
SOGS-API: An API for Satellite Data
Retrieval

Markus Silvennoinen, 1800325
Master’s Thesis in Computer Science

Supervisor: Dragos Truscan
Advisor: Timo Ryyppö (FMI)

Faculty of Science and Engineering
Åbo Akademi University

2021

Abstract

The Finnish Meteorological Institute (FMI) has a set of satellite data retrieval tools, which
are used in SOGS-API. The full name is Sodankylä Ground Station API. Initially, the API
had been put together quickly, and the problem was that it lacked features, contained bugs
and had been implemented in a technology, which was about to be outdated. This thesis
is about solving the problem by rewriting the API and adding the missing features and
adapting existing ones. The goal is that the API is easy to use and access through SSH or
web protocols, and it should be able to handle traffic and threats.

SOGS-API and its tools have been mainly implemented using Python 3 in a Linux en-
vironment. Most features of SOGS-API are used through a command line interface.
Customer needs may change during and after the thesis, so it is important to keep the
API maintainable. The API is tested and validated on a test server before it goes opera-
tional.

The following objective is formulated:

Rewrite SOGS-API to comply with new requirements, such that the API is reliable, secure

and maintainable in order to let FMI provide third parties access to the organization’s

satellite retrieval services.

The rewriting of SOGS-API include adapting existing monitoring, visualization and re-
porting tools to work with the API. Some of the existing tools had not been designed for
a wider audience and required safety and performance enhancements, and some had fea-
tures that were removed because they were not essential for the API. The reliability and
security of the API are evaluated with automated scripts, and by letting FMI employees
test it. The API should be able to handle normal traffic, which is expected to be at most
1000 requests per minute, and most common threats, such as password cracking and Dis-

tributed Denial of Service attacks. The API has been implemented in a way that makes
security breaches unfeasible. The maintainability of the API is preserved by following
good programming practices. The retrieval services include tools for checking satellite
overpass schedules, signal data and antenna status data.

Keywords: API, satellite data retrieval, product quality.

Contents

1 Introduction 1
1.1 Problem Description . 1

1.2 Purpose of the Thesis . 3

1.3 Project Goals . 3

1.4 Benefits . 4

1.5 Related Work . 4

1.6 Thesis Structure . 5

2 Satellites 7
2.1 Overpass . 7

2.2 Polar Orbiting vs Geostationary Satellites 8

3 Sodankylä Ground Station 11
3.1 History . 11

3.2 Ideal Location . 11

3.3 Infrastructure . 12

4 Software Architecture and Quality Attributes 15
4.1 Software Architecture . 15

4.1.1 History . 15

4.1.2 Design Principles and Patterns 15

4.2 Quality Attributes and Metrics . 16

4.2.1 Halstead Metrics . 16

4.2.2 IF Ratio . 17

4.2.3 Product Failure Rate . 17

4.2.4 Performance . 18

4.2.5 Security . 18

5 Tools and Technologies Used 19
5.1 Python . 19

5.2 Web Technologies . 20

5.2.1 HTML . 20
5.2.2 CSS . 21
5.2.3 JavaScript . 21

5.3 Git . 21
5.4 APIs . 22

6 SOGS-API - Features and Services 23
6.1 Initial Version of SOGS-API . 23
6.2 Issues . 24

6.2.1 Initial Version . 24
6.2.2 Issues Discovered During Development 24

6.3 Overview of the new SOGS-API . 25
6.4 Main Program . 26
6.5 Scheduling Feature . 29
6.6 Implementation . 31
6.7 Related Tools . 32

6.7.1 Satellite Data Flow Monitor and Acquisition Issue Reporter . . . 32
6.7.2 Antenna Status Monitor . 34

7 Evaluation 43
7.1 Reliability . 43
7.2 Security . 44
7.3 Performance . 45

7.3.1 Main Program with Modules . 45
7.3.2 Scheduling Feature . 46

7.4 Maintainability . 47

8 Conclusion 59
8.1 Measurement Results . 59
8.2 Further Development . 59

9 Swedish Summary - Svensk sammanfattning 61

Appendices 71

A ACU Metrics: Raw vs Visualized 73

B S Band Modem Metrics JSON 75

Preface

The work on the project started in December 2019, with a ten-month contract. In Novem-
ber, preparations for the project were made, such as the specification of the SOGS-API,
receival of a work computer, and testing if the computer can be logged into and if it can
be connected to the FMI intranet through VPN. Everything worked as expected.

I learned the basic infrastructure of FMI during my summer internship in Sodankylä. This
was also the time when me and my manager discussed the possibility of writing my thesis
for Finnish Meteorological Institute.

Acknowledgments

I would like to thank Finnish Meteorological Institute for this opportunity. I would like
to express my appreciation to my manager and advisor Timo Ryyppö at FMI, for his
guidance and advice, and for helping to keep the API working when a bug appears. Many
thanks to my supervisor Dragos Truscan at Åbo Akademi University, for his time reading,
correcting and guiding me. Finally, I would like to thank the love of my life, for her
understanding and support.

Abbreviations

ACU Antenna Control Unit
API Application Programming Interface
CSV Comma Separated Values
DOM Document Object Model
FEP Front-end Processor
FMI Finnish Meteorological Institute
FTP File Transfer Protocol
GPS Geographic Point System
GUI Graphical User Interface
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
ID Identifier
IP Internet Protocol
JSON JavaScript Object Notation
MOC Ministry of Communication
PNG Portable Network Graphics
SCC Station Control Computer
SCP Secure Copy
SCU Servo Control Unit
SOGS-API Sodankylä Ground Station API
SSH Secure Shell
TCP Transmission Control Protocol
UDP User Datagram Protocol
UML Unified Modeling Language
UTC Coordinated Universal Time
VPN Virtual Private Network
XML Extensible Markup Language

1. Introduction

This chapter contains the background for this thesis. It presents the main reasons and
goals for this project. This master’s thesis was carried out at Arctic Space Centre of the
Finnish Meteorological Institute (FMI-ARC) located in Sodankylä, Finland. Most of the
work was done remotely. The ground station operations team consists of the group leader,
main operator, two system planners and a research engineer. The programming work in
this project was mostly done by me. The basic design had already been done for the initial
version of the API. During the development, some new design decisions were made on
my part, which were approved by the manager.

Finnish Meteorological Institute (FMI) is a research and service institution under the Min-
istry of Transport and Communications of Finland. It is the largest institution related
to space activities in Finland. FMI has two ground stations, one in its headquarters in
Helsinki, and one in the Arctic Space Centre in Sodankylä.

Sodankylä Ground Station is a National Satellite Data Center. Located in the North,
Sodankylä Ground Station is ideal for receiving data from polar orbiting satellites. The
ground station has three antennas, an operations center and infrastructure for processing
and archiving satellite data. Satellite orbits and Sodankylä Ground Station are discussed
in more detail in chapters 2 and 3.

1.1 Problem Description

An application programming interface (API) is a set of routines, protocols and tools that
abstract implementation and provide only the functions and objects that the developer
needs [1] [2]. The meaning of the term API has changed slightly over the years, from
being software libraries for e.g. hardware independent display in the 1960s [3], to modern
web API services [2].

APIs are a useful way to provide functionality to client programs. They can make the de-
velopment of applications faster and easier by abstracting away complicated procedures.
For instance, the client can receive data from a satellite through an API without knowing
anything about the communication between the satellite, antenna and ground station. A

1

concrete example of an API is the YouTube Data API, which provides functions for pro-
grammatically reading and editing resources, including videos, of a linked YouTube user
account [4].

FMI provides the SOGS-API (Sodankylä Ground Station API) for accessing the organi-
zation’s satellite data retrieval services. SOGS-API consists of several smaller programs.
Two of the programs are services that provide the features that the customers can ac-
cess. These are the main program of SOGS-API, which logs and sends antenna status data
through UDP, and the scheduling feature that enables customers to upload satellite pass
plans for antenna scheduling through HTTP requests. The rest are programs that support
the operation and maintenance of the API.

The antenna status data that are sent to customers are the ACU metrics and S band mo-
dem metrics. ACU metrics are received from the antenna station control computer (SCC)
through TCP. The ACU metrics are numbered parameters with short values, such as num-
bers. The meanings of these values are defined in the antenna manufacturer’s manual for
the interface. The raw metrics are time-consuming to interpret. Therefore, it is more com-
mon to let software read the metrics. Within FMI, tools for visualization and automated
issue reporting have been made for the metrics coming from the SCC. Appendix A has an
example of raw ACU metrics, and how its parameters are visualized.

S band is defined by IEEE as the part of the microwave band of the electromagnetic
spectrum covering frequencies 2-4 GHz and is mainly used for satellite communication.
An S band modem converts radio frequencies and processes signals.

The S band modem metrics are received through HTTP using a Python program that was
delivered by the manufacturer of the S band modem. This program returns the S band
modem metrics in JSON format. The modem metrics are human readable as is, but the
most important values, signal strength (EbnoMeas), symbol lock and carrier lock are also
plotted for an overpass, making it easier to spot issues in satellite data receival. Appendix
B has an example of S band modem metrics and a plot. The plot shows that the signal
strength was good and stable during the overpass. Sudden notches or bad signal strength
during an overpass are signs of trouble.

Initially, SOGS-API had been put together quickly. It lacked features and contained bugs.
It had a main program that logged and sent antenna status data through UDP, with basic
exception handling, and a separate program for the scheduling feature, which had not
been put into use. The main program had been written in Python 2, which was about
to be outdated when this project started. During the project, the API was almost entirely
rewritten, and Python 3 was used as the programming language. The related tools Satellite

2

Data Flow Monitor, Acquisition Issue Reporter and Antenna Status Monitor were also
worked on during the project.

1.2 Purpose of the Thesis

The purpose of this thesis is to present SOGS-API. The thesis also serves as additional
documentation for SOGS-API, along with the manuals. The purpose of the produced
software is to serve FMI and its customers data for quality assurance and maintenance.
The data can be used to check if there are issues in the receival of data coming from
the satellite. This is important, because valid satellite data are valuable, and are used in
e.g. research and to check the ice situation on the sea, which affects the work of the ice
breakers.

1.3 Project Goals

The goal is to create a reliable, secure and maintainable API that provides access to the
satellite data retrieval services. Only customers and staff have access to the API, and the
API is mostly used with a command line interface. The SOGS-API is implemented so
that it is easy to make changes later, because the customer’s needs can change. These
were the requirements during the project:

• to let the customers view antenna schedules without revealing what satellites other
customers receive from,

• to schedule the customer’s satellite passes,

• to provide information about antenna and component status to customers,

• to automatically check for faults and report them to FMI and customers, and

• to check the delivery of data.

The features and data that customers receive are customer dependent.

SOGS-API is evaluated through measurements of quality attributes. The most important
quality attributes for the API are reliability, security and maintainability. Performance and
availability to customers were also considered.

Reliability was tested with special scenarios, such as when the power goes out from the
antenna, and fuzzing. During the development of the API, the API was in test use on a test
server. The API on the operational server was also frequently updated during the project,

3

and it went through a multitude of special situations, either managing it or failing, and
then being developed to manage it. Performance was also measured.

The API was in a secure environment, behind firewalls and with access limited to cus-
tomers and staff only. The security measures in the new API were to have authentication
for customer requests and the Schedule Manager tool, as well as local file verification for
special commands, such as shutdown, to make misuse even more difficult. The API was
further developed to detect and report attempts to crack customer IDs and passwords, and
to block requests from IP addresses that show suspicious activity.

To make the API more maintainable, effort was put on code quality, documentation and
usability for operators. Configuration files and design principles were used to add modi-
fiability to the API.

Availability to customers was increased by using exception handling and tolerance, and by
having tools for the riskiest situation for availability, an update. The effects of updating
on availability were further reduced by agreeing on a time window, when the API is
updated without notification, and that customers will be notified about updates that are
done outside of the time window.

1.4 Benefits

The benefit of having the improved API for satellite data retrieval services is that it sup-
ports multiple customers, reports problems through email, and repairs itself. The benefit
of the API being reliable is that it can handle several customers and satellites, and it will
not break easily in exceptional situations. Security benefits mostly the FMI, by prevent-
ing unauthorized activity in the organization’s servers, but also the customers, as there
will not be anything malicious served through the services, and data will not fall into the
wrong hands. Maintainability benefits the FMI by making it easier to correct or update
the API. It is also a benefit for the customers, as corrections and updates can be made
more quickly and reliably, keeping the services running.

1.5 Related Work

There are other satellite-related APIs [5], but these are not directly competing with SOGS-
API, because SOGS-API is tailor-made for the FMI’s satellite retrieval system and for
FMI’s customers.

Macy has done research regarding API security and writes about its challenges and so-

4

lutions in an article [6]. Macy points out that API security frameworks, adapters and
toolkits cannot provide real security. According to Macy, technologies such as API secu-
rity gateways with locked-down operating systems where no third-party code can be run
are immune to vulnerabilities, even in a chipset.

Kleppmann has written about reliability, scalability and maintainability of applications
and APIs [7]. Kleppmann writes that reliable software is expected to do what the user
expects, tolerating mistakes, performing well enough for its task, and preventing unau-
thorized access and abuse. Kleppmann splits maintainability into three components: op-
erability, simplicity and evolvability. The operability is dependent on the operational team
and the ways routine tasks have been made easier in the software, as well as how well it
is documented. Abstraction is a good way to reduce complexity in software, and this also
benefits evolvability, which can be further improved with agile tools and patterns.

1.6 Thesis Structure

Chapters two to five review theory about satellites, overpasses, Sodankylä Ground Station,
APIs, software architecture, quality attributes and metrics, as well as tools and technolo-
gies used. Chapter six presents SOGS-API. Chapter seven evaluates SOGS-API using
quality attributes and chapter eight summarizes the result. At the end of the thesis there is
a Swedish summary and the appendices.

5

6

2. Satellites

A satellite is an object that orbits another object, such as a planet, star or asteroid. The
satellite can be natural, such as a planet or a moon, or artificial, which means any objects
that has been intentionally placed in orbit. Usually, the word "satellite" refers to a machine
that has been launched into orbit [8].

There are several types of satellites with different purposes. Astronomical satellites are
used for observing distant planets and galaxies, while Earth observation satellites are used
for non-military observations of Earth. Reconnaissance and weaponized killer satellites
are used for military purposes. Communication and navigational satellites are used for
telecommunication and GPS. Weather satellites are used for observing weather and cli-
mate.

2.1 Overpass

A satellite overpass occurs from the time when the satellite receiver acquires the signal
from the satellite until the signal is lost. From the satellite receiver’s perspective, the
overpass roughly occurs while the satellite is above the horizon. This is illustrated in
Figure 2.1.

