

DOM benchmark comparison of the front-end

JavaScript frameworks React, Angular, Vue,

and Svelte

Mattias Levlin, 38852

Master’s Thesis in Computer Science

Åbo Akademi University

Supervisors: Annamari Soini & Dragos Truscan

Mattias Levlin i

Abstract

One of the most used tools for creating interactive, advanced, and easily maintainable websites

in 2020 is the programming language JavaScript. Over the last decade, many front-end

frameworks have been built on top of JavaScript, which makes creation, design, and

maintenance of interactive websites easier. As of 2020, the most popular front-end JavaScript

frameworks were, by a large margin, React and Vue, followed by Angular. A relatively new

framework called Svelte was also gaining in popularity and raised developer interest. This study

will evaluate the performance of these front-end JavaScript frameworks. The criteria for

evaluation are primarily based on speed of completing certain operations related to DOM

elements in the web browser, such as DOM element addition, editing, and removal. Non-

technical evaluation points include differences in architecture, development experience,

popularity, maturity, and availability.

To set the context for the study of these frameworks, the study begins with an outline of the

history and development of JavaScript. Its current status and versions are also described.

Surrounding technologies relevant to the study are presented, such as DOM and HTML.

Following this, the key features of front-end JavaScript frameworks are investigated, and the

development setup process for a generic framework is documented. The criteria for selecting

frameworks for evaluation is presented, and the four selected front-end frameworks are then

investigated and evaluated. A benchmark JavaScript application is described and created for

each of the frameworks. With this reference application, a number of technical benchmarks are

performed, where the frameworks are rated according to how well they perform various DOM

data updates. Finally, a recommendation is made on which frameworks are best suited for use,

and how the future landscape of front-end JavaScript frameworks is likely to develop.

Mattias Levlin ii

Contents

1 Introduction .. 1

2 The web environment and JavaScript’s surroundings .. 2

2.1 The web browser ... 2

2.2 HTML and CSS ... 3

3 JavaScript ... 6

3.1 Creation and development of JavaScript .. 6

3.2 ECMAScript and standard JavaScript .. 7

3.3 JavaScript flavors and TypeScript ... 9

3.4 XML, AJAX, and the Single Page Application .. 10

3.5 Current status of JavaScript .. 13

3.6 Comparison with PHP ... 14

3.7 The Document Object Model .. 15

3.7.1 Virtual DOM .. 18

3.7.2 DIV, SVG, and Canvas elements... 19

3.8 jQuery .. 20

4 Front-end JavaScript frameworks .. 23

4.1 Terminology: Frameworks versus libraries .. 23

4.2 Templates and reusable component files ... 24

4.3 The model-view-controller pattern .. 26

4.4 The global state, the data store, and props in SPA .. 27

4.4.1 Data store implementations .. 31

4.4.2 Navigation: props and routing .. 32

5 Technical environment of front-end JavaScript frameworks ... 35

5.1 The runtime environment ... 35

5.2 Toolchains .. 36

5.2.1 Package managers: npm and Yarn .. 36

5.2.2 Bundlers: Webpack .. 37

5.2.3 Transcompilers: Babel ... 38

5.3 Setup and project structure .. 39

6 The frameworks ... 40

6.1 Framework selection ... 40

6.2 React ... 44

6.2.1 DOM interaction in React .. 45

6.2.2 Templating, components and syntax ... 46

Mattias Levlin iii

6.3 Angular .. 46

6.3.1 DOM interaction in Angular .. 47

6.3.2 Templating, components, and syntax .. 48

6.4 Vue .. 49

6.4.1 DOM interaction in Vue .. 50

6.4.2 Templating, components, and syntax .. 51

6.5 Svelte .. 52

6.5.1 DOM interaction in Svelte ... 52

6.5.2 Templating, components, and syntax .. 53

7 Technical benchmarks and evaluation ... 54

7.1 Benchmark considerations ... 54

7.1.1 Control structure and DOM elements .. 55

7.1.2 The lifecycles .. 56

7.2 DOM benchmarks ... 58

7.2.1 DOM insertion .. 58

7.2.2 DOM editing .. 59

7.2.3 DOM removal ... 62

7.2.4 Compilation speed ... 64

7.2.5 Summary of the technical benchmark tests .. 65

7.3 Other evaluations .. 66

7.3.1 Framework size ... 67

7.3.2 Development experience, learning curve, and availability ... 68

8 Results, summary, and conclusion ... 70

Svensk sammanfattning ... 73

References .. 81

Mattias Levlin 1

1 Introduction

This study aims to compare and evaluate some of the most popular JavaScript frameworks with

a series of DOM performance benchmarks, to find out which one is best suited for web

development, and what strengths and weaknesses each of the frameworks have. DOM is an

abbreviation of Document Object Model, which is a web browser representation of current

elements displayed on a certain web page. Furthermore, other factors are discussed for each

framework, such as their respective history, usability, popularity, and maturity. This study may

be of general interest to web developers, especially developers focused on front-end

technologies, as it could potentially make the selection of an appropriate front-end JavaScript

framework for a certain project easier. The study may also serve as a general introduction to

the domain of JavaScript frameworks. Furthermore, focusing on the technical metrics may be

of special interest to stakeholders concerned with efficiency and web browser speed. A practical

situation where these metrics become relevant is one where a person or company is looking to

start a new web project where a large number of visual web elements are handled. In this case,

handling a web application with resource-heavy DOM manipulation, the technical metrics

would be helpful for estimating scalable measurements. The best-performing framework(s) will

be recommended for general web development usage.

An outline of this study is as follows: In chapter 2, JavaScript’s surrounding technologies are

outlined; in chapter 3, JavaScript, its history, and current status is overviewed; in chapter 4, the

general idea of a JavaScript front-end framework is presented; in chapter 5, technical tools

related to setting up a JavaScript project are discussed; chapter 6 contains a presentation of the

JavaScript framework landscape, and a more thorough description of a smaller number of

popular front-end JavaScript frameworks. In chapter 7, the described frameworks are evaluated

in practice, according to a number of technical DOM benchmarks. Some non-technical

evaluation points are also discussed. Finally, chapter 8 contains a discussion of results, usage

recommendations, and a conclusion.

Mattias Levlin 2

2 The web environment and JavaScript’s surroundings

In 2020, the Internet was more ubiquitous than ever, exemplified by a statistical report

assembled in late 2019 by the International Communication Union, which reported that more

than half of the world population, 53.6%, had access to the Internet (4.1 billion people), either

through mobile or broadband connections [1]. To navigate the Internet, people commonly use

the World Wide Web information system. Navigation and access to web pages on the World

Wide Web is usually done with the help of web browsers, available in both mobile and desktop

versions. Within a web browser, information can be accessed in the form of web pages, which

are most commonly built with HTML, CSS, and JavaScript. These are the three fundamental

building blocks of web pages. HTML is used to create elements on web pages, such as menus,

texts, and boxes; CSS is used to style, design, and place these elements on the web page; and

JavaScript enables interaction with and manipulation of these elements. JavaScript has been

described as a glue language, used for assembly of other components. Out of these three, HTML

and CSS are less complex, and are mostly used for static design purposes. For developers who

want to create dynamic web content, JavaScript is one of the most important building blocks,

and for this reason, the scope of the language, including the tools, libraries, and frameworks

found within the language, is much larger and more complex than that of HTML or CSS. While

some static web pages use HTML and CSS only, JavaScript web page interactivity has become

a de facto standard used on most web pages.

In this chapter, the history of the Internet, the World Wide Web, and the web browser is

presented in a condensed form, followed by the development of the initial web content

technologies, HTML and CSS.

2.1 The web browser

The most used web browsers in February 2020 were Google Chrome (64.5% global usage

share), Safari (17.6% usage share), and Mozilla Firefox (4.6% usage share) [2]. To develop web

pages and other content for these web browsers, JavaScript, and JavaScript-based frameworks

and libraries, are central tools. The different versions of the web browser allow for quick and

Mattias Levlin 3

easy navigation through different pages, and have become one of the backbones of the Internet.

The first web browser, which serves as the first ancestor to all the latter ones, was the World

Wide Web browser, developed and released in December 1990. Tim Berners-Lee served as the

lead developer for the project, while working at the European Nuclear Research institute, more

commonly known as CERN, located in Switzerland. Berners-Lee simultaneously developed

and released the Hypertext Transfer Protocol (HTTP), which serves as an application protocol

for the World Wide Web, used for indexing and navigation of web sites. Several technological

breakthroughs in the previous decades had enabled the creation of a technology such as the web

browser: TCP/IP, the Domain Name System (DNS), and the Uniform Resource Locator (URL),

which were all part of the early Internet [3].

The World Wide Web browser was an innovative project, though limited in scope at first.

Another innovation that would enable wider proliferation and spread of the Internet, was the

graphical web browser. The first graphical web browser, Mosaic was released in 1993. Mosaic

was developed by the American state-owned company National Center for Supercomputing

Applications and its lead developers were Marc Andreessen and Eric Bina. The browser was

successful thanks to its user-friendly interface, easy installation process on the operating system

Microsoft Windows (which was growing in usage share at the time), and support for multiple

internet protocols. Mosaic would serve as a template for companies to follow. One of the more

notable follow-ups was the Netscape Navigator browser, developed by the company Netscape

Communications, and released in 1994. It took over the market after Mosaic and became the

most used web browser a few months after its release. On these early web browsers, HTML

content was standard, to which CSS was later added as a styling language. Besides JavaScript

these are, even in 2020, the two fundamental web standards for creating web pages.

2.2 HTML and CSS

HTML was developed and released in 1993, some years before JavaScript, while CSS was

released in 1996, one year after JavaScript. These three languages have come to form a

technology stack referred to as “the triad of technologies that all Web developers must learn”,

by David Flanagan [4]. HTML is an abbreviation of Hypertext Markup Language, defined by

the World Wide Web Consortium as “the Web’s core language for creating content for everyone

Mattias Levlin 4

to use anywhere” [5]. Hypertext refers to text that contains references, or hyperlinks, to other

text segments or text pages. Markup refers to text containing annotations, specifying data

properties belonging to a certain text, beyond the visible text content itself. Furthermore, it is a

descriptive markup language, which means that it is used for labeling the text, not giving

instructions on how to process the text.

An HTML document is recognized by its initial declaration <!DOCTYPE html>. All HTML

elements follow the same syntax (<element>). Basic HTML syntax, with common root

elements such as <html>, <head>, and <body>, is described in Figure 1. This type of syntax

contains nested elements, where the <head> and <body> elements are child elements to their

parent element <html>.

 <!DOCTYPE html>

 <html>

 <head>

 <!-- Head (title) content here -->

 </head>

 <body>

 <!-- Body (page) content here -->

 </body>

 </html>

 </html>

Figure 1: Example of HTML syntax. Identical or similar syntax to this is often used when

developing with the JavaScript frameworks evaluated in this study.

The latest major version of HTML is HTML5, initially released in January 2008, but fully

released in October 2014, in a complete version recommended for usage by the World Wide

Web Consortium (W3C). HTML5 seeks to improve multimedia capacities and easier

manipulation of the Document Object Model, abbreviated as DOM, which is a key action in

advanced web applications. HTML5 also introduced many new HTML elements, such as

<article>, <canvas>, <footer>, and <header>. The <canvas> element can be used for

drawing a large number of elements on the screen. In terms of multimedia elements, the

<audio> and <video> elements replace the <object> element. This has been seen as an attempt

to provide Adobe Flash-like functionality, and ultimately replace it, since Adobe Flash is a

proprietary technology. These elements are ready-made components which will help developers

Mattias Levlin 5

construct advanced web applications more quickly. HTML5 also discontinued certain elements,

notably the font element.

CSS, an abbreviation of Cascading Style Sheets is defined by the Word Wide Web Consortium

as “a simple mechanism for adding style (e.g., fonts, colors, spacing) to Web documents” [6].

CSS is one of the most common tools used as an addition to HTML, and is found in many basic

introductory courses to programming and computer science, forming a simple toolkit for

designing basic user interfaces. The primary developers of CSS were Håkon Wium Lie and

Bert Bos. The former was working with Tim Berners-Lee at CERN, and so had the opportunity

to discuss what kind of styling technology was needed for web content. The impetus of the

development of CSS came from the fact that there was no easy way to style documents on the

Web in the early 1990s. While working on the first web browser, Tim Berners-Lee had not

specified a syntax for styling HTML documents, though he had envisioned a separation of

document structure and document layout. Early browsers introduced various browser-specific

style languages, such as DSSSL and Pei Wei’s Viola browser language. CSS was designed to

be simple, and to create a balance between the author and the user. Crucial to the success of

CSS was browser support; the first commercial browser that supported CSS was Microsoft’s

Internet Explorer 3, released in August 1996. This browser supported most of the standard CSS

elements, such as color, background, font and text properties. Soon after, Netscape Navigator

and Opera announced support for CSS, and most subsequent browsers have supported CSS,

including the top-used browsers in 2020 [7].

The relationship of HTML to JavaScript today is that it can work either as a complement to

JavaScript, as with jQuery, or, as often more recently, as integrated, HTML-like syntax that is

compiled into HTML elements. An example of this is the JSX syntax, recommended for use

when developing with React, which is neither purely JavaScript nor HTML, but a combination

of them both, integrating the basic element creation and structural functionality of HTML with

the dynamic capabilities of JavaScript. CSS as a technology is also commonly used in tandem

with JavaScript. One option is to implement CSS properties in separate .css files, which is the

more traditional format. Another option, similar to how HTML has been combined with

JavaScript, is to integrate CSS into the JavaScript frameworks themselves, through specialized

libraries such as CSS-in-JS and styled-components. Libraries such as these enable the developer

to write JavaScript code that styles visual elements with CSS-like syntax. This styling code is

then usually compiled into pure CSS in the browser [8].

Mattias Levlin 6

3 JavaScript

This chapter presents a general overview of JavaScript; the background, history, and

development of JavaScript are outlined, followed by a description of the current features of

JavaScript. The status and version history of ECMAScript, which JavaScript is an

implementation of, is outlined, and then the different flavors of JavaScript are presented. The

current structure and features of JavaScript are important to understand, as all the frameworks

discussed are built upon the core JavaScript language. References to different ECMAScript

versions and different JavaScript flavors are common within JavaScript’s developer

community, and it is useful for any JavaScript developer to achieve an understanding of these

different versions.

3.1 Creation and development of JavaScript

In 1995, NetScape Communications, the developers of the then-popular web browser NetScape

Navigator, hired the programmer Brendan Elch to create a new dynamic scripting language for

web pages and client-side manipulation of data. Having established themselves in the web

browser market, Netscape saw the need for creating dynamic websites instead of using just

HTML, which had been the standard up until then. Most early websites were designed in a

computationally inefficient way using only HTML: for each user action or click, a request was

sent to the server, and then a new HTML page was sent back to the client.

Marc Andreessen, founder of Netscape Communications, believed that there existed a

fundamental need for a simple web scripting language, targeted for DOM manipulation. The

scripting language was intended not only for experienced developers, but also for designers and

people with less programming experience, something that would function as an add-on to

HTML. The project was inspired by the functionality and syntax of Java, though fundamentally

different. Brendan Elch and his team initially called the project Mocha, later switching to

LiveScript, before finally settling on the name JavaScript, which has caused much confusion in

terms of the similarity between Java and JavaScript (little similarity exists beyond a minor

syntactic resemblance) [4]. The project was prototyped during 1995, and released officially in

Mattias Levlin 7

March 1996. Already at launch, JavaScript enabled new functionality on web pages that HTML

alone could not handle, such as responding to user input, changing colors of elements, and

showing pop-up windows [9]. As JavaScript was developed by NetScape, it was not envisioned

as being a future web standard, which it became. One reason for its later popularity was that

NetScape was bought by America Online (AOL) and later turned over their browser’s code to

Mozilla, including JavaScript-based functionality, which contributed to its growth [10].

3.2 ECMAScript and standard JavaScript

Figure 2: ECMAScript implementations or dialects in green (one of them being JavaScript),

and JavaScript flavors depicted in orange.

After the initial release of JavaScript in 1997, the developers, headed by Brendan Elch, saw the

need for a language standardization, so as to foster growth, prevent fragmentation of the

JavaScript developer community, and make the language accessible across browsers. This was

done through the ECMAScript language standard, defined in 1997 by the standards

organization Ecma International. ECMAScript has the standard ID ECMA-262. ECMAScript

Mattias Levlin 8

is additionally defined as an ISO standard (ISO/IEC 16262, later revised and updated to

ISO/IEC 22275 in 2018) [11].

Figure 2 describes the relationship between the ECMAScript standard, the different

implementations or “dialects” of ECMAScript (JavaScript, ActionScript, and JScript), and the

JavaScript flavors ClojureScript, CoffeeScript, and TypeScript (the last of which is used by

Svelte and Angular, frameworks evaluated in this thesis). JavaScript is the most well-known

implementation of ECMAScript, but there are several other implementations or “dialects” of

ECMAScript besides JavaScript. One of these is JScript, developed by Microsoft in 1996 as

their own in-house alternative to JavaScript, primarily used within Microsoft’s Internet

Explorer browser. Another notable dialect is ActionScript, developed by Macromedia Inc., a

company later bought by Adobe Systems. The ECMAScript standard has been under

continuous development since its first standardization (version 1) in 1997. ECMAScript 6, also

known by the name ECMAScript 2015, is the sixth edition of the ECMA-262 standard and is

an often-used version. From ECMAScript 2015 version onwards, Ecma shifted to an annual

release system, updating ECMAScript once a year, thus making each version thereafter known

both by its version number and its version year. The most recent ECMAScript edition, the tenth,

was defined in June 2019, as ECMAScript 2019 [12].

When compatibility with older browsers needs to be ensured, more modern JavaScript versions

need to be converted into older versions. Conversion can also be done between JavaScript

versions, or from one JavaScript flavor into another, such as from TypeScript to JavaScript.

This process is called transcompiling. The most widely supported JavaScript version

corresponds to ECMAScript 2015 and this is a commonly used target version for

transcompiling purposes. The different JavaScript flavors, marked in orange in Figure 2, are

sometimes called transcompiled languages.

function additionExample(left, right) {

 return left + right

}

Figure 3: Example of JavaScript code. The input variables left and right are weakly typed,

meaning that their data types do not need to be specified.

Mattias Levlin 9

JavaScript is an object-oriented, high-level scripting language containing both dynamic and

weak typing. Dynamic typing means that definition of data types is not strict; a value assigned

to a string may be reassigned to a number. Weak typing means that data types are implicitly

defined, not explicitly, and automatic data type conversions may happen depending on the

operation, sometimes in an unpredictable fashion. This can be seen in Figure 3, where the

variables left and right do not have a specified variable type. This means that an

unpredictable addition of a number and a string, such as 3 + “3” could be performed with this

example function, which would return “33” as a result.

JavaScript implements standard programming syntax introduced by the language C, such as if,

while, and switch, and makes extensive use of functions. Furthermore, just like C, JavaScript

uses curly bracket syntax to define statement blocks ({ … }). The ECMAScript 2015 standard

of JavaScript introduced numerous changes: let and const were introduced to enable block

scoping, whereas previously, function scoping was the only scoping variant available. The

arrow function, a type of anonymous function, was also introduced with ECMAScript 2015,

which enabled a shorter function definition. Semicolons are allowed for termination of

statements, but can be omitted.

