
Sebastian Penttinen

COLREG compliant collision avoidance
using reinforcement learning

Sebastian Penttinen 38630
Master’s thesis in computer science
Supervisors: Marina Waldén, Fatima Shokri-Manninen
Faculty of Science and Engineering
Åbo Akademi University
2020

1

Sebastian Penttinen

Abstract

The maritime industry could benefit from autonomous vessels. The benefits would come
from decreased accidents, fewer casualties at sea, and cost savings. The decreased acci-
dents and fewer casualties would come as a result of taking the human factor out of the
industry. The cost savings would originate from the reduced number of personnel needed
to operate vessels. There are challenges on the way to making autonomous vessels a
reality. The main challenge is algorithms capable of safely navigating and controlling au-
tonomous vessels. This thesis will try to aid in the solution of this problem by exploring
the possibilities reinforcement learning could bring to the industry. The goal is to imple-
ment a proof of concept collision avoidance system using reinforcement learning. The
implemented reinforcement learning agent needs to follow the COLREG rules.

A proof of concept solution is implemented in Python and tested in a simulator. The
results seem promising. Further work is, however, needed to make the developed rein-
forcement learning agent fully follow the COLREG rules.

Keywords: Reinforcement learning, Maritime autonomous systems, Collision avoidance,
COLREG, Safety, Navigation

Sebastian Penttinen

Preface

I would like to thank my supervisor Marina Waldén for all the help and guidance with
my thesis. I would also like to thank Fatima Shokri-Manninen for the interesting discus-
sions and support provided when I felt lost in my topic. Thanks also to Ivan Porres for
the feedback on my code and for presenting the interesting opportunity to work on the
simulator. Also thank you to Kim Hupponen for the great teamwork when building the
simulator. Lastly, a great thank you to Johan Lilius for hiring me to write my thesis and
to my colleagues at the IT department for the great working atmosphere and support.

Sebastian Penttinen
Turku, 14 April 2020

Sebastian Penttinen

Contents
1 Introduction 1

2 Maritime safety regulations 3
2.1 COLREG . 3

3 Maritime autonomous systems 7

4 Reinforcement learning 9
4.1 History . 9

4.2 Background . 10

4.3 Mathematical basis . 11

4.3.1 Bellman equation . 14

4.4 Elements of reinforcement learning . 14

4.4.1 Agent and environment . 14

4.4.2 Policy . 15

4.4.3 Value function . 17

4.4.4 Reward . 18

4.4.5 Model . 19

4.5 Solving the RL problem . 19

4.5.1 Q-learning . 19

4.5.2 Deep Q-learning . 20

5 Proof of concept agent 21
5.1 Goal . 21

5.2 Program structure . 22

5.3 Libraries . 22

5.3.1 Tensorflow . 24

5.3.2 Keras . 24

5.3.3 Keras-rl . 24

5.3.4 NumPy . 25

5.3.5 PySide 2 . 25

5.3.6 Open Ai Gym . 25

5.4 Simple Ship Sim modules . 26

5.4.1 Open Ai Gym environment . 26

Sebastian Penttinen

5.4.2 RL agent . 30
5.4.3 Ship agents . 32

5.4.3.1 Basic agent . 33
5.4.3.2 DQN-Agent . 34
5.4.3.3 Semi-random DQN-Agent 35

5.4.4 Configuration files . 35
5.4.5 Helper module . 37

5.4.5.1 Distance modules . 37
5.4.5.2 Bearing modules . 38
5.4.5.3 Modules for faster prototyping 38
5.4.5.4 General helpers . 42

5.4.6 Sim . 43
5.4.7 User interface . 43
5.4.8 Ship . 44
5.4.9 Main . 45

5.5 Using the simulator . 46

6 Results 47
6.1 Overtaking . 47
6.2 Head-on . 48
6.3 Crossings . 49
6.4 Four vessels . 51

7 Discussion 54

8 Conclusion 56
8.1 Future work . 57

9 Svensk sammanfattning 58
9.1 Introduktion . 58
9.2 Sjöfartens regelverk . 58
9.3 Obemannade fartyg . 59
9.4 Förstärkt inlärning . 60
9.5 Implementation . 61
9.6 Resultat . 62
9.7 Slutsats . 62

References 63

Sebastian Penttinen

1. Introduction

Autonomous vessels have risen in demand during recent years. The rise in demand is
due to two factors. Firstly, human errors at sea are partly responsible for 75-96% of loss
of life at sea according to reports [1]. Additionally, it has been shown that 89-96% of
collisions at sea are caused by human error [1]. Reports have also shown that 56% of
these collisions occurred since the COLREG rules [2] where violated [3]. The second
factor playing a part in the increased demand is the natural cost savings that come from
having smaller crews operating vessels. Autonomous vessels with no crew onboard are
also possible. The challenge with fully autonomous vessels is that it puts a high demand
on the vessels and their safety. The autonomous vessels would need to make decisions
without human intervention in every step and possible scenario at sea. This means that
they would, for instance, have to be able to avoid collisions on their own. This is not a
trivial or easily solvable issue with a high level of complexity.

This thesis will provide a step towards a solution for fully autonomous vessels by
implementing a proof of concept collision-avoidance procedure for autonomous vessels.
The collision-avoidance procedure will follow the COLREG rules [2]. The collision-
avoidance will be based on Reinforcement Learning (RL). The programming language
used for the implementation is Python. The implementation will utilize the Python version
of the libraries Tensorflow [4], Keras [5], Keras-rl [6] and Open Ai gym [7].

The practical part of the thesis will consist of the construction and implementation of
an RL agent that follows the COLREG rules. The agent will initially be built as a proof
of concept and will serve as a basis for further research and investigation. The proof of
concept in question will be implementing a collision avoidance system based on RL. The
collision avoidance system will be able to follow the COLREG rules in the four base
collision avoidance situations found in the COLREG rules and, additionally, the agent
should handle a multiple vessel scenario. The base situations are head-on, overtaking,
crossing from left, and crossing from right. The different COLREG situations will be
described in greater detail in chapter two. The agent should be able to generalize. Hence,
safe completion of a multiple vessel scenario is also a goal.

The proof of concept RL system will be constructed as a part of a larger implemen-
tation of a ship simulator. The simulator will handle the visualization of the RL system
and add real-life environment factors such as physics to the RL training environment. The

1

Sebastian Penttinen

simulator itself is built by Kim Hupponen [8] as a related but separate master’s thesis.
In order to understand the context and implementation of the RL agent the thesis will

cover and explain; safety and collision avoidance in a maritime setting, reinforcement
learning, Q-learning, and deep Q-learning. The simulator agents are placed in for testing
purposes will also be explained.

The thesis is structured the following way. First, context will be given in chapter
two by describing maritime safety and collision avoidance. In chapter three, maritime
autonomous systems will be described. In chapter four, the theory behind RL will be
covered. Chapter five describes the implementation of the RL system and the simulator
it is placed inside. In chapter six, the results are presented and discussed. Chapter seven
outlines the conclusions of the thesis.

2

Sebastian Penttinen

2. Maritime safety regulations

According to the International Maritime Organization (IMO), shipping is one of the world’s
most dangerous industries [9]. IMO believes the best way to tackle the dangers in the
shipping industry is to make regulations that all nations partaking in the industry have
to follow. One such regulatory treaty is the International Convention for the Safety of
Life at Sea (SOLAS). SOLAS dates back to 1914 when it was drafted in response to the
Titanic accident. It has since then been updated and the last version is from 1974 and
amendments have been continuously added. The SOLAS treaty regulates a vast number
of things, from mandatory life-saving equipment to specifications for nuclear ships [9].

Despite the conventions and treaties, shipping is a dangerous field. The inherent dan-
ger of the field is mostly due to humans being a part of it. Where there are humans
involved, there will also be human mistakes. According to Rothblum’s report, "Human
Error and Maritime Safety" [1], 75-96% of casualties at sea were due to some degree of
human error. In 2019 alone, 3174 maritime casualties and accidents were reported ac-
cording to Safety4Sea [10]. This means that if the human factor could be taken out of
the industry, potentially over 2000 accidents could be prevented. A large number of those
accidents may have caused loss of human lives. The need for automation resulting in
greater safety is clear.

2.1 COLREG

The Convention on the International Regulations for Preventing Collisions at Sea (COL-
REG) is the regulations addressing collision avoidance at sea. The COLREG rules can be
thought of as the road rules for the sea. The same way as there are regulations in place to
govern the use of roads, COLREG governs the rules of sailing the sea. COLREG in its
current form was established in 1972 by IMO [2]. COLREG contains in total 41 rules.
The most interesting rules for the proof of concept implemented in this thesis are the rules
8, 13, 14, 15, 16 and, 17.

Rule 8 defines in what manner actions should be taken in order to avoid a collision.
Rule 8 outlines that all actions to be taken have to be done in ample time and in line
with good seamanship. Additionally, all the actions taken shall be large enough to clearly
signal to other vessels what actions have been taken. Altering the course shall be done

3

Sebastian Penttinen

as the primary action to avoid a collision if there is enough space available. The passing
distance between vessels also needs to be safe. The need to take further collision avoiding
actions shall be assessed until the situation is over. If there is no other way to avoid a
collision or more time is needed in order to avoid one, a vessel can take actions to slow
down or reverse [2].

Rule 13 outlines the rules for overtaking another vessel. According to rule 13, any
action taken to overtake another vessel needs to first comply with the rules defined within
rule 8. Additionally, the overtaking vessel needs to always avoid getting in the way of
the vessel it is overtaking. Rule 13 also gives the degrees of approach (22.5) for when
a situation should be considered an overtaking. In addition to the degrees, the rule also
addresses night-time conditions when it would be difficult to assess the angle of approach.
The rule states that it is an overtaking scenario if the overtaking vessel, when it comes up
on the vessel to be overtaken, only is able to see the vessel’s stern light (see Figure 2.2)
and none of its sidelights. Knowing if it is an overtaking scenario or not might be difficult
in some cases. Rule 13 deals with this by specifying that if there is any doubt about
whether it is an overtaking vessel or not, one should assume it is an overtaking vessel and
act according to rule 13. The rule also outlines that the overtaking vessel needs to make
sure that it does not overtake in such a manner that it creates a crossing scenario by having
an interesting course with the vessel it just overtook [2]. An illustration of the intended
path of the overtaking vessel can be seen in Figure 2.1.

The 14th COLREG rule defines how to act when there is a head-on situation. Accord-
ing to the rule, the vessels that are meeting head-on (have reciprocal courses) or nearly
head-on both need to adjust their courses so they pass each other on the port side of the
other vessel, meaning that both vessels turn towards their starboard. Rule 14 specifies
that there is a head-on situation, if a vessel sees another vessel coming towards it ahead or
close to ahead. At night, the head-on situation is assessed according to the rule deemed
to exist if the masthead light is visible or both sidelights are visible. Figure 2.2 gives
an intuition of the angles at which the lights are visible. Just as in rule 13, rule 14 also
specifies that if there is any uncertainty whether a situation is a head-on situation or not,
the situation should be treated as one [2]. An illustration of the corrective actions to be
taken by the vessels in accordance with rule 14 can be found in Figure 2.1.

COLREG rule 15 governs crossing situations. It states that when two vessels have
intersecting paths (crossing paths) with a risk of collision, the vessel that has the other
vessel involved in the situation on its starboard side needs to keep out of the way. This
should be done by not crossing in front of the other vessel and instead cross behind the
other vessel. The rule also states that this action only should be taken if the situation
allows for it, meaning that in certain situations it could be acceptable to cross in front if
there are no other option [2].

4

Sebastian Penttinen

Figure 2.1: COLREG Rules

Rule 16 of the COLREG rules specify what the give-way vessel should do in a sce-
nario. The rule is simple and straightforward in stating that the give-way vessel should
take every available action to keep out of the way. Additionally, these actions also need
to be done as early as possible [2]. Figure 2.1 also illustrates the actions to be taken by
vessels in crossing situations.

The 17th COLREG rule states what the stand-on vessel should do. According to the
rule, the stand-on vessel should keep its current speed and course. The stand-on vessel can
also itself take actions to avoid a collision, if it appears as if the other vessel (give-way) is
not following the COLREG rules and neglecting to take collision-avoiding actions. The
rule also states that if the situation has gone so wrong that it is deemed that actions by
the give-way ship alone are not going to avoid a collision, the stand-on ship should do
whatever it takes to avoid a collision. The rule continues to state that in the crossing
scenario the stand-on vessel should not alter its course towards port if the other vessel is
on its port side. Essentially, this means the stand-on vessel should not close the distance
between the vessels. Lastly, rule 17 reminds that it does not relieve the give-way vessel in
rule 16 from its obligation to keep out of the way [2].

Figure 2.2: Navigation lights [11]

5

Sebastian Penttinen

The COLREG rules are written for humans and, hence, are full of vague definitions
that depend on human interpretation. One such example is rule 8 stating that all actions
should be taken in ample time and in accordance with good seamanship. Good seaman-
ship is understood by a human captain with experience in the field. Programming and
defining good seamanship into an RL agent that controls an autonomous vessel is non-
trivial. This means that such human elements of the rules may not be sufficiently captured
and implemented in the agent. If they are captured, they might be biased towards what the
author in this case believes is ample space and good seamanship. This can be a drawback
of the implementation, since the author has a background in computer science and limited
experience from the maritime field.

6

Sebastian Penttinen

3. Maritime autonomous systems

In the maritime space, autonomous vessels go by the names unmanned surface vessel

(USV) or autonomous surface craft (ASC). Both names hint at the removal of personnel
from the vessel. It is this lack of personnel onboard a vessel that defines it as being an
autonomous vessel, as defined by Liu et al. [12]. In addition, Liu et al. define that a USV
needs to be capable of highly non-linear dynamics [12]. Essentially, they need to exhibit
some form of intelligent behavior.

Autonomous vessels are not a new phenomenon. They have been developed for about
20 years already [13]. Most of the USVs tested and prototyped so far have, according
to Liu et al. [12], been semi-autonomous, meaning that they still have a human involved
in the loop at some point. They can be compared to fully-autonomous vessels that are
completely independent of human input and guidance.