Figure 2.1: Overpass.

7

2.2 Polar Orbiting vs Geostationary Satellites

Polar orbiting satellites move from pole to pole, with an inclination between 60 and 90 ◦

to the Equator. The satellite will pass the Equator at a different longitude on each of its
orbits. Figure 2.2 demonstrates how polar orbits are used when the inclination is close to
90 ◦.

Figure 2.2: Polar Orbit.

A satellite in a geostationary orbit is 35,786 kilometers above Earth’s equator, going in
the direction of Earth’s rotation, as Figure 2.3 shows. The satellite is always above the
same location on Earth and can always be seen in the same location in the sky. This
also means that Earth-based antennas do not need to rotate to track a geostationary satel-
lite. Therefore, geostationary orbits are especially useful for communications satellites.
Geostationary weather satellites are used for real-time monitoring and data collection and
navigation satellites for providing a known calibration point and enhancing GPS accu-
racy.

Geostationary satellites are at altitude 35,786 km above the Equator, because this is where
the satellite can stay in the same spot relative to Earth’s surface, with minimal need for
orbit corrections. The altitude of the geostationary orbit is calculated by setting the cen-
tripetal force (Fc) equal to the gravitational force (Fg):

Fc = Fg (2.1)

msrω
2 =

msMEG
r2 , (2.2)

8

Figure 2.3: Geostationary Orbit.

where ms is the mass of the satellite, ME is the mass of the Earth (5.988∗1024 kg), G is the
gravitational constant (6.673∗10−11Nm2/kg2), r is the distance between the satellite and
the center of the Earth, and ω is the angular velocity of the satellite. The angular velocity
of the satellite must be the same as Earth’s angular velocity. This can be calculated when
we know that Earth rotates around its axis a full round (2π rad) in 23 hours 56 minutes
and 42 seconds (86164 s).

ω =
2π

T
=

2π

86164s
≈ 7.292∗10−5s−1 (2.3)

By solving r from Equation 2.2 and subtracting Earth’s radius from it (R = 6.37∗106m),
we obtain an equation for calculating the satellite’s altitude (h):

r = R+h =
3

√
MEG
ω2 (2.4)

h =
3

√
MEG
ω2 −R (2.5)

Polar orbiting satellites are on a much lower orbit than the geostationary satellites, e.g.
Terra is at 700 km. Polar orbiting satellites are more suitable for taking pictures of the Po-
lar regions. Geostationary satellites can also take pictures towards the poles, but these are
taken from a steep angle, making the images inaccurate. The greater altitude of geosta-
tionary satellites also reduces the resolution accuracy of the images. Figure 2.4 illustrates
the effects of satellite position on image quality.

9

Figure 2.4: Satellite image quality between geostationary and polar orbiting satellites.
The red line also shows a positioning error in steep angles.

10

3. Sodankylä Ground Station

3.1 History

FMI Arctic Space Centre (FMI-ARC) satellite operations started in 1998 and the process-
ing of satellite data started in 2001. In 2003, the Sodankylä satellite operations expanded
significantly, when the construction of the first satellite receiver was finished. The antenna
received data from satellites Aqua and Terra, which belong to NASA’s EOS series. The
third EOS series satellite, Aura, was launched in 2004 and receival from it began the same
year. EOS series environmental satellites can detect natural phenomena, such as volcano
eruptions.

In 2009, the Finnish Government proposed that 3.2 million euro would be invested in up-
dating infrastructure at Sodankylä Ground Station. The proposition was approved, and the
infrastructure was updated to be able to receive from NPP/NPOESS (NPOESS Prepara-
tory Project/National Polar-orbiting Operational Environmental Satellite System) satel-
lites. A bigger investment was the construction of a new, bigger antenna in Sodankylä and
updating the telecommunications connections to meet the increasing demands in transmis-
sion of data. The antenna was finished in time in spring 2011. Another similar antenna
was finished at the end of 2016.

3.2 Ideal Location

Sodankylä is in the North (67.48 ◦ N, 26.53 ◦ E), which is ideal for receiving from polar
orbiting satellites. Up to 10 out of 14 orbits for a satellite are within the visibility cone of
Sodankylä per day.

Many of the polar orbiting satellites use the Direct Broadcast function when sending data.
This function enables the continuous sending of real-time data of measurements. From
Finland and its perimeter, data can be received in near real-time, making the data useful
not only for research, but for operations too. Data can be received while the satellite is in
the coverage area of the ground station. The duration of this state varies and is at most
around 15 minutes, which is about 10% of a satellite’s orbit.

11

3.3 Infrastructure

Figure 3.1 shows the infrastructure of Sodankylä Ground Station. FMI has three antennas
on the site, and the building of the fourth has been planned. When an antenna receives
a signal from a satellite, this signal is converted to a readable format by a demodulator.
Then front-end processors send the data to further processing and storage and, finally, the
data are sent to relevant stakeholders.

Figure 3.1: Infrastructure of Sodankylä ground station.

The Antenna control unit (ACU) is the key part of an antenna control system [9]. It is a
computer and user interface that processes digital signals and performs calculations for
the purpose of tracking a satellite. It also monitors and controls antenna brakes, interlocks
and feed status. The ACU communicates with the servo control unit (SCU) [10], which
is responsible for antenna movement. The block diagram in Figure 3.2 shows how the
components in an antenna control system interact.

12

Figure 3.2: Antenna control system.

13

14

4. Software Architecture and Quality At-
tributes

This chapter presents software architecture and quality attributes. Quality attributes are
non-functional requirements, which are more dependent on the architecture than func-
tional requirements [11].

4.1 Software Architecture

Software architecture means the basic structure of a software system and the way it is built
up [12]. Abstraction is a fundamental part of architecture and complex systems contain
many levels of abstraction, with their own architectures [2].

4.1.1 History

In the 1960s, the challenges of developing large-scale software systems were recognized
[13]. This led to research of Software design in the 1970s and resulted in the development
of computer-aided software engineering tools [14]. In the 1980s, the research focused
more on integrating design and implementation. At that time, there were also improve-
ments in the way software systems are described and analyzed through formal descriptive
techniques and sophisticated notions of typing. In the 1990s, the term architecture was
used instead of design when the software design process contains notions of codification,
abstraction, standards, formal training and style [15].

4.1.2 Design Principles and Patterns

Design principles and patterns have their roots in architecture, where they have been used
to solve recurring problems. The same principle applies for design patterns in software
architecture [16].

In the context of software architecture, a pattern is like a recipe for creating a desired set of
interactions among objects [17]. The patterns are a useful way to abstract complex interac-
tions between objects [2]. Design principles in software architecture are good guidelines

15

for implementing software and many design patterns follow at least some of these guide-
lines. Design principles encourage to write reusable code that is easy to manage [16].
SOGS-API does not use any clear patterns, but it does follow design principles.

4.2 Quality Attributes and Metrics

Quality attributes, or non-functional requirements, are measurable or testable properties
of a system. They indicate how well the system satisfies stakeholders’ needs. The most
common important quality attributes in software-reliant systems are availability, inter-
operability, modifiability, performance, security, testability and usability. Other product
quality attributes are variability, portability, development distributability, scalability, de-
ployability, mobility, monitorability and safety. There are also non-product related quality
attributes, such as conceptual integrity of the architecture, quality in use, and marketabil-
ity. Sometimes, new quality attributes are defined, and for those, general guidelines, such
as the one defined by Bass et al. pp. 196-199 [18], can be used.

Next, we will review metrics that have been used for evaluating SOGS-API.

4.2.1 Halstead Metrics

Halstead metrics is a method from the 1970s for measuring code complexity and main-
tainability. It takes the total number of operators, total number of operands, number of
unique operators and number of unique operands. With these, program length, program
vocabulary, volume, difficulty and effort can be calculated. From these, the time to im-
plement and the number of delivered bugs can be estimated [19].

The time to implement (T) estimation is calculated with the formula:

T =
E
S

(4.1)

where E is the effort and S is the Stroud number, which indicates the number of mental
discriminations per second by the human brain, and this is set to 18 for software scientists
[20].

The number of delivered bugs (B) is estimated with the formula:

B =
E

2
3

3000
(4.2)

where E is the effort.

16

The most useful Halstead metrics are the volume, time to implement, and number of
delivered bugs. For the volume, a guideline is that it should be at most 8000 for one file
[19] and there should only be two bugs per file [21] [19].

4.2.2 IF Ratio

IF-ratio is a value for measuring legibility and structuredness of code. It is expressed
as number of if statements per 1000 lines of code (IFs/kLOC). A good result is 20-30
IFs/kLOC, and 60 IFs/kLOC or above indicates that code is difficult to analyze. The
latter is common in larger software systems [22].

4.2.3 Product Failure Rate

A widely used [23] metric for reliability is the product failure rate, which can be calculated
with the formula:

λ =
F

N ∗T
(4.3)

[24], where F is the total number of failures in all N installations during time period T ,
which is usually measured in days, assuming that the product is used an equal amount of
time each day [23].

A more radical approach to test reliability is to try to cause the software to crash. One
way to do this is through fuzzing. Fuzzing, or fuzz testing, is a method of software testing
where bugs are detected with generated random input. The idea is that, with enough
random input, there will be a sequence that leads to a crash. This method is cost-effective
and suitable for released or near-released versions of software. [25].

A program that generates random input is called a fuzzer. There are different types of
fuzzers, such as command-line, environment variable, file format, network protocol and
web application fuzzers. There are also different kinds of fuzzing methods, such as ran-
dom and mutating. The random method uses random data, while the mutating method
starts with valid data and changes parts of it [26].

Fuzzing has proved to be an effective way to find vulnerabilities in software. For instance,
Microsoft used fuzzing to detect vulnerabilities in Internet Explorer and MS Office [26].
Tools for doing fuzzing tests have been built, such as SAGE [27]. Any effective fuzzing
tool should be able to reproduce results. Another desirable, if not required, feature is the
documentation of the results [26].

17

4.2.4 Performance

There are many performance testing tools, such as LoadNinja, Apache JMeter and We-
bLOAD [28]. Performance testing can also be as simple as measuring execution times of
programs or its components. As the execution time can vary between runs, it is a good
practice to do several measurements and calculate the average time. Python programs can
be profiled using the built-in module cProfile [29]. The module writes the execution times
and number of module- and function calls when the program finishes running.

4.2.5 Security

Choosing the right security metrics can be challenging. Therefore, there are guidelines
for choosing and even creating quality attributes related to security [18]. Security met-
rics should measure the security level through quantities, have reproducible results, be
objective and unbiased and be able to measure progress towards a goal over time [30].
Examples of security metrics are Number of Policy Violations and Percentage of Weak

Passwords.

18

5. Tools and Technologies Used

This chapter presents the tools and technologies that have been used during the develop-
ment of SOGS-API. The API has been built with Python, HTML, CSS and JavaScript,
while other technologies and tools have supported the development process.

5.1 Python

Python [31] is a multiparadigm high-level general purpose interpreted programming lan-
guage created by Guido van Rossum in the early 1990s [32]. Python has features, such as
block indentation, that makes the code more readable [33].

The Python debugger pdb is used for debugging Python programs. It is included in the
Python standard library and provides basic debugging features such as breakpoints, step-
ping and checking the value of variables [34].

The Python module and linter tool Pycodestyle [35] (formerly PEP-8) is used for checking
if the code complies with the style guide of PEP-8 [36].

The Python module cProfile [29] is used for profiling execution time and number of exe-
cutions of Python programs, modules and functions. It is included in the Python standard
library and can be used by running:

python -m cProfile yourprogram.py

The profiler can also be run from code:

import cProfile

import yourprogram

cProfile.run('yourprogram.afunction("arg")', 'optionaloutfile')

The execution of the program can be finished in the same ways as during normal execu-
tion. When the program finishes, the cProfile module prints or writes to file the execution
times and number of executions of programs, modules and functions. The list will include
both built-in and custom modules. As an example, here is the header line and an entry
from the profile report of SOGS-API:

19

ncalls tottime percall cumtime percall filename:lineno(function)

18 0.000 0.000 0.001 0.000 apiutils.py:104 (sanitize)

In the column headings ncalls means the number of calls, tottime is the total time spent
in a function excluding time spent in sub-functions, percall is tottime divided by ncalls,
cumtime is the cumulative time spent in a function including sub-functions, the second
percall is cumtime divided by the number of primitive (non-recursive) calls, and file-

name:lineno(function) provides the file line and function. The cumtime attribute is also
accurate for recursive functions. If the ncalls attribute contains two values, the function
has recursed. For instance, 4/1 means that the function has recursed four times and had
one primitive call.

The Miniconda package and environment management system is used for handling Python
environments. Miniconda is a minimal version of Anaconda, and contains the package
manager conda, Python, packages that these depend on, and some other useful packages,
such as pip and zlib [37].

5.2 Web Technologies

Web pages are built with HTML and styled with CSS. More advanced functionality can
be programmed in JavaScript.

5.2.1 HTML

Hypertext Markup Language (HTML) is the core markup language of the World Wide
Web. The language is based on XML, and the XHTML variant is actually pure XML,
which is compatible with programs that use XML. Originally, HTML was designed to
be a language for semantically describing scientific documents. Thanks to its general
design, HTML has adapted to describe other types of documents and applications as well
[38].

HTML is used for displaying information in a human friendly format in Web browsers.
Web browsers receive documents from a web server and render them as the web page that
the client sees. HTML consists of tags, describing the structure of the web page. Figure
5.1 shows the HTML and display of a very simple web page.

20

Figure 5.1: A simple web page and its HTML code.

5.2.2 CSS

Whereas HTML is the language for structuring a web page, Cascading Style Sheets (CSS)
is the language for defining the presentation [39]. With CSS one can specify fonts, colors
and layout to be used in any web page that uses the CSS document. The CSS language
makes use of selectors, which makes it easy to apply styling for specific HTML tags. The
following CSS sample would turn the text color of all h1 -tags brown:

h1 {color:brown;}

CSS can be written within the HTML file that uses it, or it can be in an external file that is
loaded by HTML. The latter is more common, as it has the benefit of using the same CSS
file for several HTML files.

5.2.3 JavaScript

JavaScript is a multi-paradigm prototype-based object-oriented programming language
used mainly for adding dynamic features to a web page. There are also server-side
versions of JavaScript, such as Node.js, which can handle requests, communicate with
databases, and do file operations on the server [40]. Many libraries and frameworks have
been made for JavaScript. Some popular ones are D3, jQuery, Angular, React, Ember.js,
Node.js, and Vue.js.

Like CSS, JavaScript can be written directly in the HTML file or be loaded from an
external file. JavaScript can manipulate the Document Object Model (DOM), changing
the contents of the web page.