3.3 JavaScript flavors and TypeScript

JavaScript contains several flavors that differ in syntax, but are still considered variants of

JavaScript. React and Vue, two of the frameworks evaluated in this study, are based on standard

JavaScript, while the other two, Svelte and Angular, are based on TypeScript. TypeScript was

developed by Microsoft as a superset of JavaScript, and aimed to create a language that would

be more suitable for large-scale applications. This is exemplified also by the slogan of

TypeScript: “JavaScript that scales” [13]. TypeScript is an extension of ECMAScript, more

specifically ECMAScript 6. While TypeScript is fundamentally different from standard

JavaScript, it is still popular; in the 2019 State of JavaScript survey, TypeScript was the

JavaScript flavor that, except for the standard version, had the highest awareness (100%),

satisfaction (89%), and interest rating (66%) [14]. The satisfaction with TypeScript has also

increased over time, in the same survey, the “satisfied users” category for TypeScript has risen

from 20.8% in 2016 to 58.5% in 2019. Worth noting is TypeScript’s original release date, 2012.

Mattias Levlin 10

function additionExample(left: number, right: number): number {

 return left + right;

}

Figure 4: TypeScript equivalent to the JavaScript code seen in Figure 2. This is an example of

static typing, where the data types of the variables left and right are specified as numbers.

While TypeScript is based upon JavaScript, there are several key differences. An example of

TypeScript code syntax is seen in Figure 4. In this figure, the variable types of the variables

left and right are specified as number in the function definition. This convention, known as

static typing, is an additional verification step which makes TypeScript differ from JavaScript.

Static typing enables variable type checking, which makes the development process more

secure and easier to debug while coding: the required input and return variable types for

functions can be specified. TypeScript is thus stricter but also potentially more secure than

standard JavaScript, where the variable types do not have to be defined and can be passed to a

function regardless of variable type. TypeScript files are denoted with the suffix .ts, instead of

.js, for JavaScript files. Furthermore, TypeScript is designed to be an object-oriented language,

while JavaScript is a scripting language. One drawback with TypeScript is that it cannot be run

directly, it has to be transcompiled to JavaScript, and this usually means some extra load times

at some part of the development process.

In the 2019 State of JavaScript survey, the numbers of satisfied users (meaning users that have

both used the JavaScript flavor in question and would use it again) for each of the most used

JavaScript flavors other than standard JavaScript were as follows: TypeScript at 58.5%, Reason

at 3.5%, Elm at 4.7%, ClojureScript at 2.0%, and PureScript at 1.6% [14]. As can be seen,

TypeScript is by far the most used and well-liked JavaScript flavor.

3.4 XML, AJAX, and the Single Page Application

XML is a markup language similar to HTML, but is more often used for data representation

instead of content display. Both XML and HTML are today widely used on the Internet, and

Mattias Levlin 11

both also derive from the earlier markup language SGML (Standard Generalized Markup

Language), which was in use as a dynamic information language in the 1980s. XML was

developed by the World Wide Web Consortium and initially released in 1996, while the latest

standard edition, the fifth, was defined in 2008. The developers of XML intended the language

to be usable over the Internet, easy to write and read, encoding documents in a format readable

both to humans and computers [15]. As can be seen in Figure 5, XML is similar to HTML, in

that they both use opening and closing tags to define elements, and content or text can be

defined between the tags. Another similarity to HTML is the nesting of properties, as city and

country are sub-properties of location in Figure 5. This example code represents a person

with the properties firstName, lastName, and location, and the properties city and country

are nested properties of within the parent property location.

 <person>

 <firstName>Mattias</firstName>

 <lastName>Levlin</lastName>

 <location>

 <city>Espoo></city>

 <country>Finland></country>

 </location>

 </person>

Figure 5: Example of XML syntax, the similarity to HTML can be seen.

XML was to become relevant within the JavaScript sphere with the invention of the technology

collection AJAX, an abbreviation of Asynchronous XML and JavaScript. AJAX provides the

developer with a way to update parts of an HTML page without downloading its entire content.

AJAX is not one single technology or tool, but rather a collection of several technologies,

bundled together as a whole; Garrett defines these technologies as XHTML, CSS, DOM, XML,

XLST (eXtensible Stylesheet Language Transformations), XMLHttpRequest, and JavaScript

[16]. Within AJAX, JavaScript is the tool binding all the other ones together. In the early 2000s,

a prominent source of frustration for web users were the slow server responses and long data

transmission times, often exacerbated by the low-speed Internet connections during the era. A

marked improvement came with the development of the AJAX technology stack.

The first step towards AJAX and the appearance of asynchronous elements on the web

happened with the introduction of the iframe (inline frame) HTML tag, introduced in 1996 in

Microsoft’s Internet Explorer. Another important technology, which is a central part of the

Mattias Levlin 12

AJAX technology stack, is the XMLHttpRequest, developed in 1998. The XMLHttpRequest is

a scripting object, used for sending XML data to and from the server, instead of HTTP data.

The AJAX system was first prototyped in 1999. Using web applications before AJAX usually

involved long periods of waiting on the user end: each time a user request was sent through a

click in the interface, the user inevitably had to wait for the synchronous server response and

the data transmission. Within the AJAX system, every user action that would normally require

a server request, is directed instead to the AJAX engine, which is located on the client side.

Certain simple actions can be handled on the client side exclusively, and for things that require

server communication, asynchronous XML data is used, instead of synchronous HTTP data.

Thus, the web application operates seamlessly from the user’s point of view, and eliminates

waiting times. Displayed in Figure 6, the key innovations of the AJAX system are the JavaScript

call and the AJAX engine, both located on the client side, and the communication through XML

data, replacing HTML/CSS data from the server [16].

Figure 6: Diagram showing the difference between pre-AJAX and AJAX web applications.

Mattias Levlin 13

All of the JavaScript frameworks presented in this thesis have adopted the single page

application principles, a design philosophy that has become a well-known standard among web

application programmers. A Single Page Application (SPA) is an application composed of

individual components, loaded into memory upon first page visit, that can then be replaced or

updated independently, so that the entire webpage does not have to be reloaded on every user

action. Another advantage with single page applications is that components can be reused, and

thus the amount of code needed can be drastically reduced. The single page application was

implemented and patented for the first time in 2002, with the patent specifically mentioning

JavaScript as an example of a target language for the implementation [17]. Single-page

applications can be contrasted with the alternative multi-page application, which can have some

marginal advantages, including easier search-engine optimization, as each page on a multi-page

application is treated as an individual page by search engines. The success of single page

applications, which would be popularized later on, was largely thanks to the preceding AJAX

technology and its innovations in server communication.

3.5 Current status of JavaScript

Throughout the 2010s, JavaScript has grown to become one of the most used programming

languages for web development purposes. According to a survey done by the code hosting site

GitHub.com, JavaScript was the most used language on GitHub in 2019 [18]. In addition, it

was the language that had the most GitHub code commits in the first quarter of 2020 [19]. While

some other web development languages have declined in usage or stalled in growth, such as

PHP or Ruby, JavaScript’s growth in usage has been steady during the last decade [20]. A large

contribution to this growth came with the 2009 release and subsequent popularization of

Node.js, a server-side implementation of JavaScript, which extended the JavaScript domain to

the back-end, helping JavaScript become a full-stack language, sometimes described as the

“JavaScript everywhere” paradigm.

On the site Stack Overflow, JavaScript has been the most commonly used programming

language since 2013, used by 69.8% of all the site users, followed by the related languages

Hypertext Markup Language (HTML) and Cascading Style Sheets (CSS) at 68.5% and 65.1%

respectively, in 2018 [21] [22]. JavaScript is supported by all mainstream browsers, including

Mattias Levlin 14

Google Chrome, Mozilla Firefox, Safari, Opera, and Microsoft Edge. This wide support has

helped wide adoption: according to a survey done by Web Technology Survey, JavaScript was

used on 95% of all websites, and is by far the most popular client-side scripting language [23].

In David Flanagan’s book JavaScript: The Definitive Guide, Flanagan summarizes the language

as being “a lightweight, interpreted programming language with object-oriented capabilities”.

In terms of programming syntax and object inheritance, JavaScript has a vague resemblance to

some other major programming languages, such as C, C++, Java, and Perl. JavaScript is mostly

used client-side, and not server-side, to the point that the term “JavaScript” has come to refer

almost exclusively to the client-side implementation [4]. Notable additions to the core

JavaScript technology stack in recent years have been Node.js, JSON, jQuery, and ES6

Generation [24].

3.6 Comparison with PHP

A language worth mentioning and briefly comparing to JavaScript is PHP, which has been used

for many of the same purposes as JavaScript, with regard to web development. PHP is a general-

purpose programming language, though originally designed, and commonly used, as a web

programming language. It was developed by Rasmus Lerdorf, who intended it to be a personal

project for his own website, naming it Personal Home Page (PHP) and published the first

version of it in 1995 [25]. The syntax and functionality of PHP is partially inspired by C and

Java. As its usage grew, the language’s full name was later changed to Hypertext Preprocessor.

Earlier in the history of JavaScript, the language was used together with PHP, with JavaScript

taking care of browser details and front-end functionality, and PHP used for server-side

scripting, as JavaScript was unable to handle it. During the 2010s, this relationship has changed:

the most notable change was the development of server-side JavaScript in the form of Node.js,

something that essentially rendered PHP obsolete in the JavaScript development stack [26].

This has turned JavaScript and PHP into competitor languages more than associated languages.

Furthermore, PHP web projects often use the database MySQL as back-end technology, while

JavaScript rarely makes use of MySQL. One notable advantage that JavaScript has over PHP,

is that JavaScript can easily handle the data formats XML and asynchronous functionality,

while these tasks are significantly more difficult to handle with PHP [27]. Despite the success

Mattias Levlin 15

of JavaScript and the development of Node.js, PHP has remained one of the most used web

programming languages, though its popularity has declined somewhat in recent years.

According to the TIOBE index, a well-known measure of programming language popularity,

PHP was the 8th most popular programming language in June 2019 [28]. The TIOBE index is

calculated from the number of search engine queries containing the programming language. In

June 2019, PHP had a TIOBE interest share of 2.57%, while JavaScript was slightly more

popular than PHP, ranked 7th and having an interest share of 2.72%. Worth noting is also that

the popularity of JavaScript increased 0.22% from June 2018 to June 2019, while the interest

in PHP decreased by 0.31%. Another similar index called PYPL, developed as an alternative to

TIOBE and based on language tutorial interest, ranked JavaScript as the third most popular

language in June 2019 with 8.29% interest share and PHP as the fifth most popular with 6.96%

interest share [29].

3.7 The Document Object Model

In this study, the Document Object Model (DOM) is important, since it is extensively used in

the technical benchmarks section, where the performance of each JavaScript framework is

measured using different DOM operations. An example of control flow in the DOM model is

seen in Figure 7. This figure outlines how communication is done between JavaScript, the

DOM, and the HTML web page.

Mattias Levlin 16

Figure 7: Interactions between JavaScript, the DOM interface, and the HTML document.

The DOM is a programming interface that allows for dynamic access to the content, structure,

and style of HTML web page documents. Beyond HTML documents, the DOM can also handle

XML and XHTML documents. However, in combination with JavaScript, the most common

type of document edited is HTML (in the technical benchmarks section of this study, the web

page documents are exclusively in the HTML format). Most browsers natively implement the

DOM, as defined by the W3DOM standard, which means that the DOM representation of a web

page will automatically come into existence and be available for editing once an HTML

document is parsed by the web browser. The DOM can then be manipulated using JavaScript

or any other language, and does not need a separate setup or installation [30]. In practice,

whenever a certain web page is accessed through a web browser, an HTML Document Object

Model of the page is created. In Google Chrome, for instance, the DOM representation of a web

page can be accessed by right clicking and selecting “Inspect”, which opens the Google Chrome

web console. The DOM representation of the current web page is then found by navigating to

the “Elements” tab. The DOM can be imagined as an intermediate data representation of a web

page that converts the webpage into an interactive model.

An entire HTML web page loaded into the web browser is represented in the DOM as a

document object. This document object is the entry point for JavaScript and other scripting

languages, which gives access to dynamic and programmatic manipulation of the elements

found in the HTML (or XML) web page. Most interactive DOM functions (available to

JavaScript) start with the document syntax, such as document.createElement() or

document.getElementsByName(). In addition to the root access point, the document object,

several other DOM data type objects are available; Node, NodeList, Element, Attribute, and

NamedNodeMap [31]. By performing JavaScript manipulations on these DOM objects, the

corresponding HTML elements on the web page can be updated. The node is a general, abstract,

commonly seen object type, since all the elements and attributes on a webpage are

represented by a node. Element is usually the most important object type from a JavaScript

perspective, since it represents all the visual elements on the page. Retrieving an element using

JavaScript gives access to interactive operations (for instance through the function

document.getElementById(id)), NodeList lists an array of elements, while the attribute

node can be used to access the attributes of element nodes [32].

Mattias Levlin 17

Architecturally, the DOM treats an HTML document as a collection of objects organized into

a tree structure, where each Node in the DOM tree is an HTML object, such as a <body>,

<text>, or <html> element. For instance, beyond the first Document object, which is the

JavaScript entry point, the following root Node element is usually an <html> element, with the

<head> and <body> elements being subtrees of that root element, each consisting of further

subtrees. Within this tree structure JavaScript can interact with the DOM in a number of ways:

it can change and manipulate the HTML elements and attributes, change the CSS styles, remove

and add HTML elements and attributes, and create and react to HTML events [33]. The DOM

tree itself can also be traversed along available paths, navigating from parent nodes to child

nodes (for instance using the ParentNode functionality). For an example of a DOM tree

structure, see Figure 8.

Figure 8: Illustration of a simple HTML DOM tree, showing the document entry point and

nodes, which can be manipulated and edited using JavaScript.

The DOM is an important element in the evaluation of front-end JavaScript frameworks, since

different frameworks have different approaches to how they deal with the DOM; this is one of

Mattias Levlin 18

the fundamental differences between them, which is described in more detail later in this study.

Certain utility JavaScript libraries, such as jQuery, are mainly used for manual DOM interaction

and manipulation, in order to create dynamic web functionality. Within the context of the DOM,

another concept called “shadow DOM” is sometimes encountered: this refers to the hiding or

encapsulation of CSS styles and child elements into a single parent element. DOM was

standardized by the World Wide Web Consortium (W3) in 2004, and the latest version, DOM

version 4, was released in November 2015.

3.7.1 Virtual DOM

One example of an alternative JavaScript framework interaction with the DOM is through the

creation of a virtual DOM, which matches and updates the content on the actual DOM with that

of a virtual one, and offers the virtual DOM as an intermediate medium for the developer to

interact with, instead of forcing the developer to manually handle the DOM. This is what React

and Vue do, and the popularity of these frameworks has also popularized the usage of a virtual

DOM. The motivation for implementing a virtual DOM is to improve the efficiency and speed

of DOM updates, since manual DOM updates can be costly. How well this works in practice is

studied in more detail in the benchmarks section of this study, where the frameworks

implementing a virtual DOM, React and Vue, are compared to the frameworks without a virtual

DOM, Angular and Svelte. Furthermore, manual DOM updates using jQuery are also included

in the benchmark study. Within the context of the virtual DOM, the process of synchronizing a

virtual DOM with the actual DOM is known as a reconciliation.

Angular does not use a virtual DOM. The main reason for this is because it is designed to be a

rewrite of AngularJS, which was released in 2010 and at that point did not make use of a virtual

DOM. The usage of the virtual DOM spread afterwards, with React and Vue. The fact that

Svelte is a relatively new framework that nevertheless does not use a virtual DOM represents a

break with the paradigm popularized by React and Vue. If Svelte becomes more widely used,

this may signal a shift in DOM handling for JavaScript frameworks.

Mattias Levlin 19

3.7.2 DIV, SVG, and Canvas elements

Benchmarking of data in a web application presents a question regarding what elements to use

for testing. HTML elements accessible through the DOM can be of different types. One

common element for drawing simple visual arrangements is the <div> element, but for larger

visualizations and complex graphs, the <div> option can become resource consuming [34].

Thus, if a web developer wishes to create interactive graphs and charts from scratch, specialized

elements can be useful; two of the most commonly used charting elements are <svg> and

<canvas>. A third, quite complex but resource-efficient option is to use a separate technology

called WebGL, though this technology is beyond the scope of this thesis [35].

SVG and the <svg> element stand for Scalable Vector Graphics, and are based on XML. This

makes <svg> elements different from other standard HTML elements, which are typically

handled in JavaScript applications. SVG was initially released in 2001, envisioned as a tool for

handling interactive, animated 2D graphics. Using SVG has long been considered as a good

alternative for visualization purposes, having a comparatively long history, good performance,

being flexible, and widely available [35]. SVG provides support for event handlers, since the

graphical element structure created using SVG is preserved as a DOM tree. This is also a

potential weakness with SVG element visualizations, since the DOM structure may become

very complex and thus slow down the entire application [36]. SVG is resolution independent,

so a zoom-in operation will not affect the quality of the visualization.

Canvas elements are one of the main alternatives to SVG elements. Canvas elements are a

relatively new technology, being introduced in HTML5. Unlike the XML-based SVG elements,

Canvas is based on HTML. However, Canvas differs from most HTML and JavaScript elements

in that it does not make use of the DOM. This has certain advantages; Canvas has been cited as

faster than SVG in some cases, especially when displaying a larger number of visual elements

(on the scale of thousands of elements). Canvas objects are drawn immediately on the screen,

using the “Immediate Mode”, without the usage of any intermediate DOM route or other saving

mechanisms [36]. This is also a potential drawback, since there is no way to interact with

elements without redrawing the canvas. Furthermore, since there is no DOM information, event

handlers are not available and CSS edits are more difficult. The initial setup of a simple graph

is also a more advanced process than using SVG elements. However, for dynamic, quickly-

Mattias Levlin 20

changing content with many variables, such as web browser games, canvas is most likely the

better choice [34]. Both SVG and and Canvas elements are library agnostic, and can thus be

handled with any JavaScript framework, or web technology in general, though they may require

more manual alterations than simply adding a standard HTML element.

There are many existing JavaScript libraries developed specifically for handling visual elements

in the browser with internally implemented DOM manipulations. Examples include the SVG-

based alternatives d3js and Highcharts. Canvas visualization libraries also exist, such as

Chart.js, which avoid the DOM altogether. In this thesis, however, all DOM manipulation is

done manually. For the scope of this thesis, and for studying elements, the HTML element

<div> and related text elements have been chosen; the practical part of this study concerns the

DOM behavior and speed when handling these HTML elements, using the different JavaScript

frameworks. While Canvas is a viable technology especially for larger visualization datasets,

the fact that it does not work with the DOM makes it superfluous to this study. For instance,

implementing a benchmark using Canvas would cause difficulties in trying to track or analyze

how the frameworks handle the DOM interactions and events.

SVG elements are also excluded from this study, since they are based on XML and not HTML,

thus causing difficulties with most frameworks, representing a less common use case, and being

hard to make use of in technical benchmarks in a consistent way. The <svg> element can be

handled using JavaScript frameworks, but requires special considerations: for instance, the core

library of React does not easily handle the <svg> element as it does <div>; there are instead

specialized libraries such as React-svg and Svgr created for handling and conversion of <svg>

elements, but these are outside the scope of this study. <svg> elements are also sometimes

handled as picture elements. For these reasons, standard HTML elements such as <div> and

<p> have been chosen as benchmark elements.

3.8 jQuery

jQuery is a core JavaScript library which is mainly used for DOM traversal and manipulation.

It is described by the developers themselves as a fast, small, and feature-rich JavaScript library

[37]. Other notable functionality supported by jQuery is event handling, animations, JSON

Mattias Levlin 21

parsing, as well as AJAX and other asynchronous operations. jQuery’s DOM manipulation is

handled by a selector engine, called “Sizzle”. With the help of this engine, jQuery allows for

easy access to all elements available on the DOM. jQuery is supported by all major desktop and

mobile browsers in their current versions.

