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Abstract  

New technologies such as machine learning, continuously improving wireless 

and wired connectivity, as well as modern sensors for data collection, are being 

widely adopted by many industries. In concrete construction, digital solutions 

have the potential to help assure the quality of ready-mix concrete while 

increasing productivity in construction sites. Even if the data collection 

capabilities exist to implement data analytics and machine learning-based 

applications, the availability of proper, clean data from concrete production has 

often been a challenge in our early experiments, such as the trials by the 

DigiConcrete working group in Finland  

This project aimed to understand what digital data collection opportunities 

there are in ready-mix concrete production and how data analytics, machine 

learning, and artificial intelligence techniques could be used to automate some 

of the concrete quality assurance tasks. The research was done by selecting, 

collecting, and analyzing data from a concrete production as well as studying 

literature and standards for the industry. We combined both existing data from 

the control systems of concrete mixing plants and data that were separately 

acquired by purposely installed measuring equipment. The data collection, 

acquisition, and analysis were made between December 2019 and June 2020. 

The research that was completed by Caidio Oy for Finnish Transport Infra-

structure Agency continues the work that has earlier been performed by the 

DigiConcrete working group in Finland in 2018 and 2019. Several Finnish 

organizations in concrete construction, such as Finnish Transport Infrastructure 

Agency, have collaborated in studying what possibilities the digitalization could 

offer to increase performance and decrease challenges in concrete construction. 

Caidio Oy, which is a technology startup specializing in artificial intelligence and 

industrial Internet solutions, has coordinated the DigiConcrete activities.  

In this research, Caidio focused on four research activities. First, we analyzed 

which existing, and new data collection possibilities exist in concrete production. 

Second, we collected data from existing data sources in concrete production as 

well as added novel measurements in the process. Third, we cleaned the 

acquired data such that it could been used for machine learning and data 

analytics. Finally, we experimented with how data analytics and machine 

learning could potentially be used in concrete production and documented our 

findings.  

The research indicated the possibilities of a data-centric approach for quality 

control but also highlighted the current gaps in a traditional production process. 

A standard concrete plant often lacks the open software interfaces for 

accessing the required production data in the right format, which makes the 



Publications of the FTIA 54/2020 4 

 

 

 

 

development slower. For the machine learning approach to be successful, the 

production data needs to be lined up with the concrete quality test results from 

the laboratory as well, which requires proper planning and alignment between 

the stakeholders in an organization. Furthermore, for the computerized 

approach to be successful, more data needs to be collected from the process 

than what we had the opportunity to do. The research team is confident the 

data-centric method has a lot of potentials to work, but additional research, data 

acquisition, and development will still be needed.  
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Tiivistelmä  

Uusia teknologioita, kuten esimerkiksi koneoppimista, tehokkaita langattomia ja 

kiinteitä verkkoyhteyksiä tai tiedonkeruuseen tehtyjä IoT-antureita, sovelletaan 

nykyään yleisesti monella teollisuuden alalla. Digitaaliset menetelmät voivat 

auttaa valmisbetonin laadunvarmistuksessa sekä lisätä tuottavuutta betoni-

rakentamisessa työmailla. Vaikka data-analyytikan ja koneoppimisen tarvitse-

maa tiedonkeruutekniikkaa on helposti saatavilla, algoritmien tarvitseman 

hyvälaatuisen datan käyttöön saaminen betonintuotannosta on monesti ollut 

työlästä aikaisen vaiheen DigiConcrete-testeissämme Suomessa.  

Tämän projektin tarkoituksena oli kasvattaa ymmärrystä siitä, mitä tiedon-

keruumahdollisuuksia valmisbetonin tuotannossa on ja millä tavalla tietoon 

pohjautuvaa data-analytiikkaa, koneoppimista ja tekoälyä voisi käyttää betonin 

laadunhallinnan automatisoimiseksi. Tutkimuksessa etsittiin mahdollisuuksia, 

kerättiin ja analysoitiin tietoa betonin tuotannosta sekä tutkittiin aiheeseen 

liittyvää kirjallisuutta ja teollisuuden standardeja. Yhdistimme tuotannon auto-

maatiojärjestelmästä saatua olemassa olevaa dataa tietoon, jota kerättiin 

tuotannosta erikseen asennetuilla mittalaitteilla. Tiedot kerättiin ja analysoitiin 

joulukuun 2019 ja kesäkuun 2020 välisenä aikana.  

Tutkimuksen suoritti Väyläviraston toimeksiannosta Caidio Oy ja se pohjautuu 

aikaisempaan niin kutsutun DigiConcrete-työryhmän Suomessa vuosina 2018 ja 

2019 tekemään pohjatyöhön. Useat suomalaiset organisaatiot kuten esimerkiksi 

Väylävirasto, tekivät DigiConcrete-työryhmässä yhteistyötä tutkiakseen, mitä 

mahdollisuuksia digitalisaatio voisi tarjota tuottavuuden lisäämiseksi ja haas-

teiden vähentämiseksi betonirakentamisessa. Caidio, joka on suomalainen teko-

älyyn ja teolliseen Internetiin panostava startup-yritys, on koordinoinut Digi-

Concrete-aktiviteetteja.  

Tässä työssä Caidio keskittyi neljään tehtävään. Aluksi tutkittiin, mitä olemassa 

olevia sekä uusia tiedonkeruumahdollisuuksia tyypillisessä betonintuotannossa 

on. Tämän jälkeen kerättiin olemassa olevaa dataa valmistusprosessista sekä 

tehtiin täysin uudentyyppisiä mittauksia tuotannossa. Kolmanneksi kerätty data 

suodatettiin, jotta koneoppimisalgoritmeja ja data-analytiikkaa voitiin soveltaa 

tiedonkäsittelyssä. Lopuksi kokeiltiin koneoppimis- ja data-analytiikkamenetel-

miä tiedon prosessoinnissa, jotta saataisiin käsitys, miten menetelmät voisivat 

toimia betonituotannossa.  