5.3 Git

Git [41] is a distributed version control system created by Linus Torvalds in 2005. Files
are stored in Git repositories, which are like tree structures, divided into branches and

21

a trunk. Branches are created to separate the current state of the files from the trunk,
until they are merged once again. Usually in a project, each developer is developing the
software in his/her own repository. The updates to the software go to a master repository
through a so-called pull request, where a developer has contacted the administrator of the
master branch, that changes can be pulled from the developer’s repository into the master.
This way the pull request can be reviewed and discussed before the changes are merged
with the master repository.

5.4 APIs

There are APIs for software libraries and frameworks, operating systems, databases, and
the web. The popularity of web APIs has grown since 2005, when companies have rec-
ognized the benefits of providing an open platform. In 2013, there were over 9000 APIs
[42]. In 2019, there were 22 000 web APIs and the number was growing fast [43].

The web APIs use standardized protocols, such as HTTP, for communication through
Internet. A popular architectural style for web APIs is REST. REST stands for Represen-
tational State Transfer and contains six guiding constraints:

1. Client-server - separating user interface concerns from data storage concerns

2. Stateless - the requests are independent of server state

3. Cacheable - a label indicates if a response is cacheable

4. Uniform interface - following interface constraints:

(a) identification of resources

(b) manipulation of resources through representations

(c) self-descriptive messages

(d) hypermedia as the engine of application state

5. Layered system - component visibility is restricted by layers

6. Code on demand (optional) - client code can be extended by downloading and exe-
cuting scripts or applets [2]

An API that complies to these constraints can be considered a RESTful API.

22

6. SOGS-API - Features and Services

6.1 Initial Version of SOGS-API

The initial version of SOGS-API sent ACU and S band modem metrics to a single cus-
tomer through UDP. It had basic exception handling and logging. It also contained the
scheduling feature, although it was not in use.

The system overview and a detailed overview of the initial version of SOGS-API is illus-
trated in Figures 6.1 and 6.2. These figures present the interactions between computers,
programs, and people. The antenna and its components are to the left, the API and FMI
operations are in the center, and the customers are to the right in the figure. Figure 6.1 also
shows that the customers may send TCP requests to the S band modem without interacting
with the API.

Figure 6.1: Old SOGS-API system overview.

23

Figure 6.2: Old SOGS-API detailed overview. Related tools are marked with green bor-
der, and files with orange.

6.2 Issues

6.2.1 Initial Version

The initial version of SOGS-API had five issues. The main program was written in Python
2, which was about to be outdated. There was a bug in the antenna SCC server, which
caused it to occasionally send thousands of empty messages per second and the logger of
SOGS-API would log all the empty messages, filling the log file quickly. If SOGS-API
lost contact to the antenna SCC server, it would endlessly try to reconnect and the only
way to re-establish the connection was by restarting the API. The code that read overpass
times could not handle overpasses that occurred during change of day. The API lacked
desirable features, such as S band plots and reporting through email.

6.2.2 Issues Discovered During Development

At one point, the API started to shut itself down without notifying anything. When a week
later it occurred the second time, there was an observable pattern. It happened after an
S band CSV file was created, and before the data in the file was plotted and saved into
a PNG file. We nicknamed this phenomenon the CSV to PNG issue. This issue initiated
the creation of a Python script that revives the API if it goes down. It has been a very
useful feature and made the issue much less severe. The only consequence with the issue
was that the operator staff of the FMI did not receive the S band image through email

24

automatically. The image could be drawn afterwards, though, and tools were made for
making it easier. The issue has been tracked since it first appeared, and it has not occurred
again.

While working on the API shutdown function, some issues appeared. The first way that
API processes were shutdown was gracefully through text files. The drawback with read-
ing a shutdown command through a text file is the delay. Therefore, support for clean
shutdown through a SIGINT (POSIX) signal was added. Unfortunately, the API reviver
programs utilize sub-processing, which can block SIGINT signals, so it is not a reliable
way to shutdown the API. In the end, there are three ways to shut down API processes,
through file, through SIGINT, and by killing the process, and the shutdown through file is
recommended because it is both reliable and clean.

There was a time when the API also reported when components went offline in the an-
tenna, which at worst means that the power has gone out of the antenna. This feature was
later moved to its own module and was disabled in the API, because it could prevent the
API from doing its main tasks when checking if a component is back online. The feature
was later used in another program.

6.3 Overview of the new SOGS-API

The system overview of SOGS-API is illustrated in Figure 6.3, and a detailed overview
of the API is shown in Figure 6.4. The figures are organized in the same way as in Figure
6.1.

Figure 6.3: SOGS-API system overview.

There are actually two versions of SOGS-API, a development version running on a test

25

Figure 6.4: SOGS-API detailed overview. Related tools are marked with green border,
and files with orange.

server, and an operational version running on an operational server. The versions are
very similar and the key differences are in the configuration. The development version
is in debug mode, sending emails only to developers, while the operational version sends
emails both to developers and operators. The development version also has more con-
tent and tools to strip away unnecessary content before deploying a bigger update to the
operational version.

6.4 Main Program

The main program of SOGS-API, also called FMI API, is a service that serves antenna
status data to customers of FMI. Data is served every two seconds during a satellite over-
pass, and every half minute otherwise. The data flow during an overpass is illustrated in
Figure 6.5.

Figure 6.6 shows the use case diagram of SOGS-API. A customer has access to the cus-
tomer’s overpass schedule and can by default also submit new overpass times and request
changes. A customer receives antenna status data regularly and can be informed about
problems. The FMI Staff can view, add and edit schedules and users, develop the API
further and read a report about the signal strength from retrievals.

Table 6.1 compares features between the old and new version of the main program. Read

overpass times means that the program reads the schedules of satellite overpasses from
file. Send ACU metrics and Send S band data mean that the respective data are sent
through UDP to customers. Logging is self-explanatory. Exception tolerance means that

26

Figure 6.5: FMI API data flow.

Figure 6.6: Use case diagram of SOGS-API.

exceptions are handled and the program keeps running, Exception reporting reports issues
through email, and Exception statistics counts exception occurrences. S band visualiza-

tion plots S band modem data and S band reporting sends daily reports with the plots
through email. Operation scripts are shell scripts that make the starting, stopping and
restarting of the program easier. Update tools are support scripts and environments for
handling updates to the operational server. Log cleanup removes old log files, and Log

cut down reduces log messages to the most critical ones when log file size has exceeded
a configurable limit. Runtime commands are commands that can be given to the program
through text files during runtime. Self-repair restart lets the program restart itself when
exception handling cannot correct a recurring issue. If the program crashes for some rea-
son, the Revival feature restarts the program and so does Anti-jamming when the program
starts waiting for a TCP response it does not receive. Supports multiple customers and
Supports multiple satellites are self-explanatory. Supports multiple outputs means that
a customer can receive specific data in different destinations through UDP. PEP-8 code

27

style means that the Python code is following the PEP-8 style guide. Wiki documentation

means that the program has documentation in FMI’s Wiki.

Table 6.1: Features of the old and the new version of the main program
Feature Old New Feature Old New

Read overpass times X X Log cleanup x X
Send ACU metrics X X Log cut down x X
Send S band data X X Runtime commands x X
Logging X X Self-repair restart x X
Exception tolerance X X Revival x X
Exception reporting x X Anti-jamming x X
Exception statistics x X Supports multiple customers x X
S band visualization x X Supports multiple outputs x X
S band reporting x X Supports multiple satellites x X
Operation scripts x X PEP-8 code style x X
Update tools x X Wiki documentation x X

Figure 6.7 shows the class diagram of the main program.

Figure 6.13 shows the state diagram of the main program. When the main program is
started, modules and configuration parameters are loaded, and the program goes into nor-

mal mode. During normal mode, which is also called Non-overpass mode, the API sends
antenna status data to customers and FMI logging services every half minute. The API
also checks the satellite overpass schedule and eventual updates to user configuration.
When the satellite is in range of the antenna, the SOGS-API switches to overpass mode.
In this mode, the API sends ACU metrics and S band modem metrics data to customers
and the FMI every two seconds. When the overpass ends, the API switches back to normal

mode.

Figure 6.14 shows the state diagram of SOGS-API S band Reporter. The reporter starts
by loading relevant modules and configuration. Then it starts a schedule, where it sends S
band plots through email and cleans log files every day at 5:00 UTC. The reporter executes
the log cleaning because it is convenient to do it once a day.

Figure 6.15 shows the state diagram of the FMI API Reviver. The reviver starts by loading
the relevant modules and configuration. Then, every 10th second it reads a text file,
checking if it should stop running. If not, it checks if the other API processes are running
and revives them if necessary. It also detects the rare event when the main program jams.
In that case, the reviver will restart the main program.

Customers and deliverables are defined in configuration files. If there are changes in
customer or deliverable data, these can be updated in the running API through update

28

files, which the API reads every two minutes. This way the API does not need to be
restarted every time there is a change in the configuration.

S band modem data are retrieved in JSON format through a Python script. The JSON is
prettified and sent to the clients. Some important values are also extracted from the data,
and these are stored in a CSV file and plotted with the Python module Matplotlib into a
PNG image file.

When the API detects that it receives a series of empty messages from the antenna SCC,
it reports it to the IT-administration through email and stops logging the empty messages.
Temporary statistics of exception occurrences are also made and these are used to prevent
reporting the same problem several times in a short time. There is also a check on log file
size. If the log size exceeds a configured limit, the log messages are cut down to only the
most severe. When the API encounters a problem that does not disappear, it will try to
solve it by restarting itself. The limit for how many times the API will restart and how
long it will wait between restarts are configurable.

6.5 Scheduling Feature

A service that receives and serves satellite pass plans through HTTP requests was put into
use in a later state of the project. The Python 3 code for it already existed, and before
launch, it was updated, cleaned up and tested. The pass plans were received from one of
the customers and, initially, the service was named after that customer. Later, the service
was renamed to scheduling feature, for the purpose of describing what it does, to avoid
mixing program email messages with the customer’s emails, and to have a name that can
be used without exposing the customer’s name. In the future, other customers may also
post pass plans, and therefore, it is more appropriate to have a name that suits a wider
audience. Because the scheduling feature may be used by multiple customers, a tool was
created for making it easier to manage the overpass schedules. The tool is called Schedule
Manager and its GUI is shown in Figure 6.8.

Table 6.2 compares features between the old and new version of the scheduling feature.
Receive/Serve overpass times means that the program receives and serves overpass times
through HTTP. Overpass format validation validates received overpass times. Multiple

passes in one request means that customers can send multiple overpass times in one re-
quest. Automated pass handling creates the Overpass history by moving passed over-
passes into weekly files in directories organized by status and year. Supports multiple

customers and Supports multiple satellites are self-explanatory. Misuse prevention means
that there is authentication, detection of suspicious activity, and blocking of attacks. PEP-

29

8 code style means that the Python code is following the PEP-8 style guide. Logging is
self-explanatory. Log cleanup removes old log files, and also three-year-old history files.
Revival revives a crashed program. Exception tolerance means that exceptions are han-
dled without aborting the program, Exception reporting reports issues through email, and
Exception statistics counts exception occurrences. Schedule Manager is the GUI for man-

aging schedules. Operation scripts are shell scripts that make the starting, stopping and
restarting of the program easier. Runtime commands are commands that can be given to
the program through text files and HTTP requests during runtime. Wiki documentation

means that the program has documentation in FMI’s Wiki.

Table 6.2: Features of the old and the new version of scheduling feature
Feature Old New Feature Old New

Receive overpass times X X Logging x X
Serve overpass times X X Log cleanup x X
Overpass format validation X X Revival x X
Multiple passes in one request x X Exception tolerance x X
Automated pass handling x X Exception reporting x X
Overpass history x X Exception statistics x X
Supports multiple customers x X GUI for managing schedules x X
Supports multiple satellites x X Operation scripts x X
Misuse prevention x X Runtime commands x X
PEP-8 code style x X Wiki documentation x X

Figure 6.9 shows the class diagram of the scheduling feature.

Figure 6.16 shows the state diagram of the scheduling feature. The program starts by
loading modules and configuration, and by starting an HTTP server. When the server
receives a GET request, it checks the address. If the address ends with query<customer

id>, it serves overpass time data related to that customer in JSON format. The HTML
GUI for the Schedule Manager tool is served if the end of the address points to it. Figure
6.17 shows the state diagram of the GET handler.

When the server receives a POST request, it first checks if the POST request is for adding
pass plans or making a query to the Schedule Manager, by reading the end of the address.
In the case of pass plans, it validates and saves the overpass times and responds with a
report of successful and unsuccessful additions with error descriptions. If the request is a
query to the Schedule Manager, the query is validated. If the query is valid, pass plans that
match query criteria are returned in HTML tables. Figure 6.18 shows the state diagram
of the POST handler. The program can also be shut down through a POST request, with
a special command. For security reasons, there is also a shutdown confirmation through

30

a local text file. There are shell scripts that make the starting and stopping of the program
easier.

Figure 6.19 shows the state diagram of the Passfile Handler. The program starts by
loading modules and configuration. Then, every 10th second, it checks if there have
been additions to the confirmed_passes.txt file, in which case they are added to sched-
uled_passes.txt. It also checks if there are rejected and scheduled overpass times that
have passed and moves them into weekly history files. When the day changes, it will
also check the log and history files. Half-year-old log files and three-year-old history
files are removed. Passfile Handler is also responsible for creating the log history that
is saving the daily logs into separate files. This is done by renaming scheduling.log to
scheduling.log.YYYY-mm-dd, where YYYY is the year, mm is the month and dd is the day.
A new scheduling.log file is created when the next logging event occurs. Finally, Passfile
Handler checks its shutdown text file for a shutdown command, and if the command is
present the program stops.

Figure 6.20 shows the state diagram of the scheduling feature reviver. The reviver starts
by loading the relevant modules and configuration. Then, every 10th second it reads its
shutdown text file, checking if it should stop running. If not, it checks if the other feature
related processes are running and revives them if necessary.

6.6 Implementation

After three months of programming, the code was refactored [44] as the main program
file, fmiapi.py had grown to 800 lines of code. A rule of thumb, taught in a software
quality course, is that a function should contain 4 to 40 lines and a file 4 to 400 lines of
code. If the code contains documentation or a larger data set, the lines of code in a file may
exceed 400. First, the Python code was changed to comply with the guidelines of PEP-8,
which consequently increased the number of lines to 940. Then all utility functions were
moved into modules, with the benefit of also reusing some code, reducing the lines to
500.