Liu et al. [12] point out the numerous benefits that could be gained by implementing
autonomous vessels. The benefits of automation would first come in the form of cost
savings. These savings are related to the reduced manpower needed to operate the vessels.
Without the need to maintain a crew onboard, the vessel’s operational range and reliability
would also be increased. Safety in the industry would also increase [12]. As pointed out
before, the vast number of accidents in the shipping industry stems from human mistakes
and errors [14]. The unmanned vessels could also be used in dangerous missions or
missions with a higher risk associated with them, since no human life would be on the
line [12]. An interesting benefit of autonomous vessels is that they tend to be lighter and
more nimble compared to traditional vessels. This means that they can sail shallower
waters and waters otherwise not accessible by traditional vessels. Autonomous vessels
also have the capability of carrying a heavier load compared to traditional vessels [12].
This means further reducing costs and emissions, if fewer trips are needed to move the
same amount of cargo.

Despite all the advantages of autonomous vessels and prototype implementations in
research and governmental use, autonomous vessels have had very little commercial adop-
tion [13]. The lack of commercial use so far is due to the challenges that come along
with sailing on the sea with others. An autonomous vessel needs to be able to interact
with other vessels and take them into consideration when sailing [13]. Fully-autonomous
vessels are not yet seen due to the challenges with reliable and completely safe opera-

7

Sebastian Penttinen

tion. They need to be able to handle vastly different and complex situations [12]. In
essence, this means making the autonomous vessels comply with the COLREG rules and
safely handle ambiguous situations. Unclear and ambiguous situations will occur when
autonomous vessels operate in a field that includes humans.

8

Sebastian Penttinen

4. Reinforcement learning

One approach to overcome the challenges related to developing autonomous vessels is
Reinforcement Learning (RL). RL is able to generalize and find the optimal order in which
to take actions and make decisions, given a set of rules. Making autonomous vessels sail
and navigate safely can be thought of as an optimization problem. In what order and
how long should a vessel take certain action in order to accomplish a goal within certain
parameters? RL can be used to learn this.

This chapter will provide background and intuition about RL. The chapter starts with
some general history and background on RL. After this, the mathematical basis of RL
and the parts that make up an RL system are explained. Lastly, ways of solving the RL
problem are presented.

4.1 History

Sutton and Barto cover the history of RL in their book Reinforcement Learning: An In-

troduction [15]. In their book, they explain that RL has two different independent starting
points that later merged into RL as known today. The two starting points of RL were
"learning by trial and error" and "optimal control" [15].

The optimal control starting point is based on the work done by Richard Bellman
and others to control dynamical systems, more exactly the work Bellman and others did
relating to defining states of dynamical systems and value functions. The function they
invented is now called the Bellman equation. The Bellman equation is discussed later in
this chapter. The field of study that tries to solve optimal control problems by solving
Bellman equations became what now is known as Dynamic Programming [15].

Trial and error learning is a much older starting point as it has its roots in psychology,
according to Sutton and Barto. They state that some form of trial and error learning was
discussed as early as in the late 1800s. According to Sutton and Barto, the first one to
combine trial and error learning with computers was Alan Turing. They mention that
Alan Turing, in one of the earliest ideas about artificial intelligence, considered a pleasure
and pain system following the ideas around trial and error learning [15].

9

Sebastian Penttinen

4.2 Background

Reinforcement Learning is machine learning combining different disciplines [16]. The
disciplines making up the combination are Dynamic Programming and Supervised Learn-

ing. This combination makes it possible for RL to solve problems that dynamic program-
ming and supervised learning are not able to solve on their own. Dynamic programming
is a mathematical field focused on solving control and optimization problems. A draw-
back of dynamic programming is its limited ability to handle extremely large and complex
problems. Supervised learning is a machine-learning method used to find parameters for
functions. The found parameters are used to approximate outputs from functions. The
drawback of supervised learning is that it requires data to accomplish the approximations.
The data required is often in the form of a set of questions and answers. The need for data
is a drawback. This is because there are many situations where data is not available or it
is too expensive to acquire. It could also simply be the case that the correct answers are
not yet known [16].

Harmon et al. also correctly state that RL is a powerful method. It has the possibility
of solving problems thought to be unsolvable. The power of RL is in its generality. The
generality comes from RL working on the basis of trial and error. In other words, an RL
system is given a goal to achieve and then uses trial and error to achieve the goal [16].

To provide intuition for how RL works let us consider the example given by Harmon
et al. The authors give an example of an RL system learning how to ride a bicycle. The
goal of the RL system is simple. It is supposed to learn how to ride a bicycle without
falling over. The possible actions the RL system can take is turning the handlebars of the
bicycle to the left or right. The RL system starts and, during the first try, it does some
actions (turning of the handlebars) and ends up in a state where the bicycle is tilting 45
degrees to the right. At this point, the system has to choose what action to take. In the
example, the authors decided that the system chooses to turn the handlebars to the left
and, as a result, the system will crash the bike. As a direct result of the crash, the system
will receive feedback, also called a reinforcement. This reinforcement will lead to the RL
system learning that it will receive a negative reinforcement from turning the handlebars
to the left when the bicycle is tilting 45 degrees to the right.

The RL system starts over again. In the next run, the RL system once again does
a series of actions leading to a state where the bicycle is tilting 45 degrees to the right.
Based on the knowledge the RL system gained from the previous attempt it knows that
it will receive a negative reinforcement if it turns the handlebars to the left in this state.
Instead of the known bad action, it chooses to turn the handlebars to the right. This action
causes the system to once again crash the bike and receive a negative reinforcement.

10

Sebastian Penttinen

However, this time the system learns more than from the previous run. It does not only
learn that turning the handlebars to the right is associated with a negative reinforcement
when the bicycle is tilting 45 degrees to the right. The RL system will learn that being in
the state of 45 degrees of tilt to the right is associated with negative reinforcement. This
is important, since the RL system will utilize this information in future attempts. In the
following attempt, the RL system ends up in a state of 40 degrees of tilt to the right. The
following action it chooses to take is turning the handlebars to the right. This action leads
to the bicycle titling 45 degrees to the right. The RL system now realizes it will receive
the negative reinforcement and can stop. This attempt also provides the RL system with
additional useful knowledge. The system learns that turning to the right when the tilt is 40
degrees to the right will result in negative reinforcement. Once the system has performed
enough of these trial and error runs, it will learn what actions it has to perform in order to
avoid the negative reinforcements or, in other words, it learns to ride the bicycle [16].

This example by Harmon and Harmon explains the intuition behind RL nicely. It
manages to capture the essence that RL systems learn what states are suboptimal to be in
and not just what actions are undesired.

4.3 Mathematical basis

This section will cover the mathematical basis of RL. The essential mathematical foun-
dation of RL is based on the Markov Decision Process (MDP). This claim is based on the
statement by Sutton et al. [15] in their book where they state that MDPs are considered
the traditional way of formalizing a sequential decision-making process. Further, Sutton
et al. claim that almost any RL problem can be expressed as an MDP. They even go as far
as stating that MDPs are the ideal mathematical way of representing RL problems [15].

According to Silver [17], MDPs are a formal way to represent fully observable en-
vironments for RL. This is in line with the earlier presented statements by Sutton et al.
Both Silver and Sutton et al. explain that an MDP starts from the Markovian property.
The Markovian property means that all possible future states are fully independent from
all previous states if the current state is known. The mathematical representation of the
Markovian property is given by Silver. A process is Markovian if the following holds
[17]:

P[St+1|St] = P[St+1|S1, ...,St]

As seen in the formula, a state can be Markovian only if the next state is only dependent
on the current state [17].

The next step towards an MDP is the Markov process (also called a Markov chain). A

11

Sebastian Penttinen

Markov process is a random memoryless process that has the Markov property. A Markov
chain is defined as the following tuple [17]:

〈S,P〉

where S is the annotation for the finite set of states, and P is a state transition probability
matrix. A state transition probability matrix defines the probability of transitioning from
all states s to all following states s′. Silver gives the formal mathematical definition of a
probability matrix as the following [17]:

Pss′ = P[St+1 = s′|St = s]

The transition matrix P looks as follows. Each row in the matrix has a sum equal to one
[17].

P =

P11 ... P1n

...
...

Pn1 ... Pnn

Expanding further on the Markov chain and taking another step towards an MDP is

the Markov reward process. The Markov reward process is annotated with the following
four tuples [17].

〈S,P,R,γ〉

The annotation for S and P is the same as in the Markov chain. In the four tuples, R is
the annotation for the reward function and γ (gamma) is the annotation for the discount
factor. The mathematical annotation for the reward function is the following [17]:

Rs = E[Rt+1|St = s]

The formula gives the expected immediate reward. It works in the following way: if at
time t the current state is s, then at time t +1 the specified reward will be given. In other
words, the formula gives the reward for being in a specific state at a specific moment. The
discount factor or discount rate γ is used to avoid dealing with infinite returns that can
happen if the Markov process contains a cycle, which means looping around the same
cycle in the process and never reaching the end. The discount rate also gives the present
value of future rewards in the return value [15]. The discount rate is always in the range
0 ≤ γ ≤ 1. Different rewards can be obtained depending on how the discount factor is
chosen. A discount factor closer to zero will lead to short-sightedness and greediness.

12

Sebastian Penttinen

Immediate rewards will be preferred over later ones. If the value of the discount factor is
closer to one, it will have the effect of far-sighted rewards being preferred, in other words
not always taking the best reward with the hopes of receiving a better reward in the future
[17].

As stated by Sutton et al. [15], the goal of an RL agent is to maximize the cumulative
future reward. This notion can be represented in a formal way using return. The following
formula is used for representing return [15].

Gt = Rt+1 + γRt+2 + ...=
∞

∑
k=0

γ
kRt+k+1

In the above formula, Gt is the total discounted reward for the time step t. As stated
above, γ (discount factor) then gives the value for the future rewards at time t. The reward
received after k+1 steps is given by γkR [15] [17].

The next step after the Markov reward process is the MDP. In an MDP, all states are
Markovian. The formal definition of an MDP is the following [17]:

〈S,A,P,R,γ〉

In the annotation, S is as before the finite set of states while A stands for the finite set of
actions that can be taken. The state transition probability matrix is annotated with P, R is
the reward function and γ is the discount factor. When adding the actions to the Markov
reward process, the reward function also needs to be updated to include the actions. The
reward function that also takes actions into consideration is defined in the following way
[17]:

Ra
s = E[Rt+1|St = s,At = a]

The formula is the same as in the reward function for a Markov reward process, except
the addition of the action. The addition of the action to the formula means the reward
received from the function will also be dependent on the action taken in a state. The
state transition probability matrix is also changed when adding an action to the Markov
reward process. The probability of transitioning to the next state is now also dependent
on the action taken in a given state. The formal definition for the state transition is then
expressed in the following way [17]:

Pa
ss′ = P[St+1 = s′|St = s,At = a]

13

Sebastian Penttinen

4.3.1 Bellman equation

Evaluating future states from the current state is also needed in RL to know the value of
the current state. This can be done with the Bellman equation. The Bellman equation
is, according to Sutton et al., used to show the relationship between a state’s value and
the values of states that come after this state. This works by taking a state and looking
forward from that state and figuring out what future states can be reached from this state.
This looking ahead also needs to take into consideration all the different actions an agent
could choose to take in the various states with respect to the current policy used by the
agent. Based on the actions, the agent could end up in very different states as well as the
variance in the rewards received depending on the actions taken [15].

According to Sutton et al. the Bellman equation tackles all these branching possibili-
ties by averaging all of them and weighting them by the probability they have of happen-
ing. This then forms the basis for calculating value functions. The Bellman function is
therefore useful and used in numerous implementations of RL [15].

Sutton et al. annotate the Bellman equation in the following way [15]:

Vπ(s) = ∑
a

π(a|s)∑
s′,r

p(s′,r|s,a)
[
r+ γvπ(s′)

]
, for all s ∈ S

As seen in the formula, it expresses the values of a state given a policy. As discussed,
the formula takes into account the possibilities of transitioning to different states. It also
discounts all the future rewards with gamma [15]. The discounting of future values will
be discussed later on in this chapter.

4.4 Elements of reinforcement learning

Sutton et al. define the components to create an RL system as follows: agent, environ-
ment, policy, reward, value function and, in some cases, a model of the environment [15].
Each of the components will be covered in greater detail below.

4.4.1 Agent and environment

Sutton et al. [15] define the agent as the part of the RL system that interacts with an en-
vironment in order to learn about the environment. This information is then used to learn
how to accomplish a predetermined goal. To do this the agent needs to know something
about the environment. It can either know the whole state of the environment or just a
small part of it. The agent also needs to be capable of changing the state of the environ-
ment through actions. As previously mentioned, the agent tries to achieve a goal. This

14

Sebastian Penttinen

goal is also needed by the agent since it guides its actions. The goal is usually to get the
state of the environment to be a certain one. This is achieved by the agent changing the
state with its actions until the state is the same as the goal state [15].

The term environment is quite broad, since it is considered to be everything that is
outside of the agent. Essentially, the environment is the setting the agent is placed in
and can change with its actions. The environment will respond to the agent’s actions
by giving the agent a new state and thereby a new situation. This interaction goes on
continuously; when the agent is presented with a new state, it will again take an action and
the environment responds with a new state. This can also be seen as the agent changing
the environment, as presented in the previous section. The environment is also the basis
of the rewards, since the rewards have their basis in what state the environment is in.
Rewards will be presented later in this chapter. This series of actions and responses is
illustrated by Sutton et al. (see Figure 4.1). The figure illustrates the agent taking an
action at time t based on the state of the environment at time t and reward at time t. The
environment responds to the agent’s taken action by giving it a new state and reward at
time t +1 [15].

Figure 4.1: Sutton’s et al. illustration of the agent and environment interactions [15].

4.4.2 Policy

According to Sutton et al. [15], the policy states how an RL agent will behave or act in a
given state. In other words, the policy defines what action an agent will take in a specific
state and therefore fully defines the behavior of an agent [17]. This is accomplished by
maintaining a mapping. A policy maps states of the environment to actions the agent
should take in those states [15]. To learn this policy or mapping is the goal of the agent.
Silver presents a formal mathematical definition of a policy. A policy can be thought of
as a distribution over actions given states, as seen in the formula [17].

π(a|s) = P[At = a|St = s]

15

Sebastian Penttinen

The formula explains that a policy fully defines what action will be taken in which state.
Additionally, it can be seen from the formula that a policy is independent of time and
history, it only needs the current state [17].

