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ABSTRACT 

The Notch signaling pathway is one of the essential mediators of cell-cell communication 
during development of multicellular organisms. Notch signaling is based on receptors and 
ligands that interact between neighboring cells. In recent years Notch has received a lot of 
interest as a promising therapeutic target in cancer and several approaches to intervene 
with the Notch pathway are under pre-clinical and clinical trials. The challenges are 
prominent side effects, lack of specificity and poor knowledge of the underlying 
mechanisms behind deregulated Notch activity. In this thesis, several aspects of Notch 
regulation have been investigated. 

Intermediate filaments (IFs) are cytoskeletal proteins that regulate signaling activities in 
addition to providing structural support for the cell. In study I, we present a novel 
interaction between the intermediate filament vimentin and the Notch ligand Jagged1. The 
use of hybrid Jagged1-Dll4 ligands demonstrates a selective regulation of Notch ligands 
by vimentin. Mouse embryos lacking vimentin display delayed angiogenesis with reduced 
branching. In vitro and ex vivo angiogenesis assays show a reduced sprouting from 
vimentin deficient endothelial cells, a phenotype which can be rescued by addition of 
immobilized Jagged1 ligands. This work implies that IFs can selectively regulate Notch 
ligands to balance Notch activity. In the second study, we have initiated a screening 
approach to identify regulators of Jagged1. A dual label approach allows for visualization 
and measurement of endocytosed Notch extracellular domain peptides bound to Notch 
ligands. A pilot screen based on cell spot microarrays (CSMA) has generated a set of 
potential modulators of Jagged1 endocytosis for further validation and future research. In 
the final part of the thesis, I present the discovery of a novel PKCζ-mediated 
phosphorylation site on Notch1. Phosphorylation of the identified site, S1791, leads to 
enhanced trafficking of Notch to the nucleus and higher Notch signaling activity. Blocking 
PKCζ or using a phospho-deficient form of S1791 leads to less Notch activity and 
localization to intracellular endosomes. Our data also imply that PKCζ-mediated 
phosphorylation of Notch influences differentiation of myogenic cells in vitro and 
neuronal cells in vivo. 

In summary, the work presented in this thesis characterizes various aspects of Notch 
signaling modifications within the context of endocytosis of Notch receptors and ligands. 
These findings contribute to a better understanding of the intricacies of Notch signaling 
regulation and may benefit future studies targeting Notch-related diseases. Additionally, 
the ligand tracking approach lays the groundwork for future work to identify new 
modulators of ligand endocytosis.  
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SAMMANFATTNING (ABSTRACT IN SWEDISH) 

Notch-signaleringen är en av de huvudsakliga förmedlarna av kommunicering mellan 
närliggande celler under utvecklingen av flercelliga organismer. Notch-signaleringen 
baserar sig på Notch-receptorer och ligander vid cellmembranen. De senaste åren har 
Notch-signaleringen fått stor uppmärksamhet som ett potentiellt mål för nya 
behandlingsmetoder mot cancer och flera olika Notch inhiberare är i pre-kliniska och 
kliniska prövningar. De största utmaningarna är starka biverkningar, en brist på 
specificitet och en låg kunskap om de underliggande mekanismerna bakom en felreglerad 
Notch-aktivitet. I denna avhandling undersöks flera olika aspekter av Notch-regleringen. 

Intermediärfilament är strukturella proteiner som även kan reglera olika signaleringsräckor. 
I den första studien presenterar vi för första gången en interaktion mellan 
intermediärfilamentet vimentin och Notch-liganden Jagged1. Genom att använda oss av 
hybrid-ligander bestående av liganderna Jagged1 och Dll4, visar vi att vimentin kan 
reglera dessa ligander på ett selektivt sätt. Vi visar också att möss som saknar vimentin har 
en fördröjd blodkärlsbildning under fosterutvecklingen. Endotelceller som saknar 
vimentin påvisade även färre förgreningar i våra blodkärlsbildningsanalyser. Detta kunde 
motverkas genom en tillsats av externa Jagged1-ligander. Detta arbete visar att 
intermediärfilament specifikt kan reglera olika Notch-ligander. I den andra studien har vi 
använt en högkapacitetsscreen för att identifiera nya Jagged1-reglerare. Med hjälp av en 
tvåfärgad analysmetod kunde vi visualisera och mäta Notch-peptider som binder till 
Notch-ligander som sedan endocyteras in i cellen. En primärscreen har genererat en 
uppsättning av potentiella reglerare av Jagged1-endocytos för framtida verifiering och 
forskning. I den sista delen av avhandlingen presenteras identifieringen av ett nytt PKCζ-
medierat fosforyleringsställe på Notch1-receptorn. Genom att mutera det identifierade 
fosforyleringsstället kunde vi visa att receptorn tar olika rutter i cellen beroende på om den 
är aktiv eller inaktiv. Våra resultat antyder också att PKCζ-medierad fosforylering av 
Notch påverkar differentieringen av muskelceller in vitro och neuronala celler in vivo. 

Sammanfattningsvis kan man säga att arbetet som presenteras i denna avhandling berör 
olika aspekter av Notch-regleringen med ett speciellt fokus på endocytos av Notch-
receptorer och ligander. Dessa fynd bidrar till en bättre förståelse om de komplicerade 
modifieringar som berör Notch. Dessa kan komma att gynna framtida studier som berör 
Notch-relaterade sjukdomar. Analysmetoden som användes för att spåra Notch-ligander 
lägger grunden till att identifiera nya reglerare av ligand-endocytos i framtiden.  
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INTRODUCTION 

Based on current understanding, a surge in the amount of multicellular organisms occurred 

around 600 million years ago during an increase in oxygen on earth (Grosberg and 

Strathmann, 2007). In order for multicellularity to work, individual cells had to be able to 

communicate with each other and coordinate their behavior. One of the signaling 

pathways that has played an essential role during metazoan development is Notch. The 

Notch pathway is based on receptors and ligands spanning across the cell membrane that 

can interact with each other during direct cell-to-cell contact between adjacent cells. The 

core pathway is deceptively simple, where ligand-mediated activation of the receptor leads 

to its proteolysis and subsequent release of a transcriptionally active Notch intracellular 

domain (NICD) that can translocate to the nucleus and activate downstream Notch target 

genes (Kopan and Ilagan, 2009). Despite the apparent simplicity, without secondary 

messengers and amplification steps, Notch is highly context dependent with multiple 

cellular phenotypes from seemingly similar Notch input. Accumulating evidence supports 

a view that Notch signaling is a highly regulated process with a myriad of interacting 

partners and modifications regulating activity and outcome. From the beginning of 2013, 

Notch related therapies have been in clinical trials for a number of different cancers in 

humans (Andersson and Lendahl, 2014). One of the challenges of therapeutic relevance of 

Notch today lies in how to specifically tune Notch signaling in the right context without 

adversly affecting normal tissue homeostasis, where Notch signaling is also crucial. Notch 

also represents a possible therapeutic target in cardiovascular diseases, although 

knowledge of the specific roles of dysregulated Notch signaling in the pathogenesis of 

vascular diseases is still lagging behind that of cancer research (Aquila et al., 2019).  

Post-translational modifications and intracellular trafficking of Notch and its interacting 

partners critically regulate Notch signaling output. This thesis aims to advance the 

knowledge of Notch regulation, and proposes a new interaction between the cytoskeletal 

intermediate filament protein vimentin and the Notch ligand Jagged1. Post-translational 

modifications are also studied in the form of phosphorylation of the Notch receptor and its 

effect on receptor routing and Notch activity. Finally, a fluorescence based screening 

approach has been developed to identify more potential regulators of Notch ligand 

endocytosis that can serve as a basis for future research. 
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REVIEW OF THE LITERATURE 

1. The Notch signaling pathway 

Notch signaling is part of a select group of signaling pathways defining development of 

multicellular organisms. During development Notch orchestrates cell fate decisions by 

influencing differentiation, proliferation and apoptosis through physical interactions 

between Notch receptors and ligands on the membranes of neighboring cells. The Notch 

field emerged from genetic studies on development of the fruit fly Drosophila 

melanogaster. The importance of the core Notch pathway is implicated by conservation 

throughout evolution in all metazoans studied to date. More recently, human genetic 

studies have shown that Notch plays a role in numerous and diverse human diseases.  

The Notch receptor is generated as a single precursor protein, but is cleaved by furin-like 

convertase in the Golgi during transport to the cell surface (S1 cleavage). At the cell 

surface, the receptor is presented as a noncovalently bound heterodimer that spans the cell 

membrane. In mammals, there are four Notch receptors (Notch1-4) and five Notch ligands 

(Jagged1-2, Dll1, 3-4). Notch signaling is initiated when a ligand from a juxtaposed cell 

binds the receptor and a sufficient force is generated, which pulls on the receptor and 

induces a conformational change, to allow for two proteolytic cleavages (S2 and S3 

cleavage) that ultimately release the intracellular domain of the receptor. The intracellular 

part of Notch can then translocate to the nucleus where it forms a complex with CSL 

(CBF-1, Su(H), and Lag-1), Mastermind-like (MAML) and transcriptional co-activators to 

activate Notch target genes from the Hairy Enhancer of Split (HES) and Hes-related 

protein (HERP, also known as HEY) families (Kopan and Ilagan, 2009) (for further details 

see chapter 1.4). The complexity of Notch lies in its numerous levels of regulation that 

allow for varied and context-dependent outcomes of its activation. The implications of 

Notch in human disease, especially in cancer, has led to a promise of possible Notch 

therapies in the future, resulting in a wealth of studies relating to Notch during the last few 

decades. 

1.1 A brief history of Notch research 

The term Notch was first used over 100 years ago when John S. Dexter noticed that some 

fruit flies (Drosophila melanogaster) had an inheritable deformity, where the flies had 
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small notches in the tips of their wings (Dexter, 1914). This finding piqued the interest of 

geneticist and embryologist Thomas Hunt Morgan who subsequently identified the first 

Notch gene allele a few years later (Morgan, 1917). In the following years Morgan and 

members of his lab identified several more Notch alleles with various phenotypes, 

including the Notched wing phenotype (Figure 1), but also lethal phenotypes (Mohr, 

1919). In the 1930s, Donald Poulson looked at broader phenotypic effects of removing 

entire chromosomes in fruit fly embryos. In his work, Poulson identified chromosomal 

defects, where parts of the chromosomes were mutated. One of these included the Notch 

gene locus. These mutations led to a disruption in development of the mesoderm and 

endoderm germ layers a few hours into embryogenesis. Poulson describing these Notch 

mutants were some of the first characterizations of how any specific gene, not only Notch, 

affects morphogenesis (Poulson, 1937). Poulson’s discoveries were for many decades left 

without much follow up research. In the early 1980s, Spyros Artavanis-Tsakonas and 

Michael Young independently sequenced the Notch gene in Drosophila (Artavanis-

Tsakonas et al., 1983; Kidd et al., 1983). By comparing the sequences from Notch cDNA 

to other proteins, Artavanis-Tsakonas speculated that Notch was a transmembrane protein 

and later work from his lab detailed that epidermal growth factor like repeats (EGF-

repeats) extend outside of the cell (Wharton et al., 1985). This was at a time when the 

modern molecular biology revolution had just started with the discovery of the polymerase 

chain reaction (PCR) and in the years following, many of the key actors in the Notch 

signaling pathway were characterized. The idea of Notch being a cell-to-cell 

communication signal was sparked in 1987 when the Delta ligand was sequenced and 

discovered to be a transmembrane protein similar to the Notch receptor (Vässin et al., 

1987). Serrate in Drosophila (corresponding to Jagged in mammals) was sequenced a few 

years later (Fleming et al., 1990). In the late 1980s, it was also shown that Notch regulates 

differentiation in both C. elegans and Drosophila (Kidd et al., 1989; Yochem et al., 1988). 

The first description of Notch in humans came in 1991 when Leif Ellisen sequenced a 

gene with a mutation of high occurrence in leukemia cells. This human sequence was 

remarkably similar to the Notch gene discovered in Drosophila and he further showed that 

truncated Notch1 proteins could contribute to cancer in vitro (Ellisen et al., 1991). Notch 

research gained great interest after this point and one of the most notable examples of 

Notch in human disease came when it was discovered that more than 50% of T-cell 

lymphoblastic leukemia (T-ALL) patient samples had Notch-activating mutations (Weng 
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et al., 2004). The implications of Notch in other cancer forms as well as various other 

diseases have been substantial since then (Aster et al., 2017; Louvi and Artavanis-

Tsakonas, 2012). In the last few decades researchers have tried to understand how Notch 

can be so context dependent, how Notch is regulated, what the crosstalk is with other 

signaling pathways and if Notch can be targeted in disease. Combining research from 

Drosophila, C. elegans and mice together with clinical data from humans have established 

a detailed understanding of many aspects of Notch signaling. However, equally many 

questions remain in truly understanding the context dependent output of Notch and the 

finetuning of signaling activity within the pathway, as well as its interactions with other 

proteins.  

 

 

1.2 Notch receptors 

Notch receptors are large heterodimeric proteins spanning across the cell membrane. The 

general structure has been conserved throughout evolution, from the simplest invertebrates 

to humans. Much of the initial work on Notch was done in Drosophila Melanogaster, 

which has only one Notch receptor, in contrast to mammals that have four Notch receptors 

(Notch1-4) (Figure 2). Notch receptors are synthesized in the ER and processed further in 

the Golgi apparatus. During this processing step, the Notch precursor protein is 

Figure 1. The Notch mutant. 
Thomas Hunt Morgan describes a 
female fruit fly carrying a “notch” 
mutation in one of her X-
chromosomes. The notched wing 
phenotype was a dominant trait 
and could only been seen in 
females, as half of her male 
offspring would get the mutant X-
chromosome and die, while the 
other half would get the normal X-
chromosome and develop 
normally, as described in “The 
theory of the gene”, American 
Naturalist in 1917 (Adapted from 
Morgan, 1917). 
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proteolytically cleaved by furin-like convertase (Site 1 or S1 cleavage), producing a 

heterodimer, which is further modified by glycosylation and other post-translational 

modifications before the receptor is presented at the cell membrane. The receptor at this 

point consists of an extracellular domain (ECD) and an intracellular domain (ICD) 

(Blaumueller et al., 1997; Gordon et al., 2008). The modification of the extracellular 

domain by O-linked glycans during synthesis is a key modification for the proper structure 

of the receptor and its interaction with its ligands. The EGF-repeats consist of 

approximately 40 aminoacids, including 6 conserved cysteines, which form three 

disulphid bonds between cysteines C1-C3, C2-C4 and C5-C6. The major glycosylation 

sites of the receptor are found on consensus sites between these cysteines (Harvey and 

Haltiwanger, 2018). Glycosylation, other post-translational modifications and their 

regulation of Notch are discussed further in chapter 2.1. The extracellular domain of 

Notch consists of 29-36 epidermal growth factor repeats (EGF), of which some interact 

directly with the Notch ligands, most notably EGF8-12 (Luca et al., 2017, 2015). Many of 

the individual EGF-domains bind calcium ions, which have been known to affect the 

structure of the receptor and affinity to its ligands. Recent structural studies surprisingly 

found a 90-degree angle occuring between EGF-repeat 5 and 6 in the Notch1 receptor 

structure; with EGF6 being a non calcium-binding repeat (Weisshuhn et al., 2015a). 

Nuclear magnetic resonance (NMR) spectroscopy analysis of other EGF-repeats 

confirmed that calcium binding repeats form rigid structures, while non-calcium binding 

may have different tilt angles, giving the overall NECD structure flexibility (Weisshuhn et 

al., 2015b). The model proposed for the structure based on X-ray crystallography of 

EGF4-13 and NMR data, consist of an L shaped 90 degree angle between EGF5-6 and a 

flexible region between EGF9-10, with more minor tilt angles possible between other 

EGF-repeats such as EGF11-12 and EGF12-13 (Weisshuhn et al., 2016). This gives 

updated insight into the shape of Notch receptors, which earlier have generally been 

depicted as a straight rods sticking out of the cell membrane. The EGF-repeats are 

followed by a negative regulatory region (NRR), which is composed of cysteine-rich 

Lin12-Notch repeats (LNR) and a heterodimerization domain (HD) (Gordon et al., 2007). 

The NRR plays a key role in preventing receptor activation when a ligand is not bound by 

hiding the S2 cleavage site deeply within the Notch HD domain, making it unavailable to 

ADAM/TACE-mediated cleavage (Gordon et al., 2007). Mutations in this region can 
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leave the receptors constitutively active without proper ligand activation, which can be 

seen in certain cancers (Malecki et al., 2006; Weng et al., 2004). 

 

Figure 2. Domain organization of human Notch receptors. Mammalian Notch receptors include 
Notch1-4. The extracellular domain of the Notch receptor has a short signaling peptide, 29-36 
epidermal growth factor like repeats (EGF), and a negative regulatory region (NRR). The NRR is 
composed of Lin-12-Notch repeats (LNR) and a heterodimerization domain (HD). The 
transmembrane domain (TM) leads to the Notch intracellular domain (NICD), which is composed 
of a RAM-domain (RBPjk associated module), two nuclear localisation signals (NLS) that flank 
seven ankyrin repeats (ANK). The C-terminal domain of Notch contains a transactivation domain 
(TAD) and a proline, glutamic acid, serine and threonine-rich domain (PEST). Notch3 and Notch4 
lack the TAD domain and Notch4 lacks the second NLS. The S2 site in the HD domain and S3 site 
at the edge of the transmembrane domain (TM) indicate the proteolytical cleavage sites, mediated 
by ADAM-metalloproteases and γ-secretase, respectively.   

