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Abstract

The use of wireless networks has been on the rise for some time now, from the
ubiquitous smart phones and laptops in use everywhere, to sensor networks
collecting large amounts of data. In this dissertation, we focus on contempo-
rary wireless technologies, in particular Wireless Mesh Networks (WMNs):
self-organising and self-healing wireless networks that support broadband
communication without requiring any wired infrastructure. A significant
factor for the reliability and flexibility of such networks is provided by the
routing protocols. The current approaches used for analysing routing pro-
tocols, e.g., test-bed experiments and simulation techniques, are expensive,
time consuming and resource-intensive. Additionally, these techniques can-
not, in general, guarantee the reliability and flexibility of such systems. In
order to address these challenges, the use of formal methods is growing, i.e.,
for the purpose of reasoning about wireless mesh network routing protocols.
However, the mathematical foundation of formal techniques is considered as
a challenging task for protocol designers, and therefore, this level of develop-
ment (reliability and flexibility analysis) is often skipped.

The objective of this dissertation is to study different routing protocols
of wireless mesh networks using formal techniques as well as to propose a ge-
neric framework to formally model, analyse and verify such protocols as our
ultimate goal. The proposed framework can help the protocol designers to
verify their routing protocols prior to implementing them in real-case scena-
rios and to avoid consequent costs. We employ classical model checking (via
the Uppaal tool), statistical model checking (via the Uppaal SMC tool) and
theorem proving in Event-B (via the Rodin platform) to carry out our study
and deal with both quantitative and qualitative analysis of such systems. Our
generic and reusable framework is developed employing the Uppaal SMC as
the tool support.
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Sammanfattning

Användningen av trådlösa nätverk har ökat kontinuerligt under en längre tid,
från vanliga smarttelefoner och bärbara datorer, till sensornätverk som sam-
lar stora mängder data. I denna avhandling fokuserar vi på modern trådlös
teknik, i synnerhet trådlösa mesh-nätverk: självorganiserande och självlä-
kande trådlösa nätverk som stöder bredbandskommunikation utan behov av
någon kabelbaserad infrastruktur. En betydande faktor för pålitlighet och
flexibilitet av sådana nätverk tillhandahålls av routingprotokollen. De nu-
varande metoderna som används för att analysera routingsprotokoll, t.ex.
testbäddsexperiment och simuleringstekniker, är dyra, tidskrävande och re-
surskrävande. Dessutom kan dessa tekniker inte i allmänhet garantera till-
förlitligheten och flexibiliteten hos sådana system. För att ta itu med dessa
utmaningar ökar användningen av formella metoder, dvs. att matematiskt
resonera om trådlösa routingprotokoll. Den matematiska grunden för for-
mella tekniker betraktas emellertid som en utmanande uppgift för proto-
kolldesigners, och därför uteblir denna nivå av utveckling (tillförlitlighet och
flexibilitetsanalys) ofta.

Syftet med denna avhandling är att studera olika routingprotokoll för
trådlösa mesh-nätverk med hjälp av formella tekniker samt att föreslå ett
generiskt ramverk för att formellt modellera, analysera och verifiera sådana
protokoll som vårt ultimata mål. Det föreslagna ramverket kan hjälpa pro-
tokolldesigners att verifiera sina routingprotokoll innan de implementeras i
riktiga användningsscenarier och därmed hjälpa till att undvika följdkost-
nader. Vi använder klassisk modellkontroll (via Uppaal-verktyget), statis-
tisk modellkontroll (via Uppaal SMC-verktyget) och teorem bevisning med
Event-B (via Rodin-plattformen) för att genomföra vår studie och hante-
ra både kvantitativ och kvalitativ analys av sådana system. Vårt generiska
och återanvändbara ramverk är utvecklat med hjälp av Uppaal SMC som
verktygsstöd.
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Research Summary
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1. Introduction

Wireless technologies have been on the rise for some time now: laptops
and smart phones are ubiquitous, wireless sensor networks monitor the envi-
ronment and generate vast quantities of data, and envisioned electrical cars
wirelessly recharge [63]. Due to the wireless aspect, these technologies are al-
ways subject to failure under adverse conditions. To demonstrate resilience,
i.e., the maintenance of network services to an acceptable level even when
failures occur, reliability and flexibility are needed. In our work, we focus
on contemporary wireless technologies, in particular wireless mesh networks
(WMNs). We study their reliability by analysing their performance w.r.t.
data delivery assurance as well as their flexibility by analysing their dynamic
adaptability to changes.

Wireless mesh networks are self-organising and self-healing networks that
bear the benefit of low-cost and rapid deployment. These networks have
gained popularity and are increasingly applied in a wide range of application
areas, including:

• Public safety : governments are responsible for providing public safety
in order to protect their citizens. For instance, closed circuit televisions
(CCTVs) are used in this regard.

• Military communication: WMN devices attached to soldiers and de-
vices allow for their coordination and monitoring in the battlefield.

• Environmental monitoring : WMNs allow observing local conditions,
for instance in case of natural disasters (fire, flood, etc) or hardly ac-
cessible places (volcanoes).

• Railway and transportation: WMNs provide the possibility to monitor
railways and to detect malfunctioning of such systems.

WMNs deployment is envisioned to continue in the future. Reliability
and flexibility evaluations for WMNs will play crucial roles in the design
process for such systems, and will ensure their successful development in
practice. This includes cases where networks inevitably become more com-
plex and where node mobility can significantly affect the performance of a
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network. Data communication may fail due to such dynamic behaviour of
the network and, as a consequence, catastrophic results can occur. There-
fore, it is clear that a priori evaluations are of high importance for safety
critical applications of WMNs.

Researchers believe that shortcomings of contemporary WMN systems
are due, to a large extent, to limitations of the current network protocols
and their inability to tailor and adapt their operation to the very different
and dynamic deployment environments of WMNs [64]. Therefore, investi-
gating the behaviour of wireless network protocols is important in order to
understand and overcome the limitations of current networks. For example,
a routing protocol enables node communication in a network by disseminat-
ing information that enables nodes to select routes. In this way, nodes are
able to send data packets to arbitrary destinations in the network. This
makes routing protocols one of the key factors determining the performance
of WMNs. These protocols are classified into two main categories: proactive
and reactive. Proactive protocols rely on the periodic broadcasting of control
messages through the network and have the information available for routing
data packets. Reactive protocols, in contrast, behave on-demand, meaning
that when a packet targeting some destination is injected into the network
they start the route discovery process.

Typically, the analysis of network protocols consists of test-bed experi-
ments and simulation techniques. These are appropriate techniques for per-
formance analysis and typically employ synthetic models of the network and
its dynamic characteristics, for system validation. However, when consider-
ing reliability and flexibility, these approaches are limited in the following
ways:

• The underlying mathematical models are often vague and unavailable
to users. Such models are often unrealistic, and the results obtained
can vary between different simulators. As a consequence, the results
depend on the underlying model of the simulator, rather than on the
characteristics of the routing protocol under study.

• Simulation tools do not sufficiently support computational behaviours,
which again leads to unrealistic results.

• The optimisation of a routing protocol requires a thorough comparison
of different designs, for example when system performance depends
on the choice of system parameters. With simulation, such compara-
tive analysis requires the statistical interpretation of a large number of
simulation runs, making the analysis difficult and costly.

The question is how to develop these protocols in a reliable and flexible
way so that we can trust the developed system to behave as expected by
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the specification. This question applies to the entire lifecycle of the pro-
tocols, from specification to deployment, and includes the investigation of
alternatives to improve system qualities. The overall goal of our research is
to contribute to the development of reliable and flexible WMN routing pro-
tocols. The impact of this diverse area of research can be enormous because
of the ubiquity of such systems in our society.

Our research approach is based on applying formal techniques in order to
achieve our research goals. We use formal techniques on the existing routing
protocols of WMN in order to improve their reliability and flexibility (Figure
1.1). Formal techniques have usually precise mathematical syntax and se-
mantics, and allow the analysis of WMN routing protocols in a more rigorous
manner when compared to traditional simulation and test-bed approaches.
Formal methods can be considered as a special class of formal techniques that
provide valuable tools for designing, developing, comparing and evaluating
systems [51]. They can provide critical assurance w.r.t. performance of the
system under study. Formal methods have been successfully used in many
application areas [44, 53, 50, 49], and have proved particularly useful in the
very early design stages, when only a model or a blueprint of the product is
available.

Concretely, we formally model and verify different routing protocols of
WMNs by applying different formal techniques. We investigate how different
classes of such routing protocols (proactive and reactive) behave with respect
to different system requirements (quantitative and qualitative analysis). We
have used different formal modelling and analysis frameworks (a classical as
well as a statistical model checker and a theorem prover) in order to find
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out which formalism is the most suitable when having such systems under
study. A complementary aspect of our work consists of developing a formal
generic framework to model, analyse and verify WMN routing protocols. In
this manner, protocol designers can adapt the generic models based on the
protocol specifications and verify routing protocols prior to implementation.

Our research is summarised as a collection of six papers. We divide this
dissertation in two parts. We describe the overall view of our work in Part I,
and Part II follows as a reprint of research papers (with permission). In Part
I we proceed as follows. In Section 2, we overview WMNs and their routing
protocols and in Section 3 we describe the research methods that we used.
In Section 4, we sum up and explain how we employed the methods from
Section 3 to the WMN routing protocols described in Section 2; paper by
paper, we characterise our contribution to formal modelling and verification
of WMN routing protocols. In Section 5, we discuss related work relevant to
our contributions and in Section 6 we summarise our work as well as sketch
future research directions.
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2. Wireless Mesh Networks (WMNs)

In this section we explain the main characteristics of wireless mesh networks
and their routing protocols, to the extent needed this thesis.

A WMN consists of a set of nodes arranged in a mesh topology: richly
interconnected to each other [57] via uni-directional or bidirectional wireless
links. These nodes communicate with other nodes in their transmission range
via messages. The WMN topology refers to the physical layout of the nodes
and their connectivity, modelled as a graph G = (N,L) with the finite set of
nodes N and the finite set of links L.

A mesh network topology tends to remain static (except for the random
failure of links or addition of new links) in order to cover route computation
as well as to deliver data packets to specified destinations. A mesh network
allows redundancy, meaning that when a node is no longer operating, the
other network nodes are still able to communicate with each other. This is
either directly or through intermediate nodes, demonstrating the self-forming
and self-healing characteristics.

Nodes send control messages in order to obtain information about the
network. A message is a communication unit contributing to the functional-
ity of a network. It contains a source node, a destination node, and possibly
some data. A routing algorithm provides routes in the network that can be
taken by messages to reach their destinations.

In this dissertation, we aim at modelling, analysing and verifying selected
WMN routing protocols as well as at developing a generic and reusable frame-
work for the development of such protocols. We deal with both proactive
and reactive classes of routing protocols, described in the next section.

2.1 Routing Protocols

Routing protocols specify routes taken by messages sent between nodes.
The routes are usually discovered by distributing node information via mes-
sages through the network. Neighbouring nodes receive these messages, en-
abling them to obtain information about possible routes. In this way, dif-
ferent routes between nodes are discovered, established and possibly main-
tained. Each node in the network keeps a routing table to store information
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on routes to other nodes. The information in the routing table entries is
generally modelled as as a tuple with at least the following components:
(dip, hops, nip, dsn) where:

• dip stands for the address to an arbitrary destination node (say d)

• hops shows the distance (number of hops necessary) to reach d

• nip is the next neighbour node in the route towards d

• dsn represents the last sequence number received from d by the node
the routing table is for, describing how recent the information is: the
higher the sequence number, the more recent the route.

The information in the routing tables of the nodes describes at best a
partial configuration with respect to the connectivity in the network, as it
was at some point in the past; in the most general scenario, node and link
failures continually change that configuration.

Routing protocols are grouped into two main categories, namely proactive
and reactive. Proactive protocols work in a foreseeing way, starting route
discovery in advance, before any data packet is received. Reactive protocols
behave on demand, meaning that they start discovering routes upon receiving
a data packet destined for some destinations. In the following, we describe
each category of routing protocols and the two main protocols that have
been the focus of this dissertation.

2.1.1 Proactive Routing Protocols

Proactive protocols keep lists of destinations together with routes to them
by flooding control messages through the network. Nodes broadcast con-
trol messages periodically, to build and update their topological information
about the other nodes of the network so that, when a data packet is injected
into the network it can be rapidly routed to the destination node. Some
often used proactive protocols are: optimised link state routing (OLSR) [19]
and better approach to mobile ad-hoc networking (BATMAN) [48]. We de-
scribe the behaviour of the OLSR protocol with an example in Figure 2.1.
The picture shows a network containing 4 nodes connected to each other in a
linear topology running the OLSR algorithm, with a data packet from s to d
injected at a random time. Representation of the OLSR control messages is
also shown in the Figure. Field ∗ depicts recipients of (re)broadcast control
messages that are nodes in the transmission range of the sender node.

The proactive nature of OLSR implies the benefit of having the routes
available when needed. The underlying mechanism of this protocol con-
sists in the periodic exchange of two types of messages, namely hello and
TC (topology control) messages relying on the so-called multi-point relays
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s −→ ∗ : hello, s, Onehops
l −→ ∗ : hello, l, Onehops
m −→ ∗ : hello,m, Onehops
d −→ ∗ : hello, d, Onehops
l −→ ∗ : tc, l, Sseq, hc, sender, mprs, ttl
m −→ ∗ : tc,m, Sseq, hc, sender, mprs, ttl

s l m d
hello hello, tc hello, tc

hello, tc hello, tc hello

Figure 2.1: The OLSR routing protocol.

(MPRs) in order to find routes. For every node there are one-hop neighbours
that are MPR nodes, meaning that an MPR node has bi-directional links
towards some of the two-hop neighbours of that node. Based on the OLSR
specification, only MPRs (re)broadcast TC messages through the network,
optimising the traffic in the network.

The message flow is represented by dashed arrows in Figure 2.1, denoting
the broadcast of hello messages: 〈hello, originator, Onehops〉, and topol-
ogy control (TC) messages: 〈tc, originator, Sseq, hc, sender, mprs, ttl〉.
The field hello shows the type of a message, field originator models the
message generator, and field Onehops contains the list of the one-hop neigh-
bours of the message generator. The TC message has the message type tc

and is generated by the node stored in field originator, field Sseq mod-
els the originator sequence number to be added in the routing table entries
pointing towards the TC originator, field hc shows the number of hops from
the TC originator to the receiving node, the sender field presents the TC
sender which is rebroadcasting the TC, field mprs contains the list of nodes
that have selected the TC generator as their MPR, and field ttl is time to
live, representing the maximum number of hops a message can be transmit-
ted.

Every node broadcasts a hello message every 2 seconds in the network
and detects its direct neighbours by receiving these messages. As a hello con-
tains information about one-hop neighbours of the originator, it allows the
receiving nodes to know about their two-hop neighbours. A hello traverses
only one wireless link or a single hop and it is not forwarded. This type of
message is used for neighbour detection and for selecting MPR nodes.

We assume node s broadcasts a hello of the form 〈hello, s, ∅〉. The
Onehops set is empty at the starting point of the protocol. The other nodes
l,m and d also follow the same procedure as of s, broadcasting hello mes-
sages every 2 seconds through the network. When a hello is received by the
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intermediate node l, it updates its routing table for s, marking s as its one-
hop neighbour. Later when l broadcasts its own hello through the network,
it embeds the information about s as it is the one-hop neighbour of l. The
hello from l has the form 〈hello, l, s〉, where l is the hello originator and s
is the one-hop neighbour of l.

When s receives the hello from l, it updates its table corresponds to l,
marking it as its one-hop neighbour, and when m gets the hello, it updates
its table for both s and l as the information about s was also provided in
the received hello from l. Then m learns that l is the MPR node because
it has a link toward s which is the two-hop neighbour of m. The process
repeats for all network nodes and by this, nodes learn about their one-hop
neighbours, two-hop neighbours and their MPRs.

Finally, nodes l and m, selected as MPRs, broadcast TC messages every
5 seconds to build and refresh the topological information. The TC message
from l has the form 〈tc, l, 1, 0, l, {s,m}, 3〉. When the neighbour node m
receives the TC from l, it acts as follows:

1. It looks for the pair (l, 1) in its routing table to investigate if it has al-
ready processed the TC. If this is the case, the TC message is discarded
and processing of the message stops. Otherwise, the pair is subject to
enter the routing table. Hence, the routing table is updated for l.

2. Then, m rebroadcasts the TC from l with the modified information as
follows: 〈tc, l, 1, 1,m, {s,m}, 2〉.

This procedure is also followed by the other MPR nodes in the network
(node m) and thus they obtain the network information, so that when a data
packet is injected into the network, it can be routed toward its destination.

2.1.2 Reactive Routing Protocols

Reactive protocols look for routes by flooding on-demand route requests
through the network. This means that when a data packet aimed for some
destinations is injected into the network, the protocol initiates the route dis-
covery process to deliver the data packet to its destination. There are numer-
ous reactive protocols such as: ad-hoc on-demand distance vector (AODV)
[55], dynamic manet on-demand (DYMO) [56], dynamic source routing (DSR)
[34]. We describe the behaviour of the DYMO protocol with an example il-
lustrated in Figure 2.2. The picture shows a network containing 4 nodes
connected to each other in a linear topology running the DYMO routing
algorithm; s is the source node, d is the destination node, l and m are the
intermediate nodes. Representation of the DYMO control messages is also
shown in the figure. The field ∗ depicts recipients of (re)broadcast control
messages that are nodes in the transmission range of the sender node.
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s −→ ∗ : rreq, s, d, Sseq, Dseq, intms, hc
l −→ ∗ : rreq, s, d, Sseq, Dseq, intms, hc
m −→ ∗ : rreq, s, d, Sseq, Dseq, intms, hc
d −→ m : rrep, s, d, Sseq′, intms, hc
m −→ l : rrep, s, d, Sseq′, intms, hc
l −→ s : rrep, s, d, Sseq′, intms, hc

s l m d
rreq rreq rreq

rrep rrep rrep

Figure 2.2: The DYMO routing protocol.

The message flow is represented by dashed and continuous arrows, re-
spectively showing broadcast and unicast communication. The RREQ (route
request) messages defined as 〈rreq, originator, destination, Sseq, Dseq,
intms, hc〉 are broadcast and the RREP (route reply) messages represented
as 〈rrep, originator, destination, Sseq′, intms, hc〉 are unicast.

The rreq and rrep fields represent the type of the message. Fields
originator and destination show the message source and destination,
respectively. The Sseq field denotes the source sequence number , i.e. the
sequence number to be added in routing table entries pointing towards the
originator node. The Dseq field contains the destination sequence number
showing the latest sequence number received by the originator node in the
past for any route towards the destination; if destination is unknown to the
originator this number is 0.

The field intms denotes a set of intermediate nodes on the way (accu-
mulated path) from the message originator to the receiving node. DYMO
uses the concept of path accumulation: whenever a control message travels
via more than one node, information about all intermediate nodes on the
route is stored in the message. In this way, a node receiving a message estab-
lishes routes to all other intermediate nodes. Initially, there is no entry when
the originator broadcasts RREQ. The path is accumulated later when the
RREQ is rebroadcast via intermediate nodes. The hop-count field hc repre-
sents the number of hops from the message originator to the node receiving
the request. Initially, this field is set to 0.

Assume the source node s has a data packet for the destination node d.
In order to send the data packet, s looks for an entry for d in its routing
table. If such an entry does not exist, it will start the route discovery process
to find a route to d. The protocol continues as follows:
• The source s generating a RREQ increases its own sequence number

and broadcasts the RREQ of the form 〈rreq, s, d, 1, 0, ∅, 0〉.
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• When RREQ is received by the intermediate node l, it acts as follows:

1. It looks for the pair (s, 1) in its routing table to investigate if it
has already processed the request. If this is the case, the RREQ
is discarded and processing of the message stops. Otherwise, the
pair is subject to enter the routing table and the routing table is
updated for s.

2. Then, l looks for an entry for d in its routing table. If such an
entry exists, with destination sequence number greater than or
equal to RREQ’s destination sequence number, l increases its own
sequence number and two RREP messages are sent. One is sent
to s saying that l is the next node toward d, and another one is
sent to d saying that l has a path to s. If l does not have any entry
with a destination sequence number greater than or equal to the
Dseq, it adds itself as the intermediate node of RREQ and then
re-broadcasts the RREQ with the hc field incremented by one as
〈rreq, s, d, 1, 0, {l}, 1〉.

• Node m later repeats the same procedure as node l.
• Whenever d receives the RREQ, it checks if the message has been

already processed. If this is the case, the message is discarded. Oth-
erwise, d updates its routing table for s and intermediate nodes l and
m. Then, d increases its sequence number and sends a unicast RREP
〈rrep, s, d, 1, ∅, 0〉 to m. Here, s and d are copied from the incoming
RREQ and sequence number of d is possibly updated according to d’s
sequence number which is unique to d. The intms represents inter-
mediate nodes from the message originator toward the receiving node.
Initially, there is no entry and the path is accumulated later when the
RREP is unicast via intermediate nodes. The hop-count field is set to
0.
• The RREP then follows the reverse path towards node s increasing the
hc field by one passing each hop. Each node receiving the reply packet
will update the routing table entry associated with d and intms if one
of the following conditions is met: (i) route to d is unknown; (ii) the
sequence number in the RREP associated with d is greater than the
one exists in the routing table; (iii) the sequence numbers are the same
but the new route is shorter. In this way, nodes on the reverse route
toward s learn the route to d and intermediate nodes intms on the way.
As soon as the route discovery from s to d is finished, the injected data
packet to s can be routed toward its destination d.

Nodes also monitor the status of alternative active routes to different
destinations. Upon detecting the loss of a link in an active route, a route
error (RERR) message is broadcast to notify the other nodes about the link
failure. The RERR contains the information about those destinations that
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are no longer reachable toward the broken link. When a node receives an
RERR from its neighbours, it invalidates the corresponding route entry for
the unreachable destination.
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3. Background: Formal Methods

In this section we overview the formal tools that we apply in this dissertation.
Formal methods are broadly categorised into different categories, e.g.,

event-based and state-based. Event-based formal methods model systems
as a composition of several processes handling events and communicating
via channels. Some examples of event-based approaches are CSP [29], π-
calculus [47], and CCS [46]. State-based formal methods model the state of
the system and specify methods modifying these states. Some examples of
state-based methods are Action Systems [5], the B-method [1], the Z notation
[61]. There are also some studies on combining event-based and state-based
methods proposed as CSP||Event-B [59] and CSP||B [58].

A common feature of all formal methods is the concept of a formal (or
precise) model associated with a meaning called semantics: mapping a novel
concept to a concept which we have already understood well. Based on
formal models we can specify precise properties of systems and verify if
they hold for a certain model; we can also capture different versions (at
different levels of abstraction) of the same system. These formal models can
be interpreted similarly by different users.

Two important issues formal methods had to deal with for a long time
are those of usability and scalability. As the formal semantics is based on
mathematics and logic, specifying systems in a formal manner requires a
certain formal background.

Thus, an essential instrument for the usability and scalability of formal
methods consists in tool support that usually provides a platform to cope
with system modelling and analysis as well as to deal with syntax checking.
They can also prove essential properties of the system, fully or partially
automatic. For example, model checking techniques prove system properties
automatically, whereas proving properties is partially automatic in theorem
proving techniques (they sometimes need interaction from the modeller). In
this dissertation, we employ the event-based formalism of timed automata [4],
supported by the Uppaal model checker [10] and by the statistical extension
of Uppaal, namely the Uppaal-SMC [22]. We also employ the state-based
formal method Event-B [2], supported by the Rodin platform [3].

We apply Uppaal to model the timing behaviour, wireless communica-
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tion, and complex data structure of routing protocols. The continuous timing
mechanism provided by Uppaal allows us to precisely model the timing as-
pects of the protocols. Synchronisation mechanisms provided by Uppaal,
i.e., broadcast and binary synchronisation, allow us to precisely model the
wireless communication between nodes. Common data structures of Uppaal,
such as structs and arrays, and a C-like programming language are used to
model routing tables and update-operations on such tables. In addition, the
Uppaal GUI and Uppaal simulator provide a visualised interpretation of the
system which makes the task of modelling easier. Uppaal carries out an ex-
haustive exploration of the state space of the model in order to guarantee
that the system does not violate system requirements (properties).

Uppaal SMC, an extension of Uppaal model checker, is employed in or-
der to model probabilistic behaviour of communication protocols in addi-
tion to the features mentioned above, using stochastic timed automata. For
instance, message loss which is a common phenomenon in wireless commu-
nication can be rigorously modelled using probabilities. Uppaal SMC also
overcomes the barrier of analysing large systems and it provides both quan-
titative and qualitative analysis.

We also apply the Event-B formalism to manage the complexity of rout-
ing protocols into distinct abstraction layers. We start with a very abstract
model and gradually add more details to the models to make them more con-
crete, using the refinement technique. Each model is verified prior to adding
any additional feature to guarantee the correct by construction design. Scal-
ability issues that Uppaal cannot handle are also dealt with in Event-B, as
the size of the model is not an issue.

In the following we overview these formal methods and shortly their
associated tools.

3.1 The Uppaal Model Checker

Uppaal [10] is a well-established model checker providing support for mod-
elling real-time systems as networks of (extended) timed automata that can
synchronise on channels and shared variables. These models are used for
analysis and formal verification. A finite timed automaton [4] is represented
as a graph consisting of finite sets of locations (nodes) and edges (transi-
tions), together with a finite set of clocks having real-valued numbers. The
logical clocks of automata are initialised to zero and are increased with the
same rate. Each location may have an invariant, and each edge may have
guards that capture the conditions for traversing edges (possibly clock guards
which allow the progress of time), and/or actions that can be updates of some
variables and/or reseting clocks.

A timed automaton is defined as a tuple (L, l0, C,A,E, I) where: L is a
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finite set of locations, l0 is the initial location and is an element of L, C is
a finite set of clocks , A is a set of actions, co-actions and internal actions,
E ⊆ L×A×B(C)× 2C ×L is a set of edges between locations with actions,
guards and a set of clocks (note that B(C) defines finite sets of guards on
edges given as clock constraints), I : L→ B(C) are invariants on locations.
For instance, going from location li to lj is possible if an edge from E can
be taken, satisfying its guard from B(C). If so, the action on that edge can
happen.

The Uppaal modelling language extends timed automata introduced by
Alur and Dill [4] with additional features such as data structures, types, etc.
These features provide the ground to model complex behaviours of routing
protocols. Global declarations and processes are distinguished in Uppaal.
All processes are running concurrently at the same level, and the model has
no further hierarchy. Processes are in fact instantiations of parameterised
templates. Separate from the system model are the queries describing system
properties and requirements.

Type definitions – often used as identifiers – define ranges of integers in
the global declaration. Variables can have integer type, newly introduced
types, channels and arrays of these. Clock variables are applied to measure
time and they evaluate to real numbers. Progress of time happens at the
same rate for all clocks and can be reset only to zero. Functions can also be
defined in a C-like language as parts of declaration and can be used elsewhere
in the model.

Every process contains its own local declaration of variables and func-
tions that are limited to the process. For every process, there exists an
automaton operating on global and local variables and functions. Channels
are responsible for synchronisation between automata, meaning that for each
channel c there exists one label c! identifying the sender and c? presenting
the receivers. Transitions having no label are internal transitions and all the
other transitions use either broadcast or binary handshake synchronisations.

Binary handshake (unicast) synchronisation means that one automaton
that has an outgoing edge with a !-label synchronises with another
automaton having a ?-label edge, if guards on both edges hold in the
current state. When the transition is taken, both automata move to
their next locations, and variables are modified according to the up-
dates on edges; first, variables on !-label edge are updated, then ?-label
edge follows, updating its variables. When the choice is on more than
one possible pair, the choice is made non-deterministically.

