently small, the number of cluster separations will be few, and
few spectra will be allocated to those clusters. This can result in few separations for
some samples, which will render the method unusable for our purposes.

The criterion yields clusters which appear as individual points in the images and
fails to detect areas where known outliers are present in the samples, suggesting the
aforementioned flaw is present in this methodology. This is apparent as we see few
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cluster areas form in any of the initialized models, even if we allow the method to
use more than two clusters. All different cluster models fail to separate the outliers
and instead separate a small number of points. An example of this phenomenon is
displayed in Figure B.6.

Figure 3.11: Single linkage on sample HF-868 from LGm1: The test fails to detect
any outlier areas. Leftmost image is the result of the model computing two clusters.
The number of clusters increase towards the rightmost image.

The models fail to detect any areas where outliers are present, only yielding
an insignificant number of outliers in the entire sample. Models computing more
clusters also fail to find significant areas and smaller spots appear as the number of
clusters increase. As the number of clusters increases, several of the outliers seem
to belong to their own clusters, which is a sign of the clusters being computed in a
"chain" as previously stated. Due to this unsatisfactory result, single linkage will
not be used as linkage criterion in this project.

Average linkage yields superior results compared to single linkage since some
areas become more defined as we increase the number of clusters. However, the
criterion does not have a set number of clusters which is guaranteed to include all
outliers for all samples. For certain samples the outliers are visible when forcing
the algorithm to agglomerate to two clusters and others only show them once five
or more clusters are allowed. It is possible to use the criterion for discarding the
outliers if the majority cluster is preserved when computing seven clusters, while
the rest of the spectra are discarded. However, this would not remove all outliers and
some problematic samples in LGm3 would have the majority of outliers preserved.
The improvement from single linkage is made apparent in Figure 3.12.
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Figure 3.12: Average linkage on sample HF-868 from LGm1: Leftmost image is
the result of the model computing two clusters. The number of clusters increase
towards the rightmost image.

The model computing two clusters is capable of producing separations where
the outliers are present, though it still misses the bigger areas. As the number of
clusters increases, the areas become more defined and capture more of the outliers.
Despite this, not all outliers are detected despite computing seven clusters. One area
should be captured in the lower left corner of the sample. However, only smaller
clusters form around that area. Capturing it sufficiently would mean adding more
clusters, but the number of clusters which best capture the outliers for all samples is
variable in this case. It is a clear improvement over single linkage, but the criterion
is still insufficient.

Complete linkage merges the clusters which possess elements with the smallest
possible maximal distance between them. The method produces similar results as
average linkage, few areas with outliers are detected when fewer clusters are per-
mitted. However, some outliers are present when computing two or three clusters.
Computing seven clusters allows the algorithm to detect outliers which are also de-
tected by the frequency criterion. Though these results are not strictly improvements
from average linkage, the criterion does manage to detect certain spots of outliers
with fewer clusters than average linkage in certain samples. The result of complete
linkage on sample HF-868 is seen in Figure 3.13.
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Figure 3.13: Complete linkage on sample HF-868 from LGm1. Leftmost image
is the result of the model computing 2 clusters. The number of clusters increase
towards the rightmost image.

As is evident in Figure 3.13, much like average linkage, complete linkage pro-
duces clearer areas as more clusters are computed. In HF-868, outliers are not
detected earlier than average linkage, in fact, the outliers require more clusters to
become apparent. A good approximation for the majority of samples appears to be
the models computing seven clusters, if a few outliers are allowed to be included in
the training phase of the model. The criterion’s tendency to produce clusters ear-
lier than average linkage is better displayed in Appendix B. Most samples display
similar results; more outliers are detected overall with complete linkage in models
computing two or three clusters than models using average linkage. Despite this, all
five models fail to detect the outliers found by the frequency criterion. We therefore
decide to disregard complete linkage for this project as well.

Ward linkage merges clusters which possess minimal variance between their re-
spective elements and, as such, works well with Euclidean distance. We do stress
that the clusters are merged by measuring variance among cluster elements and there
is no guarantee the outlier spectra should share in characteristics which would re-
sult in low inter-cluster variance. Despite this lack of guarantee, the clusters form at
the precise location of outliers detected by the frequency criterion. Allowing seven
clusters produce a near picture perfect image of the biological tissue from which the
spectra were measured. These results show that the algorithm is capable of organiz-
ing the spectra according to their visual information, which aids us in understanding
the shape and state of the samples. The criterion works considerably well for out-
lier detection when compared to the other criteria analyzed thus far. It appears to
be capable of detecting well defined outlier areas Moreover, the individual points
which appear around those areas appear to form smaller groups; these could very
well be individual droplets of the same outlier material detected in the larger areas.
The promising performance of ward linkage is well represented in Figure 3.14.
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Figure 3.14: Ward linkage on sample HF-868 from LGm1: The leftmost image
is the result of the model computing 2 clusters. The number of clusters increase
towards the rightmost image.