During the project, the operational API was updated several times. Updating is a little
challenging, because the customers will notice if the API is down for two minutes, so the
updated API must work right away, or else there is the need for a quick roll-back. An-
other challenge arises from the fact that the development version of SOGS-API is slightly
different from the operational version. Most of the differences are in the main configura-
tion and customer configuration. Another small difference is that Slack messaging must
be disabled on the operational side, because the firewall blocks outgoing HTTP POST

31

requests. This only requires the insertion of one line of code in module apiutils.py, which
is imported by every program in the API. For long, the source of overpass times was
different. On the development server, the satellite overpass times were read from a file
generated by the scheduling feature and this was the planned way to read overpass data.
Because the customer that would send the overpass times through the scheduling feature
had difficulties implementing the sending of overpasses on their system, the overpasses
were inserted manually into another text file. This difference did not only show in the
configuration, but also in the module overpassreader.py, where three lines of code had to
be disabled. These lines would split the overpass times of two different satellites into in-
dividual files. In a later state of the project, the overpass reader was updated to handle any
pass plans received through the scheduling feature and from multiple customers. With
this update, a function had to be disabled with one line of code on the operational side
until the scheduling feature is being used.

To make the updating process easier, procedures and tools were made for deployment and
testing. On the development server, two shell scripts were made to make the deployment
easier, cpdeploy.sh and zipdeploy.sh. cpdeploy.sh copies all files and directories that go
to the operational server into a directory called sogsapi_deployment. zipdeploy.sh com-
presses the directory into file sogsapi_deployment.tar.gz, which is easy to move to the
operational server through SCP or FTP. On the operational server, a simulation environ-
ment was created for testing the API without affecting the running operational API. In
case an update fails, there is a roll-back version of the API, which is independent of any
other version of the API. In the developer’s manual for the API, a section for updating
the operational API was added, with step-by-step instructions for both smaller and bigger
updates. Later during the project, an agreement was made to primarily make the updates
in a defined time window.

6.7 Related Tools

During the project, other existing tools related to SOGS-API were developed. These
are called Satellite Data Flow Monitor, Acquisition Issue Reporter and Antenna Status

Monitor.

6.7.1 Satellite Data Flow Monitor and Acquisition Issue Reporter

Satellite Data Flow Monitor plots antenna attributes, such as signal strength, antenna
elevation and azimuth from overpasses, and Acquisition Issue Reporter finds and reports
issues in these attributes. The tools were improved by adding automated organization of

32

ACU log files and adapting the tools for this change. The organization of files improved
the performance by reducing the time taken to find files and filtering them. Before this
improvement, all files had to be read by the file-finding function, glob.glob(), and time
filtering used binary search to find the times of the overpasses from the files. After the
improvement, only directories that match the time and satellite are read and the detailed
time filtering is done with an algorithm that deletes from the beginning and the end of the
sorted list of files those files that are not within the time range. Testing has shown that
this algorithm is faster than binary search when the lists are smaller. The execution times
of the tests are shown in Table 6.3.

Table 6.3: Comparison of algorithms. Times are in milliseconds. Algorithm 1 is binary
search and Algorithm 2 is list edge removal
Algorithm 1 Algorithm 2 Proportion Plots Date Filter Satellite Filter

25.8147 24.8951 1.036938 100 None None
8.2702 3.0999 2.667897 6 None CSK 1

55.8059 28.1581 1.981872 100 All from May
HY2A, KOMPSAT-5,

NOAA 20, NPP
24.7573 7.4102 3.340948 78 All from May AQUA
33.3435 91.6104 0.363971 42 19 – 25 May NOAA 20, NPP
10.0202 8.2411 1.215877 3 19 – 25 May CSK 1
25.9385 32.0560 0.809160 100 None None (Same as first one)

Figure 6.21 shows the state diagram of Satellite Data Flow Monitor. The program runs
an HTTP server. It responds to GET requests with the HTML for the web interface. In
the interface, a user can filter logs by start date, end date, satellite and antenna. The
criteria are sent in a POST request and the server responds with plots for ACU log files
that match the criteria. From the plots, it is easy to read if there are problems in signal
strength or antenna movement. The program can be shut down using a special shutdown
POST message and confirming the shutdown through a text file on the server. Shell scripts
make the starting and stopping of the service trivial.

Figure 6.22 shows the state diagram of Acquisition Issue Reporter. The program runs a
scheduled check for issues in new ACU log files and organizes the files into directories
by year, month, antenna and satellite.

The class diagrams of Satellite Data Flow Monitor and Acquisition Issue Reporter are
presented in Figures 6.10 and 6.11.

33

6.7.2 Antenna Status Monitor

The Antenna Status Monitor tool requests status information for antenna components
from the SCC and displays the information in a human-friendly format. Appendix A
demonstrates how the tool displays ACU metrics.

Figure 6.23 shows the state diagram of Antenna Status Monitor. The program runs an
HTTP server, which serves a GUI for selecting antenna and components for status check-
ing. Based on the parameters in an HTTP POST request, the program sends TCP requests
to the target antenna’s SCC for specific components. The TCP response messages are
parsed into HTML code, which is sent to the client for display in the output area of the
GUI. The program can be shut down with a SIGINT signal.

Figure 6.12 shows the class diagram of Antenna Status Monitor.

34

Figure 6.7: Class diagram of main program.

35

Figure 6.8: Schedule Manager GUI.
36

Figure 6.9: Class diagram of scheduling feature.

37

Figure 6.10: Class diagram of Satellite Data Flow Monitor.

Figure 6.11: Class diagram of Acquisition Issue Reporter.

38

Figure 6.12: Class diagram of Antenna Status Monitor.

Figure 6.13: State diagram of main
program.

Figure 6.14: State diagram of
SOGS-API S band Reporter.

Figure 6.15: State diagram of FMI
API Reviver.

Figure 6.16: State diagram of
scheduling feature.

39

Figure 6.17: State diagram of
scheduling feature GET handler.

Figure 6.18: State diagram of
scheduling feature POST handler.

Figure 6.19: State diagram of the
Passfile Handler.

Figure 6.20: State diagram of the
Scheduling Feature Reviver.

Figure 6.21: State diagram of Satel-
lite Data Flow Monitor.

Figure 6.22: State diagram of Ac-
quisition Issue Reporter.

40

Figure 6.23: State diagram of Antenna Status Monitor.

41

42

7. Evaluation

In this section, we present the evaluation of SOGS-API. The API has been evaluated
through the measurement of quality attributes on module level and as a system.

7.1 Reliability

Reliability was measured by recording the results of special scenarios and input. Both
random and mutating fuzzing was used to test various input to the scheduling feature.
The main program was not tested with fuzzing, because it only receives input from the
antenna and the input is easy to validate.

The fuzzers were tailor-made with Python. The random fuzz contained random char-
acters, and the mutator changed parts of a valid JSON formatted request. During the
first random test, the need to update the handling of faulty JSON data was detected in the
new scheduling feature, because a previous update had made the program respond with an
empty message instead of the JSON format error. The problem was solved and everything
else worked properly.

The behavior of the main program was tested when there were problems in the connection
or the antenna. The old version did not handle the connection problems well, either
crashing or filling the log file quickly. The new version handles these scenarios properly
and will report bigger problems through email.

Table 6.1 shows the results of the reliability tests of old and new version of SOGS-
API:

Table 7.1: Reliability test, old vs new SOGS-API
Scenario Old New Scenario Old New

Faulty input Pass Pass Fuzz test Pass Pass
Problem in antenna Fail Pass Problem in connection Fail Pass

Product failure rate was calculated. The metric assumes that the product is used an equal
amount of time each day, and this suits SOGS-API well, because the services are run-

43

ning constantly and the number and occurrence of overpasses vary only slightly. The old
version of the main program failed on average once in three months, due to a problem
in antenna or connection. This affected both the installation on the test server and the
installation on the operational server. Using Formula 4.3 this makes the failure rate 2 /
(2 * 90) = 1 / 90 = 0.01111. The new version of the main program handles problems in
antenna and connection, and has yet not failed during operation, having a failure rate of 0.
Both the old and the new scheduling feature programs have never failed, so their failure
rate is also 0.

7.2 Security

The old version of the API was built for a single customer, and virtually there were no
threats for it. The new version of the API supports multiple customers, which makes
security measures more important. For instance, customers should not be able to access
the pass plans of other customers. The security of the scheduling feature is of interest
because it is the only program in the API that receives external user input.

Security was measured through scripts and tools. An attempt to crack Customer IDs
were made by randomly generating a million strings. The crackability of the address
and password of the Schedule Manager tool was measured using an online tool. When
conducting the tests, it was assumed that the attacker would have gained access to the
system through the hijacking of a customer’s workstation.

In the first test a Python script was used for attempting to crack the ID of customers. Ten
hexadecimal values of 32 characters were generated using md5 hashing to simulate the
customer IDs. It was assumed that the attacker would have gained the knowledge that
customer IDs are hexadecimal values of 32 characters, and only these kinds of IDs would
be used in the brute-force attack. Still, none of the IDs were cracked in a million attempts,
and it is no surprise, as possible combinations are 3216 = 1,208,925,819,614,629,174,706,176.
In reality, the ID can be any random text with various length, making it even more difficult
to crack the IDs of customers. Short IDs, or IDs that are otherwise easy to crack with the
help of a dictionary, are not accepted.

In the second test, the attacker would try to find the address of the Schedule Manager tool.
The Schedule Manager tool should have a very restricted audience, so it is better that it
is challenging to find the address. For this test, an online password strength testing tool
called How Secure Is My Password? [45] was used. It told that the address could be found
instantly. The reason was that the unique part of the address was the word "manager". The
address was made longer and more difficult to find by using a combination of words, and

44

the online tool estimated that it would take one day to guess the new address. The ideal
address is one that is memorable, yet difficult to find or guess.

In the third and final test, the password strength of the Schedule Manager tool was mea-
sured. Again, the aforementioned tool was used, and the result was that it would take a
computer 300 years to crack the password.

Detection of suspicious activity was added to the scheduling feature, making brute-force
cracking techniques ineffective by blocking the attacker’s IP-address.

The results of the security tests can be expressed as security metrics No. of Customer IDs

Cracked in a Million Attempts = 0, Schedule Manager Web Address Guessability = 1 day
Schedule Manager Password Strength = 300 years for a computer to crack

7.3 Performance

During the time of writing, there are a few users of the API, but in the future this number
will likely grow. Therefore, the performance was measured to see if there are performance
issues. Performance of the API was measured with the Python module cProfile, and by
writing timestamps to file. The cProfile data showed no performance problems in any part
of the API. When putting the scheduling feature under heavy load, an increase in request
handling time was observed. The first request was handled almost immediately, and the
final 2000th request had a 0.09 second delay. Because a single customer is sending weekly
around 35 pass plans, a single instance of the API should be able to handle 100 customers
without performance issues. If the requests of each customer are spread evenly over the
week, a single instance of the API may even be able to handle 1000 customers.

7.3.1 Main Program with Modules

fmiapi.py cProfile times for idle and overpass states are shown in Tables 7.2 and 7.3.
Most of the functions and modules are executed within one millisecond, which is good.
The functions and modules that have longer execution times or more calls, are explained
here.

The modules apiutils, customer and slackmanager have execution times between 0.15
and 0.2 seconds, and the reason is that they load modules that take some time to load,
such as socket and configparser, and they are being used by many other modules. The
module sbandvisualizer takes 0.507 seconds to load, and the reason is in the loading of
matplotlib, and a large plotting function. During the overpass test, it took the function
sbandvisualizer.visualize_sband 1.005 seconds to create and save the S band plot into a

45

file. The module fmiapi is the main program, and it shows that the total execution time
was 239.711 seconds for the idle state test case and 240.426 seconds for the overpass state
test case.

The apiutils.sanitize function was executed 18 times during idle state and 244 times dur-
ing overpass state. It is a light-weight sanitizer for ACU metrics, which arrive through
TCP every 30 seconds during idle state, and every two seconds during an overpass.
The sanitizer also handles other metrics and messages coming through the TCP connec-
tion.

During the overpass, processhandler.run_sys was called 241 times. This function can run
other python programs or shell scripts, and in this case it runs modem_metrics2s.py, which
fetches the S band modem metrics. The sbandjson module has functions for handling
these metrics, which explains the 100+ calls to its functions.

During the overpass test, the fmiapi.cleanup function is executing for 1.001 seconds. This
is because the function sends a TCP request to the antenna SCC to stop sending ACU
metrics every two seconds, waits for one second to let the message arrive before closing
the connection.

The apiutils.conf_list was executed 17 times. This function is used on startup when read-
ing multiline comma-separated lists from configuration files.

sbandreporter.py cProfile times for idle and report states are shown in Tables 7.4 and 7.5.
The modules and functions used by the S band reporter have fast execution times. An
interesting observation is that the loading of processhandler.py takes less time after each
run, which indicates that the module is cached.

fa_reviver.py cProfile times for idle and revive states are shown in Tables 7.6 and 7.7. The
execution times for the modules and functions used by the reviver are fast. Like S band
reporter, the loading of processhandler.py takes less time after each run.

7.3.2 Scheduling Feature

Figure 7.1 shows the time between handled requests in the scheduling feature during a
concurrency performance test. The test was conducted with two client scripts that were
run simultaneously. They send 1000 unique requests each. The time of receiving a request
and writing the pass to a file was recorded into a text file. The times and order of execution
was then analyzed, and the result was that all requests are handled without conflict, but
the time it takes to handle a request increases slightly with each request, which indicates
that requests end up in a queue until they are processed.

46

Figure 7.1: Time between handled requests during concurrency performance testing of
scheduling feature.

A general performance test was also conducted. Table 7.8 shows the execution times,
when all requests are accepted, and when they are rejected.

The Python module cProfile was used for getting execution time of programs and their
functions during different states. The results in the tables show there is no overhead. Ta-
bles 7.9, 7.10, and 7.11 show the execution times of the scheduling feature, its modules
and functions during idle state, and when it handles an HTTP POST and GET request. Ev-
erything executes fast. Even the HTTP request handling finishes in 0.005 seconds.

passfile_handler.py cProfile times for idle and handling states are shown in Tables 7.12
and 7.13. The execution times for passfile_handler.py show nothing out of the ordinary.
All functions perform fast.

s_reviver.py cProfile times for idle and revive states are shown in Tables 7.14 and 7.15.
The reviver for the scheduling feature has very similar execution times as the reviver for
the main program. There are no signs of performance issues.

7.4 Maintainability

Maintainability is a quality attribute that consists of attributes modifiability, testability
and understandability. These can be further broken down into augmentability, structured-
ness, communicativeness, accessibility, self-descriptiviness, conciseness and legibility
[46].