Broadcast synchronisation means that one automaton that has an outgoing
edge with a !-label synchronises with several other automata having
edges with a relevant ?-label. The automaton with a !-label edge moves
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to its next location, and update its variables if and only if its guards are
satisfied. It does not require a second automaton to synchronise with.
Other matching ?-label edge automata are required to synchronise if
their guards hold in the current state. They will move to their next
locations and update their variables. First, the variables on the !-label
edge are updated, then the other matching automata with ?-label edge
follow. If the choice is on more than one initiating automaton (the
automaton with an outgoing ?-label edge), the choice is made non-
deterministically.

System properties (requirements) can also be defined in addition to the
system model and they can access all local and global variables and func-
tions, if they are side-effect-free (if they do not change variables outside of
the scope of functions). Verification in Uppaal is carried out employing a
decidable fragment of Computation Tree Logic (CTL) to state system prop-
erties. CTL provides two types of formulas, namely state and path formulas.
State formulas deal with individual states in the model without considering
the behaviour of the model, whereas path formulas quantify over paths, con-
taining an (infinite) sequence of states in the model. A path formula can be
of three main types, namely reachability, safety and liveness.

A reachability property checks whether or not there is any reachable state
in the system that can satisfy the given state formula φ. This property is
expressed as E <> φ using Uppaal syntax, stating that there exists (E) at
least one path that eventually (<>) satisfies φ. A safety property essentially
states that something bad never happens. In Uppaal, this property is for-
mulated positively saying that something good invariantly happens, either
for all paths or for at least one path. If property φ is true for all reachable
states ([]) for all paths (A), it is stated as A[]φ. If the property φ is true
for all reachable states ([]) in at least one path (E), it is stated as E[]φ .
A liveness property states that something will eventually (<>) happen in
all paths (A). Given state formula φ, the liveness property called “leads to”
is expressed as A <> φ in Uppaal. The other form of liveness property is
the form of φ → ϕ, meaning that whenever φ is satisfied, then ϕ will be
eventually satisfied.

3.1.1 Scalability with Classical Model Checking

Depending on the designed model, the number of states in the model can
easily become enormous. As an example, having a system composed by m
processes, each containing n number of states, the asynchronous composi-
tion of the processes can contain nm states that are required to be explored
exhaustively. This problem is referred as the state space explosion [18] and
is a common issue in all model checkers. Researchers have developed sev-
eral techniques in order to address this problem, however the problem still
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exists. For example, partial order reduction [54], bounded model check-
ing [14], counterexample-guided abstraction refinement [17], etc combat the
state space explosion problem, however they cannot overcome the problem
entirely. Therefore, we have used Statistical Model Checking and Event-B
as alternatives to cope with this problem.

3.2 Uppaal Statistical Model Checker

Uppaal SMC [22] is considered as a trade-off between simulation and model
checking techniques in order to overcome the size barrier of classical model
checking and to provide probabilistic reasoning. The main idea of Uppaal
SMC is to observe only some simulation traces of the system and to apply
Monte Carlo simulation or sequential hypothesis testing, respectively for
quantitative and qualitative analysis. This is done in order to decide whether
or not the system can satisfy the intended property with a given degree of
confidence.

The specification language of Uppaal SMC is similar to Uppaal model
checker described earlier in this chapter, i.e., based on extended timed au-
tomata. Uppaal SMC assigns probabilities to the different enabled transi-
tions of automata; thus, the non-deterministic choices between these tran-
sitions is replaced by choosing the transition with the highest probability
and choices of delays are made randomly. A system is modelled as a net-
work of stochastic timed automata [12], communicating with each other via
broadcast channels and shared variables. Uppaal SMC has additional query
language elements of the Metric Interval Temporal Logic (MITL) in order
to provide support for estimating and comparing probabilities, hypothesis
testing and also evaluating expected values.

A system modelled as networks of stochastic timed automata is input
for verification to provide statistical evidences for either satisfaction or vio-
lation of desired properties. Then the probability that a system satisfies the
defined property is computed. For example regarding routing protocols, the
probability that a route is established from a source node to a destination
node, or the probability that an injected data packet can be delivered to
its destination can be computed. After conducting some simulations of the
system, it can be statistically verified whether or not the simulations satisfy
defined properties. Verification does not give us a 100% guarantee w.r.t.
properties, however it is possible to limit the interval in which an error can
occur.

In order to estimate probabilities, the algorithm computes the number
of runs that are required for defining an approximation probability interval
[p− ε, p+ ε] in which φ (state formula) with a confidence of 1-α is satisfied.
Here, p stands for the average probability over all runs, the value of ε shows
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the probabilistic uncertainty and α presents the false negatives. These values
are used for specifying the statistical confidence of the result. The values of
α and ε are selected by the user and the number of runs is then calculated
by the tool applying the Chernoff-Hoeffding bound.

In Uppaal SMC, the corresponding query is stated as Pr[bound](φ),
where bound presents the simulations time bound and φ defines the expres-
sion (path formula). So, the probability that φ is satisfied or violated in
bound is calculated. Uppaal SMC also provides support for evaluating ex-
pected values of a maximum of an expression that can be an integer or a
clock. The number of runs N and the bound should be explicitly entered
in order to evaluate the maximum of the given expression expr. In Uppaal
SMC, the corresponding query is expressed as E[bound;N](max : expr). The
values of α and ε should be provided explicitly by the user.

3.3 Event-B

Event-B [2] is a formal method based on the B-Method [1] and the Ac-
tion Systems [5], employed for modelling and analysing distributed systems.
Event-B provides automated tool support via the Rodin [3] platform. This
allows to specify and verify distributed systems by formally modelling the
system and to prove that the constructed model fulfils some specified system
properties.

Event-B uses the concepts of context and machine modules in order to
define the specification of the system (systems behaviour) as well as to state
properties (requirements) of the system. A context in Event-B represents the
static part of the system, dealing with carrier sets and constants that are
used to state axioms in the model, whereas a machine concerns the dynamic
part of the system, modelling the system and its properties using variables,
invariants and events. A machine can access its context by defining the Sees
keyword.

The state of a system is described by the values of variables that are
modified by the system events using actions. Each event can have guards,
which are logical properties that limit the event: it can only be executed if
its guards are evaluated to true. If there are several enabled events in the
system, the choice of execution is made non-deterministically. Invariants of
the system define the system properties and they must hold for any reachable
state in the system before and after the execution of events.

Event-B uses the refinement [7] concept to gradually add details into an
initial abstract specification of the system. An abstract and non-deterministic
machineM0 is refined by a more concrete machineM1 (defined asM0 vM1),
having new variables and events, so that the correctness of M0 is preserved
during its transformation to M1.
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There are different types of refinement, for instance in superposition re-
finement, events in M0 can be refined in M1, enriching their behaviour with
new variables behaviour whereas data refinement replaces some variables of
M0 by other variables in M1 and specifies gluing invariants to describe the
relation between old and new variables. All occurrences related to old vari-
ables of events inM1 are substituted by newly defined variables and only the
gluing invariant contains old variables. Proof obligations are automatically
generated by the Rodin platform in order to prove that M0 is refined by
M1. In fact, discharging proof obligations (either automatically or interac-
tively) guarantees that each intermediate refined machine from M1 to MN

(M0 v M1 v ... v MN ) are correct refinements of M0. As a consequence,
the developed system is considered as a correct-by-construction model using
the refinement approach.

We have used Event-B to specify the complex behaviour of OLSR pro-
tocol in a stepwise manner, from an abstract model to a more concrete
specification. The main components and features of routing protocols as
well as their crucial global properties are introduced in an abstract reusable
model. This allows, on one hand, to use the abstract model to specify other
routing protocols with common behaviour and on the other hand, to prove
the generic global properties of protocols. Then, the concrete models refine
the abstract specification while the global correctness of the protocol is pre-
served. The refined specification (model) can be reused in the development
of other routing protocols. The refinement approach provides support for
constructing reusable models that can be adapted to other routing protocols
while the global correctness of the system is preserved.

Adding details into a system may significantly increase the states of the
system, bearing the barrier of scalability. As a consequence, it is important
to systematically categorise a model into several component models, for in-
stance by decomposition. Event-B provides a form of decomposition, namely
modularisation, in order to address complexity for the system under design.
Modularisation in Event-B is based on monotonicity [6], and allows to study
and refine each component model independently of others, facilitating scal-
ability and reusability of component models. Each module is a component
consists in a group of operations that can be called. During formal devel-
opment, modules can be developed separately and later composed with the
system [35].
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4. Contributions

In this section, we describe the contribution of our original publications,
building up this dissertation. We present the techniques applied in each pa-
per for modelling and verifying communication protocols. We discuss the
quantitative and qualitative analysis of protocols as well as provide a guide-
line on which formalism is more applicable in the context of WMN routing
protocols. Our long term goal on providing a generic and reusable formal
framework for modelling and verifying routing protocols is described as our
last contribution in this dissertation. This study is carried out in order to
provide reliabile and flexible routing protocols, guaranteeing a certain num-
ber of requirements.

4.1 Paper I: Formal Analysis of Proactive, Dis-
tributed Routing

In this paper [38], we focus on modelling and analysing the functionality of a
proactive routing protocol, OLSR, using Uppaal model checker. We formalise
the main functionality of OLSR based on its English specification and define
required properties of the protocol in mathematical formulas. The designed
model based on the extended timed automata is an unambiguous and precise
reflection of the OLSR core functionality that can be input for verification
purposes. Our Uppaal model consists of a parallel composition of identical
processes describing the behaviour of single nodes of the network. Each of
these processes is itself a parallel composition of two timed automata, Queue
and OLSR. The Queue automaton has been chosen to store incoming messages
from other (directly connected) nodes. In other words, it denotes the input
buffer of a node. The OLSR automaton models the complete behaviour of
the routing protocol as described in the OLSR specification. It consists
of 14 locations and 36 transitions precisely modelling the broadcasting and
handling of the different types of messages.

The OLSR is verified in two settings: static networks and dynamic net-
works. In the context of static networks where no failure of links happens,
we deal with three different properties (reliability analysis): establishing a
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route from a source node to a destination node, delivering a data packet from
a source node to its destination node, and finding optimal routes between
nodes w.r.t. the number of hops. In the context of dynamic networks where
there is a possibility of a random link failure, we focus on the recovery time
of OLSR, to show how long it takes the OLSR protocol to recover (flexibility
analysis). We verify our system for all network topologies up to five nodes for
the two first properties mentioned earlier and sketch some malfunctioning of
OLSR protocol as well as propose some modifications in order to overcome
the problematic behaviour. We show that OLSR can not always deliver in-
jected data packets via shortest paths when analysing OLSR functionality
in static networks. Another malfunctioning of OLSR is concerned with its
recovery time, meaning that OLSR needs a long period of time to be recov-
ered after link failures even in small networks consisting of five nodes. This
shows also the power of model checking technique in finding fundamental
flaws of systems.

4.2 Paper II: Improved Recovery for Proactive, Dis-
tributed Routing

In this paper [40], we propose solutions to overcome the long recovery time
of OLSR protocol by introducing a new type of message, namely ERROR
message and modifying the OLSR w.r.t. timing constraints. We model and
verify our proposed solution employing the Uppaal model checker in order
to have a rigorous and precise analysis. We show that the recovery time
of OLSR, due to link failures can be reduced to half. We illustrate our
findings with a simpler formal model having a reduced state space and time
for verification.

Our model containing our proposed modifications is verified in two set-
tings: the static and dynamic networks. In the first case, we are interested in
verifying the same properties verified for the original specification of OLSR
described above to later compare how efficient our modifications are. There-
fore, we check the route discovery and packet delivery properties, respec-
tively, to verify whether or not the protocol establishes a route from a source
node to a destination node as well as to verify if an injected packet to a
source node is destined to its destination node (reliability analysis). In the
second case, we deal with the recovery time of OLSR (flexibility analysis).
We carry out the experiments in networks consisting of five nodes as for the
model based on the original OLSR specification. We show that our solutions
lead to a faster detection of broken links and to decreasing the recovery time
of OLSR while the required properties of OLSR are preserved.
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Figure 4.1: Our Event-B model of [41]

4.3 Paper III: Modelling Link State Routing in
Event-B

In this paper [41], we focus on providing reusable models for routing pro-
tocols as well as verifying the OLSR protocol in larger networks using the
Event-B formalism. We address the complexity of the OLSR protocol by
dividing it into smaller components defined as contexts and machines in
the system model. We start from an abstract model, introducing a simple
routing process in which a single packet is sent between two directly con-
nected nodes. In the next refinement steps, we add more details into the
system model and make it stepwise more concrete. We verify our system
requirements in each step before refining it to a more concrete model and
we prove that the more concrete models refine the more abstract ones. Our
model consists of five distinct layers of abstraction introducing five machines
and two contexts (shown in Figure 4.1). In this figure, context C1, acces-
sible by machine M2, extends context C0, accessible by machine M0. The
most detailed (concrete) machine M4 is the result of four refinement steps as:
M0 vM1 vM2 vM3 vM4.

We design an understandable and manageable model that is generic for
proactive routing in the first refinement steps and becomes more specific to
OLSR protocol in the last refinements. Therefore, the first abstract models
can be reused for modelling and verifying other routing protocols. In addi-
tion, we do not have the problem of scalability when modelling the system in
Event-B since we define the number of nodes in the network as a parameter,
e.g., n. We verified our system model for three main properties of OLSR:
route establishment, packet delivery and optimal route finding (reliability
and flexibility analysis). The first two properties, i.e., route establishment
and packet delivery properties, were satisfied as it was expected (was shown
in previous works above). The last property w.r.t. finding optimal routes
cannot be proved suggesting that OLSR does not necessarily find the optimal
route.
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Uppaal Event-B
Specification language Time automata, C-like Set theory, guarded

language commands language
Variable update Transition: selection guard Event: parameter guard

update action
Modularity Divided into several automata Divided into several

at the same level of abstraction machines at different
levels of abstraction

Verification CTL automatically providing First-order logic
counterexamples automatically and

interactively no
counterexamples

Scalability Small-scale systems (finite) Large-scale systems
(infinite)

Real time Precisely models timing Partially models timing
variables (continuous time) variables (discrete time)

Table 4.1: Overview of Uppaal and Event-B comparison

4.4 Paper IV: Uppaal vs Event-B for Modelling Op-
timised Link State Routing

In this paper [42], we carry out a general study on comparing both techniques
that we used in our previous studies, i.e., Uppaal and Event-B, in order to
determine which formalism can be employed when designing formal generic
and reusable frameworks for routing protocols as our long term goal. First,
we compare different models of OLSR protocol that we modelled and ver-
ified applying Uppaal and Event-B, and then we concentrate on describing
different aspects of each formalism.

Our comparison w.r.t. the models deals with the following criteria: which
parts of the protocol could be modelled, e.g., core functionality, which prop-
erties can be defined, what size of networks can be defined, and what data
structures can be used to precisely express the behaviour of the protocol.
Our study on comparing the employed techniques focuses on the specifica-
tion language, updates of variables, modularity, verification (reliability and
flexibility analysis), scalability, and real-time characteristic shown in Table
4.1. Our study provides a guideline on when to use each formalism for
modelling and verifying communication protocols. In this paper, we point
out on strengths and limitations of each technique in the context of routing
protocols.
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loss=0% loss=10% loss=30% loss=40%
DYMO 0.99 0.99 0.89 0.65

AODVv2-16 0.99 0.98 0.72 0.45

Table 4.2: Route establishment on 3x3 grid networks.
loss 0% loss 10% loss 30% loss=40%

DYMO 37.27 37.42 34.68 31.27
AODVv2-16 34.01 34.38 34.57 31.66

Table 4.3: Route quantity on 3x3 grid networks.

4.5 Paper V: AODVv2: Performance vs. Loop Free-
dom

In this paper [39], we concentrate on analysing and comparing two versions
of the reactive routing protocol AODV in Uppaal SMC. The focus of our
work is on Dynamic MANET On-demand (DYMO) and Ad-hoc On-demand
Distance Vector version2 (AODVv2) routing protocols. We formalise the core
functionality of both DYMO and AODVv2 protocols in Uppaal SMC for 3x3
grid topologies (9 nodes). While the model for AODVv2 is completely new,
the model for DYMO is an improved version of those appearing in [31] and
[21].

In both models, we consider a probabilistic model in order to model wire-
less communication behaviour, e.g., possible message loss and link failures
(flexibility analysis). We compare the functionality of both protocols for four
different properties: route discovery (Table 4.2), number of found routes (Ta-
ble 4.3), optimal route finding (Table 4.4), and packet delivery (Table 4.5)
(reliability analysis). Field loss in all tables represents the probability of
losing messages in the network. Results show that the older DYMO protocol
outperforms the most recent AODVv2 protocol, meaning that AODVv2 is
paying the price of degraded performance compared to DYMO. We believe
that it was the intention of protocol designers to accept the performance hit
in order to keep AODVv2 as a loop-free protocol (Table 4.6).

loss 0% loss 10% loss 30% loss=40%
DYMO 0.94 0.84 0.67 0.48

AODVv2-16 0.95 0.86 0.58 0.37

Table 4.4: Optimal routing on 3x3 grid networks.
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loss 0% loss 10% loss 30% loss=40%
DYMO 0.99 0.98 0.78 0.50

AODVv2-16 0.99 0.97 0.60 0.35

Table 4.5: Packet delivery on 3x3 grid networks.
loss 0% loss 10% loss 30% loss 40%

DYMO 1 2 2 2
AODVv2-16 0 0 0 0

Table 4.6: Number of loops in different configurations.

4.6 Paper VI: Adaptive Formal Framework for
WMN Routing Protocols

In this paper [37], we present a generic, adaptive and reusable framework as
well as crucial generic properties regarding routing protocol requirements, in
order to precisely model and formally verify WMN routing protocols. Since
formal modelling and verification of routing protocols emerge as challeng-
ing tasks and this stage of development is often skipped by the protocol
designers, we put our effort on providing the adaptive framework. In this
way, protocol designers can import the generic models and alter them based
on protocol specifications and verify routing protocols prior to implementa-
tion. For these purposes, we employ Uppaal SMC for the following reasons:
it overcomes the scalability problem of classical Uppaal, the limitation of
Event-B for modelling timing aspects of protocols is not an issue in Uppaal
SMC (it is possible to define timing constraints), it provides support for
quantitative and qualitative analysis, and wireless communication can be
simply modelled.

In our framework the main components defining a routing protocol are
as following: communication between nodes, topology of the network and its
changes (flexibility analysis), behaviour of each node (broadcasting, queue-
ing, processing, discarding control messages, etc) and verification (shown in
Figure 4.2). The behaviour of each node is also categorised into subcom-
ponents: queue of a node that buffers messages, handler of a node that is
responsible for tasks such as processing messages, storing information, etc, a
generator which is unique to proactive protocols that broadcast control mes-
sages periodically, and timers that are used for the sleeping mode of nodes.
The generic properties deal with the main requirements of WMN routing
protocols. They are divided into three main properties w.r.t. the reliability
analysis, e.g., if a route is established from a source node to a destination
node (route establishment), how populated the routing tables of nodes are
and how much information is provided in these tables (total knowledge of
network), and if a data packet is delivered from a source node to its destina-
tion node (packet delivery). We show the applicability of our framework by
modelling three routing protocols of WMNs, namely BATMAN, OLSR and

28



Nodes

Communication
gl

ob
al  Message type definitions

 Channels for each message type
 Meta variables for exchanging values

Generator (proactive)

au
to

m
at

on

 Generate control messages at regular 
intervals.

Queue (proactive/reactive)

gl
ob

al  Channel for synchronizing with
Handler

lo
ca

l  Buffer
 Methods for adding and deletion

of messages

au
to

m
at

on  Receiving messages 
 Includes loss
 Passing to handler

Topology

gl
ob

al

 Connectivity matrix
 Methods to add or delete 

connections
 Method to check whether 

nodes are connected

lo
ca

l

 Clock for topology changes

au
to

m
at

on

 Model for adding or removing 
connections

Handler (proactive/reactive)

gl
ob

al  Channel for synchronizing with
Queue

 Routingtable

lo
ca

l

 Current message
 Clock for processing delay
 Methods update routing table
 Methods to create messages
 Methods to check whether 

message should be dropped. 

au
to

m
at

on  Receiving from Queue
 Dropping messages
 Processing, and sending of new 

messages.

Verification

gl
ob

al  Variables for bookkeeping
 Methods for properties
 Methods to be used by tester

lo
ca

l  Variables for bookkeeping
 Methods for properties

au
to

m
at

on

 Test automaton

Timers (optional)

gl
ob

al  Flag for restart and expired timers
 Urgent restart channel

lo
ca

l  Boolean for running timer
 Array of clocks

au
to

m
at

on  Invariant for running timer
 Restart 
 Expiring timer

Figure 4.2: Generic structure of a WMN routing protocol model for verifi-
cation, with respect to typical structure of an Uppaal model.

AODVv2 applied in 3x3 grid topologies. Similarity of the results from em-
ploying our framework with the results from the original models of protocols
verifies the adaptability of our framework.
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5. Related Approaches

In this section, we present existing literature that is relevant to this disser-
tation. We outline relevant formal approaches employed in order to specify,
analyse and verify wireless networks and their routing protocols. The rele-
vant formal techniques in this dissertation are categorised into three groups:
model checking, statistical model checking and theorem proving techniques.
Formal techniques allow both complex systems, and a set of requirements
for these systems, to be modelled mathematically. The formal model of
wireless networks and their routing protocols can then be rigorously checked
against their formal specification. In the following, we present several studies
that have been carried out using these techniques for the analysis of wireless
networks and their protocols.

5.1 Model Checking

Model checking techniques have been used in several studies in the con-
text of wireless networks. Fehnker et al. [24] applied the Uppaal model
checker [10] to analyse qualitative properties of the AODV protocol [55] in
all networks topologies containing up to 5 nodes. Their Uppaal model of
the AODV protocol is based on a process-algebraic model [25], reflecting the
specification of the protocol accurately and precisely, however abstracting
the timing behaviour of AODV. They have reported on some problematic
and unusual behaviour of the AODV protocol with the assistance of Uppaal
model checker. Their study shows that protocols limitations can be discov-
ered and their improved variants can be developed when applying model
checking technique.

Chiyangwa and Kwiatkowska [16] applied Uppaal model checker to com-
plement the other existing analysis of the AODV protocol. They modelled
the AODV behaviour together with its timing aspects and investigated con-
sequences of protocol parameters on the timing aspects of the protocol and
verify system requirements such as timed route discovery and timed message
delivery for a linear topology containing 14 nodes. Their results show that
the lifetime of routes is dependent on the network size and they proposed a
modification so that route timeouts can be adapted to network growth.
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Chaudhary et al. [15] formally modelled the BATMAN routing proto-
col [48] applied in wireless mesh networks using the Uppaal model checker.
Their formalisation revealed several inconsistencies and ambiguities in the
corresponding BATMAN RFC. They focused on developing two models. The
first model implements a literal reading of the BATMAN RFC which reflects
the closest interpretation to the RFC whereas the second model focuses on
BATMAN underlying concepts. They verified their basic untimed mod-
els in order to ensure loop-freedom, bidirectional link discovery, and route-
discovery for a network consisting of 4 nodes located in a ring topology.
They have also simulated a timed model of BATMAN in order to compare
the performance and show that both models behave similarly when the time
and number of required messages for route discovery matters. Based on
their analysis, their alternative model improves the literal interpretation of
the RFC by identifying significantly lower number of suboptimal routes.

Fehnker et al. [26] modelled and verified a medium access control proto-
col, the LMAC protocol [60], for wireless sensor networks employing Uppaal
model checker. They have focused on systematically analyse all connected
network topologies containing 4 and 5 nodes. Their study was conducted to
detect and resolve collisions in such networks, providing valuable insight of
the protocol. Results show that the protocol is not always able to detect col-
lisions, i.e., no guarantee for collision detection for all scenarios. They have
improved the protocol by decreasing the number of undetected collisions that
prevent connection to the gateway.

The focus of the outlined studies is on verification of different routing
protocols of wireless networks and shows the importance of protocol verifica-
tion in this context. These studies also show that fundamental flaws in these
systems can appear even in networks with small number of nodes using the
model checking technique. The aim of this dissertation has been on the same
line as these previous works, targeting the OLSR and AODVv2 protocols.

Steele and Andel [62] carried out a study of the OLSR protocol employing
the model checker Spin [33]. They modelled the behaviour of the OLSR in
Spin (Promela language) and then applied Linear Temporal Logic (LTL) to
analyse the correct functionality of the protocol. They verified their system
for the following properties: correct route discovery, correct relay selection,
and loop freedom. Due to state space explosion, they analysed the network
topologies up to 4 nodes. When taking symmetries into account they have
analysed 17 topologies. Moreover, a timing analysis is not possible using
Spin. Therefore, the model provided by Steele and Andel abstracts from
timing; as we had shown, analysing OLSR with time variables reveals more
shortcomings.

Liu et al. [43] presented a formal modelling framework for MANETs
consisting of several mobility models together with wireless communication
applying Real-Time Maude [52] (a formal specification for analysis of real-
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time systems). They analysed the AODV protocol using their framework
and their mobility models. Their framework mainly focuses on integrating a
number of mobility models together with wireless communication.

5.2 Statistical Model Checking

Continuing this line of research in formal methods community, Höfner and
McIver [31] made a comparison of the AODV and DYMO [56] (evolution
of AODV) protocols on arbitrary networks up to 5 nodes applying Uppaal
SMC [22]. They modelled and verified their systems considering perfect
communication among nodes. Their analysis on five node networks shows
that the more recent DYMO protocols has worse performance compared to
older AODV protocol.

Fehnker et al. [23] proposed a topology-based model for mobility which
abstracts from physical behaviour. They applied Uppaal SMC to model
the mobile node that probabilistically changes the topology. Their proposed
model covers the main features of the random waypoint and random walk
mobility models. They have used their mobility model in combination with
the AODV and LMAC protocols in order to carry out systematic analysis
on these protocols in grid network topologies with respectively, 16 and 9
number of nodes.

These series of studies on the AODV routing protocol have been ex-
tended by adding a mobility model [30] in order to investigate the behaviour
of AODV. They used Uppaal SMC to reason about AODV functionality in
large and mobile scenarios containing 17 nodes (16 static nodes and 1 mo-
bile node) located in a grid topology. Their study shows that some of the
optional features of AODV are not useful and that the protocol encounters
problematic and unexpected behaviour such as route discovery failure with
a high probability.

Dal Corso et al. [21] studied the extended and generalised work done
by [31]. They focused on 4x3 grids with the possibility of lossy communica-
tion. It means that the communication between nodes is defined as lossy and
incoming messages can be lost in the reception of other nodes. They have
employed Uppaal SMC to model the probability of message loss as well as
to reason about more realistic network sizes. They showed contrary results
compared to [31], indicating that DYMO is performing better compared to
AODV in larger networks consisting of twelve nodes.

Fengling et al. [65] proposed a new method for analysing and evaluat-
ing wireless sensor network protocols employing statistical model checking.
They have modelled wireless sensor network protocols as stochastic timed au-
tomata that deal with message loss and dynamic network topology (realistic
wireless network characteristics). They studied the Timing-sync protocol for
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wireless sensor networks having 3 to 20 number of nodes in order to show
the feasibility and scalability of their method.

Battisti et al. [8] employed Uppaal SMC in order to investigate the
robustness of gMAC protocol, a distributed clock synchronisation protocol
for wireless sensor networks, in case of lossy communication. Their analysis
is carried out on two settings based on classes of regular network topologies;
1) cliques: fully connected networks with arbitrary number of nodes and 2)
small grids: same degree nodes with 25 number of nodes in a grid topology.
Their results show that the probability that the protocol fails to synchronise
the nodes is high when lossy communication is allowed in such networks.