The outliers identified correspond well with the frequency criterion, and as the
number of clusters increase, the surface of the tissue starts to become visible by the
different clusters. The model computing two clusters have near perfect resemblance
with the frequency criterion. The models computing three and four clusters appear
to perform subdivisions of the outlier cluster found in the model computing two
clusters. This results tells us that the outliers appear to have significant differences
from tumor spectra, which is a great result. We should expect similar results in
samples which contain a great number of outliers. Once five clusters are allowed,
spectra from healthy tissue starts to become apparent. These results appear to occur
in the majority of samples.

The issue is finding a uniform criterion on which we can discard the outliers. We
seek to define that criterion in terms of which clusters to discard from the samples
following their analysis. Removing every cluster except for the majority cluster in
the case where seven clusters have been formed would remove legitimate spectra
which are suitable for training a model from all samples. In fact, there is no optimal
choice in this case, as certain samples have their outliers sufficiently captured in a
setup allowing for two clusters, while others show their outliers in arbitrary num-
bers of clusters. Furthermore, selecting clusters which contain close to 50% of the
spectra would be undesirable in context of maintaining a sizable dataset. By visual
inspection, we deem the optimal number of clusters to be three, since many outliers
are present in this choice, though the problem is not completely remedied. In some
samples, ward linkage separates areas not outlined by the frequency criterion when
two clusters are computed. The outliers are instead detected when computing more
clusters. This complicates the process of finding a uniform criterion, but the num-
ber of outliers which are missed by our current paradigm is considerably small. In
particular, sample HF-2485 suffers from this problem; the cluster results are shown
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in Figure 3.15.

Figure 3.15: Sample HF-2485 from LGm5, clustered by Hierarchical clustering
using ward linkage. From left to right, is shown the results of computing from 2 to
7 clusters respectively. The oultliers are present from image 4 and up.

The models computing two and three clusters actively avoid the concrete spots
where the outliers are positioned. In the model computing four clusters, the outliers
are detected as dark spots labeled as tumor spectra by the earlier models. The
dark spots perfectly correlate with the position of outliers outlined by the frequency
criterion. In the model computing seven clusters, the surface of the tissue starts to be
replicated. Here, the outliers are displayed in stark contrast to the rest of the tumor
material. In this case, we opt to continue with our paradigm of keeping the majority
when computing four clusters. This will remove too much in a few samples, but
will suffice should no other method yield better results. The alternative would be
to use three clusters to preserve the otherwise healthy spectra, but in the interest of
training on data devoid of outliers, we opt for four clusters.

3.3.5 K-means clustering

We continue this analysis by performing K-means clustering to detect the outliers.
We flatten the training set and reorganize it in random order to avoid bias towards
recurrent LGm categories in the dataset. The examples are then used to fit six K-
means models to compute two to seven clusters respectively as done with hierarchi-
cal clustering. This method has the advantage of being trained on the entire training
set whereas hierarchical clustering possesses too great a time and space complexity
which makes similar experiments impossible with our current hardware. Under this
structure we may now compare the results between sample custers. We observe that
the stochastic nature of the algorithm produces results of varying quality. In con-
trast to hierarchical clustering, K-means does not produce clusters as subdivisions of
previously seen clusters. This is due to the algorithm being computed several times
with random initialization settings. The final result which the algorithm yields is
the cluster state possessing minimal inertia compared to the other computations.

Contrary to all other methods of analysis, this method is able to capture small
segments of the upper part of the sample HF-1293, shown in Appendix B. While
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the comparison of the same sample among the different models lacks consistency
in this setting, the comparison between the model results among the different sam-
ples are promising. We find that the model in which two clusters are computed, the
samples are divided in ways which correspond with the frequency criterion. More-
over, in samples where minimal amounts outliers are present, the clusters seem to
form around healthy tissue, which in turn creates an image resembling the surface
of the sample-tissue. In certain cases the clusters fail to capture known outliers but
other models allowing for more clusters capture them sufficiently well. One exam-
ple of this is sample HF-868 where the two cluster model fails to detect the relevant
outliers but the model computing three clusters capture the outliers in near per-
fect resemblance to the frequency criterion. The clusters computed by the different
models are displayed in Figure 3.16.

Figure 3.16: K-means clustering on sample HF-868 from LGm1: Leftmost image
is the result of the model computing 2 clusters. The number of clusters increase
towards the rightmost image.

The other models lose some of the outliers around the shapes present while still
capturing the center of the shapes. The results of the frequency criterion returns
in the model computing six clusters, but this is again lost in the model computing
seven clusters. Like ward linkage for hierarchical clustering, there are some samples
where the majority cluster is hard to evaluate; one such sample is HF-2544 which
shifts the majority cluster between the model computing two clusters and the rest of
the models. Due to the variety among the different models, finding a uniform cri-
terion for detecting outliers is problematic. Many samples are such that the models
steadily increase the number of outliers clustered, but this relationship is not con-
stant through all samples, making it insufficient for use as criterion. The shifting
of the majority cluster in the aforementioned sample further complicates matters,
since the majority cluster may not be capturing healthy tissue in some samples. For
this reason, we deem the method insufficient for separating outliers, though we note
the promise in capturing information about the visual aspects of the sample-tissues,
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which makes the method comparable to ward linkage for hierarchical clustering.