An example of how a policy (π) works in the context of an MPD is the following,
M = 〈S,A,P,R,γ〉where π is given. If a sequence of states is given, for instance, S1,S2 . . . ,
it is considered a Markov process and annotated the following way [17]:

〈S,Pπ〉

If a sequence of states and rewards S1,R2,S2, . . . is given it is considered a Markov reward
process and annotated in the following way [17]:

〈S,Pπ ,Rπ ,γ〉 where Pπ

s,s′ = ∑
a∈A

π(a|s)Pa
s,s′ and Rπ

s = ∑
a∈A

π(a|s)Ra
s

The first addition to the formula Pπ

s,s′ = ∑a∈A π(a|s)Pa
s,s′ specifies that the probability of

moving from a state to a following state is dependent on the policy and action taken
to follow the policy. The second addition Rπ

s = ∑a∈A π(a|s)Ra
s specifies that the reward

gained is dependent on the policy and the action that will be taken when following that
policy [17].

Sutton et al. [15] said that the objective of the agent was to learn a mapping or policy.
That is true, but more precisely the policy that is the most interesting and sought after
is the optimal policy. Silver [17] explains that the optimal policy is the policy that gives
the optimal value function (discussed in the following section). Both Sutton et al. and
Silver mention that an optimal policy defines a partial ordering over policies, as show in
the following formula [17] [15].

π ≥ π
′ if vπ(s)≥ vπ ′(s),∀s

In the formula, π stands for a policy and vπ(s) is the notation for the value of a state
following a specific policy (the value function is explained in the following section) [17].
As seen in the formula, a policy is better or more optimal than another policy if the value
of the policy is greater than the other policy in all states [17].

The key take-aways about optimal policies are mentioned by Sutton et al. [15] and
summarized into a theorem by Silver [18]. The theorem states the following: there exits
such an optimal policy π∗ which is equal or better than all other policies. This is formally
mathematically annotated in the following way. π∗ ≥ π,∀π . The theorem also includes
the notion that an optimal policy also achieves the optimal state value and optimal action-
value functions. This is annotated in the following way, vπ∗(s) = V∗(s) and qπ∗(s,a) =

q∗(s,a). Silver also explains how to find an optimal policy. An optimal policy can be

16

Sebastian Penttinen

acquired by maximizing over q∗(s,a) in the following way [17]:

π∗(a|s) =

1 if a = argmaxa∈A q∗(s,a)

0 otherwise

The formula states that if we maximize over the action-value function, we will find the
best policy when we have found the action that has the highest return [17].

4.4.3 Value function

A value function is the component of an RL system determining the desired outcome in
the long run. This is achieved by defining values for states. The definition of a value is
the expected accumulated reward if the agent were to start in that state. Hence, the value
function will be able to show the long-term desired states by considering the most likely
orders of states. It takes into account what states and expected rewards are most probable
to follow a given state. This long-term notion of the value function is important since the
reward (presented later) will only consider what is an immediately desired action. The
value function will take into account that taking the greatest reward in every step may not
lead to the overall greatest reward. The value function makes it possible to discover if
there may be a state that always has a low reward associated with it, but following states
may always yield high rewards or vice versa [15].

A formal mathematical way of expressing a value function is provided by Silver [17],

vπ(s) = Eπ [Gt |St = s]

As seen in the formula, the value of a state is the expected return starting from a state s and
following a policy π . Different actions also have a value associated with them. The value
of a given action in a given state is defined by the action-value function. The function is
annotated in the following way [17]:

qπ(s,a) = Eπ [Gt |St = s,At = a]

As seen in the function, the action-value function is the expected return when starting
from state s, taking action a and following policy π . As explained previously this function
will tell the value of taking a specific action in a specific state. This allows actions to be
ranked. It allows us to determine what action is more desired to take in this state to benefit
in the long run [17].

In addition to the action-value function, there are also optimal value functions. The
optimal value functions are the functions solving or having the optimal performance in

17

Sebastian Penttinen

an MDP. There are two different value functions. The first function is the optimal state
value function v∗(s). The second one is the optimal action-value function q∗(s,a). The
definition for the optimal state-value function is the maximum value function that can
be achieved from trying out all policies. The state-value function is annotated in the
following way [17]:

v∗(s) = max
π

vπ(s)

The optimal action-value function, however, is the maximum action-value function that
can be obtained from trying out all policies [17]. It can be given as follows:

q∗(s,a) = max
π

qπ(s,a)

The value function essentially makes sure the agent does not become greedy and con-
sider all options. The best policy is not always to take everything now. Lower intermediate
rewards are acceptable if they lead to higher rewards overall. An example to provide in-
tuition on this would be the case of driving your car from point a to point b. The distance
between the points require you to fuel your car along the way. The goal is to get there as
fast as possible. The shorter the time is the higher the reward will be. Stopping for fuel
will cost you time and give you an immediate lower reward. However, if you do not stop
for fuel you will not make it there. Here the value function would make sure that the stop
for fuel and an intermediate lower reward is accepted since it will lead to making it to
point b and ultimately having a higher reward.

4.4.4 Reward

Sutton et al. explain the reward as being the RL agent’s feedback for the actions it takes.
The reward can be given at different times, either directly after a taken action or after each
trial and error run. The agent tries to find the policy that will maximize this reward. Thus,
the reward defines the goal for the RL agent to achieve. This is done by engineering a
reward function to specify what are desired and undesired actions to be taken by the agent.
Since the agent tries to find a policy to maximize the reward, it is also the primary source
on information regarding changing a policy. The reward is the feedback on of the changes
made to a policy were good or bad. The agent may have taken an action resulting in a low
reward and, based on this, the policy can be changed and the agent will take a different
action in the next iteration. Then in the next iteration taking a different may result in a
higher reward and the agent knows the policy change was good [15].

18

Sebastian Penttinen

4.4.5 Model

According to Sutton et al., a model of the environment can be a part of an RL system. It
is not an essential part but a model can aid an RL system by representing the environment
and allow assumptions to be made on the behavior of the environment. This is achieved
by a model taking a state and an action and then predicting the following state and reward.
This allows for planning. RL systems without a model are purely based on trial and error
to explore the environment and are not able to plan. Utilizing a model and planning
essentially means being able to consider what actions taken in the current state mean for
future states [15].

4.5 Solving the RL problem

Theory and mathematical functions are good but do not provide much value unless they
can be used and implemented into practical applications that solve problems. Implement-
ing agents and finding solutions to the RL problem have had different approaches during
the years. New methods and ways of tackling the problem have been introduced and of-
ten new methods expand on older ones for better solutions. In this section, two ways of
solving the RL problem will be presented. The agent implemented in this thesis uses the
lastly presented Deep Q-learning method.

4.5.1 Q-learning

Q-learning was introduced in 1989 by Christopher Watkins in his Ph.D. thesis titled
"Learning from Delayed Rewards" [19]. In the thesis, Watkins presents a model-free RL
type called Q-learning. In 1992, Watkins and Peter Dayan followed up the Ph.D. thesis.
[20]. Q-learning is an easy way for agents to learn how to perform optimally in controlled
Markovian domains. The learning process is done by letting the agent experience con-
sequences of its actions. However, Q-learning does not require that the agents maintain
maps of the domain they are located in [20]. Learning happens by the agent trying out all
possible actions in all different states again and again. In all states, it evaluates all actions
regarding which effects they have on the immediate reward received and also the value of
the state the action is taken in. By the repeated evaluations of every action in every state,
the agent is able to learn which actions are the best overall. How good an action is or the
value of an action is judged by the long-term discounted reward expected to be achieved
when taking that action [20].

19

Sebastian Penttinen

4.5.2 Deep Q-learning

In 2015, the paper “Human-level control through deep reinforcement learning” [18] by
Mnih et al. was published. It introduced a new way to tackle RL problems. A new
algorithm was developed that was able to solve different and varying difficult tasks. The
result was a new RL agent known as a Deep Q-Network (DQN). The new agent combined
traditional RL with deep neural networks and overcame issues known to occur when
having a neural network approximate Q-values.

The approach started with the regular premiss of an RL system, having an agent inter-
act with an environment to explore the environment, take actions that change the environ-
ment, and receive rewards. The goal of the agent was also, as usual, to find a policy that
maximizes the expected cumulative future reward. The new thing with Deep Q-learning
is that it is able to approximate the action-value function (Q-function) non-linearly, essen-
tially meaning that a neural network can approximate the Q-function. The action values
are known to diverge and be unstable if nonlinear approximations (neural network ap-
proximation) are used. The reasons behind these challenges are the correlations between
sequences of the agent’s observations and a policy can change drastically even for small
changes to the action-value function. The authors combatted the known issues by intro-
ducing experience replay and periodic iterative updates to the parameters of the neural
network [18].

Experience replay is a method drawing inspiration from biology, namely, the replay
of past experiences that happens during sleep in actual brains (dreaming). Experience
replay randomizes data to significantly reduce or remove the existing correlation between
an agent’s subsequent observations of the environment. This works by saving the agent’s
observations from every time step in a data set. Then, during training when the Q-learning
updates are done, the updates are done on uniformly randomly selected samples from the
agent’s past experiences [18]. This meaning that the agent will still learn but subsequent
observations are not affecting each other.

The periodic updates to the parameters of the neural network, according to the au-
thors, also reduce correlation. This is done by fixing the target neural network parameters
between updates and only updating the target network parameters with the Q-network
parameters after a specified number of iterations. Doing this allows approximation of the
Q-value with a larger neural network and, hence, increasing the complexity of tasks an
RL agent can solve [18].

20

Sebastian Penttinen

5. Proof of concept agent

The Simple Ship Sim program is meant to serve as a training and testing environment for
RL agents and algorithms. A user can create his own RL agent or algorithm for solving
maritime-related challenges. This user-supplied agent would be using the included envi-
ronment for training. Testing of the user agent would be done using the simulator. The
program is built as a larger project with a team. The author’s responsibility in the devel-
opment is everything RL related and an initial user agent to be placed in the simulator.
The requirements set on the initial user agent are that it is able to follow the COLREG
rules in the basic head-on, overtaking, and overtaking scenarios. Additionally, the agent
needs to be able to safely navigate in a multi-vessel scenario.

This chapter will cover the author’s practical part of the project. The initial project
design was given as a template by Ivan Porres. The author further refined this design
and implemented it to work with RL. The author developed the custom environment,
RL agent, main command-line interface, configuration files and ShipAgent module. The
modules helpers and ship were developed together with Kim Hupponen [8] from the
template given by Porres. Hupponen implemented the sim and ui modules. In order
to understand the implemented proof of concept agent the context has to be explained.
Hence, this chapter also contains the parts that the author developed together with Kim
Hupponen [8] and parts developed solely by Hupponen. Ivan Porres, in addition to the
template, also provided guidance and comments on the code written for the project.

The chapter will first cover the goals to be achieved, then the structure of the program
is explained, and following this, the libraries used in the implementation are covered, then
the simulator is explained for context and, lastly, how to use the simulator is outlined.
Since the proof of concept agent is a part of the simulator, the agent itself will be covered
in the explanation of the simulator.

5.1 Goal

The goal the author set out to reach was defined as making a proof of concept solution
investigating if it is possible to teach RL agents to follow COLREG rules. The different
scenarios chosen were an overtaking of a slower ship, a crossing from right and left, a
head-on scenario, and a multiple vessel scenario. The goal would be considered achieved

21

Sebastian Penttinen

if the RL agent follows the COLREG rules in these scenarios and is able to compromise
on the rules, if necessary. This created agent would then serve as an initial agent for the
Simple Ship Sim program.

5.2 Program structure

The initial structure of the simulator was made by Ivan Porres, as a starting point. The
program structure was then further expanded by the author to reduce code duplication,
increase maintainability, and easy extensions of the program. The program contains the
following modules. The initially given basis contained the following modules; agent, ship,
sim (simulation), and UI (user interface). The initial interaction between the modules was
drawn up in the code and implemented in a bare-bones way. The environment for training
agents, implemented agents, neural network models, a helpers module, main command-
line interface, and the use of configuration files were added during the development. All
modules will be described in greater detail below.

The entry point for the program is the main module, as seen in Figure 5.1. It provides
a command-line interface for running the program. It follows the standard unix flags and
parameters for passing arguments to a program. The agent module is the home for all
implemented agents. Here the agents take decisions using the pre-trained neural network
and call the environment module to make the actions happen. The simulator (Sim) module
is responsible for translating desired actions into actual actions in the simulator, as seen
in Figure 5.1. The simulator module also handles the physics that concerns vessels, for
instance, how tight should the turning circle of a vessel be. The UI or user interface is
responsible for rendering the user interface, for instance, it renders the map, ships, and
buttons. The config module seen in Figure 5.1 is responsible for loading configuration
files and passing on the information to the main and ship module. The helper module is
a central location for sharing code between the modules. Among other things, it provides
information about ships to the user interface and aids with calculations needed in the
simulation, as seen in Figure 5.1.

5.3 Libraries

Libraries make it easier and faster to implement solutions since all code does not have to
be rewritten by the programmer. Libraries are also more extensively tested and are used
by many people. This means that a great deal of the bugs in the library has already been
found and corrected, compared to a self-made implementation of a similar feature set as
offered by a library. Hence, industry-standard libraries are used in the implementation of

22

Sebastian Penttinen

Figure 5.1: Program structure

23

Sebastian Penttinen

the deep-learning parts in the case study. To train the neural network Tensorflow [4] was
chosen. To create and specify the structure of the neural network Keras [5] was used. It is
difficult to deal with multidimensionality without NumPy [21] and hence it was included.
Since the developed agent is the main focus of the thesis, the author implementing all of
the mathematics and basic functionality of an RL agent is not very productive. Hence,
a library with a predefined agent was chosen, namely Keras-rl [6]. In the library, all the
basics are taken care of and the user can focus on optimizing their agent to solve a task.
The agent needed an environment specifically designed for maritime scenarios. Since
there was no such environment a custom one had to be made by the author. For making
RL agent environments, the industry standard is Open Ai Gym. Building a user interface
from the ground up is not the point of the thesis and very time-consuming. Hence, a
library offering easy creation of user interfaces was needed and the choice fell on PySide2

[22].

5.3.1 Tensorflow

Tensorflow is an open-source library originally built by Google to be used internally by
Google. In 2015 Google, however, released Tensorflow as open-source. Tensorflow is
meant to help with development and training of machine-learning models [4] [23].

Tensorflow was chosen for this project since it is one of the industry standards. Fur-
thermore, Tensorflow comes with good documentation and tutorials making it easy to use.
Tensorflow was also chosen since it goes well together with the Keras API and together
they make a powerful package.