The studies above present the power of statistical model checking in
quantitative and qualitative analysis of large networked systems where prob-
abilistic choices play important roles. We employed this formal technique in
order to analyse AODVv2 and DYMO behaviour as well as to propose our
generic framework for modelling, analysing and verifying network routing
protocols.

5.3 Theorem Proving

There are several studies using theorem proving techniques in the context of
wireless networks. Kamali et al. [36] applied refinement technique in order
to formally model and analyse wireless sensor-actor networks. They have
provided proofs showing that failed actor links can be temporarily replaced
by communication via the sensor infrastructure, listing some assumptions.
Applying refinement approach, they were able to prove that this recovery is
correct and it terminates in a finite number of steps. They also generalised
their formal development strategy in order to provide a reusable framework
that can be applied for wider class of networks. They employed the Event-B
formalisation based on the theorem proving technique and discharged their
proof obligations using the RODIN platform (the integrated development
framework for Event-B).

Méry and Singh [45] modelled the DSR protocol in a stepwise manner
applying the Event-B formalism in order to analyse and reason about the
behaviour of this protocol. Their refinement falls into 5 refinement steps
starting from a very abstract model and gradually adding details into more
concrete models. They have presented the system requirements w.r.t. the
safety and liveness properties by defining them as invariants. Defined prop-
erties are established by proof of invariants, refinement of events, etc, using
the Rodin platform.

Bhargavan et al. [13] employed the HOL theorem prover [28] together
with the SPIN model checker [32] in order to analyse and verify properties
of routing protocols in ad-hoc networks. They have focused on verifying the
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AODV protocol, resulting in identifying errors in the specification of AODV
that can cause a deadlock in the system.

Gawanmeh [27] applied Event-B formalism in order to model and verify
the ZigBee protocol used for communication in wireless sensor networks.
The protocol has been modelled at different levels of abstraction, precisely
modelling the protocols primitives.

In order to model, verify and reason about wireless networks and their
protocols with large number of nodes, the authors of previous papers have
been employing the theorem proving technique. These papers show the im-
portance of verification in the context of wireless networks and their protocols
in order to ensure the correctness of such systems. We have continued this
line of research by modelling the OLSR protocol in Event-B and ensuring its
correctness in arbitrary networks with n number of nodes.
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6. Discussion

In this section, we present the main achievements in this dissertation as well
as outline our future research directions.

6.1 Summary

In this dissertation, we contributed at rigorously analysing and verifying
different routing protocols of wireless mesh networks in order to ensure their
reliability and flexibility. In case of unexpected behaviour or malfunctioning
of the protocols, we proposed corresponding modifications to overcome those
problems. As our long term goal, we developed an adaptive, generic and
reusable formal framework for modelling as well as generic properties for
verifying routing protocols of such networks. Our research approach consists
of employing formal techniques in order to achieve our goals.

6.2 The Challenge

A very challenging task when studying wireless mesh network routing proto-
cols is encountering prohibitively complex and often ambiguous specification.
The complexity of the specification should be addressed while the model of
the system still reflects the system behaviour correctly. The ambiguity of the
specification should be addressed in the way that only one interpretation can
be concluded after the model is built to be able to have a rigorous analysis
of the system. Also in order to provide a generic and adaptive framework
that can be reused when modelling and verifying other routing protocols,
main characteristics and requirements of such networks should be precisely
specified.

Another challenge is dealing with scalability as specification of protocols
usually exceeds hundred pages. Modelling all protocol aspects in a detailed
manner leads to models that are too large to be handled by automated ver-
ification. Therefore, the key challenge here is to deal with this problem of
the “curse” of dimensionality. The protocol models require to be comprehen-
sive enough in order to reflect the fundamental aspects of the protocols, the
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aspects that are essential for the protocols to perform based on their spec-
ification. Often adding one more feature to the protocol models can make
them unmanageable to analysis and verify—the so-called state-space explo-
sion problem [18]. This is due to the exponential growth of the state space
in the number of components and model variables. In order to overcome this
challenge we applied abstraction.

6.3 What we have achieved

Our aim has been to develop a framework for analysing and verifying rout-
ing protocols of wireless mesh networks. The framework can be used by
protocol designers to ensure the reliability and flexibility of protocols prior
to deploying them in real life. Therefore, we provide:

1. A generic, adaptive and reusable formal development of such systems

2. Precise generic and reusable properties for rigorous quantitative and
qualitative analysis

In order to achieve this aim, we have developed the following artefacts:

A) Formal analysis of different categories of routing protocols to get in-
sights from each protocol group, employing different formalisms ([38],
[40], [41], [39]).

B) A guideline on applicability of two formal frameworks (Uppaal and
Event-B) that were applied for formal modelling and verification of
protocols ([42]).

C) A formal generic model for rigorous analysis of routing protocols ([37]).

D) Methods and requirements for analysing wireless mesh network routing
protocols ([37]).

Artefact (A), formal analysis of different categories of routing protocols,
consists of providing formal models of different categories of protocols using
different formalisms in order to formally analyse them and possibly improve
them. This has been done to get insights about how different categories of
protocols (reactive and proactive) function and to document main character-
istics of these protocols which help us to achieve our goals (mentioned above
(1) and (2)).

Artefact (B), a guideline on when to use different formal techniques (Up-
paal and Event-B) in the context of wireless networks, presents pros and cons
of each formalism when modelling and analysing network routing protocols,
assisting us to choose appropriate formalism to achieve our goals (1) and (2).
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Artefact (C), a formal generic model for rigorous analysis of routing pro-
tocols, contains high-level generic models in automata-based templates to
specify wireless mesh network routing protocols, both reactive and proactive,
that can be adapted based on a particular protocol. Formal development of
the protocol will not start from scratch, but from applying the generic model.
Therefore, this artefact is served as an answer to our goal (1).

Artefact (D), methods and requirements for analysing wireless mesh net-
work routing protocols, provides the main routing protocol’s requirements
stated as properties in CTL and MITL syntaxes. These properties together
with the adapted model are applied to rigorously analyse routing protocols
quantitatively and qualitatively. So, this artefact is served as an answer to
our goal (2).

6.4 Strengths and Limitations

In this dissertation, our main concerns were on how to deal with complexity
and scalability when modelling the selected routing protocols. How should
we model our systems in a way that they reflect the behaviour of the systems
correctly while still keeping the models manageable to verify? The specifi-
cations of both routing protocols, OLSR and AODV, reach approximately
hundred pages. Therefore, we had to abstract away from the optional features
and only focused on modelling the core functionality of protocols, i.e., those
functionalities that are necessary for the protocols to perform as intended
by their specifications.

Using Uppaal, we were able to deal with the timing behaviour, wireless
communication, and complex data structure of routing protocols. Also, the
Uppaal GUI and Uppaal simulator provide a visualised interpretation of the
system which makes the task of modelling easier. Since Uppaal carries out an
exhaustive exploration of the state space of the model in order to guarantee
that the system does not violate system requirements (properties), we were
only able to analyse our models for small networks as the states space was
exploding when having larger networks.

Event-B was an alternative to tackle the state space problem of Uppaal
model checker (verifying the system for arbitrary number of nodes) and to
manage the complexity of the routing protocols into distinct abstraction lay-
ers. However, Event-B does not automatically support the timing feature of
protocols (it is possible to model the time only discretely). So, we abstracted
away from the timing aspect when modelling our system in Event-B. Another
limitation of both formalisms, i.e., Uppaal model checker and Event-B, is
that we were not able to deal with probability analysis, e.g., message loss in
the network.

We used Uppaal SMC as the substitution to overcome the state space
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explosion of Uppaal model checker, timing issue of Event-B and probability
issue of both formalisms. Using Uppaal SMC, we were able to model timing
and probability for larger networks and carry out quantitative and qualitative
analysis. However, Uppaal SMC does only give us a 99% guarantee of the
results.

6.5 Future Directions

We have several possible directions to work on for the future. We have
presented a generic framework for modelling wireless mesh networks rout-
ing protocols, and generic properties for analysing and verifying them. One
possible research direction may consist of further extending of our current
framework, adding other features of such protocols. For instance, we can
analyse non-functional properties of wireless protocols, such as efficiency:
expected energy consumption, etc. We will concentrate on two main aspects:
battery depletion in wireless stations, and energy consumption within par-
ticular protocol mechanisms applying Probabilistic Timed Automata (PTA)
[9] with prices [11]. PTA extend timed automata [4], the most successful
formal model for timing-sensitive systems such as wireless protocols, with
discrete probabilistic branching. In turn, PPTA extend PTA with costs that
linearly grow with the residence time in states.

We are in particular interested in reasoning about unknown parameters
in wireless systems. That is, the probabilities in the system do not neces-
sarily need to be fixed, and can instead be given as expressions over some
set of model parameters [20]. As an example, message loss in the network
can be defined as a parameter. This is extremely useful if precise loss rates
are not known, e.g., in early design stages. A message can be received with
probability p and lost with probability 1 − p, and now we are interested
in calculating the probability values of p for which route discovery is suc-
cessful in the network. This probability can be defined as a function in p.
By inserting a suitable value for p, we obtain a concrete model without pa-
rameters. Parameter synthesis determines all parameter valuations where
the probability of route discovery is more than a priori specified threshold.
Parameter synthesis gives provable – and not just statistical – guarantees.
By synthesising parameters fulfilling requirements optimally, we will also be
able to optimise reliability, flexibility and efficiency e.g., minimising expected
energy consumption.
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Abstract. As (network) software is such an omnipresent component of
contemporary mission-critical systems, formal analysis is required to pro-
vide the necessary certification or at least formal assurances for these sys-
tems. In this paper we focus on modelling and analysing the Optimised
Link State Routing (OLSR) protocol, a distributed, proactive routing
protocol. It is recognised as one of the standard ad-hoc routing protocols
for Wireless Mesh Networks (WMNs). WMNs are instrumental in crit-
ical systems, such as emergency response networks and smart electrical
grids. We use the model checker Uppaal for analysing safety properties
of OLSR as well as to point out a case of OLSR malfunctioning.

1 Introduction

Routing is at the centre of network communication, which in turn, is part of
the backbone for numerous safety-critical systems. Examples are networks for
telecommunication systems, for emergency response, or for electrical smart grids.
In these and other examples, the communication is often truly distributed, with-
out depending on any central entity (router) for coordination. Another important
characteristics of these networks is that the network topology can change: in the
case of emergency networks nodes might just fail; in case of telecommunication
systems nodes such as laptops and mobile phones can move within the network,
and even enter or leave a network. In this paper we focus on distributed routing
mechanisms in such wireless networks; due to their wide-spread usage in critical
systems, we aim at a formal model, which paves the way for a formal analysis.

A routing protocol enables node communication in a network by dissemi-
nating information enabling the selection of routes. In this way, nodes are able
to send data packets to arbitrary (previously unknown) destinations in the net-
work. Shortcomings in the routing protocol immediately decrease the perfor-
mance and reliability of the entire network. Due to the possibility of topology
changes information has to constantly be updated to maintain the latest routing
information within the network. In this paper we focus on such self-organising
wireless multi-hop networks which provide support for communication without
relying on a wired infrastructure. They bear the benefit of rapid and low-cost

c© Springer International Publishing Switzerland 2015
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network deployment. The Optimised Link State Routing (OLSR) protocol [4], a
proactive routing protocol, is identified as one of the standard routing protocol
for Wireless Mesh Networks (WMNs) by the IETF MANET working group.1

By distributing control messages throughout the network, proactive protocols
maintain a list of all destinations together with routes to them.

Traditionally, common methods used to evaluate and validate network proto-
cols are test-bed experiments and simulation in ‘living lab’ conditions. Such an
analysis is usually limited to very few topologies [7]. In such experiments not only
the routing protocol is simulated, but also all other layers of the network stack.
When a shortcoming is found, it is therefore often unclear whether the limitation
is a consequence of the routing protocol chosen, or of another layer, such as the
underlying link layer. In this paper, we abstract from the underlying link layer;
hence a shortcoming found is definitely a problem of the routing protocol.

Another problem with specifications in general and with the description of
OLSR in particular is that specifications are usually given in English prose.
Although this makes them easy to understand, it is well known that textual
descriptions contain ambiguities, contradictions and often lack specific details. As
a consequence, this might yield different interpretations of the same specification
and to different implementations [9]. In the worst case, implementations of the
same routing protocol are incompatible.

One approach to address these problems is using formal methods in general
and model checking in particular. Formal methods provide valuable tools for
the design, evaluation, and verification of WMN routing protocols; they comple-
ment alternatives such as test-bed experiments and simulation. These methods
have a great potential on improving the correctness and precision of design and
development, as they produce reliable results. Formal methods allow the formal
specification of routing protocols and the verification of the desired behaviour
by applying mathematics and logics [3]. In this way, stronger and more general
assurances about protocol behaviour can be achieved.

In this paper we present a concise and unambiguous model for the OLSR
protocol. The model is based on extended timed automata as they are used by
the model checker Uppaal. As a consequence we report also on results of applying
model checking techniques to explore the behaviour of OLSR. Model checking
(e.g. [3]) is a powerful approach used for validating key correctness properties in
finite representations of a formal system model.

The paper is structured as follows: in Sect. 2, we overview the OLSR protocol
and in Sect. 3 we shortly discuss the Uppaal model of OLSR based on RFC 3626 [4].
Section 4 is the core of our paper where we present the results of our analysis. We
review related work in Sect. 5 and propose future research directions in Sect. 6.

2 Optimized Link State Routing—An Overview

The Optimised Link State Routing (OLSR) protocol [4] is a proactive routing
protocol particularly designed for Wireless Mesh Networks (WMNs) and Mobile

1 http://datatracker.ietf.org/wg/manet/charter/.
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Ad hoc Networks (MANETs). The proactive nature of OLSR implies the benefit
of having the routes available at time needed. The underlying mechanism of this
protocol consists in the periodic exchange of messages to establish routes to pre-
viously unknown destinations, and to update routing information about known
destinations. OLSR works in a completely distributed manner without depend-
ing on any central entity. The protocol minimises flooding of control messages
in the network by selecting so-called Multipoint Relays (MPRs). Informally, an
MPR takes over the communication for a set of nodes that are one-hop neigh-
bours of this node; these one-hop neighbours receive all the routing information
from the MRPs and hence do not need to send and receive routing information
from other parts of the network.

Nodes running OLSR are not restricted to any kind of start-up synchronisa-
tion. Every node broadcasts a HELLO message every 2 s and detects its direct
neighbour nodes by receiving these messages. Since HELLO messages contain
information about all one-hop neighbours of the originator, receiving nodes can
establish routes to their two-hop neighbours, too. HELLO messages traverse only
one wireless link (a single hop), and are not forwarded by any node.

After receiving HELLO messages from direct neighbours, every node selects
a particular one-hop neighbour, its MPR, and selected MPRs are aware of those
nodes that have selected them as an MPR. MPRs broadcast Topology Control
(TC) messages every 5 s to build and update topological information. These mes-
sages are retransmitted (forwarded) through the entire network by MPRs. This
means that if a node is not an MPR and receives TC messages, it processes those
messages, but will not forward them. Every TC message contains the routing
information provided by the originator. While receiving control messages from
other nodes, every node updates its routing table according to the information
received. After broadcasting and forwarding control messages via nodes, routes
to all reachable destinations should be established by all nodes. Nodes can use
the established routes to send data packets through the network.

Information stemming from HELLO messages is considered valid for 6 s (three
times the interval between sending HELLO messages); information from TC mes-
sages for 15 s (three times the interval between sending TC messages). Routing
table entries are marked as invalid if these times have passed.

More details about OLSR can be found in its specification [4]; a concrete
example of OLSR running on a topology of 5 nodes can be found in [13].

3 Modelling OLSR in Uppaal

Uppaal [1,15] is a well-established model checker for modelling, simulating and
verifying real-time systems. It is designed for systems that can be modelled as
networks of (extended) timed automata. We use Uppaal for the following reasons:
(i) it provides two synchronisation mechanisms: broadcast and binary synchro-
nisation; (ii) it provides common data structures, such as structs and arrays,
and a C-like programming language—these features are used to model routing
tables and update-operations on such tables; last, but not least, (iii) Uppaal
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provides mechanisms and tools for considering timed variables—this is needed
since OLSR highly depends on on-time broadcasting of control messages. In the
remainder, we describe Uppaal to the extent needed in this paper.

3.1 Uppaal’s Timed Automata

The modelling language of Uppaal extends timed automata with various features,
such as types and data structures [1]. A system state is defined as the value of
all local and global variables. Every automaton can be presented as a graph with
locations (nodes) and edges between these locations together with guards, clock
constraints, updates and invariants. Clocks are variables that evaluate to real
numbers and that are used in order to measure the time progression.

Each location may have an invariant, and each edge may have a guard, a
synchronisation label, and/or an update of some variables. Guards on transitions
are used to restrict the availability (enabledness) of transitions. Synchronisation
happens via channels; for every channel a there is one label a! to identify the
sender, and a? to identify receivers. Transitions without a label are internal; all
other transitions use one of the two following types of synchronisation [1].

In binary handshake synchronisation, one automaton that has an edge with
a !-label synchronises with another automaton with the edge having a ?-label.
These two transitions synchronise only when both guards hold in the current
state. When the transition is taken, both locations will change, and the updates
on transitions will be applied to the variables; first the updates will be done on
the !-edge, then the updates occur on the ?-edge. When having more than one
possible pair, the transition is selected non-deterministically [1].

In broadcast synchronisation, one automaton with an !-edge synchronises
with several other automata that all have an edge with a relevant ?-label. The
initiating automaton is able to change its location, and apply its update if and
only if the guard on its edge is satisfied. It does not need a second automaton
to synchronise with. Matching ?-edge automata must synchronise if their guards
evaluate to true in the current state. They will change their location and update
their states. First the automaton with the !-edge updates its state, then the other
automata follow. When more than one automaton can initiate a transition on
an !-edge, the process of choosing occurs non-deterministically [1].

Uppaal’s verifier uses Computation Tree Logic (CTL) (e.g. [6]) to model
system properties. CTL offers two types of formulas: state formulas and path
formulas. State formulas describe individual states of the model, while path for-
mulas quantify over paths in the model. A path contains an (infinite) sequence
of states. In this paper we employ the path quantifier A and the temporal opera-
tor G. Aφ means that the formula φ holds for all paths starting from the current
state. Gφ means all future states (including the current one) satisfy φ. Formulas
combine the path quantifies and the temporal operators, e.g. AGφ holds if φ
holds on all states in all paths originating from the current state. This is also
denoted as A[]φ in Uppaal [1].
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isconnected(sip,ip)

(nextmsg()!=NONE)&&
idle[ip]

isconnected(sip,ip)

imsg[ip]!

sip:IP

dip:IP

sip:IP

addmsg(msgglobal)addmsg(msgglobal)

create_add_packet(ip,dip)

htc[sip]?

packet[ip][dip]?
msgglobal=msglocal[0],
deletemsg()

pkt[sip][ip]?

Fig. 1. The Queue automaton.

3.2 A Uppaal Model of OLSR

We now present an overview of our OLSR model. The model is described in
detail in [13] and can be downloaded at hoefner-online.de/sefm15/. We model
OLSR in Uppaal as a parallel composition of identical processes describing the
behaviour of single nodes of the network. Each of these processes is itself a
parallel composition of two timed automata, Queue and OLSR.

The Queue automaton (depicted in Fig. 1) has been chosen to store incoming
messages from other (directly connected) nodes. In other words, it denotes the
input buffer of a node. The received messages are buffered and then, in turn, send
to the OLSR automaton for processing. Both actions on the top of Fig. 1 receive
messages from other nodes in the network while the action on the lower right of
Fig. 1 receives data messages from the same node. Messages can only be received
if a node ip is connected to the sender sip. The channel htc[sip] receives a
broadcasted message (HELLO or TC) from sip and stores the message to a local
data queue, using the function addmsg. Both pkt and packet are handshake
synchronisations and handle data messages travelling through the network and
new messages injected by a client, respectively. Whenever the message-handling
routine OLSR is ready to handle a message (idle[ip]), a message is moved from
the message queue to OLSR, using the channel imsg.

OLSR models the complete behaviour of the routing protocol as described
in [4]. It consists of 14 locations and 36 transitions precisely modelling the
broadcasting and handling of the different types of messages. OLSR is busy while
sending messages, and can accept a new message from Queue only once it has
completely finished handling a message. Whenever it is not processing a mes-
sage and there are messages stored in Queue, Queue and OLSR synchronise on
the channel imsg[ip], transferring the relevant data from Queue to OLSR. The
automaton uses a local data structure to model the routing table of a node.
Routing tables provide all information required for delivering packets. A routing
table rt is an array of entries, one entry for each possible destination. An entry
is modelled by the data type rtentry:
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typedef struct {
IP dip; //destination address
int hops; //distance (number of hops) to the destination dip
IP nhopip; //next hop address along the path to the destination dip
SQN dsn; //destination dip sequence number

} rtentry;

IP denotes a data type for all addresses and SQN a data type for sequence num-
bers. OLSR uses sequence numbers to check whether received messages are new
or have already been processed. In our model, integers are used for these types.

The predicate isconnected[i][j] denotes a node-to-node communication,
i.e., the nodes are in transmission range of each other. Communication between
nodes happens via channels. The broadcast channel htc[ip] models the prop-
agation of HELLO and TC messages where a message can be received by all
one-hop neighbours. Each node has a broadcast channel, and every node in
the range may synchronise on this channel. We also use the binary channel
packet[i][j] to model the unicast sending of a data packet from i to j; this
packet is generated by the user layer.

To model rigorous timing behaviour, we define 3 different clocks for every
OLSR automaton: t hello and t tc are used to model on-time broadcasting
HELLO and TC messages, and t send models the time consumption for sending
messages. According to the specification of OLSR, Hello messages are sent every
2000 ms. Considering a sending time of 500 ms (in our model time sending =
500), nodes have to broadcast a new message 1500 ms after the last message
was successfully distributed. For each OLSR automaton, we use two clock arrays
t reset rt and t reset rt topo of size N (the number of nodes in the network)
to indicate the expiry time of one-hop and two-hop neighbours, and the expiry
time of nodes which are more than two hops away, respectively.

To provide a realistic network set up, we model each node to send its first
HELLO message non-deterministically between [0, time between hello). After-
wards, whenever t hello reaches time between hello, OLSR resets t hello and
t send to 0 before the HELLO message is broadcast.

Nodes receiving a HELLO message, update their routing tables for the orig-
inator of the message, learn about their two-hop neighbours and select their
MPRs and MPR selectors using the functions updatehello, updatetwohop and
setmpr, respectively. Furthermore, t reset rt is reset for originator of the mes-
sage and its one-hop neighbours, which shows that new information has been
received and this information is valid for 6000 ms.

After MPR nodes have been selected, each of them prepares for broadcasting
TC messages to the connected nodes. TC messages are sent every 5000 ms. When
t tc reaches time between tc, t tc and t send are reset to 0. Then, a TC
message is generated by createtc function and is broadcast to other nodes.

While transferring a TC message from Queue, t reset rt topo is reset to
0 for the originator of the message and its MPR selectors, and if the message
is considered for processing, the routing table is updated for the TC genera-
tor and its MPR selectors, using updatetc and updatemprselector functions,
respectively.
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If the receiver is an MPR then the TC messages can be forwarded. For-
warding messages also takes time in our model, namely time sending. We note
that OLSR might have to broadcast different messages at the same time. As an
example, at some point a HELLO, a TC and maybe a TC to be forwarded are
supposed to be broadcast; the sending time time sending is counted only once
and these messages are broadcast simultaneously. We consider this behaviour
in our model as well. The full model, showing all details, is available online at
hoefner-online.de/sefm15/.

4 Analysis

We analyse properties of the OLSR protocol in two different settings. First, we
assume static network topologies, and then we allow changes in the network.
The first series of experiments focuses on three properties:

(1) route establishment for all topologies up to 5 nodes;
(2) packet delivery in all topologies up to 5 nodes;
(3) route optimality in topologies of up to 7 nodes.

We will show that OLSR does not always find optimal routes and propose a
modification of OLSR that addresses this problem.

For the second series of experiments we assume dynamic network topologies
where an arbitrary link fails. We focus on another property:

(4) the route discovery time, i.e., we investigate the time during which there is
no guaranteed packet delivery.

After analysing the route discovery time, we propose a modification that shortens
this time; this modification will be analysed as well (Property (5)).

Due to the proactive nature of OLSR, our Uppaal model is pretty complex
and contains several clocks, next to a complex data structure. As a consequence,
state space explosion is a problem for our experiments. To address this problem,
we apply different techniques supported by Uppaal to minimise the state space of
our system model [5,16,17]. In particular, our model makes use of priority chan-
nels. By this we can order ‘internal actions’, i.e., actions that are running on a
single node, and that are independent of other nodes and hence the order of the
actions does not matter. For Properties (1), (2), (4) and (5), we give the highest
priority to channels of node a1 and the lowest priority to channels of node a5.

We also take into account symmetries of topologies, i.e., in case two topologies
are isomorphic (up to renaming of nodes), we only analyse one. As a consequence
we can reduce the number of experiments, by assuming, for Properties (1)–(5),
that the originator is always the same node, denoted by OIP1, and the destination
is always DIP1.

For the experiments we use the following set up: 3.2 GHz Intel Core i5, with
8 GB memory, running the Mac OS X 10.9.5 operating system. For all experi-
ments we use Uppaal 4.0.13.
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4.1 Static Topologies

Set Up. In this first series of experiments, we define another automaton, called
Tester1, which injects a data packet to OIP1 to be delivered at destination
DIP1. It is depicted in Fig. 2. It provides a local clock clk, which is used for
invariants and guards. The location-invariant clk <= 3*time_between_tc in
combination with the transition-guard clk >= 3*time_between_tc guarantees
that the packet is injected at time point 3*time_between_tc; hence a couple
of control messages (HELLO and TC) have already been sent and most of the
routes should have been established. The packet is injected to node OIP1 via the
channel packet[OIP1][DIP1].

clk<=3*time_between_tc

clk>=3*(time_between_tc)

final

packet[OIP1][DIP1]!

drop_link

Fig. 2. The Tester1 automaton.

The first property we are going to analyse (Property 1) is route establishment.
It states that if the packet has been injected (Tester1 is in location final), and
all messages have been handled by all nodes (emptybuffers()) then OLSR
has established a route between OIP1 and DIP1. This safety property using the
Uppaal syntax is expressed as

A[] ((Tester1.final && emptybuffers()) imply

node(OIP1).rt[DIP1].nhopip != 0) (1)

Remember that the CTL formula A[]φ is satisfied iff φ holds on all states along
all paths. The variable node(OIP1).rt represents the routing table of the orig-
inator node OIP1 and node(OIP1).rt[DIP1].nhopip expresses the next hop for
the destination DIP1; if the next hop is not 0 a route is established.

The second property, packet delivery, is that if a packet is injected to the
system, it is eventually delivered to the destination DIP1. In Uppaal this can be
expressed as

A[] ((Tester1.final && emptybuffers()) imply

node(DIP1).delivered != 0) (2)

Here, node(DIP1).delivered indicates whether the injected data packet is received
by the destination DIP1. Property 2 is stronger than Property 1 in the sense that
the route is not only established, but it must be correct and used. Moreover this
property implies loop freedom of OLSR, meaning that no packet is sent in cycles
forever, without ever reaching the final destination.