3.4 Post analytical feature extraction

Concluding this chapter, we select the method of analysis best suited for separating
outliers from the spectra and extract the features which best separate the data into
the different LGm categories. The feature extraction is done by using the training
set exclusively. Based on the analysis performed in this chapter we choose to apply
hierarchical clustering using ward linkage as linkage criterion. The samples within
the training set are first rid of the outliers detected by performing the chosen cluster-
ing method. The model computes three distinct clusters of spectra for each sample
separately and retains the cluster which contains the most spectra i.e. the spectra
corresponding to the yellow colors in the figures shown in this chapter. We then
repeat the procedure for feature extraction as done in the beginning of this chapter.
We balance the training data, since the category distribution has changed due to
removing spectra from each category. Feature selection is done with the f-classif
method to score each frequency according to the ANOVA F-values. The 70 frequen-
cies possessing the greatest scores after the method’s application are then extracted.
The index of the 70 most descriptive features of the training set are shown in Ap-
pendix A. In the set of features extracted from the curated data, twelve features
are shared with the features drawn from the initial balanced training set. Of these
intersecting features, none are the features which the frequency criterion concerns.
This indicates that the outliers originally affected the Anova F-values computed by
f-classif. The intersection of the features also show certain frequencies were cor-
rectly extracted from the non-curated training set. The features extracted from the
curated training set are also positioned on different regions on the spectrum. The
newer features show interest in frequencies starting early in the spectrum. More
than half of the frequencies of interest are also positioned on the right end of the
spectra, suggesting considerable amounts of information are located there. In case
it becomes necessary to reduce the size of the data, these are the features we recom-
mend be used instead. The spread across the entire spectrum suggests these features
are descriptive enough to help machine learning models learn the sample-to-LGm
relationship sufficiently well. In case the models struggle with training on these
features exclusively, the algorithm may be easily adjusted to extract more features.
We expect that 70 features should be enough for learning relationships within this
data, especially since almost all features lie in close proximity to other features i.e.
the relevant frequencies appear to be grouped with other nearby frequencies. The
most irregular features in this regard are the frequencies: 23 and 722. The fact these
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frequencies appear with no "neighbour" frequencies suggests the data would require
more features to adequately be represented in this simplified form.
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Chapter 4

Applying the Data

Following the curation of the data in the previous chapter, the number of spectra
available in each data set decrease by approximately 25%. The distribution of the
data remains the same, as the amount of spectra within each category retain the
relative sizes to the other categories. In this chapter we present the proposed pre-
processing methods for the data. We evaluate the data curation and pre-processing
techniques by initializing a deep learning model and training it to predict the desired
category of each sample. The results are then presented and analyzed.

We proceed to make the data suitable for application with machine learning
methodology. The first method of pre-processing is baseline correction. The base-
line of a spectrum is the minimum value each wavelength frequency has. The ex-
traction of the spectral signal from the spectrometer may, depending on the settings
of the instrument, produce different minimal values for each frequency. This may
lead to smaller spikes appearing in otherwise "flat" areas of the spectrum. Baseline
correction alleviates these issues by removing the excess baseline in all frequencies
of the spectra, which simplifies analysis among the different frequencies. In context
of the Raman spectra available in this project, the baseline by which the spectra are
skewed is non-linear, and appears to have a polynomial baseline. This is apparent
from the wave-like shape of all spectra, where frequencies are minimal relative to
the rest of the frequencies which portray spikes in the spectral wave. In turn, some
methods require a polynomial grade which is an approximation of the polynomial
wave the baseline appears to originate from. This approximation of the polynomial
grade may present issues, as it appears to require analysis of each spectrum in sep-
aration from the others. Nor is there any indication that the polynomial grade is
uniform across all spectra in the data set. To avoid approximation of the polynomial
grade we utilize the ZhangFit-method, which has support for Python through the
BaselineRemoval library. The method utilizes the adaptive iteratively reweighted
penalized least squares (airPLS) algorithm which iteratively approximates the base-
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line of the spectrum given without additional information regarding the structure of
the spectrum [51]. For some spectra within the data set, the algorithm reaches the
maximal amount of allowed iterations before the spectra are returned, This occurs
in approximately 1000 spectra. However, this setback is ignored, as it is less than
one percent of the training spectra.

Machine learning methods are susceptible to spectra which have large vari-
ance among values. Frequencies inside the individual spectra vary tremendously,
as spikes within each spectrum may differ from the baseline by a value of 10,000
and more in many cases. It is clear that some method of normalization is needed to
make the spectra applicable with machine learning methods. We opt to use z-score
standardization and apply it to the frequencies within the training set. Standard-
ization is performed as follows: Compute the mean and standard deviation of all
frequencies through the whole training set. This results in two lists of length 1738
where the indices of those lists correspond to the mean and standard deviation of
the respective frequencies. Each value of the spectra is then standardized by apply-
ing z-score standardization to each frequency by using the corresponding mean and
standard deviation from the initialized lists. This method is preferred as it brings
smaller values close to zero on each frequency while maintaining the larger values
for the bigger spikes on the spectra within the training set. The features are however
not sufficiently scaled down as many frequencies still exceed a value of 60 in some
spectra.