5.3.2 Keras

Keras is an open-source neural network application programming interface (API) built
in Python. Keras is able to utilize different back-ends such as Tensorflow or Theano.
The main focus of Keras and why it was built is to make fast experimentation possible.
To achieve this; fast and simple prototyping, support for different neural networks, and
running on both GPUs and CPUs are features of Keras [5] [24].

Keras was chosen for the project since it is the current industry-standard and has useful
documentation and user guides, making it easy to debug and use, reducing the time it takes
to prototype and try different neural networks.

5.3.3 Keras-rl

Keras-rl is an open-source library providing deep reinforcement-learning algorithms im-
plemented in Python. The main feature of Keras-rl is already present in the name. It

24

Sebastian Penttinen

provides easy integration with the Keras library. The other main feature of Keras-rl is
that it is compatible with the Open Ai Gym library. The Keras-rl library, hence, makes
it easy and fast to implement RL algorithms. Keras-rl is also built to be extendable by
users making the library suit their needs [6]. The Keras-rl library was chosen because of
its ease of use and easy integration with the rest of the tech stack.

5.3.4 NumPy

NumPy is a Python library developed to be used for scientific computing and has become
the industry standard. One of its main features is its support of large and powerful N-
dimensional array objects. NumPy also provides easy-to-use functions to reshape and
work with these arrays [21]. The N-dimensional array objects are the reason for including
the library in the project. The NumPy arrays are needed due to the multidimensionality
of the inputs to the neural network. Without using NumPy, it would be more difficult to
deal with this multidimensionality.

5.3.5 PySide 2

PySide2 is the name of the library module for the Qt5 framework for Python. The library
is used to develop user interfaces by providing ready-made user interface elements. The
style of the elements lies toward classic desktop applications [22]. The already made
user interface elements are the primary cause for the use of the PySide2 module in the
project. It would take significantly longer to develop the same user interface elements
again compared to using the elements provided with the library. Now the implementation
just needs to specify what elements should be included and define the layout and content
to be displayed by the elements.

5.3.6 Open Ai Gym

Open Ai Gym is a library and toolkit used to compare and develop RL algorithms. The
Gym library itself is more a collection of pre-made test problems, also called environ-
ments. Gym was mainly built to tackle, according to Open AI, the main problems in the
RL field. The problems are in their opinion the lack of good benchmarks and not enough
standardization of the environments used in scientific publications [7].

Open Ai Gym was chosen because of its industry standard and ease of use. There
are many papers and documentation surrounding it. Open Ai Gym also works well with
Tensorflow. Open Ai Gym also allows its users to build their own environments. This
use case was needed for the thesis, since there were no already made maritime or ship
environments.

25

Sebastian Penttinen

5.4 Simple Ship Sim modules

This section outlines the different modules of the implemented system and the functions
they serve. This section begins with the custom Open Ai Gym environment, after this the
RL agent’s structure is explained, following this the different ship agents and the config-
uration loading is described. After this, the helper module is outlined, and following this,
the simulation module and the user interface are explained. Lastly, the ship object and the
main module are described.

5.4.1 Open Ai Gym environment

The custom Open Ai Gym environment follows the basic outline for implementing a Gym
environment. The methods implemented are the init method to create the Gym object, a
step method to take steps in the environment, a reset method to reset the environment after
an episode and a render method to visually show the agent training. Each of the methods
and their use in the environment will be covered in greater detail below.

This init method is the standard constructor for creating an object in Python. The
method can be found in listing 5.1. The constructor in the environment initializes the
variables that will be used later. The most important part is the creation of the action
and observation space. The action space in this environment is discrete or continuous.
The action space is initialized using the spaces method included in the Gym library. The
discrete implementation contains 15 different actions the agent can take. This means
that the rudder’s potential degree values have been split up to make it possible to set
the rudder in discrete increments. The environment also includes an option to create a
continuous action space. This is needed if a user wants to implement a continuous agent.
The difference between the discrete and continuous environment is that the actions are
not discretized. In the continuous environment, an action corresponds directly to a rudder
degree. The action itself is the rudder degree to be set. Hence, the actions can take
on values between -35 and 35. A continuous agent was not developed for the proof of
concept. However, for the generality of the environment the author felt it was necessary
to give a potential end user the option to develop a continuous agent.

The observation space is initialized with the minimum and maximum values obser-
vations of the environment can take. In this environment, the returned observations are
comprised of a NumPy array with a size of seven. The returned observations contain the
following information from the environment. The first value in the array is the x coor-
dinate of the ship. The x coordinate can take values from all the navigable space. In
this implementation, the x coordinate was chosen to have a minimum value of 0 and a
maximum value of 9400. The second observation value is the y coordinate of the ship. It

26

Sebastian Penttinen

takes on the values from 0 to 6100 which also corresponds to the navigable area of a ship.
The third value in an observation is the bearing of the ship in radians. The observation
corresponds to the current bearing of the ship in the environment. The fourth value in an
observation is the speed of the ship in knots, taking on values in the range of 0 to 15.6
knots. The numbers are taken from the specifications of a typical oil tanker. The fifth
value in an observation is the current degrees of the rudder. This can take on values from
-35 to 35 in accordance with typical ship specifications. The sixth and seventh values in
the observation are the distance to the closest vessel and its speed. The distance to the
closest vessel takes on values between 0 and 9000. The speed of the closest vessel takes
on values between 0 and 15.6.

In the constructor for the environment, a config file is also loaded. The config file
provides the user with an easy way of specifying his own scenarios in the environment.
The config file is in a Yaml [25] format further increasing ease of use. In the config file, a
user can specify the attributes of the ships he wishes to include and their starting positions
in the environment.

The step method in the environment is responsible for taking steps in the environment
and returning observations, also this method is found in listing 5.1. The step method
takes an action as its argument. The step methods first check if any conditions to end
an episode are met. If there are no conditions for determining whether an episode is
over, the environment would loop forever and the agent would not receive the necessary
feedback it needs in order to learn. The conditions for termination in this environment is
if the agent has collided, sailed out of bounds or reached its destination. The environment
step method also calls the simulation object’s step method to advance the simulation. In
the environment’s step method, the action passed to the method in the arguments is also
taken. This is done by calling the helpers module and the take_action method. After
taking an action, the agent needs to know the quality or how good that action was to take
in that particular state. Hence, the get_reward method from helpers is called and returns
the reward. Both the take_action method and reward function will be covered in greater
detail below. Lastly, since the step method needs to return an observation to the agent it
calls the get_state method in the helper module. This is needed since the action taken by
the agent has changed the state. The step method lastly returns the following four tuples:
the first value is the state, the second value is the reward, the third value is the boolean
variable done used to know if the episode is over and, lastly, it returns the info dictionary.
In the info dictionary, the developer of the environment can specify additional information
that might be useful for an end user to know. In this environment the info dictionary is
not in use, however, it is still an expected return parameter and, hence, it is included.

Taking a step in the environment is the same as transitioning from one state to another

27

Sebastian Penttinen

in an MDP. The agent starts in a state and takes the action it deems to be the best. The
decision is based on the discounted value of the state, as discussed in the theory. This is
the three tuples S, A, and γ of an MDP. In what state the agent will end up as a result of
the action is dependent on the state transition probability matrix. The probabilities are not
visible to the user of the system and depend on the Open Ai Gym environment. In the
case of this environment, the probability of ending up in a state is always the same. There
is no branching. The same action taken in the same state will always result in the same
next state. The part missing from a complete MDP is the reward and it will be covered
later in this chapter.

The reset method is used to reset the environment after a finished episode run. In the
reset method, the environment is reset into its starting values as defined in the config file
and in the constructor. Additionally, to increase the generality of the agent it is placed in a
new scenario. This naturally increases the exploration of the environment, since the agent
is exposed to more different scenarios. The assigning of a new scenario is done randomly.

Render is the method called if one wishes to visualize the environment during training.
This can be helpful to see what the agent is actually doing in the environment during
training. The main drawback of doing so is that the training is significantly slowed down.
The render function is not in heavy use in the developed environment, since a completed
training can just as easily be rendered in the simulator.

def __init__(self, isDiscrete):

self.world = None

self.AgentVessel = None

self.state = None

self.isDiscrete = isDiscrete

self.config = None

if self.isDiscrete:

self.action_space = gym.spaces.Discrete(15)

else:

self.action_space = gym.spaces.Box(

low=-35, high=35, shape=(1,), dtype=np.float32

)

self.observation_space = gym.spaces.Box(

np.array(

[[0, 0, -1.3, 0, -35, 0, 0]]

), # Min observations for x,y,bearing,speed,rudder, distance to

28

Sebastian Penttinen

land, distance to closest other vessel, other vessels speed

np.array(

[[9400.0, 6100, 6.5, 15.6, 35, 9000, 15.6]]

), # Max possible observations

dtype=np.float32,

)

self.config = config.load()["scenarios"]

def step(self, action):

done = False

info = dict()

Episode over if there has been a crash

if self.AgentVessel.collision == True:

done = True

if self.AgentVessel.x > 9400 or self.AgentVessel.x < 0:

done = True

if self.AgentVessel.y > 6100 or self.AgentVessel.y < 0:

done = True

if self.AgentVessel.done:

done = True

self.world.step(1000)

helpers.take_action(action, self.AgentVessel, self.isDiscrete)

reward = helpers.get_reward(self.AgentVessel, self.world.ships)

self.state = helpers.get_state(self.AgentVessel, self.world.ships,

False)

return self.state, reward, done, info

Listing 5.1: Environment code

29

Sebastian Penttinen

5.4.2 RL agent

To make the vessels function autonomously they need an agent working as the brains
and making decisions. The RL agent was implemented using the Keras-rl library and
the DQN method previously discussed. The library was used since it contained already
implemented and tested RL algorithms. This significantly increases the quality of the
software, since the library is more mature and less likely to contain bugs compared to the
author implementing the same functionality. The use of the Keras-rl library also shortened
the development time. The library is also used since the mathematics discussed earlier are
already implemented. The user does not need to implement all the basic mathematics.

Using the library is easy, as seen in listing 5.2. First, an environment is supplied, the
environment is then used to obtain the action and observation spaces. These are needed
when creating the neural network. The action space is needed for the neural network’s
output layer. Since the neural network essentially creates a mapping from the state or
observations to an action, it needs to know how many outputs it should map to. The ob-
servations are needed as the input. The network is built in a separate module to decrease
code duplication. The network is needed both in the training and simulation and, there-
fore, sharing of the code is needed. When the neural network is created the memory for
storing the observations is defined. This is the memory utilized by the experience replay.
The limit is the maximal number of episodes to store. The window length is the number of
entries from the memory to be returned when querying the memory for experience replay.

When the memory is created the next thing to define is the exploration policy to be
used. As seen in listing 5.2, the author chose to go with the Boltzmann-Gibbs policy.
The Keras-rl library calls this method the BoltzmannQPolicy. Naming aside, Wiering
[26] explains that the Boltzmann-Gibbs exploration policy works by looking at different
actions and their Q-values. Then, based on the Q-values, it will assign the actions different
probabilities. This essentially means that the method will give a probability of taking an
action in a state. The policy will work so that the agent will explore more when states
have Q-values that are very close to each other and explore less when the Q-values differ
more. The agent will not explore much in areas that seem to be worse (there is a clearly
higher Q-value present). Exploring in directions that look terrible is still, however, needed
since wrong Q-values could be introduced by noise [26]. The author chose the Boltzmann-
Gibbs method since it is widely used in the field of RL. The method is not without critique
and may not always guarantee optimal behavior, as shown by Cesa-Bianchi et al. [27].
Despite this, the method worked well for the proof of concept.

After the exploration policy is set the agent is defined. The Keras-rl library provides
a DQNAgent. The agent needs to know what neural network model to use, the number
of possible actions, the amount of memory, the number of warmup steps to do, target

30

Sebastian Penttinen

model update and, lastly, it needs the exploration policy. The model parameter for the
DQNAgent is the neural network mentioned before. The number of actions parameters
is the number of actions possible to take in the environment. The agent needs to know
the number of possible actions, since they are used to know the shape of the Q-values.
Basically, the agent needs to know what actions it can take. The memory parameter is
the memory defined before. The number of warmup steps just means that the model will
use a smaller learning rate during this interval. This is done to reduce overfitting on early
observations. The target model update comes directly from the specification of a deep
Q-learning agent [18] as presented before in the thesis. The parameter sets how often the
weights in the neural network should be updated. Lastly, the policy is the exploration
policy defined before.

When the agent is defined, it needs to be compiled before use. In the compilation, the
Adam optimizer is used with the learning rate set to 0.001. The error metric is also set in
the compilation, in this agent mean absolute error is used. When the agent is compiled
it can be trained. The training happens with the use of the fit method, as seen in listing
5.2. The fit method will return a Keras history object that contains information about loss,
reward, and other information the user might want to have access to in order to evaluate
the training. The training is done by passing the environment, the number of steps, a
visualize parameter, and setting the printout parameter. The environment is passed to
the fit method since it is needed for the agent to train in. From the environment, the
agent among other things gets the reward and state, as discussed before in the thesis. The
number of steps parameter is used to set how many steps in the environment the agent
will take before stopping training. The visualize parameter defines if the environment
will be shown while the agent is training. Showing the agent’s actions as they happen in
the environment can be a useful tool for understanding the agent better, but visualizing
will slow down the training significantly. The verbose parameter is used to define in what
manner the method will report back the progress of the training. When the training is
done the neural network weights need to be saved, otherwise, the training will be lost.
This means that a simulation could not be run without training the agent again. Saving
the weights means that they can be used again and will save a significant amount of time
when training only has to be done once. If anything is changed in the agent, the training
needs to be done again and the weights also need to be saved again.

31

Sebastian Penttinen

def train(numberOfSteps):

env = gym_env.ShipGym(True)

Get the possible actions and the shape of the observation space

actions = env.action_space.n

observations = env.observation_space.shape

model = DQNModel.dqn(actions, observations)

memory = SequentialMemory(limit=2000, window_length=1)

policy = BoltzmannQPolicy()

dqn = DQNAgent(

model=model,

nb_actions=actions,

memory=memory,

nb_steps_warmup=10000,

target_model_update=0.01,

policy=policy,

)

dqn.compile(Adam(lr=0.001), metrics=["mae"])

hist = dqn.fit(env, nb_steps=numberOfSteps, visualize=False, verbose=1)

dqn.save_weights(

"Weights/DQN/Weights" + str(numberOfSteps) + ".h5f", overwrite=True

)

Listing 5.2: Code for training of the RL agent

5.4.3 Ship agents

The program contains different ship agents with various behavior. The agents are used
when running a simulation to show the agent’s actually learned policies. All agents trained
implement the abstract ShipAgent class. The abstract class is simple and straight forward,
only requiring the implementation of a step method. All agents are hence easily extend-
able and all follow the same structure, making it a simple task to swap out the agent to
run in the simulator. The implemented ship agents are a basic agent, a DQN-agent, and a
semi-random DQN-agent. Each of the different agents will be described in greater detail
below.