 $(“#button_1”).click(function() {

 $(“p”).show(“slow”);

 });

Figure 9: Basic DOM interaction, performed with jQuery.

jQuery uses the dollar sign ($) as a shorthand for “jQuery”, which is one of the central

commands in the library; within JavaScript code, jQuery functionality can often be identified

by the dollar sign. The code in Figure 9 selects a button with the ID button_1, using the ID

selector (#), found in the DOM and attaches a click function to it. If the button then is clicked

by the user, a new paragraph element (p) will be shown on the screen.

jQuery’s original developer was John Resig. The impetus for the development of the library

came from the fact that cross-browser development with JavaScript in 2006 was perceived as

difficult, and there were few libraries handling JavaScript DOM interaction. Resig stated that

jQuery was aimed to improve the interaction between JavaScript and HTML, mainly by

manipulating DOM elements. Resig initially released jQuery in January 2006, and the library

was licensed and standardized under an MIT license later the same year [38]. According to data

from the site BuiltWith.com, jQuery was used on 79.2% of the top 1 million websites in the

world [39], thus being the most used JavaScript library by an overwhelming margin. For

comparison, the second most used library was Bootstrap.js, with 16.9% usage share. The same

situation is seen in w3Techs.com data from May 2019: here, jQuery was used on 97.3% of all

JavaScript-based websites indexed in the survey. By contrast, the second most used JavaScript

library was once again Bootstrap.js, which was used by 24.7% of all indexed websites [40].

jQuery is important for historical reasons, and is also helpful for understanding the behavior of

the DOM. It has also been used directly or as inspiration in several frameworks; the predecessor

library of Angular 2+, AngularJS, makes use of a built-in version of jQuery (in AngularJS this

function is known as angular.element) [41]. However, other JavaScript frameworks, such as

React and Vue, replace the functionality of jQuery altogether with their own respective virtual

Mattias Levlin 22

DOM implementations. These DOM implementations are administered automatically by the

frameworks themselves, and functionality exists for always making sure the DOM is updated

according to the state of the code. This removes the need for manual tracking of events and

user-directed updates, effectively presenting a viable alternative to jQuery altogether. Still,

jQuery can be useful for one-off and smaller dynamic operations, when a developer does not

wish to make use of a whole library or framework.

Mattias Levlin 23

4 Front-end JavaScript frameworks

After reviewing JavaScript as a whole, in this chapter, the overall function and architecture of

a general front-end JavaScript framework is evaluated. React, Vue, Angular, and Svelte

conform to the characteristics defined in this chapter, either through their core functionalities,

or through commonly used extension libraries. Some of the most common features of front-end

frameworks are a synchronization of state and view, routing, a template system, and reusable

components [42].

4.1 Terminology: Frameworks versus libraries

The terminology contrasting frameworks with libraries can be fuzzy: React is sometimes

referred to as a library, and at other times as a framework, especially in online discussions and

articles. For the sake of clarity, it would be useful to separate frameworks from libraries, and to

use these terms in clearly separate, consistent ways.

A library is a passive collection of non-volatile resources where the developer is given control

over how to use the resources. JavaScript libraries conform to this standard definition. An

example of a JavaScript library is jQuery, used for functionality such as DOM manipulation,

event handling, and AJAX functionality. Libraries that are very simple and only perform one

certain task can be classified as tools, such as JSLint, used only for syntax checking, or Mocha,

used only for testing. Frameworks are designed to be less passive and force the developer to do

things in a certain way by providing a skeleton for development purposes and enforcing a

control flow. A web application framework, for instance, provides the developer with a set way

to develop and set up a whole web application, while a web application library does not contain

any such overall philosophy, instead providing simpler sub-domain operations, such as network

requests or styling operations that the developer has more control over [43]. In terms of

architecture, one of the key defining characteristics of a framework is an element called the

inversion of control. Within the domain of libraries, methods and functions are generally called

explicitly by the programmer. In contrast, within the domain of frameworks, methods and

functions are called by the code itself, such as a windowing system [44].

Mattias Levlin 24

While Vue and Angular are considered frameworks, there seems to be some disagreement

regarding whether React is a framework or a library. The developers of React refer to React as

a library, it is designed as one and can be used as such, but it is more commonly used as a

framework. For all intents and purposes, whenever React is used as a library, it can be referred

to as a library, but when it is used as a framework, as in this study, it can be called a framework.

A typical framework context is building a web application from scratch, and so within the

context of this thesis, React will be referred to as a framework.

4.2 Templates and reusable component files

Within the context of single page applications, templates are HTML-like files, which contain

additional syntax and elements, often representing dynamic JavaScript-like variables which can

be changed through user interaction. The common denominator regarding the frameworks

evaluated in this study is that they all use HTML as a base template, with their own element

style defined on top. Templates describe the appearance of the document object model, and help

the developer visualize the user interface while coding. The advantages of using templates is

that they are natural to write and read for developers used to HTML and require little extra

learning in order to be able to be use the additional dynamic functionalities. Templates are

usually the most common component in a typical web application, compared to other non-

presentational files, such as data state management files, configurational files, and logical files.

There are several languages developed specifically for templating purposes, interface design

and component creation. For instance, React recommends using the self-developed, XML-like

language extension of JavaScript called JSX, an abbreviation of JavaScript XML, though

standard JavaScript syntax can also be used with React. JSX integrates HTML with JavaScript:

for instance, JavaScript expressions can be mixed with HTML elements, as long as the

expressions are defined inside curly brackets. Though JSX takes inspiration from HTML, XML,

and JavaScript, it is most reminiscent of JavaScript, and uses the camelCase naming

convention, instead of HTML attribute naming conventions [45]. In Figure 10, an example of

a template written using JSX is seen. Here, an openPositions array is defined

Mattias Levlin 25

programmatically, and that array is then combined dynamically with HTML elements to create

the openPositionsList, which can be reused as a dynamic template.

const openPositions = [‘Software developer’, ‘Graphic designer’, ‘Project manager’]

const openPositionsList = (

 <div>

 <p>Our current available positions are:</p>

 <p>

 {openPositionsList.map(position => <p>{position}</p>)}

 </p>

 </div>

);

Figure 10: An example of a React template file written using JSX.

Reusable components are another important feature within front-end JavaScript frameworks.

The behavior, appearance, and characteristics of a certain component are typically defined and

constructed in one file, and then imported and used in another. This makes the development of

larger web applications easier, since each component can be imagined as a module, or as a

building block, that can then be added or removed without causing problems for the surrounding

functionalities. Reusable components, when containing HTML or HTML-like elements, are

usually written as templates, combining HTML elements with interactive JavaScript-based

syntax. Within the context of reusable components, it is common to see component file state

contained in one component only. Component files can also be created without state, then being

known as stateless functional components. These components are usually simple components

that function as sub-modules to one or several complex components. The process of importing

a component file into another component file is seen in Figure 11. The component UserInfoBox

is defined in its own component file, but is imported and reused in two different component

files, EditUser and AddUserToProject.

Mattias Levlin 26

Figure 11: Example of a reusable component. The component UserInfoBox is imported and

used in two other components, CreateUser and AddUserToProject.

A general, framework-agnostic standard for creation of components was defined in 2011,

known as the Web Components standard. This standard includes an API to define new HTML

elements, DOM handling including the usage of the shadow DOM, and HTML templates. The

Vue framework has based its component syntax and creation on the Web Components syntax,

and most JavaScript frameworks in this study treat components similarly to how they are

defined in the Web components standard [46].

4.3 The model-view-controller pattern

The model-view-controller pattern, displayed is Figure 12, is an abstract software design pattern

which is relevant within the context of most web applications, including this study on JavaScript

frameworks and web applications built with them.

Mattias Levlin 27

Figure 12: A simple example of a model-view-controller pattern

This pattern is a model of how internal interactions are done within most web applications and

how the user interacts with the application. The pattern consists of three elements: the model

represents the dynamic data structure and application logic, the view is the user interface that is

displayed to the user, and the controller is what the user makes use of to interact with the model.

The user interacts with the controller, which manipulates the model, which in turn updates the

view, which is displayed to the user. In this model-view-controller context, most of the relevant

functionality of the frameworks studied in this thesis is located in the view portion of this

pattern. Dynamic JavaScript functionality that lets the user interact with some type of model

can be imagined as the controller, defining interactions with the model. The model-view-

controller pattern was developed for desktop contexts, but has since been used for web

applications as well [47].

4.4 The global state, the data store, and props in SPA

The implementation of global application state was introduced with the arrival of single page

applications; instead of having the user navigate through different web pages, the user navigates

through different application states. Within single page applications, the global application state

Mattias Levlin 28

is usually handled by something called data store, which can be imagined as the model part in

the model-view-controller pattern. In a single page application built with a JavaScript

framework, the user sees the framework user interface as the view, and when the user clicks a

function, the controller (typically JavaScript or JavaScript-like code) sends a request or data to

the data store (the model part in the MVC-pattern). The data store presents a centralized way

of storing, updating, and accessing application-wide data. Using a data store eliminates the need

of having to always pass data between components; with a data store, data can be accessed

globally by all components. When implementing a data store, edited data is passed one way to

the store [48]. The global state is always recorded, can change depending on user action, and

determines what components to show and to hide, and what actions to allow and disallow. The

global state can also be accessed by all components (usually implemented as component files),

in this way the global state is also a shared state for the entire application. Figure 13 describes

how the state is shared across component files within the application. There is one global state,

shaded in orange in the figure, which can be accessed by all the components in the application

(shaded in blue and green). Component files can, in addition to implementing the global state,

implement their own local state. The local state contains variables specific to that file only.

Figure 13: The global state being shared with local component files that can implement their

own local state in addition to the global one.

Mattias Levlin 29

An initial global state variable in a single page application might be called login_status with

the initial value ’logged_out’. This global state variable could then be retrieved from the data

store by a root component file, which would determine what to show. If the variable

login_status should contain the value ’logged_out’, the component could decide that a

login screen should be shown. After the login function has been performed and verified through

some authentication system, the global stat variable login_status could then be updated to

the value ’logged_in’. In this way, the root component file could then hide the login screen

and instead show a main menu component file. Further states could be created manually, such

as editing_user_settings or in_transaction_mode. In this way, there is only one HTML

page in use, but many different content components that are shown and hidden on the HTML

page, depending on the current state.

The data store typically handles one global app state. In addition to this, each component file

(shaded in blue and green in Figure 13) can contain a local state, managing variables in that

component only. This is useful in order to separate data from each other, and keep more

important, more widely used data in the global store. The local state found in a certain

component contains local variables that can be accessed and edited by any function in that

particular component. In this way, functions existing in the same component file do not need to

explicitly pass data to each other, and can pass it through the local state instead, much in the

same way the data store functions, but locally within the component file. When building a more

complex web application, managing data in a uniform way becomes important, otherwise data

has to be handled separately in each component file, which may cause issues with data

management for larger applications. This was one of the problems with web applications prior

to the data store and single page application model.

Mattias Levlin 30

Figure 14: Example of a dispatched action to the data store, which is received by a reducer.

Dispatching data to the store can be done in the form of an action, a payload which contains

data and specifies the type of store alteration that should happen in the data store. For instance,

an action type might be called update_username with an attached value such as

’MattiasLevlin’. This process is seen in Figure 14. The dispatched action data and action

type are then received by a reducer. A reducer is a state evaluation function that typically takes

two arguments: the current global state of the application and an action. Based on these inputs,

the reducer evaluates whether any global state variables should be updated and returns the

altered global state. Since the action type is dynamic, the reducer could handle other types of

actions such as update_email or add_item, with attached values. In addition to the dispatched

action and its attached value, a reducer takes the current global state as an input, and then

evaluates whether the any state variables should be altered, and what their value should be

changed to [49]. In Figure 14, a global state variable username would be updated to the value

’MattiasLevlin’, but other state variables could be updated as well, at the same time.

Some data store implementations use mutations instead of reducers. This is done in Vuex, a

library commonly used as a data store implementation in Vue. Mutations are very similar to

reducers, but directly modify the existing the data store variables, instead of reassigning and

returning them. Data can then be retrieved from the store in various ways, but it is always read-

only. For instance, a view can be used, which displays the data in the application. Several views

can use the same state: the user login status may be retrieved in order to evaluate whether to

Mattias Levlin 31

run or to disable certain functions in several different files. Retrieval of global state variables

can also be implemented as a simple fetch or get statement, or by using selectors: functions

used to obtain various parts of the current data store state. Usually, using selectors, several

recent state transitions can be retrieved.

With the introduction of state management, the old server-communication paradigm, where

each HTML page was retrieved from the server as it was needed, gradually becomes obsolete;

the new state management paradigm is more efficient, safer, and easier to scale. Single page

applications rewrite the page contents instead of loading entirely new web content from a server

upon a user request. Page loads are much faster than the traditional request-response cycle. For

these reasons, the global application state is one of the key defining characteristics of single

page applications, simplifying the creation of web applications, and giving the developer more

resources to control the application.

4.4.1 Data store implementations

While there are many libraries that handle data store implementation, none of the frameworks

studied in this thesis contains a data store implementation natively, instead, the framework

developers have all opted for a modular approach to preserve modularity and minimize the size

of the respective framework. In the documentation of each framework, different companion

data store libraries are recommended: the data store Redux is mentioned in React’s

documentation, while Flux is another commonly used alternative [50]. Vuex is mentioned in

Vue’s documentation, and other alternatives exist such as Ngrx [51] [52]. These data store

implementations all work in a similar way, and while some data store implementations have

originally been developed for use with a certain framework, data store libraries are generally

platform agnostic in relation to frameworks, which means that any data store can be

implemented together with any JavaScript framework. For instance, while Vuex is

recommended for usage with Vue, Vue can also use Redux or Flux as its data store

implementation. The concepts become more relevant the bigger and more complex the web

application is. However, as data stores are not implemented natively in any of the evaluated

frameworks, they have been excluded from evaluation. As a suggestion for an extended study,

an implementation of the data store could be done, using the same data store library for each of

the frameworks.

Mattias Levlin 32

4.4.2 Navigation: props and routing

All data handling in a single page application does not need to go through the data store. For

certain operations, props can be used. Props, an abbreviation of properties, are values or objects

used to pass data between two component files, often in a hierarchical manner (parent-to-child),

instead of going through the data store and altering the application state. When the value of a

prop is updated in a parent component, its value will automatically be updated in all the child

components to which it has been passed. For security reasons, when a prop is passed to another

component, it usually requires some type validation, to ensure that the correct type of value has

been passed to the child component. In Figure 13, props are shared between two component

files (marked with the text “share props”).

An example scenario of this could involve a variable edited locally in its own component file

only, such as edited_username. If that variable should be needed outside its component file

and the variable had not yet been committed to the data store, props could be used to pass the

variable to a child component file. A JSX syntax example of this is seen in Figure 15, where

the value of edited_username is assigned to the variable edited_name_to_display. That

variable is then passed to the ChildComponent file and displayed inside the ChildComponent

file.

// Parent component

Class ParentComponent {

 <ChildComponent

 edited_name_to_display=edited_username

 >

 </ChildComponent>

}

// Child component (separate file)

Class ChildComponent {

 return() {

 <p>{this.props.edited_name_to_display}</p>

 }

}

Figure 15: Example of passing props to a child component file in JSX syntax.

Mattias Levlin 33

One important distinction between data store variables and props is that data store variables can

be edited through commit action sent to the data store, but props are read-only when passed to

another component file, and changes cannot be committed back to the component file that sent

the props variable. In the practical example in Figure 15, it means that the variable

edited_name_to_display variable would be read-only. Props are generally useful for smaller,

localized operations between components. For simple web applications, props may even replace

the data store. However, when a web application grows complex enough and starts to handle

many different modules, using props only for data transfer between files can become

unnecessarily cumbersome and hard to manage. In this case, the data store becomes relevant.

Another navigational concept is routing, which is useful when certain components need to be

shown depending on the navigation path in the browser. Routing also makes possible traversing

backwards in the navigation path. Routing controls the URL navigation in a dynamic way, and

inserts a variable in the URL address in order to show different views to the user. In comparison

to the original HTML-style navigation where a click in the user interface translated into a server

request and a returned, reloaded web page, routing is a much more efficient way to handle site

architecture and is also easier to develop, especially when an application grows in scale. Within

the context of single-page applications, routing has become a key feature.

const Index = { template: ‘<div>Index</div>’ }

const User = { template: ‘<div>User</div>’ }

const routes = [

 { path: ‘/index’, component: Index },

 { path: ‘/user’, component: User },

]

const router = new VueRouter({

 routes

})

Figure 16: Example of routing with simple components in Vue, using the Vue router

A typical use case for routing is the navigation in a menu, where different variables are passed

to the router depending on what menu tab is clicked. Routing is often connected to the global

application state. For a simple example of this using Vue’s router, see the syntax in Figure 16.

Here, two templates containing HTML <div> elements, Index and User, are connected to two

Mattias Levlin 34

separate routes, /index and /user, which are defined in the routes object. The routes object

is then connected to a VueRouter, a utility function defined in Vue’s VueRouter library, which

makes sure that whenever a user navigates to the subroute /index or /user in the web browser,

the corresponding template, containing a <div> element is displayed.

Mattias Levlin 35

5 Technical environment of front-end JavaScript

frameworks

In this chapter, the elements needed to set up and run a JavaScript application in practice are

discussed. Setting up a JavaScript web application usually involves similar technical details. To

start the development of a basic application, a runtime environment is needed to execute the

application. In addition, a toolchain is needed to set up the development environment. These

tools are not part of the comparison in this thesis, but are relevant as a base for setting up any

kind of JavaScript development project, whether it is built with React, Vue, Angular, Svelte, or

some other framework. Thus they are of strong relevance to the thesis, and will be referred to

in the development evaluation.

5.1 The runtime environment

A runtime environment handles most things needed to execute a JavaScript application,

including the front-end applications evaluated in this thesis [53]. Node.js is the most used

JavaScript runtime environment, used for running JavaScript code outside of the web browser

environment. Most often, this is used for server-side functionality. The creators of Node.js

sought to develop a more efficient alternative to the then-popular Apache HTTP Server, which

was most often used together with PHP on the front end as a full stack development

environment [54]. Node.js is built using Google’s V8 JavaScript engine, which itself is built

using C++. One of the technical advantages of Node.js is the way it handles input and output

communication, such as server requests and local file handling: it is classified as an

asynchronous, non-blocking input-output system, allowing for parallel database requests [53].

In the documentation of React, Vue, and Angular, Node.js is recommended as a run-time server

environment [55].

Mattias Levlin 36

5.2 Toolchains

There are many ready-made toolchains for each of the JavaScript frameworks, to enable a quick

setup of a working development environment. A JavaScript toolchain generally consists of a

package manager, a bundler, and a compiler. A bundler is used for the assembly of written code

into packages to optimize loading times; webpack is a commonly used bundler. Finally, a

compiler is used to create code that functions in older browsers; Babel is often used for this

purpose [55]. Ready-made JavaScript toolchains are often administered using the command

line, thus effectively acting as command line interfaces. A command line interface, abbreviated

CLI, is used for administrative purposes, such as starting the JavaScript application, running

tests, running different builds and specifying execution options. React, Vue, Angular, and

Svelte all have their official or semi-official tool chains functioning as command line interfaces.

For a local setup of Angular, the Angular CLI tool is required. React’s CLI tool is known as

create-react-app, and Vue has its own CLI tool as well.

5.2.1 Package managers: npm and Yarn

Package managers are used to install, maintain, edit, and remove packages. Packages are third-

party libraries that are used within JavaScript applications to import functionality, instead of

writing it from scratch. Packages used within a web application are often called dependencies,

since the functionality of a web application is said to depend on a certain package, when its

functionality is used within the application. The JavaScript package landscape has grown

immensely thanks to the open-source culture of sharing code on GitHub and other Internet sites.

Some of the most used package manager are npm, an abbreviation of Node Package Manager,

and Yarn [56].