In further attempts to scale the data into a range which works better for machine
learning methods, we also apply normalization by the maximum absolute value.
Following standardization, the maximum absolute value of each frequency is mea-
sured and stored in a list. The data set is then normalized by dividing each value in
each frequency by the corresponding maximum absolute value stored. This retains
the sparsity of the data while scaling all values down to a range between negative
one and one.

We also define an augmentation method to better regularize the learning pro-
cess. We train the model by selecting an equal amount of random spectra from each
category for every batch used for training, this is done on the training set. Every
batch will be balanced as a result, which avoids the problem of unbalanced data
sets. The batch is then augmented before the batch is passed to the pre-processor.
Augmentation is performed by adding a skewed line to the batch of data which in-
troduces a random, linear baseline to each spectrum in the batch. Each frequency in
each spectra in the batch is then given additive, normally distributed noise which is
drawn from 1738 normal distributions, each generated from the means and standard
deviations extracted from the data in the pre-processing step. This ensures the noise
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is within range of the usual values present for the respective frequency. To allow
the model a chance to learn the real data patterns, data augmentation is skipped ran-
domly with 30% probability. The augmentation and pre-processing pipelines are
displayed in Appendix D

We create a deep convolutional neural network model and train it using the train-
ing set. The model architecture is based on the architecture presented by Liu et al.
[15] and is five layers deep, consisting of two convolutional layers and three dense
layers (one of which is the output layer). The input is always a one-dimensional
vector consisting of 1738 elements (one neuron for each spectral frequency). The
one-dimensional convolutional layers consist of 16 and 32 kernels respectively; both
layers use the leakyReLU activation function and the kernel sizes are 21 and 16 re-
spectively. Both layers use batch normalization and max pooling with a size of two.
The model then flattens the result from the latter convolutional layer to allow for
dense layers. Following the flattening layer, a dropout is provided with a dropout of
20%. The two dense layers before the output layer are sized 128 and 32 respectively
and both use the tanh activation function. Both layers use batch normalization and
the latter layer is followed by a dropout of 40% followed by Gaussian noise gen-
erated from a normal distribution with a mean of zero and a standard deviation of
0.15. The output consists of six neurons and uses the softmax activation function
to form a probability distribution of the input signal. The loss is then calculated
using categorical cross-entropy which is optimized using the Adam optimizer with
a learning rate of 0.003. All layer weights are initialized randomly from a normal
distribution with a mean of zero and a standard deviation of 0.1. After compilation,
the model consists of 1,742,374 total parameters, of which 416 are non-trainable.
A figure displaying the architecture is shown in Appendix E.

Several trials on the data suggest that the size of this architecture is arbitrary and
provide little in terms of performance regarding the predictions of the model. We
also create variations of the architecture, some of these variations are made with one
type of activation function (the activation functions we test are tanh, LeakyReLU,
ReLU and sigmoid). Changes to the convolutional layers are also arbitrary; strides
and pooling sizes larger than two have been tested. The change to the convolutional
layers drastically decreases the amount of learnable parameters in the model which
makes the model faster to train. Before the model is initialized we set the random
seed in numpy, os.environ and tensorflow to 6 (a value chosen arbitrarily). The re-
setting of the seeds is important, as it makes the random initializations predictable
and, as a consequence, reproducible. The model is trained on balanced batches
which consists of 600 spectra (100 spectra per unique category). The batch is gen-
erated and augmented before being pre-processed and given to the model where it is
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then trained on for a duration of two epochs, the entire model trained in this fashion
for 40 epochs.

The first test we perform is to deduce whether the data can be learned by the
model or not. We perform this test by separating the training set into two smaller
distinct sets. Before separation, the entire set is sorted into a random order which
scatters the spectra within randomly; the model is then trained on the first set and
evaluated on the other. In this setting, the model manages to learn and generalize
well to both halves of the training data. We manage to get these results by using
the current pre-processing method discussed earlier in this chapter. Omitting the
maximum absolute value normalization method when training in this setting pro-
longs training drastically and prevents model generalization for the unseen part of
the training set. While the accuracy for all spectra is insufficiently low (approxi-
mately 82% after training), letting the model train for longer periods of time appear
to lead to better results. The overwhelming majority of correct predictions suggest
the model is well suited for predicting the categories given all spectra from a sam-
ple. More spectra given to the model increases the probability of correctness in the
prediction. The model even performs well on unseen spectra (drawn from the same
sample used for training) suggesting homogeneity among spectra originating from
the same sample. However this does not hold true for the validation data consist-
ing of entire unseen samples. The predictions for the spectra within the validation
data are sporadically scattered across many classes. LGm2 is severely underrepre-
sented in the predictions generated by the model and few predictions appear correct
through the majority of categories. LGm1 is the only category which is correctly
predicted by the model. All other categories fail to be accurately represented, even
the majority predictions fail as the majority of predictions are focused on other cat-
egories. The confusion matrices of the predictions for the training set and validation
set are displayed in Appendix C. In hope of alleviating this issue, we rejoin the split
training set into one complete data set and resolve to training on the entire training
set while using the validation set for validating the performance of the model.