32

Sebastian Penttinen

Figure 5.2: Target bearing vs current bearing

5.4.3.1 Basic agent

The first implemented agent is a basic agent. The basic agent is not implemented with
any RL. Despite the lack of RL implementation, the agent is important to describe. The
basic agent is used as the controller of environment ships that are supposed to be the
stand-on vessel in the COLREG scenarios. The basic agent works by using the built-
in atan2 Python function to calculate the difference in the target bearing compared to
the ship’s current bearing. The basic agent will then adjust the ship’s bearing until the
difference between the target bearing and the current bearing is zero. This approach is
simple and will take the shortest direct route towards the target destination. It will not
consider obstacles or ships in the way. The atan2 function is used since the degrees
between two points in a 2D-plane are of interest. This is illustrated in Figure 5.2. In this
case, the basic agent will adjust the course towards its port side to decrease the angle.
This easy approach works quite well if the agent is given ample time to adjust the course.

The problem with this approach is that the agent may never reach the destination point
and end up circling it, as shown in Figure 5.3. This happens if the distance between the
ship and destination is short and the angle to reduce is large. Once the agent has made
the course changes, the ship will have moved forward and the course adjustment will
end up not being enough. The agent adjusts again and will fail to change course fast
enough and the ship will have moved forward and the adjustment will not be sufficient.
The distance and angle for when this happens are different depending on the vessel. The
factor determining if this will happen is the turning radius of the ship. The circle the
vessel will end up making around the destination will be equal to the radius of the ship,
meaning the ship cannot turn steeply enough to end up at the destination.

33

Sebastian Penttinen

Figure 5.3: Basic agent shortcomings

5.4.3.2 DQN-Agent

The second implemented ship agent is the DQN-Agent. It is based on RL and is the main
agent of the thesis. The agent needs to be trained before it can be used. This is since the
agent needs to have saved weights to load the neural network with. These weights are
obtained from previous training on scenarios and the agent will use the learned policies
from training and use them in simulation runs. In addition to the neural network weights,
the agent also needs an instance of the custom ship environment. This is since the agent
needs to know the action and observation spaces so it can load the weights correctly.
Loading the weights essentially means building the same neural network with the same
weights as achieved at the end of training. The weights to be loaded can be declared by
the user from the command line when he starts a simulation. If no weights are given
by the user, the agent will use the default weights that come with the simulator. Since
the DQN-Agent extends the ShipAgent class, the DQN-Agent also needs to have a step
method. The step method for the DQN-Agent is straightforward and simple. It uses the
get_state method form the helpers to obtain the current state of the environment. When
it has the current state, it predicts the following best action to take in that state. To do
this it uses the state as the input to the neural network and receives an action back. It
then uses the take_action function from the helpers to take the action and progress in the
simulation. The DQN-Agent also has a simple string method to ease the printout in the
user interface of what agent is used.

34

Sebastian Penttinen

5.4.3.3 Semi-random DQN-Agent

The agent SemiRandomDQNAgent is an additional agent to the simulator. There was a
need to implement some kind of unpredictable behavior element in the simulation. This is
the case since the behavior of the regular DQN-Agent is predictable. It will always take the
same action in the same state with the same weights. The unpredictable behavior would
in a way represent a human captain making a mistake or disregarding the COLREG rules.
This would be needed for testing how robust the agent DQN-Agent is towards unexpected
situations that may arise. This is a good testing feature, since the DQN-Agent agent has
not encountered such situations in training. Testing with the agent SemiRandomAgent was
left out from the result, since it goes out of scope for the thesis but is grounds for further
research and investigation.

The implementation of SemiRandomDQNAgent is similar to the implementation of
the agent DQN-Agent. SemiRandomDQNAgent extends DQN-Agent to have access to
the same loading of weights without code duplication. The difference is that SemiRan-

domDQNAgent has a random component added. To implement this the step method
from DQN-Agent is overridden in SemiRandomDQNAgent. In its current implementation,
SemiRandomDQNAgent will take a random action instead of the neural network predicted
one in 10% of actions taken. The number of random actions taken can be tweaked not to
be such a high number. It is unlikely that a human would make mistakes that often. A
single wrong action taken would not affect the outcome of a situation that much. This is
since an action is taken at every increment of the simulator and the increments of the sim-
ulator are small. The agent would simply make the correct action in the increment and the
wrong action would not be noted. To change this and simulate more of a real mistake the
wrong action will be taken 100 times in succession by SemiRandomDQNAgent. The ran-
dom element is implemented with Python’s included randint function from the random

module. In the agent SemiRandomDQNAgent implementation an integer between one and
ten (with one and ten included) is selected at random. If the random integer is one, then
the agent will again choose a random integer in the range of the possible actions and take
it. If the random integer is not equal to one, SemiRandomDQNAgent will function in the
same way as the agent DQNAgent and take the predicted action. SemiRandomDQNAgent

also includes the to string method for easy displaying of the agent’s name in the user
interface.

5.4.4 Configuration files

For easy extension and creation of different scenarios, the author chose to implement
configuration files. The configuration files are specified in the Yaml [25] format. The use

35

Sebastian Penttinen

of Yaml is based on the ease of use and the fact that Yaml files are easily readable by
humans. This makes the process of creating the configuration files much easier for the
user. The user can create separate training scenarios and separate simulation scenarios.
This process is better, since the agent can then be placed in a previously unencountered
scenario and the agent’s ability to generalize can be assessed. The sample training file
contains the different COLREG scenarios previously decided to be included in the proof
of concept.

The configuration files follow the structure seen in listing 5.3. First, the user starts
with the scenarios key, under this key all the different scenarios to be used in the training
or simulation is defined. When the top key is defined, the user lists the different scenarios
located under it, for instance, CrossingLeft. When a scenario is named, it is used as the
key for that specific scenario. Under this key, the user then specifies the ships key that, in
turn, contains all the different ships in that scenario. Inside the key ships, the user then
lists all vessels to be included, for instance vessel1. Then, using this key, the user defines
all the ship properties he wishes to include.

In the configuration file, the user also specifies what map he wants the ships to sail
on. If no map is wanted, the user can also specify land coordinates to be inserted in the
simulation. If the user chooses, he can also insert additional land points to a map.

scenarios:

CrossingLeft:

ships:

vessel1:

id: "UR"

agent: "basic"

position:

x: 5118.00

y: 5963.00

speed: 3.00

bearing: 2

mass: 90000000.0

length: 250.0

width: 42

max_speed: 8.03

tactical_diameter: 1197.9

rudder_time: 11.8

rudder_area: 16

rudder_coefficient: 1.1

destination:

36

Sebastian Penttinen

x: 4150.00

y: 9000.00

map:

path: "maps/turku.png"

width: 800

height: 600

scale: 0.22

Listing 5.3: Example of Yaml configuration file

5.4.5 Helper module

The helper module was added to the program to reduce code duplication. The environ-
ment, simulator, and user interface in many cases needed access to the same information.
Instead of duplicating code, the helpers module was created. This addition naturally in-
creases the maintainability of the project significantly.

The helper config was created to allow the user of the program to easily define sce-
narios in config files. The config module was then created to have a central location for
loading config files. As previously mentioned, Yaml was chosen as the format for the
config files.

5.4.5.1 Distance modules

The general helper module contains a lot of methods to ease the development of the pro-
gram. The first method specified in the module is the distanceTo method. The method is
used in the program to calculate the distance between two points in the world using the
Pythagorean theorem. The Pythagorean theorem is a2 +b2 = c2 [28]. To use the theorem
for calculating distances in a 2D-plane the formula is distance=

√
(x1− x2)2 +(y1− y2)2

[29]. This distance calculation is, for instance, used in the program to calculate the dis-
tance from the ship’s current position to its target destination.

The next helper method is an extension of the previous method and is called dis-

tance_to_closest_vessel. The method’s purpose is, as specified in the name, to give the
distance to the closest vessel from the ego vessel. In addition to the closest distance, the
method also has an option to obtain the id of the closest ship. This is useful for finding
out additional attributes of the closest ship, as seen in later methods.

Not only the distance to other ships in the simulation is important to know. The
distance to land is also important. The main use for the distance_to_land method is to
know if there has been a collision with land or a collision is about to occur. Some versions
of the agent also used the distance to the closest land point in their state. The idea behind

37

Sebastian Penttinen

this is that the agent needs to know if it is approaching land or not. In later versions of the
agent, the distance to land was removed. Since the agent’s performance without it was
better. This, however, resulted in the drawback of the agents not knowing where land is on
the map. This drawback was acceptable, since collision avoidance in more open waters
with ships cluttering the waters was more interesting to optimize for. Hence, collision
avoidance with static objects, such as landmasses, was left out.

5.4.5.2 Bearing modules

The adjust_bearing method is also located in the general helpers module. It handles the
changing of a ship’s bearing using the calculations described above in the basic agent.

To identify the different COLREG scenarios the relative bearing between vessels is
also needed. To know this the ships_relative_angle method was added to the helpers
module. The method works by first finding out the id of the closest ship using the above
mentioned optional return of the id for the closest distance to a vessel. When the id is
known, it is just a matter of looping the ship objects and comparing which one of them has
the id in question. When the correct ship object has been found, its object representation
can be used to obtain the x and y coordinates needed in the atan2 calculation to obtain
the relative angle between the vessels. The coordinates used in the calculation is the ego
ships x and y coordinates and the nearest ships x and y coordinates. The Python math
library implementation of the atan2 method returns the angle in radians. The angle is
then converted to degrees using the built-in conversion method in Python’s math library.

5.4.5.3 Modules for faster prototyping

The method take_action also needed to be shared. It became significantly easier to pro-
totype and try different actions the RL agent is able to take when the changes only had to
be made in a single place. The implementation of how actions are taken depends on the
type of agent that is used. What all agent types have in common is that the actions they
can take only affect the angle of the rudder. In the case of a continuous agent the action
passed to the method will correspond to a rudder degree. The actions are also trimmed
to be inside the allowed ranges of the rudder when dealing with continuous agents. In
the case of a discrete agent, actions are discretized into five-degree segments inside the
allowed rudder range. This means that the action passed to the method will be mapped to
a degree of rudder turn and not used directly. The actions passed from the agent are also
not taken into consideration before the "danger zone" is reached. In the implementation,
this happens when the distance to another vessel is less than 550 units. When the ship is
in this state of higher risk of collision, the autopilot is switched off and the ship goes into
collision avoidance mode. Then the agent is free to navigate the ship in order to avoid a

38

Sebastian Penttinen

collision. The autopilot is given back control of the vessel again when the distance be-
tween the vessels become large enough again or the ships have passed each other and the
dangerous or risky situation is over.

Also the code for the reward function is shared. The reward function is implemented
in the method get_reward (See listing 5.4). The current reward needed to be displayed in
the user interface of the program and sharing the code between the environment and the
user interface made most sense. The reward function does as previously mentioned guide
the agent’s behavior. The amount of reward to be received for different states was mostly
found through trial and error. There are most likely also other rewards that would produce
the same behavior. The resulting final reward function can be found in listing 5.4.

The agent should receive a large negative reward or penalty for colliding or crashing,
since this is the worst-case scenario and should at all cost be avoided. The check to see
if the agent has been in a collision is the first if clause in the reward function, as seen in
listing 5.4. It does a simple comparison to see if the collision attribute of a ship is true or
not. If it is true the ship has collided and the negative reward of -10000 should be added
to the reward. The next part of the reward function guides the agent to make decisions
to close the distance towards the destination. Even in a collision avoidance situation, the
agent should favor actions that close the gap towards the destination. For instance, the
agent should favor an evasive manoeuver allowing it to still move towards the destination
instead of turning the ship around. The code for this is found directly after the first if

clause. The negated distance to the destination is added to the reward. This means that
the closer to the destination the agent comes the higher the reward will be since the reward
value will then increase towards zero, reducing the negative reward.

Following this, the reward function handles the desired behavior of not getting too
close to other vessels. The further away from another vessel the agent can keep the ship
while avoiding a collision the lesser the risk of collision. It is, according to the author,
more likely that a collision will take place if the ships are just a few meters apart compared
to a few hundred meters. A threshold value of 200 units was therefore added. The distance
between the vessels needs to be lower than this before a negative reward is given to the
agent. In other words, the agent will be punished for sailing to close to other vessels. The
code for this is found in the second if clause in listing 5.4. If the distance to the closest
vessel from the agent ship is below 200 units, a negative reward of 1000 will be given to
the agent. The reward function can also give out a positive reward. The reward function
does this, if the agent gets to the specified destination. If this happens, a positive reward
of 1000 will be given to the agent. The code for this is found in the third if clause in
listing 5.4. The if clause checks if the done attribute of the ships is true or false.

The next part of the reward function guides the agent to follow the COLREG rules.

39

Sebastian Penttinen

This is achieved by punishing the agent if the correct evasive action has not been taken
in the scenario. The scenarios are recognized using the relative angle of approach. The
different COLREG scenarios can be identified from this angle. The code for this is found
in if clauses four to seven in listing 5.4. The fourth if clause handles the reward for being
in the overtaking or head-on scenario with the agent ship approaching from south towards
north. These scenarios have the relative angles of approach in the range -80 to -50. In
these cases, the agent should favor evasive action towards right/starboard. In the case of
an overtake, the agent is according to the COLREG rules actually free to overtake on both
the port side and the starboard side. However, in the case of a head-on situation both
the encountering ships should take evasive actions towards the starboard side. Hence,
the author chose to make the agent favor evasive actions towards the starboard side. The
favoring of actions towards starboard is accomplished by penalizing the agent if it does
not set the rudder to at least 15 degrees. A positive rudder degree means that the ship
will turn towards starboard. The 15 degrees were chosen by the author, since five and ten
degrees of turn is a too small an adjustments to effectively avoid a collision and still leave
ample space to the other vessel.