Npm was introduced in 2010 to support installation and updates of Node.js libraries. It is a part

of Node.js as its official package manager and is thus one of the most used JavaScript package

managers. Npm also includes npx, used for execution of npm packages, being included in npm

since version 5.2.0. While npm itself is used for package management, npx simplifies the usage

of command line interface tools and executable files. Npx is used in the setup of Create React

App, one of the recommended toolchains for developing a React application [57]. Npm’s syntax

Mattias Levlin 37

for installing a package is npm install package-name. Some of npm’s popularity as a

package manager can be attributed to the fact that it is included as part of the standard

installation package when installing Node.js. Another contributing fact is that npm was released

in 2010, and has thus been part of the web application ecosystem for a comparatively long time.

The popularity of npm is further illustrated by the fact that most other npm alternatives,

including Yarn, are developed to be compatible with the npm package registry and to use it by

default.

Yarn is another commonly used package manager within JavaScript applications. Yarn was

developed by Facebook for some time internally, but released as open-source in October 2016,

six years after npm was released. Yarn has been developed with a focus on improved

performance, in addition to its open-source nature [56]. Yarn contains its own registry,

registry.yarnpkg.com, though it is mostly used as a proxy, to retrieve packages from the main

npm package registry. Package installation with Yarn is handled through its add syntax: yarn

add packagename, which is essentially the same function as npm’s npm install. One

technical difference that sets Yarn apart from npm is that Yarn uses its own lockfile,

yarn.lock. This file contains all the version numbers of each installed dependency [58].

Within a web application project folder, packages downloaded through a package manager are

found in a folder called node_modules. This folder is in most cases excluded from the git

repository, since it can be very large, contain many required packages, and does not provide

any beneficial functionality to the developer. Instead, the dependencies are defined in the

package.json file and are installed locally in the node_modules folder, using a command such

as npm install. A related file is the package-lock.json, which exists in both npm and Yarn

and is typically auto-generated based on the package.json file, to track exact versions of

packages.

5.2.2 Bundlers: Webpack

JavaScript bundlers are used to compile all existing JavaScript code in a certain project into one

single JavaScript file. This significantly improves performance and dependency handling. The

need for JavaScript bundlers stems from the JavaScript import syntax, which can quickly get

Mattias Levlin 38

complicated if handled manually. Bundlers solve this issue, by automating a JavaScript

project’s global import process. In a typical bundler, all dependencies are put into one file, so

that in the case that one dependency is dependent on another, no problems are created. This is

similar to how Node.js handles dependencies on the server side [59]. Webpack has, for the last

couple of years, been one of the most used JavaScript bundlers. Webpack is defined as a static

module bundler for JavaScript applications, which creates an internal dependency graph that

maps every module needed in a JavaScript project to create a bundle. Webpack starts the

bundling process from a certain file, typically from some kind of index file, known as the entry

point. From this file, Webpack then looks through each needed import and constructs the

dependency graph accordingly, finally outputting the finished bundle to a defined location.

Webpack also contains loader functionality, for handling various types of files and converting

them into valid modules [60]. React, Vue, and Angular all cite Webpack as a bundler in their

respective documentations.

5.2.3 Transcompilers: Babel

A transcompiler is a type of compiler used to compile and convert JavaScript code into a version

that can be run on older versions of JavaScript engines. Compiling usually refers to conversion

of code between different abstraction levels (such as higher level developer code to lower level

machine code), while a transcompiler converts code on the same abstraction level (such as

between different JavaScript versions or flavors). For instance, some functionality in newer

versions of JavaScript is incompatible with older versions; an example is the arrow function (

() => { … }), introduced in ECMAScript version 6 in 2015, and certain code functions may

have to be converted in order to be run on different browsers. Transcompilers are used so as to

allow the user to use newer functionality and run it on an older engine. Babel is one of the most

widely used JavaScript transcompilers, used to convert ECMAScript 2015+ code into older

JavaScript versions that can be executed on older JavaScript engines [61].

Mattias Levlin 39

5.3 Setup and project structure

While setting up a JavaScript-based website application, some elements are usually found in

the main folder: the folders, node_modules, public, and src (abbreviation of source), as well

as the files package.json, package-lock.json, and README.md. The node_modules folder

contains required libraries that have been installed using the selected package manager, such as

npm or Yarn, when running the command npm install or yarn install, respectively. What

packages to store in the node_modules folder is tracked using the package.json and the

package-lock.json files. When an npm package is installed or uninstalled, the package folders

are automatically updated. The src folder contains the actual source code, and can be divided

into several more folders, depending on the project type. When handling reusable components,

each component will usually be defined in its own file, and then exported for reuse in other

components, or in the root file. Other commonly used folders are utilities, tests, and translations,

though these are not used in this study. README.md. is a standard format for providing read-me

information on repository sites.

Mattias Levlin 40

6 The frameworks

The four JavaScript frameworks presented, evaluated and discussed in this thesis can all be

categorized as client-side, general-purpose website frameworks, thus excluding server-side

back-end frameworks, as well as smaller libraries created for more narrow purposes, such as

data visualization or utility function libraries. Furthermore, the frameworks discussed here can

be connected to a server-side application, as part of a full-stack application. All of the

frameworks presented follow the design philosophy of single page applications.

6.1 Framework selection

As there exist a large number of JavaScript frameworks for front-end development, it is

important to define some selection criteria. Reliable, quantitative survey data is notably found

in The State of JavaScript surveys, published yearly since 2016 [62]. The 2019 edition had

21,717 developer respondents. In order to select frameworks for evaluation, two data

dimensions from this survey were considered: first, how many developers were actively using

the framework in question, and second, how much developer interest the framework had been

generating. Qualitative data on these dimensions is found in The State of JavaScript surveys,

from 2016 to 2019. Yearly usage data, during the time span 2016 to 2019, for the top six

frameworks in 2019 is depicted in Figure 17.

Mattias Levlin 41

Figure 17: Percentage of respondents who agreed with the statement “I’ve used it before and

would use it again”, State of JavaScript Surveys 2016 - 2019.

In this figure, which plots the percentage of developers who said “I’ve used it before and would

use it again”, with regard to each of the top six most used frameworks, it can be seen that React

has for several years been the most used JavaScript framework, and is still gaining in terms of

preference, while Vue is a solid second, followed by Angular, Preact, Svelte, and Ember [63].

Angular has declined somewhat in popularity, but is still recommended by over 20% of

developers. Based on the data in Figure 17, it would seem appropriate to select React, Vue, and

Angular for evaluation. However, the other important data dimension in the 2019 State of

JavaScript survey measures developer interest in learning a framework: Figure 18 shows the

percentage of developers who agreed with the statement “I’ve heard of it, and would like to

learn it”, for each framework.

Mattias Levlin 42

Figure 18: Percentage of respondents who agreed with the statement “I’ve heard of it, and

would like to learn it” for each framework, State of JavaScript Surveys 2016 - 2019.

After evaluating the data in Figure 18, it becomes clear that the newcomer framework Svelte

has raised the interest of many JavaScript developers during 2019. While it was not included

among the top six frameworks of 2018, it has in one year become the framework which most

developers want to learn, overtaking Vue. For this reason, Svelte has been included in this

study. Furthermore, Svelte is TypeScript-based, which serves as a comparison to Angular,

another TypeScript-based framework. Another quantitative metric for measuring the popularity

of a framework is found on the code hosting site Github.com: on Github.com, users can mark

a repository they like, or want to save, as ‘starred’. This metric is public and the number of stars

a certain repository has shows its popularity. The ‘star’ action is similar to a generic ‘like’ or

‘save’ action. The result can be seen in Figure 19.

Mattias Levlin 43

Figure 19: GitHub stars for each of the top six frameworks in the State of JavaScript survey

2019.

In Figure 19, in contrast to the State of JavaScript Survey 2019, Vue is slightly more well-liked

than React, with 159,091 stars [64]. React had 142,850 stars, as of 25 January 2020 [65]. React

and Vue are both by far the most popular frameworks, with Angular being a distant third, at

56,789 stars [66]. Finally, the rise of Svelte can be seen here too, as it already in January 2020

had 29,756 stars, more than either Preact (25,245) or Ember (21,338) [67] [68] [69].

To summarize, the selection criteria can be defined as follows; the JavaScript framework had

to be one of the top six most popular frameworks in the State of JavaScript survey 2019.

Furthermore, the framework had to have more than 20,000 stars on Github. In the

aforementioned survey, React, Vue, and Angular were the top three most popular frameworks,

while Svelte, Vue, and Preact were the top three frameworks that were deemed to be most

interesting by developers. Preact is essentially a re-imagined version of React optimized for a

faster performance. While it could be included in an expanded study, it was not included here

due to its similarity to React and lower popularity. Regarding Ember, the framework has been

important in the development of the JavaScript ecosystem, but also seen as superseded in

performance and popularity by other frameworks [70]. It is also an older framework, released

in 2011, and does not have a dedicated major company supporting its development, like React

Mattias Levlin 44

or Angular has. For these reasons, Ember has not been included in the comparison, though it

would be a contender for addition in an expanded comparison.

6.2 React

React.js, or simply React, is a JavaScript library developed by Facebook. It has been described

as a declarative, efficient, and flexible framework [71]. The first version of React was released

in May 2013. React has a more narrow scope than other frameworks in this list, only rendering

the application user interface. The benefit of this is the lightweight structure of the library, being

less costly to learn and use. However, this has also meant that React in certain contexts has been

referred to as a user interface library, not a framework. Generally, however, it can be considered

a framework, as it is used for the same purpose as Vue and Angular 2+ [72]. React was initially

developed as a JavaScript port of XHP, a PHP library created by Facebook. XHP was a

modification of PHP that allowed for custom component creation, something React also is

capable of. This development can be seen as an important step in the overall shift in web

development, where JavaScript is chosen as a core web technology instead of PHP, which was

the dominant standard during the 2000s. XHP was a library that aimed to prevent malicious

user attacks, and out of the JavaScript porting project grew the language JSX (JavaScript XML),

which has become a common standard language for React, together with standard JavaScript

[73].

One reason for the success of React is that it was the first framework to optimize its functionality

according to the DOM: since DOM manipulation is quite costly in terms of computing resources

used, React is designed to perform as little DOM manipulation as possible, using state

management and the virtual DOM to control this manipulation [74]. The usage of the virtual

DOM makes React update faster, at the expense of being more memory intensive: in order to

perform fast updates to the browser DOM, React keeps a copy of the virtual DOM tree in

memory, which is consumes additional memory. React’s popularity is exemplified by its

numerous spinoff libraries: a mobile development form exists, called React Native. The main

developer of React, Facebook, has used React Native for the development of parts of its own

mobile Facebook application [75].

Mattias Levlin 45

There are several options for testing out React, which contributes to usability. For simple tests,

online code editors are available through React’s website. For a complete setup of React,

however, the JavaScript package manager npm and the run-time environment Node.js are

required as a toolchain. Create React App (CRA) is a commonly used, ready-made React

toolchain. It uses Babel as a compiler and webpack as a bundler. The CRA toolchain requires

Node.js 8.10.0 or later and npm to run [76]. CRA is very easy to set up, with a complete folder

setup being created by a single command: npx create-react-app <application_name>. A

default folder is set up with this command, containing .git, node_modules, public, and src

folders, as well as files .gitignore, package.json and its related package-lock.json, and

README.md. Create React App is quite a narrow and simple tool, designed specifically for single

page applications only, to keep it lightweight and simplify its functionality.

6.2.1 DOM interaction in React

The document object model is the element to which React sends all user interface elements

written by the developer. The approach is declarative; the developer defines what state the UI

should be in, and React makes sure the DOM is displayed in that state. This effectively replaces

the attribute manipulation and event handling approach which is used in jQuery, which has

previously been a widely popular approach. By default, React uses a library known as react-

dom to render things onto the DOM, and contains DOM-specific methods that help with DOM

interaction. An element in React’s code (as written using JSX or other syntax) is different from

a DOM element; React elements can be imagined as simple objects in the code that are given

to the ReactDOM for translation purposes, in order to be rendered onto the actual DOM in the

browser. This is done with the ReactDOM.render() function. The manual manipulation of

ReactDOM is discouraged, since React’s state updates keep track of what should be rendered.

However, the manual can be used for debugging purposes, where usage of ReactDOM is similar

to jQuery operations; the findDOMNode() is comparable to jQuery’s .get() function.

Mattias Levlin 46

6.2.2 Templating, components and syntax

function App() {

 <div>

 <p>Welcome!</p>

 </div>

}

export default App;

ReactDOM.render(

 <App />,

 document.getElementById(‘root’)

);

Figure 20: Basic React example which renders a welcome message.

In Figure 20, a basic example of a React application is displayed. The function App() is defined

in which simple HTML elements are used to display a welcome message. That function is then

exported to the ReactDOM.render() function, which takes it as an input parameter for display.

React can be used without JSX, although the coding syntax then has to be altered; HTML

elements, such as the <div> and <p> elements , cannot be directly defined in the code and must

instead be created using the React.createElement syntax [77]. Dynamic variables can be

included in the middle of JSX using the bracket syntax ({ … }). As a templating tool, JSX has

become a somewhat popular standard, and is supported in Vue as well, though not as a standard

choice [78].

6.3 Angular

Angular is a framework that exists in two versions, commonly referred to as AngularJS and

Angular 2+. AngularJS is the older JavaScript-based version, which is no longer under active

development, while Angular 2+ is newer and based on TypeScript. The version evaluated in

this study is Angular 2+.

Mattias Levlin 47

Angular 2+ was released in 2016 and differs from both the predecessor AngularJS and most

other frameworks in that it is based upon the JavaScript flavor TypeScript, being designed as a

TypeScript rewrite of AngularJS. It is possible to use Angular without TypeScript, but this

choice has been cited as challenging, and is generally not recommended [78]. Nowadays,

Angular 2+ is the more popular Angular version, containing performance improvements and

other advantages compared with AngularJS [79]. Due to their similarities, and the fact that

AngularJS is no longer under active development, AngularJS is not evaluated in more detail in

this study. Being designed for larger application development, Angular is one of the larger,

more full-featured JavaScript frameworks, both in terms of programming features and file size.

In the State of JavaScript survey 2018, the most commonly cited positive aspects of Angular

were its amount of features, the programming style, and the documentation. The most

commonly cited negative aspects of Angular were its perceived bloatedness, complexity, and

heavy style of development, not being recommended for smaller development projects. It was

also cited as having a somewhat steep learning curve [80].

6.3.1 DOM interaction in Angular

The way Angular handles the DOM is different from React and Vue, since Angular does not

make use of a Virtual DOM, handling instead only direct DOM manipulations. This is similar

to how jQuery is used. Angular uses create functions, such as createCustomElement() for

user-defined components, in order to convert these existing components into a class that can be

registered and displayed onto the DOM. The process is somewhat more advanced than with

React and Vue: first, the app registers a custom element with the browser (the syntax is

customElement.define(“tag”, Class)). This element is implemented together with a tag

and its class in an intermediate registry called CustomElementRegistry, located in the

browser. This intermediate registry is then used to instantiate the particular element, and that

instance of the element is then translated onto the DOM [81].

Mattias Levlin 48

6.3.2 Templating, components, and syntax

Angular makes extensive use of its command line interface ng. Though components can be

created manually, like with React and Vue, Angular allows for the usage of a command called

ng create to create components. The console results of an execution of this command, ng

create hello-world, where hello-world is the name of the component, are seen in Figure

21.

CREATE src/app/benchmark-container/hello-world.component.css (0 bytes)

CREATE src/app/benchmark-container/hello-world.component.html (34 bytes)

CREATE src/app/benchmark-container/hello-world.component.spec.ts (713 bytes)

CREATE src/app/benchmark-container/hello-world.component.ts (320 bytes)

UPDATE src/app/app.module.ts (619 bytes)

Figure 21: Log results of running ng create hello-world in the Angular CLI tool.

Running this command sets up an Angular component divided into four files: a .html file for

displaying HTML elements, a .css file for styling purposes, a .ts file for dynamic scripting

content, and a .spec.ts file for testing. This command also sets up some basic functionality

within the files themselves; a constructor and a ngInit function are created in the TypeScript

file and basic test cases are created in the testing file. The heavier and more thorough

development style of Angular is apparent already in the tutorial, where the ng create

command is recommended, and the usage of the CLI makes the basic Angular workflow

different from the general developing style of the other frameworks.

Mattias Levlin 49

// .TS FILE:

import { Component} from '@angular/core';

@Component({

 selector: 'app-hello-world',

 templateUrl: './hello-world.component.html',

 styleUrls: ['./hello-world.component.css']

})

export class HelloWorld {

 name:string;

 constructor() {

 this.name="Mattias Levlin"

}

// .HTML FILE:

<p>Welcome {{name}}</p>

Figure 22: Basic Angular example which renders a welcome message. Note that even basic

functionality is split into separate files, a .html file and a .ts file.

In Figure 22, a basic component is defined in Angular, and then exported. The functionality is

divided between a .HTML file and a .TS file, which is a different way of approaching the

component creation process compared to React, where everything relevant to a certain

component is usually located in one file only.

6.4 Vue

Vue.js, or simply Vue, was created by Google employee Evan You, who was inspired by

AngularJS, but wanted to create a more streamlined, improved version of it; Vue can thus be

seen as a lightweight version of AngularJS. Vue’s core library is focused on the view layer

only. The first version of Vue was released in 2014. Vue has since then grown to become one

of the top three most popular JavaScript frameworks, together with React and Angular. In the

State of JavaScript survey 2018, the most commonly cited positive aspects of Vue were that it

is easy to learn, lightweight, has a nice programming style, documentation, and fast

performance [82]. By a large margin the most common negative aspect was its clumsiness.

Mattias Levlin 50

The developers of Vue released their framework at a time when React and the first version of

Angular were dominating the JavaScript framework landscape. For this reason, the Vue

developers opted to include a page comparing their own framework to others. The article

discusses differences and similarities to React, first and foremost, but also includes comparisons

to both versions of Angular, as well as other frameworks [78]. In this documentation, there is

an emphasis on the similarities between React and Vue; the documentation authors note that

they both utilize the virtual DOM and provide reactive and composable view components.

Another similarity is that the core of both frameworks is quite narrow in scope, to maintain

focus and enable the users to utilize the framework modularity. Elements that could have been

included in the core framework, such as routing and global state management, are instead

handled by companion libraries (popular alternatives are Vue-router and VueX). Vue supports

all ECMAScript 5 compliant browsers.

6.4.1 DOM interaction in Vue

Vue handles the DOM much in the same way React does, building and using a separate virtual

DOM to handle the management of the real DOM [83]. One difference here is that Vue does

not use a separate, modular library for this purpose. In practice, if a line like

createElement(‘p’, this.title) is found in a *.vue file, Vue will create an internal node

description to keep track of what information that particular node should display (a <p> HTML

element with this.title as its value), and what child and parent nodes exist, if any. This is

known as a VNode, or a “virtual node”, and the entire virtual DOM in Vue consists of a tree of

VNodes, which corresponds to the Vue component structure, as defined by the developer in

JavaScript code. This virtual DOM in Vue interacts with the actual DOM, which then updates

the HTML web page contents. In Vue, all elements are implemented as virtual DOM nodes; all

types of HTML elements, including text elements, and even code comments, are implemented

as VNodes. The typical function used to create a VNode is createElement, which creates a node

description, sending the information to Vue, which takes care of the virtual DOM translation

into an HTML insertion, through the actual DOM. Data is declaratively rendered to the DOM

using a template syntax.