The model is fully capable of generalizing to the training set which is consistent
with the previous result. The number of epochs must be increased further for the
model to adequately learn the training data. We therefore increase the number of
epochs from 40 to 80 which allows the model accuracy to reach over 90% accuracy
on the training data. However, the accuracy is not reflected in the validation data.
As in the setting with the split training data, the model achieves approximately 30%
accuracy on the validation data. This result is constant through multiple runs in
which we change the model in various ways, i.e., change of activation functions,
layer sizes and amounts and regularization layers such as dropout and Gaussian
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noise. By examining the confusion matrix made out of the predicted values and
expected values we discover that the model tends to produce predictions mainly for
categories LGm1, LGm4, LGm5 and LGm6. The model is seldom able to perform
satisfactory predictions for more than two categories. The categories the model pre-
dicts seem to be a result of the order in which the model encounters spectra from
the training set (which is dependent on the mini-batch parameter given to the model
when training starts). The fact that the model can generalize to unseen training
data but not to the pre-processed validation data suggests that the spectra are het-
erogeneous among the samples which makes it hard to generalize to all categories.
How to alleviate this issue and other possible sources this problem stems from is a
speculative matter and elaborated upon in the next chapter.
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Chapter 5

Conclusion

In this chapter we present conclusions regarding the analysis of spectra for detecting
outliers, the performance of the machine learning model presented in Chapter 4 and
provide suggestions for further analysis of the tumors and feature selection.

The features extracted from the data utilize the ANOVA F-value to score the
features in the data. These features are extracted from the training set on principle,
as we want to avoid any bias towards the validation and test sets. The features pre-
sented in Appendix A are the features extracted before and after the samples have
been separated from the outliers. Furthermore, we have found that the extracted
features vary greatly depending on which samples are present in the training set,
which brings the consistency of the results into question. This is perhaps not sur-
prising given the reliance of variance in ANOVA. Switching even one sample in
the training set has the potential to shift the mean of the entire set. Furthermore,
all spectra have more than 1700 frequencies used in the calculations, which may
very well cause the squared distances to change considerably. Yielding a different
F-value for each frequency. The use of f-classif is due to its capability of handling
the negative values present within the data. There are other methods better suited
for feature selection in the context of classification e.g. chi-squared which does not
handle negative values. For future tests, we would examine a method for transform-
ing the data, such that all frequencies have a positive scope, which would allow
feature extraction using chi-squared as a scoring function for SelectKBest.

The modeling results suggest that heterogeneity keeps the model from general-
izing to unseen data. Through multiple tests, where the architecture of the model
has been modified in various ways, we conclude that the architecture appears ar-
bitrary for training processes that last for approximately five hours. Provided the
pre-processing methods mentioned in Chapter 4 are used, the model always man-
ages to learn the training set with accuracy ranging from 90% and above. The
model’s performance on the validation set is always insufficient due to the model
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over-representing certain categories. We also replaced all the samples in the val-
idation set with samples drawn from the training set to test if any samples within
the original validation set remain problematic after the outlier removal procedure.
However, the results remain the same after training; this suggests the problem lies in
heterogeneity among spectra from different samples rather than problematic sam-
ples in the validation set. The improvements to the model’s performance appear to
stagnate after 100 epochs, but it is still uncertain the model cannot improve further
with a smaller learning rate, trained on exponentially more epochs. Deep learning
models are known to require training for days and even weeks in some cases. We
did not explore this possibility and consider it a worthy effort, as the longer training
time may result in surprising results. Liu et al. also introduce a custom loss function
which takes the distribution of the different categories into account [15]. We have
attempted to replicate this loss by introducing weights proportional to the different
category distributions, which tune the gradient during training. This, did however
not improve performance. There might be an improvement by implementing the
custom loss function and we plan to consider it in the future.

We also believe the classes which the model appears to prefer should be ex-
amined further; if the problem is independent of the model, the issue is then to
be found either in the pre-processing methods or in the analysis stage explained in
Chapter 3. We perform baseline correction on the spectra available, but the spectra
in the dataset are actually selected frequencies from the complete spectra. It is pos-
sible the baseline correction algorithm is unable to remove the baseline sufficiently
when all spectral signals are unavailable. Baseline correction might therefore not
be suitable for this data and should be reconsidered during the analysis stage. Alter-
natively, different methods for baseline correction may be tested on the data. One
possible alternative method would be to approximate the baseline using linear re-
gression. Standardization retains huge values in certain frequencies; it is possible
that frequencies which possess large values are outliers (provided the frequencies
are drawn from a normal distribution) and should therefore be removed. Maximum
absolute value normalization is something we are certain is required for the model
to comprehend the data, due to the drastic change in scope for the values within the
spectra.