SOGS-API utilizes configuration files, which contributes to self-descriptiviness, aug-
mentability and structuredness. Responsibilities have been divided into modules, adding
structuredness and self-descriptiviness. The code has been written following the style

47

guidelines of PEP-8, which contributes to legibility. The code was checked with the linter
tool pycodestyle for compliance with PEP-8. The new versions of the main program and
scheduling feature pass the pycodestyle test, while the old version of the main program
has 61 style flaws, and the scheduling feature has 349. Descriptive variable and function
names also add to legibility, and when the context is clear, shorter names have been used,
making the code more concise. The code has also been made more concise by using
aliases for longer module names, such as overpassreader.

The FMI operators have full access to the API and its files, and there are tools and docu-
mentation that increase communicativeness. The API also informs about errors and their
severity through email, and through Slack when a connection through the firewall is es-
tablished.

One metric that Pizka and Deißenböck recommends for legibility and structuredness is
the IF-ratio expressed as number of if statements per 1000 lines of code (IFs/kLOC) [22].
This was counted in the main program and scheduling feature separately by creating and
using a Python script that extinguished an if statement from "if" used in comments and
identifiers. The result for the main program and its modules were 40 IFs/kLOC, and files
containing most of the if statements were the main program fmiapi.py (27.5 %) and the
runtime configuration reader updatemanager.py (15.5 %). The result for the scheduling
feature and its modules were 56 IFs/kLOC, and the files that contained most of the if

statements were the scheduling feature program scheduling.py (30.7 %), and the controller
for the Schedule Manager, schedulemanager.py (29.8 %).

According to Pizka and Deißenböck, a good result is 20-30 IFs/kLOC, and 60 and above
means the code is difficult to analyze, and this is common for legacy software that have
had quick additions of features over the years. The IFs/kLOC values of SOGS-API are on
the larger side, which indicate that the code could be refactored. A positive fact both in the
main program and the scheduling feature is that most of the if statements are found in two
files, opposed to being spread over several files. Tables 7.16 and 7.17 show the number
of if statements in each file. Because requirements for the SOGS-API can change, it is
important to do the updates in a sophisticated way, or else the structuredness of the API
will deteriorate.

The IF-ratio was also calculated for the old SOGS-API. The main program had ten if

statements in 270 lines of code, resulting in 37 IFs/kLOC, and scheduling feature had
13 in 195, resulting in 67 IFs/kLOC. The difference in IF-ratio between the old and new
scheduling feature can be explained with the reduction of if statements in the validation
of satellite pass plan posts through the utilization of configuration and iteration.

48

Code complexity was measured using Halstead metrics. The measurement was done by
customizing the script commentedCodeDetector.py by Borowiec [47] to check Python
source code. Borowiec’s script does not only find commented code, but also computes
Halstead metrics when run with option -fm. The script did not compute the time to imple-

ment and number of delivered bugs estimations, nor did it provide recommended values.
These were calculated manually. All source code for the SOGS-API was put into one file
with Bash command cat *.py > source.py, and the script analyzed it. Halstead metrics of
the old and new versions of the main program are compared in Table 7.18.

It is recommended that the volume for one file would be less than 8000 [19]. The new
main program and its modules are in 27 Python files, making the upper boundary 216000.
The old main program is a single Python file, making its boundary 8000.

One file should contain less than two bugs [21] [19]. This means the new main program
should contain less than 54 bugs, and the old less than two.

Halstead metrics of the old and new versions of the scheduling feature are compared
in Table 7.19. The new scheduling feature contains 14 Python files, making the upper
boundary for its volume 112000. The old scheduling feature contains a single Python file,
making its boundary 8000. The new scheduling feature should contain less than 28 bugs,
and the old less than two.

Looking at the volume, the scheduling feature is complex. Despite being larger than
the scheduling feature, the main program has a volume that is within the recommended
boundaries. This is because the main program is split into more files than scheduling
feature. Scheduling feature could also be split into more files, and this would even raise
the boundary of delivered bugs above 28.

49

Table 7.2: Main Program cProfile results during idle state, around 4 minutes of execution
time. Times are in seconds
ncalls tottime percall cumtime percall filename:lineno(function)

18 0.000 0.000 0.001 0.000 apiutils.py:104 sanitize
11 0.000 0.000 0.001 0.000 apiutils.py:118 check_overpass_active
10 0.000 0.000 0.000 0.000 apiutils.py:21 check_log_size
1 0.000 0.000 0.192 0.192 apiutils.py:3 <module>

17 0.000 0.000 0.000 0.000 apiutils.py:35 conf_list
1 0.000 0.000 0.000 0.000 apiutils.py:45 get_script_path
1 0.000 0.000 0.000 0.000 apiutils.py:54 reset_updates
1 0.000 0.000 0.004 0.004 apiutils.py:92 connect_input_socket
1 0.000 0.000 0.192 0.192 customer.py:1 <module>
4 0.000 0.000 0.000 0.000 customer.py:15 <listcomp>
1 0.000 0.000 0.000 0.000 customer.py:19 Customer
2 0.000 0.000 0.001 0.000 customer.py:20 __init__
2 0.000 0.000 0.001 0.000 customer.py:24 update_config
4 0.000 0.000 0.000 0.000 customer.py:9 deliv_and_serv
1 0.000 0.000 0.000 0.000 datacontainer.py:7 <module>
1 0.000 0.000 0.000 0.000 deliverable.py:10 <module>
1 0.000 0.000 0.000 0.000 deliverable.py:15 Deliverable
9 0.000 0.000 0.003 0.000 deliverable.py:16 __init__
9 0.000 0.000 0.003 0.000 deliverable.py:20 update_config
1 0.000 0.000 0.033 0.033 emailmanager.py:17 <module>
1 0.000 0.000 0.000 0.000 exceptionmanager.py:18 <module>
1 0.000 0.000 0.000 0.000 exceptionmanager.py:24 ExceptionManager
1 0.000 0.000 0.000 0.000 exceptionmanager.py:25 __init__
9 0.000 0.000 0.001 0.000 fmiapi.py:102 check_for_configuration_updates
1 0.004 0.004 239.711 239.711 fmiapi.py:14 <module>
1 0.000 0.000 0.000 0.000 fmiapi.py:56 cleanup
4 0.000 0.000 0.006 0.001 overpassreader.py:105 read_pass_data
5 0.000 0.000 0.000 0.000 overpassreader.py:123 <listcomp>
2 0.000 0.000 0.000 0.000 overpassreader.py:11 fetch_pass_plans
1 0.000 0.000 0.000 0.000 overpassreader.py:3 <module>
2 0.000 0.000 0.004 0.002 overpassreader.py:63 _handle_h2a
1 0.000 0.000 0.002 0.002 overpassreader.py:84 _handle_csk
1 0.000 0.000 0.009 0.009 processhandler.py:16 is_running
1 0.000 0.000 0.000 0.000 processhandler.py:4 <module>
1 0.000 0.000 0.000 0.000 sbandjson.py:29 <module>
1 0.000 0.000 0.000 0.000 sbandjson.py:56 csv_header
1 0.000 0.000 0.507 0.507 sbandvisualizer.py:24 <module>
1 0.000 0.000 0.159 0.159 slackmanager.py:2 <module>
1 0.000 0.000 0.015 0.015 updatemanager.py:21 update_main_configuration
1 0.000 0.000 0.000 0.000 updatemanager.py:9 <module>

50

Table 7.3: Main program cProfile results during an overpass, around 4 minutes of execu-
tion time. Times are in seconds
ncalls tottime percall cumtime percall filename:lineno(function)

244 0.002 0.000 0.009 0.000 apiutils.py:104 sanitize
123 0.002 0.000 0.002 0.000 apiutils.py:118 check_overpass_active
123 0.001 0.000 0.002 0.000 apiutils.py:21 check_log_size

1 0.000 0.000 0.192 0.192 apiutils.py:3 <module>
17 0.000 0.000 0.000 0.000 apiutils.py:35 conf_list
1 0.000 0.000 0.000 0.000 apiutils.py:45 get_script_path
1 0.000 0.000 0.000 0.000 apiutils.py:54 reset_updates
1 0.000 0.000 0.001 0.001 apiutils.py:92 connect_input_socket
1 0.000 0.000 0.000 0.000 customer.py:1 <module>
4 0.000 0.000 0.000 0.000 customer.py:15 <listcomp>
1 0.000 0.000 0.000 0.000 customer.py:19 Customer
2 0.000 0.000 0.002 0.001 customer.py:20 __init__
2 0.000 0.000 0.002 0.001 customer.py:24 update_config
4 0.000 0.000 0.000 0.000 customer.py:9 deliv_and_serv
1 0.000 0.000 0.000 0.000 datacontainer.py:7 <module>
1 0.000 0.000 0.000 0.000 deliverable.py:10 <module>
1 0.000 0.000 0.000 0.000 deliverable.py:15 Deliverable
9 0.000 0.000 0.003 0.000 deliverable.py:16 __init__
9 0.000 0.000 0.003 0.000 deliverable.py:20 update_config
1 0.000 0.000 0.033 0.033 emailmanager.py:17 <module>
1 0.000 0.000 0.000 0.000 exceptionmanager.py:18 <module>
1 0.000 0.000 0.000 0.000 exceptionmanager.py:24 ExceptionManager
1 0.000 0.000 0.000 0.000 exceptionmanager.py:25 __init__

133 0.002 0.000 0.006 0.000 fmiapi.py:102 check_for_configuration_updates
1 0.090 0.090 240.426 240.426 fmiapi.py:14 <module>
1 0.000 0.000 1.001 1.001 fmiapi.py:56 cleanup
4 0.000 0.000 0.014 0.003 overpassreader.py:105 read_pass_data
6 0.000 0.000 0.000 0.000 overpassreader.py:123 <listcomp>
2 0.001 0.000 0.001 0.001 overpassreader.py:11 fetch_pass_plans
1 0.000 0.000 0.000 0.000 overpassreader.py:3 <module>
1 0.000 0.000 0.008 0.008 overpassreader.py:35 handle_normal
2 0.000 0.000 0.004 0.002 overpassreader.py:63 _handle_h2a
1 0.000 0.000 0.000 0.000 overpassreader.py:84 _handle_csk
1 0.000 0.000 0.010 0.010 processhandler.py:16 is_running
1 0.000 0.000 0.000 0.000 processhandler.py:4 <module>

241 0.008 0.000 35.933 0.149 processhandler.py:42 run_sys
1 0.000 0.000 0.000 0.000 sbandjson.py:29 <module>

120 0.000 0.000 0.001 0.000 sbandjson.py:29 _get_value
240 0.000 0.000 0.001 0.000 sbandjson.py:41 _get_bool

1 0.000 0.000 0.000 0.000 sbandjson.py:56 csv_header
120 0.001 0.000 0.003 0.000 sbandjson.py:62 extract_log_data
120 0.001 0.000 0.002 0.000 sbandjson.py:78 cleanup_json

1 0.000 0.000 0.500 0.500 sbandvisualizer.py:24 <module>
1 1.005 1.005 1.005 1.005 sbandvisualizer.py:41 visualize_sband
1 0.000 0.000 0.159 0.159 slackmanager.py:2 <module>
1 0.000 0.000 0.026 0.026 updatemanager.py:21 update_main_configuration
1 0.000 0.000 0.000 0.000 updatemanager.py:9 <module>

51

Table 7.4: S band reporter cProfile results during idle state, around 10 seconds of execu-
tion time. Times are in seconds
ncalls tottime percall cumtime percall filename:lineno(function)

1 0.000 0.000 0.156 0.156 apiutils.py:3 <module>
3 0.000 0.000 0.000 0.000 apiutils.py:35 conf_list
1 0.000 0.000 0.000 0.000 apiutils.py:45 get_script_path
1 0.000 0.000 0.038 0.038 emailmanager.py:17 <module>
1 0.000 0.000 0.000 0.000 exceptionmanager.py:18 <module>
1 0.000 0.000 0.000 0.000 exceptionmanager.py:24 ExceptionManager
1 0.000 0.000 0.000 0.000 exceptionmanager.py:25 __init__
1 0.000 0.000 0.000 0.000 logcleaner.py:3 <module>
1 0.000 0.000 0.010 0.010 processhandler.py:16 is_running
1 0.000 0.000 0.031 0.031 processhandler.py:4 <module>
1 0.000 0.000 10.616 10.616 sbandreporter.py:3 <module>
1 0.000 0.000 0.000 0.000 sbandreporter.py:45 <listcomp>
1 0.000 0.000 0.001 0.001 updatemanager.py:21 update_main_configuration
1 0.000 0.000 0.001 0.001 updatemanager.py:9 <module>

Table 7.5: S band reporter cProfile results while sending S band report and cleaning log
files, around 10 seconds of execution time. Times are in seconds
ncalls tottime percall cumtime percall filename:lineno(function)

1 0.000 0.000 0.197 0.197 apiutils.py:3 <module>
3 0.000 0.000 0.000 0.000 apiutils.py:35 conf_list
1 0.000 0.000 0.000 0.000 apiutils.py:45 get_script_path
1 0.000 0.000 0.032 0.032 emailmanager.py:17 <module>
1 0.000 0.000 0.048 0.048 emailmanager.py:32 send_mail
1 0.000 0.000 0.000 0.000 exceptionmanager.py:18 <module>
1 0.000 0.000 0.000 0.000 exceptionmanager.py:24 ExceptionManager
1 0.000 0.000 0.000 0.000 exceptionmanager.py:25 __init__
1 0.000 0.000 0.009 0.009 logcleaner.py:15 cleanup_dirs
1 0.000 0.000 0.000 0.000 logcleaner.py:3 <module>
1 0.000 0.000 0.000 0.000 logcleaner.py:34 cleanup_log_files
1 0.000 0.000 0.009 0.009 processhandler.py:16 is_running
1 0.000 0.000 0.025 0.025 processhandler.py:4 <module>
1 0.000 0.000 10.250 10.250 sbandreporter.py:3 <module>
1 0.000 0.000 0.000 0.000 sbandreporter.py:45 <listcomp>
1 0.000 0.000 0.002 0.002 sbandreporter.py:62 _find_images
1 0.000 0.000 0.079 0.079 sbandreporter.py:88 job
1 0.000 0.000 0.001 0.001 updatemanager.py:21 update_main_configuration
1 0.000 0.000 0.001 0.001 updatemanager.py:9 <module>

52

Table 7.6: Fmiapi reviver cProfile results during idle state, 40 - 50 seconds of execution
time. Times are in seconds
ncalls tottime percall cumtime percall filename:lineno(function)