Tutkimuksessa havaittiin, että dataan perustuvista laadunvalvontakeinoista voi 

olla hyötyä betonin automaattisessa laadunvalvonnassa. Haasteena kuitenkin 

todettiin olevan perinteisen tuotantolaitoksen automaatiojärjestelmän kankeus 

tarvittavan datan saamiseksi oikeassa muodossa algoritmien käyttöön. 

Avoimien tietorajapintojen puute voi hidastaa ja vaikeuttaa ohjelmistokehitystä.  
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Jotta tietokonepohjaiset koneoppimismenetelmät toimivat betonin laadun-

hallinnassa, malleja otettaessa tuotannosta kerättävä data sekä betoni-

laboration tekemät laatutestit pitää suorittaa samoista betonin tuotantoeristä. 

Tämä vaatii tarkkaa koordinointia yrityksen eri osastojen välillä.  

Jotta tietokonepohjainen dataan pohjautuva menetelmä toimisi betonin laadun-

valvonnassa, prosessista pitäisi kerätä enemmän tietoa kuin mihin tutkimuk-

sessa oli mahdollisuus. Tutkimusryhmän mielestä tutkituilla menetelmillä on 

hyvät mahdollisuudet toimia, mutta ratkaisut tarvitsevat lisätutkimusta, 

tiedonkeruuta ja kehitystä.  
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Foreword  

This report presents a summary of the research conducted and the results 

obtained in Caidio’s data-centric approach for quality assurance of concrete 

production project for Finnish Transport Infrastructure Agency.  

Caidio Oy carried out the project under the guidance of Finnish Transport 

Infrastructure Agency. The primary representatives of Caidio during this project 

were Pasi Karppinen and Aku Wilenius, supported by Caidio’s IoT 

instrumentation and machine learning teams. The project builds on the 

DigiConcrete initiative in Finland, which has been a collaboration working group 

by several stakeholders in the Finnish concrete construction industry, including 

Finnish Transport Infrastructure Agency.  

This project aims to promote the digitalization in the concrete construction 

industry. Both Finnish Transport Infrastructure Agency and Caidio Oy envision 

that modern tools have much potential to help the industry manage bottlenecks 

and assure quality in concrete construction.  

Helsinki November 2020 

Finnish Transport Infrastructure Agency 
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1 Introduction 

1.1  Background and objectives 

Caidio conducted a research project for Finnish Transport Infrastructure Agency 

on the possibilities of using modern machine learning and data analytics 

techniques in the quality assurance of ready-mix concrete in production. The 

challenges that Finnish Transport Infrastructure Agency experienced in 2016 

regarding the quality of ready-mix concrete are motivating this research.  

The performance of artificial intelligence and machine learning-based systems 

is continuously evolving as the systems gather more data about the processes 

that are being managed. Caidio’s research indicates that in a short time, with 

various algorithms, the AI systems can process a large amount of information 

gathered from raw materials, the production process, and the environment, and 

learn how to alert about possible problems with concrete quality parameters. AI 

systems can generate alarms and operational recommendations for concrete 

plant managers and other employees. 

The general objective of this project was to understand what digital data 

collection opportunities and challenges there are in ready-mix concrete 

production and how data analytics, machine learning, and artificial intelligence 

can be used to automate the quality assurance of concrete in production. 

According to Caidio’s experience, machine learning and AI system have the 

potential to detect the following quality management applications defects in the 

concrete production process: 

● Changes in the quality parameters of aggregates 

● Changes in the quality parameters of mixed concrete 

● Incorrect sensor operation and sensor calibration error 

● Predicting machine malfunctions situations 

 

1.2  Research methodology 

The research was done by selecting, collecting, and analyzing data from the 

concrete production industry as well as studying the existing literature and 

standards for the industry. We combined both current data from the control 

systems of concrete mixing plants and data that were separately acquired by 

purposely installed measuring equipment. The data collection, acquisition, and 

analysis were done between December 2019 and June 2020. 

1.3  Structure of the report 

This report has been created based on the template from Finnish Transport 

Infrastructure Agency. The research project has been divided into three phases, 

according to table 1. 
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Table 1.  The research phases of the project  

Phase Reporting Tasks 

Data selection and 

acquisition 

January 2020 

The optional data sources for the 

research were listed, the most useful 

data sources were selected, and the 

collection of data was started. 

Data acquisition, 

optimization, and 

analysis 

March 2020 

The data that was selected in the first 

phase of the project was acquired from 

a concrete production process. The 

filtering, processing, and analysis of the 

data was started. 

Returning the 

research results 

July 2020 

The usability of data analytics, machine 

learning, and artificial intelligence 

methods for concrete quality assurance 

was studied and reported.  
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2 Overview of producing and testing the 

quality of concrete 

The ready-mix concrete process, as shown in figure 1, consists of multiple 

stages. The concrete production starts by getting the raw materials such as 

cement, aggregates, water, and admixtures based on the recipe information for 

the concrete in the mixer where the materials are mixed. The mixing is done in 

batches, and each time a batch of concrete of concrete strength and concrete 

class is produced.  

When testing the produced concrete for quality parameters, such as workability, 

density, or temperature, a small sample is taken from the batch of concrete and 

sent for testing in the local laboratory. The frequency and method of testing 

have been defined in the European standard EN 206, which has been adopted in 

the local Concrete Code guideline in Finland. After taking the test sample, the 

truck delivers the product to the construction site. The concrete is then cast, 

cured, and hardened at the worksite. The process is then repeated for the next 

order. An overview of this process is shown in Figure 1. The most relevant data 

gathering points for the purpose of this report are highlighted in yellow. The 

process and data points are further elaborated in Appendix 1. 