The analysis in Chapter 3 shows that ward linkage is sufficient in detecting out-
liers compared to the frequency criterion. However, the outliers detected for certain
samples appear after several other areas have been separated into other clusters.
One interpretation of this is that the initial clusters differ more from the majority
compared to the outliers and are therefore outliers themselves. We use this inter-
pretation in this thesis, but there is another interpretation based on the definition of
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ward linkage. Ward linkage depends on the definition of variance, which depends
on the mean of the sample under analysis. It is possible that certain clusters of tu-
mor spectra may form prematurely due to having an inter cluster mean which differs
considerably from the rest. In cases where few outliers are present in the sample,
this may cause outliers to appear after the appearance of other clusters. This is
shown in sample HF-2485, where clusters avoid the known outliers and instead
detects the outliers once four clusters are allowed. This case requires a different
solution regarding which cluster should be removed from the sample. The sugges-
tion we give as an alternative solution is to use the distance between the means of
the different clusters. The mean of the outlier cluster should be sufficiently distant
from other clusters to be used as a discriminator. This would need further testing for
confirmation. Moreover, clustering methods are only usable in cases where outliers
are known to be present; using clustering on a sample devoid of outliers will still
produce clusters around parts of the sample, which is shown in the figures of Chap-
ter 3. Allowing more clusters than necessary for outlier detection causes clusters
to form around other tumor spectra which are usable in the training set. We also
attempted to use baseline correction on the spectra before the clustering analysis,
but this does not yield similar results, outliers become harder to spot and clusters
appear to miss major areas where outliers are possible. The same occurs when us-
ing the features extracted by f-classif. In earlier tests, we have tried to separate
the spectra by the frequency criterion, labeling all spectra as either outlier or non-
outlier. Using f-classif, we have extracted the features which best separate the data
into outliers and non-outliers and attempted clustering following feature extraction.
The results are mixed, as the strategy made the model separate outliers extremely
poorly compared to the strategy where all features were used. Thus, we conclude
that raw spectra are optimal for outlier detection using hierarchical clustering with
ward linkage, utilizing the Euclidean distance metric.

These suggestions may yield better results for the model. Our tests suggest
heterogeneity is the key problem in this analysis. However, it is not certain that
this is the correct conclusion. It is still unclear how the heterogeneity among tumor
samples is preserved in the Raman spectra we have available. One possible issue
for this project is that the number of tumor samples available from unique patients
is lower than 50. It is possible the model requires more unique patient samples
to adequately learn the characteristics of the different categories. DL models are
extremely reliant on large sets of data, and it appears the data is the source of our
conflicting results, rather than methodology. This problem is unfortunately hard to
mitigate, as extracting and scanning new samples require a tremendous amount of
manual labor. The dependence on more patients suffering from glioma would also
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be a horrible necessity.
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Svensk Sammanfattning

Gliom är en typ av cancer som formas i hjärnan från gliacellerna. Tumörer som
konsekvent formas av sjukdomens effekt kategoriseras av Världshälsoorganisatio-
nen (på engelska "World Health Organization") genom olika grader som beskriver
hastigheten med vilken cancern sprids, samt dess aggressivitet. Cancerns effekt på
gliompatienterna kan variera avsevärt mellan huvudvärk, illamående eller komp-
likationer gällande hjärnans funktion (t.ex. förvirring, problem med att prata och
kommunicera och epileptiska anfall). En patient som diagnostiseras med gliom har
ett fåtal år kvar att leva, det är ovanligt att patienter överlever i mera än fem år
[2, 3, 4]. Diagnoseringsprocessen inkluderar ett ingrepp, där sampel av tumören
extraheras från patienten. Samplen analyseras sedan i labbet för att undersöka
tumörens grad och bestämma den optimala medicinska kuren. Denna analys, föl-
jande samplets extrahering, kan räcka ett obestämt antal veckor. I denna avhandling
beskrivs en analytisk process där vi analyserar Ramanspektra extraherat från gliom-
tumörer, tagna från 45 patienter. Från vissa patienter har flera sampel av samma
tumör tagits, vilket ger ett större antal sampel än patienter. Analysens syfte är att
förbereda alla spektra för användning i maskininlärningsmetoder. Detta innebär att
alla sampel måste analyseras för att ta bort de spektra som inte kommer från tumör-
material. Det är sannolikt att en delmängd av alla spektra från ett givet sampel kan
ha kommit från t.ex. blod, plast som reflekteras under tunna bitar av samplet och
nekrotiska celler.