Mattias Levlin 51

Vue has a runtime build, which is responsible for creating Vue instances, rendering, and

patching the virtual DOM. There is also an alternative full build, which includes the runtime

plus a compiler. The runtime build is more lightweight, and also recommended by Vue’s

documentation. For Vue’s standard syntax, which includes functions such as render(), the

compiler is not needed, though it is needed if a developer wishes to pass HTML encoded in

strings to a template. A Vue application starts with the creation of a new Vue instance with

the Vue function. Upon creation, an options object containing data is passed to the new

instance. The properties found in the options object are added to Vue’s DOM reactivity

system. When the values of these properties change, the view reacts, updating to match the new

values.

6.4.2 Templating, components, and syntax

For components, Vue makes use of proprietary .vue files, as template files, similar to how

React uses .jsx files. These files combine HTML elements and dynamic JavaScript

functionalities. Components are usually constructed in a small, self-contained, reusable format

and then combined into bigger, cohesive modules. The modular components are usually defined

in a tree structure of files and folders. Vue components are similar to Custom Elements, which

are part of the Web Components Spec, and have been modeled after them.

<template>

 <div id="app">

 <p>Welcome!</p>

 <p v-if=loggedIn>You are logged in.</p>

 </div>

</template>

<script>

export default { name: app }

</script>

new Vue({

 render: h => h(App),

}).$mount('#app')

Figure 23: Basic Vue example which renders a welcome message.

Mattias Levlin 52

Vue’s syntax is identified by its heavy usage of directives, prefixed with v-. Examples are v-

bind, used to bind data to a component; v-if, used for conditional functionality; and v-on,

which handles user input and can take an argument such as a function to be run. An example of

v-if usage is seen in Figure 23, where it is used as part of a simple welcome message. These

directives apply special reactive behavior to the DOM, and keep the associated attributes up to

date with the specified elements in the code. Certain commonly used directives can also be used

in an alternative shorthand format, for instance, v-on:click can be written as @click in the

shorthand syntax. Another distinct feature of Vue is the usage of the “mustache syntax” (double

curly braces ({{ … }})). This syntax can be inserted into HTML templates; variables inside it

are then interpreted as JavaScript code, instead of HTML. This allows for defining JavaScript

expressions inside the mustache syntax.

6.5 Svelte

Svelte is a relatively new JavaScript framework, developed by Rich Harris. It was initially

released in 2016 and was gaining in popularity throughout 2019. Its third version was released

in April 2019. This version introduced several improvements to the framework that further

boosted its popularity, such as changes in local state handling. Svelte is written in TypeScript,

just like Angular. There are dedicated build tools for Svelte, such as rollup-plugin-svelte and

svelte-loader.

6.5.1 DOM interaction in Svelte

The DOM interaction in Svelte is more reminiscent of Angular than of React or Vue: much like

Angular, Svelte has no virtual DOM [84]. Svelte converts written code into JavaScript at build

time, instead of run time, and avoids converting declarative elements to the real DOM. While

the rationale for implementing a virtual DOM is typically to make DOM updates faster, the

developers of Svelte have argued against this in an article titled “Virtual DOM is pure

overhead”, explaining their reasons for avoiding the virtual DOM altogether [85]. One cited

reason in the article is that any virtual DOM operations are done in addition to the actual DOM

updates, which still must be done in any event. Another potentially costly operation that must

Mattias Levlin 53

be done is comparing the previous state of the real DOM to the virtual DOM, and then deciding

on whether to update (or “reconcile”) the real DOM or not (an operation called diffing). Citing

the potential performance drawbacks in performing operations such as these, the Svelte

developers have decided to avoid its implementation. This represents a potential innovation,

and in any case a break with the virtual DOM tradition.

6.5.2 Templating, components, and syntax

<script>

 let name = Mattias Levlin;

</script>

<h1>Welcome {name}!</h1>

Figure 24: Basic Svelte example which renders a welcome message.

The syntax in Svelte is based on TypeScript, but takes inspiration from the popular frameworks

React and Vue. Much like the other frameworks, a key element is the HTML-like reusable

component, here implemented in the .svelte file format. Svelte avoids declarative syntax like

React and Vue. Starting with Svelte version 3, the local state handling is greatly simplified;

instead of the previously used local state methods like this.set(...) (or the equivalent

this.setState(...) in React), this functionality is written simply using the assignment

operator (=). In Figure 24, an example of setting up a basic component using Svelte is shown.

Mattias Levlin 54

7 Technical benchmarks and evaluation

In this chapter, the core assessment of each framework is conducted using various DOM

benchmarks. For websites, performance metrics are of a central practical importance. Better

performance means lower loading times, increased user satisfaction, and for commercial

websites, revenue increases. A loading time reduction of a couple of milliseconds can increase

user interaction and retention: the e-commerce company Zalando found that 100 milliseconds

of loading time improvement on their website led to a 0.7% increase in customer revenue [86].

How quickly a certain interactive function is executed is important when dealing with large

numbers of users and technical difficulties, such as slow connection speeds. Compilation speed

is important from a developer’s perspective, especially when handling complex web

applications and large datasets. The main part of the assessment consists of the various

benchmarks in terms of technical performance. I have developed four testing benchmark

applications, one for each of the frameworks [87] [88] [89] [90].

The test applications have been set up with a minimum number of required elements according

to the respective documentation of each framework. All four applications contain the same

functionality and similar files: a root HTML file, titled index.html, and a src folder where

the relevant test code is found. Non-essential files and functionality, such as test-related files,

CSS files, and other settings files have been excluded wherever possible, even if they were

included in the basic setup recommended by the framework documentation. The test of DOM

performance is done using direct DOM updates and insertions of various HTML elements, such

as <div> and <p> elements. In the benchmark application, any kind of more permanent or

complex data storage beyond the local state has been excluded, since that would dilute the scope

of the study.

7.1 Benchmark considerations

In order to test the DOM performance equally, the conditions should be the same for all

frameworks. In this chapter, the chosen control structure, HTML elements, and browser are

discussed. The way each performance metric is measured is also discussed; the performance

Mattias Levlin 55

metrics are tracked using the internal lifecycle, which exists in each framework. In the testing

benchmarks, the best practices of each framework have been followed. This means that, in

React and Vue, the local state is used. Syntax that the React documentation advises against,

such as this.forceUpdate(), is avoided. DOM operations in React are mainly conducted

through the virtual DOM syntax this.setState().

7.1.1 Control structure and DOM elements

When dealing with more than one HTML element in a testing benchmark, the choice of control

structure should not affect performance. This means that, if possible, the same control structure

should be used for each framework. For adding many elements to the DOM, several options are

available; one of the more well-known and basic control structures is the for loop, where the

elements are added iteratively. This control structure is available in JavaScript and is easy to

implement in a similar way for each framework and library. Other possible options are the

array map, which maps each defined HTML element in an array onto the DOM, and the

forEach loop, which functions similarly to the for loop but does not need an explicit definition

of the amount of elements. While designing the testing benchmarks, the for loop syntax was

generally easy to implement; with Angular and Svelte, it involved performing iterative jQuery-

like updates directly to the DOM. However, while implementing the for loop syntax in React

and Vue, it was discovered that the Array.map() syntax in both frameworks was significantly

faster than the native for loop implementations; the for loop in React was quite slow compared

to the for loop implementation in Svelte and Angular. In Vue, the native v-for syntax was

initially used for testing, but it was discovered to be even slower than the for loop

implementation in React. Due to these reasons, in both React and Vue, the iterative DOM

updates have been done using the Array.map() syntax.

Another point of consideration is what HTML elements to choose. In order to test the

performance equally, the same elements should be added to the DOM with each framework.

Suitable basic HTML elements used for these benchmark tests are <div> and <p> elements,

since they are always represented as DOM objects. With these <div> and <p> elements, there

are three basic operations tested for each framework: insertion, editing, and removal.

Mattias Levlin 56

7.1.2 The lifecycles

One thing that makes it easy to make a development transition between React, Vue, Angular,

and Svelte is the existence of the lifecycle concept in all frameworks. This is useful also when

considering benchmarks: the lifecycle events, which are similar in each framework, can be used

to track when certain events have happened, and if timer functionality is added, the execution

time can be measured as well.

The lifecycle provides the developer with expanded control over the DOM; it contains functions

that are run when certain DOM events happen. These events can be categorized into three main

phases, which are consistent across all four frameworks: first, the initialization or creation

phase; second, the update phase; and finally, the destruction phase. Each of these phases

contains one or several events, for which behavior can be defined in JavaScript code. The

initialization or creation phase contains lifecycle events that are run when a certain component

is initially loaded and rendered onto the DOM. The events in the update phase are run whenever

there is a change in the component (in other words, when there is a change in the DOM). Finally,

the destruction phase contains an event that unmounts or destroys the component and removes

it from the DOM, to free up memory. One exception exists: Svelte has a unique lifecycle event

called tick() that does not fit into this three-part model: tick() resolves after any pending

state changes have been applied to the DOM (if there are none, it is immediately resolved). In

each framework, a lifecycle exists for every component that is used by the application. This

helps the developer understand when a certain event will happen, and where to place certain

functionality. For instance, if a function should run immediately after a component has been

rendered onto the DOM, the developer can use componentDidMount() in React, mounted() in

Vue, ngOnInit() in Angular, or onMount() in Svelte.

Mattias Levlin 57

Figure 25: Visual comparison of the lifecycles of React (blue), Vue (green), Angular (red), and

Svelte (orange).

The lifecycles of each framework are displayed in Figure 25. As can be seen in the figure,

Angular contains more lifecycle events than the others, especially when initiating a component,

while Svelte contains the lowest number of lifecycle events [83] [84] [91] [92]. Certain lifecycle

events have been altered over time; in React, some events that were previously part of the library

have since been removed in newer versions. These lifecycle events are declared unsafe, and

usage of these is discouraged for safety reasons. These include componentWillMount(), which

is now referred to as UNSAFE_componentWillMount() and is in practice replaced by

componentDidMount().

In the next section, the lifecycle events are of practical importance: the event that captures a

DOM update is used to track the performance of various DOM operations. The relevant

lifecycle event is the last event after each update. In React, this event is

componentDidUpdate(); in Vue, it is updated(); in Angular, it is ngAfterViewChecked();

and in Svelte, it is afterUpdate(). It can be noted that Angular is the only framework without

Mattias Levlin 58

a unique update event, as the event ngAfterViewChecked(), as well as all other Angular

update events, is also run also when a component is initialized in the DOM.

7.2 DOM benchmarks

In this section, the DOM benchmarks for each test are outlined. There are three basic operations:

insertion, editing, and deletion. For each of these operations, the performance has been recorded

with native life cycle events for each framework. The performance for each framework was

recorded using the function performance.now(), which is a function native to JavaScript and

thus available in each framework [93]. The first timestamp was recorded programmatically at

the click of a button, and the second timestamp recorded once the DOM event that tracks a

DOM update was recorded. The performance has been verified using the Google Chrome

developer console.

In this study, the React version benchmarked was 16.12.0, the Vue version was 2.6.11, the

Svelte version was 3.20.0, and the Angular version was 8.2.14 (@angular/core version) [87]

[88] [89] [90]. In terms of hardware, each test has been run on a MacBook Pro 13-inch model,

from 2017. Its processor was a 2.3 GHz Intel Core i5 processor, having 8 GB memory. The

browser used for testing purposes was Google Chrome, Version 79.0.3945.130 (in the 64-bit

version). All code for each framework has been written using Microsoft Visual Studio Code.

Google’s developer tools were used to verify and check the performance, specifically Google

Chrome’s built-in performance recording functionality.

7.2.1 DOM insertion

Outlined in Table 1 is the performance for adding 10000 <div> elements, each containing a

<p> element with text data, to the DOM in various ways for each framework. The time for the

entire insert operation has been measured according to lifecycle events in each framework

(React, Vue, Angular, and Svelte).

Mattias Levlin 59

Framework
Control
structure

React v16.12.0
Array.map()

Vue v2.6.11
Array.map()

Angular v8.2.14
for loop

Svelte v3.20.0
for loop

Attempt 1 27.74 28.73 43.35 33.95

Attempt 2 33.87 24.59 58.48 36.82

Attempt 3 30.76 22.93 42.12 29.56

Attempt 4 28.02 23.42 60.57 30.76

Attempt 5 31.98 24.08 61.60 29.30

Attempt 6 37.27 23.40 58.62 31.13

Attempt 7 35.04 29.16 59.95 30.63

Attempt 8 26.86 24.91 59.87 29.42

Attempt 9 28.54 23.01 41.79 31.07

Attempt 10 29.51 29.37 41.17 29.91

Average (ms)
30.96 25.36 52.75 31.26

Table 1: Performance in milliseconds for adding 10,000 <div> elements with a <p> text to the

DOM. Best framework performance highlighted in blue.

Evaluating the results in Table 1, it is apparent that Vue has the fastest performance for adding

a large amount of HTML elements to the DOM. However, all frameworks performed relatively

well in this first testing benchmark, with React and Svelte having a similar performance to Vue.

The notable outlier is Angular, which has a slower average performance, at 52.75 milliseconds,

while the performance results of the three other frameworks all are found within an interval of

six milliseconds (25-31 milliseconds). While Angular is a heavier framework than the other

three in terms of development style, the performance for adding a large number of DOM

elements is not that much worse: the direct Angular updates to the DOM, omitting the virtual

DOM, seem to produce quite a good performance in this benchmark. Svelte uses the same

strategy as Angular, but is faster, and reaches a performance similar to React and Vue.

7.2.2 DOM editing

The second benchmark phase looks at DOM editing performance. This is relevant for changing

user interface elements. There are two tests in this phase, one where a single element is edited,

and one where 10000 elements are edited.

Mattias Levlin 60

Framework
Control
structure

React v16.12.0
reference

Vue v2.6.11
reference

Angular v8.2.14
getElementById

Svelte v3.20.0
getElementById

Attempt 1 16.51 22.25 6.71 0.11

Attempt 2 16.06 21.28 5.64 0.11

Attempt 3 17.48 22.77 5.44 0.11

Attempt 4 16.59 23.34 6.32 0.11

Attempt 5 16.81 21.41 6.43 0.11

Attempt 6 16.55 18.61 6.57 0.12

Attempt 7 15.61 23.60 5.70 0.11

Attempt 8 16.40 22.23 6.12 0.11

Attempt 9 16.35 22.66 5.61 0.12

Attempt 10 17.39 24.16 6.29 0.11

Average (ms) 16.58 22.23 6.08 0.11

Table 2: Performance measured in milliseconds for editing one element out of 10,000 <div>

elements.

In the second evaluation, editing element one out of 10000 <div> elements was performed. The

results are displayed in Table 2. Here, the difference in performance is visible between the

frameworks using a virtual DOM (React and Vue) and the ones that do not (Angular and Svelte).

Notably, Angular, which was the slowest framework in the first test, performed better than both

React and Vue, at 6.08 milliseconds. However, in this test, Svelte was by far the fastest

framework, with an average performance for editing one DOM element taking only 0.11

milliseconds. The lightweight implementation of direct DOM interaction in Svelte shows its

strength here: for simple, one-off edits, Svelte looks to be the most efficient framework. It is

also very easy to implement and handle these kinds of DOM operations in Svelte. The fact that

Angular also performed well in this test further shows that direct DOM updates may be the best

choice for smaller operations.

Looking at the performance of the virtual DOM frameworks, React and Vue, reveals a slower

performance, though the operations were still quite fast, at 16.58 and 22.23 milliseconds

respectively. The reason for the slower performance in React and Vue in this benchmark is

likely due to the fact that the updates must first travel through the virtual DOM, before

Mattias Levlin 61

reconciling the state of the virtual DOM with the real browser DOM. This additional

intermediate step in the virtual DOM seems to require a base amount of time for each update,

most likely a couple of milliseconds. Because Angular and Svelte do not need to perform this

operation, they enable very fast singular DOM updates, an advantage that Svelte especially

seems to utilize and maximize.

Framework
Control
structure

React v16.12.0
Array.map()

Vue v2.6.11
Array.map()

Angular v8.2.14
for loop

Svelte v3.20.0
for loop

Attempt 1

17.74 23.40 911.20 918.09

Attempt 2 18.02 21.22 883.82 880.61

Attempt 3 17.78 20.46 886.01 901.07

Attempt 4 17.20 19.86 874.99 882.40

Attempt 5 19.43 20.25 883.20 873.39

Attempt 6 18.28 20.82 878.35 872.37

Attempt 7 17.69 19.98 895.55 881.89

Attempt 8 17.80 20.35 884.95 884.93

Attempt 9 17.64 19.41 877.79 869.33

Attempt 10 17.04 20.64 991.75 886.26

Average (ms) 17.86 20.64 896.76 885.03

Table 3: Performance measured in milliseconds for editing each <p> text inside 10,000 <div>

elements.

In the third benchmark, an edit of 10000 elements previously added to the DOM was performed.

The results of this benchmark are displayed in Table 3. Here, the situation is reversed compared

to the previous benchmark. React and Vue were a lot faster than Angular and Svelte. React was

slightly faster than Vue, at 17.86 milliseconds on average, while updating 10000 elements in

Vue took 20.64 milliseconds on average. In comparison, Angular and Svelte were both very

slow. Updating 10000 elements in the DOM using both Angular and Svelte took almost a

second on average (896.76 and 885.03 milliseconds, respectively). In these results, the strengths

of the virtual DOM in React and Vue can be seen: since the virtual DOM keeps track of what

is displayed, its cache-like functionality seems to produce better results than performing direct

DOM updates. Angular and Svelte do not seem to handle larger editing operations as efficiently

as the virtual DOM frameworks. A base amount of time seems to be needed for each virtual

Mattias Levlin 62

DOM update in React and Vue, whether updating only one element or updating a large number

of elements. However, while this can be detrimental for smaller operations, as seen in the

second benchmark, this seems to enable efficient performance for larger updates. In terms of

quantitative performance metrics, this benchmark result may be the most prominent argument

in favor of using a virtual DOM framework, whether it be React or Vue.

7.2.3 DOM removal

In the third benchmark phase, two tests of removal of DOM elements were performed. These

tests can be compared to the editing tests: one test was performed where only one element was

removed from the DOM, and one test was performed where all 10000 elements were removed

from the DOM. The results of this benchmark are seen in Table 4.

Framework
Tool

React v16.12.0
state assignment

Vue v2.6.11
state assignment

Angular v8.2.14
innerHTML

Svelte v3.20.0
innerHTML

Attempt 1

15.93 22.16 0.09 0.65

Attempt 2 16.47 24.97 0.08 0.51

Attempt 3 16.74 26.20 0.09 0.50

Attempt 4 15.68 26.49 0.09 0.51

Attempt 5 17.98 21.93 0.06 0.50

Attempt 6 16.96 19.14 0.09 0.52

Attempt 7 17.24 26.91 0.09 0.55

Attempt 8 16.07 25.24 0.09 0.51

Attempt 9 16.09 27.06 0.08 0.52

Attempt 10 16.28 25.03 0.10 0.52

Average (ms) 16.54 24.51 0.09 0.53

Table 4: Performance measured in milliseconds for removing one <div> element with a <p>

text from the DOM.

In this evaluation, one element was removed from the DOM. Here, Angular and Svelte were

very fast with direct DOM queries (innerHTML). Interestingly, Angular was the fastest

framework here, removing a DOM element in only 0.09 milliseconds. This was even faster than

Mattias Levlin 63

Svelte, which took 0.53 milliseconds. Both these frameworks were a lot faster than React and

Vue, which respectively required 16.54 and 24.51 milliseconds to remove a single DOM

element. Just like in the benchmark where one element was edited, the strengths of direct, one-

off DOM updates are visible here. Again, React and Vue seem to require more time to send the

update through the virtual DOM, while Angular and Svelte instantly update the DOM with a

very efficient operation. This would confirm the theory that React and Vue always require a

certain amount of milliseconds to perform any kind of DOM update, reserved for updating the

virtual DOM. This means that single DOM updates faster than a couple of milliseconds seem

not to be possible to achieve with React or Vue.