 

Figure 1. Ready Mixed Concrete process 
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2.1  Quality assurance of ready-mix concrete 

Concrete Association of Finland describes the current quality assurance 

procedures of ready-mix concrete in Concrete Code 2016 publication, which is 

based on the European standard EN 206. The properties of concrete shall be 

controlled to the specified requirements, as given in Table 2. For some concretes, 

additional requirements for production control may be necessary. For example, 

the production of high-strength concrete requires special knowledge and 

experience of the contract documents that have defined special requirements 

for the concrete; the production control shall include appropriate actions in 

addition to those in Table 2. The actions presented in the table may be adapted 

in special cases to the conditions of a specific place of production and be 

replaced by actions that provide an equivalent level of control. For example, 

Finnish Transport Infrastructure Agency has published requirements for 

concrete production for their use. 

Table 2.  Quality control of production procedures of concrete properties.  

 Type of test Inspection/ test Purpose Minimum  

frequency 

Pro-

duc-

tion 

1 Properties of 

concrete 

 

Initial test To provide proof 

that specified 

properties are 

met by the 

proposed 

composition with 

an adequate 

margin 

Before using a new 

concrete composition 

No 

2 Water 

content of 

fine 

aggregates 

 

Continuous 

measuring 

system, 

drying test or 

equivalent 

 

To determine the 

dry mass of 

aggregate and 

the water to be 

added 

If not continual, daily. 

Depending on local 

and weather 

conditions more or 

less frequent tests 

may be required 

Yes 

 

3 Water 

content 

of coarse 

aggregates 

Drying test or 

equivalent 

 

To determine the 

dry mass of 

aggregate and 

the water to be 

added 

Depending on local 

and weather 

conditions 

 

Yes 

4 Water 

content of 

fresh 

concrete 

Check of the 

quantity of water 

added (b 

To provide data 

for the water-

cement ratio 

Every batch or load Yes 

5 Chloride 

content 

of concrete 

Initial  

determination by 

calculation 

To ensure that 

the maximum 

chloride 

content is not 

exceeded 

When performing 

initial test 

In case of an increase 

in the chloride 

content of the 

constituents 

No 

https://julkaisut.vayla.fi/pdf8/lo_2016-22_siltabetonien_p-lukumenettely_web.pdf
https://julkaisut.vayla.fi/pdf8/lo_2016-22_siltabetonien_p-lukumenettely_web.pdf
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 Type of test Inspection/ test Purpose Minimum  

frequency 

Pro-

duc-

tion 

6 Consistency Visual inspection For comparison 

with normal 

appearance 

Every batch Yes 

7 Consistency test 

according to  

SFS-EN 12350-2 

or 

SFS-EN 12350-5 

 

To assess the 

achievement of 

the specified 

values of 

consistence and 

to check possible 

changes of water 

content 

 

In connection with 

the production of test 

specimens for 

compressive 

strength 

When testing air 

content 

In case of doubt 

following visual 

inspections 

Yes 

8 Consistency test 

according to 

SFS-EN 12350-

8:en 

 At least once a day 

In connection with 

the production of test 

specimens for 

compressive 

strength 

When testing air 

content 

In case of doubt 

following visual 

inspections 

Yes  

9 Viscosity of 

concrete 

 

SFS-EN 12350-8 

or 

SFS-EN 12350-9 

To assess the 

achievement of 

the declared 

values of 

consistence 

 

When performing 

initial test 

Before using a new 

concrete composition 

In case of a change in 

the constituents 

In case of doubt 

following visual 

inspections or 

slump-flow test 

Yes 

10 Passing 

ability 

SFS-EN 12350-10 

or 

SFS-EN 12350-12 

 

11 Segregation 

resistance 

 

SFS-EN 12350-11 

12 Density 

of fresh 

concrete 

 

Density test 

according to 

SFS-EN 12350-6 

 

For lightweight 

and heavyweight 

concrete for 

supervision of 

batching and 

density control 

Daily Yes 

13 Cement 

content of 

fresh 

concrete 

 

Check the mass 

of cement 

batched (b 

 

To check the 

cement content 

and to provide 

data for the 

water- cement 

ratio 

Every batch or load Yes 
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 Type of test Inspection/ test Purpose Minimum  

frequency 

Pro-

duc-

tion 

14 Additions 

content of 

fresh 

concrete 

 

Check the mass 

of additions 

batched (b 

 

To check the 

additions content 

and to provide 

data for the w/c 

ratio 

(see Section 3.1.2) 

Every batch or load Yes 

15 Admixture 

content 

of fresh 

concrete 

Check the mass 

or volume of 

admixtures 

batched (b 

To check the 

admixture 

content 

 

Every batch or ad Yes 

16 Water- 

cement 

ratio of fresh 

concrete 

By calculation or 

by test method  

 

To assess the 

achievement of 

the specified 

water-cement 

ratio 

Daily, where 

specified 

Yes 

17 Air content 

of fresh 

concrete 

where 

specified 

Test according to 

SFS-EN 12350-7 

 

To assess the 

achievement of 

the specified 

content of 

entrained air 

In accordance with 

Appendix 4 

Yes 

18 Temperature 

of fresh 

concrete 

Measure 

temperature 

 

To assess the 

achievement of 

the minimum 

temperature 

of 5 °C or 

specified limit 

 

In case of doubt 

Where temperature 

is specified: 

- periodically, 

dependent on the 

situation. 

-  each batch or load 

where the concrete 

temperature is close 

to the limit 

Yes 

19 Density of 

hardened 

concrete 

Test according to 

SFS-EN 12390- 

7(a 

 

To assess the 

achievement of 

the specified 

density 

 

Where density is 

specified, as 

frequently as 

compressive 

strength test 

Yes 

20 Compressive 

strength test 

on molded 

concrete 

specimen 

 

Test according to 

SFS-EN 12390-3 

 

To assess the 

achievement of 

the specified 

strength 

 

Where compressive 

strength is specified; 

as frequently as for 

conformity control 

Recommended to be 

carried out always in 

connection with 

testing of test 

specimens for 

compressive 

strength 

 

Yes 

a) May also be tested in saturated conditions, where correlation to oven-dry density 

is established. 

 b) Where recording equipment is not used and the batching tolerances for the batch 

or load are exceeded, record the batched quantity in the production record. 
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In table 2, Concrete Association Finland describes 20 different quality inspection 

tests and minimum frequencies for ready-mix concrete. Of all of these, 16 tests 

are performed while producing concrete, and most of them require manual 

testing by personnel or testing providers. One of the purposes of this research 

is to study if these manual test phases could at least partly be replaced with 

digital techniques.  