1 0.000 0.000 0.197 0.197 apiutils.py:3 <module>
2 0.000 0.000 0.000 0.000 apiutils.py:35 conf_list
1 0.000 0.000 0.000 0.000 apiutils.py:45 get_script_path
1 0.000 0.000 0.035 0.035 emailmanager.py:17 <module>
1 0.000 0.000 0.000 0.000 exceptionmanager.py:18 <module>
1 0.000 0.000 0.000 0.000 exceptionmanager.py:24 ExceptionManager
1 0.000 0.000 0.000 0.000 exceptionmanager.py:25 __init__
1 0.001 0.001 42.133 42.133 fa_reviver.py:11 <module>
7 0.001 0.000 0.094 0.013 processhandler.py:16 is_running
1 0.000 0.000 0.098 0.098 processhandler.py:4 <module>
1 0.000 0.000 0.001 0.001 updatemanager.py:21 update_main_configuration
1 0.000 0.000 0.001 0.001 updatemanager.py:9 <module>

Table 7.7: Fmiapi reviver cProfile results while reviving the main program, 40 - 50 sec-
onds of execution time. Times are in seconds
ncalls tottime percall cumtime percall filename:lineno(function)

1 0.000 0.000 0.191 0.191 apiutils.py:3 <module>
2 0.000 0.000 0.000 0.000 apiutils.py:35 conf_list
1 0.000 0.000 0.000 0.000 apiutils.py:45 get_script_path
2 0.000 0.000 0.107 0.054 apiutils.py:84 msg_email_and_slack
1 0.000 0.000 0.037 0.037 emailmanager.py:17 <module>
2 0.000 0.000 0.107 0.054 emailmanager.py:32 send_mail
1 0.000 0.000 0.000 0.000 exceptionmanager.py:18 <module>
1 0.000 0.000 0.000 0.000 exceptionmanager.py:24 ExceptionManager
1 0.000 0.000 0.000 0.000 exceptionmanager.py:25 __init__
1 0.001 0.001 45.256 45.256 fa_reviver.py:11 <module>
7 0.002 0.000 0.113 0.016 processhandler.py:16 is_running
1 0.000 0.000 0.092 0.092 processhandler.py:4 <module>
2 0.000 0.000 0.016 0.008 processhandler.py:51 execute
1 0.000 0.000 0.001 0.001 updatemanager.py:21 update_main_configuration
1 0.000 0.000 0.001 0.001 updatemanager.py:9 <module>

Table 7.8: Scheduling feature performance test. Times are in seconds. Exetime 1 to 3 are
for accepted requests, and R1 to R3 are for rejected
Requests Exetime 1 Exetime 2 Exetime 3 Exetime R1 Exetime R2 Exetime R3

100 0.948262 1.111406 1.277754 1.533243 1.231364 1.159823
1000 37.75298 36.90509 35.59452 63.85035 87.72144 79.15281

53

Table 7.9: Scheduling feature cProfile results during idle state, between 15 and 25 seconds
of execution time. Times are in seconds
ncalls tottime percall cumtime percall filename:lineno(function)

2 0.000 0.000 0.000 0.000 apiutils.py:19 conf_list
1 0.000 0.000 0.159 0.159 apiutils.py:2 <module>
1 0.000 0.000 0.001 0.001 apiutils.py:29 update_configuration
4 0.000 0.000 0.001 0.000 apiutils.py:67 logmsg
1 0.000 0.000 0.000 0.000 exceptionmanager.py:18 <module>
1 0.000 0.000 0.000 0.000 exceptionmanager.py:24 ExceptionManager
1 0.000 0.000 0.000 0.000 exceptionmanager.py:25 __init__
1 0.000 0.000 0.009 0.009 processhandler.py:16 is_running
1 0.000 0.000 0.026 0.026 processhandler.py:4 <module>
1 0.000 0.000 0.000 0.000 schedulemanager.py:10 <module>
1 0.000 0.000 20.740 20.740 scheduling.py:13 <module>
1 0.000 0.000 0.000 0.000 scheduling.py:119 SchedulingHTTPRequestHandler
1 0.000 0.000 0.000 0.000 securitymanager.py:2 <module>

Table 7.10: Scheduling feature cProfile results while handling a customer POST request,
between 15 and 25 seconds of execution time. Times are in seconds
ncalls tottime percall cumtime percall filename:lineno(function)

2 0.000 0.000 0.000 0.000 apiutils.py:19 conf_list
1 0.000 0.000 0.170 0.170 apiutils.py:2 <module>
1 0.000 0.000 0.001 0.001 apiutils.py:29 update_configuration
6 0.000 0.000 0.001 0.000 apiutils.py:67 logmsg
1 0.000 0.000 0.000 0.000 apiutils.py:82 fix_request
1 0.000 0.000 0.000 0.000 exceptionmanager.py:18 <module>
1 0.000 0.000 0.000 0.000 exceptionmanager.py:24 ExceptionManager
1 0.000 0.000 0.000 0.000 exceptionmanager.py:25 __init__
1 0.000 0.000 0.012 0.012 processhandler.py:16 is_running
1 0.000 0.000 0.027 0.027 processhandler.py:4 <module>
1 0.000 0.000 0.000 0.000 schedulemanager.py:10 <module>
1 0.000 0.000 18.550 18.550 scheduling.py:13 <module>
3 0.000 0.000 0.000 0.000 scheduling.py:211 read_pass_data
1 0.000 0.000 0.005 0.005 scheduling.py:263 do_POST
1 0.000 0.000 0.006 0.006 scheduling.py:320 __init__
1 0.000 0.000 0.000 0.000 scheduling.py:119 SchedulingHTTPRequestHandler
1 0.000 0.000 0.005 0.005 scheduling.py:80 _validate_request
1 0.000 0.000 0.000 0.000 securitymanager.py:2 <module>

54

Table 7.11: Scheduling feature cProfile results while handling a customer GET request,
between 15 and 25 seconds of execution time. Times are in seconds
ncalls tottime percall cumtime percall filename:lineno(function)

2 0.000 0.000 0.000 0.000 apiutils.py:19 conf_list
1 0.000 0.000 0.163 0.163 apiutils.py:2 <module>
1 0.000 0.000 0.001 0.001 apiutils.py:29 update_configuration
4 0.000 0.000 0.000 0.000 apiutils.py:67 logmsg
1 0.000 0.000 0.000 0.000 exceptionmanager.py:18 <module>
1 0.000 0.000 0.000 0.000 exceptionmanager.py:24 ExceptionManager
1 0.000 0.000 0.000 0.000 exceptionmanager.py:25 __init__
1 0.000 0.000 0.010 0.010 processhandler.py:16 is_running
1 0.000 0.000 0.027 0.027 processhandler.py:4 <module>
1 0.000 0.000 0.000 0.000 schedulemanager.py:10 <module>
1 0.000 0.000 22.853 22.853 scheduling.py:13 <module>
3 0.000 0.000 0.005 0.002 scheduling.py:211 read_pass_data
1 0.000 0.000 0.000 0.000 scheduling.py:221 <listcomp>
1 0.000 0.000 0.005 0.005 scheduling.py:243 do_GET
1 0.000 0.000 0.005 0.005 scheduling.py:320 __init__
1 0.000 0.000 0.004 0.004 scheduling.py:43 _handle_kompsat
1 0.000 0.000 0.004 0.004 scheduling.py:69 _handle_paz
2 0.000 0.000 0.000 0.000 scheduling.py:74 datetime_str_for_response
1 0.000 0.000 0.000 0.000 scheduling.py:119 SchedulingHTTPRequestHandler
1 0.000 0.000 0.000 0.000 securitymanager.py:2 <module>

Table 7.12: Passfile handler cProfile results during idle state, around 10 seconds of exe-
cution time. Times are in seconds
ncalls tottime percall cumtime percall filename:lineno(function)

2 0.000 0.000 0.000 0.000 apiutils.py:19 conf_list
1 0.000 0.000 0.212 0.212 apiutils.py:2 <module>
1 0.000 0.000 0.001 0.001 apiutils.py:29 update_configuration
2 0.000 0.000 0.000 0.000 apiutils.py:67 logmsg
1 0.000 0.000 0.000 0.000 exceptionmanager.py:18 <module>
1 0.000 0.000 0.000 0.000 exceptionmanager.py:24 ExceptionManager
1 0.000 0.000 0.000 0.000 exceptionmanager.py:25 __init__
1 0.000 0.000 10.226 10.226 passfile_handler.py:12 <module>
2 0.000 0.000 0.001 0.000 passfile_handler.py:34 split_passed_passes
1 0.000 0.000 0.000 0.000 passfile_handler.py:91 add_confirmed
1 0.000 0.000 0.008 0.008 processhandler.py:16 is_running
1 0.000 0.000 0.026 0.026 processhandler.py:4 <module>

55

Table 7.13: Passfile handler cProfile results while handling an overpass, around 10 sec-
onds of execution time. Times are in seconds
ncalls tottime percall cumtime percall filename:lineno(function)

2 0.000 0.000 0.000 0.000 apiutils.py:19 conf_list
1 0.000 0.000 0.225 0.225 apiutils.py:2 <module>
1 0.000 0.000 0.001 0.001 apiutils.py:29 update_configuration
2 0.000 0.000 0.000 0.000 apiutils.py:67 logmsg
1 0.000 0.000 0.000 0.000 exceptionmanager.py:18 <module>
1 0.000 0.000 0.000 0.000 exceptionmanager.py:24 ExceptionManager
1 0.000 0.000 0.000 0.000 exceptionmanager.py:25 __init__
1 0.000 0.000 0.000 0.000 logcleaner.py:3 <module>
1 0.000 0.000 11.446 11.446 passfile_handler.py:12 <module>
2 0.000 0.000 0.003 0.002 passfile_handler.py:34 split_passed_passes
1 0.000 0.000 0.001 0.001 passfile_handler.py:91 add_confirmed
1 0.000 0.000 0.009 0.009 processhandler.py:16 is_running
1 0.000 0.000 0.026 0.026 processhandler.py:4 <module>

Table 7.14: Scheduling feature reviver cProfile results during idle state, 40 - 50 seconds
of execution time. Times are in seconds
ncalls tottime percall cumtime percall filename:lineno(function)

2 0.000 0.000 0.000 0.000 apiutils.py:19 conf_list
1 0.000 0.000 0.195 0.195 apiutils.py:2 <module>
1 0.000 0.000 0.001 0.001 apiutils.py:29 update_configuration
1 0.000 0.000 0.034 0.034 emailmanager.py:17 <module>
1 0.000 0.000 0.000 0.000 exceptionmanager.py:18 <module>
1 0.000 0.000 0.000 0.000 exceptionmanager.py:24 ExceptionManager
1 0.000 0.000 0.000 0.000 exceptionmanager.py:25 __init__

11 0.002 0.000 0.116 0.011 processhandler.py:16 is_running
1 0.000 0.000 0.196 0.196 processhandler.py:4 <module>
1 0.000 0.000 45.903 45.903 s_reviver.py:10 <module>

56

Table 7.15: Scheduling feature reviver cProfile results while reviving the feature, 40 - 50
seconds of execution time. Times are in seconds
ncalls tottime percall cumtime percall filename:lineno(function)

2 0.000 0.000 0.000 0.000 apiutils.py:19 conf_list
1 0.000 0.000 0.194 0.194 apiutils.py:2 <module>
1 0.000 0.000 0.001 0.001 apiutils.py:29 update_configuration
1 0.000 0.000 0.033 0.033 emailmanager.py:17 <module>
1 0.000 0.000 0.000 0.000 exceptionmanager.py:18 <module>
1 0.000 0.000 0.000 0.000 exceptionmanager.py:24 ExceptionManager
1 0.000 0.000 0.000 0.000 exceptionmanager.py:25 __init__

11 0.002 0.000 0.121 0.011 processhandler.py:16 is_running
1 0.000 0.000 0.194 0.194 processhandler.py:4 <module>
1 0.000 0.000 0.004 0.004 processhandler.py:51 execute
1 0.002 0.002 44.855 44.855 s_reviver.py:10 <module>

Table 7.16: IF count on main program and its modules
apiutils.py: 7 logcleaner.py: 4
customer.py: 0 modem_metrics_2s.py: 0
datacontainer.py: 0 overpassreader.py: 7
deliverable.py: 0 plot_sband_from_files.py: 7
emailmanager.py: 4 processhandler.py: 2
emailtest.py: 0 report_sband_day.py: 0
exceptionmanager.py: 6 sbandjson.py: 3
extslacktest.py: 0 sbandreporter.py: 4
fa_reviver.py: 13 sbandvisualizer.py: 8
fileextracter.py: 0 sccerrorhandler.py: 1
fmiapi.py: 39 slackmanager.py: 3
hardrestartfmiapi.py: 0 testpass.py: 0
init.py: 0 updatemanager.py: 22
total: 142 lines of code: 3515

Table 7.17: IF count on scheduling feature and its modules
apiutils.py: 8 passfile_handler.py: 12
customer.py: 1 processhandler.py: 2
datacontainer.py: 0 s_reviver.py: 8
emailmanager.py: 4 schedulemanager.py: 34
exceptionmanager.py: 6 scheduling.py: 35
init.py: 0 securitymanager.py: 3
logcleaner.py: 7 slackmanager.py: 3
total: 114 lines of code: 2191

57

Table 7.18: Main program Halstead metrics, old vs new
Metric Old New

Operators count 1309.00 11414.00
Distinct operators 37.00 49.00
Operands count 949.00 8144.00
Distinct operands 205.00 1277.00
Program length 2258.00 19558.00
Program vocabulary 242.00 1326.00
Volume 17880.79 202872.49
Difficulty 85.64 156.25
Effort 1531337.30 31698311.00
Time to implement 85074 s = 23 h 1761017 s = 489 h
Number of delivered bugs 4 33

Table 7.19: Scheduling feature Halstead metrics, old vs new
Metric Old New

Operators count 760.00 8610.00
Distinct operators 31.00 49.00
Operands count 553.00 5921.00
Distinct operands 164.00 873.00
Program length 1313.00 14531.00
Program vocabulary 195.00 922.00
Volume 9988.42 143110.34
Difficulty 52.27 166.17
Effort 522047.45 23780332.08
Time to implement 29003 s = 8 h 1321123 s = 366 h
Number of delivered bugs 2 28

58

8. Conclusion

The existing SOGS-API was rewritten to comply with new requirements, such as support
for multiple customers, better handling of faults, and sending S band plots and error re-
ports through email. During development, the need of additional features, such as revival
from crash, was recognized and implemented. Schedule Manager, log cleaner and other
support tools were not required, but were implemented to make maintenance of the API
easier.

8.1 Measurement Results

SOGS-API meets all the functional requirements described in the introduction. It does
also satisfy all the non-functional requirements, although there is room for improvement
on the complexity. Tests show that the API can handle a large number of customers, and
if ever needed, more instances of the API can be made.