The first two experiments are performed for all topologies up to five nodes,
up to isomorphism and renaming. There are 444 of such topologies.
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The third property, route optimality, checks if OLSR establishes optimal
routes, after broadcasting, forwarding and processing TC messages. In our exper-
iments we measure optimality with regards to shortest routes. Since we have full
control over the topologies we are running the experiments with, we can deter-
mine the shortest possible route. We investigate this property for a ring topology
of 7 nodes, as shown in Table 1.2 Property 3 is expressed as

A[] ((Tester1.final && node(OIP1).a != 0) imply

node(OIP1).rt[DIP1].hops == 3) (3)

Here, node(OIP1).a != 0 indicates whether OIP1 has sent its packet to the next
node along the path to DIP1; node(OIP1).rt[DIP1].hops shows the number of
hops from the originator OIP1 to the destination DIP1 which must be equal to 3.
We also checked Property 3 on all topologies up to 5 nodes. The results, however,
are not of real interest, since not much can go wrong w.r.t. shortest routes. As
a consequence we picked topologies of size 7 to analyse route optimality.

Results. To analyse and verify OLSR, we evaluate Properties (1) and (2) in all
network topologies up to 5 nodes. Property (1) is satisfied for all these networks:
when the Tester1 is in location final, node OIP1 has established a route to
node DIP1. This property confirms the propagation of HELLO and TC messages
and also the correctness of the MPR selection mechanism. Hence, node OIP1 is
ready to send data packets to node DIP1.

As mentioned before, Property (2) is stronger than Property (1). It models
that all nodes have the information about all other nodes in the network, to
deliver their data packets. In theory, the originator node OIP1 could have a
routing table entry for the destination node DIP1, stating that it should send a
packet to its immediate next neighbour along the path to the destination DIP1;
the next node itself might have no information about the destination DIP1, so
all packets for the destination DIP1 stemming from the originator OIP1 would
be lost. However, Property (2) is also satisfied for all topology up to size 5: all
nodes have updated their routing tables in the network; therefore, they are able
to deliver data packets to the arbitrary destination node DIP1.

While performing the analysis of Properties (1) and (2), we also performed
some statistics: the Uppaal verifier analysed in average 1868996 states for each
experiment; the largest one has 5314328 states, and the median is 1688368.
Exploring these state spaces took on average 56 min.

Property (3), which analysis route optimality in topologies of size 7, is not
satisfied. This proves that OLSR is not always able to find optimal routes.

Table 1 illustrates this phenomenon with an example found by Uppaal. In
this example, Tester1 synchronises with the Queue of node a1, which is the
originator OIP1 of the packet. The packet is intended for node a5. At some
point, a5 broadcasts a TC message (here indicated by TC5) to its neighbours
a4 and a6. While a4 forwards the message to a3, a6 is busy working on other

2 There are too many topologies of that size, so we cannot analyse all topologies.
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Table 1. Establishment of non-optimal routes in a 7 node topology

Step 1: Broadcast TC Step 2: Forward TC

a1

a2
a3

a4

a5
a6a7

TC5

TC5

a1

a2
a3

a4

a5
a6a7

TC5

TC5

TC5TC5

Step 3: Update a1.rt[5] Step 4: Drop TC5

a1

a2
a3

a4

a5
a6a7

TC5

TC5

TC5TC5

TC5

a1

a2
a3

a4

a5
a6a7

TC5TC5TC5

stuff and the message is kept in the message queue of a6. The TC message is
forwarded subsequently via nodes a3 and a2 (Table 1: Step 2). As a consequence,
node a1, updates its routing table entry for node a5 (Table 1: Step 3). When a1

receives TC5 via node a7, it has already updated its table for this node, and
drops this message, since it has seen TC5 before. (Table 1: Step 4). By dropping
this message a1 misses out the chance TC5 to establish a shorter route. Similar
examples are found for other routing protocols for WMNs [18].

Dropping a message with the same sequence number follows the specification:

“if there exists a tuple in the duplicate set, where:
D addr == Originator Address,
AND
D seq num == Message Sequence Number
then the message has already been completely processed and MUST not be
processed again.” [RFC3626, page 17]

This text snippet, copied from the RFC, shows that our model reflects the
intention of OLSR; any message which is received and has already been handled
(same sequence number) should be dropped. The idea is that the first mes-
sage received must have travelled via the optimal path, which is not the case.
A simple solution to this problem is to compare the potentially new route versus
the routing table, in case the sequence numbers are the same. To reduce message
flooding the message is only forwarded if the routing table is updated, i.e., if the
hop count is strictly smaller.



Formal Analysis of Proactive, Distributed Routing 185

4.2 Dynamic Topologies

Set Up. In the second series of experiments, we investigate the behaviour of
OLSR after an arbitrary link is removed. Removing a link reflects a change in
the topology. We define an automaton, called Tester2 and depicted in Fig. 3,
which drops the link between the two nodes id_1 and id_2. We assume that
the link breaks after 3*(time between tc + time sending) (in our model at
15000 ms), a time when all nodes have received information about all other nodes
in the network (all routing tables have been updated for all nodes). Upon link
breakage there is no connectivity between these two nodes; yet, each of them
has the information about the other one. The packet, which should be sent from
OIP1 to DIP1 is injected later on. By this we can analyse how quickly OLSR
recovers from topology changes.

clk<=3*(time_between_tc + time_sending) clk<=7*(time_between_tc + time_sending)

clk>=3*(time_between_tc + time_sending)

deliverytest

drop(id_1, id_2)
clk>=7*(time_between_tc + time_sending)
packet[OIP1][DIP1]!

drop_link

Fig. 3. The Tester2 automaton.

Based on RFC 3626 (see box below), the information about one-hop and
two-hop neighbours of a node is valid for 3*REFRESH INTERVAL, which equals
6000 ms; information about nodes which are more than two hops away from
that node is valid for 3*TC INTERVAL, that equals 15000 ms.

“NEIGHB HOLD TIME = 3*REFRESH INTERVAL
TOP HOLD TIME = 3*TC INTERVAL” [RFC3626, page 64]

This means information about one-hop and two-hop neighbours of a node is not
available any longer if their corresponding clocks in the routing table have not
been refreshed during 6000 ms; this indicates the breakage of a link. Also, if a
node has not received TC messages from other MPR nodes for more than 15 s,
information about those nodes is removed from the table.

We consider one desirable property of this protocol which indicates whether
or not the injected packet is delivered at the destination if one link has been
removed. In Uppaal syntax this safety property can be expressed as

A[] ((Tester2.delivery && emptybuffers()) imply

node(DIP1).delivered != 0) (4)

After the topology has been changed and the packet has been injected, the
automaton Tester2 is in location delivery. If then the message buffers are
empty (similar to the experiments described before) then we check if the packet
has been delivered. (node(DIP1).delivered != 0).
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Results. Property (4) is only satisfied for those topologies up to 5 nodes where
the dropped link is not critical. In our model, a link is said to be critical if after
link breakage there is no other link from that node to the other nodes along the
path to the destination to be substituted with the broken one.

This experiment shows that the recovery in these topologies takes around
20 s (between 15000–35000 ms), which is a long period; in particular since we
only consider networks of small size. As a consequence, this means that only
after 35 s, the packet can certainly be delivered. The reasons for this long period
are as following:

– After a link break occurred, some nodes might broadcast control messages
(HELLO or TC) with incorrect (old) information, since nodes have not reset
their tables for those nodes affected by link breakage. Based on RFC 3626,
nodes reset their tables for the nodes from whom no control message is received
after 6 and 15 s, respectively.

– At the time a link breaks, there are usually messages in the queue which need
to be processed. These messages contain again out-dated information. So, the
routing table is updated for the originator and one-hop neighbours of the
message when receiving a HELLO, and for the originator and MPR selectors
of the messages originator upon receiving a TC, even if the link does not exist
anymore.

– Even when some nodes learn about the link breakage and reset the corre-
sponding information in the routing table, it needs time to distribute this
new knowledge.

Modifications. A solution to decrease the long recovery time of OLSR is
to reduce NEIGHB HOLD TIME and TOP HOLD TIME to 2*REFRESH INTERVAL and
2*TC INTERVAL, respectively. To verify our proposal, we consider Property (5).
This property states that refreshing routing tables in our proposed timing helps
to reduce the recovery time.

A[] ((Tester3.delivery && emptybuffers()) imply

node(DIP1).delivered != 0) (5)

Similarly as for Property (4), Property (5) is satisfied for all topologies up to
5 nodes where the dropped link is not a critical link. After 25000 ms, the packet
is definitely delivered at the destination. Therefore, it is feasible to reduce the
recovery time of OLSR about 10000 ms (the difference between 35000 and 25000)
using our proposed timing.

An alternative solution would be the introduction of error messages. As soon
as a link break is identified, an error message should be sent to MPRs to inform
the nodes and to correct the information in the routing tables as soon as possible.
This modification would be in the same spirit as error messages used for other
routing protocols, such as the AODV routing protocol. However, the analysis of
this improvement is left for future work.
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5 Related Work

While modelling and verifying protocols is not a new research topic, attempts to
analyse routing protocols for dynamic networks are still rather new and remain
a challenging task. Model checking techniques have been applied to analyse pro-
tocols for decades, but there are only a few papers that use these techniques in
the context of mobile ad-hoc networks, e.g. [2]. In the area of WMNs, Uppaal
has been used to model and analyse the routing protocols AODV and DYMO,
see [7,8,10]. However, to the best of our knowledge, our study is the first aiming
at a formal model of OLSR core functionality considering time variables.

Clausen et al. [4] specify the OLSR protocol in English prose. This paper is
the official description currently standardised by the IETF. Jacquet et al. [12]
also provide a high-level description of OLSR describing the advantages of this
protocol, when compared to the others. However, none of these papers provide
a formal model or a formal analysis of the protocol.

Steele and Andel [20] provide a study of OLSR using the model checker Spin
[11]. They design a model of OLSR in which Linear Temporal Logic (LTL) is used
to analyse the correct functionality of this protocol. They verify their system for
correct route discovery, correct relay selection, and loop freedom. Due to state
space explosion their analysis is limited to four node topologies only. When
taking symmetries into account they analyse 17 topologies. Moreover, a timing
analysis is not possible by Spin. Hence the model given by Steele and Andel
abstracts from timing; as we have shown analysing OLSR with time variables
reveales more shortcomings.

Fehnker et al. [8] describe a formal and rigorous model of the Ad hoc On-
Demand Distance Vector (AODV) routing protocol in Uppaal; the model is
derived from a precise process-algebraic specification that reflects a common
and unambiguous interpretation of the RFC [19]. Their model is also a network
of timed automata and they analyse network topologies up to 5 nodes. However,
in their original analysis they abstract from time, which was added later on [10].
Although the two protocols AODV and OLSR behave differently, we use the same
modelling techniques and experiments as for AODV, to make the comparison
study of these two protocols feasible for our future work.

Kamali et al. [14] use refinement techniques for modelling and analysing wire-
less sensor-actor networks. They prove that failed actor links can be temporarily
replaced by communication via the sensor infrastructure, given some assump-
tions. They use an Event-B formalisation based on theorem proving and their
proofs are carried out in the RODIN tool platform. There is a strong similarity
between the nature of the distributed OLSR protocol and the nature of distrib-
uted sensor-based recovery. However, the tools employed for analysis in the two
frameworks are different in nature (model checking vs. theorem proving). Our
decision to use Uppaal is based on the fact that it provides modelling means
for time constraints and fully automatic reasoning. The treatment of time in
Event-B is still incipient, involving a rather different perspective of treating
variables as continuous functions of time.
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6 Conclusions and Outlook

In this paper we have provided a formal analysis for the distributed and proac-
tive routing protocol OLSR. Our analysis is performed using the model checker
Uppaal. We have provided a Uppaal model which is in accordance with the OLSR
standard. It models all core functionalities, including sophisticated timers. To
validate our model we compared our model with examples found in the literature.

Using Uppaal we were able to find shortcomings of the protocol: in some cases,
an optimal route for message delivery cannot be established and the recovery
time in case of link breakage is huge. For both shortcomings we have sketched
improvements that can easily be implemented. A more careful analysis for link
breaks on critical paths is left for future work.

We see these results as the starting point for further research. First, our
analysis is restricted to small networks (of 5 and 7 nodes), due to the nature
of model checking. Wireless Mesh Networks draw their strength from employing
potentially dozens (maybe hundreds) of nodes. Hence, we need to extend our
analysis to larger networks. This can be achieved by working with statistical
model checking, where simulation concepts are combined with model checking
to establish the statistical evidence of satisfying hypotheses. While this does not
guarantee a correct result w.r.t. the hypothesis, the probability of error can be
made vanishingly small. Another approach suitable to deal with larger networks
is that of theorem-proving, where, e.g. we can prove the required system prop-
erties as invariants for all systems (of all sizes) that verify certain assumptions.

Second, our model for the proactive, distributed OLSR can be generalised
to distributed control. The latter is a concept with high relevance for systems
where, e.g. self-repairing is important, as it can enable the independence of
the system from central coordinators. Even maintaining proactively the optimal
communication routes, as OLSR does, is instrumental in this. The applicability
of distributed control to critical systems such as emergency response networks
or smart electrical grids is very relevant, as these are complex systems, for which
global solutions cannot be provided.
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I. INTRODUCTION

Wireless Mesh Networks (WMNs) are self-organising ad-
hoc networks that provide support for broadband communica-
tion without relying on a wired infrastructure. Such networks
have gained popularity and are increasingly applied in a wide
range of application areas, including telecommunication sys-
tems, emergency response networks, and intelligent transporta-
tion systems. In these and other instances, the communication
is often truly distributed, without depending on any central
entity (router) for coordination. As a consequence, automatic
route-discovery, maintenance and repair has a significant im-
pact on the reliability and performance of such networks.

An important feature of WMNs is that the network topol-
ogy is changing. For instance, nodes might just fail in case of
natural disasters; or nodes such as laptops and mobile phones
can move within the network or even enter or leave a network
in case of telecommunication systems. Hence, routes between
source and destination nodes are usually not stable over time;
one of the primary objectives of WMN routing protocols is to
provide for such instability.

A routing protocol specifies how nodes communicate with
each other in a network by disseminating information that en-
ables them to select routes. In this way, nodes are able to send
data packets to arbitrary (previously unknown) destinations in
the network. Shortcomings in the routing protocol will lead to
decreased performance and reliability of the entire network.
Moreover, in case of topology changes (e.g., mobility, link
failures), information has to constantly be updated to maintain
the latest routing information within the network.

Performing an efficient and rapid recovery, i.e., reducing
data loss and delays after a link breakage, is a significant
feature and a challenging task. The efficiency largely depends
on how fast the failure is detected and how fast corrective
measures are applied by the routing protocol. A recovery
mechanism highly relies on the nature of the routing protocol,
i.e., proactive or reactive. In proactive protocols, routing to-
ward nodes is always kept up-to-date, while reactive protocols
build and update their routing information on demand.

The Optimised Link State Routing (OLSR) protocol [1], a
proactive routing protocol, is identified as one of the standard
ad-hoc routing protocol by the IETF MANET working group1.
By distributing control messages (HELLO and Topology Con-
trol (TC)) throughout the network, proactive protocols main-
tain a list of all destinations together with routes to them. When

1http://datatracker.ietf.org/wg/manet/charter/

the WMN faces a link breakage, remote nodes (that are not
able to sense the breakage of the link on their own) would not
be aware of this failure unless they receive control messages
containing the relevant information. As a consequence, any
formal analysis method for WMNs protocols should take link
failure into account.

Formal analysis of specifications allows to systematically
screen protocols for flaws as well as to present counterexam-
ples to diagnose the flaws. Formal methods provide valuable
tools for the design, evaluation, and verification of WMN
routing protocols; they complement alternatives such as test-
bed experiments and simulation. In this way, stronger and more
general assurance about protocol behaviour and properties can
be achieved. Model checking (e.g. [2]) is a powerful such
formal approach used for validating key correctness properties
in finite representations of a formal system model.

In this paper we extend our previous work [3] on formal
analysis of the OLSR protocol using Uppaal. Uppaal [4], [5]
is a well-established model checker for modelling, simulation
and verification of real-time systems. It is based on the theory
of timed automata [6], [7] and is used for systems that can
be modelled as networks of (extended) timed automata. In [3]
we have investigated the OLSR behaviour in case of route
establishment, packet delivery, and optimal route finding on
arbitrary small (static and dynamic) networks. Using model
checking, in particular Uppaal, we have uncovered some
malfunctioning in the behaviour of OLSR as well as pointed
out a long recovery time in case of link failures. More details
concerning OLSR can be found in its specification [1] and in
[3]; a concrete instance of the OLSR behaviour for a network
topology of 5 nodes can be found in [8]. The OLSR long
recovery time can negatively affect the performance of the
network. For a wide acceptance of WMNs, it is important that
the recovery process does not imply unacceptable delays for
networking applications (for instance in emergency response
networks).

To address this, our approach in this paper is based on
introducing a new type of message in OLSR, namely the
ERROR message. We show how our modifications improve
the recovery properties of OLSR when link failure occurs.
Concretely, our contribution is twofold:

• We demonstrate that the recovery time in OLSR, due to
link failures, can be reduced to half.

• We illustrate our findings with a simpler formal model,
involving a reduced state space and time for verification.

More details about our proposed model and the results can
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be found in [9]. In Section II we outline a brief overview of our
experimental results. A short discussion of our contribution as
well as future work appear in Section III.

II. EXPERIMENTAL RESULTS

In this section we briefly describe the extension of our
Uppaal model [3] for OLSR with ERROR messages. These
messages are introduced to distribute the information about
any link breakage in the network. In [3], we modelled OLSR
as a parallel composition of identical processes describing the
behaviour of nodes in the network. Each of these processes is
in turn a parallel composition of two timed automata, Queue
(input buffer of every node) and OLSR (main behaviour of the
protocol) having their own local data structures.

According to OLSR’s specification (RFC 3626),
nodes broadcast HELLO and TC messages every
time_between_hello+time_sending=2000 mil-
liseconds and time_between_tc+time_sending=5000
milliseconds, respectively. These messages are used to update
the information in routing tables. Information from these
messages (HELLO and TC) is valid in the routing tables for
NEIGHB HOLD TIME = 6 and TOP HOLD TIME = 15
seconds, respectively, after which, routing tables are reset.
In our proposed model we first investigate the consequences
of considering a shorter waiting interval. Namely, instead
of refreshing routing tables after 6 and 15 seconds for the
nodes that no HELLO or TC are received from, we consider
a waiting interval equal to 4 seconds, in order to decrease the
recovery time of OLSR. This means that if one node does not
receive a HELLO message from its one-hop neighbour during
4 seconds, it resets its routing table for that node and starts
broadcasting ERROR messages declaring breakage of the link
between them. The full model describing this behaviour is
available in [9].

We replay our experiments of [3] to verify and to compare
the new model (applying our proposed solution) with our
previous one (based on RFC [1]) on all network topologies
up to 5 nodes. Our analysis of OLSR properties takes place in
two different settings, namely in static network topologies and
in dynamic network topologies where an arbitrary link fails.
In the first setting, we focus on two properties to verify for
our new model. These (safety) properties are as follows:

(1) route establishment for all topologies up to 5 nodes;
(2) packet delivery in all topologies up to 5 nodes.

In the second setting, we focus on the following properties:

(3) the shortened route discovery time in case of a link failure
on a non-critical path, i.e., we investigate the time needed
to guarantee packet delivery.

(4) the shortened route discovery time in case of failing and
adding a link on a critical path, i.e., we investigate the
time needed to guarantee packet delivery.

Importantly, we demonstrate how our new model shortens the
long recovery time of OLSR discussed in our previous paper.
Due to the proactive nature of OLSR, our previous Uppaal
model was pretty complex, with a large data structure and
multiple timers. As a consequence, state space explosion was a
problem for our experiments. In our new model we have fewer

timers, leading to a manageable state space explosion and also
a significantly reduced verification time. In the following we
describe how our proposed solution helps to improve OLSR
and its verification time.

For all Properties (Properties (1)–(4)), the originator is
always the same node, denoted OIP1, and the destination is
always the same node, denoted DIP1. For the experiments we
used the following setup: 3.2 GHz Intel Core i5, with 8 GB
memory, running the Mac OS X Yosemite 10.10.3 operating
system. For all experiments we use Uppaal 4.1.19.

A. Static Network Topologies

For evaluating and verifying our proposed model in
static network topologies, we define an automaton called
Packet_injecting. This automaton injects a data packet
to node OIP1 to reach the destination node DIP1 as
shown in Fig. 1. This automaton has a local clock
clk to guarantee that the packet is injected to node
OIP1 via the channel packet[OIP1][DIP1] at time
3*(time_between_tc+time_sending).

Fig. 1: Packet_injecting automaton modeling packet
injection in static networks.

Property (1), route establishment property, states that if the
packet has been injected (Packet_injecting is in loca-
tion Last_State), and all messages have been processed
(emptybuffers()), then OLSR has established a route
between OIP1 and DIP1. This safety property is expressed
as following using the Uppaal syntax:

A[] ((Packet injecting.Last State && emptybuffers())

imply node(OIP1).rt[DIP1].nhopip! = 0)
(1)

Here, A[]φ is satisfied iff φ holds on all states along all
paths. The variable node(OIP1).rt denotes the routing table of
the originator node OIP1 and node(OIP1).rt[DIP1].nhopip
represents the next hop for the destination DIP1: if the next
hop is not 0, then a route is established.

Property (2), packet delivery property, states that if the
packet is injected to the system (Packet_injecting au-
tomaton is in location Last_State), then it is delivered at
the destination DIP1. This property is expressed as

A[] ((Packet injecting.Last State && emptybuffers())

imply node(DIP1).delivered! = 0)
(2)

Here, node(DIP1).delivered shows whether the injected data
packet is received by the destination DIP1.

Property (2) is stronger than Property (1) in the sense that
the established route must be correct and used. In reality,
an originator node might have a routing table entry for the
destination node in the network, indicating that it can send
a packet to the next node along the path to the destination
node; however, the next node itself could have no information
about the destination node, so all packets stemming from the
originator node for the destination would be lost. In other
words, the next node along the path to the destination node
might have reset its routing table for the destination since its
local clock for the destination node exceeds 4 seconds.
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The first two experiments are performed for all topologies
up to five nodes, up to isomorphism and renaming.

Results: For analysing and verifying our OLSR model, we
evaluate Properties (1) and (2) in all network topologies up to
5 nodes. Property (1) is satisfied for all these networks stating
that when the Packet_injecting is in the Last_State
location, the originator node OIP1 has established a route
to the destination node DIP1. This property confirms the
propagation of HELLO and TC messages, correct functionality
of updating routing tables at our proposed timing (4 seconds).
Hence, node OIP1 has the required information about the node
DIP1 to send the data packet.

As mentioned before, Property (2) is stronger than Property
(1). It states that all the nodes have the information about
all other nodes in the network, to deliver their data packets.
Property (2) is also satisfied for all topologies up to size 5:
all nodes have the information about all other nodes in the
network in their routing tables; therefore, they are ready to
deliver data packets to the arbitrary destination node DIP1.

B. Dynamic Network Topologies

Removing a Link: For evaluating and verifying our
proposed model in dynamic network topologies, we de-
fine another automaton, called Link_dropping, which
drops the link between the two nodes OLSR1 and
OLSR2 and is depicted in Fig. 2. Link_dropping pro-
vides a local clock clk to guarantee link failure at
time 3*(time_between_tc+time_sending) when all
nodes have information about all other nodes in the network
(all routing tables have been updated for all nodes). Upon link
breakage, there is no connectivity between these two nodes;
however each of them has the information about the other one.
As soon as a link break is identified (local clock t_reset_rt
exceeds 4 seconds), error messages should be sent to inform
other nodes about the link breakege and to correct the infor-
mation in the routing tables as soon as possible. In this way,
we are able to analyse how fast OLSR recovers from topology
changes broadcasting ERROR messages.

Fig. 2: Link_dropping automaton modelling packet injec-
tion in dynamic networks without critical link.

The data packet is injected to the network at time
5*(time_between_tc+time_sending) to check
whether or not the packet is delivered at the destination.
We consider the property which indicates whether or not
the injected packet is delivered at the destination if one link
is removed. In Uppaal syntax this safety property can be
expressed as:

A[] ((Link dropping.Last State && emptybuffers())

imply node(DIP1).delivered! = 0)
(3)

After the link is removed (the topology has been changed)
and the data packet has been injected, the automaton
Link_dropping is in location Last_State. At that time,
there are no messages in the buffers (all messages have
been handled by all the nodes) if and only if function
emptybuffers returns true: then we investigate if the packet
has been delivered, i.e., (node(DIP1).delivered!=0).

Results: Property (3) is satisfied for those topologies up
to 5 nodes where the dropped link is not critical2. This
experiment indicates that the recovery in these topologies
(5 nodes networks) takes around 10 seconds (the difference
between 15000–25000 milliseconds), i.e., half the recovery
time in our previous work [3]. We should mention here that
in [3], we verified that the recovery time of OLSR takes 20
seconds based on RFC [1].

Adding a Link: To verify packet delivery property for
networks where the dropped link is a critical link, we de-
fine another automaton called Link_adding as depicted
in Fig. 3. This automaton adds an arbitrary link between
the two nodes OLSR1 and OLSR3 after the link breakage
to keep the connectivity in the network. This link is added
at time 4*(time_between_tc+time_sending) (20000
milliseconds) to the network. Then, the packet is injected
at time 5*(time_between_tc+time_sending) (25000
millisecons) to verify if the added link provides the connectiv-
ity between nodes to deliver the packet. This safety property
is represented as:
A[] ((Link adding.Final State && emptybuffers())

imply node(DIP1).delivered! = 0)
(4)

Fig. 3: Link_adding automaton modelling packet injection
in dynamic networks with critical link.

Property (4) states that if the automaton Link_adding
is in the Final_State location and there is no message in
buffers, then the packet must be delivered at the destination. If
this property is satisfied, it shows that by adding an arbitrary
link the network can be recovered from the failure even in
networks with critical links. Upon a link is added to the
network, the neighbour nodes would immediately be notified
about the new link by receiving HELLO messages so that they
can establish new routes.

Results: As for Property (3), Property (4) is also satisfied
for all topologies up to 5 nodes even in networks where the
dropped link is a critical link. This experiment shows that the
recovery time of such networks (5 nodes networks) also takes
about 10 seconds.

Introducing ERROR messages for OLSR and modifying
the NEIGHB HOLD TIME value helps to shorten the long
recovery time of OLSR: the number of control messages
with incorrect information is reduced since routing tables
are updated when receiving ERROR messages. As a conse-
quence, nodes will not broadcast control messages with out-
dated information (when a node receives an ERROR message
containing the information about any link breakage in the
network, the receiving node updates its routing tables based on
the information in the ERROR message, so it will broadcast
fresh information in its next broadcasting).

C. Comparison

In the described experiments, we have verified the proper-
ties of our alternative solution, especially with respect to the

2In our model, a critical link is a link after whose breakage there is no
other link from that node to the other nodes along the path to the destination
to be substituted with the broken one.
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long recovery time of OLSR: we have found that our proposal
helps to decrease this interval to about 10 seconds. In this
section, we compare our new model (with ERROR messages)
with our previous model (based on RFC 3626).

In spite of introducing new messages, our new model
uses less time and memory for the verification. This is due
to the fact that we minimised the complexity of our model
by reducing the number of timers and instead defining the
ERROR new type of messages, to propagate the information
about link breakage. Remember that in model [3], we had one
more array of clocks which was used to delete the information
if no TC message is received during 15 seconds thus caused
more time for the verification and increased the system com-
plexity. Hence, in addition to decreasing the recovery time of
OLSR, we also reduce the verification time and the number of
explored states, thus contributing to overcome the state space
explosion problem. Reducing the complexity of the system
makes it feasible for us to verify the system for lager networks
also. More details and also figures depicting the differences
between both models can be found in [9].