The Notch intracellular domain (NICD) is composed of a RAM domain (RBPjk associated 

module) which can bind to the DNA binding protein CSL (CBF-1/RBPjk/Su(H)/Lag-

1)(CSL, also commonly called RBPjk). Following the RAM domain is a nuclear 

localisation sequence (NLS) and seven ankyrin sequences, which are collectively called 

the ANK domain. CSL also interacts with the ANK domain. All mammalian Notch 

receptors, except Notch4, have another NLS following the ANK domain. A 

transactivation domain leads to the last part of the C-terminal end of the receptor, which is 
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the PEST domain. This domain is a conserved domain consisting of proline-glutamic acid-

serine-threonine sequences which function as a degradation signal for NICD (Andersson 

et al., 2011). The PEST domain thereby affects the stability of NICD that has been 

released by receptor activation. 

1.3 Notch ligands 

The Notch ligands have structural similarities to Notch receptors. Notch ligands are also 

transmembrane proteins, which consist of EGF-like repeats in their ECD (D’Souza et al., 

2008). The amount of EGF-repeats varies between 6-16 among the different ligands 

(D’Souza et al., 2008; Kopan and Ilagan, 2009) (Figure 3). There are two families of Notch 

ligands: Delta/Delta-like and Serrate/Jagged. Delta and Serrate are found in Drosophila, 

which has one of each ligand type. In mammals, the corresponding ligands are Delta-like 

(Dll) and Jagged, which include three Delta-like ligands (Dll1, Dll3 and Dll4) and two 

Jagged ligands (Jagged1-2) (D’Souza et al., 2008). Dll3 has been described as a decoy 

ligand, incapable of activating Notch receptors in trans (Ladi et al., 2005). In line with this, 

Dll3 knockout mice have higher Notch activity than WT mice (Chapman et al., 2011).  

Canonical Notch ligands are recognized by their DSL domain (Delta, Serrate and Lag-2), 

which is a small domain similar to the EGF-repeats in structure. The interaction of the 

DSL domain with the Notch receptor EGF-repeats has been demonstrated to be required 

for the activation of Notch signaling (Becam et al., 2010; Luca et al., 2015; Takeuchi et al., 

2018). Recently, the use of an engineered high affinity Dll4-Notch1 complex solved the 

longtime issue of producing a crystal structure of the normally low affinity ligand-receptor 

complex (Luca et al., 2015). Using immobilized EGF1-14 of the Notch receptor bound to 

magnetic beads with the EGF5 to the N-terminal region of Dll4, it was shown that the 

majority of the binding strength comes from the DSL domain of Dll4 binding to EGF11 of 

Notch1, and the C2 (MNNL) domain binding to EGF12 of Notch1 (Luca et al., 2015). 

Jagged1 was later shown to interact with EGF8-12 of Notch1 through its C2, DSL and 

EGF1-3 domains (Luca et al., 2017). Similarly to the Notch1 receptor, the crystal structure 

of Dll1 recently showed that the ligand makes a 90 degree bend around EGF4 and EGF5 

(Kershaw et al., 2015). 

Jagged ligands also have a cysteine-rich region in their ECD next to the transmembrane 

domain (Chillakuri et al., 2012). Furthermore, Jagged1, Dll1 and Dll4 have PDZ binding 
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motifs (PSD-95/Dlg/ZO-1) in their ICD, which can interact with the cytoskeleton, while 

Jagged1, Dll1 and Dll3 also have SH2 binding motifs that can interact with proteins 

containing SH2 domains in a phosphorylation dependent manner (Pintar et al., 2007).  

 

Figure 3. Domain organization of human DSL ligands (Delta, Serrate, Lag-2). Notch ligands 
in mammals include Dll1, 3 and 4, which are structural homologues of Delta in Drosophila, as 
well as Jagged 1, and 2, which are structural homologues of Serrate in Drosophila. Notch ligands 
are recognized by their Delta, Serrate, Lag-2 domain (DSL). N-terminally from the DSL domain is 
a short signal peptide and a C2 domain that until recently was known as the Module at the N-
terminus of the ligand (MNNL). The extracellular domains also contain a variable number of 
EGF-like repeats (EGF). The two first EGF-repeats of Jagged1-2 and Dll1 have a slight difference 
in structure and are sometimes identified as the Delta/OSM-11 domain (DOS domain) (not shown 
in the figure). A cysteine-rich domain is also found in Jagged1-2. Jagged1, Dll1 and Dll4 have 
distinct PDZ-binding motifs in their intracellular domain. Dll3 lacks lysines in its intracellular 
domain making it unavailable for ubiquitination (Heuss et al., 2008). 

1.4 Activation of canonical Notch signaling 

Notch signaling is activated during cell-to-cell contact where Notch receptors interact with 

DSL ligands. Notch receptor activation normally occurs when Notch ligands on 

neighboring cells bind and activate the Notch receptor (Figure 4). The ligand-receptor 
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interaction leads to a change in the conformation of the Notch receptor, and the NRR is 

opened for S2 cleavage, which is followed by S3 cleavage in the transmembrane domain 

(Kovall et al., 2017). The mechanical force from endocytosis or cellular movement, which 

pulls on the Notch receptor, opens up the S2 cleavage site for ADAM-like 

metalloproteases such as ADAM17/TACE and ADAM10/Kuzbanian. Of these two, 

ADAM10 seems to be more relevant for canonical signaling physiologically, at least in 

Notch1 (van Tetering et al., 2009), but ADAM17 has been noted especially in aberrant 

ligand-independent signaling (Bozkulak and Weinmaster, 2009). The S2 site is located 12-

13 amino acids before the transmembrane domain, which is well guarded by the negative 

regulatory domain (NRR) in non-activated cells (Gordon et al., 2009). The S2 cleavage 

also releases the NECD, which can be trans-endocytosed into the signal-sending cell 

together with the ligand (Gordon et al., 2008). γ-secretase is a protein enzyme complex 

consisiting of presinilin, nicastrin, PEN2 and APH1 and is required for S3 cleavage of the 

Notch receptor, which takes place just inside the cell membrane close to the cytoplasmic 

side (Bray, 2006). γ-secretase is not specific to Notch, as it is also responsible for cleavage 

of various other proteins such as APP, ErbB4 and CD44 (Selkoe and Wolfe, 2007). 

Inhibiting γ-secretase to curb Notch signaling in disease is therefore problematic, because 

of the wide range of functions for γ-secretase and clinical trials with γ-secretase inhibitors 

have shown unwanted side-effects (Andersson and Lendahl, 2014). The γ-secretase based 

S3 cleavage has also been found to occur in endosomes transporting NICD in the cell, as 

well as directly on the cell membrane (Sorensen and Conner, 2010; Tagami et al., 2008). 

Some studies imply that the γ-secretase activation can be even more efficient in 

endosomes than at the cell surface, due to the more acidic pH in late endosomes that is 

implicated to regulate γ-secretase activity (Vaccari et al., 2008; Windler and Bilder, 2010). 

The cleaved NICD can have a different half-life and activity depending on which amino 

acid is on the N-terminal end of NICD, which can be influenced by the location of the 

cleavage (Tagami et al., 2008). The most common cleavage site in humans is between 

amino acids Glu-1753 and Val-1754 (Val-1744 in mice) (Okochi et al., 2002). Released 

NICD can migrate to the cell nucleus where it can bind the DNA-binding protein CSL 

through its RAM and ANK domains. The ANK domain together with CSL recruits the co-

activator Mastermind-like (MAML), which facilitates transcriptional activation of Notch 

target genes. Other co-activators such as p300 and PCAF can bind to this complex to 

activate Notch target genes.    
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Figure 4. Notch activation overview. Canonical Notch signaling is initiated when a Notch ligand 
interacts with a Notch receptor from a neighboring cell. The tension generated (red arrow) during 
endocytosis of the ligand, changes the conformation of the bound Notch receptor to allow two 
subsequent proteolytic cleavage events, first by ADAM family metalloproteases and then by γ-
secretase, which ultimately releases the transcriptionally active Notch ICD. NICD then 
translocates to the nucleus where it binds CSL, resulting in recruitment of co-activators, instead of 
co-repressors normally bound to CSL. This complex can then induce expression of gene families 
mainly relating to Hairy-Enhancer of Split (HES), and Hes-related proteins (HERP, also known as 
HEY), which themselves are transcription factors with broad effects on gene expression 
influencing various signaling pathways in the cell. During activation, the NECD is trans-
endocytosed into the ligand cell. In addition to generating the conformational change of the 
receptor needed for activation, the effect of NECD endocytosed into the signal-sending cell is 
unclear. While presumably degraded, it is also possible that NECD and the ligand could dissociate 
from each other in the more acidic environment of endosomes in a way that could permit ligand 
recycling back to the cell membrane. 
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These genes include, notably, basic-helix-loop-helix (bHLH) transcription factors from the 

HES and HEY families (Bray, 2016). Other targets include MYC, cyclin D1 and Notch 

receptors and ligands themselves (Bray and Bernard, 2010). In the absence of active NICD, 

CSL is bound to DNA together with co-repressors and histonedeacetylases to function as a 

transcriptional repressor of Notch target genes (Borggrefe and Oswald, 2009; Xu et al., 

2017). There is also evidence showing that CSL is not only present in the nucleus, but also 

exists in the cytoplasm where it can associate with NICD (Krejcí and Bray, 2007). New 

studies further show that Notch activation can affect chromatin remodeling and the 

amount of CSL binding to DNA (Castel et al., 2013; Gomez-Lamarca et al., 2018; Skalska 

et al., 2015). In contrast to models where CSL sits statically on DNA as a repressor and 

switches to an activator when associated to NICD, these studies advocate for a model of 

dynamic DNA binding by the NICD-CSL complex. In vivo responses of Notch-dependent 

transcriptional activation indicate that higher NICD levels increase burst duration of the 

transcriptional response (Falo-Sanjuan et al., 2019; Lee et al., 2019).  

1.4.1 Non-canonical Notch 

The mode of activation described in the previous chapter, based on DSL ligands that 

activate Notch receptors that then act through CSL, is known as canonical Notch signaling. 

There are also indications of Notch activation that do not fit within canonical Notch 

activation (Andersen et al., 2012). These non-canonical Notch modes include: responses 

without Jagged/Dll activation, CSL-independent effects of Notch, as well as Notch-

independent CSL-effects (Ayaz and Osborne, 2014). CSL regulation without Notch has 

been studied in some detail in cases where CSL is switched from a repressor to an 

activator by viruses such as the Epstein-Barr virus EBNA2 in an NICD independent 

manner (Henkel et al., 1994; Zimber-Strobl and Strobl, 2001). CSL has also been found to 

form a complex together with the transcriptional regulators Ptf1a and p48 with effects on 

pancreatic development and differentiation in the nervous system (Beres et al., 2006; Hori 

et al., 2008; Masui et al., 2007; Obata et al., 2001). CSL-independent effects of NICD 

have been documented through the PI3K pathway, Wnt/B-Catenin and through IL-6 

upregulation of NF-kB. Tumor cells have also been shown to escape apoptosis through 

Notch independently of CSL in several studies (Acosta et al., 2011; Jin et al., 2013; Kwon 

et al., 2011; Lee et al., 2013; Perumalsamy et al., 2009; Veeraraghavalu et al., 2005). Non-

canonical ligands that are similar to DSL ligands have been shown to activate Notch and 
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include: Delta/Notch-like EGF related receptors (DNER), Delta-like 1 and 2 homologue 

(DLK1-2) as well as members of the contactin family (D’Souza et al., 2008; Eiraku et al., 

2002; Greene et al., 2016; Traustadóttir et al., 2016). It is still unclear how effectively the 

non-canonical ligands can activate Notch compared to Jagged/Dll, or if they mainly inhibit 

canonical ligands through competitive inhibition. Nevertheless, examples such as these 

show that non-canonical signaling mechanisms may lead to outcomes that need to be 

taken into account for a detailed understanding of Notch. 

1.4.2 Cis-inhibition 

In addition to Notch trans-interactions i.e. when the activating ligand is present on another 

cell than the receptor, Notch receptors can also bind to ligands in cis or in the same cell 

(D’Souza et al., 2008). Ligands in cis can bind to the same receptors as trans-ligands and 

are considered inhibitory both in Drosophila development (Jacobsen et al., 1998), and in 

cell culture where cis-inhibition has been studied more meticulously by using controlled 

levels of receptor and ligand (Sprinzak et al., 2010). Cis-inhibition is most likely due to 

ligands and receptors sitting next to each other not being able to generate the force 

necessary to activate the receptor as in normal Notch trans-interactions whilst 

competitively inhibiting ligands from nearby cells (del Álamo et al., 2011). There is also a 

concept of cis-inhibition preventing unwanted ligand-independent activation and non-

canonical ligands from activating Notch (Palmer et al., 2014). Further complicating 

interpretations of Notch signaling output and the theories of cis-inhibition, a new study 

reports cis-activation of Notch. Cells that expressed intermediate levels of Notch ligands 

Dll1 and Dll4 were able to activate Notch in a system with controlled ligand levels and 

cell-cell interactions, whereas only higher ligand levels led to cis-inhibition (Nandagopal 

et al., 2019).   

1.5 Notch signaling during development 

Notch is one of a small group of signaling pathways used extensively during development 

together with pathways such as Wnt, Sonic Hedgehog and TGF-β (Sanz-Ezquerro et al., 

2017). Notch regulates developmental decisions through lateral inhibition, lateral 

induction and asymmetric cell division (Sjöqvist and Andersson, 2019). Lateral inhibition 

is when one cell prevents neighboring cells from adopting the same cell fate through a 

negative feedback loop. A well-known example of Notch in both lateral inhibition and 
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asymmetric cell division comes from neural development in Drosophila, where Notch 

influences cells to acquire different fates in a manner where high Notch cells remain either 

as undifferentiated progenitor cells or become cells of non-neural fate, while low Notch 

cells are able to progress through a more and more differentiated state ultimately giving 

rise to a neuron (Chitnis, 2009). The surrounding cells with higher levels of Notch become 

supportive cells such as glial cells. The first phase of the neural lineage decisions 

described above occurs due to lateral inhibition, when some cells within a proneural 

cluster (PNC) begin to express more Delta ligand, which then activates Notch in 

neighboring cells with subsequent activation of Notch target genes within the Enhancer of 

Split gene complex. This activation inhibits proneural gene expression and only the signal-

sending cell adopts a path to become a neural cell. In the central nervous system (CNS) of 

Drosophila this initial neural cell fate is to become a neuroblast. The second phase of 

neural differentiation is an example of asymmetric cell division where the neuroblast 

divides with an asymmetric distribution of proteins, which includes the protein Numb – a 

negative regulator of Notch. Suppressing Notch in one of the daughter cells allow them to 

adopt distinct cell fates. The neuroblasts undergo repeated division to generate one new 

high Notch neuroblast and one low Notch ganglion mother cell (GMC). The GMC can 

then further divide to become neurons or glia. In settings where both are generated, the 

glial cell will have higher Notch and the neuron lower Notch levels (Chitnis, 2009). 

Without proper Notch signaling during these lineage decisions, too many cells become 

neural cells; an embryonically lethal phenotype termed the “neurogenic fate” (Artavanis-

Tsakonas and Muskavitch, 2010; Lehmann et al., 1983). 

During lateral induction, a feed forward response is created where the signal-receiving cell 

adopts the same cell fate as the sending cell, which goes on to induce the same fate in the 

next cell. One example of lateral induction is initiation of arterial wall formation through 

Jagged1 signaling, where endothelial cells of the vascular lumen expressing Jagged1 

induce both vascular smooth muscle cell (VSMC) differentiation and upregulation of 

Jagged1 in the first VSMC layer, which then propagates the signal into the next layer of 

smooth muscle cells, generating an arterial wall of multiple layers of differentiated smooth 

muscle cells (Hoglund and Majesky, 2012; Manderfield et al., 2012). Similar Notch-

dependent positive feedback responses have  been observed during inner ear development 

and ocular lens fiber formation in mammals (Kiernan, 2013; Petrovic et al., 2014; 

Saravanamuthu et al., 2009). 
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1.6 Notch signaling in disease 

Considering the importance of Notch signaling during development, it is not surprising 

that mutations in the Notch signaling pathway can contribute to a number of 

developmental phenotypes and disorders (Louvi and Artavanis-Tsakonas, 2012). These 

phenotypes affect the heart, vasculature, skeleton, kidney, liver, eye, nervous system and 

brain (Penton et al., 2012). Notch related congenital disorders include Alagille syndrome, 

spondylocostal dysostosis, Adams-Oliver syndrome, Dowling-Degos disease and cerebral 

autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy 

(CADASIL) (Aster et al., 2017). One of the first described congenital heart defects seen 

from NOTCH1 mutations was bicuspid aortic valve, where the aortic valve has only two 

leaflets instead of three, leading to calcification of the aortic valve and aortic aneurysms 

(Garg et al., 2005; Preuss et al., 2016). Aortic aneurysms can also be seen in 

haploinsufficient Notch1 mice (Koenig et al., 2017). Mutations of NOTCH1 have recently 

been observed in patients with a wide variety of pathological cardiac phenotypes 

(Kerstjens-Frederikse et al., 2016).  