Framework
Tool

React v16.12.0
state assignment

Vue v2.6.11
state assignment

Angular v8.2.14
innerHTML

Svelte v3.20.0
innerHTML

Attempt 1

7.55 32.62 24.09 22.84

Attempt 2 7.42 33.77 24.38 23.71

Attempt 3 7.23 33.04 23.82 23.52

Attempt 4 7.34 32.79 22.25 22.83

Attempt 5 7.41 33.19 24.35 22.76

Attempt 6 7.24 33.00 24.21 22.19

Attempt 7 7.32 33.53 23.80 23.41

Attempt 8 7.49 34.54 23.45 23.08

Attempt 9 7.19 34.18 23.61 22.74

Attempt 10 7.70 32.64 24.36 22.58

Average (ms) 7.39 33.33 23.83 22.97

Table 5: Performance measured in milliseconds for each framework while removing 10,000

<div> elements with a <p> text from the DOM.

In the fifth evaluation, a DOM removal operation was performed, removing 10,000 <div>

elements with a <p> text from the DOM. The results of this benchmark are seen in Table 5. In

this benchmark, React had the fastest performance, at 7.39 milliseconds, while Vue had the

slowest performance, at an average of 33.33 milliseconds. However, the all frameworks

performed relatively well here. Once again, while React was the fastest framework, it did not

manage to achieve a performance faster than a few milliseconds. In contrast to the previous

quantitative updates, Angular and Svelte performed well in this benchmark, at 23.83 and 22.97

Mattias Levlin 64

milliseconds, respectively. This may be due to the fact that a removal operation is quite simple,

ideally consisting of a generic remove everything command. The most notable result here is the

result of Vue, which surprisingly was the slowest, albeit only around 10 milliseconds slower

than Angular and Svelte.

7.2.4 Compilation speed

Table 6 lists the compilation speed for each of the test applications. In this evaluation, all the

applications were run in their respective development builds, not in production builds. When

all relevant application files are counted together (index.html and the contents of the source

code folder src), the React testing app contains a total of 4 files: 1 JSX file, 2 JavaScript files,

and 1 HTML file, for a total of 159 lines of code; the Vue testing app contains a total of 5 files

(3 .vue files, 1 JavaScript file, and 1 HTML file) for a total of 201 lines of code; the Svelte

testing app contains a total of 3 files (1 .svelte file, 1 JavaScript file and 1 HTML file) for a

total of 102 lines of code; while the Angular testing app contains a total of 11 files (5 HTML

files and 6 TypeScript files) for a total of 147 lines of code [87] [88] [89] [90]. All projects also

contain a package.json file and an associated package-lock.json file, but no external

libraries or dependencies have been added beyond the default ones.

When developing these applications, the documentation was followed for each of the

frameworks, thus the setups can be considered as representative of the general development

setup of a small application. The compilation speed was measured manually, and averaged out

across five test setups. In this case, the time measurement was not automated through code,

instead it was started manually when the development setup command was executed in the

terminal and stopped immediately once the command line interface indicated that the

application was compiled. The compilation tests were run on the same hardware as the technical

benchmarks.

Mattias Levlin 65

 React v16.12.0
(npm start)

Vue v2.6.11
(npm run serve)

Angular v8.2.14
(ng serve)

Svelte v3.20.0
(npm run dev)

Attempt 1 3.98 3.05 8.58 1.57

Attempt 2 4.00 3.06 8.71 1.60

Attempt 3 3.88 3.08 8.58 1.66

Attempt 4 3.97 3.07 8.78 1.63

Attempt 5 3.97 3.07 8.85 1.62

Average (s) 3.96 3.07 8.70 1.61

Table 6: Compilation speed in seconds for each of the test applications, using a basic

development setup. Development setup command in parenthesis; for instance, (npm start) for

React.

The results displayed in Table 6 show that Svelte is the fastest framework in terms of

compilation speed; it only took an average of 1.61 seconds to compile the test application. Vue

and React are both relatively fast, with an average of 3.07 and 3.96 seconds respectively. Finally

the heaviness of Angular is apparent in these tests as well: it took an average of 8.70 seconds

to compile the test application. It should be noted that compilation speed is relevant only for

developers, and only on startup of the application. The previous technical benchmarks are

important both for developers and end users, and DOM updates are usually performed multiple

times during an application usage session.

7.2.5 Summary of the technical benchmark tests

In Table 7, a summary of the technical benchmark tests outlined in the previous sections is

presented. As can be seen in Table 7, React was the fastest framework in two of the tests, and

slowest in none. Svelte was the fastest in two tests, while Angular was the fastest in one and

together with Svelte, very slow when updating any DOM elements. Angular was also by far the

slowest framework in terms of compilation. Vue performed relatively well in all tests, having

the fastest performance for adding 10000 elements, but being beaten by React in four of the

benchmarks, even though they both handle the DOM interaction in similar ways.

Mattias Levlin 66

 React v16.12.0 Vue v2.6.11 Angular v8.2.14 Svelte v3.20.0

Add 10,000 (ms) 30.96 25.36 52.75 31.26

Edit one (ms) 16.58 22.23 6.08 0.11

Edit 10,000 (ms) 17.86 20.64 896.76 885.03

Remove one (ms) 16.54 24.51 0.09 0.53

Remove 10,000 (ms) 7.39 33.33 23.83 22.97

Compilation (s) 3.96 3.07 8.70 1.61

Table 7: Summary of the previous tests. Best performance marked in blue. Notably slow

performances marked in red.

To summarize this table, React has few weaknesses, and performed consistently well in the

benchmarks. Svelte would have been comparable to React in performance, were it not for the

third benchmark, where Svelte performed quite unsatisfactorily. React is the winning

framework in this comparison. Between the two frameworks without a virtual DOM, Angular

and Svelte, Svelte is the better performing framework. However, due to the slow performance

in the third benchmark, Vue would probably be preferred ahead of Svelte in this comparison.

This leaves Angular as the worst-performing framework overall, though it was the fastest

framework for removing one element.

7.3 Other evaluations

This chapter evaluates the framework size of each minified library, and then discusses matters

from an experiential perspective. There are several factors to consider outside of the technical

DOM benchmarks when evaluating these frameworks, though it should be noted that any

evaluation which is not based on performance data is going to be of lower reliability and contain

a larger risk for personal bias.

Mattias Levlin 67

7.3.1 Framework size

Figure 26: Size of each framework’s minified package in the npm registry.

The minified size of the frameworks is displayed in Figure 26 [94] [95] [96] [97]. The

frameworks were retrieved in the same versions as the ones studied in the benchmark section.

The minified package size was retrieved from the npm registry. While the size of each

framework’s minified package is unlikely to discourage or encourage any developer from

selecting the framework in question for development, it gives an indication of the scope of each

framework. The size of each package is below 200 kB, Angular is notably quite a bit larger than

the rest (187.6 kB), while Svelte (3.6 kB) and React (6.4 kB) are only a few kB each in minified

size. Vue falls somewhere in between, at 63.5 kB. The package size comparison reflects the

fact that Angular supports and contains a larger breadth of functionality, while Svelte and React

are designed for more streamlined development, giving the developer fewer choices in order to

improve efficiency, which becomes especially handy for smaller projects.

Mattias Levlin 68

7.3.2 Development experience, learning curve, and availability

The initial development setup was very easy for React and Vue. Svelte had a different setup,

where the tutorial recommended the user to start off developing in the browser, and then moving

to desktop development, which was also quite intuitive. The Angular setup was the most

comprehensive and the templates of Angular contained significantly more files and folders than

the other three frameworks; Angular has by far the most comprehensive and “heaviest”

development process in this evaluation.

In terms of the JavaScript variants, standard JavaScript is used in React and Vue and TypeScript

is used for Angular and Svelte. While TypeScript is not in itself much harder or easier to learn

than JavaScript, it is not as widely used and contains less libraries and overall documentation

than JavaScript, and also has a smaller user base. These factors, combined with the differences

in syntax and the time it takes to get used to coding in a slightly different variant of JavaScript,

might give a slight advantage to React and Vue. However, TypeScript is still very similar to

JavaScript, and has certain advantages in that it is more strict regarding types and syntax than

JavaScript, thus preventing some type conversion errors. Thus the division between different

JavaScript flavors is unlikely to be of much practical importance for developers when choosing

a framework.

In terms of DOM interaction difficulty, Angular and Svelte may be easier to handle; the

programmatic implementation of DOM updates is more straightforward in these two

frameworks, since neither of them contains an intermediate virtual DOM. Developers with a

limited knowledge of JavaScript and the DOM may find it easier to simply perform updates

straight to the DOM in the browser, and thus prefer the Angular and Svelte way of doing things.

This is exemplified by numerous developer stories and questions on the programming Q&A

site StackOverflow.com related to the virtual DOM in React and Vue. A common

misconception seems to be that the DOM updates in React and Vue work in a similar way to

jQuery. The virtual DOM state updates in React and Vue involve more tweaking of code, and

require the developer to become familiar with how the frameworks are designed, and what the

purpose of the virtual DOM is. This causes a risk of implementing DOM operations in non-

standard ways, which can lead to invalid or slow DOM interaction.

Mattias Levlin 69

While Svelte and Angular are easier to deal with in terms of DOM handling, development in

Angular is more cumbersome due to the fact that functionality is split into several different files

for each component. The other three frameworks typically handle everything related to a

specific component in one file, but Angular, by default, splits component functionality into

separate files (.ts, .spec.ts, .html, and .css). Out of the four frameworks, Svelte was the easiest

one to work with in development, having no major drawbacks, implementing a one-file

template component syntax and avoiding the virtual DOM. This makes Svelte reminiscent of

working with pure JavaScript and jQuery. The syntax of Svelte is also very intuitive,

reminiscent of the ease of working with Python.

The availability of documentation was satisfactory for all four of the frameworks. The

documentation of React is available in the largest number of languages, 16 [98]. Vue falls

behind React, with a documentation available in 8 languages, while the Angular documentation

is available in 4 languages [99] [100]. The documentation of Svelte is available in English and

Chinese [84]. The framework situation of Angular may present some difficulties for the

developer in that it is split between AngularJS and Angular 2+, and the term “Angular” is

sometimes ambiguous as to which framework it refers to in online contexts, especially when

browsing smaller sites and shorter answers.

In terms of teaching the developer how to use framework, the creators of React, Vue, and

Angular had a similar approach with standard documentation and examples, but the structure

of Svelte’s initial setup was notable: the guide actually recommends the developer to start out

with developing in the browser, using the web development sandbox Svelte REPL. Once the

project becomes complex enough, there is an option to download the project in a zipped file,

and set it up locally using a few commands. This is a user-friendly approach that may even be

inviting for non-coders, and while all four frameworks only require a couple of simple

commands, the approach the Svelte developers have taken stands out in its approachability

[101].

Mattias Levlin 70

8 Results, summary, and conclusion

In this thesis, React, Vue, Angular, and Svelte, the four most popular JavaScript frameworks in

recent years, have been studied. This chapter contains a final summary, discussion of results,

and a summarizing conclusion and recommendation of what framework to use. In Table 8, a

summary of all tests and metrics in this study is shown. These results include the metrics already

summarized in the benchmarks section, plus the minified size, availability metrics, technical

facts, as well as other previously discussed popularity metrics, from Chapter 6 (GitHub stars

and sentiment in the State of JavaScript survey 2019).

TECHNICAL METRICS React v16.12.0 Vue v2.6.11 Angular v8.2.14 Svelte v3.20.0

Add 10,000 (ms) 30.96 25.36 52.75 31.26

Edit one (ms) 16.58 22.23 6.08 0.11

Edit 10,000 (ms) 17.86 20.64 896.76 885.03

Remove one (ms) 16.54 24.51 0.09 0.53

Remove 10,000 (ms) 7.39 33.33 23.83 22.97

Compilation (s) 3.96 3.07 8.70 1.61

Minified size (kb) 6.4 63.5 187.6 3.5

POPULARITY React v16.12.0 Vue v2.6.11 Angular v8.2.14 Svelte v3.20.0

Documentation in
number of languages

16 8 4 2

Positive interest in
StateOfJs 2019 (%)

83.7 74.7 31.6 51.7

Number of Github
stars, January 2020

142,850 159,091 29,756 56,789

OTHER METRICS React v16.12.0 Vue v2.6.11 Angular v8.2.14 Svelte v3.20.0

Virtual DOM Yes Yes No No

TypeScript No No Yes Yes

Release date 2013 2014 2016 2016

OVERALL RATING React v16.12.0 Vue v2.6.11 Angular v8.2.14 Svelte v3.20.0

Placement 1 2 4 3

Table 8: A complete summary of all testing and development metrics.

Mattias Levlin 71

React is the winning framework of this study. React performed well in the benchmark section,

and is also the most used and well-known framework, though Vue had slightly more Github

stars. However, if one framework was to be recommended ahead of the others, it would be

React, having no discernible weaknesses, and many strengths, winning two of the technical

benchmarks and performing very satisfactorily in all of them. The only thing to comment on in

terms of drawbacks would be that due to the virtual DOM, React has a performance of a few

milliseconds more for simple, singular DOM updates (this is also true for Vue). Vue is similar

to React, but performed overall slightly slower than React in the technical benchmarks. Since

Vue implements a virtual DOM, much like React, and in other aspects is also reminiscent of

React though not as widely used, it may not find a competitive advantage against React. For

developers looking to use a framework with a virtual DOM, React is recommended.

The newcomer framework, Svelte, was easy to develop with, fast, and intuitive. The fact that it

does not use a virtual DOM is an interesting development, which contributed to a relatively fast

performance, apart from quantitative edits. Svelte is easy to start working with also for

developers who are novices within the JavaScript domain. The relatively small developer

community of Svelte is its greatest weakness, for learning about Svelte, the documentation

might have to be consulted directly, while the other three frameworks have quite a large amount

of resources available on Q&A websites, as well as a larger number of dedicated forums,

tutorials, and communities. Angular is by most standards a bloated framework, though it

performed relatively well in the benchmark section, and was the fastest framework when

deleting one DOM element. It may find its niche among developers and companies looking for

frameworks that support comprehensive, large-scale projects. This also seems to be the

consensus among the JavaScript developer community at large. By non-technical metrics, the

most popular frameworks are React and Vue by a large margin, with React being well-

established as a mature framework, but with Vue seemingly growing in popularity. While the

developers of Vue estimated that speed is generally an unlikely factor in deciding what

framework to choose, the benchmarks in this study may still be of interest to web developers

dealing with large amounts of DOM data [78]. One benchmark metric area that could be studied

in an expanded study would be how the different frameworks handle memory allocation and

memory usage, which was not included in this study, but has been included in other similar

benchmark studies [102] [103].

Mattias Levlin 72

The future of the front-end JavaScript landscape is hard to predict. The most interesting

development will be to see if the non-virtual DOM paradigm of Svelte manages to break

through and cause a shift in the landscape. React is still a very powerful framework with a large

user base, and is also backed by Facebook. React is likely to be the dominant framework for

the foreseeable future, perhaps integrating insights from newcomer frameworks such as Svelte.

Other newcomer frameworks may also be launched in the coming years that implement the best

ideas from the older frameworks. However, for now, for developers looking to develop

applications using a mature, well-liked framework with a good performance and plenty of

documentation, React is the best choice.

Mattias Levlin 73

Svensk sammanfattning

1 Inledning

Ett av de vanligaste verktygen för att skapa interaktiva, avancerade webbsidor år 2020 är

programmeringsspråket Javascript. Under det senaste årtiondet har många ramverk byggts upp

ovanpå Javascript. Dessa ramverk underlättar skapandet, designen och upprätthållandet av

interaktiva webbsidor. År 2020 var de mest populära ramverken React och Vue, följda av

Angular. Ett nytt ramverk, Svelte, höll samtidigt på att bli mer populärt och intresserade

webbutvecklare. I denna studie evalueras dessa ramverk genom ett antal tekniska tester, för att

undersöka vilket eller vilka av ramverken som passar bäst för webbutveckling, och vilka styrkor

och svagheter vart och ett av ramverken har. De tekniska testerna består av olika hanteringar av

DOM-operationer. DOM står för Document Object Model på engelska, och är en modell som

representerar visuella element i en webbläsare. Ett antal icke-tekniska evalueringar för

ramverken beskrivs också, såsom skillnader i arkitektur, utvecklingssätt, popularitet,

tillgänglighet och mognad. Denna studie kan vara av intresse för webbutvecklare, speciellt för

de som fokuserar på användargränssnitt och design av webbsidor, och studien kan underlätta

valet av ramverk för ett webbutvecklingsprojekt. Studien kan även ses som en allmän

introduktion till Javascript-ramverkens domän. Vidare kan de tekniska testerna och resultaten

vara värdefulla för intressenter som lägger vikt vid prestanda och snabbhet för applikationer i

webbläsaren.

2 Javascripts miljö

Den vanligaste miljön där Javascript ofta ses implementerat är på webbläsare. Här kombineras

Javascript ofta med teknologierna HTML och CSS. Tillsammans har dessa tre verktyg

beskrivits som det tretal teknologier alla webbutvecklare bör bekanta sig med. HTML är på

engelska en förkortning av Hypertext Markup Language och har definierats av organisationen

World Wide Web Consortium som webbens grundläggande programmeringsspråk för att skapa

innehåll för alla, för användning överallt. Med hjälp av HTML skapas alla typer av statiska,

visuella element på webbsidor. HTML släpptes 1993, tre år före Javascript, och fungerar väl

tillsammans med Javascript då Javascript utvecklades som en extension till HTML. CSS är en

Mattias Levlin 74

engelsk förkortning av Cascading Style Sheets och har definierats av World Wide Web

Consortium som en mekanism för att definiera ett visst webbdokuments stil, så som fonter,

färger och mellanrum. CSS används vanligtvis som ett komplement till HTML och hanterar de

grundläggande designaspekterna av webbinnehåll. För att summera används HTML för

skapande av innehåll på webbsidor, CSS för utsmyckandet av detta innehåll, och Javascript för

dynamisk interaktion med innehållet.

3 Javascript

Javascript utvecklades av Netscape Communications och släpptes i sin första version 1996.

Målet med Javascript var att skapa ett språk som skulle kunna hantera enklare dynamiska

operationer i webbläsaren, som komplement till statiska, HTML-baserade webbsidor. Under de

följande åren växte Javascript i popularitet, och kom att bli ett av de mest använda

webbverktygen. Javascript är ett objektorienterat skriptspråk med support för dynamiska typer.

Detta betyder att en variabels typ inte behöver definieras som till exempel heltal eller sträng,

utan tolkas av Javascript och kan enkelt konverteras. Javascript stöder vanliga

programmeringsfunktioner som if, while och switch. Javascript standardiserades 1997 genom

en standard vid namnet Ecmascript, som uppdateras kontinuerligt. En ofta sedd version är

Ecmascript 2015, som var den sjätte lanserade versionen, som introducerade nya egenskaper

till Javascript som let och pilfunktioner. Utöver standardvarianten av Javascript finns flera

deriverade varianter, en känd variant heter Typescript, som är en något mer strikt version av

Javascript som till exempel inte stöder dynamiska typer. I denna studie är standardversionen av

Javascript och Typescript speciellt relevanta, eftersom att två av ramverken, React och Vue, är

baserade på standardversionen av Javascript, och två av ramverken, Angular och Svelte, är

baserade på Typescript. Javascript har växt i popularitet sedan 1990-talet, och har sedan 2013

varit det mest använda programmeringsspråket på den populära programmeringssidan Stack

Overflow. Vidare har Javascript implementerats på uppskattningsvis 95 % av alla webbsidor.

Javascripts typiska miljö är en webbsida med användargränssnitt, men det kan även användas

på webbservrar.