III. DISCUSSION

While improving the performance of network protocols is
not a new research topic, attempts to formal analysis and
improvement of routing protocols are still rather new and
remain a challenging task. In particular, the formal analysis
and verification of MANETs and ad-hoc routing protocols
received a lot of attention from the formal methods community
[3], [10]–[12]. For example, Fehnker et al. [13] describe a
formal and rigorous model of the AODV routing protocol in
Uppaal; this is derived from a precise process-algebraic model
that reflects a common and unambiguous interpretation of the
RFC [14]. They were able to automatically locate problematic
and undesirable behaviour of AODV and to propose and
verify some modifications to improve the performance of such
protocol.

Our work has been motivated by investigating the long
recovery time of a distributed and proactive routing protocol
named OLSR [3]. In this paper we modelled and verified our
proposed modification with respect to alleviating the recovery
time of OLSR by introducing new type of messages known as
ERROR messages. Our analysis is performed using the model
checker Uppaal.

Using Uppaal we were able to demonstrate the shortening
of an otherwise long recovery time for the OLSR protocol;
moreover, we were also able to reduce the time used for the
verification. A smaller routing table updating time (4 seconds)
and propagating ERROR messages lead to a faster detection of
broken links. In comparison to simulation studies, our analysis
based on rigorous model checking enabled us to give a good
overall view of the performance and behaviour in any situation
for networks up to 5 nodes. Our analysis was focused on small
networks (because of the nature of model checking): we need
next to extend our analysis to larger networks. This can be
achieved, for instance, by applying statistical model checking
on the current model and/or theorem proving techniques by
defining a new model.

We have also analysed the system (model) for link failure
on critical paths where an arbitrary link was added to the

network. Our formal modelling and analysing was extended to
recover broken paths and so to address the situation where the
failed link (Section II-B) is a critical link. This is important, be-
cause of the self-healing and self-organising nature of WMNs,
essential for rescue applications and safety critical systems. In
addition, the model for OLSR is general enough to allow for
the study of more complicated scenarios, in particular mobility.
We plan to study a number of mobility models to investigate
the behaviour of OLSR and other routing protocols.
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Abstract—In this paper we present a stepwise formal devel-
opment of the Optimised Link State Routing (OLSR) protocol
in Event-B. OLSR is a proactive routing protocol which finds
routes for different destinations in advance by exchanging control
messages through the network. As a consequence, whenever
a data packet is injected into the network can be delivered
to a certain destination immediately. To achieve this, routing
tables in OLSR are continuously updated, by following a rather
complicated algorithm. By modelling OLSR in Event-B, we
address the scalability problem of our previous work [1], and
structure the OLSR complexity in five distinct abstraction layers.
These layers are manageable to understand and to verify and
are linked to each other by refinement. As Event-B is supported
by a theorem proving platform (Rodin), we model and prove
functional properties of OLSR in an automated and interactive
manner, at a highly general level. Our approach can serve as a
proof-of-concept to be adapted to modelling and verifying of the
other routing protocols for large-scale networks.

I. INTRODUCTION

Wireless technologies are on the rise, ranging from laptops
and smart phones that make work and connections easier, to
sensor networks that produce and manipulate large amounts
of data. In this study, we focus on contemporary wireless net-
works, in particular Wireless Mesh Networks (WMNs). WMNs
are self-healing and self-organising wireless technologies sup-
porting broadband communication without requiring any wired
infrastructure. These networks have gained popularity and
are employed in a wide range of application areas such as
emergency response networks, communication systems, video
surveillance, etc. Due to these critical applications, correct
behaviour and functioning of such networks should be guaran-
teed. One of the key factors determining the performance and
reliability of WMNs is their routing protocols.

The fundamental role of (WMN) routing protocols is
to provide routes between nodes for communication. These
protocols disseminate information through the network in
order to select such routes and thus enable nodes to send
data packets to arbitrary destinations in the network. Routing
protocols for WMNs are either proactive or reactive. Proactive
protocols attempt to select routes in advance, by exchanging
control messages about all the other nodes of the network.
Consequently, an injected data packet can be delivered to the
destination immediately. Examples of such protocols are Opti-
mised Link State Routing (OLSR) protocol, Better Approach
To Mobile Ad hoc Networking (BATMAN) routing protocols,
etc. Reactive protocols search for routes to destination nodes
on demand, whenever a data packet is injected into the net-
work. Examples of reactive protocols are Ad hoc On-Demand

Distance Vector (AODV) protocol, Dynamic Source Routing
(DSR) protocol, etc.

In this paper we focus on the OLSR protocol [2]. We
formally model this protocol through incremental stepwise
refinements in Event-B [3]. We use Event-B as a formal
modelling approach which provides automatic tool support for
modelling and proving various properties.

OLSR is a rather complicated protocol. This is mainly
due to its proactive nature, requiring it to keep up-to-date
information about routes to all destinations from any node.
Assumed to work in the WMN setup, this implies that all
routes are checked periodically. Indeed, the OLSR specifi-
cation [2] prescribes certain routines to be performed every
2 seconds, and some other every 5 seconds. There are two
kinds of control messages exchanged by nodes for updating
the complex structure of the routing tables.

By stepwise modelling OLSR in Event-B we gain a deep
understanding of the OLSR mechanisms at five different layers
of abstraction. The first two layers simply model a routing
protocol, first more abstractly and then more concretely. The
following two layers add the infrastructure necessary for
modelling the proactive behaviour, again in a more abstract
manner first and somewhat more concretely in layer four. In
the final layer we add the defining characteristic of OLSR, of
selecting only specific nodes to broadcast control messages, so
as not to strangle the network traffic. These layers are related
by refinement: this means that the properties and the behaviour
of any model are kept in all its subsequent refinements. Hence,
we can prove certain properties in a more abstract layer (when
the property is simpler to prove) and then develop the models
in the more concrete layers so that they do not break those
proven properties.

TABLE I. LEVELS OF ABSTRACTION

Levels of abstraction Description
Abstract general communication protocol

M0 considering simple communication between
only two nodes (without forwarding)

Concrete general communication protocol
M1 considering general communication between

different nodes (with forwarding)
Abstract OLSR communication protocol

M2 considering the exchange of control messages
and updating routing tables

More detailed OLSR communication protocol
M3 considering the process of only fresh (new) messages

using sequence numbers in the messages and routing tables
Detailed OLSR communication protocol

M4 considering that only some special nodes
broadcast control messages to decrease the network traffic
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Our contribution is thus threefold:

• We model OLSR protocol at different levels of abstraction
(TABLE I) and prove that the more concrete models
refine the more abstract ones. By this, we demonstrate
the management of complexity in an elegant manner to
offer our solution as a proof-of-concept for other routing
protocols to be modelled and verified.

• We address the scalability problem in our previous work
[1] where we used model checking technique to model
OLSR formally. The main concern with respect to [1] was
the number of nodes in the network since model checking
technique suffers from the state space explosion problem.
This paper is a significant case study in the sense that
it deals with developing and verifying the real routing
protocols in large-scale (realistic) networks.

• As a consequence of the specific properties we prove, we
discover that:
◦ OLSR does not find optimal routes to all the destina-

tions,
◦ it indeed discovers routes to all the destinations,
◦ it delivers data packets on these discovered routes

(considering networks of arbitrary size).
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Fig. 1. Overview of model development

More details about our model and the results can be found
in [4]. We present a brief overview of our OLSR formal
development in Section II. Verification results and the impact
of our paper are described in Section III. We draw some
conclusions as well as some future work in Section IV.

II. EVENT-B MODEL OF OLSR

In this section, we express the OLSR protocol development
at five different layers of abstraction, overviewed below. We
summarise our development of the OLSR model in Fig. 1,
where we illustrate the five abstraction layers containing the
corresponding five machines as well as two contexts.
Initial Model (M0): Basic routing protocol behaviour, i.e.,
sending, receiving, and losing data packets, is specified, to-
gether with an abstraction of proactive routing behaviour.

Refinement 1 (M1): A storing and forwarding architecture
for data packets from a source node to a destination node is
modelled in this step.

Refinement 2 (M2): The basic behaviour of route discovery is
introduced in this refinement. This level describes the essential
OLSR behaviour for sending and receiving control messages
based on which each node updates its routing table.

Refinement 3 (M3): More detailed information about the route
discovery protocol and how to process new control messages
are provided in this level of refinement.

Refinement 4 (M4): Selection of MPR nodes and how they
help to decrease the traffic in the network are introduced in
this step.

The refinement relation between machines is emphasised
in Fig. 1 and we illustrate the new variables and events in
all the machines, together with constants and carrier sets in
the contexts. In the following sections we describe some of
these entities. All the details are only described in our technical
report [4] due to lack of space. The reader can also consult
our models in Event-B or in pdf format at http://users.abo.fi/
mokamali/ICECCS 2016.

A. The Context C0 and Initial Model M0
In context C0 we define two carrier sets NODES and MSG

and four constants source, destination, closure, and n. The
carrier set NODES models the nodes in the network; this
set is finite and non-empty (modelled by axm1 and axm2,
respectively). The number of elements in NODES is equal
to n (axm3) which is larger than 1 (axm4). In axioms axm5
and axm6, we define the carrier set MSG as a finite and non-
empty set, modelling the set of all (user) data packets. In
axioms axm7 and axm8, we define the type of the constants
source and destination, modeling the source and, respectively,
the destination of all data packets; these are total functions
mapping MSG to NODES. The constant closure models the
transitive closure of binary relations between nodes (NODES)
in axioms axm9–axm12. The sets, constants and axioms belong
to the context C0, seen by our initial model M0.

SETS
MSG, NODES

CONSTANTS
source, destinations, closure, n

AXIOMS
axm1 : finite(NODES)
axm2 : NODES �= ∅
axm3 : card(NODES) = n
axm4 : n > 1
axm5 : finite(MSG)
axm6 : MSG �= ∅
axm7 : source ∈ MSG → NODES
axm8 : destination ∈ MSG → NODES
axm9 : closure ∈ (NODES ↔ NODES) →

(NODES ↔ NODES)
axm10 : ∀r·r ⊆ closure(r)
axm11 : ∀r·closure(r); r ⊆ closure(r)
axm12 : ∀r, s·r ⊆ s ∧ s; r ⊆ s ⇒ closure(r) ⊆ s

In M0, we model an abstract version of the OLSR proto-
col. We have four variables, namely sent packet, lost packet,
got packet and links. Variable sent packet is a subset of MSG
(inv1) modelling the packets actually sent through the network
(injected). Lost packets and received packets in the network are
modelled by variables lost packet and got packet, respectively.
The set of lost packets (lost packet) and received packets
(got packet) are subsets of the set of all injected packets
(sent packet); this is a safety property modelled by invariants
inv2 and inv3. A data packet cannot be received and lost at
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the same time as modelled in inv4. Variable links models the
current links in the network (inv5). No node is connected to
itself, as modelled by invariant inv6.

INVARIANTS
inv1 : sent packet ⊆ MSG
inv2 : lost packet ⊆ sent packet
inv3 : got packet ⊆ sent packet
inv4 : got packet ∩ lost packet = ∅
inv5 : links ∈ NODES ↔ NODES
inv6 : (NODES � id) ∩ links = ∅

There are four simple events in our abstract model in
addition to the initialisation event where all variables get
value ∅. The event packet sending models the sending of
a data packet msg not yet injected from a source node s to
a destination node d (grd1–grd3). The main guard of this
event ensures that there is a path from s to d (grd4). If these
conditions hold, then msg can be sent (injected in the network
to eventually make its way to d).

Event packet sending =̂
any

s, d, msgwhere
grd1 : msg ∈ MSG ∧ msg /∈ sent packet
grd2 : source(msg) = s ∧ destination(msg) = d
grd3 : s �= d
grd4 : s �→ d ∈ closure(links)

then

act1 : sent packet := sent packet ∪ {msg}
end

Event packet receiving models the successful receiving of
the data packet msg by a destination node. The guard of this
event (grd1) models that msg has not been received or lost yet.

Event packet receiving =̂
any

msgwhere
grd1 : msg ∈ sent packet \ (got packet ∪ lost packet)

then
act1 : got packet := got packet ∪ {msg}

end

Event packet losing models loss of data packets. The guard
of this event (grd1) models that msg has not been received or
lost yet.

Event packet losing =̂
any

msg

where
grd1 : msg ∈ sent packet \ (got packet ∪ lost packet)

then
act1 : lost packet := lost packet ∪ {msg}

end

Event links adding models that some arbitrary links not
yet in the network (grd1) may come up; these new links are
added to the set links.

Event links adding =̂
any

s, dwhere
grd1 : s �→ d /∈ links
grd2 : s �= d

then
act1 : links := links ∪ {s �→ d}

end

We note here that the first three events of M0,
packet sending, packet receiving and packet losing are events
common to any routing protocol. The specific proactive feature
that routes to destinations are continuously updated in the

routing table, i.e., the valid links are continuously updated,
is modelled in M0 abstractly. This has been modelled in
our fourth event links adding. Later in the refinement chain,
adding links in the network will be replaced by updating
routing tables based on the information received from HELLO
and TC messages. At this abstract level, however, we only have
data packets as messages. Control messages are introduced
in M2. We also note that receiving data packets happens
abstractly, with having no intermediate nodes in between the
source and the destination of a data packet. A sent data packet
can be either received or lost in a non-deterministic manner.
We add intermediate nodes in between sources and destinations
in M1.
B. First Refinement M1: Storing and Forwarding Architecture

In the initial model, data packets are received in an atomic
abstract step from a source node to a destination node. This
is of course not the case in a real protocol. Data packets
are transferred using multi-hop communication and they are
forwarded hop by hop from a source node s to destination
node d. Hence, in this refinement step, we model the storing
and forwarding architecture of data packets when not all the
nodes are directly connected and the data packet has to be
forwarded by several intermediate nodes before being delivered
at the destination node. For this, we define three new variables
and one new event.

C. Second Refinement M2: Route Discovery Protocol
The route discovery protocol is the most important and

complicated refinement step of this model. In this level of
refinement, we investigate whether or not nodes can find
optimal routes to different destination nodes. We add OLSR
control messages (HELLO and TC) and model the routing
tables of every node. In this step, we replace the centralised
functioning of the routing protocol in models M0 and M1 with
a distributed functioning by data refinement.

D. Third Refinement M3: Role of Sequence Numbers
In our third refinement we model and take into account

sequence numbers of TC messages, to avoid processing TC
messages with old information. It means that if the sequence
number of the received TC message is bigger than the sequence
number of the TC message originator in the corresponding
routing table of the receiving node, then the TC message is
processed and may be forwarded to the other nodes. Otherwise,
the TC message is removed from the network.

E. Fourth Refinements M4: MPRs Selection
In our fourth refinement, we restrict the broadcasting of

TC messages to only specific nodes, the MPRs. Only these
nodes are able to broadcast and forward TC messages through
the network which helps to decrease the traffic in the network.
Both refinements optimise the protocol model significantly. We
describe them in detail only in our technical report [4], due
to lack of space. Our full models are also available at http://
users.abo.fi/mokamali/ICECCS 2016, both as Event-B models
and in pdf format.

III. VERIFICATION AND IMPACT

Figuring out from which level of abstraction to start mod-
elling and what details to add at every step of the refinement is
a challenging task. We model our system in order to address
modelling/proving complexity and to preserve reusability of
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TABLE II. PROOF STATISTICS

Model Number of Proof Automatically Interactively
Obligations Discharged Discharged

C0 4 4 0
M0 13 13 0
M1 51 47 4
C1 1 1 0
M2 102 95 7
M3 17 16 1
M4 34 23 11

Total 222 199 23

models. In order to check if our models satisfy their correctness
properties we need to prove that the invariants are preserved.
In our case, correctness of packet delivery after injecting a
data packet to the system, optimal route finding, and route
discovery are investigated. In order to prove these, we used
the Rodin platform tool to generate the proof obligations for
all the models. The summary of proof statistics is displayed
in Table II consisting of the number of proof obligations
generated by Rodin platform, number of proof obligations
discharged automatically and number of proof obligations
discharged interactively.

In addition to proving certain properties that hold for
the OLSR protocol, our main contribution consists in the
unpacking of OLSR complexity into five abstraction layers, as
illustrated in Fig. 1. The first two layers describe the abstract
behaviour of a routing protocol; the following two add the
needed infrastructure to model proactive routing behaviour;
and the last layer only introduces the specifics of OLSR,
that of MPR-based working. Hence, our modelling is highly
reusable: routing protocols can be developed based on the
first two abstraction layers, even reactive routing protocols;
other proactive routing protocols can be developed based on
abstraction layers three and four, for instance the BATMAN
routing protocol. Hence, we have presented a case study that
emphasises the power of refinement-based methods as well as
their reusability and adaptability. Reusing our models M0 – M3
in modelling other routing protocols is left for future research.

IV. CONCLUSIONS

Creating a model in Event-B for analysing the OLSR
protocol was originally motivated by our previous work on
creating an Uppaal model [1] for this protocol. While we
could experiment with Uppaal on various properties, report
some problems of the protocol, sketch some modifications [5]
to fix these problems and improve the performance of OLSR,
the main drawback of the Uppaal model was its limitation to
5-node topologies. We needed to understand whether OLSR
works as it was intended for arbitrary topologies and thus, we
created the Event-B model in this paper. This model also has
some limitations, such as abstracting away from the timing
behaviour and not including the deletion (failure) of links.
We believe that the former drawback simply needs a more
involved modelling approach, as we explain below. A deeper
modelling approach is also needed for addressing the latter
drawback, with the additional comment that in Uppaal we have
studied what happens if a particular link in a particular 5-node
topology fails.

In this paper, we have modelled the behaviour of OLSR
and verified three main properties with respect to:

• finding routes to all destinations,
• delivering data packets along these routes,
• showing that OLSR does not find optimal routes for all

the destinations.

These properties hold true also for our previous Uppaal model.
However, the main advantages of our Event-B model are
generality and reusability. Our proved management of OLSR
complexity is a central contribution. The formal development
of the protocol is carried out in several layers: routing protocol,
proactive behaviour protocol, and OLSR. These layers are
reusable and adaptable, as argued in Section III. The last
layer elegantly shows how OLSR is a refinement of proactive
routing, delivering a more efficient algorithm: only the selected
MPR nodes are enabled to send and forward control messages,
so as not to flood the network.

We plan to continue the research reported in this paper
in several directions. First, we are working on the finishing
touches of a companion paper where we compare the Uppaal
model with the Event-B model for OLSR; in that paper we also
discuss the relative advantages of using Uppaal and Event-B
for analysing protocols. Second, there is timing behaviour in
OLSR [2] that we abstracted away in this paper. By including
it though, we would be able to reason about timing properties
of OLSR, hence we plan to employ an approach for time
modelling in Event-B, such as Hybrid Event-B [6] or [7] for
instance. This would imply that all variables except clocks
are functions of time, so a slight change of perspective is
needed here. Third, there is a remarkable resemblance between
the basic behaviour of data packets and the other control
messages in the network: they are all sent, received, locally
stored. Hence, we plan to investigate a theory of messages
in connection with routing protocols in Event-B, much in the
spirit of other theories [8] already introduced in the Rodin
platform. This would increase the reusability of both the
proposed models and proofs. Finally, showing how to reuse the
general models, introduced in this paper for developing other
routing protocols would clearly demonstrate the advantages of
using Event-B and the refinement approach.
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Abstract. In this paper we compare models developed in two formal
frameworks, Uppaal and Event-B, for the Optimised Link State Rout-
ing (OLSR) protocol. OLSR is one of the proactive routing protocols
used in Mobile Ad-hoc Networks (MANETs) and Wireless Mesh Net-
works (WMNs). We also describe different aspects of the Uppaal and
Event-B formalisms. This leads to a more general comparison of both for-
malisms, considering the following criteria: their specification languages,
their update of variables mechanism, their modularity methods, their ver-
ification strategies, their scalability potentials and their real-time mod-
elling capabilities. Based on it, we provide several guidelines for when to
use Uppaal or Event-B for formal modelling and analysis.

1 Introduction

Continuous connectivity is a defining feature of our current working routines
as well as of our free-time ones. We expect to be able to access information
at all times as well as be able to communicate to various entities at all times.
Technically, this is ensured with myriads of interconnected networks that offer
us coverage and route all our requests for information and communication in
certain ways. Hence, routing is a fundamental stone of our lifestyles and as such,
presents enormous interest for study. Routing is obviously not a new concept for
the era of continuous connectivity; it has been around since the first networks
were developed some decades ago. Along with network evolution, routing has
however evolved as well, with numerous algorithms in use today.

Routing protocols are divided into two main categories: proactive and reactive.
Proactive protocols select routes in advance, by having network nodes exchanging
(control) messages about all the other network nodes. Consequently, an injected
data packet can be delivered to the destination immediately. Examples of such
protocols are Optimised Link State Routing (OLSR) protocol [10], Better App-
roach To Mobile Ad hoc Networking (BATMAN) routing protocol [22], etc. Reac-
tive protocols search for routes to destination nodes on demand, whenever a data
packet is injected into the network. Examples of reactive protocols are Ad hoc On-
Demand Distance Vector (AODV) protocol [23], Dynamic Source Routing (DSR)
protocol [14], etc.

In this paper we compare two models for the OLSR proactive protocol. This
protocol is used for routing in Wireless Mesh Networks (WMNs). WMNs are

c© Springer International Publishing AG 2017
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self-healing and self-organising wireless technologies supporting broadband com-
munication without requiring any wired infrastructure. They are employed in a
wide range of application areas such as emergency response networks, commu-
nication systems, video surveillance, etc. A central feature of a WMN is that
its topology, in terms of active nodes and links, can vary quite much. OLSR is
adapted to this feature by continuously updating the information that any node
has about any other node, based on the most recent ‘scanning’ of the network.
It thus finds good-enough routes to all destinations.

Previously, our goal was to model OLSR and analyse its properties [15,17,18].
There are numerous frameworks and techniques, formal and less formal, that one
can choose for modelling purposes. Since we are interested in analysis, formal
methods with their underlying mathematical foundations are best suited. How-
ever, the question is which formal method to choose. In this paper we resume
our experiences with two formal methods, the Uppaal model checker and the
Event-B theorem prover.

In Uppaal [7], safety and liveness properties are expressed using Computa-
tion Tree Logic (CTL). Constants, data structures and procedures are defined in
a C-like language and modularity is addressed via components, represented as
timed automata, that communicate with each other via channels. Uppaal has a
model checking tool1, that supports the basic computational model and checks
whether properties hold for a model or not, in the latter case providing a coun-
terexample. In Event-B [2], safety properties are expressed in first-order logic,
while constants, data structures, variables and their updates are modelled in a
guarded command language. Event-B has a theorem prover tool, the Eclipse-
based Rodin platform2, that supports the basic modelling and analysis, based
on generating and discharging proof obligations. Modularity is addressed via
refinement: a model is initially abstract and details are added to it in proof-safe
manner. Liveness properties are modelled logically or with specific update types.

Contributions. After modelling and analysing OLSR with both Uppaal and
Event-B, we found that both formal methods are useful, but at different scales
and for emphasising different aspects of modelling and analysis. In this paper,
our contribution is to provide a comparison of our respective models as well as
of these formal methods, with suggestions for modellers as to when to use one
or another. We take into account four main criteria w.r.t. our models (Uppaal
and Event-B models) comparison: parts of the protocols that have been mod-
elled, particular properties that have been verified, networks topologies that
have been modelled and data structures that have been used when modelling.
To overview the applicability of Uppaal and Event-B, we provide a comparison
between them by focusing on their specification languages, their mechanism for
variable updating, their modularity methods, their verification strategies, their
scalability potentials and their real-time modelling capabilities. Based on our

1 http://uppaal.org/.
2 http://www.event-b.org/.
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considerations, we provide several guidelines for when to use Uppaal or Event-B
for formal modelling and analysis.

Outline. We proceed as follows.3 In Sect. 2 we describe in some detail the for-
mal tools employed in the paper, namely Uppaal and Event-B. In Sect. 3 we
overview the OLSR protocol and in Sect. 4 we summarise our modelling of OLSR
in Uppaal and Event-B, respectively. In Sect. 5 we compare our Uppaal and
Event-B models as well as the frameworks themselves. We draw some usage
guidelines of these formal tools in practical situations in Sect. 6.

2 Formal Methods, Model Checking, and Theorem
Proving

A formal method usually refers to a framework allowing one to model, analyse,
verify, and animate a system. A formal methods has a formal semantics based on
mathematics, and can thus provide precise answers to questions about systems
properties. A formal method includes a specification (or modelling) language,
analysis methods, various modularity mechanisms addressing the scale of a sys-
tem; nowadays, successful formal methods also have tools associated to them,
including editors, analysers, animators, and more.

When modelling the dynamic behaviour of a system with a formal method,
each execution step in the model follows from a semantical rule of inference
and hence can be checked by a mechanical process. The advantage of formal
methods is that they provide valuable means to symbolically examine the entire
state space of a system model and establish a correctness or safety property
that is true for all possible inputs. These methods have a great potential on
improving the correctness and precision of design and development, as they
produce reliable results. However, this is rarely done in practice today, except
for safety critical systems. In the rather recent past, one of the reasons was the
lack of user friendly and scaling tools, combined with the enormous complexity of
real systems. Nowadays however, we have good tools for several formal methods,
so one of the questions remaining for the adoption of formal methods in industry
remains: which tool is more suitable for a certain (type of) system?

In this paper we set out to examine two different tools associated to two
formal methods, namely model checking and theorem proving.

2.1 Model Checking–Uppaal’s Timed Automata

Model checking (e.g. [9]) is an algorithmic and automatic approach used to val-
idate and verify key correctness properties in finite representations of a formal
system model. By modelling the behaviour of a system in mathematical language,
model checking exhaustively and automatically checks whether the model meets

3 The detailed descriptions of our models appear in [16] for the Uppaal model and
in [19] for the Event-B model.
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a given specification. In model checking, Temporal Logic (TL) is used to spec-
ify and check the correct behaviour of a system. One of the most used model
checking tools nowadays is the Uppaal model checker.

Uppaal [7,20] is an integrated model checker for modelling, simulating (val-
idating) and verifying real-time systems. It is appropriate for systems that can
be modelled as networks of timed automata extended with bounded integer vari-
ables, structured data types, functions and synchronisation channels. A timed-
automata is a finite-state machine with clock variables that measure time pro-
gression. Each automaton can be represented as a graph consists of locations
(optionally also consisting invariants) and edges between those locations having
guards, synchronisation channels, and updates of some variables. A state of a
system is defined by automata’s locations, value of clocks, and the value of all
local and global variables. An edge can be fired in an automaton which leads
to a new state. This edge can be fired separately in the automaton or between
different automata used for synchronisation.

Uppaal’s verifier uses Computation Tree Logic (CTL) (e.g. [11]) to express
system requirements (properties) offering two types of formulas: state formu-
las and path formulas. State formulas describe individual states of the model,
whereas path formulas quantify over paths in the model.

2.2 Theorem Proving–Event-B

Event-B [2] is a formal technique based on the B-Method [1] and on the Action
Systems [5] framework, provides means to model and analyse parallel, reac-
tive and distributed systems. Rodin Platform [3] provides automated support
for modelling and verifying such systems. Event-B uses two modules for defin-
ing system specifications and for expressing system properties, namely context

and machine. A context consists of carrier sets and constants, and their prop-
erties are defined as axioms of the model. So, a context deals with the static
part of the system whereas a machine contains the dynamic part of the system.
A machine can access the contents of a context which is defined by the keyword
Sees determining the relationship between the machine and the context.