According to our interviews with industry experts, the root cause of the quality 

issues in the manufacturing process often originates from the malfunctioning 

machinery. In addition to testing the concrete directly for quality parameters, 

verifying the correct operation of the production machinery is also essential. 

Concrete Code 2016 publication describes, according to table 2, how, and how 

often different production machines need to be tested. Modern instrumentation 

and data-centric approach for testing the facility may offer new possibilities for 

automated ways for verifying the functionality of production machinery as well 

as performing predictive maintenance, which would allow the producer to 

schedule maintenance operations on time. 

Table 3.  Equipment control.  

 Equipment Inspection/ test Purpose Minimum frequency 

1 Stockpiles, 

bins, etc. 

Visual inspection To ascertain conformity 

with the requirements 

Once per week 

2 Weighing 

equipment 

 

Visual inspection of 

the performance 

To ascertain that the 

weighing equipment 

is clean and functions 

correctly 

Daily 

3 Test of weighing 

equipment 

To ensure the accuracy 

of the batching 

equipment 

On installation 

Periodically  

(a depending on 

provisions valid in 

the place of use 

In case of doubt 

4 Admixtures 

dispenser 

(including 

those 

mounted on 

truck mixers) 

Visual inspection of 

the performance 

To ascertain that the 

measuring equipment 

is clean and functions 

correctly 

First day of use for 

each admixture 

5 Test of measuring 

equipment and 

verification of 

batching amount 

To ensure the 

functionality of the 

batching equipment 

 

On installation 

Periodically (a after 

installation 

In case of doubt 

6 Water meter 

and water  

dispenser 

mounted on 

truck mixer 

Test of measuring 

equipment 

To ensure the 

functionality of the 

batching equipment 

On installation 

Periodically (a after 

installation 

In case of doubt 
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 Equipment Inspection/ test Purpose Minimum frequency 

7 Equipment for 

continuous 

measurement 

of water  

content of 

aggregates 

Comparison of the 

actual amount with 

the reading of the 

meter 

To ascertain correct 

values 

 

 

On installation 

Periodically (a after 

installation 

In case of doubt 

8 Batching 

system 

 

Visual inspection 

 

To ascertain that the 

batching equipment is 

functioning correctly 

Daily 

9 Comparison of the 

actual mass of the 

constituents in the 

batch with the 

target mass 

To meet the 

requirements of 

Section 3.7.4.2 

 

On installation 

In case of doubt 

Periodically (a after 

installation 

10 Testing 

apparatus 

 

Calibration 

according 

to relevant national 

or SFS-EN 

standards 

To check the conformity Periodically(a 

For strength testing 

apparatus, at least 

once per year 

11 Mixers 

(including 

truck mixers) 

Visual inspection To check the wear of the 

mixing equipment 

Periodically (a 

a) The test/inspection frequency depends on the type of equipment, its sensitivity and the pro-

duction conditions of the plant. 
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3 Results 

3.1  Data selection and acquisition 

In this research, the plan was to select, collect and analyze existing data from 

ready-mix concrete production and combine it with the data that typically has 

not been made use of in concrete production, such as sound and video data. This 

research hypothesizes that by analyzing the information thus formed, it is 

possible to achieve a better understanding of the variables that cause variation 

in the quality of produced concrete as well as catch other problems in 

production. 

Examples of measurement data that are already often available is the 

measurement data of the moisture content of aggregates and the amount of air 

in fresh concrete or the power consumption of the concrete mixer. New data that 

can be combined with these can be obtained, for example, from sound and 

vibration sensors and image and video recordings. 

In typical concrete mixing plants, the meter readings are visible and manually 

usable by concrete plant operators, but the data or other measurement results 

are not usually connected in real-time to the process automation control 

software. By combining the data and measurement results, the information can 

be visualized in real-time, which makes it easier for the concrete producer to 

control the production and delivery process of concrete more precisely. 

3.1.1  Air content analysis example 

An example of the data that the concrete production plants collect from the 

concrete mixing process is the air content of the material. Air content affects the 

compressive strength of concrete and its workability. It increases the 

workability of concrete without much increase in the water-cement ratio. To 

reach the desired air content, the producers mix the concrete long enough to 

achieve the needed amount of air in the concrete.  

The general assumption is that the more one mixes the concrete in production, 

the more air one gets in the product. The data in figure 2 illustrates the air 

content distribution of ready-mix concrete for two different production days. 

The amount of air in concrete was measured with AIRTRAC Air Control System.  

On the first day, which is represented by the plot on the left, we can observe that 

most often, the air content of 5% was reached by mixing the concrete for 200 

seconds. The darkest area on the plot represents production batches with the 

largest amount of same air content measurements. On day two instead, which 

is represented by the graph on the right-hand side of figure 2, we see that most 

often, the production made concrete with 6% air in it, which required a 180 

second mixing time. 
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Figure 2.  Concrete mixing time vs. air content 

3.2  Existing data from the control system 

A concrete plant, also known as a batch plant or batching plant or a concrete 

batching plant, is equipment that combines various ingredients to form 

concrete. Some of these inputs include water, air, admixtures, sand, aggregate, 

fly ash, silica fume, slag, and cement. A concrete plant can have a variety of parts 

and accessories, including mixers, cement batchers, aggregate batchers, 

conveyors, radial stackers, aggregate bins, cement bins, heaters, chillers, 

cement silos, batch plant controls, and dust collectors. 