Ett viktigt koncept i denna studie är dokumentobjektmodellen, ofta refererad till med

förkortningen DOM (på engelska Document Object Model). Dokumentobjektmodellen är ett

programmeringsgränssnitt som ger tillgång till HTML-webbsidors innehåll, struktur och stil.

Mattias Levlin 75

Detta gränssnitt används i testerna i den praktiska delen av denna studie. De flesta populära

webbläsarna implementerar dokumentobjektmodellen. Detta betyder i praktiken att då en

webbsida laddas in av webbläsaren, skapas automatiskt ett DOM-gränssnitt för sidan, vilket

kan användas för editering av webbsidans innehåll med hjälp av Javascript eller ett annat

skriptspråk. Dokumentobjektmodellen är implementerad som en trädstruktur, där trädets rot

består av webbsidans rotdokument och där webbsidans innehåll består av grenar på trädet. Detta

träd och dess grenar kan traverseras, editeras och manipuleras med hjälp av Javascript. DOM-

gränssnittet kan förstås som en mellanliggande modell mellan användaren och webbsidans

innehåll, som ger användaren en utvidgad, programmatisk tillgång till webbsidan.

De olika ramverken i denna studie hanterar dokumentobjektmodellen på två olika sätt. Två av

ramverken, React och Vue, implementerar en virtuell dokumentobjektmodell, en egen

representation av webbläsarens dokumentobjektmodell. Med en virtuell dokumentobjektmodell

hanteras alla inkommande Javascript-förfrågningar först av den virtuella modellen och dess

innehåll uppdateras först. Sedan skickas uppdateringarna vidare till den faktiska

dokumentobjektmodellen i webbläsaren, där den modellens innehåll synkroniseras med den

virtuella dokumentobjektmodellens innehåll. Målet med en virtuell dokumentobjektmodell är

att accelerera uppdateringshastigheten i webbläsarens egen dokumentobjektmodell och att

förenkla editeringsprocessen för webbutvecklaren. De två andra ramverken, Angular och

Svelte, implementerar inte en virtuell dokumentobjektmodell, istället uppdaterar dessa ramverk

webbläsarens dokumentobjektmodell med direkta Javascript-förfrågningar.

4 Användargränssnittsorienterade Javascript-ramverk

React, Vue, Angular och Svelte klassas i denna studie alla som Javascript-ramverk (på engelska

framework). Ett relaterat programmeringsuttryck är bibliotek (på engelska library), som består

av en samling resurser avsedda för utförande av en viss operation eller en liten domän av

operationer. Ett exempel på ett bibliotek är jQuery, som ger en webbutvecklare möjlighet att

manuellt utföra uppdateringar av dokumentobjektmodellen. Ett ramverk kan ses som ett mer

avancerat bibliotek, definierat som en samling stabila resurser som förser en programmerare

med verktyg för att skapa en hel webbapplikation.

Mattias Levlin 76

Ett relevant uttryck inom Javascript-ramverkens domän är ensidsapplikationen (på engelska

Single Page Application, förkortat SPA). En ensidsapplikation laddar in alla resurser som krävs

då användaren navigerar till en webbsida för första gången; istället för att skicka förfrågningar

till webbsidans server för varje användaroperation, laddas det behövda innehållet fram lokalt

på webbsidan då det behövs. Detta belastar nättrafiken mindre och ger webbutvecklaren större

kontroll över sidans modularitet. Ensidsapplikationens principer växte fram under 2000-talet,

och dessa principer blev populära främst tack vare förbättringen i nätverksprestanda.

Ramverken i denna studie implementerar alla ensidsapplikationens principer.

En funktionalitet som växt i popularitet samtidigt med ensidsapplikationen är

komponentbaserat innehåll. Innehållet på en webbsida utvecklad med ett generiskt, modernt

Javascript-ramverk består ofta av komponenter (på engelska components). En komponent kan

vara till exempel ett textfält eller en inloggningsknapp, och kan återanvändas flera gånger. På

så sätt skapas modularitet i applikationen, då en viss komponent bara behöver definieras en

gång, men kan användas ett obegränsat antal gånger. En viss komponent kan importeras in till

en annan komponent, för att bygga upp en trädstruktur. Data kan även skickas mellan

komponenter. En viss komponent definieras vanligtvis i en mall (på engelska template), en

HTML-liknande fil som ofta innehåller ramverksspecifik syntax och Javascript-funktionalitet.

En mall beskriver en viss komponents utseende och funktionalitet. Då en definierad komponent

används, skickas dessa egenskaper vidare till dokumentobjektmodellen för att lägga till

innehållet i webbläsaren. Fördelen med mallar är att HTML-element och dynamisk Javascript-

funktionalitet kan kombineras i samma fil, vilket förenklar utvecklingsprocessen för

programmeraren.

Ett annat koncept som populariserats under de senaste åren är applikationstillståndet (på

engelska state). Detta koncept används också av alla ramverk i denna studie. En applikation

kan befinna sig i ett visst tillstånd baserat på vart användaren har navigerat eller vilka

operationer som utförts. Applikationstillståndet existerar ofta i två varianter, det globala

tillståndet och det lokala tillståndet. Det globala tillståndet kan kontrollera mera fundamentala

parametrar, som till exempel om användaren är inloggad eller vilket språk applikationen ska

visas på. Det lokala tillståndet implementeras inom mindre komponenter, och kan till exempel

kontrollera om en viss informationspanel ska vara expanderad eller minimerad.

Mattias Levlin 77

5 Teknisk miljö

Ett antal element krävs för att i praktiken påbörja utvecklandet av en webbapplikation med

något av de Javascript-ramverk som beskrivs i denna studie. Dessa element inkluderar en

exekveringsmiljö (på engelska runtime environment) och en verktygskedja (på engelska

toolchain). En exekveringsmiljö möjliggör exekveringen av en Javascript-applikation. Den

mest använda Javascript-exekveringsmiljön är Node.js, som rekommenderas för användning i

de flesta populära Javascript-ramverks dokumentation. En verktygskedja är en samling

teknologier som försnabbar och förenklar utvecklingsprocessen av en applikation. De flesta

ramverk erbjuder färdiggjorda verktygskedjor, men en verktygskedja kan även konstrueras

manuellt. En verktygskedja innehåller vanligtvis en pakethanterare (på engelska package

manager), som hanterar import av funktioner från utomstående programmeringsbibliotek. En

annan viktig komponent i verktygskedjan är en paketerare (på engelska bundler), som

kompilerar ett helt Javascript-projekts kod till en enda fil, vilket förenklar hanteringen av import

och export filer emellan. Slutligen inkluderas ofta en transkompilator (på engelska

transcompiler) som säkerställer att kod skriven med en viss version av Javascript är kompatibel

med äldre versioner av Javascript eller mellan olika varianter av Javascript.

6 Presentation av ramverken

De fyra ramverken som evalueras i denna studie kan kategoriseras som klientsideramverk, det

vill säga att de körs i webbläsarklienten, och inte på en server. Ramverken kopplas dock ofta

vidare till serverfunktionalitet. Vidare är ramverken avsedda för generell utveckling av

webbapplikationer från början till slut, inte för en mindre avgränsad domän. De fyra ramverken

är React, Vue, Angular och Svelte. Dessa ramverk hade alla i januari 2020 mer än 20 000

stjärnor av användare på källkodswebbsidan Github.com. Alla fyra ramverk nämndes också

bland de mest använda och intressanta Javascript-ramverken i undersökningen State of

Javascript survey 2019.

React är utvecklat av Facebook och släpptes 2013. React var under senare delen av 2010-talet

det mest populära Javascript-ramverket. React introducerade JSX-syntaxen, som står för

Javascript XML, en innovativ syntax som kombinerar HTML och Javascript i samma fil (med

filändelsen .jsx) och möjliggör enkel definition av återanvändbara komponenter. JSX har

Mattias Levlin 78

använts som inspiration hos efterföljarna Vue och Svelte. React utvecklades med fokus på

dokumentobjektmodellens prestanda; utvecklarna strävade efter att utföra så lite DOM-

manipulationer som möjligt och introducerade därför en virtuell dokumentobjektmodell som

sköter DOM-operationerna, istället för att manuellt redigera DOM-attribut och hantera

händelser (på engelska events), vilket tidigare var populärt (speciellt hos användare av

biblioteket jQuery och ramverket Angular).

Vue utvecklades primärt av en anställd vid Google, Evan You, och är inspirerat både av React

och av det äldre ramverket AngularJS. Vue lanserade i sin första version 2014, och har växt i

popularitet till att vara det näst mest använda Javascript-ramverket, efter React. Utvecklarna av

Vue har noterat likheterna mellan Vue och React i att de båda använder en virtuell

dokumentobjektmodell. Vue implementerar sina komponenter i .vue-mallfiler, vilka går att

jämföra med Reacts .jsx-filer. En noterbar egenskap Vue har är dess användning av direktiv i

komponenterna. Direktiven identifieras med syntaxen v: till exempel v-bind som binder data

till en komponent och v-if som evaluerar if-satser.

Angular är ett ramverk som skiljer sig från React och Vue på flera sätt. Ramverket har en

föregångare, en äldre version, AngularJS, baserad på standardvarianten av Javascript, släpptes

redan 2010. Angular, ibland kallat Angular 2+, är en efterföljare som utvecklats med Javascript-

varianten Typescript, och lanserades 2016. Denna nyare version utvecklades för att förbättra

prestanda och stödja utvecklingen av större, mer komplexa applikationer, funktioner som sågs

vara bristfälliga i AngularJS. Angular implementerar inte en virtuell dokumentobjektmodell,

istället skickar ramverket DOM-uppdateringar direkt till webbläsaren. Komponenter skapas

vanligtvis via Angulars konsol, där en komponent delas in i flera individuella filer. Angular-

komponenters dynamiska funktionalitet definieras i .ts-filer, men definieras också med hjälp av

associerade HTML- och CSS-filer. Detta står i kontrast med React och Vue, som oftast placerar

en komponents alla funktionaliteter, utseende och egenskaper i samma fil.

Svelte är det nyaste ramverket i denna studie. Det lanserades 2016 och växte i popularitet under

år 2019. Svelte har, som Angular, ingen virtuell dokumentobjektmodell. Svelte-kod konverteras

till Javascript då applikationen laddas. Utvecklarna av Svelte har argumenterat mot

implementeringen av en dokumentobjektmodell, vilket är en potentiell innovation som skulle

kunna bryta normen av DOM-användning som React och Vue gjort populär. Gällande

komponenter implementerar Svelte funktionaliteterna i en fil, av filformatet .svelte. Svelte har

Mattias Levlin 79

också förenklat hanteringen av applikationstillståndet medan React och Vue ofta använder

nyckelordet this för att uppdatera applikationstillståndet, uppdateras tillståndet i Svelte endast

med hjälp av tilldelningsoperatorn (=).

7 Evaluering och test

De tekniska testerna i denna studie består av ett antal olika jämförelser med hjälp av

dokumentobjektmodellen. En testapplikation har utvecklats i fyra versioner, en för varje

ramverk, där ett visst antal uppdateringar så som tillägg, editering och borttagning av HTML-

element genomförs. HTML-elementet <div> har använts för detta ändamål. De evaluerade

ramverken implementerar alla en livscykel (på engelska life cycle) som kontrollerar vad som

ska renderas av dokumentobjektmodellen, och när ett visst element ska uppdateras, läggas till

eller tas bort från modellen. Ramverkens respektive livscykel innehåller liknande funktioner

som fångar upp händelser då en viss DOM-funktionalitet har körts färdig, och dessa funktioner

har använts för att mäta prestandan för de tekniska DOM-uppdateringarna.

React presterade bäst i de tekniska testerna, med Vue som tvåa. Svelte hade även bra prestanda.

Angular klarade sig överraskande bra. Storleken på alla evaluerade ramverk i komprimerad

form är mindre än 200 kilobyte. I sina respektive senaste versioner hämtade via pakethanteraren

npm är Svelte är det minsta ramverket i komprimerad form, på 3,6 kilobyte. Reacts storlek är

6,4 kilobyte, Vues storlek är 63,5 kilobyte, medan Angular är störst, på 187,6 kilobyte. Gällande

den praktiska utvecklingsprocessen var React, Vue och Svelte alla relativt enkla att komma

igång med, medan Angulars uppstart tog längre tid. Sveltes dokumentation är den simplaste,

där det mesta förklaras via interaktiva exempel och en kodeditor i webbläsaren.

8 Resultat och avslutning

Baserat på testresultaten, rekommenderas React för användning. Med beaktande av alla

parametrar, inkluderat popularitet och historia, skulle React kunna beskrivas som förstavalet i

denna studie. Vue liknar React, men har något sämre prestanda i de flesta av testerna. Svelte är

ett intressant nytt ramverk, men risken finns att det inte lyckas etablera sig i samma utsträckning

som React och Vue. Angular är ett mera komplext och tungkört ramverk, och rekommenderas

inte. Framtiden för JavaScript-ramverken ser ut att vara dynamisk, och en av de mest intressanta

Mattias Levlin 80

detaljerna att följa är om Sveltes paradigm gällande att inte använda en virtuell

dokumentobjektmodell lyckas slå igenom, eller om Reacts och Vues filosofi om att använda

sig av den virtuella modellen hålls kvar som en standard.

Mattias Levlin 81

References

[1] International Communications Union, “Statistics”, January 2020. Retrieved from

https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx, 22 January 2020.

[2] StatCounter, “Browser Market Share Worldwide, December 2018”, December 2018.

Retrieved from http://gs.statcounter.com/browser-market-share#monthly-201812-201812-

map, 4 May 2019.

[3] Berners-Lee, Tim, and Mark Fischetti. Weaving the Web: The original design and

ultimate destiny of the World Wide Web by its inventor. DIANE Publishing Company, 2001.

[4] Flanagan, David. JavaScript: the definitive guide. " O'Reilly Media, Inc.", 2006.

[5] World Wide Web Consortium, “HTML”, April 2019. Retrieved from

https://www.w3.org/html/, 4 May 2019.

[6] World Wide Web Consortium, “What is CSS?”, April 2019. Retrieved from

https://www.w3.org/Style/CSS/, 4 May 2019.

[7] Lie, Hakon Wium, and Bert Bos. Cascading style sheets: Designing for the web, Portable

Documents. Addison-Wesley Professional, 2005.

[8] cssinjs.org, “Introduction”, cssinjs.org. Retrieved from https://cssinjs.org/?v=v10.0.3, 22

January 2020.

[9] Charles Punchatz, “How JavaScript Became the Dominant Language of the Web”, August

2017. Retrieved from https://www.lform.com/blog/post/how-javascript-became-the-

dominant-language-of-the-web, 4 May 2019.

[10] Kyla Brown, “JavaScript: How Did It Get So Popular?”. Code Academy, September

2018. Retrieved from https://news.codecademy.com/javascript-history-popularity/, 8 May

2019.

https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx
http://gs.statcounter.com/browser-market-share#monthly-201812-201812-map
http://gs.statcounter.com/browser-market-share#monthly-201812-201812-map
https://www.w3.org/html/
https://www.w3.org/Style/CSS/
https://cssinjs.org/?v=v10.0.3
https://www.lform.com/blog/post/how-javascript-became-the-dominant-language-of-the-web
https://www.lform.com/blog/post/how-javascript-became-the-dominant-language-of-the-web
https://news.codecademy.com/javascript-history-popularity/

Mattias Levlin 82

[11] International Organization for Standardization, “ISO / IEC 22275: 2018 (ECMAScript®

Specification Suite)”. Retrieved from https://www.iso.org/standard/73002.html, 26 January

2020.

[12] ECMAScript, E. C. M. A., and European Computer Manufacturers Association.

“Standard ECMA-262, ECMAScript 2019 Language Specification (10th edition)”. Retrieved

from https://www.ecma-international.org/publications/standards/Ecma-262.htm, 26 January

2020.

[13] TypeScript “TypeScript documentation” Retrieved from

http://www.typescriptlang.org/docs/home.html, 3 May 2019.

[14] Sacha Greif, Raphael Benitte, “State of JavaScript survey, 2019: JavaScript flavors”

Retrieved from https://2019.stateofjs.com/javascript-flavors/, 25 January 2020.

[15] World Wide Web Consortium, “Extensible Markup Language (XML) 1.0 (Fifth

Edition”, 2008. Retrieved from https://www.w3.org/TR/REC-xml/#sec-origin-goals, 12

October 2019.

[16] Garrett, Jesse James. "Ajax: A new approach to web applications." (2005). Retrieved

from

https://courses.cs.washington.edu/courses/cse490h/07sp/readings/ajax_adaptive_path.pdf, 8

May 2019.

[17] Birdeau, Lucas, et al. "Delivery of data and formatting information to allow client-side

manipulation." U.S. Patent No. 8,136,109. 13 Mar. 2012.

[18] GitHub, “The State of the Octoverse, 2019”. Github.com Retrieved from

https://octoverse.github.com/, 14 May 2020.

[19] Madnight, “GitHut 2.0, Pushes, 2020, Quarter 1”, Github.io. Retrieved from

https://madnight.github.io/githut/#/pushes/2020/1, 14 May 2020.

https://www.iso.org/standard/73002.html
https://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.typescriptlang.org/docs/home.html
https://2019.stateofjs.com/javascript-flavors/
https://www.w3.org/TR/REC-xml/#sec-origin-goals
https://courses.cs.washington.edu/courses/cse490h/07sp/readings/ajax_adaptive_path.pdf
https://octoverse.github.com/
https://madnight.github.io/githut/#/pushes/2020/1

Mattias Levlin 83

[20] Thomas Elliott, “The State of the Octoverse: top programming languages of 2018”. The

GitHub Blog, November 2018. Retrieved from https://github.blog/2018-11-15-state-of-the-

octoverse-top-programming-languages/, 8 May 2019.

[21] Piotr Sroczkowski, “100 Most Popular Languages on GitHub in 2019”, Retrieved from

https://brainhub.eu/blog/most-popular-languages-on-github/, 3 May 2019.

[22] Stack Overflow, “Developer Survey Results, 2018”. Stack Exchange, Inc. Retrieved

from https://insights.stackoverflow.com/survey/2018#most-popular-

technologies?utm_source=codecademyblog, 8 May 2019.

[23] Simply Technologies. “Why is JavaScript so popular?”. April 2018, Simply

Technologies. Retrieved from https://www.simplytechnologies.net/blog/2018/4/11/why-is-

javascript-so-popular, 8 May 2019.

[24] Michael Georgiou, “Why JavaScript Is and Will Continue to Be the First Choice of

Programmers. DZone, November 2014. Retrieved from https://dzone.com/articles/why-

javascript-and-will, 8 May 2019.

[25] NuSphere, “The History of PHP”, nusphere.com. Retrieved from

http://www.nusphere.com/php/php_history.htm, 21 June 2019.

[26] Peter Wayner, “Node.js vs. PHP: An epic battle for developer mindshare”,

Infoworld.com. Retrieved from https://www.infoworld.com/article/3166109/nodejs-vs-php-

an-epic-battle-for-developer-mindshare.html, 21 June 2019.

[27] Educba, “PHP vs JavaScript”, educba.com. Retrieved from

https://www.educba.com/php-vs-javascript/, 21 June 2019.

[28] TIOBE Company, “TIOBE Index (June 2019)”, tiobe.com. Retrieved from

https://www.tiobe.com/tiobe-index/, 21 June 2019.

[29] Pierre Carbonnelle, “PYPL PopularitY of Programming Language”, Github.com.