8.2 Further Development

The API can and will be developed further. The earliest change will be to split the schedul-
ing feature program into one or two more modules, reducing the complexity of the largest
files. This I will do myself at the end of this project. At the point, when HTTP POST
messages can be sent from the operational server to Slack through the firewall, this feature
will be enabled. Also, when the scheduling feature is taken into real use by the customers,
a few changes should be made in the main program to make it read overpass times from
the scheduling feature and not from a file elsewhere. The Schedule Manager tool can be
further developed to enable easier editing of pass plan data, instead of just showing them
with filtering and ordering options.

59

60

9. Swedish Summary - Svensk samman-
fattning

SOGS-API: Ett API för satellitdatamottagning

Applikationsprogrammeringsgränssnitt (API) är behändiga för att lägga till funktionalitet
i klienters program. Meteorologiska Institutet (MI) erbjuder SOGS-API för tillgång till
organisationens satellitdatamottagningstjänster. SOGS-API existerade innan detta projekt
började, men det hade lagts samman hastigt och saknade funktioner. Målet är att utveckla
ett tillförlitligt, säkert och underhållbart applikationsprogrammeringsgränssnitt. Endast
kunder och anställda har tillgång till API:et, som används främst via kommandotolken.
SOGS-API implementeras med tanke på att det kan behöva vidareutveckling, eftersom
kunders krav kan förändras. Då projektet startade, var de funktionella kraven:

• att låta kunder se sina satellitövergångstider utan att se andras

• att planlägga kunders satellitövergångstider

• att förmedla statusinformation om antennen och dess komponenter till kunder

• att automatiskt finna fel och rapportera dem till MI och kunder, samt

• att granska förmedlingen av data.

Funktioner och data beror på kunden.
För att försäkra att det nya API:et är bättre än det förra, skrivs programkoden mer läsbart
enligt Pythons stilguide PEP-8, inklusive kommentering och dokumentering. API:et tes-
tas grundligt, även för speciella situationer, såsom för elavbrott i antennen.

Förbättringarna utvärderas med mätningar av kvalitetsattribut, d.v.s. icke-funktionella
krav. API:ets viktigaste kvalitetsattribut är tillförlitlighet, säkerhet och underhållbarhet.
Tillgänglighet för kunderna beaktades också. Tillförlitlighet testades med specialsitu-
ationer samt fuzz-testning. Under projektets gång kördes SOGS-API på en testserver.
Även det operativa API:et uppdaterades ofta, och det gick igenom flera speciella situ-

61

ationer, som det antingen hanterade väl, eller som det misslyckades med och därefter
utvecklades för att klara av att hantera det. Även prestandan mättes. API:et kördes i en
säker miljö, bakom brandmurar och med begränsad tillgång. Det nya API:ets säkerhetsåt-
gärder var autentisering av kunders förfrågningar och planläggningsverktyget Schedule

Manager, samt verifiering av specialkommandon, såsom avstängning, via en lokal textfil.
API:ets säkerhet förbättrades ytterligare med funktioner för att upptäcka och rapportera
försök till missbruk, såsom brytning av kunders identifikationsnycklar eller lösenordet
till planläggningsverktyget. API:et blockerar IP-adresser, som påvisat misstänkt aktivitet.
För att göra API:et mer underhållbart, lades prestation på kodkvalitet, dokumentering
och användbarhet för operatorer. Konfigurationsfiler och designprinciper användes för att
förbättra modifierbarheten. Tillgängligheten till kunder stärktes med undantagshantering
och tolerans, samt med verktyg för dess största hot, uppdatering. Uppdateringens effekt
på tillgängligheten minskades ytterligare genom att komma överens om ett tidsintervall
då API:et kan uppdateras utan att behöva kontakta kunderna, och att kunderna alltid kon-
taktas i god tid före uppdateringar som äger rum utanför den bestämda tiden.

Förutom SOGS-API, förbättrades ett par verktyg relaterade till API:et, såsom de jag hade
gjort under sommarpraktiken hos MI. Programmeringsarbetet under projektet utfördes för
det mesta av mig. Grunddesignen hade redan gjorts till första versionen av API:et. Under
utvecklingen, fattade jag några nya designbeslut vilka accepterades av min chef.

Nyttan med att ha ett API för satellitdatamottagningstjänster är att det gör det lättare för
kunderna att komma åt data om mottagningen. Dessa data kan utnyttjas för felgranskning
av satellitdata. Detta är viktigt, eftersom korrekta satellitdata är värdefulla, och används
bland annat i undersökningar och vid granskning av havets issituation, vilket i sin tur in-
verkar på isbrytarnas arbete. Nyttan med att API:et är tillförlitligt är att det kan hantera
flera kunder och satelliter, och tål specialsituationer. Säkerhet är av största betydelse för
MI, då det förhindrar missbruk i organisationens servrar, samt kunderna, då inget skadligt
serveras åt dem, eller data faller i fel händer. Underhållbarhet är till nytta för MI, genom
att förenkla reparation och uppdatering av API:et. Det är också till nytta för kunderna,
eftersom reparationer kan göras snabbare och pålitligt, och således hålls tjänsterna igång.

Den första versionen av SOGS-API kunde frekvent läsa data från antennen med TCP/IP,
och skicka det vidare till kunder med UDP. SOGS-API tog emot en lista över satel-
litövergångstider, och då en övergång skedde, läste och sände API:et antenndata varannan
sekund. API:et använde en enda konfigurationsfil och det skrev händelser i dagliga loggar.
API:et hade skrivits i Python 2, vilket var nästan föråldrat då förbättringsprojektet satte

62

igång.

Första ändringen i SOGS-API var uppdateringen av koden till Python 3. Andra var or-
ganiseringen av kundernas konfigurering i separata filer. Därefter förbättrades loggningen
genom att samla S-band-modemdata, och programmera API:et att märka när antennens
server inte fungerar som den ska. Det fanns ett fel i servern, vilket orsakade att tusen-
tals tomma meddelanden sändes per sekund och det tidigare API:et fyllde loggfilen med
varje meddelande. Det nya API:et märker när det kommer en serie med tomma med-
delanden, och meddelar detta till IT-administrationen via e-post och Slack meddelande
och slutar logga tomma meddelanden efter att tre tomma meddelanden mottagits. Senare
utvecklades mer avancerad loggning och rapportering, som även för statistik över felsitu-
ationer och undviker att skicka samma meddelanden flera gånger inom en kort tid. Även
loggfilens storlek granskas. Ifall storleken på dagens loggfil överskrider en konfigurerad
gräns, loggas endast de viktigaste meddelandena.

När det i API:et uppstår ett problem som inte försvinner, försöker det reparera det genom
att starta om sig själv. Hur många gånger API:et startas om och hur länge det väntar
mellan omstart är konfigurerbart. Vid ett tillfälle stannade det operativa API:et utan att
meddela varför. Då samma fenomen upprepades en vecka senare, upptäcktes ett mön-
ster. Felet uppstod efter att data för S-band-modemet sparats i en CSV-fil, och innan
kurvan sparades i en PNG-fil. Detta problem döptes till CSV -> PNG-problemet, och
satte igång skrivandet av ett program som återupplivar API:et ifall det stannar. Det har
visat sig vara en mycket nyttig egenskap, som gjort liknande fel mindre allvarliga. Enda
möjliga konsekvensen med felet vore att MI:s operatorer inte automatiskt skulle få S-
band-modemdatakurvan skickad till sin e-post. Bilden går att rita i efterskott, och verktyg
för detta gjordes också. CSV -> PNG-problemet har iakttagits sedan det först upptäcktes,
men det har inte upprepats.

En annan förbättring var sättet som API:ets processer stängs av på. Först gjordes det
möjligt att stänga av processerna rent via textfiler. Nackdelen med att läsa ett stäng av-
kommando från en textfil är dröjsmålet. Därför utvecklades möjligheten att stänga av via
SIGINT-signal. Tyvärr använder återupplivarprogrammet subprocesser, vilket kan block-
era SIGINT-signaler. Därför bevarades både textfilsmetoden och SIGINT för avstängning
av API:et. Även möjligheten att tvinga till avstängning förenklades, men rekommenderas
att användas bara när de rena metoderna inte fungerar. Under projektets gång förbättrades
andra verktyg relaterade till SOGS-API. Dessa kallades Satellite Data Flow Monitor och
Acquisition Issue Reporter. Verktygen förbättrades genom tillägget av automatisk organ-

63

isation av satellitövergångslogfiler. Detta förbättrade prestandan genom att minska på
söktiden bland filer.

SOGS-API är ett API som skickar antennens situationsdata till MI:s kunder. Då API:et
startas, läser det dess moduler och konfiguration och går till normalläge. I normalläge,
vilket också kallas icke-övergångsläge, skickar API:et statusdata var 30 sekund till kunder
och MI:s loggningsservice. API:et granskar även övergångstidslistan och eventuella upp-
dateringar i kundernas konfiguration. När satelliten är ovanom antennen, övergår SOGS-
API till övergångsläget. I detta läge sänder API:et atennkontrollenhetens lägesdata samt
S-band-modemets data till kunder och MI varannan sekund. När satellitövergången är
förbi, övergår API:et tillbaka till normalläge.

Processen i SOGS-API som skickar S-band-modemdatakurvor per e-post heter S-band

Reporter, och kallas rapporteraren. Rapporteraren startar med att ladda relevanta moduler
och konfiguration. Därefter startar den en process, där den skickar S-band-modemdatakurvorna
och städar loggfilerna varje dag klockan 5:00 global tid, vilket i Finland är sju eller åtta på
morgonen, beroende på om det är sommar eller vinter. Rapporteraren kör loggstädningen
eftersom det är behändigt att göra en gång per dag.

Processen FMI API Reviver i SOGS-API återupplivar andra processer. Återupplivaren
startar med att ladda relevanta moduler och konfiguration. Var 10 sekund granskar den
sedan en textfil för dess eget avstängningskommando. Ifall den inte ska stängas av,
granskar den om de andra processerna i API:et är igång, och återupplivar dem vid be-
hov. Återupplivaren märker även om huvudprogrammet har fastnat, och isåfall startar den
om huvudprogrammet.

Kunder och produkter definieras i konfigurationsfiler. Om det görs ändringar i kund-
eller produktdata, kan dessa uppdateras medan API:et är igång, via uppdateringsfiler som
API:et läser varannan minut. Således behöver API:et inte nödvändigtvis startas om efter
en konfigurationsuppdatering.

S-band-modemdata tas emot i JSON-format via ett Python-skript. JSON-texten förfi-
nas och skickas till kunderna. Några viktiga värden läses också och sparas i en CSV-fil,
varefter de ritas i en kurva med Python-modulen Matplotlib i en PNG-fil.

Scheduling feature är ett program i SOGS-API som togs i bruk i ett senare skede av pro-
jektet. Ur kundens synvinkel är scheduling feature en egenskap i API:et. Python 3 kod till

64

scheduling feature existerade före projektet, och koden uppdaterades, renskrevs och tes-
tades innan det sattes igång. Satellitövergångstiderna skickades av en kund, och tidigare
var programmet döpt efter denna kund. Senare döptes API:et om till scheduling feature,
ett namn som beskriver vad programmet gör och som inte avslöjar kundens namn eller
gör det svårt att urskilja e-postmeddelanden som sänts av programmet från de som sänts
av kunden. Senare kan det hända att andra kunder också skickar satellitövergångstider,
och då är ett generellt namn mer lämpligt.

Verktyget Schedule Manager gjordes för lättare granskning av satellitövergångstider då
flera kunder använder scheduling feature. Det är ett HTML gränssnitt, som ger filtrerings-
och organiseringsalternativ för visning av övergångstider.

Tillförlitlighet mättes genom att samla resultat från specialsituationer. Scheduling feature

gick igenom Fuzz-testning, och hela SOGS-API klarade av speciella situationer, såsom
elavbrott och uppdateringar i antennen.

Säkerheten mättes med skript och verktyg som försöker gissa kunders ID, samt Schedule

Manager-verktygets adress och lösenord. Då kundernas ID testades, användes tio stycken
32 teckens hexadecimalvärden, och inte ett enda ID gissades rätt på en miljon försök,
fastän "attackeraren" visste detta. I verkligheten kan ID innehålla text av varierande
längd, vilket gör gissningen ännu svårare. Onlineverktyget How Secure Is My Pass-

word? användes för värdering av gissbarheten av Schedule Manager-verktygets adress
och lösenord. Enligt verktyget gissade den adressen genast. Adressen gjordes längre och
svårare, varefter det skulle ta en dag för en dator att gissa adressen. Att gissa lösenordet
skulle kräva 300 år för en dator. Senare gjordes en funktion som märker försök till miss-
bruk och blockerar attackerarens IP-adress.

Prestandan mättes med Python-modulen cProfile och genom användning av tidsstäm-
plar. Exekveringstiderna visade inga problem med prestandan i normala situationer. Då
scheduling feature sattes under hård trafik, observerades en liten fördröjning i handlingen
av förfrågningar. Fördröjningen är så liten, att den skulle märkas först när tusentals kun-
der använder API:et.

Underhållbarhet består av modifierbarhet, testbarhet och begriplighet, och dessa kan bry-
tas ned till förstärkbarhet, struktur, kommunikation, tillgång, självbeskrivning, koncishet
och läsbarhet. API:erna använder konfigurationsfiler, vilket främjar självbeskrivbarhet,
förstärkbarhet och struktur. Ansvaret har delats in i moduler, vilket lägger till struktur

65

och självbeskrivbarhet. Koden följer stilguiden PEP-8, vilket främjar läsbarheten. Stilen
granskades med verktyget pycodestyle. Verktyget hittade 61 fel i gamla SOGS-API och
349 i gamla Scheduling API. Beskrivande variabel- och funktionsnamn förbättrade också
läsbarheten, och där kontexten är klar användes kortare namn för att göra koden mer kon-
cis. Längre modulnamn förkortades med alias för att också förbättra koncisheten. Oper-
atorerna hos MI har full tillgång till API:erna samt deras filer, och det finns verktyg och
dokumentation som främjar kommunikationen. IF-förhållandet mättes, och det visade sig
vara ganska högt för båda API:erna. I båda fallen fanns den goda sidan att största delen av
if-satserna fanns i två filer, istället för att vara utspridda. Också Halsteads-värden mättes,
och resultatet var att det finns behov att dela Scheduling API i fler moduler för att minska
på komplexiteten.