A machine expresses the model state using variables that are updated by
events. Events can have guards that need to evaluate to true, allowing the
event to be executed. When having several events enabled simultaneously, one
event is selected non-deterministically. A machine may also contain invariants,
i.e., properties which must hold for any reachable state in the model. In other
words, invariants must be satisfied before and after the occurrence of all events.

The refinement is the main developing strategy in Event-B where a machine,
let’s say machine A, is refined by another machine, let’s say machine B, i.e., A �
B. This happens when A’s behaviour is not altered by B in any way and more
new variables are added in B as well as new events to update the new variables.
This type of refinement employed for our modelling is called superposition

refinement. In order to prove that machine B is the refinement of machine A, a
set of so-called proof obligations is generated by the Rodin platform. Some of
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these proof obligations are discharged automatically by Rodin and some require
interactive discharging with the help of the modeller.

3 An Overview of Optimised Link State Routing

The Optimised Link State Routing (OLSR) is a proactive routing protocol devel-
oped for Mobile Ad-hoc Networks (MANETs) and Wireless Mesh Networks
(WMNs). OLSR operates as a routing table-driven protocol; each node keeps
information about all the other nodes of the network in order to transfer data
packets from a source node to a destination node. Examples of information stored
in the routing table of a node a are: to get to node b (from a) the next node
to take is node c; or, to get to node b from a takes n hops, where a, b, c are
nodes in the network and n is a natural number. Keeping the information in
the routing table up-to-date is realised by nodes periodically exchanging spe-
cific control messages. OLSR is an optimisation over other link state protocols,
since it decreases the network traffic by restricting the broadcasting of control
messages to only specific nodes.

OLSR works in a completely distributed manner and does not require any
central entity for coordination. Each node selects a set of one-hop neighbour
nodes that have links to the two-hop neighbours of that selector node. The
selected nodes are called MultiPoint Relays (MPRs) and are allowed to trans-
mit control messages intended for diffusion into the entire network. There are
two types of control messages, namely HELLO and TC (Topology Control) mes-
sages.

HELLO messages are broadcast every 2 s and are used to determine one-hop
and two-hop neighbours of each node as well as to select MPR nodes. These mes-
sages are only broadcast on single hops (to one-hop neighbours) and are not
forwarded. TC messages are broadcast every 5 s for building and refreshing topo-
logical information in the routing tables. These messages are broadcast on single
hops and can be forwarded through the network via MPR nodes. Upon receipt
of HELLO or TC messages, the receiving node updates its routing table based on
the information in the received control message. Therefore, the topological infor-
mation is always kept up-to-date in the routing tables in order to deliver data
packets to arbitrary destination nodes.

4 Formal Modelling of the OLSR

We now present the overview of our OLSR models, i.e., Uppaal and Event-B
models of the OLSR protocol. Both formal models are described in detail in our
technical reports [16,19].

4.1 Uppaal Model of the OLSR

In [15], we modelled OLSR in Uppaal as a parallel composition of identical
processes, each indicating the behaviour of each node of the network. Every
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Fig. 1. Overview of model development

process is itself a parallel composition of two timed-automata, i.e., OLSR and
Queue. The OLSR automaton is modelling the complete behaviour of the routing
protocol [10] and Queue automaton (depicted in Fig. 1) is chosen to model the
input buffer of every node in the network.

Nodes are able to broadcast and handle different types of messages (HELLO,
TC and PACKET) in the network (modelled by OLSR) and the connected neighbour
nodes can receive the incoming messages and store these messages in their input
buffer (modelled by Queue). Whenever the OLSR is ready to handle a message (is
not busy) and there are messages stored in the Queue, the OLSR and the Queue

synchronise together on the imsg channel, moving a message from the Queue to
the OLSR for processing.

The OLSR models the routing table of a node using a local data structure.
Routing tables provide all the necessary information to route data packets to
different destination nodes. Connectivity between two nodes is modelled by the
predicate isconnected[i][j], denoting a node-to-node communication. If two
nodes are in transmission range of each other, they can communicate with each
other via channels. In order to model rigorous timing behaviour, we defined
several clocks for each OLSR to model on-time broadcasting control messages,
to consider time spent to send every message, and to update and refresh the
information in the routing tables.

Based on [10], each node in the network broadcasts a HELLO message every
2 s containing the information about the originator of the message and the one-
hop neighbours of the HELLO message originator. Upon receipt of a HELLO, the
receiving node updates its routing table for the HELLO message originator and its
two-hop neighbours (one-hop neighbours of the HELLO message originator). The
receiving node also selects its MPR nodes which are able to broadcast TC messages
through the network. Such nodes (MPRs) then broadcast TC messages every 5 s
through the network. TC messages contain the information about the originator of
the TC messages, MPR nodes of the message originator, etc. When a node receives
a TC message, it first checks if the message is considered for processing following
some conditions. If so, then the receiving node updates its routing table for the
TC message originator and the MPR nodes of the TC originator. Afterwards, if the
receiving node is an MPR and the TC message is considered for forwarding, the TC
is forwarded to the next nodes.
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The Queue (Fig. 1) models storing incoming messages from other nodes
(directly connected neighbour nodes) of the network. The incoming messages
are buffered and in turn are sent to the OLSR for further processing. Messages
can be received only if the receiving node is connected to the sender of the mes-
sage. In this case, the Queue of the receiving nodes stores the messages to its
local data queue.

4.2 Event-B Model of the OLSR

In [18], we developed a formal model of the OLSR protocol at five different levels
of abstraction (depicted in Fig. 2) using Event-B (Rodin platform). We have
defined two contexts containing constants and carrier sets, whose properties are
expressed as a list of axioms for the model. These contexts contain the static part
of the system. The dynamic part of our system is modelled using five machines
that describe the state of the model with their variables which are updated by
events. These five machines are related to the contexts and can access them
using the keyword sees as shown in Fig. 2. Also, the more abstract machines and
contexts are refined into more concrete machines and contexts using keywords
‘refines’ and ‘extends’, respectively.

Fig. 2. Overview of model development
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Our initial model M0 deals with basic protocol behaviour, i.e., sending, receiv-
ing, and losing data packets as well as an abstraction of proactive routing behav-
iour (adding links between nodes). First refinement M1 models a storing and for-
warding architecture when data packets are transferred hop by hop from a source
node to a destination node. Second refinement M2 models the basic behaviour of
the route discovery protocol, describing the OLSR behaviour when sending and
receiving control messages as well as updating routing tables. Third refinement
M3 models how the protocol decides to process only new control messages and
how to avoid processing control messages with old information. Fourth refine-
ment M4 models the selection of MPR nodes, helping to decrease the traffic in the
network.

Event packet receiving =̂
any

msg
where

grd1 : msg ∈ sent packet \ (got packet ∪ lost packet)
then

act1 : got packet := got packet ∪ {msg}
end

In M0, data packets are received from a source node to a destination node
in an atomic step which is of course not the case in reality. In real protocols,
data packets are forwarded hop by hop from a source node to a destination node
using multi-hop communication that is modelled in the more concrete machine
M1. For instance, event packet receiving models the successful receiving of the
data packet msg by a destination node. The guard of this event (grd1 ) models
that msg has not been received or lost yet. When the packet is received, it will
be added in the got packet set.

In M1, the storing and forwarding architecture of data packets is modelled
while all nodes are not connected and the data packets must be forwarded hop
by hop through the destination. In this step, we model a local storage for each
node to store these incoming packets and forward these data packets to next
nodes along the path to the destination node.

In M2, nodes are able to broadcast and handle different types of messages
(HELLO, TC and PACKET) in the network (modelled by several events). Also rout-
ing tables of nodes are modelled as variables, providing the information to deliver
data packets to different destination nodes. Every node broadcasts a HELLO mes-
sage having the information only about the HELLO message originator. Upon
receipt of a HELLO message, the corresponding routing table for the originator of
the HELLO message is updated. Also, each node broadcasts a TC message contain-
ing the information about the TC message originator, number of hops of the TC

message, sender of the TC message and time to live of the TC message (number
of hops that a TC message can be forwarded). Upon receipt of a TC message, the
corresponding routing table for the originator of the TC message is updated and
if the TC message is considered for forwarding, it is forwarded to the next nodes.

In M3, we extend the routing table of every node and also add a new variable
in the TC message in order to model sequence numbers. Sequence numbers are
embedded in TC messages to avoid processing messages with old information.
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Also, we defined several events to update the local sequence number of each
node and to remove out-dated messages from the network.

In M4, we restrict the broadcasting of TC messages to only specific nodes,
namely MPRs, and not all nodes broadcast TC messages through the network.
We added one-hop neighbours of the HELLO message originator in the HELLO

messages so that upon receipt of a HELLO message, the two-hop neighbours of
the receiving nodes can be also updated. In this case, nodes can determine their
MPR nodes and also nodes are able to recognise whether or not they are MPR

nodes of some other nodes in the network. If some nodes are selected to be MPRs,
then they can broadcast/forward TC messages through the network.

5 Comparison

In this section, we compare our OLSR models, the Uppaal model [15] and the
Event-B model [18] as well as the modelling tools Uppaal [7] and Event-B [2].

5.1 Uppaal Model vs Event-B Model

Table 1 depicts an overview of our comparison. We take into the account four
main criteria: what parts of the protocol we’ve modelled, what properties we’ve
verified for our models, for what types of network topologies we modelled the
protocol and what data structures we’ve used.

Table 1. Overview of our models comparison

Uppaal model Event-B model

Protocol Core functionality Core functionality with timing
abstraction

Properties Route establishment packet
delivery non-optimal route
finding recovery time

Route establishment packet
delivery non-optimal route
finding

Topologies All topologies up to 5 nodes All topologies with n nodes

Data Structures Queues Relations, functions

Protocol. We were able to model the core functionality of the OLSR protocol [10] in
both Uppaal and Event-B. This functionality refers to the behaviour that is always
required for the protocol to perform. The only feature that we abstracted away in
our Event-B model was the timing of messages. In the OLSR protocol [10], HELLO
and TC messages are sent periodically. We have abstracted away the treatment of
time in Event-B as this is still incipient, involving a rather different perspective of
treating variables as continuous functions of time [4,6].
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Table 2. Overview of Uppaal and Event-B comparison

Uppaal Event-B

Specification Language Timed automata, C-like
language

Set theory, guarded
commands language

Variables Update Transition: selection guard
update

Event: parameter guard
action

Modularity Divided into several automata
at the same level of abstraction

Divided into several
machines at different
levels of abstraction

Verification CTL automatically providing
counterexamples

First-order logic
automatically and
interactively no
counterexamples

Scalability Small-scale systems (finite) Large-scale systems
(infinite)

Real Time Precisely models timing
variables

Partially models timing
variables

Properties. We verified our OLSR model in Uppaal for the following properties:
route establishment, packet delivery, optimal route finding, and recovery time.
We were able to verify that all nodes in the network can establish routes to
different destination nodes as well as deliver data packets to these destinations.
We proved by finding a counterexample that OLSR is not always able to find
optimal routes to all the destinations as well as showed that OLSR needs a
relatively long time to recover after a link breakage in the network [15]. In our
Event-B model, we verified our OLSR model for the following properties: route
establishment, packet delivery and optimal route finding. We came to the same
conclusions as for our Uppaal model. Routes are established to all destinations
and data packets are delivered to these destinations; however, these routes may
be non-optimal w.r.t. the hop counts. Since we abstracted away from timing
properties, we did not investigate the recovery time of OLSR in Event-B.

Topologies. We verified our Uppaal model of OLSR for all network topologies
up to 5 nodes. Since the model checking technique suffers from the state space
explosion problem, we were not able to extend our analysis for more realistic
networks. However, when modelling in Event-B, we were not restricted by the
number of nodes in the network and we could verify the protocol for arbitrary
networks with n number of nodes.

Data Structures. We modelled the OLSR protocol in Uppaal and Event-B with
different data structures. In our Uppaal model, we have defined the Queue timed
automata to store different types of incoming messages to a node. In Event-B, we
modelled the storing architecture using relations between nodes and messages.
We defined a specific data structure in Uppaal to model the routing tables,
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whereas in Event-B we defined different variables to model routing tables. The
types of nodes in the network were defined by integers in Uppaal, while in Event-
B we introduced a carrier set to model the network nodes. We defined a common
data structure for all types of messages in Uppaal; in Event-B, we introduced
different carrier sets for each type of message. We note here that we can have
the same data structure (modelling all types of messages, i.e., data packets and
control messages) also in Event-B, and this is part of some future generalisation
that we plan for modelling various network protocols in Event-B.

5.2 Uppaal vs Event-B

Table 2 depicts an overview of the comparison between Uppaal and Event-B. We
detail this table below, namely we compare the specification languages, the vari-
able updating mechanisms, the modularity methods, the verification strategies,
the scalability potential, and the real-time modelling capabilities.

Specification Language. The Uppaal model checker uses timed-automata as the
specification language whereas Event-B is based on set theory. In Uppaal, con-
stants, data structures and procedures are defined in a C-like language. In Event-
B, constants, data structures, variables and their updates are modelled in a
guarded command language.

Variable Updating Mechanism. In Uppaal transitions are used to update the
variables while in Event-B events accomplish the same thing. In both formal
methods, the state of the model is determined by the values of the variables. We
show the similarities between transitions in Uppaal and events in Event-B by
sketching an example based on our models when a node receives a message as
depicted in Fig. 3. By this, we also demonstrate how our models in Uppaal and
Event-B are equivalent. These similarities are as following:

– Selection of Parameters. In Uppaal, the select label of a transition consists
of a list of name:type expressions, where name is the variable’s name and type

is its type. As depicted in Fig. 3 (Transition), IP is the type of variable ip,
i.e., an integer in our model. This variable is only accessible for the respective

Fig. 3. Transition and event in Uppaal and Event-B.
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transition and it takes a non-deterministic value in the range of its respective
types (integer type in our model). In Event-B (Event), the any clause of an
event lists the parameters (or local variables) of the event, i.e., msg in Fig. 3;
the types of these parameters are usually specified in the guards of the events.

– Guards. In Uppaal, the guard label refers to logical expressions that deter-
mine if the respective transitions are enabled (when guards hold). In Fig. 3
(Transition), msglocal.msgtype == packet is the guard of the transition
and shows if the received message is a new packet. In Event-B, the where

clause contains the guards of the events, i.e., the logical conditions for the
event to be enabled (when guards hold). The guard of the (Event) in Fig. 3
is shown as msg ∈ sent packet \ (got packet ∪ lost packet).

– Updates and Actions. In Uppaal, the update label of a transition contains a
list of expressions that update the values of variables. In Fig. 3 (Transition),
delivered++ is the update that increases the value of integer variable
delivered showing that the packet has been received. In Event-B, the then

clause lists the actions of the event that modify some variables of the model.
In Fig. 3 (Event), got packet := got packet ∪ {msg} is the action that adds
the receiving packet to the received messages set. In both frameworks, the
variable updating mechanism takes place only if the guards of transitions or
events respectively hold.

Modularity. In order to model the whole system’s behaviour in Uppaal, several
automata are introduced, each modelling different parts of the system. These
automata need to synchronise with each other, to keep the consistency and
relevance between different parts of the system model. However, it is not always
possible to split the system into different automata and thus a system model may
remain too complex to understand, having too numerous transitions. In Event-B,
different machines are introduced to fully model the behaviour of the system at
different levels of abstraction, starting from a very simple and abstract level. This
abstract model is stepwise developed using refinement methods to finally model
the complete behaviour of the entire system. Consistency between the different
levels of refinements is verified by discharging proof obligations. The stepwise
development allows to split the complexity of the system into different levels and
makes it easier to understand the model and discharge the proof obligations.

Verification. In Uppaal, the required properties are expressed in Computational
Tree Logic (CTL) syntax and the whole system model is verified for the defined
properties. In Event-B, invariants are used to formulate system properties using
first-order logic; the invariants have to be checked for the whole system in order
to show the consistency between different levels of abstractions. Properties in
Uppaal are discharged fully automatically whereas in Event-B some of the prop-
erties are discharged automatically and some are discharged interactively. Uppaal
provides counterexamples if a property does not hold; this helps in finding errors
in the system. In Event-B, if a proof obligation is not discharged automatically,
this typically signals some modelling problem and the modeller is prompted back
to remodel certain aspects.
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Scalability. Uppaal, like all model checking tools, suffers from the state space
explosion problem, hence it is not able to verify very large and complex systems.
Event-B allows to verify even large and complex systems. Event-B checks the
general validity of a property for all models (i.e., also for infinite models) whereas
Uppaal is dedicated to small-scale, finite systems.

Real-Time. Uppaal provides clock variables to model timing behaviour of real-
time systems whereas for Event-B modelling timing behaviour is still incipient. In
Uppaal, clock variables model discrete timing behaviour. In Event-B, advances
are made to model hybrid behaviour including discrete and continuous time
modelling [4,6], but these are not implemented in the Rodin platform yet. In
Event-B, the time can be defined as a function that can be mapped to an integer
variable increasing by the events.

6 Conclusions and Usage Guidelines

To resume our experiences of modelling OLSR with Uppaal and Event-B, we
essentially found that the two formalisms require different approaches to mod-
elling. In Uppaal, the modeller attempts to capture the whole system, in all its
complexity, from the beginning, aided in this task by the modularity technique
of splitting the model into communicating time automata. In Event-B, the mod-
eller gets to understand the system’s complexity by modelling it in increasingly
more detailed levels of abstraction. When we have a conceptually complex sys-
tem (behaviour of routing protocols), choosing Uppaal or Event-B for modelling
it and analysing it is ultimately a matter depending on the modeller’s experience.

One can specify properties to prove in both formalisms, but the verification
of these properties differs in the two frameworks. In Uppaal, the verification
depends on the size of the model and may be unsuccessful if the size is bigger
(networks of realistic size) than some arbitrary and typically small value. This
is because model checking enforces a brute force verification of properties in all
possible states of the system, thus leading relatively fast to overflow. Approaches
are taken to overcome this problem, such as partial order reduction techniques
[21] and statistical model checking. The former assumes that not all states are
worth verifying, and thus defines a priority-based order relation that imposes the
verification of the most important states only. The latter employs probabilities
and gives results such as the property holds with a 0.99 probability; these prob-
abilities are calculated based on many random walks through the state space
(simulations of) the system. In Event-B, the verification of properties is based
on logic and proof engines that are built to work for any defined mathemati-
cal concepts, including infinite-sized models. When properties are not verified
automatically, Uppaal provides counterexamples exposing the offending state:
this can be quite useful for correcting errors. In the same situation, the Rodin
platform shows the unsatisfied proof obligation and thus the modeller gets some
feedback on what does not work. We note here that, if there are flaws in the
system, often they are exposed even for small-scale models, see [12,15].
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Both Uppaal and Event-B are supported by performant software platforms
for modelling and proving; depending on how advanced these platforms are, some
aspects can be modelled or not, such as real-time properties. Uppaal was designed
to include clock variables and time modelling, while Event-B was designed as a
general refinement-based framework. We can precisely model real-time properties
of communication protocols in Uppaal, e.g., broadcasting a control message at a
certain time. Recently, several approaches were proposed on how to add real-time
modelling in Event-B in a conservative manner, e.g. Hybrid Event-B [6] or [4].
This would imply that all variables except clocks are functions of time, so a slight
change of perspective is needed here. Real-time properties are typically closely
related to implementation details, for instance, to various network parameters;
hence, even if we can model timing, when translating the final model into a
software product, we might need to alter various properties and parameters
anyway.

For modelling and verifying routing protocols, Uppaal remains very useful, as
it provides synchronisation mechanisms used in wireless networks: broadcast and
binary synchronisation. This allows to closely understand the communication
between network nodes. Besides these clear differences, we found that modelling
in either framework is quite natural and rewarding and, once the modeller is
experienced enough with the framework, quite efficient as well.

To the best of our knowledge, this is the first paper comparing Uppaal and
Event-B with respect to what each can model and prove. Relations between
model checking and theorem proving in general have been studied before,
e.g. [13], where for solving a (rather simple) puzzle, arguments are given for
using model checking instead of theorem proving. We note that real systems
are very complex nowadays and thus, proving properties for the system, inde-
pendently of its size, is quite important. Another interesting observation made
in [13] is that theorem proving helps in constructing the model, while model
checking can be used when we already understand the model quite well. Other
approaches connecting model checking and theorem proving are [8], where the
idea is to combine the two methods and more recently [24], where refinement is
studied in the context of both Uppaal and Event-B.
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Abstract. We compare two evolutions of the Ad-hoc On-demand Dis-
tance Vector (AODV) routing protocol, i.e. DYMO and AODVv2-16. In
particular, we apply statistical model checking to investigate the perfor-
mance of these two protocols in terms of routes established and looping
routes. Our modelling and analysis are carried out by the Uppaal Statis-
tical Model Checker on 3 × 3 grids, with possibly lossy communication.

1 Introduction

Ad hoc networking has gained popularity and is applied in a wide range of appli-
cations, such as public safety and emergency response networks. Mobile Ad-hoc
Networks (MANETs) are self-configuring networks that support broadband com-
munication without relying on wired infrastructure. Routing protocols of ad-hoc
networks are among the main factors determining performance and reliability of
these networks. They specify the way of communication among different nodes
by finding appropriate paths on which data packets must be sent.

In this work, we focus on two evolutions of the Ad-hoc On-demand Distance
Vector (AODV) [21] protocol to investigate their performance and to analyse if
they may yield routing loops. The protocol finds alternative routes on demand
whenever needed, meaning that it is intended to first establish a route between
a source node and a destination (route discovery), and then maintain a route
between the two nodes during topology changes (route maintenance).

Most studies of wireless network protocols, especially for large scale networks,
are mostly done by simulation techniques and test-bed experiments. These are
valuable techniques for performance analysis, however they do not allow us to
simulate all possible scenarios. As a consequence, unexpected behaviours and
flaws appear many years after the development of protocols. Formal analysis
techniques allow to screen protocols for flaws and to exhibit counterexamples
to diagnose them. For instance, model checking [6] provides both an exhaustive
search of all possible behaviours of the system, and exact quantitative results.

Statistical Model checking (SMC) [25] is a technique combining model check-
ing and simulation, aiming at providing support for quantitative analysis as well
as addressing the size barrier to allow analysis of large models. It relies on choos-
ing sampling traces of the system and verifying if they satisfy the given property

c© Springer International Publishing AG 2018
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with a certain probability. In contrast to exhaustive approach, statistical model
checking does not assure a 100% correct result, but it is possible to restrict the
probability of an error occurring. In this work, we apply Uppaal SMC [8], the
statistical extension of the Uppaal model checker [2] to support the composition
of timed and/or probabilistic automata. In Uppaal SMC, two main statistical
parameters α and ε, in the interval [0, 1], must be specified by the user; the num-
ber of necessary runs is then computed by the tool using the Chernoff-Hoeffding
bounds. The tool provides a value in the confidence interval [p−ε, p+ε] indicat-
ing the probability p of the intended property. Parameters α and ε represent the
probability of false negatives and probabilistic uncertainty, respectively.

Since its first definition, AODV has seen several versions and improvements.
In particular, DYMO [22] is an evolution of AODV supporting path accumula-
tion: whenever a control message travels via more than one node, information
about all intermediate nodes is accumulated in the message and distributed to
its recipients [7]. Several studies have shown that AODV, DYMO and AODVv2
suffer from routing loops [5,10,14,20], i.e. an established route stored in the
routing tables at a specific point in time that visits the same node more than
once before the intended destination is reached [11]. Caught packets in a routing
loop can saturate the links and decrease the network performance. Thus, loop
freedom is a critical and challenging property for any routing protocol.

Contributions. Our work has been motivated by a recent version of AODVv2,
appearing in the AODVv2-16 Internet draft [24] and containing a number of
modifications to overcome the looping problem of AODV and DYMO. As a first
contribution, we have modelled in Uppaal SMC the core functionality of both
AODVv2-16 and DYMO protocols for 3× 3 grid topologies (9 nodes). While the
model for AODVv2-16 is completely new, the model for DYMO is a refinement of
those appearing in [7,15]. In both cases, we have adopted a probabilistic model for
wireless communication to take into account both message loss and link breakage
at different rates. As a second contribution, we have compared the performance
of DYMO and AODVv2-16 with respect to four different workbenches: (i) route
discovery, (ii) number of routes found, (iii) optimal route finding, (iv) and packet
delivery. From our analysis, it emerges that DYMO performs significantly better
than AODVv2-16 with respect to all workbenches, in particular in the presence of
a significant message loss rate. Finally, as the third contribution, we investigate
whether the models for the two protocols may yield routing loops under extreme
conditions, such as message loss and link breakage. As expected, our model of
DYMO faces a number of loops; however the corresponding Uppaal model for
AODVv2-16 is loop free, with an accuracy of 99%, suggesting that the changes
introduced in this version of the protocol help to reduce/remove loops.

Outline. In Sect. 2, we overview both DYMO and AODVv2-16. In Sect. 3, we
discuss the Uppaal models of the two protocols based on their RFCs [22,24]. In
Sects. 4 and 5, we present the results of our analysis with respect to performance
and loop occurrences. In Sect. 6, we draw conclusions and review related work.
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2 DYMO and AODVv2-16: Two Evolutions of AODV

This section provides a brief overview of DYMO and AODVv2-16 protocols. In
both protocols, each node maintains a routing table (RT ) containing information
about the routes to be followed when sending messages to the other nodes of
the network. The collective information in the nodes’ routing table is at best a
partial representation of network connectivity as it was at some times in the past;
in the most general scenario, mobility together with node and communication
failures continually modify that representation.

We report a scheme of the DYMO protocol [22] with an injected packet having
the source node s and destination node d. When s receives the data packet, it first
looks up an entry for d in its routing table. If there is no such entry, it broadcasts
a rreq message through the network. Afterwards when an intermediate node
receives the rreq, it first checks whether or not the information in the message
is new. If this is not the case, the receiving intermediate node discards the rreq

and the processing stops. If the information is new, the receiving node updates
its routing table based on the information in the rreq. Then, it checks if it
has a route to the destination d. If this information is provided, intermediate
node sends a rrep back to the source s as well as to the destination d. By this,
DYMO establishes bidirectional routes between originator and destination. On
the other hand, if the intermediate node does not have any route to d, it adds
its own address to the rreq and rebroadcasts the message.

When next intermediate node receives the rebroadcast rreq, it updates (if the
message is new) the routing table entry associated with s and the corresponding
intermediate sender node and repeats the same steps executed by the former
intermediate node. Finally when the destination d receives the rreq, it updates
its routing table for the source node s and all the intermediate nodes that have
rebroadcast the rreq, and then sends a unicast rrep that follows the reverse
path towards s. Each node receiving the rrep will update the routing table
entry associated with d and intermediate nodes.

Nodes also monitor the status of alternative active routes to different destina-
tions. Upon detecting the breakage of a link in an active route, an rerr message
is broadcast to notify the other nodes about the link failure. The rerr message
contains the information about those destinations that are no longer reachable
toward the broken link. When a node receives an rerr from its neighbours, it
invalidates the corresponding route entry for the unreachable destinations.

The architecture of the AODVv2-16 protocol [24] is quite similar to that of
DYMO considering some differences. One of the main differences of AODVv2-16
is to avoid sending rrep by intermediate nodes. When AODVv2-16 broadcasts
a rreq, it waits to get the rrep back only from the destination of the rreq. It
means that intermediate nodes do not send the rreps to the source of the rreq

even if they have active routes through the destination node. This behaviour will
increase the time needed for route discovery (routing tables in AODVv2-16 are
not updated as often as in DYMO), decreasing the performance of the protocol1.