Notch is important for homeostasis in adult tissues and both canonical and non-canonical 

Notch signaling modes have been implicated in several human cancers (Aster et al., 2017; 

Ayaz and Osborne, 2014). A landmark study of Notch in cancer demonstrated that more 

than 50% of T-ALL patients had activating NOTCH1 mutations in their HD and PEST 

domains (Weng et al., 2004). We now know that Notch plays an essential role in many 

other hematological cancers as well and that active Notch can drive a survival bias in B 

and T cells, leading to uncontrolled cell division (Aster et al., 2017). Overexpression of 

NOTCH1 is also commonly found in solid tumors including breast, lung, prostate, 

colorectal and pancreatic cancers (Miele et al., 2006; Ranganathan et al., 2011b). However, 

in solid tumors Notch is not necessarily involved through activating Notch mutations as in 

many lymphatic diseases; instead Notch signaling can be deregulated in other ways, such 

as aberrant levels of receptors, ligands or other signaling modifiers (Andersson and 

Lendahl, 2014). Notch signaling has also been identified as a tumor suppressor in cancers 

such as head and neck carcinomas, squamous carcinomas of skin and lung, and pancreatic 

cancers (Avila and Kissil, 2013; Wang et al., 2011; Yap et al., 2015). Somatic mutations 

of Notch have recently been shown to accumulate during aging also in normal esophageal 

epithelial tissues, which surprisingly showed higher mutation rates than in esophageal 
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squamous cell carcinomas (Martincorena et al., 2018). In addition, Notch has been 

implicated to have different roles in different stages of tumor progression depending on 

context (Ranganathan et al., 2011b). Studies in pancreatic cancer, for example, have 

indicated that active Notch signaling can be tumor suppressive during initial stages of 

carcinogenesis (Hanlon et al., 2010) but needed for later stage tumor progression (Plentz 

et al., 2009). Notch signaling is also recognized as a promising target in tumor 

angiogenesis and metastasis as a consequence of the critical roles Notch plays in 

physiological angiogenesis and in vascular homeostasis (Boareto et al., 2015; Garcia and 

Kandel, 2012; Kofler et al., 2011; Li et al., 2007; Oon et al., 2017). Proposed clinical uses 

therefore have to be considering which part of the disease progression they are targeting. 

Notch inhibitors are currently in trials for combination therapies together with 

chemotherapeutic agents, as it has been shown that common chemotherapeutic treatments 

often increase Notch signaling in the tumor cells. Heightened Notch levels can lead to 

improved survival properties and concomitant resistance to chemotherapeutics, ultimately 

leading to relapse of the disease (Kamstrup et al., 2017). Combination therapies with 

Notch inhibitors have indeed been shown to have higher efficiency in killing cancer cells 

than either therapy alone as shown by Notch inhibition in combination with: doxyrubicin 

and trastuzumab in breast cancer, docetaxel in prostate cancer and temozolamide in 

glioma xenograft mice (Cui et al., 2015; Gilbert et al., 2010; Kim et al., 2015; Li et al., 

2015; Osipo et al., 2008). Multiple excellent reviews on Notch in disease alluding to both 

present and future clinical therapies are available for the interested reader (Andersson and 

Lendahl, 2014; Aster et al., 2017; Louvi and Artavanis-Tsakonas, 2012; Ranganathan et 

al., 2011b; Tamagnone et al., 2018). 

1.7 Notch signaling in the vasculature  

The vascular system is crucial for development, homeostasis and disease. Cardiovascular 

diseases are currently the most common cause of mortality in humans (WHO, 2019). The 

vasculature provides all tissues with oxygen and nutrition, while allowing for removal of 

carbon dioxide and waste products. During early development, blood vessels are formed 

from endothelial precursor cells of mesodermal origin in a process termed vasculogenesis 

(Kolte, 2016). During vasculogenesis the vascular plexus is formed, which is a primitive 

endothelial cell vessel network. The vascular plexus is then divided into arteries, veins and 

capillaries during arteriovenous specification and further remodeled through branching of 
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the vasculature by angiogenesis to form a functional vasculature (Kolte, 2016). The 

emerging vasculature also attracts mural cells around the vessels, with vascular smooth 

muscle cells (VSMC) covering arteries/veins and pericytes covering the smaller 

venules/capillaries of the microcirculation.  

There are many signaling pathways regulating vascular function including VEGF, Wnt, 

BMP, TGF-β, angiopoietin and Notch (Tetzlaff and Fischer, 2018). Notch signaling is 

distinct by being involved in all the key steps of vascular development; from initial 

vascular plexus formation, to arteriovenous patterning, to recruitment and maintenance of 

VSMCs and remodeling by angiogenesis (Gridley, 2010). Deletion of critical Notch 

components such as Notch1 (Krebs et al., 2000; Limbourg et al., 2005), Dll4 (Duarte et al., 

2004; Gale et al., 2004; Krebs et al., 2004), Jag1 (Benedito et al., 2009; Xue et al., 1999), 

CSL (Krebs et al., 2004), Notch target genes Hey1/Hey2 (Fischer et al., 2004), S2 cleavage 

mediator Adam10 (Glomski et al., 2011), as well as γ-secretase components nicastrin (Li 

et al., 2003) and presenilin (Herreman et al., 1999) all lead to embryonic lethality in mice, 

with severe defects in the vasculature. The sensitive nature of Notch levels in the 

vasculature is further inferred from the fact that endothelial cell specific expression of 

constitutively active Notch1 (Krebs et al., 2010), Notch4 (Uyttendaele et al., 2001) and 

overexpression of endothelial Jag1 (Benedito et al., 2009) and Dll4 (Trindade et al., 2008) 

also lead to severe vascular defects and embryonic lethality in mice.  

1.7.1 Angiogenesis and Notch 

Angiogenesis is the development of new vessel branches from pre-existing blood vessels 

to maintain a functional circulatory system with adequate blood flow to all tissues. This 

process differs from de novo formation of blood vessels during vasculogenesis. 

Angiogenesis is activated during inflammation, mechanical stress, injury, hypoxia, low pH 

and during the pathophysiology of tumor growth. Especially a lack of oxygen (hypoxia) is 

easily sensed in tissues and leads to VEGF signaling through hypoxia inducible factor 

(HIF) (Kofler et al., 2011). Vascular endothelial cells express VEGF receptors, with 

VEGFR2 and VEGFR3 leading to endothelial sprouting. As VEGF-A (hereafter VEGF) is 

secreted in the hypoxic tissue, the nearby vessel sprouts begin to migrate towards the 

VEGF gradient (Figure 5). Angiogenesis is a multistep process, which includes an initial 

remodeling of the extracellular matrix, endothelial cell migration and tube formation. 

Endothelial cells in the pre-existing vessel initiate the process by migrating out a tip cell, 
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which is followed by stalk cells supporting the newly formed microvessel. The tip and 

stalk cell selection is regulated by Notch signaling in response to VEGF (Gerhardt et al., 

2003). Endothelial cells have been reported to express Notch1, Notch4, Dll1, Dll4, Jag1 

and Jag2 but in variable patterns depending on the vasculature analyzed and its state of 

development (Hofmann and Iruela-Arispe, 2007). Previous studies have identified 

important roles for especially Jag1, Dll4 and Notch1/4 (Kangsamaksin et al., 2015). In a 

similar manner as with knockout of key Notch components, deletion of VEGF or VEGFR 

is embryonically lethal due to vascular defects in mice (Carmeliet et al., 1996; Dumont et 

al., 1998; Ferrara et al., 1996). VEGFR1 is unique from VEFGR2/3 as it acts as a decoy 

receptor for VEGF (Meyer et al., 2006; Siekmann et al., 2013). VEGFR2/3 activate 

endothelial cells to extend filopodia and to invade the basement membrane by secreting 

matrix metalloproteinases (Arroyo and Iruela-Arispe, 2010). This breakdown is based on 

actin-based podosomes. The formation of functional podosomes is also regulated by 

VEGF and Notch (Spuul et al., 2016).  

 

 

Figure 5. The Notch pathway in sprouting angiogenesis. During sprouting angiogenesis, 
migrating tip cells respond to vascular endothelial growth factor (VEGF) through VEGF receptor 
2/3 (VEGFR2/3), which upregulates Dll4 expression in the tip cell. Dll4 then activates Notch1 in 
the trailing stalk cell, which downregulates VEGFR2/3, allowing for a proliferative phenotype that 
supports the formation of the growing vessel. In a mature vessel the stalk cells become quiescent 
phalanx cells. Endothelial cells recruit mural cells such as vascular smooth muscle cells and 
pericytes to support the new vessel sprout (Figure adapted from Masek and Andersson, 2017). 

High levels of VEGF induce expression of the Notch ligand Dll4. Expression of Dll4 in 

tip cells activates Notch in neighboring cells which then downregulates expression of 

VEGFR2/3 (Lobov et al., 2007; Tammela et al., 2008; Taylor et al., 2002) and allows for 

these neighboring cells to adopt a stalk cell fate, forming the vascular lumen. The stalk 
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cells are more proliferative and migrate less than the tip cells. Stalk cells also recruit 

pericytes to support the newly formed vessel. ECs that have become quiescent have also 

been distinguished as phalanx cells. Activated Notch signaling in the adjacent stalk cells 

then decrease expression of VEGFR2/3 through Hey1 and Hey2 (Blanco and Gerhardt, 

2013). In other words, the sprouting tip cells have been reported to have high Dll4 and 

VEGFR2/3 expression with low Notch signaling activity, while the proliferating stalk 

cells behind the tip cells have high Notch and low VEGFR2/3 (Figure 5).  

EC specific DLL4 knockouts and DLL4 heterozygote mice show an excessive number of 

tip cells and sprouts with poorly perfused vessels (Hellström et al., 2007; Lobov et al., 

2007; Suchting et al., 2007). Several studies have reported similar phenotypes during 

Notch inhibition and EC specific KO of Notch1 and CSL (Benedito et al., 2012, 2009; 

Hellström et al., 2007; Lim et al., 2019; Lobov et al., 2007; Ridgway et al., 2006). The 

Notch ligands function in distinct ways in the vasculature and Dll1 cannot compensate for 

Dll4 in the vasculature (Preuße et al., 2015). In addition to Dll4, Jagged1 is also expressed 

in the endothelium. Jagged1 is mostly expressed in the stalk cells and there are 

interpretations that Jagged1 can play an inhibitory role of Notch signaling in the tip cells 

by competing with more potent Dll4 ligands to lower Notch signaling in tip cells 

(Benedito et al., 2009). The theory of low Notch required in tip cells has been challenged, 

as loss of Dll4 in endothelial sprouts did not affect tip cell identity in recent studies (Hasan 

et al., 2017; Pitulescu et al., 2017). Furthermore, live cell imaging of sprouting tip cells 

further demonstrated that Notch is first activated in the tip cell and then further increased 

over time (Hasan et al., 2017). A tumor angiogenesis study further suggests that Dll4 may 

be a dominant ligand over Jagged1, but that both are potent activators of Notch signaling 

in the endothelium and that competitive inhibition can not explain the roles of Jagged1 in 

that context (Oon et al., 2017).  
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2. Regulation of the Notch signaling pathway 

Notch signaling combines ligand binding at the cell surface with transcriptional activation 

in the nucleus, in a regulatory pathway based on proteolytic cleavage of the receptor. This 

mode of signaling has a couple of interesting attributes. Because the proteolytical cleavage 

at S2 physically separates the ligand bound extracellular domain from the intracellular 

domain, which upon release, has a limited half-life, means that each receptor can signal 

only once. This means that the level of signaling activity and output is highly dependent 

on the amount of receptors and ligands on the cell surface, as well as their activation 

potential and the subsequent fate of the NICD in the cell. Previous studies have shown that 

both the receptors and the ligands undergo endocytosis, and the trafficking of these 

proteins may regulate the amount of Notch components at the cell surface. Endocytosis is 

also part of the activation mechanism of Notch signaling as endocytosis of Notch ligands 

have been shown to generate the force needed to physically pull on the receptor to change 

its conformation and thus enable proteolytic cleavage by ADAM/TACE (Meloty-Kapella 

et al., 2012; Musse et al., 2012). Furthermore endocytosis of the Notch receptor can 

control the fate of NICD upon activation, and aberrant endosomal trafficking of the 

receptor has also been shown to lead to cleavage of the receptor without ligand activation 

– a form of non-canonical activation of Notch (Vaccari et al., 2008).  

Post-translational modifications (PTMs) of Notch and its interacting partners also have an 

important role in the signaling output. Notch receptor glycosylation is required for 

efficient binding by its ligands, and modifies which ligand interaction is preferred, 

whereas other PTMs regulate the intracellular domain to affect the half-life of NICD 

(Borggrefe et al., 2016). The proteins interacting with Notch do not only block or 

terminate active signaling but also provide the tools needed to fine-tune and control 

Notch-mediated cellular processes. 

2.1 The role of post-translational modifications in Notch signaling 

The core Notch signaling pathway exhibits a deceiving simplicity, with its one-to-one, 

ligand-to-receptor, linear activation mechanism. Despite this, the Notch signaling pathway 

has been shown to be particularly context-dependent with multiple possible outcomes 

from its receptor activation. PTMs regulate the functional response of proteins by addition 

and removal of functional groups to proteins. It is now clear that Notch is tightly regulated 
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and numerous reports over the last few decades point to PTMs being key players in 

increasing the diversity of Notch sigaling output. In addition to their role in influencing 

endosomal trafficking of Notch, some PTMs directly affect the binding of NICD to the 

transcriptional complex, while others modify and alter ligand-receptor preferences 

(Kakuda and Haltiwanger, 2017; Le Bras et al., 2011; Ranganathan et al., 2011a). 

Different PTMs can further act together to fine-tune the response of active NICD in the 

cell (Lee et al., 2015). Notch activity is modified by PTMs such as sumoylation, 

methylation, acetylation, hydroxylation, glycosylation, phosphorylation and ubiquitination 

(Antfolk et al., 2019; Pfeffer et al., 2019) (Figure 6-7). As a consequence of the linearity 

of the pathway, the output is therefore also highly dependent on the half-life of NICD. The 

longevity or stability of NICD affects not only how long NICD stays bound to CSL on the 

DNA allowing for continued transcriptional activation, but also determines if Notch is 

stable enough to enter the nucleus before it is degraded. The ubiquitin-based modifications 

are key regulators of the degradation of NICD (Borggrefe et al., 2016; Fryer et al., 2004). 

In the next chapters, glycosylation, phosphorylation and ubiquitination will be briefly 

described, as they relate most closely to the results presented in this thesis. 

Figure 6. Schematic of post-translational modifications of the Notch intracellular domain 
(NICD). The intracellular domain of the Notch receptor can be modified by phosphorylation, 
ubiquitination, sumoylation, acetylation, hydroxylation and methylation, which affect the signaling 
output of receptor activation. Many of the identified sites still have unknown functional 
consequences. A highlight of functionally important PTM-sites that are also linked to disease are 
shown in table 1. (Figure adapted from Antfolk et al., 2019). 
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Table 1. Highlight of important post-translational modifications of Notch that are also linked to 
disease. (For a complete list of PTMs in Notch signaling and their functions, see Antfolk et al., 
2019).  