Concrete plants use the control system to control the working of the machine. 

The plants employ computer-aided control to assist in fast and accurate 

measurement of input constituents or ingredients. With concrete performance 

so dependent on accurate water measurement, systems often use digital scales 

for cementitious materials and aggregates, and moisture probes to measure 

aggregate water content as it enters the aggregate batcher to automatically 

compensate for the mix design water/cement ratio target.  

3.2.1  Typical data available from the control system 

A typical control system of a concrete mixing plant records the following data 

from the process, for example.  

Table 4.  Typical data recorded by the control system 

Information Description 

Day Date of producing the concrete 

Order number  Order number of the delivery  

Type of concrete Type of concrete produced 

Strength Strength of concrete 

Workability  Workability class of concrete 
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Information Description 

Amount of concrete  Amount of concrete  

Temperature Temperature of concrete 

Target power Target mixing power in kilowatts 

Measured power Measured mixing power in kilowatts  

 

3.2.2  Laboratory measurement data  

The quality analysis results for compressive strength of concrete from concrete 

testing laboratories will be useful for automated data analysis. Concrete 

Association Finland describes that any durability tests to be performed on 

hardened concrete shall be carried out by a qualified testing laboratory. The 

qualification can be demonstrated, for example, with an accredited durability 

test method.  

The strength tests relating to concrete may be performed by the producer. In 

such a case, the verification of the testing of compressive strength shall be made 

yearly by a qualified testing laboratory in accordance with the instructions of the 

inspecting body.   

The results of the strength test in a laboratory typically provide the following 

data, that can be matched with the data recorded in the mixing plant.  

Table 5.  Typical data recorded in the concrete testing laboratory 

Information Description and notes 

Order number Order number of the delivery  

Date Casting date of the sample 

Number of the sample Identification number of the sample which was 

taken for compressive strength test 

Recipe number Recipe number for the order 

Amount of concrete  Amount of concrete produced 

Concrete strength 

class  
Compressive strength class of the sample 

Workability  Workability of the sample 

Maximum aggregate 

size  

Maximum aggregate size of the sample 

Slump The result of the slump test of concrete 
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Information Description and notes 

Exposure classes Describes the exposure class of concrete such as 

frost resistance 

Temperature of con-

crete 

Temperature of the concrete in °C 

Temperature of the 

environment 

Temperature of the environment in °C 

 

3.3  Data that can be separately acquired from 

production 

The research team believes that additional data must be acquired to catch and 

predict potential quality problems of concrete in production. The mixing plant 

provides several interesting data sources for computer algorithms, but this data 

needs to be acquired. The modern sensor and data acquisition technologies 

enable a high performance and cost-effective way of acquiring rich data from 

the machinery. In this chapter, we describe additional data sources that can 

potentially be used to estimate the quality parameters of concrete.  

3.3.1   Water content measurement of aggregates 

Coarse aggregates can contain 0-2% surface moisture by weight and fine 

aggregates, even up to 10%. Wet aggregates may contain moisture more than is 

desirable to preserve the water-cementitious material ratio (w/cm) in design 

limits. The uncertain and unstable moisture rate leads to a significant quality 

variation. In controlling the fault tolerance, extra cement is used to keep the 

product quality standard stable. So, this directly leads to adding excess cement 

for the fault tolerance of producing concrete.  

Accurately measured moisture in aggregates allows optimizing concrete mix 

design, durability, and shrinkage of concrete products without overdosing 

cement.  The moisture content of aggregates must be known to fractions of a 

percent to minimize variability in concrete quality, to enable optimal usage of 

cement, and to reach cost efficiency in concrete production. 

In this research, optical measurement sensors have been used. Optical 

measurement is based on the absorption of water molecules. It employs near-

infrared wavelengths with a measurement distance of 1-2 m. Since the 

measured material does not get in contact with the sensor, it does not resort to 

wear and tear. It allows measuring water content in real-time and is sensitive to 

rapid changes. 
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3.3.2  Vibration data  

Measuring the vibration of concrete mixers can prove a valuable source of 

information for detecting machinery failures and wearing in the process. The 

research team assumes that the vibration data, when combined with other types 

of information from the mixing process, can be used to monitor the quality 

parameters of concrete when combined with modern algorithms.  

In this project, we acquired the vibration data of the mixer. A vibration sensor 

was placed at the mixer, which was attached to a data logger at the factory site. 

The data logger was responsible for transferring the data to the FTP server 

every minute for a week. The data was then transferred to the software 

platform, as shown in the following figure. The sample rate of the data was 

96kHz.  

  

Figure 3.  Vibration measurement setup 

Figure 4 visualizes the physical installation of the vibration sensor in the mixing 

plant. 

  

Figure 4. Vibration sensor installation 
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3.3.3  Audio data  

One of the hypotheses of the research team is that the audio information of the 

mixing process can provide useful information on the operation of the mixing 

process. We wanted to study this more and a sound recorder was placed at the 

concrete factory site in the mixing room to monitor the mixing sounds of the 

ready mixed concrete. The main idea behind the data collection was to identify 

the mixing and non-mixing events from audio data, which is summarized in 

figure 5. The data was collected over a week, and a USB memory stick was 

attached as persistent data storage. The memory stick was then removed after 

a week from the site, and data was transferred to the software platform for 

analysis. The sample rate of the acquisition was 22KHz. 

 

Figure 5.  Using an audio measurement to detect mixing events 

3.3.4  Video data 

The research team believes video data can prove useful in analyzing the 

workability of the concrete or to detect anomalies in the process. The video feed 

of ready mixed concrete from the mixer can be used in conjunction with object 

detection algorithms to locate the concrete from the video and estimate the 

workability. Moreover, video information can also be used in identifying alien 

materials in process such as foreign materials on conveyor belts, which can 

introduce problems in the process. 
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3.3.5  Current data  

We also measured the mixer current during the concrete mixing process. The 

data acquisition unit was used to record the current directly from the mixer 

motor. The purpose of recording the current data from the mixing plant was to 

see how much current the mixer is drawing and compare that to the mixing 

process. Mixing and the current readings are directly proportional to each other, 

as shown in Figure 6. Continuous current measurements could be used to 

identify the stage of the mixer and to detect anomalies during the mixing 

process, as opposed to the usual procedure where only the final current value is 

read. 