1 Due to lack of space, we highlight the design differences between two protocols in [16].
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2.1 Degrading Performance to Avoid Routing Loops

Different studies have proved the presence of loops in AODV, DYMO and
AODVv2 protocols [5,10,14,20]. Here, we report a simple example to show how
a loop can occur in DYMO, and how this is avoided in AODVv2-16.

Fig. 1. Presence of a loop in DYMO.

The network in Fig. 1 consists of three nodes that are connected in a linear
topology. Let’s assume that node s has a pkt to send to node d. It initiates
the route discovery and broadcasts a rreq. Node i gets the rreq, updates its
routing table for node s, adds itself as an intermediate node in the rreq of s, and
rebroadcasts the rreq, Fig. 1(1). Node s and d receive the rreq. Node s drops
the message since the received message is its own rreq and node d updates its
routing table for node s and i and since it is the rreq destination, it sends a
rrep back through the path to the originator of the rreq, i.e. node s. Node i gets
the rrep from d, updates its routing table for d, adds itself as an intermediate
node in rrep of d and sends the rrep to s. Finally, node s receives the rrep of
d, Fig. 1(1), updates its routing table for i and d and sends the pkt to node i

to be delivered to d, Fig. 1(2).
Afterwards, the link between s and i breaks and node i has a pkt to send

to s. Node i becomes aware of the link breakage and broadcasts an rerr to its
neighbours. Assume the rerr from i is lost in the reception of d, resulting in
node d not being notified about the link breakage, Fig. 1(3). Next when node i

has another pkt to send to s, and it knows already that there is no valid route to
s, it initiates a rreq to its neighbours. Node d receives the rreq and it has the
valid route to s. Node d, as the intermediate node, sends the rrep to i, Fig. 1(4).
Node i receives the rrep from d and updates its routing table for node s with
new information. In this situation, node i sends its pkt to d since node i’s next
hop through s is d. Node d then sends the pkt to i as node d’s next hop through
s is i. Finally, the pkt is circulated in a loop, Fig. 1(5).

Protocol designers have overcome the looping problem of DYMO by incorpo-
rating several changes in the new version (AODVv2-16). In this current version,
if route discovery is initiated the intermediate nodes which have active routes
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through the destination do not send the rrep to the originator, meaning that
the destination of the rreq has sole responsibility for sending the rrep back
to the originator. By this, they have solved the problem of having loops in the
network, but the performance level has decreased.

In AODVv2-16, the routing tables can be updated if:

– “If AdvRte is more recent than all matching LocalRoutes. ”
– “If the sequence numbers are equal, Check that AdvRte is safe against routing loops com-

pared to all matching LocalRoutes, If LoopFree(AdvRte, LocalRoute) returns TRUE, com-
pare route costs:

–If AdvRte is better than all matching LocalRoutes, it MUST be used to update the
Local Route Set because it offers improvement.

–If AdvRte is not better (i.e. it is worse or equal) but LocalRoute is Invalid, AdvRte
SHOULD be used to update the Local Route Set because it can safely repair the existing
Invalid LocalRoute.” [[24], page 28]

Here, LocalRoutes stores previously received messages, AdvRte contains
the information about newly received message, and LoopFree(AdvRte,

LocalRoute):= (Cost(AdvRte) <= Cost(LocalRoute)).
There are more conditions in the specification of the AODVv2-16 indicating

when to update routing tables, leading to less information being stored, hereby
decreasing the performance. For instance, routing tables in AODVv2-16 are not
updated in the scenario where sequence numbers are the same, the message is
received via a longer path, and the link toward a destination is broken, although
updating would have helped to fix broken paths. In addition, the sending of rrep
by intermediate nodes is not specified in AODVv2-16. This leads to routes being
established more slowly than in DYMO, since the rreq has to travel all the way
to the destination node and rrep has to be sent back along the whole path, from
the rreq destination to the rreq originator.

3 Uppaal Models of AODVv2-16 and DYMO

In this section, we briefly explain our AODVv2-16 automata and provide some
modifications of the Uppaal SMC model of [15] for DYMO2. As in [15], both
protocols are represented as parallel compositions of node processes, where each
process is a parallel composition of two timed automata, the Handler and the
Queue. This is because each node maintains a message queue to store incoming
messages and a process for handling these messages; the workflow of the handler
depends on the type of the message. Communication between nodes i and j is
only feasible if they are neighbours, i.e. in the transmission range of each other.
This is modelled by predicates of the form isconnected[i][j] which are true if
and only if i and j can communicate. Communication between different nodes i
and j are on channels with different names, according to the type of the control
message being delivered (rrep, rreq, rerr).

Messages (arriving from other nodes) are stored in the queue, by using a
function addmsg(). Only messages sent by nodes within the transmission range

2 The reader can consult our models at http://users.abo.fi/mokamali/SOFSEM2018.
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may be received. Unlike the model of [15] our Queue is essentially a probabilistic
timed automata. Uppaal SMC features branching edges with associated weights
for the probabilistic extension. Thus we define an integer constant loss, with
0 ≤ loss ≤ 100, and a node can either lose a message with weight loss or receive
it with weight (100−loss).

The Handler automaton, modelling the message-handling protocol, is far
more complicated and has around 22 locations. The implementation of the two
protocols differs for this automaton. The Handler is busy while sending mes-
sages, and can only accept one message from the Queue once it has completely
finished handling the previous message. Whenever it is not processing a mes-
sage and there are messages stored in the Queue, the Queue and the Handler

synchronise via channel imsg[ip], transferring the relevant message data from
the Queue to the Handler. According to the specification of the protocols, the
most time consuming activity is the communication between nodes, which takes
40 ms on average [22,24]. This is modelled in the Handler by means of a clock
variable t, set to 0 before transmission, so that a delay between 35 and 45 ms is
selected uniformly at random.

Based on DYMO and AODVv2-16 specifications, rreqs can be resent the
maximum of 3 times in the presence of message loss. The major differences
between AODVv2-16 and DYMO, are the absence of intermediate rreps and also
conditions regarding updates of the routing tables. As we explained in Sect. 2,
AODVv2-16 tries to find the whole path through the destination node and it
does not rely on the rreps from intermediate nodes that have routes through the
destination node (intermediate nodes do not generate any rrep message even if
they have active routes through the destination node).

Finally, we report the main changes which have been introduced in our
Uppaal SMC model of DYMO with respect to that proposed in [15]:

– In the DYMO model by [15], two connected nodes could get disconnected
while a node is waiting to transmit a message (waiting time of 40 ms), which
could cause a potential deadlock in the system. For our experiments, we mod-
ify this behaviour and assume that two connected nodes cannot get discon-
nected during this period of time which is the case in reality (the probability
that two nodes disconnect upon communication is too low).

– We minimised the DYMO automaton of [15] by removing a number of redun-
dant locations and transitions that were modelling the same procedure.

– We have also modelled the resending of rreq for the maximum number of 3
times, when control messages, i.e. rreq, rrep and rerr, can get lost. This
was done by adding new locations and transitions.

– In the current version of DYMO Uppaal model, when a node receives a mes-
sage from its neighbour it first checks the message sequence number. If it is
recent then it updates its routing table for the message originator and for
the stored intermediate nodes in the message. If the sequence number is not
recent, the message is simply dropped without any routing table update.

For further details the reader is referred to our technical report [16].
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4 Performance Analysis on Static Grids

We replay the experiments of [7,15] to compare DYMO and AODVv2-16 on
3× 3 grid topologies with possibly lossy channels. Furthermore, we investigate
one more property, namely packet delivery. More precisely, we consider four
different workbenches to compare the two protocols: 1. A probabilistic analysis
to estimate the ability to successfully complete the protocol finding the requested
routes for a number of properly chosen scenarios; 2. A quantitative analysis to
determine the average number of routes found during the routing process in the
same scenarios; 3. A qualitative analysis to verify how good (i.e. short) are the
routes found by the routing protocol. 4. A probabilistic analysis to investigate
the number of delivered packets to their corresponding destinations. We conduct
our experiments using the following set-up: (i) 2.3 GHz Intel Quad-Core i7, with
16 GB memory, running the Mac OS X 10.11.6 “El Capitan”; (ii) Uppaal SMC
model-checker 64-bit version 4.1.19. The statistical parameters of false negatives
(α) and probabilistic uncertainty (ε) are both set to 0.01, leading to a confidence
level of 99%. For each experiment with these parameters, Uppaal SMC checks
several hundred runs of the model, up to 26492 runs (cf. Chernoff-Hoeffding
bound). We run our experiments for the message loss rates used in [7], namely
0%, 10% and 30%, and then also for 40% to obtain more precise results.

4.1 Successful Route Requests

In the first set of experiments we consider four specific nodes: A, B, C and D; each
with particular originator/destination roles. Our scenarios are a generalisation
of those of [15] (as we consider larger networks) and assign roles as follows:

(i) A is the only originator sending a packet first to B and afterwards to C;
(ii) A is sending to B first and then B is also sending to C;
(iii) A is sending to B first and then C is sending to D.

Up to symmetry, varying the nodes A, B, C and D on a 3× 3 grid, we have
5184 different configurations. From this number we deduct 4518 configurations
because they make little sense in our analysis, as the source and the destination
node coincide. This calculation yields 666 different configurations. As we will
repeat our simulations for four different loss rates, this makes in total 2664
experiments.

Initially, for each scenario no routes are known, i.e. the routing tables of each
node are empty. Then, with a time gap of 35–45 ms, two of the distinct nodes
receive a data packet and have to find routes to the packet’s destinations. The
query in Uppaal SMC syntax has the following shape:

Pr[<=10000](<>(tester.final && emptybuffers() &&

art[OIP1][DIP1].nhop!=0 && art[OIP2][DIP2].nhop!=0))

The first two conditions require the protocol to complete; here, tester refers
to a process which injects to the originators nodes (tester.final means
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that all data packets have been injected), and the function emptybuffers()

checks whether the nodes’ message queue are empty and the Handler is
idle (is not busy with processing messages). The third and the fourth
conditions require that two different route requests are established. Here,
art[o][d].nhop is the next hop in o’s routing table entry for destination
d. As soon as this value is set (is different to 0), a route to d has been
established. Thus, the whole query asks for the probability estimate (Pr) sat-
isfying the CTL-path expression <>(tester.final && emptybuffers() &&

art[OIP1][DIP1].nhop!=0 && art[OIP2][DIP2].nhop!=0) within 10000 time
units (ms); as in [15] this bound is chosen as a conservative upper bound to ensure
that the analyser explores paths to a depth where the protocol is guaranteed to
have terminated.

In Table 1 we provide the results of our query for both models. More precisely,
we report the average probability to satisfy the required property in all 666
configurations. This is done for four different loss rates. Note that in the case of
perfect communication, our analysis shows that the probability to successfully
establish a required route in our setting can be estimated to be at least 0.99. We
should add here that increasing message loss rate leads an increase in the number
of runs to complete the simulation. This is because unreliable communication
channels make the routing process longer in order to resend control messages.
In other words, the number of runs is affected by the lower success probability
which requires a larger number of runs to provide confidence intervals.

Table 1. Route establishment on 3 × 3 grid networks (α = ε = 0.01).

Loss= 0% St. dev. Loss= 10% St. dev. Loss= 30% St. dev. Loss= 40% St. dev.

DYMO 0.99 0.00 0.99 0.00 0.89 0.06 0.65 0.14

AODVv2-16 0.99 0.00 0.98 0.00 0.72 0.14 0.45 0.20

We can see that on the 3× 3 grid with perfect communication the reliabil-
ity of the two protocols is quite similar. However, in the presence of message
loss, DYMO performs better than AODVv2-16. In fact, the higher the loss rate,
the bigger the gap between the two protocols. More precisely, with a 10% loss
rate DYMO performs better than AODVv2-16, whereas with 30% and 40% loss
rate the gap between two protocols becomes more obvious (DYMO performs
much better than AODVv2-16). It should be also noticed that the results of the
simulations on DYMO are more homogeneously distributed around the average
probability, as it appears from the smaller standard deviation.

4.2 Number of Route Entries

The second analysis proposed in [15] takes into account the capability to build
other routes while establishing a route between two specific nodes. Routing tables
are updated whenever control messages are received. Both protocols update for
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the whole discovered paths by forcing path accumulation (storing the information
about intermediate nodes in control messages).

We check the property:

E[<=10000,26492](max:total knowledge())

where the function total knowledge() counts the number of non-empty entries
appearing in all routing tables built along a run of the protocol, and the function
max returns for all runs of the simulation, the maximum number of non-empty
entries. This calculation is done for all different configurations; the result of the
analysis is the average over all configurations. The reader should notice that this
kind of query is different from the previous one. It has the form E[..](..),
where the letter “E” stands for expected value estimation, as the result of the
query is a value and not a probability. Since the number of runs is not determined
by value estimation, we set 26492 runs for our simulations to guarantee a 99%
confidence level. The time bound remains as 10000.

Table 2. Route quantity on 3 × 3 grid networks (26492 runs for each experiment).

Loss 0% St. dev. Loss 10% St. dev. Loss 30% St. dev. Loss = 40% St. dev.

DYMO 37.27 7.68 37.42 6.18 34.68 5.86 31.27 5.39

AODVv2-16 34.01 5.93 34.38 5.76 34.57 5.91 31.66 5.36

We repeat the same analysis of [15] on our 3× 3 grid by considering four
different loss rates. In total we did 2664 experiments, one for each configuration
with a different loss rate. The results of our analysis are reported in Table 2.
Table 2 shows that during the routing process DYMO establishes more routes
than AODVv2-16 (37 versus 34 routes), in the absence of message loss. This gap
remains the same when having 10% message loss rate. The analysis shows that
increasing the rate of the message loss leads to have similar behaviour of DYMO
and AODVv2-16 (having the same number of route entries).

4.3 Optimal Routes

The results of the previous section tell us that in our 3× 3 grid, DYMO is
more efficient than AODVv2-16 in populating routing tables while establishing
routing requests. In this section, we provide a class of experiments to compare
the ability of two protocols in establishing optimal routes, i.e. routes of minimal
length, according to the network topology. As explained in [15,19], all ad-hoc
routing protocols based on rreq-broadcast can establish non-optimal routes.
This phenomenon is more evident in a scenario with unreliable communication.

We replay the same experiments of [15]. We checked the following property:

Pr[<=10000](<>(tester.final && emptybuffers() &&

art[OIP1][DIP1].hops==min path && art[OIP2][DIP2].hops==min path1)).
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Here, the third and the fourth conditions require that two different route requests
are established. In fact, art[o][d].hops returns the number of hops necessary
to reach the destination node d from the originator o, according to o’s routing
table. Furthermore, we require this number to be equal to the length of the
corresponding optimal route (which has been previously computed).

In this experiment we are not interested in checking all non-empty routing
entries but only those which are directly involved in the two routing requests.
This property is checked on all 666 configurations with four different loss rates.
Notice that this time we ask for a probability estimation, so the result is going to
be a probability. The statistical parameters of our simulations are α = ε = 0.01.

Table 3. Optimal routing on 3 × 3 grid network. (α = ε = 0.01).

Loss 0%Stand. dev. Loss 10%Stand. dev. Loss 30%Stand. dev. Loss= 40% Stand. dev.

DYMO 0.94 0.20 0.84 0.18 0.67 0.17 0.48 0.17

AODVv2-16 0.95 0.19 0.86 0.18 0.58 0.19 0.37 0.19

Table 3 says that the probability to establish optimal routes in the two routing
protocols is very close when having no message loss. Actually, in the presence
of message loss, there is still a gap in favour of DYMO. This gap would become
bigger if we would focus only on the optimality of the second route request, which
is launched slightly after the first one. This is because DYMO works better than
AODVv2-16 when routing tables are not completely empty.

4.4 Packet Delivery

The packet delivery property differs from the successful route request property,
in that the route establishment property only checks if the source node has the
information about the destination node, however the packet delivery property
checks if the injected packets are delivered to the destination at the end. Indeed,
there might be a situation where an originator node has the information about
the destination node and sends its packet to the next node along the path to
the destination node, but the next node itself does not have valid information
about the destination node. As a consequence, all the packets stemming from the
originator node will be lost, hence the packets cannot arrive at the destinations.

This property in Uppaal SMC syntax is as following:

Pr[<=10000](<>(tester.final && emptybuffers() && empty queues()==0 &&

packet delivered()==2))

Here, the third and the fourth conditions require that the two packets are deliv-
ered at their destinations; empty queues() is a function checking whether or
not there is any packet in the queue of any nodes. When this function returns
0, it shows that there is no more packet in the queues of nodes. Function
packet delivered() returns the number of delivered packets which must be 2
at the end, given that we have injected two packets for our experiments. Thus,
the whole query asks for the probability estimate (Pr) satisfying the CTL-path
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expression <>(tester.final && emptybuffers() && empty queues()==0 &&

packet delivered()==2) within 10000 time units (ms); as in [15] this bound is
chosen as a conservative upper bound to ensure that the analyser explores to a
depth where the protocol is ensured to have terminated.

The results in Table 4 show that AODVv2-16 works worse than DYMO w.r.t.
the packet delivery property as it tries to find the whole path to the destina-
tion node, whereas DYMO relies on replying back from the intermediate nodes.
Moreover, routing tables in AODVv2-16 are not updated regularly due to the
more restricted routing table updates in AODVv2-16. Therefore, the probability
that all packets are delivered to the destination nodes is lower in AODVv2-16.

5 Loop Analysis on Grids with Link Breakage

We run our experiments, looking for loops on 3× 3 grids during the routing
process, under the assumption that links between nodes can break with a high
probability. We model link breakage by modifying the Queue automaton so that
when a control message is received by the queue of a node (using a function
addmsg()) with probability of 100-loss, the link between one random node in
the network and the receiver can break with a fixed probability breaks. Since
link breakage is one of the main factors causing routing loops, we assign this
value to 80, so that with a very high probability the link between the sender and
the receiver fails. Furthermore, in order to increase the traffic in the network we
inject three packets in total. The slightly new scenario is explained below.

Table 4. Packet delivery on 3 × 3 grid networks (α = ε = 0.01).

Loss 0% Stand. dev. Loss 10% Stand. dev. Loss 30% Stand. dev. Loss=40% Stand. dev.

DYMO 0.99 0.00 0.98 0.00 0.78 0.09 0.50 0.16

AODVv2-16 0.99 0.00 0.97 0.01 0.60 0.16 0.35 0.18

We consider again four specific nodes: A, B, C and D; each with particular
originator/destination roles. We assign roles as follows: (i) A is the only origi-
nator sending the first packet to B, and afterwards sends the second and third
packets to C; (ii) A is sending to B first and then B is also sending the second
and third packets to C; (iii) A is sending to B first and then C is sending the
second and third packets to D.

For simplicity, in order to work with a reasonable number of experiments,
second and third packets have the same originators and destinations, so the
number of configurations up to symmetry will remain the same, i.e. 666. In our
experiments we check the number of loops in all 666 different configurations
(how many loops exist in the network) and we show how many configurations
have routing loops i.e. in how many configurations an injected packet can be
circulated between nodes. This gives 2664 experiments in total for each protocol.
Our experiments can be represented using the following Uppaal SMC syntax:

E[<=10000;26492](max:numberofloops())
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Function numberofloops() counts the number of loops found along a run of the
protocol, and the function max returns for all runs of the simulation, the maxi-
mum number of loops. We maintain the same number of runs as for performance
analysis, i.e. 26492, to guarantee a 99% accuracy.

Table 5 depicts the maximum number of loops considering different message
loss rate in different configurations for both protocols. The results of our analysis
show that when message loss rate increases, the number of loops in the networks
for DYMO also increases. For instance when having 0% message loss, the number
of loops in the network is 1 and when message loss increases to 10% or more
number of loops in the network increases to 2. Unlike DYMO, the rate of message
loss does not have any effect on the number of loops in the network for AODVv2-
16 as we cannot find routing loops while verifying AODVv2-16.

Table 5. Number of loops in different
configurations.

Loss 0% Loss 10% Loss 30% Loss 40%

DYMO 1 2 2 2

AODVv2-16 0 0 0 0

Table 6. Number of configurations that
have loops.

Loss 0% Loss 10% Loss 30% Loss 40%

DYMO 10 11 13 11

AODVv2-16 0 0 0 0

Table 6 shows the number of configurations having loops. Results for DYMO
show with 0% message loss there are 10 configurations out of 666 that have loops
in the network. This value is increased to 11 with 10% message loss, and when
message loss is increased to 30%, the number of configurations that have loops
goes up to 13. The table depicts when message loss increases to 40%, the number
of configurations that have loops decreases to 11. In contrast to DYMO, there
is no configuration in AODVv2-16 that has routing loops.

6 Conclusions and Related Work

Our work has been strongly inspired by recent version of AODVv2-16 [24] where
several modifications were proposed to overcome looping problem of DYMO (and
previous versions of AODVv2). We believe that the protocol designers accepted
the performance hit in order to ensure that the protocol is loop free. To the best
of our knowledge, our work is the first to investigate the looping property of
AODVv2-16 and compare the performance of DYMO and AODVv2-16.

In this paper, we modelled the AODVv2-16 protocol and investigated the
performance of the protocols DYMO and AODVv2-16 in 3× 3 grids, with possi-
bly lossy communication, as well as checking the loop freedom property for both
protocols. Our analysis is performed using the Uppaal SMC (release 4.1.19). We
were able to show how the performance of the more recent AODVv2-16 has been
worsened compared to DYMO, especially in the case of lossy communication.
DYMO can cause routing loops whereas our extensive analysis was not able to
find loops in AODVv2-16. This result encourages us to pursue towards a formal
proof of loop freedom for AODVv2-16.
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Formal analysis of MANETs and their protocols is a challenging task, and
their formal verification have attracted the attention from formal methods com-
munity [1,3,4,7,13,15,17,18,20]. There are number of papers which apply (sta-
tistical) model checking to AODV and its variants, to test the performances of
the protocol(s). Fehnker et al. [9] used the Uppaal model checker [2] to anal-
yse basic qualitative properties of the AODV routing protocol in all network
topologies up to five nodes. Höfner and McIver [15] showed that AODV per-
forms better than DYMO on the same topologies, relying on the Uppaal SMC
model checker. On the contrary, Dal Corso et al. [7] showed that on larger net-
works (4× 3 toroids) with lossy communication DYMO performs better than
AODV.

There are also several studies on loop freedom of AODV and DYMO. van
Glabbeek et al. [14] have studied the loop freedom of the AODV protocol and
they have showed that AODV is not loop free and sequence numbers do not
guarantee loop freedom. Namjoshi and Trefler [20] have investigated the looping
property of AODVv2-04 and they have proved this protocol causes routing loops.
There are several other studies that confirm existence of routing loops in AODV
[5,10,12]. In a recent paper, Yousefi et al. [26] have applied their extension of
actor-based modelling language bRebeca to model AODVv2-11 [23] (a previous
version of AODVv2) where they have proved that the loop freedom property of
AODVv2-11 does not hold. The authors had reported the existing loop scenario
to protocol designers and the protocol has been modified in the newer version
(AODVv2-13).
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Abstract. Wireless Mesh Networks (WMNs) are self-organising and
self-healing wireless networks that provide support for broadband com-
munication without requiring fixed infrastructure. A determining factor
for the performance and reliability of such networks is the routing proto-
cols applied in these networks. Formal modelling and verification of rout-
ing protocols are challenging tasks, often skipped by protocol designers.
Despite some commonality between different models of routing protocols
that have been published, these models are often tailored to a specific
protocol which precludes easily comparing models. This paper presents
an adaptive, generic and reusable framework as well as crucial generic
properties w.r.t. system requirements, to model and verify WMN rout-
ing protocols. In this way, protocol designers can adapt the generic mod-
els based on protocol specifications and verify routing protocols prior
to implementation. This model uses Uppaal SMC to identify the main
common components of routing protocols, capturing timing aspect of
protocols, communication between nodes, probabilities of message loss
and link breakage, etc.

1 Introduction

Wireless Mesh Networks (WMNs) are self-organising and self-healing wireless
networks that provide support for broadband communication without requiring
fixed infrastructure. They provide rapid and low-cost network deployment and
have been applied in a wide range of application areas such as public safety,
emergency response networks, battlefield areas, etc.

A determining factor for the performance and reliability of such networks is
the routing protocols applied in these networks. Routing protocols specify the
way of communication among nodes of the network and find appropriate paths
on which data packets are sent. They are grouped into two main categories:
proactive and reactive routing protocols. Proactive protocols rely on the peri-
odic broadcasting of control messages through the network (time-dependent)
and have the information available for routing data packets. Reactive protocols,
in contrast, behave on-demand, meaning that when a packet targeting some
destination is injected into the network they start the route discovery process.
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Previous studies of routing protocols mostly rely on simulation approaches
and testbed experiments. These are appropriate techniques for performance
analysis but are limited in the sense that it is not possible to simulate sys-
tems for all possible scenarios. Formal techniques, mathematically languages
and approaches, are used to complement testbed experiments and simulation
approaches. They provide tools to design and verify WMN routing protocols,
allow to model protocols precisely and to provide counterexamples to diagnose
their flaws.

Statistical Model checking (SMC) combines model checking with simulation
techniques to overcome the barrier of analysing large systems as well as provid-
ing both qualitative and quantitative analysis. Uppaal SMC monitors simulation
traces of the system and uses sequential hypothesis testing or Monte Carlo sim-
ulation (for qualitative and quantitative analysis respectively) to decide if the
intended system property is satisfied with a given degree of confidence. Statis-
tical model checking does not guarantee a 100% correct result, but it is able to
provide limits on the probability that an error occurs. In this work, we apply
Uppaal SMC [7], the statistical extension of Uppaal.

Contributions. Our work has been inspired by the fact that formal modelling
and verification of routing protocols seem challenging tasks. Protocol designers
often decide on skipping this level of development. We provide an adaptive,
generic and reusable framework as well as crucial generic properties w.r.t. system
requirements, to model and verify WMN routing protocols. In this way, protocol
designers can adapt the generic models based on protocol specifications and
verify routing protocols prior to implementation.

In particular, this study describes how to build reusable components within
the constraints imposed by the Uppaal modelling language. It identifies the main
components that routing protocols have in common, and how to map them to
data structures, processes, channels, and timed automata in the Uppaal lan-
guage. We show the validity and applicability of our models by modelling Bet-
ter Approach To Mobile Ad-hoc Networking (BATMAN) [19], Optimised Link
State Routing (OLSR) [5], and Ad-hoc On-demand Distance Vector version2
(AODVv2) [21] protocols using our framework.

Outline: The paper is structured as follows: in Sect. 2, we give an overview of
the formal modelling language used in this paper. Then in Sect. 3, we shortly
overview the general structure of WMN routing protocols. Section 4 is the core of
this paper where we discuss our generic Uppaal framework as well as our generic
Uppaal properties. Section 5 demonstrates the adaptability of our framework,
sketching examples of BATMAN, OLSR, and AODVv2 protocols. We discuss
related work in Sect. 6 and draw conclusions as well as propose future research
directions in Sect. 7.

2 Modelling Language

Most routing protocols of WMNs have complex behaviour, e.g., real-time
behaviour, and formal modelling and verification of such systems end up being
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Fig. 1. Common structure of Uppaal models. Arrow denote access to variables and
functions. Location names are treated like Booleans by the requirements.

a challenging task. Moreover, choosing a formal modelling language which con-
siders the significant characteristic of these protocols is an important step in the
development of a formal framework. In this work, we apply Uppaal SMC (which
is based on stochastic time automata) to be able to realistically model timing
behaviour, wireless communication, probabilistic behaviour, and complex data
structure of routing protocols. In addition, the Uppaal GUI and Uppaal simu-
lator provide a visualised interpretation of the system which makes the task of
modelling easier. We describe the basic definitions that are used in Uppaal SMC.