Enzyme PTM Domain Functional importance / Disease Reference 

POFUT1 Glycosylation EGF-repeats 
Essential for Notch function and 
ligand-receptor interactions / 
Dowling-Degos disease  

(Li et al., 
2013) 

POGLUT1 Glycosylation EGF-repeats 
Essential for Notch function and 
ligand-receptor interactions / 
Dowling-Degos disease  

(Basmanav 
et al., 2014) 

EOGT Glycosylation EGF-repeats Adams-Oliver syndrome (Cohen et 
al., 2014) 

Lunatic 
Fringe Glycosylation EGF-repeats  Regulates ligand binding / 

Spondylocostal Dysostosis 
(Sparrow et 
al., 2006) 

Cyclin C - 
CDK3, 8, 19 Phosphorylation PEST-domain 

Enhances FBXW7-dependent 
ubiquitination and degradation / T-
ALL 

(Li et al., 
2014) 

PIM Phosphorylation Second NLS 
Enhances nuclear localization and 
transactivation of NICD / Breast 
cancer, prostate cancer 

(Santio et 
al., 2016) 

FBXW7 Ubiquitination PEST-domain Induces degradation of Notch / T-
ALL 

(O’Neil et 
al., 2007) 

2.1.1 The role of glycosylation in Notch signaling 

The extracellular part of Notch can be modified by several different types of sugar 

modifications, which alter the structure and function of Notch (Figure 7). Serine or 

threonine linked O-glycosylations in particular have been shown to be crucial for Notch 

signaling and several human diseases are also linked to mutations in the 

glycosyltransferases carrying out O-glycan modifications, with multiple Notch linked 

phenotypes (Harvey and Haltiwanger, 2018). These complex sugar modifications can be 

attached to the extracellular domain of Notch during receptor processing in the 

endoplasmic reticulum (ER). There are three main types of O-glycosylation of EGF-

repeats of Notch, which include: O-fucosylation (O-fucose), O-glucosylation (O-glucose) 

and O-GlcNAcylation (O-linked β-N-acetylglucoseamine) (Takeuchi and Haltiwanger, 

2014). Each individual EGF repeat consists of approximately 40 amino acids, which 

include 6 conserved cysteine residues (Kovall et al., 2017). O-glucosylation by Protein O-

Glucosyltransferase 1 (POGLUT1) can occur between the first and the second cysteine 

residues at C1-X-S-X-(P/A)-C2 consensus sequences (where X is any amino acid, and the 

modified serine underlined), O-fucosylation by Protein O-Fucosyltransferase 1 (POFUT1) 

can occur between the second and the third cysteine at the consensus sequence C2-X-X-X-
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X-(S/T)-C3, and O-GlcNAcylation by EGF-domain specific O-GlcNAc Transferase 

(EOGT) between the fifth and sixth conserved cysteine residues at the consensus sequence 

C5-X-X-X-(F/W/Y)-(T/S)-G-X-X-C6 (Takeuchi and Haltiwanger, 2014). Recently, O-

glucosylation between cysteines 3 and 4 by POGLUT2/3 was also identified (Takeuchi et 

al., 2018) after the discovery of a non-POGLUT1 consensus sequence being glucosylated 

in the crystal structure of the DLL4-NOTCH1 complex (Luca et al., 2015). Loss of 

Poglut1 or Pofut1 in mice leads to embryonic lethality with Notch-linked phenotypes 

(Fernandez-Valdivia et al., 2011; Shi and Stanley, 2003). Loss of Pofut1 is similar to loss 

of CSL, which has more severe phenotypes than the loss of any single Notch receptor (Shi 

and Stanley, 2003).  

 

Figure 7. Glycosylation sites on mammalian NOTCH1 EGF-repeats. The extracellular domain 
of the Notch receptor is modified by glycosylation. O-fucosylation by POFUT1 and O-
glucosylation by POGLUT1 crucially regulate Notch structure and the ability to be activated by 
ligands. EGF-repeats predicted to be modified by POFUT1 and POGLUT1-3 on NOTCH1 are 
indicated above. All predicted sites have been confirmed by glycoproteomic methods (Kakuda and 
Haltiwanger, 2017; Rana et al., 2011) except for repeats with diagonal white lines (EGF23, 24 & 
32). The only NOTCH1 EGF-repeat modified by POGLUT2/3 is EGF11 (Takeuchi et al., 2018) 
(Figure adapted from Antfolk et al., 2019). 

The O-linked glycans can be further elongated to di-, tri- or tetra-saccharides, most 

notably: elongation of O-glucose by xyloses (xylosyltransferases), and O-fucose by 

GlcNAc (Fringe enzymes) (Brückner et al., 2000; Moloney et al., 2000; Rampal et al., 

2005; Sethi et al., 2010; Taylor et al., 2014). In Drosophila, deletion of Fringe leads to a 

notched phenotype of its wings and increases activation by Delta while decreasing 

activation by Serrate (Jagged in mammals) (Irvine and Wieschaus, 1994; Panin et al., 
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1997). In mammals, three Fringe orthologs add to the complexity of glycan modifications. 

All three (Lfng, Mfng and Rfng) potentiate Dll1 to Notch1 signaling. Rfng also potentiates 

Jagged1 to Notch1 signaling, but Mfng and Lfng decrease activation of Notch1 through 

Jagged1 (Yang et al., 2005). Recent glycoproteomic analysis indicate that the differential 

effects of the three Fringes may stem from which EGF-repeats they are able to modify 

(Kakuda and Haltiwanger, 2017). Even though all three mammalian Fringes are expressed 

in many tissues during development, only the lack of Lfng has substantial effects on 

viability and fertility of mice (Evrard et al., 1998; Moran et al., 2009, 1999). By contrast 

all three Fringes have been shown to contribute to proper development of B and T cells 

and surprisingly, Lfng/Mfng/Rfng triple knockouts could be rescued by any single Fringe 

allele in this context (Song et al., 2016).  

2.1.2 The role of ubiquitination in Notch signaling 

Ubiquitination (also known as ubiquitylation) is a process of attaching ubiquitin residues 

to target proteins by E1 ubiquitin-activating enzymes, E2 ubiquitin conjugating-enzymes 

and E3 ubiquitin ligases. Ubiquitin E3 ligases recognize the target site and recruit E2 

enzymes to facilitate transfer of the ubiquitin onto a target lysine. Adaptors such as epsins 

can then recognize these ubiquitin tags (Sen et al., 2012). Ubiquitin can be added as 

monomers or extended to poly-ubiquitin chains, where specific lysines of ubiquitin are 

further modified (Komander and Rape, 2012). Although poly-ubiquitination of certain 

lysines is a common tag for proteasomal degradation in the cell, different types of 

ubiquitin modification have various other effects on the targeted protein, such as 

regulation of its location through endocytosis (Swatek and Komander, 2016). 

To generate pulling force by endocytosis, there is a requirement for mono-ubiquitination 

of Notch ligands by the E3 ligases Neuralized (Neur) and Mindbomb 1 (Mib1) in 

Drosophila (Itoh et al., 2003; Lai et al., 2001). Due to differential expression during 

development, the loss of either one gives rise to the neurogenic phenotype, which is 

similar to a loss of Notch phenotype (Le Borgne et al., 2005; Wang and Struhl, 2005). 

Neur and Mib1 are localized to the cell membrane and loss of either, lead to an 

accumulation of signaling incompetent ligands on the cell surface (Itoh et al., 2003; Lai et 

al., 2001; Le Borgne and Schweisguth, 2003). In settings where both are expressed in the 

same cells, deletion of both are required for loss of Notch phenotypes (Lai et al., 2005; 

Wang and Struhl, 2005). However, Mib1 cannot rescue the neurogenic phenotype of Neur 
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in flies (Le Borgne et al., 2005). Neur and Mib1 ubiquitinate both Delta and Serrate, 

thereby affecting ligand endocytosis and trans-activation of both Drosophila ligands (Lai 

et al., 2005; Le Borgne et al., 2005). A second Mib homologue (Mib2) exists in 

Drosophila and mammals (Koo et al., 2005b) and although there is no requirement for 

Mib2 for viability in mice, Mib2 is important for muscle integrity, which cannot be 

rescued by Mib1 or Neur (Nguyen et al., 2007). Mammals have two Neur orthologs 

(NEURL1 and NEURL1B) and one Mib1 ortholog (MIB1). Cell culture assays show that 

all three can regulate Notch in vitro (Koutelou et al., 2008; Teider et al., 2010) but in 

contrast to Drosophila development, only loss of Mib1 has adverse effects on Notch 

signaling in mice (Barsi et al., 2005; Koo et al., 2007). Mice defective for all three Neur1, 

Neur1b and Mib2 have no obvious phenotypes while knock out of Mib1 alone produces 

the characteristic loss of Notch like phenotypes (Koo et al., 2005a; Koo et al., 2007).  

Ubiquitination of Notch also affects trafficking of the receptor, and several E3 ligases 

such as Deltex, AIP4/Itch (human/mouse), Nedd4, Fbxw7 and c-Cbl ubiquitinate Notch 

(Le Bras et al., 2011). The regulatory effects of ubiquitination of the Notch receptor vary 

from stimulatory to inhibitive. Deltex, for instance, can activate Notch in certain settings 

in flies that are linked to ligand-independent γ-secretase cleavage, but promote its 

degradation when complexed with the β-arrestin homolog Kurtz (Hori et al., 2011; 

Matsuno et al., 1995; Mukherjee et al., 2005). Downregulation of Deltex1 in mammalian 

cells has been reported to increase Notch activity and enhance Notch receptor levels at the 

cell surface (Zheng et al., 2013). As an example of degradation of NICD, the E3 ligase 

Fbxw7 can ubiquitinate a specific phosphodegron region of the PEST domain as a 

degradation signal, if it has first been phosphorylated by a kinase such as Cdk8 (Fryer et 

al., 2004; Wu et al., 2001). In line with this, mutations in Fbxw7 that decrease its activity, 

can lead to increased amounts of NICD (Aydin et al., 2014; Malyukova et al., 2007; 

Mansour et al., 2009). Mutations in the FBXW7 gene have been found in different cancers 

such as T-ALL, small cell lung cancer and melanoma (Aydin et al., 2014; George et al., 

2015; Larson Gedman et al., 2009). PEST mutations that truncate the domain so that the 

phosphodegron site is lost have a similar effect as inactivating FBWX7 mutations. 

Although an RNAi screen identified several deubiquitinases that can regulate Notch 

(Zhang et al., 2012), their effects on Notch signaling have only recently started to be 

uncovered. One example comes from the deubiquitinase Usp28, which negates Fbxw7 

ubiquitination and thereby increases Notch levels (Diefenbacher et al., 2015). In addition, 
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USP10 has been shown to affect angiogenesis through regulation of NICD turnover in 

endothelial cells (Lim et al., 2019). 

2.1.3 The role of phosphorylation in Notch signaling 

Phosphorylation is an essential PTM, commonly used for regulation of protein activity. 

During phosphorylation, phosphate groups can be added to specific amino acid residues 

that include serine, threonine and tyrosine residues. The addition of phosphate groups, in a 

reaction catalyzed by enzymes called kinases, can change the conformation and 

functionality of a protein in an ATP dependent process that can later be reversed by the 

action of phosphatases. Several kinases that phosphorylate NICD have been identified in 

various systems (Borggrefe et al., 2016). Notably, many of them affect the stability of 

active NICD by phosphorylating the PEST domain for Fbxw7-mediated degradation. 

Kinases that have been shown to prime PEST for ubiquitin based degradation include; 

CDK1, CDK2, CDK3, CDK8, CDK19 and ILK (Carrieri et al., 2019; Fryer et al., 2004; Li 

et al., 2014; Mo et al., 2007). GSK3-β has been found to phosphorylate N1ICD in several 

studies. One of these studies reported increased stability of N1ICD (Foltz et al., 2002), 

while another showed reduced Notch activity in two different cell lines in vitro (Jin et al., 

2009). A reduction in Notch activity has also been shown in Notch2 (Espinosa et al., 

2003). Many other kinases, such as Nemo kinase can affect the interaction with the 

transcriptional complex by NICD phosphorylation (Ishitani et al., 2010). In a similar 

manner CK2 has been shown to inhibit N1ICD from forming a complex with CSL and 

MAML, reducing transcriptional activity (Ranganathan et al., 2011a). Src kinase has been 

shown to act in a similar fashion by inhibiting MAML recruitment (LaFoya et al., 2018). 

Phosphorylation of N1ICD by Akt (also known as protein kinase B, PKB) has been 

reported to inhibit nuclear localization (Song et al., 2008) with similar findings in Notch4 

where Akt inhibited translocation to the nucleus through 14-3-3 (Ramakrishnan et al., 

2015). PIM kinases on the other hand have been shown to increase nuclear localization of 

N1- and N3ICD (Santio et al., 2016). Global proteomic studies have identified many other 

NICD phosphorylation sites, but the majority of sites discovered are without insight into 

which specific kinases are involved or the outcome of the modifications (Antfolk et al., 

2019) (Figure 6). 

Phosphorylation of other Notch signaling components has also been shown to regulate 

signaling. In mammals, atypical Protein Kinase C (aPKC) regulates endocytosis of Notch 
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through directly influencing Notch regulatory protein Numb (Sato et al., 2011; Smith et al., 

2007), as well as Mindbomb indirectly through PAR-1 (Ossipova et al., 2009). PKC is a 

family of serine/threonine protein kinases, which are divided into three subfamilies that 

include classical, novel and atypical PKCs that all have different requirements for their 

activation (Newton, 2018). The PKC family share high similarities in their catalytic 

domains with Akt (Facchinetti et al., 2008; Franke et al., 1994). Novel PKC isoforms 

require diacylglycerol (DAG) for their activation, classical PKC isoforms require DAG 

and calcium while atypical PKC isoforms require neither calcium nor DAG but do require 

a phosphatidyl serine for their activation (Figure 8). The different subfamilies have slight 

differences in their domains, with aPKCs completely lacking the calcium activated C2 

domain while also having a DAG insensitive C1 domain (Pu et al., 2006) (Figure 8). The 

C1 domain is still important for aPKCs because it affects the localization of aPKC in the 

cell (Pu et al., 2006). Atypical PKCs also have a PB1 domain, which activates aPKCs 

when bound to protein scaffolds such as PAR6 or p62 (Tobias and Newton, 2016).  

Figure 8. Schematic of PKC isozyme domains and their activation. Classical PKC isoforms 
require diacylglycerol (DAG) and calcium for their activation, novel PKC isoforms require DAG, 
while atypical PKC isoforms require neither calcium nor DAG. Phorbol esters activate classical 
and novel isoforms. Atypical PKCs are not activated by phorbol esters but they do require a 
phosphatidyl serine for their activation. (Figure based on Garg et al., 2014) 
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The DAG sensitive PKC isoforms have gathered special attention since it became clear 

that they could also be activated by tumor promoting phorbol esters, which at the time 

characterized PKCs as potential oncogenes (Newton, 2018). It has now become evident 

that PKCs can function as both tumor promoters and tumor suppressors, with the majority 

of data supporting that the correct function of PKC is tumor suppressive (Ali et al., 2016; 

Antal et al., 2015; Dowling et al., 2016; Justilien et al., 2014; Parker et al., 2014; Uhlen et 

al., 2017). Even though phorbol esters activate classical and novel PKC isoforms, they 

also leave their conformation irreversibly open to dephosphorylation and ubiquitin based 

degradation (Hansra et al., 1999; Jaken et al., 1981). This could be an explanation for the 

minimal success achieved with PKC inhibitors in clinical trials over the years (Dowling et 

al., 2016; Zhang et al., 2015).  

Atypical PKC isoforms include PKCζ (zeta) and PKCλ/ι (lamda/iota) (human/mouse) and 

they are especially known for their role as part of a PAR-3/PAR-6/aPKC complex, which 

has key functions during cellular polarity with additional roles in organization of cellular 

junctions and ARP2/3 linked endocytosis (Chen and Zhang, 2013; Georgiou et al., 2008; 

Hapak et al., 2018; Leibfried et al., 2008; Nishizuka, 1992). Atypical PKCs are involved 

in migration and wound healing where they can be found at the leading edge of the cell 

(Etienne-Manneville and Hall, 2001; Xiao and Liu, 2013). Both atypical PKC isoforms are 

linked to cancer. Their roles include invasion promoting properties exemplified by both 

upregulation and activation of matrix metalloproteinase 9 (MMP-9) by PKCζ (Estève et 

al., 2002; Xiao et al., 2010). Similarly, PKCι has also been found to drive growth and 

invasion of lung cancer cells through MMP-10 by Rac1 activation (Frederick et al., 2008). 

However, PKCζ has been indicated to have both tumor suppressive and promoting roles. 

While PKCζ overexpression has been reported in cancers such as prostate and bladder 

cancer (Dhanasekaran et al., 2005; Sanchez-Carbayo et al., 2006), downregulation of 

PKCζ has been indicated in lung, pancreatic and kidney cancers (Galvez et al., 2009; 

Lenburg et al., 2003; Selbie et al., 1993).      

2.2 Endocytosis 

Endocytosis is the process where vesicles bud off from the plasma membrane through 

invagination. Endocytosis controls important processes such as recycling of membrane 

components, protein and nutrient uptake, retargeting and degradation of proteins, signal 
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transduction, cell polarity and migration (Di Fiore and von Zastrow, 2014; Doherty and 

McMahon, 2009). Membrane proteins and lipids can be endocytosed through clathrin-

dependent and clathrin-independent mechanisms (Doherty and McMahon, 2009; Ferreira 

and Boucrot, 2018). Receptor-mediated endocytosis is used for uptake of extracellular 

molecules and trans-membrane proteins based on receptor-ligand binding and the use of 

clathrin attached to the plasma membrane to form clathrin coated pits (McMahon and 

Boucrot, 2011) (Figure 9). Membrane receptors can accumulate in these coated pits. This 

form of transport is very common and more than 20 different receptors have been shown 

to internalize through this endocytic pathway (Xu et al., 2017b). 

Dynamin is a protein that has a key role in pinching off the internalized vesicles from the 

cell membrane. After invagination the clathrin coat is removed by Hsc70 together with 

auxilin (Eisenberg and Greene, 2007). After the vesicles have internalized, the receptors 

can enter a network of endocytic trafficking pathways (Spang, 2009). Endocytosed 

vesicles normally fuse with early endosomes, which can be described as sorting stations 

for which endocytic route the cargo will enter (Jovic et al., 2010). At this stage, proteins 

may be recycled to the plasma membrane, sorted to the lysosomes for degradation or 

delivered to the trans-Golgi network (Jovic et al., 2010). Endosomal trafficking can be 

tracked by analyzing Rab GTPases (RABs), that specify distinct endocytic compartments 

and are heavily involved in trafficking and fusion of vesicles (Zerial and McBride, 2001). 