With the head-on and overtaking scenarios going from the south towards north taken
care of, the same scenario in a north-to-south going trajectory needs to be taken care of.
The code and process are the same as in the previous scenario, except that the relative
angles of approach are different. When going from north towards south, the relative
angles for the overtaking and head-on scenario will be in the range -180 to -140. With the
overtaking and head-on scenarios covered, the crossing scenarios need to be handled. The
crossing scenarios are also dealt with in the same fashion as the overtaking and head-on
scenarios, the only difference again being the angles of approach. For a crossing scenario
with the agent coming from the north and the stand-on vessel going from west towards
east, the relative angle of approach will be between 160 and 90 degrees. The crossing
scenario with the stand-on vessel coming from the north and going towards south with the
give-way vessel coming from east and going towards west the relative angle of approach
will be in the range -130 to -100.

The reward function is not complete and some situations are not covered in the func-
tion. Only two direction-permutations of the COLREG scenarios are handled. Missing
still is, for instance, cases with an overtaking scenario in a west to eastbound or east
to west-bound direction. These situations where not handled, since they are outside the
scope of this thesis. Despite the agent’s shortcomings in certain situations, the results from
the scenarios are promising. The results will be covered later on in the results chapter.

As mentioned previously, the reward function is the last part needed to complete the
MDP used in this implementation. The reward function follows the formula presented

40

Sebastian Penttinen

for rewards in the MDP theory section. The reward received will be dependent on both
the state and the action taken. The same action in different states will not give the same
reward.

def get_reward(ship, ships):

"""Returns the reward for a taken action as an integer"""

reward = 0

avoid collision

if ship.collision == True: # if clause 1

reward += -10000

reward getting closer to destination

reward += (

distanceTo(

ship.x, ship.target_destination_x, ship.y,

ship.target_destination_y,

)

) * -1

Do not want to be too close to other ship

if clause 2

if distance_to_closest_vessel(ship, ships) < 200:

reward += -1000

if clause 3

if ship.done:

reward += 1000

if clause 4

if -80 <= ship.angle_of_approach <= -50: # head on and overtaking:

south to north

if (

ship.rudder < 15

): # correction to the right needs to be taken, will turn towards

the right if the rudder is larger than 0

reward += -2000

if clause 5

if -130 <= ship.angle_of_approach >= -100: # crossing from right east

to west

41

Sebastian Penttinen

if ship.rudder < 15:

reward += -2000

if clause 6

if -180 <= ship.angle_of_approach >= -140: # Head-on overtaking: north

to south

if ship.rudder < 15:

reward += -2000

if clause 7

if 160 >= ship.angle_of_approach >= 90: # crossing right west to east

if ship.rudder < 15:

reward += -2000

return reward

Listing 5.4: Reward function

5.4.5.4 General helpers

The ship object’s values need to be constantly updated as the simulation progresses and
the agent takes different actions. The ship object has numerous different attributes and
to update each one of them in the locations where the changes happen was not satisfac-
tory. Instead, the helper method update_ship_info was created. The method handles all
the updating of a ship’s attributes in one place and is easily callable when a change has
happened and the values need updating. The values are updated using the ship object’s
setter methods.

In the state, the agent needs to know the closest vessel speed. To make this happen the
get_closest_vessel_speed method was created. It works by getting the ego ship and the
other ships in the environment. It then looks up the id of the closest ship and then uses
the id to obtain the speed attribute from the closest vessel and returns it.

The state representation was moved out of the environment to reduce the code dupli-
cation since the state was needed in multiple parts of the program. The state is composed
of seven different observations of the environment. These seven attributes are: the agent
ship’s x coordinate, the y coordinate, bearing, speed, rudder degree, the distance from the
agent ship to the closest other ship and, finally the speed of the closest ship to the agent.
All the different values in the state have a purpose. The coordinates are naturally needed
in order for the agent to know its location within the environment. The bearing is used
by the agent to know in what direction it is traveling. The speed is important so the agent
knows how fast it is going. The rudder degree is used by the agent to know in what di-

42

Sebastian Penttinen

rection it is currently steering the ship. The distance to the closest vessel is useful for the
agent to know, since it will be punished for being too close to another vessel. If it does
not know the distance to the closest vessel, it cannot avoid taking this penalty efficiently.
The speed of the closet vessel is also useful information for the agent to know since it
then knows how fast the distance between itself and the closest vessel will be closing.
The state needs to be reshaped before it can be returned. The shape of the state needs to
be different if the state is used in training or in the simulation. This is since in the running
of the simulation the batch size is left out and needs to be inserted. To overcome this the
method passes along a flag to determine which state shape is expected by the caller.

5.4.6 Sim

The sim module is responsible for handling the simulation, keeping track of where all the
ships are currently located, and knowing where land is in the simulation. The module also
has a step method to advance the simulation. This method is called both when running a
simulation and in training to advance the environment. As part of this, the step method
in the sim module is responsible for updating the ship’s information in accordance with
what happens during a step. Since the step method knows what happens as the result of a
step in the environment, it is able to determine if there has been a collision. The collision
can be with land or with another ship and the sim module can also determine if the ship
has reached its final destination. The update of the environment is done by calling the
ship object’s step method for all ships in a simulation. The module is also responsible for
loading the ships from the config files into the simulator when running a simulation. Then
based on the config file, the module assigns the agents to the ships. Resets of simulations,
if the user wants to reset the simulation and run it again, is also handled inside the module.

5.4.7 User interface

The user interface has nothing in common with the RL agent, but it is a vital part of the
whole built system and the reader needs to at least have a partial understanding of the
structure of the user interface in order to get the correct picture of the whole system.

The user interface is composed of six classes with their own responsibilities. The
classes work together to make up the user interface. The different classes are the Main-

Window, ShipView, WorldScene, MapView, TextDrawer and, lastly, the ButtonForm. The
MainWindow class is, just as the name hints, responsible for rendering the main applica-
tion window to contain the other scenes, widgets, and buttons. The ShipView is responsi-
ble for handling the rendering of ships. The segregation of the ships into a separate view
is needed to handle the updating of a single ship’s state separately from the other ships

43

Sebastian Penttinen

Figure 5.4: User interface

in the same scenario. One ship could have crashed while the others are still fine and the
representation of this in the user interface is easier when each ship is an instance of a
ShipView. The WorldScene is responsible for handling and updating everything inside the
user interface. The MapView handles the user interactions with the map, such as scrolling
and zooming. Displaying of all information related to ships is handled by the TextDrawer

class. The buttons in the user interface are handled by the ButtonForm class.

The user interface gives the user control over the speed at which the simulation is
progressing. The user can choose from realtime simulation to a thousand times speed
up. The speedup is needed since in realtime the simulations are slow and long-running.
If a user wants to prototype or test some changes, they cannot be expected to run the
simulation in realtime and wait about 30 minutes for the simulation to finish.

The layout of the user interface can be seen in Figure 5.4. The ships are represented
by the red rectangles, the text drawer with the information about the ships can be seen at
the right in the picture. The controls for setting speed, power and other attributes of the
vessels can also be seen at the right in Figure 5.4.

5.4.8 Ship

The ship module is, just as the name suggests, a ship object. It contains all the properties
and logic of a ship. Ships used in the simulator have their properties taken from a typical
oil tanker. The ship object has many properties just as a real ship. The most important
ones for the RL are the properties of the ship used in the state. The properties in the state

44

Sebastian Penttinen

that directly come from the ship object are the x and y coordinates of the ship, the bearing,
speed and rudder angle. The other properties in the state are calculated using these values.
The distance to the closest ship from the agent ship uses both ships’ coordinates and the
closest vessel’s speed also comes from the ship object. The physics of vessel handling is
also located in the ship class. Examples of these physics are drag force of the water and
the force of the rudder, i.e. how effective the rudder is at adjusting the yaw of the ship. All
the physics calculations for the ships are located in the ship object’s step method, since
the physics set bounds and affect the outcome of a step.

5.4.9 Main

Main serves as the entry point for the simulator. The user can start a training, verification,
or simulation run from main depending on the arguments passed in the command-line
interface. To aid with the parsing of arguments the standard Python module getopt [14]
is used. The different options or command-line arguments supported are training, simu-
lation, verification, path, and help. The training argument "-t" or "–train" needs to also
include the type of agent one wishes to train with. The agent can be an agent operating
on a discrete action space or a continuous action space. To train a discrete agent the ar-
gument "-td" would be passed and for training a continuous agent "-tc". Additionally,
the training argument needs to be followed by the number of training steps one wishes
to perform. The full argument to train a discrete agent for 20 000 steps would then be
"python main.py -td 20000".

For running verifications in the simulator, the argument "-v" or "–verify" would be
used. Then the external verification tool would take over. The implementation of the
verification mode is very basic and more a proof of concept that the simulator can be
used that way. The implementation of the verification mode goes outside the scope of this
thesis and hence was left very brief.

The simulation mode can be started using the argument "-s" or "–simulate". Addition-
ally, the simulation mode needs to know what type of agent the user wants to simulate, a
discrete, or continuous. For this reason the simulation also needs the flag "d" or "c" added
as in the case of training. The simulation also needs to be told what weights it should use
for the neural network. The user, therefore, can specify a path to where the weights can
be found. The full argument for running a simulation with the weights saved from a pre-
vious training would then be "python main.py -sd ’Weights/DQN/Weights20000.h5f’". If
the user does not provide a path in the command line, the default included pre-trained
weights will be used.

45

Sebastian Penttinen

5.5 Using the simulator

Using the simulator is straight forward. All that is needed from the user is some basic
skills using the terminal in order to specify the correct options for the program. If the
user does not want to create his own scenarios to test the included agent or his own agents
the user can choose to run one or several of the included pre-made scenarios. If a user
wants to run his own scenarios, he needs to create his own configuration file outlining the
scenario. The included configuration files of different scenarios work as a model for the
user to follow. A user with the necessary coding skills can supply his own agent. This can
be challenging for a new user if he is not familiar with the structure of the simulator and
would require the user to read the source code to understand how to supply the new agent
correctly. In this case, the user needs to create a custom agent that trains on the custom
Open Ai Gym ship environment and add a ship agent that implements the ShipAgent class
with its step method. The user would also need to make sure that the correct agent is
called when a simulation is executed.

46

Sebastian Penttinen

6. Results

The result section reviews all the different scenarios defined as the initial test scenarios
and presents the results when the agent is placed in the scenario within the simulator. Ad-
ditionally, the results from a more complex scenario with four different vessels navigating
the same waters are presented. The results for the overtaking, head-on, and crossings were
obtained after 300,000 steps of training on the allScenarios configuration file. The results
with four vessels were obtained after training for 100,000 steps on the same allScenarios

configuration file.

6.1 Overtaking

Overtaking is one of the first defined scenarios for testing the agent’s performance on
COLREG rules. An overview of the essential parts of the scenario is found in Figure
6.1. It shows the vessels before and after the overtake. The agent vessel being the bottom
vessel and the environment vessel being the top vessel in the figure. The routes the vessels
have taken are shown as the dotted black lines after the ships.

The scenario starts with the agent vessel coming up on the slower moving vessel from
behind, as seen in Figure 6.1(a). The agent vessel wants to overtake the vessel in front
and starts the overtake on the starboard side of the vessel in front. The agent vessel makes
a course correction towards its starboard side to pass the other vessel safely. When the
agent vessel has overtaken the other vessel, it again adjusts its course to sail towards the
destination, as seen in Figure 6.1(b).

The agent’s performance in the overtaking case is good. It follows the COLREG rules
concerning overtaking. The scenario demonstrates that the agent has successfully learned
a policy for overtaking scenarios in a south to northbound direction. This is directly in
line with the goals specified at the beginning of the thesis.

47

Sebastian Penttinen

(a) Starting point (b) Complete

Figure 6.1: Overtaking

6.2 Head-on

The head-on scenario is the second scenario to test the agent’s performance. An overview
of the head-on scenario is found in Figure 6.2. As seen in the figure, the vessels have
courses that would lead them to crash head-on, if no action were taken. In the scenario,
the agent vessel is the top one and the environment vessel is the bottom one in the figure.
Also in this scenario, the paths that the vessels take can be seen as the trailing black dots.
According to the COLREG rules, both vessels would alter their course to their starboard
side to avoid a collision in this case. To simplify the scenario only the agent vessel will
take corrective actions to avoid a collision.

The scenario starts with the ships coming up on each other head-on, as seen in Figure
6.2(a). To avoid the collision the agent vessel starts to make corrective actions by altering
its course to its starboard side, as seen in Figure 6.2(b). When the collision has been
avoided and the ships have sailed past each other, the agent adjusts its course towards
the destination point it was sailing to before it had to avoid a collision, as seen in Figure
6.2(c).

The agent’s performance in a head-on collision avoidance scenario is also good. The
agent manages to follow the COLREG rules that apply to it in the scenario. The scenario
demonstrates that the agent has successfully also learned a policy for dealing with head-
on collision scenarios in a north to south-bound direction. This is also in line with the
goals specified.

48

Sebastian Penttinen

(a) (b)

(c)

Figure 6.2: Head-on scenario: (a) Starting point (b) Midway point (c) Scenario complete

6.3 Crossings

According to the set goals, the agent also needs to be able to deal with crossing scenarios
in accordance with the COLREG rules. There are generally two different crossing scenar-
ios, a crossing from left and a crossing from right. In these crossing scenarios, the agent
vessel is never the stand-on vessel, since it is not as interesting an investigation to see if
the agent will do nothing compared to if it will avoid the collision with corrective actions.

The initial setup of the crossing-from-right scenario can be seen in Figure 6.3(a). The
agent vessel in the scenario is the rightmost vessel. The environment vessel is the top
vessel. In this scenario, the two vessels will collide if no evasive actions are taken. The
dotted lines after the vessels also in this scenario show the paths they have taken. In Figure
6.3(a), it is observable that the agent ship has started an evasive maneuver to its starboard
side to avoid the collision. In Figure 6.3(b), it is visible that the actions taken by the agent
vessel were successful in avoiding a collision and in line with the COLREG rules for
the scenario. The agent vessel avoided the collision by going behind the crossing vessel

49

Sebastian Penttinen

and avoided an intersecting path with the other vessel altogether. This is proof enough
to conclude that the agent, in addition to the previous policies, has learned a policy for
dealing with crossing scenarios from the right in an east to west direction.