Ramanspektroskopi används pga. den information som finns i varje spektra
samt dess användning i tidigare projekt med maskininlärning [13, 14]. Ett spek-
trum består av 1738 olika frekvenser; en del av analysen undersöker vilka av dessa
frekvenser som bäst delar in alla spektra i olika kategorier. Kategorierna är baserade
på olika sorter av mutationer i IDH-generna. Dessa kategorier har identifierats av
Ceccarelli et al. [9] och påstås vara ett bättre sätt att identifiera en bra medicinsk kur,
än de grader som för tillfället används. De frekvenser som bäst delar in alla spektra
i kategorierna beräknas före och sedan efter att spektra från icke-tumörmaterial har
separerats från tumörspektra.
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Analys

Analysen börjar med att avlägsna vissa sampel som visar sig vara problematiska att
analysera. Två sampel avlägsnas, ett sampel från patient HF-1887 innehåller spek-
tra som ligger på en kurvad grundlinje, vilket innebär att värdet på frekvenserna
stiger stegvis från den första frekvensen till den sista. Ett högt värde på en frekvens
indikerar information från punkten där spektrumet är taget. Då grundlinjen inte är
rak blir det omöjligt att jämföra olika frekvenser i spektrumet. Alla sampel från
patient HF-3097 har en konsistent grundlinje med alla andra sampel, men det finns
ett betydligt större antal av frekvenser med enorma värden jämfört med andra sam-
pel. Vi väljer att avlägsna alla sampel från patient HF-3097, eftersom den enorma
mängden höga frekvenser i alla spektra tyder på att spektrometern har gett felaktiga
värden.

Vi fortsätter genom att balansera datamängden enligt kategorierna som vi vill
separera alla spektra i. Det finns en stor variation mellan antalet spektra tillhörande
varje kategori. Vi delar in alla sampel i olika datamängder som kan ska användas i
maskininlärning. Dessa är träningsmängden, valideringsmängden och testmängden.
Eftersom det finns en risk för att tumörerna är heterogena, bestämmer vi att dela in
dessa mängder enligt sampel, dvs. åtminstone ett unikt sampel från varje kategori
finns i varje datamängd. Maskininlärningsmodeller måste kunna lära sig dela in
ett spektrum i den kategori spektrumet tillhör genom att träna på träningsmängden.
Om detta steg ignoreras och olika spektra från samma sampel används för att träna
och validera modellen, kommer resultatet inte vara trovärdigt om alla tumörer är
heterogena. Efter mängdseparationerna kan vi balansera träningsmängden genom
att beräkna antalet spektra tillhörande varje kategori i mängden. Antalet spektra
i träningsmängden tillhörande kategori n kan då beskrivas genom |LGmn|. Varje
kategori balanseras genom att kopiera varje spektrum i en kategori x gånger, då x

är resultatet av divisionen mellan antalet element i kategorin som utgör majoriteten
i mängden och antalet spektra i kategori n. Detta beräknas enligt x = ⌊ |LGmm|

|LGmn| ⌋
där ⌊ och ⌋ antyder avrundning nedåt av kvoten. De frekvenser som bäst beskriver
samplets kategori beräknas sedan genom användning av f-classif-metoden i SKlearn
biblioteket i Python [33].

För att identifiera icke-tumörspektra testar vi olika metoder. Dessa metoder är
standardavvikelsetestet, kvartilavståndet och oövervakade inlärningsmetoder som
hierkisk klustring och K-means-klustring. Dessa metoder jämförs med frekvenskri-
teriet, vilket är ett kriterium baserat på frekvenserna 1463 till 1473 på alla spektra.
Om någon av dessa frekvenser är under 5000 på ett spektrum, är det spektrumet
från ett icke-tumörmaterial. Standardavvikelsetestet och kvartilavståndet ger lik-
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nande resultat på majoriteten av sampel. Av dessa två är det kvartilavståndet som
ger resultat liknande vad frekvenskriteriet ger. K-means-klustring lyckas ge resultat
som stämmer med frekvenskriteriet, algoritmen lyckas även hitta andra regioner på
samplet som frekvenskriteriet inte hittar. Denna analys utförs genom att initialisera
sex modeller som delar in samplet i två, tre, fyra, fem, sex och sju kluster. Mellan
alla dessa finns det inte ett klart bästa alternativ för att identifiera icke-tumörspektra
i varje sampel. Med hierarkisk klustrings undersöker vi olika länkningskriterier
som finns implementerade i SKlearn. Dessa är single-koppling, average-koppling,
complete-koppling och ward-koppling. Av dessa kriterier, är det ward-koppling som
producerar bäst resultat. Dessa resultat är jämförbara med frekvens kriteriets resul-
tat och de resultat som K-means-klustring uppnår. Metoden är också konsistent och
kan hitta alla icke-tumörspektra i majoriteten av sampel med tre kluster. I vissa
sampel där antalet icke-tumör spektra är oansenligt behövs det fyra kluster eller
mera.