Early and late endosomes can be identified based on their specific types, where RAB5 

specify early endosomes and RAB7 late endosomes (Rink et al., 2005). Consequently, 

when vesicles transition from early to late endosomes the amount of RAB7 increases, 

while RAB5 is removed at the vesicle membrane (Wandinger-Ness and Zerial, 2014). 

Early endosomes are acidic with a pH in the range of 6.0-6.2, which can lead to the 

dissociation of many ligands from their receptors. Late endosomes are more acidic still 

and further fuse with lysosomal vesicles, which carry acidic hydrolases that degrade 

endocytosed materials (pH 5). The early to late endosomal transition also leads to a 

repackaging of the transmembrane proteins into multivesicular bodies (MVBs) (Doherty 

and McMahon, 2009). Some membrane receptors also show specific signaling from 

endosomes compared to the plasma membrane (Alanko et al., 2015). Proteins that recycle 

back to the plasma membrane normally enter recycling endosomes before returning to the 

cell membrane through compartments commonly including RAB11 and a multiprotein 

complex called the exosyst (Emery et al., 2005; Jafar-Nejad et al., 2005). Some 
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transmembrane proteins can also recycle back to the cell membrane faster by returning 

directly from the early endosomes in a RAB4-dependent manner (Grant and Donaldson, 

2009).    

 

Figure 9. Receptor-mediated endocytosis. In receptor-mediated endocytosis, ligands bind to 
receptors on the cell membrane, which then recruit adaptor proteins and clathrin to form clathrin-
coated pits. Invagination of the plasma membrane produces a clathrin-coated vesicle. 
Internalization is followed by uncoating of the vesicle and fusion with sorting/early endosomes. 
The endocytosed proteins can then be sorted for recycling or fuse with lysosomes for degradation. 
(Figure adapted from Britannica, 2019) 

Endocytosis and endosomal trafficking of Notch receptors and Notch ligands control 

Notch signaling pathway activation. The importance of endocytosis of Notch was first 

shown in Drosophila, where cells from shibire mutant flies (shibire is a homolog of 

mammalian dynamin) were defective in both sending and receiving lateral communication 

through Notch signaling (Seugnet et al., 1997). Further work in Drosophila demonstrated 

how endocytosis of Delta in the signal sending cell is mandatory for activation of Notch in 

adjacent cells, and that the extracellular domain of Notch co-localizes with Delta in the 

signal sending cell upon activation (Parks et al., 2000). Studies have also shown that the 
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force generated by ligand endocytosis is in the same order of magnitude as the force 

required for Notch activation (Gordon et al., 2015; Meloty-Kapella et al., 2012). This form 

of activation is in contrast to general receptor-mediated endocytosis depicted in Figure 9, 

where ligands are internalized with the receptors. In addition to the pulling force model of 

Notch activation, endocytosis and recycling of both Notch ligands and receptors might 

allow for re-distribution of Notch components within the cell membrane to facilitate 

increased receptor activation, as seen with other receptors (Simons and Toomre, 2000). 

Finally, endocytosis can also negatively regulate Notch, by removing ligands and 

receptors from the surface of the cell and target them for degradation in lysosomes and 

proteasomes (Conner, 2016). 

2.2.1 Endocytosis of Notch receptors 

Notch receptors that are not interacting with ligands, have been shown to be constantly 

endocytosed, and then either recycled or degraded (Jehn et al., 2002; McGill et al., 2009). 

Cleavage of the receptor without ligand activation can occur in cases where endocytic 

trafficking from early or late endosomes is restricted by interferences in the fusion to late 

endosomes or lysosomes (Fortini and Bilder, 2009). Such unwanted activation can have 

severe consequences, with similar results as constitutively active mutations of Notch. 

Consequently, ligand-independent activation following endosomal defects has been 

considered as a cause of cancer (Tanaka et al., 2008). It is still unclear whether the S3 

cleavage occurs directly on the cell membrane after the S2 cleavage or predominantly later 

in endosomes, and which alternative is more efficient in generating productive NICD. The 

activity of γ-secretase may be higher in endocytic vesicles where pH is lower (Pasternak et 

al., 2003), which is supported by the fact that mutations in proteins which limit the 

acidification of endosomes, lead to accumulation of Notch in enlarged endosomes in 

Drosophila (Yan et al., 2009). Blocking Rab5 in Drosophila leads to accumulation of 

Notch at the cell surface with an accompanying reduction in NICD produced, which could 

be due to less effective γ-secretase activity at the cell surface (Vaccari et al., 2008), 

although other possibilities also exist. However, studies with Notch extracellular 

truncation (NEXT) peptides (S2 cleaved, but not S3 cleaved Notch) have shown that WT 

NEXT cleaved at the plasma membrane generates mostly the more stable Val-1744 form 

of NICD while cleavage in endosomes generates mostly the unstable Ser-1747 cleavage 

product (Tagami et al., 2008). NEXT fragments harboring a point mutation at K1749R 
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that inhibits monoubiquitination has been considered evidence that K1749 ubiquitination 

and endocytosis is required for activation of Notch (Gupta-Rossi et al., 2004). Tagami and 

colleagues later showed that K1749R does not inhibit Notch receptor activation and that 

NEXT can still be cleaved at the plasmamembrane by y-secretase, but it generates mostly 

the unstable Ser-1747 NICD and even more unstable forms like Arg-1749 that are rapidly 

degraded (Tagami et al., 2008). NICD cleavage has also been observed in late endosomes 

without ligand activation in cases where the acidity has led to a separation of the Notch 

heterodimer (Wilkin et al., 2008).    

In addition to Fbxw7-mediated ubiquitination and proteosomal degradation of NICD, 

AIP4/Itch can also ubiquitinate Notch1 without ligand activation to facilitate lysosomal 

degradation in mammals (Chastagner et al., 2008). Binding of Numb to AIP4/Itch seems 

to further promote its degradation in lysosomes (McGill et al., 2009). Nedd4 and c-Cbl are 

predicted to function in a similar manner as AIP4/Itch by leading to trafficking of Notch 

and subsequent degradation of non-activated Notch in lysosomes (Le Bras et al., 2011). 

ESCRT proteins regulate the routing of Notch through multivesicular endosomes to 

lysosomes, and loss-of-function ESCRT mutations increase Notch signaling activity 

(Conner, 2016).  

2.2.2 Endocytosis of Notch ligands 

Already in early studies in Drosophila, Delta ligands were found in intracellular 

compartments (Kooh et al., 1993) and blocking endocytosis of DSL ligands led to 

impaired Notch signaling activity in Drosophila (Parks et al., 2000). During receptor 

activation and S2 cleavage, the Notch extracellular domain (NECD) is released and can be 

endocytosed into the signal-sending cell together with the ligand (Parks et al., 2000). 

NECD is then presumably degraded together with the ligand in the lysosomes (Hansson et 

al., 2010). It has also been shown that the NECD can be endocytosed into the ligand cell 

upon pulling force even if ADAM metalloproteases have been inhibited (Nichols et al., 

2007). This indicates that the Notch extracellular domain is not released by ADAM 

cleavage but by the mechanical pulling force, which in turn allows the receptor to be 

cleaved at S2. Structural studies show that the S2 cleavage site is buried within the NRR, 

and mutations affecting NRR structure in a way that exposes the S2 site, are consistently 

active without the need for ligand activation (Gordon et al., 2007; Henrique and 

Schweisguth, 2019). Early studies also showed that recombinant secreted ligands interact 



REVIEW OF THE LITERATURE 

 32 

with Notch, but are not able to activate Notch signaling and instead block signaling by 

acting as decoys (Hukriede et al., 1997; Sun and Artavanis-Tsakonas, 1997). Immobilized 

ligands, however, do activate Notch signaling in cell culture, which also supports tension 

or force being required for Notch activation (Varnum-Finney et al., 2000). More detailed 

work with different molecular force measurement systems in mammalian cells have 

elucidated the actual forces required for the conformational change of the receptor leading 

to its activation. The pulling force model has been further strengthened by the use of 

controlled mechanical force to generate the conformational change needed to allow for S2 

cleavage. The forces documented have been in the 5 to 10 piconewton (pN) range, as 

measured with different molecular force measurement systems (Chowdhury et al., 2016; 

Gordon et al., 2015; Seo et al., 2016). Although forces generated by ligand endocytosis 

have not been determined with comparable detail, optical tweezer studies have shown that 

Dll1 endocytosis can generate forces up to 10 pN (Meloty-Kapella et al., 2012). 

Ubiquitinated ligands can be bound by endocytic adaptor proteins of the epsin family, 

which are known to facilitate both clathrin-dependent and clathrin-independent 

endocytosis (Chen et al., 1998; Sigismund et al., 2005). Epsin has been identified as a 

critical adaptor for endocytosis of Notch ligands in Drosophila and mice (Chen et al., 

2009; Langridge and Struhl, 2017; Meloty-Kapella et al., 2012; Wang and Struhl, 2004). 

Epsin is also linked to regulation of the actin cytoskeleton (Horvath et al., 2007).  

In addition to ligand endocytosis inducing activation of Notch signaling through force, 

ligands have also been found in endosomes of cells that are unable to signal (Wang and 

Struhl, 2005, 2004). It has therefore been considered that ligands are endocytosed 

constitutively without ligand-receptor interactions. Yamamoto and colleagues have shown 

that although Mib1 is required for ligands to activate Notch, a large amount of Jag1 inside 

endosomes do not require Mib (Yamamoto et al., 2010). It has further been shown that 

mutated Dll1 ligands lacking intracellular lysines are still internalized but they are unable 

to recycle back to the cell surface (Heuss et al., 2008). It has been debated whether 

endocytosis only functions to control ligand levels at the cell membrane, if recycling is 

necessary for the ligands to become signaling competent or if it functions to move ligands 

into specific membrane compartments such as specialized lipid domains (Heuss et al., 

2008; Suckling et al., 2017; Yamamoto et al., 2010). There have been no descriptions of 

what an “activated” signaling competent ligand would look like compared to a “non-

activated” ligand. Also, studies in Drosophila cell lines show that loss of Rab5 or Rab11 
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has no effect on Delta-mediated activation of the receptor. As transitioning from early 

endosomes to recycling endosomes requires Rab5 and recycling requires Rab11, this 

indicates that ligand activation through recycling is not required to produce active ligands, 

at least in Drosophila (Windler and Bilder, 2010). There are however studies showing that 

ligands can be relocated to specific parts of the cell through endocytic recycling (Benhra 

et al., 2010; Rajan et al., 2009).  

2.3 Intermediate filaments as regulators of cellular function 

The cytoskeleton is a complex network of protein fibers, which allow cells to maintain 

shape and mechanical integrity, keep organelles in their positions, aid in cellular 

movement and contribute to vesicle and protein trafficking within the cell. In addition, 

various components of the cytoskeleton transmit signaling from outside the cell and can 

help the cell respond to outside stress (Toivola et al., 2010). The cytoskeleton is comprised 

of microtubules, intermediate filaments and microfilaments (also known as actin 

filaments). Microtubules form the thickest filaments with hollow tubes that can guide 

organelle movement and pull the chromosomes apart during cell division. Microfilaments 

have the smallest diameter size of their fibers and they form the cellular cortex and 

function in transport of cellular components, cellular movement and cell division. They 

also maintain the microvilli structures and are key components to functioning muscle cells 

and their contraction (Bezanilla et al., 2015).  

Intermediate filaments (IFs) have fiber sizes (10 nm) in between those of microfilaments 

(7 nm) and microtubules (25 nm) (Buehler, 2013). IFs associate with the plasma 

membrane and provide the cell with structural support and also organize the microtubule 

and actin filament networks (Gruenbaum and Aebi, 2014). IF subunits self assemble into 

nonpolar ropelike structures without a need for ATP/GTP, which is in contrast to 

microtubule and actin filament formation (Herrmann and Aebi, 2016). IF monomers 

consist of a conserved rod domain, flanked by an N-terminal head domain and a C-

terminal tail domain, that vary in structure depending on IF (Kim and Coulombe, 2007). 

Two rod-domains connect to form a dimer, two dimers form a tetramer. The rope like 

fiber is made up from eight tetramers, which is called a unit length filament (ULF), which 

can self assemble into long intermediate filaments (Herrmann and Aebi, 2016) (Figure 10). 

The IF structure observed in the cell is highly dynamic, branched and connects to other 
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parts of the cytoskeleton through binding partners such as plectins (Wiche et al., 2015). 

Phosphorylation of the IF subunits influence assembly and properties of the IF network 

(Eriksson et al., 2004; Snider and Omary, 2014).  

 

Figure 10. Schematic of IF assembly. IF monomers, consisting of a rod domain flanked by a 
head and a tail domain, form coiled-coil dimers. Two dimers form anti-parallel tetramers and eight 
tetramers form a unit-length filament (ULF). ULFs assemble to form an intermediate filament by 
annealing (Figure modified from Dunleavy et al., 2019).  

IFs can be classified into six different types based on sequence similarity, where type I 

and type II keratins that are expressed in epithelial cells represent the largest group of IF 

genes. Keratins form heteropolymers consisting of type I and type II filaments (Jacob et 

al., 2018). Type III IFs can form both homo- and heteropolymer filaments and include 

vimentin, desmin, GFAP and peripherin. Of type III IFs, vimentin is by far the most 

widely expressed filament and found in mesenchymal cells, leukocytes, endothelial cells 

of blood vessels and only occasionally in epithelial cells (Battaglia et al., 2018). The 

abundant expression of vimentin in cells of mesenchymal origin such as fibroblasts, is 

often used as a marker for epithelial to mesenchymal transition (EMT) (Ivaska, 2011; 

Mendez et al., 2010), a process occuring during development and wound healing that is 

highly correlated to the invasive migrating phenotype of cancer cells at the leading edge of 

carcinomas. There are hopes of targeting vimentin in mesenchymal cancers and a small 

molecule (FiVe1) targeting vimentin organization and phosphorylation was recently 
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identified as a potent inhibitor of breast cancer cell lines that had transitioned through 

EMT (Bollong et al., 2017). In the past decade, evidence has emerged alluding to 

important regulatory functions of intermediate filaments (Battaglia et al., 2018; Gregor et 

al., 2014; Ivaska et al., 2007). Although the vimentin knock out mouse is viable without 

obvious phenotypes at a first look (Colucci-Guyon et al., 1994), vimentin has been found 

to be involved in numerous processes, including differentiation, proliferation, migration 

and invasion (Boraas and Ahsan, 2016; Cheng et al., 2016; Nieminen et al., 2006; 

Richardson et al., 2018). Vimentin knock out mice have defects in wound healing in 

various different tissues (Bargagna-Mohan et al., 2012; Cheng et al., 2016; dos Santos et 

al., 2015). Other defects related to VimKO mice are varied and include: mammary gland 

development (Peuhu et al., 2017), glia development (Colucci-Guyon et al., 1999), 

inflammation (dos Santos et al., 2015), steroidogenesis (Shen et al., 2012) and myelination 

of peripheral nerves (Triolo et al., 2012). Astrocytes from GFAP and vimentin double 

knock out mice have been previously reported to have an effect on Notch signaling 

through Jagged1 (Wilhelmsson et al., 2012). Vimentin is also linked to vascular processes, 

including endothelial sprouting, vascular tuning and arterial remodeling (Dave and 

Bayless, 2014; van Engeland et al., 2019). The wide expression profile, extensive 

interaction network and involvement in EMT suggest that the role of vimentin is important 

in highly dynamic processes and may be especially important during various forms of cell 

stress.  
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OUTLINE AND KEY AIMS OF THESIS 

The communication of neighboring cells via the Notch signaling pathway is crucial during 

development and homeostasis in all multicellular organisms that have been studied to this 

day. The key aim of this thesis is to study the regulation and activation of the Notch 

signaling pathway with a special focus on endocytosis and trafficking of Notch receptors 

and ligands. Endocytosis is a key regulator of Notch signaling activation. Endocytosis of 

Notch ligands can generate the force to activate the cleavage of the receptor on the cell 

membrane. During receptor activation the intracellular domain (ICD) of the receptor also 

undergoes endocytosis, which ultimately leads to the relocation of Notch ICD to the 

nucleus and activation of target genes. The studies in the thesis include regulation of 

Notch ligands during angiogenesis and Notch receptors during differentiation. A dual 

label screening approach is also developed and optimized to identify further regulators of 

Notch ligand endocytosis. 

 

Key aims of this thesis: 

 

 Determine how the intermediate filament vimentin regulates Notch ligand-receptor 

interactions in the context of angiogenesis  

 

 Set up a method for visualization and measurement of Notch ligand endocytosis to 

enable identification of new regulators of Jagged1 

 

 Study the effects of Notch receptor phosphorylation by PKCζ on the trafficking and 

activity of Notch receptors. 
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EXPERIMENTAL PROCEDURES 

More detailed information on materials and methods can be found in the original articles 

and the manuscript. 

Table 2. Methods used in the studies of this thesis. 