Retrieved from https://pypl.github.io/PYPL.html, 21 June 2019.

https://github.blog/2018-11-15-state-of-the-octoverse-top-programming-languages/
https://github.blog/2018-11-15-state-of-the-octoverse-top-programming-languages/
https://brainhub.eu/blog/most-popular-languages-on-github/
https://insights.stackoverflow.com/survey/2018#most-popular-technologies?utm_source=codecademyblog
https://insights.stackoverflow.com/survey/2018#most-popular-technologies?utm_source=codecademyblog
https://insights.stackoverflow.com/survey/2018#most-popular-technologies?utm_source=codecademyblog
https://www.simplytechnologies.net/blog/2018/4/11/why-is-javascript-so-popular
https://www.simplytechnologies.net/blog/2018/4/11/why-is-javascript-so-popular
https://dzone.com/articles/why-javascript-and-will
https://dzone.com/articles/why-javascript-and-will
http://www.nusphere.com/php/php_history.htm
https://www.infoworld.com/article/3166109/nodejs-vs-php-an-epic-battle-for-developer-mindshare.html
https://www.infoworld.com/article/3166109/nodejs-vs-php-an-epic-battle-for-developer-mindshare.html
https://www.educba.com/php-vs-javascript/
https://www.tiobe.com/tiobe-index/
https://pypl.github.io/PYPL.html

Mattias Levlin 84

[30] World Wide Web Consortium, “Document Object Model”, 2005. Retrieved from

https://www.w3.org/DOM/, 5 May 2019.

[31] Mozilla, “Introduction to the DOM”. MDN web docs, January 2020. Retrieved from

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction, 1

February 2020.

[32] Jonathan Robie, Texcel Research, “What is the Document Object Model?”, w3.org.

Retrieved from https://www.w3.org/TR/WD-DOM/introduction.html, 1 February 2020.

[33] w3schools.com, “JavaScript HTML DOM”, Retrieved from

https://www.w3schools.com/js/js_htmldom.asp, 4 May 2019.

[34] Simon Sarris, “HTML5 Canvas vs. SVG vs. div”, stackoverflow.com, November 2015.

Retrieved from https://stackoverflow.com/questions/5882716/html5-canvas-vs-svg-vs-div, 19

November 2019.

[35] yWorks, “SVG, Canvas, or WebGL? Visualization options for the web”, February 2018.

Retrieved from https://www.yworks.com/blog/svg-canvas-webgl.html, 17 November 2019.

[36] Kirupa Chinnathambi, “DOM vs. Canvas”, kirupa.com, October 2015. Retrieved from

https://www.kirupa.com/html5/dom_vs_canvas.htm, 17 November 2019.

[37] The jQuery Foundation, “What is jQuery”. The jQuery Foundation, 2019. Retrieved from

https://jquery.com/, 9 May 2019.

[38] Khan Academy, “History break: How did John build jQuery”. Khan Academy, 2019.

Retrieved from https://www.khanacademy.org/computing/computer-programming/html-js-

jquery/jquery-dom-access/a/history-of-jquery, 9 May 2019.

[39] BuiltWith® Pty Ltd, “JavaScript Library Usage Distribution in the Top 1 Million Sites”,

BuiltWith® Pty Ltd, May 2019. Retrieved from

https://trends.builtwith.com/javascript/javascript-library/, 9 May 2019.

https://www.w3.org/DOM/
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://www.w3.org/TR/WD-DOM/introduction.html
https://www.w3schools.com/js/js_htmldom.asp
https://stackoverflow.com/questions/5882716/html5-canvas-vs-svg-vs-div
https://www.yworks.com/blog/svg-canvas-webgl.html
https://www.kirupa.com/html5/dom_vs_canvas.htm
https://jquery.com/
https://www.khanacademy.org/computing/computer-programming/html-js-jquery/jquery-dom-access/a/history-of-jquery
https://www.khanacademy.org/computing/computer-programming/html-js-jquery/jquery-dom-access/a/history-of-jquery
https://trends.builtwith.com/javascript/javascript-library/

Mattias Levlin 85

[40] W3Techs.com, “Usage of JavaScript libraries for websites”, W3Techs.com, May 2018.

Retrieved from https://w3techs.com/technologies/overview/javascript_library/all, 9 May

2019.

[41] Lokesh Sardana, “Understanding DOM manipulation in Angular”, medium.com.

Retrieved from https://medium.com/@sardanalokesh/understanding-dom-manipulation-in-

angular-2b0016a4ee5d, 26 January 2020.

[42] Luke Joliat, “Do we still need JavaScript frameworks?”, freeCodeCamp. Retrieved from

https://medium.freecodecamp.org/do-we-still-need-javascript-frameworks-42576735949b, 23

May 2019.

[43] Matt Warcholinski, “Top 10 Tools for JavaScript Development”, Brainhub. Retrieved

from https://brainhub.eu/blog/top-tools-for-javascript-development/, 14 June 2019.

[44] Fowler, Martin, “Inversion of Control”, June 2005. Retrieved from

https://martinfowler.com/bliki/InversionOfControl.html, 3 May 2019.

[45] Facebook, Inc., “Draft: JSX Specification”, GitHub. Retrieved from

https://facebook.github.io/jsx/, 12 June 2019.

[46] Mozilla, “Web Components”, MDN Web Docs, November 2019. Retrieved from

https://developer.mozilla.org/en-US/docs/Web/Web_Components, 11 March 2020.

[47] Leff, Avraham, and James T. Rayfield. "Web-application development using the

model/view/controller design pattern." Proceedings fifth ieee international enterprise

distributed object computing conference. IEEE, 2001. Retrieved from

https://domino.watson.ibm.com/library/cyberdig.nsf/papers/696CFBA5D4B1E68985256A1E

00626E27/$File/rc22002.pdf, 13 May 2020.

[48] Facebook, “flux-concepts”, github.com, 2019. Retrieved from

https://github.com/facebook/flux/tree/master/examples/flux-concepts, 29 September 2019.

https://w3techs.com/technologies/overview/javascript_library/all
https://medium.com/@sardanalokesh/understanding-dom-manipulation-in-angular-2b0016a4ee5d
https://medium.com/@sardanalokesh/understanding-dom-manipulation-in-angular-2b0016a4ee5d
https://medium.freecodecamp.org/do-we-still-need-javascript-frameworks-42576735949b
https://brainhub.eu/blog/top-tools-for-javascript-development/
https://martinfowler.com/bliki/InversionOfControl.html
https://facebook.github.io/jsx/
https://developer.mozilla.org/en-US/docs/Web/Web_Components
https://domino.watson.ibm.com/library/cyberdig.nsf/papers/696CFBA5D4B1E68985256A1E00626E27/$File/rc22002.pdf
https://domino.watson.ibm.com/library/cyberdig.nsf/papers/696CFBA5D4B1E68985256A1E00626E27/$File/rc22002.pdf
https://github.com/facebook/flux/tree/master/examples/flux-concepts

Mattias Levlin 86

[49] Petar Vukasinovic, “Redux vs Vuex for state management in Vue.js”. Codementor.io.

Retrieved from https://www.codementor.io/@petarvukasinovic/redux-vs-vuex-for-state-

management-in-vue-js-n10yd7g2f, 13 May 2020.

[50] React Redux, “Official React bindings for Redux, 2019. Retrieved from https://react-

redux.js.org/, 29 September 2019.

[51] VueJS, “What is Vuex?”, 2019. Retrieved from https://vuex.vuejs.org/, 29 September

2019.

[52] ngrx.io, “Getting started”, 2019. Retrieved from https://ngrx.io/guide/store, 29 September

2019.

[53] Priyesh Patel, “What exactly is Node.js”, FreeCodeCamp. Retrieved from

https://www.freecodecamp.org/news/what-exactly-is-node-js-ae36e97449f5/, 14 June 2019.

[54] Dmitry Garbar, “PHP vs Node.js”, Belitsoft.com. Retrieved from

https://belitsoft.com/php-development-services/php7-vs-nodejs, 12 June 2019.

[55] ReactJs, “Create a New React App”, reactjs.org. Retrieved from

https://reactjs.org/docs/create-a-new-react-app.html, 14 June 2019.

[56] npmjs.org, “Hello yarn”, October 2016. Retrieved from

https://blog.npmjs.org/post/151660845210/hello-yarn, 9 October 2019.

[57] The npm Blog, “Introducing npx: a npm package runner”, npmjs.org. Retrieved from

https://blog.npmjs.org/post/162869356040/introducing-npx-an-npm-package-runner, 14 June

2019.

[58] Gergely Nemeht, “Yarn vs npm - which Node package manager to use in 2018?”, 2018.

Retrieved from https://blog.risingstack.com/yarn-vs-npm-node-js-package-managers/, 9

October 2019.

https://www.codementor.io/@petarvukasinovic/redux-vs-vuex-for-state-management-in-vue-js-n10yd7g2f
https://www.codementor.io/@petarvukasinovic/redux-vs-vuex-for-state-management-in-vue-js-n10yd7g2f
https://react-redux.js.org/
https://react-redux.js.org/
https://vuex.vuejs.org/
https://ngrx.io/guide/store
https://www.freecodecamp.org/news/what-exactly-is-node-js-ae36e97449f5/
https://belitsoft.com/php-development-services/php7-vs-nodejs
https://reactjs.org/docs/create-a-new-react-app.html
https://blog.npmjs.org/post/151660845210/hello-yarn
https://blog.npmjs.org/post/162869356040/introducing-npx-an-npm-package-runner
https://blog.risingstack.com/yarn-vs-npm-node-js-package-managers/

Mattias Levlin 87

[59] Alberto Gimeno, “How JavaScript bundlers work”, Medium Corporation. Retrieved from

https://medium.com/@gimenete/how-javascript-bundlers-work-1fc0d0caf2da, 14 June 2019.

[60] WebPack, “Concepts”, 2019. Retrieved from https://webpack.js.org/concepts/, 12

October 2019.

[61] Babel, “What is Babel?”, 2019. Retrieved from https://babeljs.io/docs/en/, 29 September

2019.

[62] Sacha Greif, Raphael Benitte & Michael Rambeau, “State of JavaScript survey, 2019”.

Retrieved from https://2019.stateofjs.com/, 30 March 2020.

[63] Sacha Grief, “State of JavaScript 2019”, kaggle.com. Retrieved from

https://www.kaggle.com/sachag/state-of-js-2019, 25 January 2020.

[64] “vuejs / vue”, Github.com, Janurary 2020. Retrieved from

https://github.com/vuejs/vue/stargazers, 25 January 2020.

[65] “facebook / react”, Github.com, January 2020. Retrieved from

https://github.com/facebook/react/stargazers, 25 January 2020.

[66] “angular / angular”, Github.com, January 2020. Retrieved from

https://github.com/angular/angular/stargazers, 25 January 2020.

[67] “emberjs / ember.js”, Github.com, January 2020. Retrieved from

https://github.com/emberjs/ember.js/stargazers/, 25 January 2020.

[68] “developit / preact”, Github.com, January 2020. Retrieved from

https://github.com/preactjs/preact/stargazers, 25 January 2020.

[69] “sveltejs / svelte” Github.com, January 2020, Retrieved from

https://github.com/sveltejs/svelte/stargazers, 25 January 2020.

https://medium.com/@gimenete/how-javascript-bundlers-work-1fc0d0caf2da
https://webpack.js.org/concepts/
https://babeljs.io/docs/en/
https://2019.stateofjs.com/
https://www.kaggle.com/sachag/state-of-js-2019
https://github.com/vuejs/vue/stargazers
https://github.com/facebook/react/stargazers
https://github.com/angular/angular/stargazers
https://github.com/emberjs/ember.js/stargazers
https://github.com/emberjs/ember.js/
https://github.com/preactjs/preact/stargazers
https://github.com/sveltejs/svelte/stargazers

Mattias Levlin 88

[70] Sacha Greif, Raphael Benitte & Michael Rambeau, “State of JavaScript survey, 2018:

Ember”. Retrieved fromhttps://2018.stateofjs.com/front-end-frameworks/ember/, 23 May

2019.

[71] Sacha Greif, Raphael Benitte & Michael Rambeau, “State of JavaScript survey, 2018:

Vue.js”. Retrieved from https://2018.stateofjs.com/front-end-frameworks/react/, 23 May

2019.

[72] John Hannah, “The Ultimate Guide to JavaScript Frameworks”, jsreport.io, January

2018. Retrieved from https://jsreport.io/the-ultimate-guide-to-javascript-frameworks/, 16 May

2019.

[73] TechMagic, “ReactJS vs Angular5 vs Vue.js — What to choose in 2018?”, March 2018.

Retrieved from https://medium.com/@TechMagic/reactjs-vs-angular5-vs-vue-js-what-to-

choose-in-2018-b91e028fa91d, 5 March 2019.

[74] Chris Dawson, “JavaScript’s History and How it Led To ReactJS” TheNewStack.io, June

2014. Retrieved from https://thenewstack.io/javascripts-history-and-how-it-led-to-reactjs/, 5

March 2019.

[75] Simply Technologies, “Let’s get clear about React Native”. April 2018, Simply

Technologies. Retrieved from https://www.simplytechnologies.net/blog/2018/4/4/lets-get-

clear-about-react-native, 8 May 2019.

[76] Facebook, “facebook / create-react-app”, GitHub.com. Retrieved from

https://github.com/facebook/create-react-app#creating-an-app, 14 June 2019.

[77] ReactJs, “React Without JSX”, Reactjs.org. Retrieved from https://reactjs.org/docs/react-

without-jsx.html, 12 June 2019.

[78] Vue.JS, “Comparison with Other Frameworks”, 2019. Retrieved from

https://vuejs.org/v2/guide/comparison.html, 12 October 2019.

https://2018.stateofjs.com/front-end-frameworks/ember/
https://2018.stateofjs.com/front-end-frameworks/react/
https://jsreport.io/the-ultimate-guide-to-javascript-frameworks/
https://medium.com/@TechMagic/reactjs-vs-angular5-vs-vue-js-what-to-choose-in-2018-b91e028fa91d
https://medium.com/@TechMagic/reactjs-vs-angular5-vs-vue-js-what-to-choose-in-2018-b91e028fa91d
https://thenewstack.io/javascripts-history-and-how-it-led-to-reactjs/
https://www.simplytechnologies.net/blog/2018/4/4/lets-get-clear-about-react-native
https://www.simplytechnologies.net/blog/2018/4/4/lets-get-clear-about-react-native
https://github.com/facebook/create-react-app#creating-an-app
https://reactjs.org/docs/react-without-jsx.html
https://reactjs.org/docs/react-without-jsx.html
https://vuejs.org/v2/guide/comparison.html

Mattias Levlin 89

[79] Manjutah M, “AngularJS and Angular 2+: a Detailed Comparison”, SitePoint.com.

Retrieved from https://www.sitepoint.com/angularjs-vs-angular/, 23 May 2019.

[80] Sacha Greif & Raphael Benitte, “State of JavaScript survey, 2019: Angular”. Retrieved

from https://2019.stateofjs.com/front-end-frameworks/angular/, 25 January 2020.

[81] Angular, “Elements”, angular.io. Retrieved from https://angular.io/guide/elements, 8

March 2020.

[82] Sacha Greif, Raphael Benitte & Michael Rambeau, “State of JavaScript survey, 2018:

Vue.js”. Retrieved from https://2018.stateofjs.com/front-end-frameworks/vuejs/, 22 May

2019.

[83] Vue.js, “Introduction”, vuejs.org. Retrieved from https://vuejs.org/v2/guide/, 30 March

2020.

[84] Svelte, “API Docs”, svelte.dev. Retrieved from https://svelte.dev/docs, 30 March 2020.

[85] Rich Harris, “Virtual DOM is pure overhead”, svelte.dev blog, December 2018.

Retrieved from https://svelte.dev/blog/virtual-dom-is-pure-overhead, 8 March 2020.

[86] Shuhei Kagawa, et. al, “Loading Time Matters”, Zalando, June 2018. Retrieved from

https://jobs.zalando.com/en/tech/blog/loading-time-matters/?gh_src=4n3gxh1, 12 May 2020.

[87] Mattias Levlin, “dom-benchmark-react”, Github. Retrieved from

https://github.com/MattiasLevlin/dom-benchmark-react, 2 February 2020.

[88] Mattias Levlin, “dom-benchmark-vue”, Github. Retrieved from

https://github.com/MattiasLevlin/dom-benchmark-vue, 2 February 2020.

[89] Mattias Levlin, “dom-benchmark-angular”, Github. Retrieved from

https://github.com/MattiasLevlin/dom-benchmark-angular, 2 February 2020.

https://www.sitepoint.com/angularjs-vs-angular/
https://2019.stateofjs.com/front-end-frameworks/angular/
https://angular.io/guide/elements
https://2018.stateofjs.com/front-end-frameworks/vuejs/
https://vuejs.org/v2/guide/
https://svelte.dev/docs
https://svelte.dev/blog/virtual-dom-is-pure-overhead
https://github.com/MattiasLevlin/dom-benchmark-react
https://github.com/MattiasLevlin/dom-benchmark-vue
https://github.com/MattiasLevlin/dom-benchmark-angular

Mattias Levlin 90

[90] Mattias Levlin, “dom-benchmark-svelte”, Github. Retrieved from

https://github.com/MattiasLevlin/dom-benchmark-svelte, 2 February 2020.

[91] Reactjs.org, “React Docs”. Retrieved from https://reactjs.org/docs/, 3 May 2019.

[92] Angular, “Lifecycle hooks”, angular.io. Retrieved from https://angular.io/guide/lifecycle-

hooks, 8 March 2020.

[93] MDN Web Docs, “performance.now()”, mozilla.org. Retrieved from

https://developer.mozilla.org/en-US/docs/Web/API/Performance/now, 5 April 2020.

[94] Bundlephobia, “react@16.12.0”. Retrieved from

https://bundlephobia.com/result?p=react@16.12.0, 26 January 2020.

[95] Bundlephobia, “vue@2.6.11”. Retrieved from

https://bundlephobia.com/result?p=vue@2.6.11, 26 January 2020.

[96] Bundlephobia, “@angular/core@8.2.14” Retrieved from

https://bundlephobia.com/result?p=@angular/core@8.2.14, 26 January 2020.

[97] Bundlephobia, “svelte@3.20.0”. Retrieved from

https://bundlephobia.com/result?p=svelte@3.20.0, 13 May 2020.

[98] ReactJs, “Languages”, reactjs.org. Retrieved from https://reactjs.org/languages, 12 June

2019.

[99] Vue.js, “The Progressive JavaScript Framework, vuejs.org. Retrieved from

https://vuejs.org/index.html, 12 June 2019.

[100] Angular, “One framework. Mobile & desktop.”, Angular.io. Retrieved from

https://angular.io/, 12 June 2019.

[101] Svelte, “The easiest way to get started”, svelte.dev, August 2017. Retrieved from

https://svelte.dev/blog/the-easiest-way-to-get-started, 29 January 2020.

https://github.com/MattiasLevlin/dom-benchmark-svelte
https://reactjs.org/docs/getting-started.html
https://angular.io/guide/lifecycle-hooks
https://angular.io/guide/lifecycle-hooks
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://bundlephobia.com/result?p=react@16.12.0
https://bundlephobia.com/result?p=vue@2.6.11
https://bundlephobia.com/result?p=@angular/core@8.2.14
https://bundlephobia.com/result?p=svelte@3.20.0
https://reactjs.org/languages
https://vuejs.org/index.html
https://angular.io/
https://svelte.dev/blog/the-easiest-way-to-get-started

Mattias Levlin 91

[102] Piero Borrelli, “Angular vs. React vs. Vue: A performance comparison”

Logrocket.com. Retrieved from https://blog.logrocket.com/angular-vs-react-vs-vue-a-

performance-comparison/, 13 May 2020.

[103] krausest, “js-framework-benchmark”, Github.com. Retrieved from

https://github.com/krausest/js-framework-benchmark, 13 May 2020.

https://blog.logrocket.com/angular-vs-react-vs-vue-a-performance-comparison/
https://blog.logrocket.com/angular-vs-react-vs-vue-a-performance-comparison/
https://github.com/krausest/js-framework-benchmark