(a) Starting point (b) Complete

Figure 6.3: Crossing Right

A crossing scenario from the left is not that different from a crossing scenario from the
right. It can be thought of as the same scenario flipped. An overview of the crossing from
left scenario is seen in Figure 6.4(a). In this case, the agent vessel is the top vessel and the
environment vessel is the vessel to the left in the figure. Since this scenario is a crossing,
the agent vessel needs to avoid the collision by altering its course to its starboard to avoid
intersecting courses. The agent vessel begins this corrective action to its starboard side in
ample time, as seen in Figure 6.4(b). The agent vessel’s course correction is enough to
avoid a collision in this scenario, as seen in Figure 6.4(c). When the agent vessel crosses
the dotted line and intersects the environment vessel’s path, the environment vessel is
already a safe distance away from the agent ship. The running of this scenario shows
the agent’s ability to also learn policies for crossing scenarios in a north to south-bound
direction with the environment ship approaching from the west.

50

Sebastian Penttinen

(a) (b)

(c)

Figure 6.4: Crossing from left: (a) Starting point (b) Midway (c) Complete

6.4 Four vessels

The most interesting goal defined in the thesis goals is a multiple vessel scenario. The
agent was never trained in a scenario with multiple ships present. All training scenarios
include the agent ship and an environment ship; hence, there were never more than two
vessels present. In the scenario with four vessels, all vessels are agent ships and are
controlled independently from one another. Taking multiple vessels into consideration at
once while still following COLREG rules is very interesting. It is not always clear what
scenario the agent vessel is in.

The initial setup of the scenario can be seen in Figure 6.5(a). As seen in the figure,
two of the ships have a northbound heading and the other two ships have a southbound
heading. This makes an interesting scenario when they all meet at almost the same time
in the middle, as seen in 6.5(b). Interesting to observe is that the middle vessel in Figure
6.5(a) decides to take the penalties it will get from altering its course towards its starboard
side and intersecting the oncoming vessel’s path. The distance is still ample enough be-

51

Sebastian Penttinen

tween the vessels and does not result in a collision. This demonstrates that the agent is
capable of making tradeoffs and taking a penalty in order not to receive the greater penalty
it would get in the case of a collision. In Figure 6.5(c) it can be observed that the middle
vessel has safely reached its final destination, as indicated by its change in color from
red to green. Additionally, notable in Figure 6.5(c) is that two of the vessels end up very
close to each other. They will get penalties for this but not as large penalties as in the
case of a crash. This once again shows the agent’s ability to compromise. All the ships in
the multiple vessel scenario end up at their final destinations safely, as indicated by their
green colors in Figure 6.5(d).

This chapter has covered the performance of the proof of concept agent in standard
COLREG scenarios. The agent’s performance in the scenarios was promising. It managed
to deal with head-on and overtaking scenarios in accordance with the COLREG rules. It
leaves ample space and does the correct evasive actions. Crossing scenarios are also
handled by the agent. When exposed to scenarios not seen before the agent also shows
promise. It manages to avoid collisions in a testing scenario with multiple ships present.
To avoid collisions whit multiple ships present the agent uses its ability to generalize and
make compromises. It knows to take intermediate penalties to achieve a higher reward in
the end.

52

Sebastian Penttinen

(a) (b)

(c) (d)

Figure 6.5: Four ships scenario: (a) Starting point (b) Midway (c) One collision avoided (d)
Complete.

53

Sebastian Penttinen

7. Discussion

The RL agent was created to be a part of a larger maritime simulator project at Åbo
Akademi University. The project needed an initial navigational agent to be placed in the
simulator and the author’s thesis was a good candidate. The author’s developed agent
also needed a simulator to be tested, which led to the author’s thesis being a part of
the larger project. Ivan Porres supervised the project and provided guidance during the
development. Porres also supplied and designed the initial template for the project. Kim
Hupponen [8] developed the simulator and simulation parts of the simulator. This means
that the sim module and user interface were primarily developed by Hupponen. The
sim module is responsible for handling the simulation, keeping track of where all the
ships are currently located, and knowing where land is. The author’s part in the user
interface development was minimal. The author mostly contributed with information
about the ships and agents that were needed in order to ease the debugging of the agents.
The ship object properties dealing with physics and modeling were designed by Kim
Hupponen. The author contributed to the ship object mainly on the parts needed to extend
the environment state and display information needed when debugging the RL agent.

The author’s main development focus was the RL agent and environment to train the
agent in. The author also assisted and solved bugs and issues in the simulator when
needed to advance in the development. The author made some modifications to the tra-
ditional structure of an Open Ai Gym environment to make the environment better fit
the simulator. The take_action method that usually is found inside the environment was
moved outside to the helpers module to reduce code duplication and make prototyping
faster. The taking of actions was needed in multiple places and hence it made the most
sense to share the code. This achieved faster prototyping since changes only had to be
made at a single place in the code.

Another part that is usually part of the environment is the reward function. This func-
tion was also needed in multiple places in the code. This led to the author moving the
function outside the environment to the helper module. The reward function was the part
of the author’s practical work that ended up taking the longest before arriving at a satisfac-
tory result. The development was mostly done through careful consideration and trial and
error. What to include and in which ways required contemplation and thought. Although
trial and error were involved, it was never pure guessing. Which states to be considered

54

Sebastian Penttinen

not desired or suboptimal and which states to consider desirable was for the most part
clear to the author. Therefore this was the easiest part of the reward function to decide
on. Trial and error were used to arrive at the rewards given out for different actions. The
reward function is currently not handling all permutations of COLREG scenarios. The
author did some prototyping with adding all permutations to the reward function. The
initial results where promising but still required additional work and testing. The author
hence decided to leave out the permutations of situations.

The state of the environment also traditionally lives inside the environment. As previ-
ously this would have caused code duplication and hence the author moved the code for
keeping track of the state outside of the environment. This makes dealing with changes
in the state easier since the changes only need to be made in a single place.

The author ended up making additional agents for the simulator that were not origi-
nally planned to be included. There was a need to introduce some form of randomness or
unexpected elements. The additional agent was added since the human error element of
maritime navigation needed to be included in the simulator. This introduced randomness
can then be used to test how robust different navigational algorithms are against unex-
pected events and previously not seen situations. To introduce these elements the agent
SemiRandomDQNAgent was added.

A simplification that is worth exploring in future work is the author’s hardcoded
threshold for when the RL agent obtains the control of the ship to do collision avoid-
ance. This value is currently based on the author’s intuition about what can be considered
ample space and in due time to start collision avoidance procedures. In future work, it
would be interesting to teach the agent to learn what this value should be. It is almost
certain that this hard-coded value is not suitable for all situations. The author believes
that better performance could be achieved if the agent would learn when to switch from
autopilot navigation to collision avoidance. The agent would then take the whole situation
into account.

55

Sebastian Penttinen

8. Conclusion

In this thesis, the possibility of using RL in a maritime setting has been explored. The
exploration was done as a proof of concept implementation of an RL agent that could
control vessels inside a simulator. The goals set up for the proof of concept was to explore
if it was possible to make an RL agent follow the COLREG rules in four different base
scenarios listed in the COLREG rules. Additionally, the RL agent’s performance was
evaluated in a multi-vessel scenario.

The agent’s performance and ability to accomplish the goals were evaluated with test
runs in the simulator and validated with visual inspections by the author. The lack of
mathematical proof for the validity of the scenarios is a factor that makes the results less
formal. The simulator used to test the agents was developed alongside the agents and
in-house at Åbo Akademi University. This means that the simulator is still quite new and
may have yet undiscovered bugs or lacking features that would greatly have influenced
the results obtained in this thesis. The simulator is yet to be published, which makes the
independent validation of these results not possible at this time.

Despite the lack of formal proof, the results from the trial runs with the agent are
promising. The agent manages to learn the desired behavior in all of the test cases. Espe-
cially interesting is that the agent manages to solve a more complex and diverse scenario
than trained on. This is an indication of the agent’s ability to generalize and not just re-
member different situations. It is this ability to generalize that gives RL its great potential.

Automation shows great promises for solving safety problems and introducing cost
savings in the long run. Further development and testing are, however, needed. The test
cases performed in this thesis alone are not enough proof to conclude that the approach
is suitable for large-scale adoption. The test cases show that RL agents can be thought
basic behavior mimicking COLREG rules in toy examples of simple scenarios inside
a simulator. The real world is infinitely more complex and diverse than ever possible to
program into a simulator. Significant real-world testing and further development of the RL
agent would be needed in order to actually implement a suitable commercial application.

56

Sebastian Penttinen

8.1 Future work

During the implementation of the agent and simulator, several compromises had to be
made. One omission that is worth exploring in future work on the agents is the drawback
that the vessels are not aware of where land is. This, as previously mentioned, is due to
the simplifications made to focus on the COLREG scenarios. Collision avoidance with
land was omitted and not considered to be as relevant for the proof of concept. The agent
is also only aware of the one other ship in the environment at a time. It is only aware of the
closest vessel to itself at any given point. It would be interesting to explore whether there
are any differences in performance if the agent is aware of more vessels. Since avoiding
a collision with the closest ship without knowing about a second close ship might lead to
the agent vessel ending up in an unnecessary risky or dangerous situation, that could have
been avoided completely if the agent had been aware of the second vessel’s presence.

The basic navigation agent is fine and accomplishes its job of providing the environ-
ment vessels with basic navigation abilities. The basic abilities are good enough for the
environment vessels and for navigating the agent vessel when there are no collisions to
be avoided. The basic agent is, however, somewhat lacking in its performance. In future
work, it would be interesting to explore and implement a better navigational agent that
is able to accept way-points along the way that it has to navigate through. This would
provide the basis to also implement path planning. This could be utilized to design more
complex situations and longer missions for the vessels. The vessels could have to sail
through some points to reach their final destination. For instance, the points could be
positioned so the vessel always stays in the fairway. Now the basic agent will take the
straightest path to its goal. This could also be a basis to try avoiding collisions while
always staying inside the fairway.

Another basis for future work is that currently, the simulator requires coding skills and
familiarity with the terminal to use. In future versions of the simulator, a more novice way
of creating configuration files could be beneficial. A form of drag and drop of ships into
the environment where the user could rotate the ships to change their bearing and specify
speed and other related things directly from the user interface would make the simulator
easier to use. The addition of new agents to the simulator could also be simplified since it
requires coding skills. The interface and coding necessary to implement one’s own agents
into the simulator could be improved in future versions of the simulator by changing the
structure of how the simulator loads and uses agents. The agents could, for instance, be
made to contain all relevant details in a single file.

57

Sebastian Penttinen

9. Svensk sammanfattning

9.1 Introduktion

Under de senaste åren har efterfrågan av obemannade fartyg ökat. Denna ökning beror
främst på två faktorer. Den första faktorn är de mänskliga misstag som inträffar inom
sjöfartsindustrin. Enligt rapporter beror över 75 % av alla dödsfall som inträffar till sjöss
på mänskliga misstag, dessutom beror 89-96 % av alla kollisioner också på mänskliga
misstag [1]. Nämnvärt är också att utredningar har visat att 56 % av dessa kollisioner
inträffade på grund av att COLREG-reglerna [2] inte följdes. Den andra faktorn som
påverkar är de potentiella inbesparingar som kan göras om man kan upprätthålla fartyg
med minskad personal. Helt obemannade fartyg är alltså möjliga. Dessa medför dock ut-
maningar. Ett helt obemannat fartyg behöver vara kapabelt att ta beslut helt utan mänsklig
inblandning. Att lösa detta problem är inte lätt eftersom det innehåller många dimensioner
och vinklingar.

Denna avhandling är avsedd att utforska en potentiell lösning på detta problem. I
avhandlingen behandlas användningen av förstärkt inlärning (eng. reinforcement learn-
ing) för att skapa en agent som kan navigera fartyg säkert och i enlighet med COLREG-
reglarna. Den implemeterade agenten är endast en prototyp och är avsedd att fungera
som en utgångspunkt för vidare forskning. Agenten kommer primärt att fokusera på att
lära sig undvika kollisioner i omkörningar, möten, situationer med korsande kurser och
ett scenario med flera fartyg. Agenten implementeras som en del av ett större projekt.
Projektet i fråga går ut på att utveckla en simulator för marina förhållanden. Simulatorn
är avsedd att hjälpa användare i utvecklingen av algoritmer för navigering av fartyg.

9.2 Sjöfartens regelverk

Enligt International Maritime Organization (IMO) är den maritima industrin en av världens
mest riskfyllda industrier [2]. IMO anser att riskerna inom den maritima industrin bäst
hanteras genom olika regelverk och förordningar. Ett av de mest centrala regelverken
inom den maritima industrin är Convention on the International Regulations for Prevent-

ing Collision at Sea (COLREG). COLREG är regelverket som hanterar hur kollisioner ska
undvikas till sjöss. Regelverket kan ses som vägregler för sjöfart. COLREG innehåller

58

Sebastian Penttinen

41 olika regler. De mest relevanta reglerna för denna avhandling är reglerna 8, 13, 14,
15, 16 och 17. Regel 8 beskriver hur kollisioner kan undvikas. Regel 8 bestämmer att
alla undvikande manövrar som faryg gör ska tas i god tid och i enlighet med god sjöman-
naetik. Manövrarna som görs ska också vara tillräckligt stora för att andra fartyg enkelt
ska se dem. Tillräckligt med utrymme ska också lämnas mellan fartygen. Dessutom ska
ett fartyg i en riskfylld situation konstant övervaka om det finns behov att vidta vidare
undvikande manövrar. Regel 8 fastslår också att den primära, undvikande manövern ska
vara att ändra kurs. Ändringar i hastighet ska göras endast för att vinna tid eller som sista
utväg för att undvika en kollision [2].

Regel 13 bestämmer hur omkörningar av andra fartyg ska göras. En omkörning av
ett annat fartyg behöver först och främst följa alla bestämmelser i regel 8. Det fartyg
som kör om ett annat fartyg ska alltid undvika att komma i vägen för fartyget som blir
omkört. Regel nummer 14 bestämmer hur fartyg ska agera när de möter varandra för mot
för. I denna situation ska de båda involverade fartygen ändra sina kurser mot styrbord.
Detta gör att fartygen passerar varandra på ett ökat avstånd. Regel nummer 15 dikterar
hur situationer där fartyg har korsande kurser ska skötas. Regel 15 bestämmer att det
fartyg som har ett annat fartyg på sin styrbords sida ska hålla sig ur vägen. Detta ska
göras genom att väja undan utan att hamna framför det andra fartyget. Med andra ord ska
det väjande fartyget köra bakom det andra fartyget. Regel 16 berättar hur fartyget som
väjer ska agera. Kontentan av regeln är att fartygen ska hålla sig ur vägen för varandra.
Regel 17 bestämmer vad fartyget som inte väjer bör göra. Regeln säger att fartyget ska
behålla sin kurs och hastiget. Fartyget ska endast väja om det är enda sättet att undvika
en kollision. Detta kan hända om det väjande fartyget inte följer reglerna eller om det har
gått så fel att en kollision inte längre kan undvikas endast genom att det väjande fartyget
agerar ensamt. Då behöver också det andra fartyget vidta åtgärder för att till varje pris
undvika en kollision [2].