 

  

Figure 6.  The relationship between the mixing events and motor current 

measurements 

The figure demonstrates the relationship between the mixing events and 

current readings. Initially, it shows an upward trend when the mixer starts; then 

it rises exponentially when it starts mixing with materials in the mixer and 

becomes stagnant for some time when the concrete is being mixed. It eventually 

drops down to zero, after the mixer has been unloaded. 

3.4  Other potential data sources 

In addition to the standard information that can be collected from the process 

control system or acquired separately by using separately installed 

measurement instruments, there may be other available useful open data 

sources one can use. For example, in real life, millers in the mixing adjust the 

process when it is raining because the aggregates are moister than in more dry 

conditions. This kind of information can be automatically fetched to the 

software algorithms from the open weather data sources, such as the open data 

API of the Finnish Meteorological Institute.     
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4 Introduction to machine learning 

In this project, we performed data analytics on the data we collected from 

different sources in concrete production. The goal of data analysis was primarily 

to understand the current state of a typical concrete production to be able to 

plan for future enhancements and activities. The analysis at this stage was 

performed on the separately measured audio data, with data from an existing 

control system and the data from laboratory measurements. We attempted to 

apply extensive data analysis techniques to understand the data and discover 

any meaningful patterns in it for developing automation systems in the future. 

Besides data analytics, machine learning is another technique we apply in the 

analysis. 

Data analytics, as a research method, is growing and is being widely used in 

different fields for exploring systematic patterns and relationships in data. With 

many businesses and industries generating more data in recent times, the 

application of data analysis has been effective and growing. It provides 

businesses and organizations the possibility to extract information from their 

data that assist them in generating rules for decision making. Along with data 

analytics, the use of machine learning for analysis and decision making is rapidly 

growing, and it has proven to be successful in creating automation systems in 

different fields. Machine learning in the presence of big data can extract 

patterns from data that can help in creating systems to automate decision 

making and reduce errors. 

Machine learning, in general, is a collection of tools that can learn from data 

automatically. The data for our analysis can be retrieved from multiple sources, 

as described in section 3. Machine learning models are usually fed in with 

training data to detect patterns in data with the help of some mathematical 

models so that they can make predictions on new data without explicitly being 

programmed. Broadly classifying, machine learning can be of supervised and 

unsupervised learning. In supervised learning, machine learning models are 

trained with data with known outputs so that they can be used in future for 

prediction on similar data. For unsupervised learning, machine learning models 

are simply fed with data without output to find any structure in the data that can 

be used for grouping or clustering of data points. 

With many benefits and applicability of machine learning, it can be utilized in the 

concrete production process to supervise some stages in the production. Since 

at present most of the processes in the production are handled with human 

expertise and manual process, machine learning can help in optimizing the 

output with reduced time and fewer human errors.  Through data collected from 

different sources during concrete production, machine learning can be applied 

to systematically identify patterns for any fault detection or irregularities in the 

machine. Similarly, they can be used for controlling the quality parameters of 

the raw materials for obtaining a certain level of quality of concrete.  
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4.1  Using Machine Learning with Audio Data 

In this part, we aim to extract several mixing cases from the audio data that were 

acquired at the concrete factory. This would allow a fine and real-time check on 

the concrete mixing process and report any irregularities. In addition to the 

mixing stages, the audio information also can provide us information on the 

condition of the machinery. In machine learning, receiving rich data of different 

sources of the process is essential due to which we wanted to experiment 

collecting and processing the audio information, too.  

For example, in the next figure we can see the frequency response of two 

randomly picked samples: 

 

Figure 7. Audio frequency response of concrete mixing 

As the audio data is not linked to other kinds of data, such as a concrete recipe 

or time-lapse of mixing events, mixing cases were selected manually by cutting 

the raw audio data into three seconds samples labeled as “mixer off”, “mixer on, 

not mixing” and “mixer on, mixing”. Our goal is to create an algorithm that would 

find additional mixing cases. Therefore, the algorithm should consist of a 

classification algorithm.  

4.1.1  Measurement setup 

The audio data was acquired using a TASCAM DR-05 hand recorder. The audio 

was recorded with a sampling frequency of 96 kHz, which means we can study 

the audio data up to 48 kHz. 

The learning data is made of 2100 audio samples of 3 seconds length, including 

700 of each manually picked case.  
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4.1.2  Pre-treatment 

To reduce the total amount of data without losing high-frequency information 

as down-sampling would do, we generate a band-pass filter bank (see Appendix 

2).  

What we want to do now is to create a collection of values linked to audio 

samples. We call the collection of values a sound level vector. Each value 

corresponds to the sound level in one specific frequency band. This allows us to 

look at the audio data with sections of its spectrum. For example, one frequency 

band “looks” at what is happening in the low frequency, while another one 

focuses on high frequencies. 

Figure 8 shows the result of the pre-treatment on all samples of the audio data. 

Each sound level vector has 35 values of sound level, from low frequencies to 

high frequencies. 

 

Figure 8:  2100 sound level vectors, 700 from group “mixer off”, 700 for 

“mixer on, not mixing”, 700 from “mixer on, mixing” 

We can already see empty areas and a few isolated cases. It is from those sound 

level vectors that we will be able to compute classification vectors. Those 

classification vectors are very similar to sound level vectors by their shape, and 

each classification vector should represent a group of sound level vectors. 

4.1.3  Algorithm 

The algorithm is similar to the K-nearest neighbors’ algorithm. The K-nearest 

neighbors’ algorithm is a simple supervised machine learning algorithm. 