Lösningen uppfyller alla de funktionella, och icke-funktionella, kraven, men det finns
utrymme för förbättring vad gäller komplexiteten. API:et kommer att vidareutvecklas.
Den första förändringen kommer att vara delningen av Scheduling API i fler moduler, för
att minska på komplexiteten. När det går att skicka Slack-meddelanden genom brand-
muren, kommer denna egenskap att tas i bruk. När Scheduling API börjar användas av
kunderna, behöver några ändringar göras i SOGS-API så att den läser övergångstider
från Scheduling API istället för en fil annanstans. Schedule Manager-verktyget kan vi-
dareutvecklas så att det tillåter editering av övergångstiderna.

66

Bibliography

[1] Redfox Languages, Redfox Master - Online Dictionary, https://client.redfoxsanakirja.
fi/en_US/dictionary, [Online and accessed 25-September-2020], 2020.

[2] R. Fielding, “Architectural Styles and the Design of Network-based Software Ar-
chitectures,” PhD thesis, University of California, Irvine, 2000.

[3] I. Cotton and F. Greatorex, Eds., AFIPS 1968 Fall Joint Computer Conference, San
Francisco, California: Association for Computing Machinery, 1968.

[4] Google LLC, YouTube Data API, https://developers.google.com/youtube/
v3/getting-started, [Online and accessed 11-December-2020], 2020.

[5] D. Berlind, W. Santos, and K. Sundström, ProgrammableWeb - Category: Satel-

lites, https://www.programmableweb.com/category/satellites/api/,
[Online and accessed 10-December-2019], 2019.

[6] J. Macy, “API security: whose job is it anyway?” Network Security, vol. 9, no. 1,
9:6–9:9, 2018. [Online]. Available: https : / / doi . org / 10 . 1016 / S1353 -
4858(18)30088-6.

[7] M. Kleppmann, Designing Data-Intensive Applications. O’Reilly Media, 2017.
[8] S. May, What Is a Satellite? https://www.nasa.gov/audience/forstudents/

5-8/features/nasa-knows/what-is-a-satellite-58.html, [Online and
accessed 5-December-2020], 2017.

[9] A. Mulla and P. Vasambekar, “Overview on the development and applications of
antenna control systems,” Annual Reviews in Control, vol. 41, pp. 47–57, 2016,
ISSN: 1367-5788. [Online]. Available: https : / / www . sciencedirect . com /
science/article/pii/S1367578816300153.

[10] P. Zhang, “CHAPTER 8 - Industrial process controllers,” in Advanced Industrial

Control Technology, P. Zhang, Ed., Oxford: William Andrew Publishing, 2010,
pp. 307–344, ISBN: 978-1-4377-7807-6. [Online]. Available: https : / / www .

sciencedirect.com/science/article/pii/B9781437778076100087.
[11] L. O’Brien, L. Bass, and P. Merson, “Quality Attributes and Service-Oriented Ar-

chitectures,” Software Engineering Institute, Carnegie Mellon University, Tech.
Rep., 2005.

67

[12] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P. Merson, R.
Nord, and J. Stafford, Documenting Software Architectures: Views and Beyond,

Second Edition. Boston: Addison-Wesley, 2010.
[13] P. Naur and B. Randell, Eds., Software Engineering: Report of a conference spon-

sored by the NATO Science Committee, Garmisch, Germany, 7–11 Oct. 1968, Brus-
sels: NATO, Scientific Affairs Division, 1969.

[14] A. Case, “Computer-Aided Software Engineering (CASE): Technology for Im-
proving Software Development Productivity,” vol. 17, no. 1, 1985. [Online]. Avail-
able: https://doi.org/10.1145/1040694.1040698.

[15] D. Perry and A. Wolf, “Foundations for the study of software architecture,” ACM

SIGSOFT Software Engineering Notes, vol. 17, no. 4, 4:40–4:52, 1992. [Online].
Available: https://www.ics.uci.edu/~taylor/classes/221/Wolf-Perry-
1992.pdf.

[16] E. Freeman, K. Sierra, B. Bates, and E. Robson, Head First Design Patterns.
O’Reilly Media, 2004.

[17] J. Coplien, Idioms and Patterns as Architectural Litterature. IEEE Software, 1997.
[18] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, Third

Edition. Boston: Addison-Wesley, 2012.
[19] Verifysoft Technology, Halstead Metrics, https://www.verifysoft.com/en_

halstead_metrics.html, [Online and accessed 8-September-2020], 2017.
[20] R. Al-Qutaish and A. Abran, Software Metrics and Software Metrology. Hoboken,

NJ: John Wiley & Sons-IEEE, 2010.
[21] Lite Solutions, Halstead, https://objectscriptquality.com/docs/metrics/

halstead, [Online and accessed 10-September-2020], 2020.
[22] M. Pizka and F. Deißenböck, “How to effectively define and measure maintain-

ability,” ResearchGate, vol. 1, no. 1, 1:5–1:8, 2007. [Online]. Available: https:
//www.researchgate.net/publication/250188492.

[23] P. Jalote, B. Murphy, M. Garzia, and B. Errez, “Measuring Reliability of Soft-
ware Products,” Microsoft Corporation, One Redmond Way, Redmond, WA 98052,
Tech. Rep., 2004, https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-
2004-145.pdf.

[24] K. Trivedi, Probability and Statistics with Reliability, Queuing and Computer Sci-

ence Applications, Second Edition. Hoboken, NJ: John Wiley & Sons, 2002.
[25] A. Takanen, J. DeMott, C. Miller, and A. Kettunen, Fuzzing for Software Security

Testing and Quality Assurance, (2nd ed). Norwood, MA: Artech House, 2018.
[26] M. Sutton, A. Greene, and P. Amini, Fuzzing Brute Force Vulnerability Discovery.

Boston: Addison-Wesley, 2007.

68

[27] P. Godefroid, M. Levin, and D. Molnar, “SAGE: Whitebox Fuzzing for Security
Testing,” ACM Queue, vol. 10, p. 20, 2012.

[28] Sayantini, Top 10 Performance Testing Tools – Your Ultimate Guide to Testing,
https://www.edureka.co/blog/performance-testing-tools/, [Online
and accessed 22-September-2020], 2020.

[29] Python Software Foundation, The Python Profilers, https://docs.python.org/
3/library/profile.html, [Online and accessed 15-Ferbuary-2021], 2021.

[30] G. Yee, Computer and Information Security Handbook, Second Edition. Ottawa,
Canada: Carleton University, 2013.

[31] Python Software Foundation, Python, https://www.python.org/, [Online and
accessed 20-January-2020], 2020.

[32] G. van Rossum, A Brief Timeline of Python, http://python-history.blogspot.
com/2009/01/brief-timeline-of-python.html, [Online and accessed 6-
October-2020], 2009.

[33] D. Kuhlman, A Python Book: Beginning Python, Advanced Python, and Python

Exercises. http://www.davekuhlman.org, 2009.
[34] Python Software Foundation, The Python Debugger, https://docs.python.

org/3/library/pdb.html, [Online and accessed 6-October-2020], 2020.
[35] J. Rocholl, F. Xicluna, and I. Lee, pycodestyle’s documentation, https://pycodestyle.

pycqa.org/en/latest/intro.html, [Online and accessed 31-March-2020],
2016.

[36] G. van Rossum, B. Warsaw, and N. Coghlan, PEP 8 – Style Guide for Python

Code, https://www.python.org/dev/peps/pep-0008/, [Online and accessed
21-March-2020], 2013.

[37] Anaconda Inc., Miniconda, https://docs.conda.io/en/latest/miniconda.
html, [Online and accessed 6-October-2020], 2017.

[38] WHATWG, HTML Standard, https://html.spec.whatwg.org/multipage/
introduction.html, [Online and accessed 7-March-2021], 2021.

[39] W3C, HTML & CSS, https://www.w3.org/standards/webdesign/htmlcss.
html, [Online and accessed 20-March-2021], 2021.

[40] MDN, What is JavaScript? https://developer.mozilla.org/en-US/docs/

Web/JavaScript/Guide/Introduction\#what_is_javascript, [Online and
accessed 5-December-2020], 2017.

[41] S. Chacon and B. Straub, Pro Git, Second Edition. New York: Apress, 2020.
[42] A. DuVander, 9,000 APIs: Mobile Gets Serious, https://www.programmableweb.

com/news/9000-apis-mobile-gets-serious/2013/04/30, [Online and ac-
cessed 25-September-2020], 2013.

69

[43] W. Santos, APIs show Faster Growth Rate in 2019 than Previous Years, https:
//www.programmableweb.com/news/apis-show-faster-growth-rate-

2019- previous- years/research/2019/07/17, [Online and accessed 25-
September-2020], 2019.

[44] W. Griswold, “Program Restructuring as an Aid to Software Maintenance,” PhD
thesis, University of Washington, Washington, 1991.

[45] Small Hadron Collider, How Secure Is My Password? https://howsecureismypassword.

net/, [Online and accessed 1-September-2020], 2020.
[46] B. Boehm, T. I. Systems, and Energy, Characteristics of Software Quality, ser. No-

tas de Matematica. North-Holland Publishing Company, 1978, ISBN: 9780444851055.
[Online]. Available: https://books.google.com/books?id=Cdm0AAAAIAAJ.

[47] D. Borowiec, Commented Code Detector, https://github.com/dborowiec/
commentedCodeDetector, [Online and accessed 8-September-2020], 2013.

70

Appendices

71

A. ACU Metrics: Raw vs Visualized

ISTT:1001:INST 0:DATA<TM ST 2021 049 03:11:26.059,11001 IN 0,501 UN 459008,574
ST ,575 FL 0.000000,576 IN 0,577 ST NONE,578 IN 0,579 FL 0.000000,502 UN 9218,503
IN 0,504 FL 181.001205,508 FL 181.001205,512 FL 0.000000,516 IN 0,520 IN 0,524
UN 0,528 FL 181.062302,505 FL 9.950500,509 FL 9.950500,513 FL 0.000000,517 IN
0,521 IN 0,525 UN 0,529 FL 181.062302,506 FL 0.061100,510 FL 0.061100,514 FL
0.000000,518 IN 1,522 IN 0,526 UN 512,507 FL 1.000000,511 FL 1.000000,515 FL
0.000000,519 IN 0,523 IN 0,527 UN 4096,532 UN 268435456,533 FL 182.189804,534
FL 16.709499,535 FL 182.189804,536 FL 16.709499,553 FL 0.000000,554 FL 0.000000,537
FL 0.000000,538 FL 0.000000,620 FL 0.421100,621 FL 17.000000,539 FL 0.421100,540
FL 0.186200,541 FL -0.058000,542 FL 21.021400,543 FL 0.000000,544 FL 0.000000,625
FL 10.700000,626 FL 10.800000,627 FL 10.900000,628 FL 11.100000,545 FL 17.000000,546
FL 10.000000,547 FL 10.000000,548 FL 0.000000,549 FL 0.000000,550 FL 0.000000,630
FL 40.700001,631 FL 40.799999,632 FL 40.900002,633 FL 41.099998,600 ST 10|0|0|0|0|0|0|0|0|0|0,601
ST 19|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0,602 ST 20|0,603
ST 20|0,604 ST 16|0|0|1|0|0|0|0|0|0|0|0|0|0|0|0|0,605 ST
3|9|9|9,610 UN 0,611 UN 0,612 UN 0,613 UN 0,614 UN 8192,615 UN 0,584 ST 23|1|0|0|3|0|0|0|0|0|1|1|0|0|0|0|0|0|0|0|0|0|0|0,572
UN 0,573 IN 0,580 IN 3,581 IN 0,552 IN 1,585 IN 181,551 IN 0,900 IN 0,901 FL
0.000000,905 FL 0.000000,910 FL 0.000000,911 FL 0.000000,912 FL 0.000000,913
IN 1,400 IN 0,592 IN 0,593 FL 9.900000,594 FL 0.180000,595 FL 0.190000,596 FL
0.019000,660 IN 0,661 FL 1.000000,662 FL 60.000000,663 FL 0.100000,664 FL 0.100000,665
FL 0.100000,813 FL 0.000000,814 FL 0.000000,1050 IN 2,120 DL 0.001,1051 IN 0,1052
FL 0.000000,1053 FL 0.000000,1054 FL 0.000000,1055 FL 0.000000,1056 FL 0.000000,1057
FL 0.000000,1058 FL 0.000000,1101 FL 182.189804,1102 FL 16.709499,1111 FL 246.690994,1112
FL 180.941193,1113 FL 181.001205,1114 IN 1,1121 FL -2.258100,1122 FL 9.700500,1123
FL 9.950500,1124 IN 1,1131 FL 1.226400,1132 FL 0.061100,1133 FL 0.061100,1134 IN
2,622 IN 1,920 IN 0,921 ST NONE>

73

Figure A.1: ACU metrics visualized

74

B. S Band Modem Metrics JSON

"targets": {

"RxIn0/SampledComplex32IfQueued0": {

"QItemsDiscarded": 0

},

"BpskDemod0/BpskDemodV27Fft0": {

"PowerMeas": 108.6841888427734,

"ViterbiLock": true,

"EbnoMeas": 10.35342979431152,

"SymbolLock": true,

"SymbolRate": 1562500.0,

"CarrierLock": true

},

"Tlm0/CcsdsAosTransferFrameToTsBits0": {

"InvalidVcdus": 0,

"CcsdsVcdus": 0

},

"RxIn0/Fmc150ComplexSampleCollector2_0": {

"CurrentGain": 62.0,

"Fmc150InputFilter": "FIR_12MHZ",

"SignalClip": 0.0

},

"Tlm0/SwFrameSync0": {

"CheckFrames": 0,

"FrameLength": 1024,

"LockFrames": 0,

"LostLockCount": 0,

"FsLockState": "INPUT_SHUTDOWN",

"SlipFrames": 0,

"VerifyFrames": 0,

"TotalFrames": 31

75

},

"Tlm0/CcsdsAosTransferFrameTx0": {

"DiscardedFrames": 0,

"TotalFrames": 0,

"CcsdsInsertZoneFills": 0

},

"TxOut0/FreqControl0": {

"ExtCenterFreq": 2245000000.0

},

"TimeAndRef0/NetPanelTimeProcessor2_0": {

"Synchronized": true

},

"TimeAndRef0/Fmc150Monitor0": {

"Alarm": false

},

"Tlm0/CcsdsRs255223Decoder0": {

"TotalBits": 0,

"TotalFrames": 31,

"CorrectedBits": 0,

"CorrectedFrames": 0,

"UncorrectableFrames": 0

},

"RxIn0/FreqControl0": {

"ExtCenterFreq": 2245000000.0

},

"TxOut0/Fmc150ComplexSampleSender2_0": {

"ManualGain": 26.0

},

"TxOut0/CarrierMixer0": {

"EnableCarrier": true,

"EnableModulation": true

}

}

76

Figure B.1: S band plot

77