9.3 Obemannade fartyg

Enligt Liu et al. [12] är definitionen på ett obemannat fartyg är avsaknaden av personal
ombord. Dessutom behöver ett obemannat fartyg uppvisa någon form av intelligent be-
teende. Obemannade fartyg är inte ett nytt koncept utan de har redan utvecklats i 20 år
[13]. De hittils utvecklande, obemannade fartygen har varit halvautonoma, vilket betyder
att de har till viss del förlitat sig på mänsklig vägledning och stöd, detta till skillnad från
helautonoma fartyg som fungerar helt utan mänsklig inblandning [12]. Liu et al. påpekar
många fördelar med helautonoma fartyg, de är billiga i drift eftersom minskad personal
innebär minskade löneutbetalningar. Dessutom ökar säkerheten genom att mänskliga mis-

59

Sebastian Penttinen

stag minimeras. En oväntad fördel är att helautonoma faryg tenderar att vara lättare och
smidigare, vilket innebär att de kan transportera mera gods i samma last jämnfört med
traditionella fartyg. Detta innebär också inbesparingar genom att samma mängd gods kan
transporteras med färre resor [12].

Trots alla dessa fördelar med helautonoma fartyg har de ännu inte tagits i bruk i större
utsträcking [13]. Detta beror främst på de utmaningar som ännu finns. Utmaningarna
beror främst på att fartygen inte är ensamma på havet. De behöver vara kapabla till inter-
aktion med andra fartyg och att ta andra fartyg i beaktande när de utför beslut [13]. Dessa
situationer med interaktion och beaktande av andra fartyg kan var ytterst komplexa [12].
Utmaningen ligger därför korfattat i att få de helautonoma fartygen att följa COLREG-
reglerna och att kunna hantera all tvetydiga eller osäkra situationer som kan uppstå på
havet.

9.4 Förstärkt inlärning

Förstärkt inlärning går ut på att genom upprepade försök och misslyckanden lära en agent
att lyckas lösa problem [16]. Förstärkt inlärning är en kombination av dynamisk program-

mering och övervakad inlärning. Genom att kombinera metoderna kan förstärkt inlärning
lösa problem som metoderna på egen hand inte klarar av att lösa. Fördelen med förstärkt
inlärning är dess förmåga att generalisera. Detta gör metoden lämplig att kunna lösa
problem som tidigare ansetts vara omöjliga [16].

En implementation av ett förstärkt inlärningssystem innehåller olika delar som be-
handlas nedan. Först och främst innehåller ett förstärkt inlärningssystem en agent och
en miljö. Agenten interagerar med miljön för att utforska och lära sig saker om den.
Det agenten lär sig om miljön använder den för att nå det mål som satts och för att nå
målet behöver agenten känna till miljön. Oftast känner agenten till vilket tillstånd miljön
befinner sig i. Vad som skall räknas till miljö inom ett förstärkt inlärningssystem är inte
entydigt definerat, men den vanligaste definitionen menar att allt som inte är agenten i
sig själv hör till miljön. Miljön och agentens samverkan baserar sig på att agenten kan
ändra miljöns tillstånd genom olika handlingar, exempelvis genom att agenten förflyttar
sig. Miljön svarar på dessa handlingar genom att presentera ett nytt tillstånd åt agenten.
Agenten reagerar på detta nya tillstånd med en ny handling och så vidare. Dessa handlin-
gar som agenten utför har olika belöningar. Agenten försöker lösa uppgiften den har getts
genom att ändra på miljöns tillstånd och om en ändring går i rätt riktning ges agenten en
belöning för att veta att den har gjort en korrekt handling. Om agenten har agerat dåligt
kan den bli bestraffad eller bli utan belöning. Det agenten försöker lära sig är en regel
för hur den skall handla i olika tillstånd som miljön befinner sig i. Det är denna regel

60

Sebastian Penttinen

som sedan definerar en agents beteende. Det agenten försöker komma fram till är vilken
regel som kommer att resultera i maximal belöning. En annan viktig del av ett förstärkt
inlärningssystem är hur belöningar ges. Den användare som bygger systemet måste de-
finera en matematisk funktion för hur belöningar skall ges och är ansvarig för att se till att
belöningar ges på ett sätt som leder till att agenten löser den givna uppgiften [15].

Det finns olika metoder för hur man skall designa agenter och förstärkta inlärningssys-
tem. I avhandling används metoden Deep Q-learning som presenterades av Mnih et al.
[18]. Metoden använder djup maskininlärning för att estimera värden för olika handlingar
en agent kan utföra i olika tillstånd. Agenten lär sig därmed vilken handling som är bäst
att utföra i olika tillstånd [18].

För att förstå hur en agent tar sina beslut och hur förstärkt inlärning fungerar behövs
matematik. Den matematik som utgör grunden för förstärkt inlärning är en Markovian

Decison Process (MDP). MDP har även kallats den optimala och traditionella metoden
för att representera en sekvens av beslut matematiskt [15]. MDP går i korthet ut på att rep-
resentera tillstånd och handlingar som kan utföras i dessa tillstånd matematiskt. Inklud-
erat i en MDP är även sannolikheten för att byta tillstånd, belöningar som ges i tillstånd
och en avdragsfaktor. En avdragsfaktor är en faktor med vilken framtida belöningar för
tillstånd beaktas i det nuvarande tillståndet. Framtida belöningar kan med hjälp av av-
dragnings faktorn viktas olika. Faktorn kan användas för att få agenten att alltid välja den
belöning som för stunden ser bäst ut utan att beakta framtida belöningar. Alternativet till
denna kortsynthet är att sätta faktorn så att agenten försöker planera för större belöningar
i framtiden och inte agerar girigt [15].

9.5 Implementation

Agenten implementerades som en del av ett större projekt inom Åbo Akademi. Det större
projektet gick ut på att skapa en simulator för testning av olika navigeringsalgoritmer för
fartyg. Min uppgift var att som en del av projektet implementera en första navigeringsal-
goritm och jag valde att implementera denna algoritm med hjälp av förstärkt inlärning.
Själva agenten implementerades med hjälp av Keras-rl-biblioteket [6] för att inte behöva
implementera grundläggande funktioner. Dessutom är ett bibliotek mindre sannolikt att
innehålla fel då flera personer redan har använt biblioteket och hittat de flesta felen. Jag
implementerade även en specialmiljö att träna agenten i genom att det inte fanns färdiga
miljöer för maritima förhållanden att tillgå. En belöningsfunktion behövde utecklas för
agenten och är den viktigaste delen hos en agent. Med funktionen styrs beteende som
agenten kommer att lära sig och använda för att lösa den givna uppgiften. Funktionen
fungerar genom att beakta vinkeln mellan två fartyg. Utgående från vinkeln kan det sedan

61

Sebastian Penttinen

bestämmas i vilket COLREG-scenario som agenten befinner sig i just nu. Därefter kan
agenten bestraffas om den inte utför korrekt undanmanöver.

9.6 Resultat

Den implementerade agenten lyckas lära sig att undvika kollisioner i omkörningar, mö-
tanden och i situationer med korsande kurser. Agenten följer även COLREG-reglerna
när den undviker kollisionerna. Dessutom lyckas agenten undvika kollisioner i ett mera
komplicerat scenario än den har sett under träning. Det mera komplicerade scenariot in-
nehåller fyra fartyg som seglar mot varandra. Vilka COLREG-regler som gäller under
vilken tidpunkt i scenariot är tvetydigt. Agenten lyckas ändå undvika att kollidera med
andra fartyg. Detta är ett tecken på att agenten klarar av att generalisera. Detta är det som
vill uppnås med agenten, den blir inte låst att endast följa reglerna. Den inser att det kan
vara skäl att ta mindre bestraffningar som en följd av att bryta mot regler. Slutresultatet
är ändå en högre belöning genom att den lyckas undvika den enorma bestraffning som
skulle bli utdelad ifall den skulle ha kolliderat med ett annat fartyg.

9.7 Slutsats

I denna avhandling har utforkskats möjligheten att använda förstärkt inlärning för att lösa
utmaningarna som finns med hel-autonoma fartyg genom att implemetera en prototyp av
ett förstärkt inlärningssystem. Målet som sattes upp var att studera om det är möjligt
att lära en förstärkt inlärningsagent att följa COLREG-reglerna. Agentens prestationer
utvärderades visuellt i en simulator. De första resultaten är lovande och kan fungera som
en bas för fortsatt forskning. Automation visar sig vara lovande för att minimera risker
och spara pengar inom sjöfartsindustrin. Testerna och slutsatserna i denna avhandling är
inte tillräckliga för att bevisa att förstärkt inlärning är lämplig för storskalig användning i
navigeringssystem, men de påvisar att det finns förutsättningar. Testerna visar att agenter
med förstärkt inlärning kan lära sig COLREG-regler inom ramen för kontrollerade exper-
iment i en simulator. Långtgående testning och utveckling med riktiga fartyg krävs som
vidare utveckling.

62

Sebastian Penttinen

References

[1] A. M. Rothblum, Human error and marine safety, 2000.

[2] I. M. Organization, Colreg, 1972. [Online]. Available: http://www.imo.org/
en/About/Conventions/ListOfConventions/Pages/COLREG.aspx.

[3] T. Statheros, G. Howells, and K. M. Maier, “Autonomous ship collision avoid-
ance navigation concepts, technologies and techniques”, English, The Journal of

Navigation, vol. 61, no. 1, pp. 129–142, Jan. 2008. [Online]. Available: http:
//journals.cambridge.org/abstract_S037346330700447X.

[4] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, TensorFlow: Large-

scale machine learning on heterogeneous systems, Software available from tensor-
flow.org, 2015. [Online]. Available: https://www.tensorflow.org/.

[5] F. Chollet et al., Keras, https://keras.io, 2015.

[6] M. Plappert, Keras-rl, https://github.com/keras-rl/keras-rl, 2016.

[7] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba, Openai gym, 2016. eprint: arXiv:1606.01540.

[8] K. Hupponen, Simple ship sim, a simulator for testing machine-learning algorithms

for ships tbp, 2020.

[9] I. M. Organization, International maritime organization. [Online]. Available: http:
//www.imo.org/.

[10] Safety4Sea, 3,174 maritime casualties and incidents reported in 2019. [Online].
Available: https://safety4sea.com/23073-maritime-casualties-and-
incidents-reported-in-2019/.

[11] R. C. M. Sea and Rescue, Characteristics of navigation lights. [Online]. Avail-
able: https://rcmsar12.org/boating-resources/vessel-navigation-
lights/characteristics-navigation-lights/ (visited on 03/30/2020).

63

Sebastian Penttinen

[12] Z. Liu, Y. Zhang, X. Yu, and C. Yuan, “Unmanned surface vehicles: An overview
of developments and challenges”, English, Annual Reviews in Control, vol. 41,
pp. 71–93, 2016. [Online]. Available: http : / / dx . doi . org / 10 . 1016 / j .
arcontrol.2016.04.018.

[13] J. E. Manley, “Unmanned surface vehicles, 15 years of development”, English,
IEEE, Sep 2008, pp. 1–4, ISBN: 0197-7385. [Online]. Available: https://ieeexplore.
ieee.org/document/5152052.

[14] G. Van Rossum and F. L. Drake, Python 3 Reference Manual. Scotts Valley, CA:
CreateSpace, 2009, ISBN: 1441412697.

[15] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, 2. print.
Cambridge, Mass. [u.a.]: MIT Press, 2015, ISBN: 9780262193986.

[16] M. E. Harmon and S. S. Harmon, “Reinforcement learning: A tutorial”, English,
Tech. Rep., Jan. 1997. [Online]. Available: http : / / www . dtic . mil / docs /
citations/ADA323194.

[17] S. David, Lecture 2: Markov decision process, 2015. [Online]. Available: http:
//www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/MDP.pdf.

[18] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beat-
tie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D.
Hassabis, “Human-level control through deep reinforcement learning”, English,
Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015. [Online]. Available: https:
//www.ncbi.nlm.nih.gov/pubmed/25719670.

[19] C. J. C. H. Watkins, “Learning from delayed rewards”, English, PhD thesis, 1989.
[Online]. Available: http://catalog.crl.edu/record=b1459262.

[20] C. J. C. H. Watkins and P. Dayan, “Q-learning”, English, Machine Learning, vol. 8,
no. 3-4, pp. 279–292, May 1992. [Online]. Available: https://www.openaire.
eu/search/publication?articleId=od1874::d032ca5d74b9f6624a16d96869f30f56.

[21] T. E. Oliphant, A guide to NumPy. Trelgol Publishing USA, 2006, vol. 1.

[22] G. Community, Pyside2. [Online]. Available: https://wiki.qt.io/Qt_for_
Python (visited on 03/03/2020).

[23] Tensorflow, Tensoflow.org. [Online]. Available: https : / / www . tensorflow .
org/.

[24] G. Community, Keras.io. [Online]. Available: https://keras.io/.

64

Sebastian Penttinen

[25] I. d. N. Oren Ben-Kiki Clark Evans, Yaml ain’t markup language (yamlTM) version

1.2, 2009. [Online]. Available: https://yaml.org/spec/1.2/spec.html.

[26] M. Wiering, “Explorations in efficient reinforcement learning”, PhD thesis, 1999.

[27] N. Cesa-Bianchi, C. Gentile, G. Lugosi, and G. Neu, “Boltzmann exploration done
right”, English, May 2017. [Online]. Available: https://arxiv.org/abs/1705.
10257.

[28] E. W. Weisstein, Pythagorean theorem. 2020. [Online]. Available: http://mathworld.
wolfram.com/PythagoreanTheorem.html (visited on 02/17/2020).

[29] M. O. Reference, Distance between two points (given their coordinates), 2011.
[Online]. Available: https://www.mathopenref.com/coorddist.html (visited
on 02/17/2020).

65