Provided a set of classification factors such as a classification vector, it will label 

an input data based on their distance from classification vectors. For more 

details on the K-nearest neighbors, please read this article by Onel Harrison. 

Our algorithm will determine classification vectors by minimizing their distance 

with sound level vectors. The idea is to start with a significant amount of empty 

classification vectors, which will be updated after each iteration of the algorithm 
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or removed if they don’t match a required amount of sound level vectors from 

the learning data set. 

Classification vectors are updated to minimize their distance from sound level 

vectors from the learning data set until two consecutive iterations provide the 

same classification vectors. It means that the algorithm converged, and 

classification vectors will not change anymore. 

4.1.4  Results 

The algorithm converges after 38 iterations, and we are down to 9 classification 

vectors, as shown on figure 9: 

  

Figure 9. Resulting classification vectors 

We can see that identification vectors are well separated, and while some of 

them seem to follow the same behavior in some frequency areas, they do show 

different behaviors eventually.  

The repartition is unbalanced, however. They are not associated with the same 

amount of sound level vectors. This can be explained as not all the events during 

the mixing process have the same length or the same amount of occurrences. 

For example, the first classification vector, labeled main case 0 on figure 9, is the 

lowest sound level classification vector overall, and matches audio files where 

the mixer is off, so it is quite understandable that it matches over 600 audio files.  

If we associate the audio data with data considering the quality of the concrete, 

it would be possible to determine an optimal sound response from the mixer and 

therefore detect irregularities early in the mixing process. 

Figure 10 is showing all 2100 energy vectors, for two frequency bands, one color 

for each mixing case or group. We can see here that some frequency bands can 

show good results for some groups. For instance, the purple group seems very 

well separated from other groups considering those two frequencies. 
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Figure 10.  Example with two frequency bands 

4.2  Power Calibration with machine learning 

The workability is an essential quality parameter of ready-mix concrete. It is the 

property of freshly mixed concrete which determines the ease and homogeneity 

with which it can be mixed, placed, consolidated and finished.  One of the factors 

impacting the workability is the mixing time of the concrete in the mixing 

machinery. The workability can be estimated by the power usage and mixing 

time of the electrical motor of the concrete mixer. In general, the motor draws 

less power for high workability concrete and more power for low workability 

concrete.  

For every concrete type and workability class, the concrete producer has a 

target power level, which is used as a benchmark to obtain a certain level of 

workability while mixing the concrete in the mixer. The target power value is 

calibrated to address any changes in the machine, materials, or external factors. 

The calibration takes place by making batches of concrete and then performing 

slump tests in the concrete testing laboratory to analyze the workability of 

samples. If the laboratory tests indicate a need for calibrating target power 

level, they will then be calibrated based on the differences in the target 

workability and tested workability. This manual testing and calibration process 

can be prone to human errors, and therefore automating this process can help 
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in reducing the time and error in the measurements. Hence, in this part, the 

objective was to analyze the data to detect if calibration of the target power 

value is required, and by what value should the calibration potentially be 

performed. Developing the automated calibration solution itself, was out of the 

scope of this research.  

Workability is represented by a numerical value in the data. In the data that we 

used, the interpretation of these numerical values to describe workability is 

inverse compared to the current standards due to the way the older automation 

system that was used in the plant reported these values. Hence, the higher value 

assigned to represent workability is referred to as concrete having low 

workability and lower values represents higher workability. 

4.2.1  Method 

To understand the calibration process and its requirement, we made use of two 

data sources, one from the concrete plant control system and the other from the 

concrete testing results from the laboratory. The data from the concrete plant 

control system holds the information related to the concrete and the mixing 

process as described in Table 4. Their corresponding laboratory results are 

obtained from the data containing the concrete testing results, which has the 

information, as shown in Table 5. In this analysis, we mainly focused on 

exploratory data analysis from the two data sources, the concrete plant control 

system, and the laboratory measurements as the initial process with the aim of 

understanding the effect of different variables on the power calibration process.   

The concretes in the data are categorized into different groups, referred to as 

curves in the data. There are six different concrete groups in the data, which are 

shown in Table 6. However, we only present the analysis results on Curve 3 

concretes because in the data we had available for our research, there were very 

few data points available for other groups. 

Table 6.  Concrete Groups 

Curve  Concrete Description 

1 Floor concrete 

2 Air-entrained concrete 

3 Watertight concrete 

4 Very fluid concrete 

5 Type of concrete with no strength class 

6 Special frost resistant concrete 
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4.2.2  Target and Measured Power Value 

The target power value and measured power value of the concrete mixer 

indicate correlation with each other, as shown in figure 11. There is a moderately 

strong correlation (Pearson correlation) of 0.546. We did not have data available 

from a newly calibrated concrete mixer, but from the data, it looks likely that the 

equipment could benefit of calibration as their measured power value was often 

differentiating highly from the target power value.  

 

Figure 11.  Relation between target and measured power value 

In addition to most of the batches having differences in measured and target 

power value, most of the cases show that the measured power value is higher 

than the target power value as shown in figure 12. The reason for the increase in 

the power value could be due to the condition of the mixing machine. However, 

in our data for this analysis, we do not have any information about the condition 

of the machine, and hence any relation with it could not be analyzed. 
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Figure 12.  Difference between Measured and Target Power value 

The range of power difference for Curve 3 concretes is shown in figure 13. From 

the histogram, we can see that most of the concretes in Curve 3 have a power 

difference of between -10 to 40. In addition, there are a high number of concretes 

that have a power difference between 5 and 25. Overall the average absolute 

power difference is 22.12. 

  

Figure 13.  Power value difference for Curve 3 concretes 
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4.2.3  Power value and workability 

In general, the higher the workability, the less power is required for mixing the 

concrete. As we mentioned earlier, the representation of numeric values to 

define workability is inverse in our data because of the older control system the 

production facility was using. Therefore, going by this representation  it is 

evident from the data as shown in figure 14, that low workability concretes that 

are represented by high numbers require high power and high workability 

concretes that are represented by low numbers require less power. 