Method       Study 
Aortic ring assay       I 
Biotinylation assay       I, II, III 
CAM-model       I 
Cell culture       I, II, III 
Cell spot microarray       II 
Cyclohexamide chase experiment     I, III 
Fingerprint assay       I 
Fluorescence activated cell sorting (FACS)   I, III 
High throughput fluorescence plate reading   II 
Image analysis       I, II, III 
Immunocytochemistry & immunohistochemistry I, II, III 
Immunoprecipitation       I, II, III 
In vitro phosphorylation     III 
In vivo transfection       III 
Ligand trans-endocytosis     I, II 
Live cell imaging       I 
Luciferase reporter assay     I, III 
Mass spectrometry       III 
Microscopy       I, II, III 
Proximity ligation assay     I 
Quantitative reverse transcription PCR   I, III 
Recycling assay       I 
SDS-PAGE and western blotting      I, II, III 
siRNA interference       I, II 
Spheroid angiogenesis assay     I 
Statistical analysis       I, II, III 
Transfection       I, II, III 
Ubiquitination assay       III 
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Table 3. Cell lines used in the studies of this thesis. 

Cell line Type     Study 
SW-13 Human adrenal carcinoma   I 
HEK293 Human embryonic kidney   II, III 
HEK293 FLN Human embryonic kidney stable FLN1 overexpression I, III 
HEK293 JAG Human embryonic kidney stable JAG1 overexpression II 
HeLa Human cervical cancer cells   III 
HUVEC Human umbilical vein endothelial cells I 
C2C12 Mouse myoblasts   III 
3T3 JAG Mouse fibroblasts stable JAG1 overexpression I 
MEF VimWT Mouse embryonic fibroblast   I 
MEF VimKO Mouse embryonic fibroblast from Vim knock out mice I 

 
 
Table 4. Primary antibodies used in the studies of this thesis and their applications. 

Antibody   Company Application Study 
β-actin   Cell Signaling WB I, II, III 
β-tubulin   Cell Signaling ICC II 
CD31 PECAM-1   BD Pharmingen IHC I 
Cleaved Notch1 Val1744 Cell Signaling IP, WB I, III 
Delta C20   Santa Cruz Biotechnology WB I, II 
Anti-Dll4   Sigma-Aldrich ICC, IP, PLA, WB I 
GFP   Clontech WB III 
α-GFP   Invitrogen WB III 
HA1.1   Covance IP III 
Hsc70   StressGen WB III 
Jagged1 28H8   Cell Signaling ICC, IP, PLA, WB I, II 
Jagged1 H-66   Santa Cruz Biotechnology PLA I 
Lamp1   Abcam WB III 
Myosin hc   Santa Cruz Biotechnology IF, WB III 
Manic Fringe   Abcam WB I 
Notch1   Sigma-Aldrich WB III 
Notch C20   Santa Cruz Biotechnology ICC, IP, WB I, III 
PECAM-1 C20   Santa Cruz Biotechnology ICC I 
PKCζ   Santa Cruz Biotechnology ICC, IP, WB III 
VE-Cadherin   Enzo Life Sciences ICC I 
Vimentin D21H3   Cell Signaling ICC, IP, WB I 
Vimentin V9   Sigma-Aldrich ICC, PLA I, II 
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RESULTS AND DISCUSSION 

1. Regulation of the Notch ligand Jagged1 by vimentin (I) 

1.1 Vimentin regulates angiogenesis and correlates with Jagged1 

During the last few decades intermediate filaments (IF) have been established as signaling 

modulators, in addition to their structural functions (Battaglia et al., 2018; Pallari and 

Eriksson, 2006). Vimentin is an IF found primarily in mesenchymal cells and is abundant 

in endothelial cells lining the blood vessels (Dave and Bayless, 2014). During 

angiogenesis, endothelial cells in the pre-existing blood vessel initiate the process by 

migrating out a tip cell, which is then followed by stalk cells to form a new vessel sprout 

(Figure 4). Tip and stalk cell identity has been shown to be regulated by Notch signaling 

downstream of VEGF (Benedito and Hellström, 2013; Gerhardt et al., 2003).  

In study I, we used the vimentin knock out mouse (VimKO) to study if and how vimentin 

regulates Notch signaling. VimKO embryos show delayed angiogenesis during embryonal 

day 12.5 (E12.5) of mouse development (I, Fig 4D) and placental tissue from VimKO 

mice at E11.5 also showed a disturbed or delayed surface vascularisation pattern 

compared to VimWT (I, Fig 4C). As previously described, the main Notch ligands 

regulating angiogenesis are Jagged1 and Dll4 (Benedito and Hellström, 2013). Moreover, 

mice lacking Jagged1 display disrupted remodeling of the vasculature in the embryo and 

the yolk sack, which leads to lethality around E10 (Xue et al., 1999). In our study, meta-

analysis of human gene transcripts from the GeneSapiens database showed that Jagged1 

and vimentin correlate strongly in several tissues, which include the heart and blood 

vessels (I, Fig S1A). This analysis also showed a correlation between Jagged1 and 

vimentin in several cancers (I, Fig S1B). Co-expression in several tissues pointed to a 

possibility of a functional link between Jagged1 and vimentin. 

1.2 Vimentin interacts with Jagged1 

Proximity ligation assay (PLA) uses two primary antibodies of distinct species, to target 

two unique proteins, combined with oligonucleotide-labeled secondary antibodies (PLA 

probes). Hybridizing connector oligos can then join the probes only if the two proteins are 

in close proximity. Joining the PLA probes to form a loop, is required for rolling circle 
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amplification and finally a detectable PLA signal (Alam, 2018). Using mouse embryonal 

fibroblast (MEF) cells from VimWT mice in PLAs with primary antibodies against 

vimentin, Jag1 and Dll4, we demonstrated that the PLA signal between Jagged1 and 

vimentin was higher than between Dll4 and vimentin (I, Fig 1A-B). Complementary to 

this, immunoprecipitation (IP) of vimentin consistently showed interactions with Jagged1 

in MEF WT cells (I, Fig 1C). No interaction with Dll4 could be detected (not shown). 

VimKO MEF cells were used as negative controls (I, Fig 1C). It is important to emphasize 

that the targeting of Jagged1 in these PLAs and IPs was done with an antibody that binds 

to the intracellular domain of Jagged1 (Jagged1 28H8, Cell Signaling Technology). 

The observed lack of interaction with Dll4 could in theory have been due to differences in 

affinity between the Jagged1 and Dll4 antibodies. The PLA assay in particular, could give 

misleading results if the Dll4 antibody is significantly weaker in its ability to bind its 

target or if the amount of Dll4 is significantly lower than Jagged1 in these cells. However, 

Dll4 has been readily detected with the same antibody previously in our lab and in human 

umbilical vein endothelial cells (HUVECs) in this study (I, Fig 6B). There is also a 

possibility that the PLA signal could be lower from Dll4 if vimentin covers the epitope for 

the Dll4 antibody, if the distance between the antibodies is different, or if the Dll4 

antibody would be in the wrong orientation. 

In order to provide more convincing evidence for the specific interaction of vimentin with 

Jagged1, and to elucidate if the interaction with vimentin is mediated through the 

intracellular domain of Jagged1, we decided to generate hybrid ligands of Jagged1 and 

Dll4, where we swapped the intracellular domain of the two ligands. By comparing 

Jagged1 ligands, with chimeric ligands consisting of the extracellular domain of Jagged1 

and the intracellular domain of Dll4 (Jagged1ECD-Dll4ICD), we were able to evaluate the 

impact of the ICDs of these two ligands. Importantly, by using an antibody that binds to 

the extracellular domain of Jagged1 (Jagged1 H-66, Santa Cruz Biotechnology) and 

thereby using the same antibody for both types of ligands, we removed the uncertainty of 

potential differences in antibody affinity (I, Fig 1D). The expression levels of the Jagged1 

and the hybrid ligand constructs were controlled by detection of an incorporated turboGFP 

tag and live-cell imaging showed similar localization patterns in transfected cells (not 

shown). Swapping the ICD of Jagged1 to the ICD of Dll4, led to a near complete loss of 

PLA signal (I, Fig 1D). Furthermore, the use of the Jagged1-ECD antibody in this 
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experiment, gave significantly increased amounts of PLA signal compared to the 

intracellular antibody used in I, Fig 1A. Although it is possible that the Jagged1 H-66 

ECD-antibody is simply better at detecting Jagged1 than the Jagged1 28H8 ICD-antibody, 

our previous experiences do not support this, and in this case, it is more likely that the 

extracellular Jagged1 H-66 antibody and the vimentin V9 antibody are more optimally 

spaced to generate consistently robust PLA signals. PLA interactions occurring between 

0-10 nm can be detected only if the two primary antibodies are not sterically hindered 

from binding to their respective sites (Sigma-Aldrich, 2019). If the interaction occurs 

directly between the intracellular domain of Jagged1 and vimentin, as our results indicate, 

it is possible that the antibody binding to the extracellular domain of Jagged1 provides less 

hindrance with the vimentin antibody, compared to the intracellular Jagged1 antibody that 

may be binding close to the interaction site. Antibody epitopes near the protein-protein 

interaction site may also lead to similar results. Although we did not pursue any 

experiments to determine the actual binding region of these proteins, it is attractive to 

speculate that the binding of vimentin to Jagged1 could occur near Glu1140, which is the 

epitope that the Jagged 28H8 antibody recognizes in the intracellular domain of Jagged1. 

As a reference, the PDZ-motif of Jagged1, which has previously been shown to make 

indirect interactions with the cytoskeleton, is at the C-terminus between residues 1213-

1218 (Popovic et al., 2011). The protein MPDZ has later been shown to interact with the 

intracellular domains of Dll1 and Dll4 through their PDZ-binding motif and influence 

Dll4 localization and activity to regulate sprouting angiogenesis (Tetzlaff and Fischer, 

2018). PDZ-domain proteins may therefore function as a link also between intermediate 

filaments and Notch-ligands, although this remains to be seen in the future.  

For potential interaction studies on the vimentin side, the hyaluronan receptor CD44 has 

previously been shown to interact with the head domain of vimentin at the cell membrane 

of endothelial cells (Päll et al., 2011). More interestingly, integrins have been shown to 

bind directly to the vimentin head region, specifically between amino acids 21-45 (Kim et 

al., 2016). Vimentin is composed of 466 amino acids and the head domain includes 

residues 1-77 (Tomiyama et al., 2017). This region of vimentin could also serve as a 

starting point for any future studies detailing the interaction between Jagged1 and 

vimentin. Taken together, our results as demonstrated by PLA and IP provide evidence of 

a novel interaction between the intracellular domain of Jagged1 and the intermediate 

filament vimentin. This interaction is interesting, as both vimentin and Jagged1 have 
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strong links to tumor progression and metastasis (Bednarz-Knoll et al., 2016; Kidd et al., 

2014; Satelli and Li, 2011; Sethi et al., 2011; Wang et al., 2018; Zhang et al., 2019; Zhu et 

al., 2013). 

1.3 Vimentin affects Jagged1 endocytosis 

As endocytosis of Notch ligands is important for Notch activation through trans-

endocytosis, and since inactive ligands are constantly recycled, we wanted to explore how 

Notch ligands behave in VimWT and VimKO cells. Alexa Fluor 488-conjugated 

recombinant extracellular Notch1 peptides (N1ECDF) that bind to Notch ligands on the 

cell surface and internalize through endocytosis, were differently distributed in VimWT 

and VimKO cells (I, Fig 2C). Moreover, the amount of endocytosed N1ECDF into 

VimKO MEFs was increased (I, Fig 2B). In these MEFs, the total amount of Jagged1 was 

similar in WT and KO cells (I, Fig 2A). N1ECDF-uptake in MEFs transfected with 

Jagged1, followed by live cell imaging for 1 minute further revealed that the loss of 

vimentin increases directional mobility of endocytosed N1ECDF-vesicles (I, Fig 2D-F). 

Surface biotinylation assays and immunocytochemistry also showed increased amounts of 

Jagged1 on the surface of MEF KO cells compared to WT (I, Fig 3B-C). Subsequently we 

used a fingerprint assay to determine if the increased amounts of Jagged1 on the surface of 

these cells could still bind Notch effectively. WT and KO MEFs were cultured on 

coverslips coated with N1ECDF, or FC-control (not shown). A crosslinking agent was 

used to preserve any N1ECDF-Jagged1 interactions, followed by an extraction of the cells. 

Crosslinked Jagged1 was then immunolabelled and the results showed more Jagged1 

bound to the VimKO coverslips (I, Fig 3D). The increased binding is in line with the 

higher accumulation on the surface, which indicates that Jagged1 on the surface of 

VimKO cells is able to bind Notch receptors.  

To measure Notch activity, we used a luciferase reporter assay based on multimerized 

CSL binding sites in a co-culture system using WT or KO MEFs cultured with HEK-293 

cells expressing the 12xCSL-luciferase reporter constructs. Surprisingly, the Notch 

activity was not enhanced in the Notch reporter cells when activated by VimKO cells, and 

when related to the amount of Jagged1 on the surface of these cells, the activation 

potential was significantly lower (I, Fig 3E). Reintroducing vimentin in VimKO cells, 

increased the Notch signaling activity in the reporter cells to correspond closely with 
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Jagged1 ligand levels on the surface of VimKO cells (I, Fig 3E). Previous work from the 

Weinmaster group indicates that constant endocytosis of Notch ligands is distinct from the 

endocytosis required for trans-activation of Notch by pulling force (Meloty-Kapella et al., 

2012; Musse et al., 2012). Pulling NECD-peptides from non-covalently bound agarose 

beads, required different endocytic proteins, such as EPS1/2 and actin, in comparison to 

uptake of free NECD-peptides (Meloty-Kapella et al., 2012). Using a similar setup, with 

N1ECDF bound to protein A agarose beads, we show that the uptake of N1ECDF from 

beads was significantly lowered in VimKO cells (I, Fig 3F), which also supports the lower 

activity in the Notch reporter assay in I, Fig 3E. 

Vimentin may influence endocytosis of Jagged1 directly, but it could also be through 

interactions between vimentin and actin. Actin has been well established as a regulator of 

endocytosis and identified as necessary for Dll1-mediated Notch trans-activation 

(Ferguson et al., 2017; Meloty-Kapella et al., 2012). Looking at the endocytic mechanisms 

of other cell membrane receptors may also provide a clue to endocytosis of Notch 

receptors and ligands. Ligand-induced activation of GPCRs lead to clustering in clathrin-

coated pits. In these pits, the cytoplasmic tail of the receptor can bind to the actin network 

through their PDZ-domains, which slows down endocytosis (Puthenveedu and von 

Zastrow, 2006). Actin may therefore influnce Notch endocytosis independently of 

vimentin as well. We decided not to pursue potential actin dynamics in our system, 

although we did look for an interaction with the actin-related protein-2/3 (ARP2/3) 

complex in our IPs of Jagged1, which could not be detected (not shown, Figure S2A). 

Nevertheless, looking at actin polymerization and its role in potential force generation 

would be highly interesting in the future as actomyosin contractility has recently been 

shown to contribute to the mechanichal tension during Notch activation (Hunter et al., 

2019). 

In conclusion, our data indicate that VimKO MEF cells express similar amounts of total 

Jagged1 protein compared to WT, but display higher Jagged1 levels at the cell membrane, 

resulting in higher uptake of free NECD-peptides. Despite this, VimKO MEFs are not 

stronger activators of Notch signaling in co-culture or more effective at endocytosing 

NECD bound to beads, which mimics the physical strain during Notch activation by trans-

endocytosis. This suggests that vimentin promotes Jagged1-mediated trans-activation 

potential and pulling force strength and without vimentin, signaling incompetent Jagged1 
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ligands are accumulated at the cell membrane. The recent elucidation of the crystal 

structure of the binding interface between Jagged1 and Notch1, indicated that Notch 

ligands and receptors form so called catch bonds, where the binding strength increases 

with increased pulling force, and that Jagged1 requires a higher tension treshold compared 

to Dll4 (Luca et al., 2017). Vimentin may therefore, through such a mechanism, influence 

and tune the Notch activation process by improving the force generation of Jagged1. This 

influence may be further increased during shear stress, such as blood flow. 

1.4 Loss of vimentin disrupts angiogenesis but can be rescued by 
external Jagged1 

In addition to data from mouse embryos showing delayed angiogenesis (I, Fig 4C-D), we 

decided to implement in vitro and ex-vivo angiogenesis assays to see if vimentin also 

affects angiogenesis in more controlled settings. We used human umbilical vein 

endothelial cells (HUVECs) in an in vitro spheroid assay, where round bottom wells (96 

well plates) were coated with agarose to prevent cells from attaching to the well and 

instead promote spheroid formation of the endothelial cells. Spheroids were then mixed 

with fibrinogen, which was allowed to polymerize. Endothelial sprouts were imaged 

during the next 4 days (I, Fig 6H). Knock down of vimentin, through short hairpin-

mediated RNA interference (shVim) (I, Fig 6I), significantly inhibited sprout formation in 

this assay (I, Fig 6H). Jagged1 and Dll4 have been previously shown to regulate 

angiogenic sprouting, where Dll4 has been described as anti-angiogenic and Jagged1 as 

pro-angiogenic (Benedito et al., 2009; Pedrosa et al., 2015; Suchting et al., 2007; Xue et 

al., 1999). Interestingly, mixing in immobilized Jagged1-FC-beads with the spheroids in 

the fibrinogen gel was able to rescue the sprouting defect of shVim treated HUVECs (I, 

Fig 6H). Immobilized FC and Dll4-FC had no observable effect on endothelial sprouting 

from shVim spheroids (not shown). 