Användning av datan

Vi väljer att separera icke-tumörspektra från tumörspektra genom att använda ward

linkage med hierarchical clustering algoritmen. Alla spektra går nu igenom en
förberedande process som maskininlärnings modeller kräver. Grundlinjen på alla
spektra tas bort genom ZhangFit metoden i Python. Alla frekvenser i varje spek-
tra är sedan standardiserade genom att subtrahera varje enskild frekvens med den
frekvensens medeltal, differensen divideras sedan med standardavvikelsen för den
frekvensen. Alla frekvenser normaliseras sedan genom att dividera varje enskild
frekvens i varje spektra med det maximala absolutbelopp för den frekvensen. För
att testa datans användbarhet efter den förberedande processen, skapar vi ett djupt
neuralt nätverk för att klassificera alla spektra enligt deras respektive kategorier
Ceccarelli et al. [9] presenterat. Modellens arkitektur beskrivs och dess prestanda
presenteras.

Slutsats

Flera test på olika modellarkitekturer tyder på att arkitektur inte har en betydande
inverkan på modellens prestanda, förutsagt att arkitekturen är djup nog. Modellen
misslyckas klassificera alla spektra och har en tendens att föredra vissa kategorier
över andra. Vi ger förslag för hur de processer vi använt kan förbättras i hopp om
att kunna hitta en bättre modell i framtida studier. Dessa förslag är alternativ som
inte avsetts under analysens utförande. Exempel på dessa är att använda alternativa
metoder för att avlägsna grundlinjen samt förbättring av den analytiska metoden för
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att identifiera icke-tumörspektra genom att avsee klustrens avstånd från varandra.
En klar förbättring på modellens prestanda är att samla mera sampel från gliompa-
tienter i framtiden, men denna process är inte önskvärd pga. tiden som krävs för att
samla dessa sampel samt behovet av lidande patienter.
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Appendix A

Feature Selection

Features extracted from the original dataset: 509, 521, 522, 523, 524, 525, 526,
527, 528, 529, 530, 532, 533, 538, 539, 540, 541, 545, 546, 547, 548, 549, 550,
551, 552, 553, 562, 563, 647, 1449, 1450, 1451, 1452, 1453, 1454, 1455, 1456,
1457, 1458, 1459, 1460, 1461, 1462, 1463, 1464, 1465, 1468, 1469, 1470, 1471,
1472, 1473, 1474, 1475, 1476, 1477, 1478, 1479, 1480, 1481, 1482, 1483, 1484,
1485, 1487, 1492, 1494, 1495, 1496, 1497

Features extracted from the curated training set: 23, 30, 31, 297, 298, 299, 308,
309, 310, 508, 509, 521, 522, 523, 524, 525, 526, 528, 529, 647, 648, 722, 1494,
1496, 1501, 1681, 1685, 1686, 1692, 1696, 1697, 1699, 1700, 1701, 1702, 1703,
1704, 1705, 1706, 1707, 1708, 1709, 1710, 1711, 1712, 1713, 1714, 1715, 1716,
1717, 1718, 1719, 1720, 1721, 1722, 1723, 1724, 1725, 1726, 1727, 1728, 1729,
1730, 1731, 1732, 1733, 1734, 1735, 1736, 1737

Intersection among the feature sets: 509, 521, 522, 523, 524, 525, 526, 528,
529, 647, 1494, 1496
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Appendix B

Spectral Images For Outlier
Detection

Figure B.1: The frequency criterion on sample HF-1293 from LGm1. The upper
part of the sample also includes some outliers which the criterion fails to capture.
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Figure B.2: Single linkage on sample HF-1293 from LGm1. Few regions are de-
tected, the number of clusters required to detect all outliers are unknown.
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Figure B.3: Complete linkage on sample HF-1293 from LGm1. Some areas are
detected with two clusters. Six clusters and up appear to capture most outliers.
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Figure B.4: Average linkage on sample HF-1293 from LGm1. With six clusters the
same areas appear to be captured as those captured with two clusters when using
complete linkage.
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Figure B.5: Ward linkage on sample HF-1293 from LGm1. Overwhelming corre-
spondence with the frequency criterion with only two clusters.
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Figure B.6: K-means on sample HF-868 from LGm1. This is the only method
capable of detecting the above region. All models computing more than two clusters
detect outliers in the upper part.
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Appendix C

Confusion matrix from model
predictions

Figure C.1: The confusion matrix of the predictions for the separated training set.
The diagonal shows the correct predictions of the models, wrong predictions are the
surrounding area. The values within the cells are the number of predictions for the
class. The model can generalize well to the separated training set.

Figure C.2: The confusion matrix of the predictions for the validation set. The
validation set consists of samples not included in the training data. The samples are
hard to generalize to. Only LGm1 is correctly labeled by the majority of predictions.
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Appendix D

Pre-Processing Pipeline

Figure D.1: The pre-processing pipeline presented in Chapter 4. A batch of spectra
with an equal number of spectra from each category is drawn from the training set.
Each spectrum is then given a random baseline and additive Gaussian noise. The
augmented data is then passed to the pre-processor which scales the data to a limited
range.
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Appendix E

Model Architecture

Figure E.1: The model architecture trained in the project. The input spectrum must
be pre-processed. The network has five layers, the middle box represents the flat-
tened data following propagation through the two initial convolutional layers. The
input is then propagated through the dense layers to the last layer where the input
has been transformed to a probability distribution, i.e., the sum of the signals equals
1.
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