  

Figure 14.  Relation of power values with workability. 

4.2.3.1  Slump Test 

A slump test is performed in the laboratory to check the workability of the 

concrete produced. The fresh concrete produced in the concrete plant is taken 

to the lab, and the workability is tested manually with a special slump cone. The 

slump test gives the result as a measurement value in millimeters, based on 

which the workability of the concrete is verified. In general, these values are 

higher for higher workability concretes and low for lower workability concretes.  
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Figure 15. Slump Test Distribution for S3 class 

In figure 15, we can see the slump test distribution of the concretes in the 

workability class S3. Again, here due to low amount of data for other classes we 

only present the result for S3 class. We see that the slump is distributed mostly 

between 130 to 140 mm. The high slump test is expected as S3 class corresponds 

to higher workability. As seen from the distribution, a higher number of 

concretes have a slump value of 140 mm. The mean slum value is observed at 

132 mm, where minimum value is 94 mm and maximum is 145 mm. Also, very few 

concretes have a comparatively low slump value between 94 mm to 97 mm. 

In figure 16 the histogram of the workability difference (required workability - 

lab workability) from the laboratory testing is presented for Curve 3 concretes.  

The difference in workability is presented for the cases when the lab and the 

required workabilities are not matching. In most of the cases, the difference is 

0.5, that states that the laboratory tested workability was less than the required 

workability.  
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Figure 16. Comparison of lab workability to required workability. 

4.3  Discussion 

In the analysis with the audio data, the algorithm can identify nine mixing cases, 

including events occurring less than others. However, it is forcing identification 

vectors to match all audio data, regardless if some are unique such as someone 

talking next to the microphone, heavy object falling, etc. One thing to do would 

be to implement a maximal distance beyond which an audio file would not be 

associated with any classification vectors and be treated as an error. 

One big question is also the fidelity. It is possible that classification vectors are 

space specific. While it is possible to calibrate microphones and vibration 

sensors, the shape of a concrete production facility can greatly influence the 

frequency spectrum of the recorded audio. It might be that a new set of 

classification vectors should be computed for each installation. To find this out, 

additional research needs to be made. 

It is also possible that the room response of factories are slowly changing due 

to the dust accumulation, objects changing places and so on. If that is the case, 

we should think of a proper way to automatically update the identification 

vectors. 

The analysis for power consumption was performed with the data from Curve 3 

concrete groups. The results show that in most of the cases there were 

differences in the target and measured power values resulting in the calibration 

of the power. Most of the cases required higher power value compared to the 

target power. Due to the limitation of the amount of data, we were not able to 

make good use of machine learning techniques for studying the calibration 

process of power values, which we plan to overcome with more data collection 

in a subsequent research project. 
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The calibration of power levels of mixing machinery depends on the condition of 

the mixing machinery along with the concrete types and external factors. 

However, in the analysis of the calibration, the data did not have any information 

on the condition of the machine. Hence, in the future, information on the mixing 

machine can be combined for better understanding of the calibration process.  

For combining the data sources in the next phase, we plan to record the audio 

data and the power data of the concrete mixer at the same time to synchronize 

the data for the analysis. With the data sources being synchronized, we could 

see if some frequency bands have any meaningful relation to the testing results 

from the laboratory. Furthermore, since we had very less data for all the 

concrete groups, we could not perform an extended study on all the concrete 

groups and only focused on Curve 3 concrete type. The analysis in the next phase 

could be performed, focusing on comparison between the concrete groups to 

identify any significant differences in the results. In addition, in the next phase, 

with more data, we aim at applying machine learning techniques to start and 

test the automation system with predictive modeling. 
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5 Conclusion 

In this research, we have studied which data collection opportunities there are 

in ready-mix concrete production that could be used as the basis for data 

analytics and machine learning-based quality assurance. Of the data we had in 

use, we analyzed the audio data of the concrete mixing machine and the 

calibration of power values of mixing machinery as well as concrete workability 

values from a concrete testing laboratory. As described in the results, the 

analysis was able to identify some important patterns in the data with the help 

of data analytics and machine learning. 

From the audio data, we saw that without any information on the data, it is 

possible to extract several classes of sound behavior. However, both the 

analyses were performed separately, and there was no connection established 

in the data sources to combine the results. Hence, the focus of the next phase of 

the analysis would be to create a relationship between the two data sources and 

analyze them as a single entity. In addition to combining the analysis, we aim at 

collecting more data, especially for the power calibration part that would help 

in broadening the analysis with machine learning.  

To increase the potential of data-based quality control in managing the quality 

of concrete in production, based on our research, there is much need for more 

open data sources in the industry. Currently the control systems of concrete 

production have access to the process control values, but this useful 

information is not straightforwardly accessible to data-analytics developers. 

Machine learning algorithms also need feedback from the laboratory tests, to be 

able to qualify how well the production has succeeded in producing quality 

concrete in different production conditions. Because concrete is based on 

natural materials, which also have quality variations, we believe the algorithms 

need feedback from the raw material streams as well. The more data the 

algorithms have access to, the better possibilities the machine learning 

algorithms must predict quality issues taking place in concrete production.  
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Band-pass filter bank 

 

Figure: Band-Pass Filter Bank 

 

This filter bank contains 35 bands, they are third octave spaced  

(link to Specification for octave-band and fractional-octave-band analog and 

digital filters)  

Central frequencies for bands are going from around 16 Hz up to around 40 kHz.  

Each filter allows us to focus on one specific part of the sample frequency 

spectrum.  

 

https://law.resource.org/pub/us/cfr/ibr/002/ansi.s1.11.2004.pdf
https://law.resource.org/pub/us/cfr/ibr/002/ansi.s1.11.2004.pdf
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