To analyze endothelial sprouting directly from VimKO and WT mice, we used a three-

dimensional ex vivo angiogenesis assay (Baker et al., 2012), where a slice of the mouse 

aorta was excised and embedded in collagen. Addition of VEGF allow for the endothelial 

cells lining the inside of the aortic ring to form sprouts (I, Fig 5A). This method has 

several advantages, which include the generation of many aortic rings from one mouse 

aorta to help facilitate quantification, and the simplicity of the assay. More importantly, 
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the assay is more physiologically relevant than in vitro assays, as the vessels form a proper 

lumen and also recruit supporting cells such as vascular smooth muscle cells and pericytes 

to associate with the developing endothelial tube, following a timeline that is similar to 

angiogenesis in vivo. These experiments revealed that aortic rings from VimKO mice have 

fewer sprouts per ring and a reduction in sprout length compared to WT (I, Fig 5A-B). 

Aortic rings from Vim heterozygote mice displayed an intermediate sprouting phenotype, 

indicating that the amount of vimentin can tune this process (I, Fig 5A-B). The sprouting 

endothelial cell tubes were confirmed by immunofluorescence of VE-Cad and PECAM-1 

(I, Fig 5C). In line with the results from the in vitro angiogenesis assay, the addition of 

immobilized Jagged1, but not Dll4 peptides, in the collagen gel, rescued the amount of 

endothelial sprouts initiated from VimKO aortic rings, although in this case the sprout 

length was not significantly affected (I, Fig 6E-G). 

These results challenge the argument that the proangiogenic role of Jagged1 in 

angiogenesis and in stalk cells is merely a result of inhibiting more potent Dll4 signaling 

in tip cells through competitive inhibition (Benedito et al., 2009). Unless Jagged1 

inhibited endothelial Dll4 cis-activation in our assays, it is hard to envision how the 

addition of external Jagged1 peptides would be competing with other ligands, when they 

are interacting with endothelial cells in the aortic rings and spheroids from the outside. I 

hypothesize that a more probable explanation would be that Jagged1 can regulate 

endothelial sprouting differently than Dll4, perhaps in a similar manner as the ligand 

discrimination recently described between Dll1 generating pulsatile and Dll4 sustained 

Notch activation, leading to distinct gene responses (Nandagopal et al., 2018). Distinct 

responses are substantiated by the fact that Dll4 has been unable to replace the function of 

Dll1 in other systems and Dll4 cannot compensate for Dll1 function when knocked into 

the Dll1 locus in mice (Preuße et al., 2015). Nandagopal and colleagues argue that the 

discrete pulsatile effect from Dll1 stem from assembly of ligand-receptor clusters that 

release a burst of NICD when the cluster reaches a critical size, while Dll4 does not 

require clustering and thereby generates a more sustained signaling response (Nandagopal 

et al., 2018). It was further shown that pulsatile bursts favor Hes1 activation while 

sustained Notch activated predominantly Hey1/L. If the closely related Dll1 and Dll4 can 

generate such distinct responses, it is easy to visualize that Jagged1 could also generate 

distinct responses from Dll4 in a similar way. In view of this, the Jagged1 peptides used in 
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our angiogenesis assays would have already been pre-clustered by virtue of being 

immobilized to agarose beads.    

The effects of vimentin on Notch signaling may be further modified and balanced by 

Fringe glycosyltransferases, as immunoblotting of VimKO primary endothelial cells and 

shVim HUVECs both showed increased levels of MFNG compared to wild type (I, Fig 

6B-C). qPCR of VimKO cells also showed an increase in Lfng (I, Fig 6D). Lfng and Mfng 

were previously implicated in balancing Dll4 and Jagged1 during sprouting of retinal 

vasculature (Benedito et al., 2009). Both Lfng and Mfng promote Dll-mediated activation 

of Notch in vitro at the expense of Jagged signaling (Kakuda and Haltiwanger, 2017). We 

did not analyze Fringe-mediated effects any further, nor look at Rfng. As Rfng has been 

shown to promote Jagged1-Notch1 activation in addition to Dll-mediated activation, it is 

still unclear if downregulation of vimentin upregulates all Fringes, or only Dll-Notch 

promoting Mfng and Lfng. If only Lfng and Mfng are upregulated, the data would suggest 

that Jagged1 signaling from VimKO cells is impaired due to loss of trans-endocytosis of 

Jagged1, while Dll signaling to VimKO is further increased due to sugar modifications by 

Fringes that promote Dll activation at the expense of Jagged1 signaling. 

Endothelial specific knock down of Jagged1 imply that Jagged1-mediated vascular defects 

stem from both disrupted angiogenesis and vascular smooth muscle cell differentiation 

(High et al., 2008). We have recently continued our work on vimentin and Jagged1 to 

determine their effects on vascular smooth muscle cell differentiation. We showed that 

vimentin regulates Notch signaling and VSMC differentiation in response to 

hemodynamic force (van Engeland et al., 2019). During conditions of shear stress, 

vimentin phosphorylation of serine 38 was augmented. Notch signaling activity was also 

increased under these conditions, and the use of a phospho-mimicking mutant of VimS38 

increased Notch activation in signaling assays (van Engeland et al., 2019). These results 

imply that site-specific modifications of vimentin under hemodynamic forces may 

influence the effects of vimentin on Notch ligands and Notch signaling activity. The 

increase in Jagged1 activity during shear stress is likely a factor in the regulation of 

angiogenesis as well. 

Taken together, we show that vimentin affects the signal sending potential of Jagged1-

mediated Notch activation by interacting with the intracellular domain of Jagged1. The 

lack of angiogenesis from vimentin null endothelial cells can be rescued by Jagged1-
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mediated Notch signaling. Jagged1 and Dll4 have distinct roles during angiogenesis and 

the use of hybrid Jagged1-Dll4 ligands demonstrate a selective regulation of Notch ligands 

by vimentin. The effects on Notch signaling by a lack of vimentin may be increased by 

downstream effectors that upregulate Fringe glycosyltransferases to further potentiate Dll-

mediated activation of Notch. These results have implications not only in angiogenesis 

and vascular homeostasis, but also in tumorigenesis as both vimentin and Jagged1 are 

linked to tumor progression and metastasis. 
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2. Screening for regulators of Jagged1 endocytosis (II) 

2.1 Dual labeled N1ECD peptides can be used to track and quantify 
endocytosed Jagged1 

We expect that there are other proteins in addition to vimentin that can selectively regulate 

Notch ligands. Previous studies on Notch ligand endocytosis have been focused primarily 

on endocytosis of Delta and Delta-like ligands (Couturier and Schweisguth, 2014; Meloty-

Kapella et al., 2012; Overstreet et al., 2004; Windler and Bilder, 2010). To facilitate 

identification of new regulators of Jagged endocytosis we wanted to design a method 

where we can track Notch ligand endocytosis and then use this setup to track Jagged1 

specifically. We adapted a dual label setup of N1ECD peptides by first introducing 

primary amine NHS labels (555) and combining the pre-labeled N1ECD-555 peptides 

with Alexa Fluor 488 secondary antibody labeling as used previously (Study I). By 

quenching one label (488) at the surface after endocytosis, we now had a screening setup 

that could be used to quantify endocytosis by high-throughput plate readers and by 

confocal microscopy (II, Fig 2A) (Arjonen et al., 2012). Dual label N1ECD peptides 

(N1ECDD) were incubated on ice with HEK-293 cells stably overexpressing Jagged1 

(hereafter, 293-JAG). As expected, Jagged1 expression is drastically higher in these cells 

than other Notch ligands (II, Fig S1). A one hour incubation of N1ECDD peptides on ice 

followed by fixation shows N1ECDD bound to the surface of the cells and a strong overlap 

of 488 and 555 fluorophores (II, Fig 2B). Incubating the cells in 37 °C after attaching 

N1ECDD to cells on ice, allowed for endocytosis to resume in the cells. A 30 min 

incubation in 37 °C, followed by quenching of the Alexa Fluor 488 antibody at the cell 

membrane by an anti-Alexa 488 blocking antibody, effectively quenched green 

fluorescence while leaving red fluorescence unaffected at the cell membrane. This 

facilitated the distinction between endocytosed N1ECDD, and N1ECD555 on the cell 

membrane (II, Fig 2C, 3C). Omitting the endocytosis step with subsequent quenching of 

488 at the cell membrane showed the effectiveness of the surface quenching (II, Fig 2D). 

As another control, the use of dynasore to block dynamin, completely abolished the 

endocytosis of N1ECDD peptides (II, Fig 2E). Dynamin is used in both clathrin dependent 

and clathrin independent endocytosis to pinch of vesicles at the cell membrane. In our 

imaging based proof of concept, the amount of endocytosis was quantified by automated 

image analysis using a ComDet 4.2 plugin in ImageJ (II, Fig 3B-C). Analysis of different 
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time points (0, 15, 30, 60 min) of endocytosis indicated that the amount of endocytosed 

N1ECDD peptides peak at 15 or 30 minutes before decreasing or becoming harder to 

detect (II, Fig 3A-C). Comparison of this assay with an endocytosis assay based on 

biotinylated cell surface proteins that were immunoprecipitated by streptavidin and blotted 

for Jagged1 displayed similar kinetics as the image based assay, but with a slightly lower 

end point rate at 60 min (II, Fig 3B, D).   

2.2 A cell spot microarray to identify new regulators of Jagged1 

We then employed our N1ECDD-based endocytosis assay in a cell spot microarray 

(CSMA) based on a Qiagen druggable genome library v1.0 (Arjonen et al., 2012; Pellinen 

et al., 2012; Rantala et al., 2011). This library includes siRNAs against genes that are 

considered targets for druggable treatment and include GPCRs, kinases, phosphatases and 

calcium channel receptors. The CSMA technique is based on reverse transfection, where 

the lipid-based transfection reagent and the siRNA are mixed with Matrigel and 

subsequently printed on array plates. CSMAs have several advantages for high-throughput 

screening (HTS) purposes compared to traditional plates. These include no well-to-well 

variation and less reagents needed (50 pg/spot siRNA vs 10 ng/well for 384 well plate). 

The arrays allow for multiparametric analysis and readouts through high-content imaging 

and microarray scanners (II, Fig 4A-B). Using a restricted cell adhesion time of 15 min 

allowed for adherence of 293-JAG cells to the array spots (II, Fig S2). After 48 hours of 

reverse transfection the cell arrays were incubated with N1ECDD on ice, allowed to 

endocytose for 30 min, followed by quenching of Alexa Fluor 488 at the cell surface as 

described previously. Cells were then fixed and analyzed by laser microarray scanning 

(Tecan LS400). The CSMA technology was available through a collaboration with 

Professor Johanna Ivaskas group, where the same library and CSMA design had been used 

previously to identify regulators of β1 integrins (Pellinen et al., 2012; Rantala et al., 2011). 

This was our first application of the N1ECDD-based assay in a high-throughput setting. As 

a consequence of the array being predesigned, it lacked some of the relevant positive 

controls for Notch endocytosis, including dynamin that we used earlier as our proof of 

concept. Nevertheless, we reasoned that this setup can give an interesting set of potential 

effector targets that can serve as a starting point for hits to be included and verified in 

smaller secondary screens in the future. Validation with individual siRNAs is crucial also 

when using all the appropriate controls. In a previous screen for active β1 integrin, with an 
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identical CSMA design, the secondary validation confirmed 23 out of 50 top hits, and 5 

genes turned out to have the opposite effect on integrin activity compared to what was 

shown in the primary screen (Pellinen et al., 2012).  

From our preliminary data we present 20 targets (individual siRNAs) that had the highest 

increase in N1ECDD endocytosis and 20 targets that had the highest decrease in N1ECDD 

endocytosis when knocked down (II, Fig 4C). Gene ontology (GO) analysis of clusters 

including a minimum of three genes from the same biological process (BP), molecular 

function (MF) or cellular component (CC) identified kinase activity (MF) as the most 

significant cluster of hits (II, Fig 4D). Other overrepresented clusters of targets that led to 

a reduction of N1ECDD internalization when knocked down included targets previously 

linked to endocytosis and intracellular signaling pathways (II, Fig 4D). These three 

clusters of genes with roles as positive regulators of endocytosis, receptor-mediated 

endocytosis and intracellular receptor signaling pathways indicate the validity of many of 

our top hits. This is promising, as the risk of false positives is high within a single screen. 

Targets that increased endocytosis in this assay formed less significant clusters with the 

most notable one being related to cell junction assembly (BP). This is not an unreasonable 

finding as Notch is often found in various cell junctions and has also been shown to be 

involved in their remodeling (Batchuluun et al., 2017; Benhra et al., 2011; Grammont, 

2007; Hatakeyama et al., 2014; Sasaki et al., 2007). This cluster contains CDC-42, which 

is also important for clathrin-independent endocytosis (Ferreira and Boucrot, 2018). The 

highest individual hit upregulating endocytosis of N1ECD in our screen was PDZD2 

(PDZ domain-containing intracellular PDZ protein 2). On the other hand, MAGI2, another 

PDZ domain-containing protein was a hit with a negative effect on endocytosis. MAGI2 

has also been shown previously to interact with other Notch ligands (Pfister et al., 2003). 

In Study I, we speculate that the differential regulation of Jagged1 from Dll4 could be due 

to PDZ binding motif interactions with vimentin, as vimentin has previously found to 

interact to SCRBBL through its PDZ domain (Phua et al., 2009). This group of proteins 

require further validation as it may point to a player in Notch ligand regulation in both 

study I and within these preliminary hits in study II. With over 300 proteins containing a 

PDZ-domain, there are plenty of potential interaction studies in the future (Pintar et al., 

2007). Within our research group we have recently generated Jagged1 constructs lacking 

the intracellular PDZ-binding motif to further study potential differences in interaction 

between Jagged1 and other proteins. Targets from the screen in study II that have been 
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shown to be related to Notch signaling activity or ligand endocytosis include at least the 

following: LRRK (Imai et al., 2015), HIPK4 (Lee et al., 2009), PAK4 (Santiago-Gómez et 

al., 2019), MAGI2 (Pfister et al., 2003), SNAI1 (Morel et al., 2003; Saad et al., 2010), 

MAML2 (Lin et al., 2002), PLG (Shimizu et al., 2011) and CDC-42 (Balklava et al., 

2007). Further analysis is best performed on hits that are validated with more stringent 

requirements in upcoming secondary screens. During these screens and during validation 

with individual siRNAs we could also incorporate the agarose beads from study I to 

mimic the strain required for trans-endocytosis of Notch. This would then allow for 

identification of potential differences between constant endocytosis of ligands and Notch-

activating trans-endocytosis. 
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3. Phosphorylation by PKCζ regulates Notch trafficking (III) 

3.1 PKCζ interacts with and phosphorylates Notch1 

Post-translational modifications such as phosphorylation increase the functional diversity 

of proteins. Phosphorylation is a reversible modification and can thereby function to 

deliver rapid control of protein and cellular function. Although technological advances 

have allowed for global profiling of the proteome and many Notch phosphorylation sites 

have been identified, only a number of sites have been linked to specific functional 

outcomes and kinases (Antfolk et al., 2019).  

In study III, we investigated the role of atypical protein kinase C zeta (PKCζ). PKCζ has 

previously been shown to regulate differentiation in mammals (McCaffrey and Macara, 

2009). We first used C2C12 mouse myoblasts to determine PKCζ-mediated effects on 

Notch. C2C12 cells are able to proliferate at a high rate under conditions of high serum 

but undergo differentiation to myoblasts under low serum conditions. We found that PKCζ 

interacts with endogenous Notch1 in both differentiated and undifferentiated C2C12 cells 

(III, Fig 2A). PKCζ also interacted with transfected Full Length Notch1 (FLN1) in C2C12 

cells and a membrane-tethered active form of Notch1 (Notch1ΔE) in HeLa cells (III, Fig 

2B-C). Moreover, blocking Notch S3 cleavage by a γ-secretase inhibitor (GSI) led to a 

slight increase in interaction (III, Fig 2B-C). We did not detect an interaction by IP when 

using an antibody that recognizes only cleaved NICD (III, Fig 2D) nor when transfecting 

NICD and using an antibody that recognizes both full length and cleaved forms of Notch 

(III, Fig 2D right and bottom). These data suggest that Notch interacts with PKCζ when 

Notch is tethered to the cell membrane, as GSI treatment results in more Notch1ΔE stuck 

at the membrane, hence more interaction, while transfected NICD is never localized to the 

cell membrane, resulting in no visible interaction. These findings are supported by specific 

features of atypical PKCs. Atypical PKCs (PKCζ and PKCι/λ) have a mutation in their C1 

domain rendering them insensitive to DAG. The same mutation also changes the electric 

potential of the C1 domain leading to an increased interaction with the negatively charged 

plasma membrane (Pu et al., 2006).   

3.1.1 S1791 is identified as a PKCζ phosphorylation site on Notch1 

We found that immunoprecipitated Notch1 is phosphorylated in vitro by recombinant 

PKCζ, as shown by autoradiography of radioactive phosphorus-32-ATP (III, Fig 2E). To 
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identify PKCζ-mediated phosphorylation sites on Notch1, we performed mass 

spectrometry analysis of immunoprecipitated Notch1 that was phosphorylated in vitro by 

PKCζ (III, Fig S3A). Serine 1791 was identified as the predominant phosphorylation site 

on mouse Notch1 (III, Fig S3A) (Figure 11). Further analysis with atypical PKCι showed 

that both atypical PKC isoforms are capable of phosphorylating mNotch1 on S1791 (III, 

Fig S3B). The identified serine is conserved in many species including Homo sapiens, 

Rattus norvegicus, Mus musculus, Xenopus laevis and Danio rerio, but not in Drosophila 

melanogaster or Caenorhabditis elegans (III, Fig S4).  

 

Figure 11. S1791 is phosphorylated on Notch1. Mass spectrometry identified S1791 in the 
intracellular domain of mNotch1 as the predominant phosphorylation site of atypical PKCζ (zeta) 
and ι (iota). S1791 on mouse Notch1 corresponds to S1801 on human NOTCH1.   

3.2 PKCζ increases Notch activation 

Transfection of a constitutively active form of PKCζ (caPKCζ) led to an increase in Notch 

activation in Notch reporter assays based on 12xCSL-Luc constructs, where Full Length 

Notch (FLN) overexpressing cells were activated by immobilized ligands (III, Fig 3A). 

Similarly, caPKCζ increased the reporter signal from transfected Notch1ΔE (III, Fig 3B). 

In contrast, caPKCζ had no effect on transfected NICD in these cells (III, Fig 3C). These 

results are in agreement with the lack of interaction between PKCζ and NICD (III, Fig 2D). 

Moreover, caPKCζ did not enhance the low reporter activity measured from mutant 

Notch1ΔEK1749R (III, Fig 3D). The point mutation of K1749R has previously been shown 

to generate highly unstable forms of NICD, which are rapidly degraded before any 

activation of transcription can occur (Tagami et al., 2008). Our results are consistent with 

this model. Transfecting caPKCζ or caPKCι in different concentrations together with 

Notch1ΔE also led to a dose dependent increase in NICD levels (III, Fig 3E).  
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3.2.1 Site directed mutagenesis of S1791  

To determine the specific role of the identified aPKC phosporylation site S1791, we 

employed site directed mutagenesis to generate phosphorylation-deficient and 

phosporylation-mimicking forms of Notch1ΔE. In the phospho-deficient form, the serine 

at 1791 was substituted for alanine (Notch1ΔES1791A), and in the mimicking form for 

glutamic acid (Notch1ΔES1791E) (III, Fig 4A) (Figure 12). We also generated a phospho-

mimicking form of full-length Notch, Notch1FLNS1791E (III, Fig 4A).  

 

Figure 12. Mutations of S1791. Substituting the serine 1791 for an alanine residue, renders the 
S1791 site unavailable for phosphorylation resulting in a phospho-deficient or phospho-dead 
mutant. Glutamic acid (E) has a negatively charged side group, which can mimic some of the 
functions of a phosphorylated serine in the cell.  

Transfecting WT, 1791A and 1791E mutant versions of Notch1ΔE and blocking S3 

cleavage by GSI show equal amounts of Notch1ΔE from the different constructs, and low 

levels of NICD as expected when inhibiting S3 cleavage (III, Fig 4B upper). Without GSI, 

expression of Notch1ΔES1791E resulted in increased levels of NICD compared to WT, 

while expression of Notch1ΔES1791A resulted in lower NICD levels than WT (III, Fig 4B 

lower). 12xCSL-Luc reporter assays support these findings and show enhanced signaling 

from Notch1ΔES1791E and decreased signaling from Notch1ΔES1791A (III, Fig 4C). Lower 

reporter activation from Notch1ΔES1791A could not be compensated or increased by 

caPKCζ (III, Fig 4D). On the contrary, we found that expression of caPKCζ resulted in 

even lower activity from Notch1ΔES1791A (III, Fig 4D). This could be due to 

downregulation of endogenous Notch upon transfection with Notch1ΔE forms, or direct or 
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indirect repressive effects of PKCζ on Notch when S1791 is not available for 

phosphorylation. Expression of the Notch1FLNS1791E mutant produced higher reporter 

activity when activated by immobilized ligands, which is in agreement with the 

Notch1ΔES1791E results (III, Fig 4E-F). The increase in NICD levels were not due to 

different degradation rates of NICD as determined by cyclohexamide chase experiments, 

where we compared NICD levels at 0, 3 and 7 hours of cyclohexamide treatment (III, Fig 

S8A). 

3.3 PKCζ affects trafficking of Notch1 

3.3.1 Internalization of activated Notch receptors 

Immunostaining of Notch1ΔE, Notch1ΔES1791A and Notch1ΔES1791E indicated that 

Notch1ΔES1791E and Notch1ΔE localize more to the nucleus compared to the phospho-

deficient Notch1ΔES1791A (III, Fig 5A). Western blotting of nuclear extracts also pointed 

to increased levels of NICD from Notch1ΔES1791E, and lower levels from Notch1ΔES1791A, 

compared to Notch1ΔE (III, Fig 5B). Our experiments further showed increased nuclear 

staining of Notch in different cell lines when caPKCζ was expressed together with 

Notch1ΔE (III, Fig 3H-I). The use of a dominant negative PKCζ mutant (dnPKCζ), with a 

defective catalytic domain showed an opposite effect on Notch, with less nuclear Notch 

reactivity and no increase in NICD production (III, Fig 3F, 3H-I). This result indicates that 

the kinase activity of PKCζ is important for the observed effects on Notch signaling.  

All three forms of Notch1ΔE interacted with Rab5 and Rab7, representing early and late 

endosomal localizations, respectively. The interaction between the phospho-mimetic 

Notch1ΔES1791E and Rab7 was slightly decreased, indicating that this form of Notch1ΔE 

may be released from the late endosomes or from early endosomes during its transition to 

late endosomes. This implies that less Notch/NICD is being transferred to lysosomes (III, 

Fig 5D-E). Moreover, downregulation of PKCζ by siRNA increased the interaction 

between Notch and lysosomal associated protein LAMP-1 (III, Fig 5G). A similar result 

was obtained when PKCζ was inhibited by a pseudosubstrate, which instead led to strong 

co-localization between Notch1 and LAMP-1 (III, Fig 5H). 

In conclusion, these results suggest that when PKCζ is active or a phospho-mimicking 

mutation of S1791 is used, the amount of NICD generated is increased (III, Fig 3E, 4B 
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lower) and more active Notch is translocated to the nucleus (III, Fig 3H-I, 5A-B) leading 

to higher Notch activity (III, Fig 4C, E-F). Conversely, when PKCζ is inhibited more 

Notch is shifted through late endosomes to lysosomes, leading to a degradation of Notch, 

resulting in lower observed levels of NICD (III, Fig 3E-F, I, 4B lower, 5B) and decreased 

Notch signaling activity (III, Fig 4C-D).  

3.3.2 Recycling of inactive Notch receptors 

The results from previous sections describe the impact of PKCζ on activated Notch 

receptors. Although our study focused on activated receptors, we made some interesting 

observations on the effects of PKCζ on non-active receptors. When Notch receptors are 

inactive by the lack of cell-cell interactions in sparsely cultured cells without immobilized 

ligand activation, PKCζ does not promote higher levels of NICD or signaling activity. In 

these cells, caPKCζ expression results in an initial shift of Notch from the cell membrane 

to intracellular vesicles (III, Fig 7A-C). In contrast to activated receptors, this transfer did 

not lead to a higher NICD production (III, Fig 7D). Instead we observed an increase in the 

ubiquitination of Notch (III, Fig 7E) and an accompanied increase in interaction between 

Notch1 and the ubiquitin binding protein Hrs, which functions as an endosomal sorting 

protein (III, Fig 7F). The internalization, ubiquitination, and endosomal sorting was not 

linked to an increased degradation of Notch (III, Fig 7G). Our best explanation is that non-

activated receptors are recycled back to the cell membrane supported by other reports 

describing constant recycling to and from the cell membrane (Johnson et al., 2016; McGill 

et al., 2009; Yamamoto et al., 2010). 

3.4 S1791 regulates myogenic differentiation in vitro and PKCζ regulates 
neuronal differentiation in vivo  

We then decided to examine if PKCζ inhibition can affect the differentiation in our C2C12 

mouse myoblast cell line and in primary myoblasts, as myogenic differentiation has been 

previously shown to be regulated by Notch signaling (Buas and Kadesch, 2010; Nofziger 

et al., 1999). We used the myosin heavy chain (MHC) as a marker for myogenic 

differentiation. Primary mouse myoblasts treated with pseudosubstrate show significantly 

higher differentiation rates compared to cells treated with scrambled control (III, Fig 6 A-

B). Similarly, down regulation of PKCζ by siRNA also resulted in earlier differentiation 

of C2C12 cells and conversely, expression of caPKCζ resulted in a delayed differentiation 
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(III, Fig 6C-D). Expression of Notch1ΔES1791A further showed that 71% of cells 

expressing the phospho-deficient S1791A were positive for MHC compared to only 14% 

for Notch1ΔE after 72 h of differentiation (III, Fig 6E).  

Finally we employed a previously used model to study differentiation of the developing 

chick central nervous system (CNS) (Holmberg et al., 2008). We used an engineered 

Notch1ΔE construct with an incorporated myc-tag, and an IRES-EGFP to track expression 

of nuclear Notch. We first tested the CAG-Notch1ΔE-Myc-IRES-EGFP construct by 

expressing it together with a 12xCSL-dsRED reporter construct and confirmed strong 

activation of Notch signaling (III, Fig 1A-C). We then co-expressed CAG-Notch1ΔE-

Myc-IRES-EGFP with a myristylated pseudosubstrate to inhibit PKCζ in stage 10 chick 

embryos (Hamburger Hamilton stage 10). We looked at the amount of Tuj-1 (neuronal 

lineage marker) positive neuronal cells. Expressing the Notch construct on one side of the 

neural tube led to a significant reduction in Tuj-1 positive cells as compared to the other 

side of the neural tube without the active Notch construct (III, Fig 1D, F). This is in 

accordance with the established function of Notch as an inhibitor of differentiation in the 

CNS (Borghese et al., 2010; Holmberg et al., 2008; Louvi and Artavanis-Tsakonas, 2006; 

Yoon and Gaiano, 2005). When we then used the pseudosubstrate inhibitor of PKCζ 

together with the Notch construct, we identified more Notch1 positive cells (tracked by 

EGFP) in the marginal zone of the neural tube, with cells being positive for both Notch1 

and Tuj-1 (III, Fig 1E). This suggests that the cells were able to undergo differentiation 

despite the high Notch1 expression from the active construct. Our analysis also revealed 

differences in intracellular localization of Notch1 when we examined Notch 

immunoreactivity through the incorporated myc-tag. Notch expression without the PKCζ 

inhibitor produced both nuclear and cytoplasmic Notch-myc reactivity, but addition of the 

PKCζ inhibitor reduced the nuclear staining (III, Fig S1A-B). We also quantified the ratio 

of nuclear to cytoplasmic myc reactivity, which indicated that approximately half as many 

cells show nuclear reactivity during PKCζ inhibition (III, Fig 1G-I).  

Our results on PKCζ-mediated effects on differentiation are in agreement with a previous 

study, which also identified PKCζ as a suppressor of neuronal differentiation (Ossipova et 

al., 2009). Ossipova and colleagues proposed that PKCζ excerts its effects on 

neurogenesis through Notch by linking PKCζ-mediated regulation of PAR-1 to critical 

regulation of the E3 ligase Mib. This is another possible function of PKCζ-mediated 
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regulation. However, studies with PAR-1 knock out mice show no Notch-related 

phenotypes (Hurov et al., 2001). We suggest a more direct regulation of Notch by PKCζ, 

which is most likely determining the outcome of Notch in combination with other effects 

of PKCζ phosphorylation, such as general regulation of endocytosis or the aforementioned 

regulation of Mib. It is likely that PKCζ can regulate endocytosis in other ways to 

internalize Notch receptors independently of S1791 when caPKCζ is expressed, but 

perhaps phosphorylation of S1791 further specifies the Notch signaling outcome. This 

would explain why Notch1ΔES1791A in some settings could be downregulated by caPKCζ 

(III, Fig 2D) if some parts of the general PKCζ-mediated internalized endosomes are 

targeted for degradation. Again, actin or vimentin may be involved in the mechanisms of 

influencing the general endocytosis through PKCs. At least one novel PKC isoform has 

been shown to influence the generation of a large actin-based lamellum allowing for 

efficient Notch cleavage by ADAM10 (Britton et al., 2017). Regulation of vimentin by 

PKCs has been previously documented to affect integrin recycling (Ivaska et al., 2005) 

and more recently, both atypical isoforms PKCζ and PKCι have been shown to influence 

vimentin assembly (Ratnayake et al., 2018).  
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CONCLUDING REMARKS 

During the last few decades many key aspects of Notch signaling have been described in 

both development and disease. Still researchers struggle to understand the context-

dependent output of Notch. The aim of this thesis has been to provide new insights into 

the regulation of the Notch signaling pathway. These aims involve phosphorylation of 

Notch and endocytosis of Jagged ligands. In our first study, Jagged1 ligands accumulated 

at the surface of cells lacking vimentin, but with a compromised signal sending ability. 

Vimentin interacts with the intracellular domain of Jagged1, but not with Dll4 as 

demonstrated by swapping the intracellular domain of Jagged1 to Dll4-ICD, where the 

interaction was lost. We then studied the vimentin-Jagged1 axis in the context of 

angiogenesis. A lack of vimentin negatively affected the ability of endothelial cells to 

form angiogenic sprouts. Addition of external Jagged1 ligands rescued the angiogenic 

defects of vimentin ablation, which also challenges the prevailing argument that the main 

role of Jagged1 in angiogenesis is to inhibit more potent Dll4-Notch signaling. Recent 

studies on tip cell dynamics combined with our study highlight a more complex role for 

Jagged1 during angiogenesis, where it might not be low Notch that drives initial tip cell 

sprouting but that Jagged1 and Dll4 may activate Notch in distinct ways. Our findings 

further add to the important roles of intermediate filaments as signaling modulators and 

the interplay between vimentin and Jagged1 may also be amenable to therapeutic 

intervention in areas such as tumor angiogenesis and metastasis. Future studies will likely 

determine how and which Notch ligands can be regulated by IFs. With keratin IFs recently 

shown to interact with Notch receptors (Lähdeniemi et al., 2017), these studies can easily 

be extended to Notch receptors as well.   

Accumulating evidence point to deregulated Jagged1 in several different cancers, with an 

overexpression of JAGGED1 associated with increased metastasis and poor survival in 

women with breast cancer (Bednarz-Knoll et al., 2016; Sethi et al., 2011). Similarly, 

higher expression of JAGGED1 has been identified in prostate cancer patients with 

especially aggressive tumors (Zhu et al., 2013). Our dual label approach to track 

endocytosis of Notch ligands in study II should allow us to identify and validate other new 

Jagged1 modulators in the future. In addition, the hits from the cell spot microarray pilot 

screen have given us a short list of targets to include in our upcoming efforts to detail 

Notch ligand endocytosis.  
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Finally, we identify atypical protein kinase C zeta (PKCζ) as a regulator of Notch 

trafficking and activation. PKCζ interacts with membrane-tethered Notch1 receptors and 

phosphorylates S1791 in the intracellular domain of the receptor. The signaling from 

active Notch receptors is further enhanced by PKCζ, leading to relocation of more NICD 

to the nucleus and higher activation in reporter assays. When PKCζ was blocked, we 

found that the opposite was true, and observed less Notch signaling activity, less NICD in 

the nucleus, and a relocation of Notch to late endosomes. We then generated phospho-

deficient (S1791A) and phospho-mimicking (S1791E) mutants of active Notch1ΔE. In 

agreement with our previous findings, expression of the phospho-mimicking 

Notch1ΔE1791E led to increased signaling and NICD with more Notch localized to the 

nucleus, while the phospho-deficient Notch1ΔE1791A led to lower signaling, less NICD and 

more Notch localized in intracellular vesicles. We also report that blockage of PKCζ leads 

to more neuronal differentiation in vivo in the developing chicken spinal cord. 

Corroborating these results we found that C2C12 cells expressing phospho-deficient 

Notch1ΔE1791A consistently differentiated to myotubes. These results suggest that 

phosphorylation by PKCζ can influence differentiation through Notch1. 

Taken together, this thesis shows for the first time an interaction between the intermediate 

filament vimentin and Jagged1 in the signal sending cell as well as PKCζ and Notch1 in 

the signal receiving cell (summarized in figure 13). These results also provide insight into 

the regulation of Notch during angiogenesis and differentiation. Combining the data from 

these studies paint a picture of a potential network between PKCζ, vimentin, Jagged and 

Notch. Determining the interplay between these components should provide for plenty of 

research opportunities in the future.  
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Figure 13. Schematic of the Notch signaling pathway and the main findings in this thesis. 
Vimentin promotes force generation and trans-activation potential of Jagged1 in the signal-
sending cell (Notch ligand cell). In the signal-receiving cell, PKCζ interacts with membrane-bound 
Notch1 and phosphorylates S1791 in the intracellular domain of Notch1, which further enhances 
active Notch signaling. When Notch is inactive, PKCζ leads to an initial internalization of Notch 
receptors but without an increase in either signaling or degradation. The majority of these 
receptors may be recycled back to the cell membrane. 
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