2.1 Uppaal Timed Automata

The theory of timed automata [1] is applied for modelling, analysing and verify-
ing the behaviour of real-time systems. A finite timed automaton is defined as a
graph consisting of finite sets of locations and edges (transitions), together with
a finite set of clocks having real values. The logical clocks of automata are ini-
tialised with zero and are increased with the same rate. Each location may have
an invariant, and each edge may have guards (possibly clock guards) which allow
a transition to be taken, and/or actions that can be updates of some variables
and/or clocks.

The modelling language of Uppaal extends timed automata as defined by
Alur and Dill [1] with various features, such as types, data structures, etc [2].
A system is a network of timed automata that can synchronise on channels
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and shared variables. Fig. 1 depicts the common structure of Uppaal models.
Uppaal distinguishes between global declarations and processes. All processes are
running concurrently at the same level, and the model has no further hierarchy.
Processes are actually instantiations of parameterised templates. Separate from
the system model are the requirements, which describe properties, or statistical
experiments.

Type definitions in the global declaration are used to define ranges of integers
– often used as identifiers – or structs. Variables can be any integer type, any
newly defined type, channels, and arrays of these. Clock variables that evaluate
to real numbers are used to measure time. All clocks progress at the same rate,
and can only be reset to zero. The global declaration can also define functions
in a C-like language. These functions can be used anywhere in the model.

Each process has its own local declarations. These may contain variable dec-
larations and function declarations. The scope of these is limited to the process.
While it is possible to locally define types and channels, this is rarely done; at
most to define urgent broadcast channels that force transitions once their guard
becomes true.

For each process, there exists an automaton that operates on local and global
variables and may use the locally and globally defined functions. Every automa-
ton can be presented as a graph with locations and edges. Each location may
have an invariant, and each edge may have a guard, a synchronisation label,
and/or an update of some variables.

Synchronisation between automata happens via channels. For every chan-
nel a there is one label a! to identify the sender, and a? to identify receivers.
Transitions without a label are internal; all other transitions use either binary
handshake or broadcast synchronisation. Uppaal SMC supports only broadcast
channels [7]:

Broadcast synchronisation means that one automaton with a !-edge synchro-
nises with several other automata that all have an edge with a relevant ?-label.
The initiating automaton is able to change its location, and apply its update if
and only if the guard on its edge is satisfied. It does not need a second automa-
ton to synchronise with. Matching ?-edge automata must synchronise if their
guards evaluate to true in the current state. They will change their location and
update their states. First, the automaton with the !-edge updates its state, then
the other automata follow. If more than one automaton can initiate a transition
on a !-edge, the choice is made non-deterministically.

Due to the structure of the Uppaal model, automata cannot exchange data
directly. A common workaround is the following: If an automaton wants to send
data to another automaton, it synchronises on a channel. It writes the data to a
global variable during an update, which is then copied by the second automaton
to its local variable during its update.

Also, due to the scoping rules, one automaton cannot use a method of one of
the other automata, for example, to query its state. The common workaround
is to make either a duplicate of important information global, or to have the
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information global, and have a self-imposed rule on which a process can read
and write and to what part of the global variables.

In addition to the system model, it is possible to define requirements. Require-
ments can access all global and local variables, and use global and local functions,
as long as they are side-effect free, i.e. they do not change variables outside of the
scope of the function. Requirements can iterate over finite ranges, using forall,
exists, or sum iterators.

Uppaal has several other keywords to define the behaviour of delays and
transitions, such as urgent or priority. The discussion of these is outside of the
scope of this paper. The common structure of Uppaal, with its scoping rules,
however, is relevant for this paper, as it sets the framework in which we have to
develop our generic model.

2.2 Uppaal Stochastic Timed Automata

Uppaal SMC [7] is a trade off between classical model checking and simula-
tion, monitoring only some simulation traces of the system and uses sequential
hypothesis testing or Monte Carlo simulation (for qualitative and quantitative
analysis respectively) to determine whether or not the intended system property
is satisfied with a given degree of confidence.

The modelling formalism of Uppaal SMC is based on the extension of Uppaal
timed automata described earlier in this section. For each timed automata com-
ponent, non-deterministic choices between several enabled transitions assigned
by probability choices, refine the stochastic interpretation. A model in Uppaal
SMC can consist of a network of stochastic timed automata that communicate
via broadcast channels and shared variables.

Classical Uppaal’s verifier uses a fragment of Computation Tree Logic (CTL)
to model system properties. Uppaal SMC adds to its query language elements of
the Metric Interval Temporal Logic (MITL) to support probability estimation,
hypothesis testing, and probability comparison, and in addition the evaluation
of expected values [7].

The algorithm for probability estimation [12] computes the required number
of runs to define an approximation interval [p − ε, p + ε] where p is the proba-
bility with a confidence 1-α. The values of ε (probabilistic uncertainty) and α
(false negatives) are selected by the user and the number of runs is calculated
using the Chernoff–Hoeffding bound. In Uppaal SMC, the query has the form:
Pr[bound](φ), where bound shows the time bound of the simulations and φ is
the expression (path formula).

Evaluation of expected values of a max of an expression which can be
evaluated to a clock or an integer value is also supported by Uppaal SMC.
In this case, the bound and the number of runs (N) are given explicitly and
then max of the given expression (expr) is evaluated. The query has the form:
E[bound;N](max : expr)); an explicit confidence interval is also required for
these type of queries.
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Fig. 2. Generic structure of a WMN routing protocol model for verification, with
respect to typical structure of an Uppaal model.

3 Overview Uppaal Model of WMN Routing Protocols

WMN routing protocols disseminate information in the network to provide the
basis for selecting routes. Routing protocols specify which control messages
should be sent through the network. These messages are received/lost by other
network nodes. Receiving nodes update their information about other nodes
based on received messages. Network nodes can send data packets to destina-
tions in the network using discovered paths. Figure 2 depicts the main compo-
nents that define a routing protocol model.

Communication. The protocol has to specify the types of control messages and
the information they contain. This information consists of originator address,
originator sequence number, etc. The model has to specify whether a message is
sent as a unicast or as a multicast message1.

Topology. The network topology shows how nodes are connected to each other.
Connectivity is commonly modelled as an adjacency matrix. The model should
provide methods to add and delete connections, as well as a model that deter-
mines how the topology changes. This paper uses a simple model of link failure;
a more elaborate study of dynamic topologies can be found in [10].

1 To avoid confusion, we will refer to this type of communication as multicast, instead
of broadcast. We reserve the term broadcast for Uppaal channels.
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Node. The behaviour of a protocol is defined by the composition of a queue,
a handler, and – if the protocol is proactive – by one or more generators, and
possibly a number of timers.

Queue. Messages from other nodes should be stored in a buffer or queue. Based
on the order of arrival they will be processed later by the handler (first in, first
out method is applied for buffers). If different messages arrive to a node at the
same time, the choice of the message reception happens non-deterministically.
It will use the information in these messages to update the corresponding
routing information about sender nodes.

Handler. The handler is the core of the protocol. The handler will receive mes-
sages from the queue and update the stored information, which is kept in the
routing table. Depending on the content of the message, and the current state
of the routing table, the handler further decides whether to drop the message,
send a broadcast message to all other neighbouring nodes, or send a unicast
message to another node (both broadcast and unicast message consider send-
ing delays).
Different ways of nodes communication (multicast and unicast) are modelled
illustrated schematically in Fig. 3. For multicast synchronisation, we use an
array of broadcast channels Multicast[], one channel for each node. The
invariant and the guard will encode the timing and duration of a transition
(message delay). The guard of the corresponding edge of the receiving node
– which will be part of its queue model– will encode the connectivity, i.e., it
will not synchronise if the nodes are not connected. The sender will take the
edge, regardless of whether other nodes are connected.
Unicast is modelled by a two-dimensional array of channels Unicast[][], one
channel for each pair of nodes. Unicast messages assume that on a lower level
reception is acknowledged. If this fails, for example, if the nodes are not con-
nected, the sender has to take an alternative transition. A typical alternative
would be to multicast an error message or initiate a route request.

Generator. Proactive protocols send control messages at regular intervals.
They highly depend on on-time broadcasting of their control messages in
order to keep track of network information. Hence, each node includes also a
model to generate those messages.

Timers. A protocol may use simple timers that can be reset, and expire after
a set time. They can be used by the handler, to time delays or the duration
of different modes of operation.

Verification. Since the model will be used for verification, the models will include
parts that are only included for this purpose. This will include variables for
bookkeeping and methods that check conditions on existing data structures. For
this reason, the routing table of the handler was made global, to give access to
verifications methods. Otherwise, the routing tables could be a local variable of
the corresponding handler. The verification part of the model also often includes
a test automaton, which may insert messages, change the topology, and record
progress in response to certain events.
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Fig. 3. Unicast and broadcast synchronisation.

The section omits the discussion of type definitions and constants that are
used throughout the model. The next section will provide more detail on the
various components of the Uppaal model.

4 Generic Uppaal Framework

Our framework consists of global declarations which are global in the system
and accessible/updatable by all automata as well as local declarations that are
exclusive to each automaton, i.e., these declarations can be accessed and updated
only by the automaton itself. There are in total six templates for automata in our
framework; four of them are used for modelling protocols and two are concerned
with verification. The models are adaptable to protocol specifications, and they
are available at http://users.abo.fi/mokamali/FACS2018.

4.1 Communication

To facilitate communication between network nodes in the model, there are a
number of global declarations and type definitions. The number of nodes is const
int N. Addresses of nodes are of type typedef int[0, N - 1] IP.

Communication can take place via unicast or multicast messages. The model
includes the following channels:

broadcast chan unicast[N][N];
broadcast chan multicast[N];
urgent broadcast chan tau[N];
broadcast chan newpkt[N];

The tau channel is used to have internal transitions take place as soon as enabled.
They are not used for synchronisation. The newpkt channel is used to insert a
new packet at a given node.

A protocol must define for each type of message the message format. The
reference implementation provides example for packets, route request messages,
route reply messages, route error messages, and control messages, also known as
TC messages. The format of a TC message, for example, is defined as:

typedef struct {
IP oip; // originator IP
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int hops; //hops
TTLT ttl; //time -to -live
IP sip; // sender IP
SQN osn; // originator sequence number

} TCMSG;

The model will include a similar type definition for all types of messages. To
make the treatment of message uniform we then define a generic message type
as follows:

typedef struct {
MSGTYPE msgtype; //Type of message
TCMSG tc; //TC message
PACKET packet; // Packet
RREQMSG rreq; // Route request msg
RREPMSG rrep; // Unicast route reply msg
RERRMSG rerr; // Route error msg

} MSG;

The field msgtype is an index into which type of message is being sent; only the
corresponding field should be set. This construction is a work-around for not
having union types in the Uppaal language.

Each type of message also comes with functions that generate a message of
that type. They will be used for convenience and succinctness in the model. It
also includes a global variable MSG msgglobal, which a sender copies into, and
recipients copy from.

4.2 Topology

The network topology is defined by an adjacency matrix topology[N][N] with
boolean type showing the directed connectivity between nodes, i.e., element 1
in the matrix shows that two nodes are directly connected and 0 indicates that
two nodes are not connected directly, however they may be connected via some
intermediate nodes. The connectivity between nodes is modelled by function
bool isconnected(IP i, IP j), and links can be dropped by calling function
void drop (IP i,IP j).

While protocols have to deal with mobility, the mobility models themselves
are outside of the scope of this paper and these routing protocols. The processes
that establish or delete links – and whether these processes are non-deterministic,
stochastic, or probabilistic – are not part of the protocols themselves. The refer-
ence model includes a simple model TopologyChanger that drops between ran-
domly selected nodes at a rate of 1 : 10. More elaborate models for changing
topologies can be found in [10].

We should add here that even if we define a topology matrix to show the
direct connectivity between nodes, the network is still wireless. It means that
network nodes are not aware of each other before receiving the control messages,
and they realise the connectivity only after they receive/process control messages
from their neighbours.
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Fig. 4. Queue automaton.

4.3 Node

The model for a node using a reactive protocol comprises of two automata, the
Queue and the Handler, proactive protocols also include a Generator. If the
protocol uses timers, the model includes a fourth automaton to manage the
timers. The generic model defines a number of global variables and channels to
facilitate synchronisation between these parts. For instance, channel imsg[N] is
an urgent channel which is used for synchronisation between Handler and Queue
automata.

Queue. The template of the queue defines a number of local constants and vari-
ables to manage the stored messages. The most important variable is an array MSG
msglocal[QLength]. The reference model includes methods void addmsg(MSG
msg) and void deletemsg() to add or delete messages from the queue. For
synchronisation with the Handler the model includes a global variable bool
isMsgInQ[N] to encode whether a queue contains at least one message.

The automaton for the queue has essentially one control location, as depicted
in Fig.4. It has one self-loop for unicast messages, and one loop for multicast
messages that can be received, and one for new packets that are inserted by the
tester. The latter loop includes a probabilistic choice to lose the message with
probability of loss. The automaton also includes a loop, labelled getmsg?, for
the handler to request the first element of the queue.

Handler (Reactive/Proactive). Nodes have routing tables that store infor-
mation about other nodes of the network which are empty (initialised to 0 at the
beginning) and may be updated when they receive control messages from their
neighbour nodes (conditions on when to update routing tables can be specific
to each protocol). The reference implementation defines an entry to the routing
table as:
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Fig. 5. Handler automaton.

typedef struct
{ IP dip;

SQN dsn;
int hops;
IP nhop;

} rtentry;

The routing tables are then defined as rtentry art[N][N]. This is a global
variable to allow the Generator and verification part read access. Protocols may
define additional data structures, for example for error handling.

The handler has a main control location, as depicted in Fig. 5. It includes one
loop for multicast messages. The transition to location multicasting prepares
the message, and waiting in that location up to the permitted amount of time
models the message delay, then the transition back to the main location, actually
copies the message to the global variable msgglobal, for the queue of the receivers
to read. The loop for unicast messages has a similar setup, except that includes
the option of failure, as in Fig. 3. One option is to drop the message, the other
is to multicast an error message. The model also includes for each message type
a loop that drops the message, and a loop that requests a new message from the
queue.

Most routing protocols use sequence numbers to keep track of newly received
information. The reactive version of the handler includes the sequence number,
in the proactive version this is a task for the Generator.
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Generator (Proactive). The task of the Generator in a proactive protocol
(time-dependent) is to create messages at regular intervals based on the protocol
specification. There may be more than one generator, generating more than
one type of message. The Generator will use a number of clocks to time the
generation of those messages as well as to model the sending time of messages
(message delays).

Timers (Optional). The protocol may include a fixed number of timers. The
model includes as global variables the number of timers, the threshold for each
timer, and boolean flags for restart, and to notify that a timer has expired. The
automaton managing all timers of one node, has an array of clocks. Once the
handler sets the restart flag for a timer to true, the timer automaton will reset
a corresponding clock. This transition is urgent, ensuring that no time expires
between setting the restart flag, and resetting the corresponding clock. After the
threshold duration of the timer, the flag for an expired timer will be set.

4.4 Verification

The model includes for verification purposes a number of side-effect free func-
tions, that can be used by the properties. This includes function to count the
number of delivered packets, and how many routes have been established.

For verification the model also includes an automaton Tester. The reference
model includes an automaton that injects one new packet after about 50 rounds
of communication, after which it proceeds to location final.

The reference implementation focuses on three main properties, namely for
route establishment, network knowledge and packet delivery. These properties
verify the core functionality of protocols, e.g., routing data packets.

Route Establishment. The reference model includes the following property for
route establishment:

Pr[<=1000](<>( route_establishment(OIP1 ,DIP1)))

The function route establishment() returns true if the node OIP1, the source
node, has the information about the destination node DIP1 to later send data
packet to the destination. The property computes the probability that the func-
tion route establishment() returns true in less than or equal to 1000 time units
(this value can be altered based on the system requirements).

Network Knowledge. The reference model includes the following property for
the network knowledge:

E[ <=1000;100]( max:total_knowledge ())

This property computes the expected number of connections that have been
discovered by time 1000. The function total knowledge() counts for how many
originator/destination pairs a route is known.
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Packet Delivery. The property for packet delivery is as follows:

E[ <=1000;100]( max:packet_delivered ())

Packet delivery property shows the number of data packets being delivered at
their destinations. The property returns the expected value during 1000 time
units by 100 runs. Function packet delivered() is used to count the number of
delivered packets.

5 Experiments

We model three well-known routing protocols of WMNs, namely BATMAN,
OLSR, AODVv2, to show the reusability and adaptability of our framework. We
also verify these protocols for the three different properties discussed in the last
section. Each of these is considered for the following scenarios: (1) 0% message
loss and no link failures, (2) 80% message loss and no link failures, and (3) 0%
message loss and possible link failures.

For all of our experiments, we inject one packet to an arbitrary source to be
delivered to an arbitrary destination. We consider networks in a grid, a linear,
a fully connected or a ring topology consisting of 9 nodes, as our framework is
independent of the number of nodes in the network. It means that number of
nodes in the network is adjustable (larger networks are allowed to have) as long
as the tool can manage the number of states in the system (state space should
be manageable by the tool). A detailed study of these protocols and verification
of the models for all possible combinations and/or larger networks are out of
the scope of this paper; we only illustrate the applicability and power of the
proposed framework.

The automaton TopologyChanger is included in models that exhibits link
failure. The rate of failure can be simply adjusted based on the protocol speci-
fication. We set this value as rate 1 : 10 for all of our models and experiments,
e.g., BATMAN, OLSR, AODVv2 models. As none of the protocols that we con-
sidered for this study uses timers, we did not have to include the corresponding
automaton.

We conduct our experiments using the following set-up: (i) 3.2 GHz Intel Core
i5, with 8GB memory, running the Mac OS X 10.11.6 “El Capitan” operating
system; (ii) Uppaal SMC model-checker 64-bit version 4.1.20. In Uppaal SMC,
two main statistical parameters α and ε, in the interval [0, 1], must be fixed
by the user. These parameters indicate the probability of false negatives and
probabilistic uncertainty, respectively. In our experiments, these values, i.e., false
negatives (α) and probabilistic uncertainty (ε) are both set to 0.05, leading to a
confidence level of 95%.

5.1 Better Approach to Mobile Ad-hoc Networking (BATMAN)

BATMAN [19] is a proactive protocol used in WMNs. It decentralises route
information, i.e., no node has all the data. Each node only maintains informa-
tion about the possible best next hop. The protocol has two main aims: first, it
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discovers all bidirectional links and then identifies the best next hop neighbour
for all the other nodes in the network. To provide this information, each node
broadcasts originator messages (OGMs) through the network at a regular inter-
val. A node keeps track of the information about other known nodes, stored in
the node’s routing table. When a node receives a message from its neighbours,
it updates this information.

Since BATMAN is a proactive protocol, we include a Generator for creating
OGMs in addition to the Handler and the Queue. We adapted our framework
based on the model of [4]. Table 1 shows the result of our verification for different
topologies. We ran the same experiments for the original model of [4] and we
got similar results as we got for our adjusted BATMAN model.

Results show that in case of reliable communication (0% loss), the source
nodes can find a path to the destination of the injected packet with the prob-
ability in the interval [0.90–1.00] and the routing tables are all populated by
periodic exchanging of control messages as they were expected by the specifica-
tion. The injected packet is delivered at the destination in all types of topolo-
gies. When message loss increases to 80%, these values may decrease. The same
happens also in case of possible link failures. The verification of the route estab-
lishment property (probability estimation) takes on average about 2 s whereas
the verification for calculating the number of delivered packets and routing
table entries (expected value evaluation) takes on average about 215 s (calcu-
lating the expected values is more time-consuming compared to estimating the
probability).

5.2 Optimised Link State Routing (OLSR)

OLSR[5], a proactive protocol used in WMNs, bears the benefit of having routes
to different destinations available to be used whenever needed. This is done
by exchanging control messages, namely HELLO and Topology Control (TC),
periodically through the network. Receiving nodes update their routing tables
based on the information in the messages so that when a packet to be destined
to some destination is injected, it can find the path in routing tables.

OLSR differs from other proactive protocols in the way that it minimises
flooding of control messages by selecting so-called Multipoint Relays (MPRs).
Informally, an MPR takes over the communication for a set of nodes that are
one-hop neighbours of this node; these one-hop neighbours receive all the routing
information from the MRPs and hence do not need to send and receive routing
information from other parts of the network.

Our model for each node includes in addition to the routing table also data
structures to manage the selection of MPRs. The model includes two Generators,
one for HELLO and one for TC messages, the Handler and the Queue. We
adapted our framework based on the model of [15] and verified our generic
properties. Table 2 shows the result of our verification for different topologies.
We ran the same experiments for the original model of [15] and we got similar
results as we got for our adjusted OLSR model.
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Table 1. BATMAN verification results

Route establishment Network knowledge Packet delivery

0% loss 80% loss link failure 0% loss 80% loss link failure 0% loss 80% loss link failure

Grid 0.90 − 1.00 0.00 − 0.10 0.88 − 0.98 72 7 70 1 0 0.4

Linear 0.90 − 1.00 0.00 − 0.10 0.00 − 0.10 72 4 36 1 0 0

Fully connected 0.90 − 1.00 0.25 − 0.35 0.90 − 1.00 72 22 72 1 0.1 0.8

Ring 0.90 − 1.00 0.24 − 0.34 0.85 − 0.95 72 4 58 1 0.1 0.6

Table 2. OLSR verification results

Route establishment Network knowledge Packet delivery

0% loss 80% loss link failure 0% loss 80% loss link failure 0% loss 80% loss link failure

Grid 0.90 − 1.00 0.33 − 0.43 0.90 − 1.00 72 65 70 1 0 0.3

Linear 0.90 − 1.00 0.00 − 0.10 0.18 − 0.28 72 34 50 1 0 0

Fully connected 0.90 − 1.00 0.90 − 1.00 0.89 − 0.99 72 72 72 1 1 0.5

Ring 0.90 − 1.00 0.90 − 1.00 0.89 − 0.99 72 43 63 1 1 0.6

Table 3. AODVv2 verification results

Route establishment Network knowledge Packet delivery

0% loss 80% loss link failure 0% loss 80% loss link failure 0% loss 80% loss link failure

Grid 0.90 − 1.00 0.00 − 0.10 0.14 − 0.24 28 3 21 1 0 0.3

Linear 0.90 − 1.00 0.00 − 0.10 0.00 − 0.10 72 1 8 1 0.1 0

Fully connected 0.90 − 1.00 0.16 − 0.26 0.90 − 1.00 9 21 11 1 0.1 0.8

Ring 0.90 − 1.00 0.11 − 0.21 0.79 − 0.89 30 2 10 1 0 0.7

Results indicate that in case of reliable communication (0% loss), the source
nodes can find a path to the destination of the injected packet with the prob-
ability in the interval [0.90–1.00] and the routing tables are all populated by
periodic exchanging of control messages as they were expected by the specifica-
tion. The injected packet is delivered at the destination in all types of topologies.
When message loss increases to 80%, these values may decrease. The same hap-
pens also in case of possible link failures. The verification regarding route estab-
lishment property (probability estimation) takes on average about 2 s whereas
the verification for calculating the number of delivered packets and routing
table entries (expected value evaluation) takes on average about 185 s (calcu-
lating the expected values is more time-consuming compared to estimating the
probability).

5.3 Ad-Hoc On-Demand Distance Vector Version2 (AODVv2)

AODVv2 [21], a reactive protocol for WMNs, behaves on-demand. This means
that it tries to find a route to the destination when a packet is injected into the
network. The protocol initiates RREQ message and the receiving nodes update
their routing tables and possibly rebroadcast the message until the RREQ is
received by its destination. Then the destination sends a RREP message back to
the source of the RREQ. In this way, a path from the source to the destination
is created and the packet can be forwarded via that path. AODVv2 will report
failure of links by multicasting RERR messages.
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The model of AODVv2 protocol contains only models for the Handler and
the Queue. As a reactive protocol, it does not need a generator. Compared to
the other two models, AODVv2 has more message types, as it includes error
reporting. This also means that in addition to routing information, each node
maintains information of routing errors. We adapted our framework based on
the model of [16] and verified our generic properties. Table 3 shows the result
of our verification for different topologies. We ran the same experiments for the
original model of [16] and we got similar results as we got for our adjusted
AODVv2 model which shows the adaptability and reusability of our framework.

Results show that in case of reliable communication (0% loss), the source
nodes can find a path to the destination of the injected packet with the proba-
bility in the interval [0.90–1.00]. Routing tables are partially populated by peri-
odic exchanging of control messages as they were expected by the specification
(reactive protocols find paths to destinations on-demand, so it is expectable that
not all tables are updated). However in the linear topology, all routing tables
are updated due to the path accumulation feature of AODVv2, meaning that
whenever a control message travels via more than one node, information about
all intermediate nodes is accumulated in the message and then is distributed to
its recipients.

The injected packet is delivered at the destination in all types of topolo-
gies in case of reliable communication (0% message loss). When message loss
increases to 80%, these values may decrease. The same happens also in case of
possible link failures. The verification regarding route establishment property
(probability estimation) takes on average about 2 s whereas the verification for
calculating the number of delivered packets and routing table entries (expected
value evaluation) takes on average about 15 s (calculating the expected values is
more time-consuming compared to estimating the probability).

Evaluating the expected values for AODVv2 takes less time due to the reac-
tive characteristic of AODVv2, meaning that since AODVv2 broadcasts con-
trol messages on demand it has less number of states compared to BATMAN
and OLSR that broadcast control messages periodically which decreases the
time spent for verification. As all the three protocols are modelled applying our
framework, it is possible to easily compare the protocols w.r.t. the properties
and verification time.

5.4 Discussion on BATMAN, OLSR and AODVv2 Models

Here, we discuss how much our framework needs the interaction from the mod-
eller to be adjusted based on the protocol specification. In other words, how
much the three case studies and our framework have in common and how much
they are different. The general structure of our six automata (locations and
transitions of the automata), i.e., Handler, Queue, Generator, Timer, Topology-
Changer and Tester, and their synchronisation remain unchanged and only some
declaration (code fragments) of the automata may need to be modified/added
based on the specification of the protocol.
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– Communication: format of each message has been separately modified using
typedef struct (based on BATMAB, OLSR and AODVv2 specifications) and
later is added in our generic message MSG. The IP address of nodes, SQN
sequence numbers, channels, etc are borrowed from the framework.

– Topology: connectivity function, network topology and TopologyChanger
automata remain unchanged. We have only borrowed them from our frame-
work.

– Node: the Queue and the Timer automata remain unchanged and they have
been only imported and used. Function createMSG in the Generator decla-
ration which is applicable only for BATMAN and OLSR, has been modified
based on the specification (as mentioned earlier, the format of messages for
different protocols are unique to the protocol and must be changed based on
the specification). The interval for sending periodic messages is a parameter
of each protocol and should be set in the declarations.
The Handler needs more interactions from the modeller when modifying the
local declaration of the automaton. This is the case due to different behaviour
of protocols, e.g., when to update a routing table, when to process/drop a
message, when to multicast a message, etc. For instance, BATMAN protocol
has a specific procedure for storing sequence numbers which is unique to this
protocol, OLSR has a specific procedure for determining MPRs, and AODVv2
has a specific procedure for accumulating paths. These specific features need
to be separately modelled for each protocol and our framework only supports
the standardise behaviour of routing protocols which were discussed earlier.
Our models move much of the logic to functions inside the model in order to
have the core of the protocol as code fragments in the model which makes
the modelling task easier.

– Verification: the three system requirements (properties) and their correspond-
ing functions have also been imported without any modifications. The Tester
automaton injects the packet in accordance to the category of the protocol;
reactive or proactive protocol. If the protocol is proactive (BATMAN and
OLSR), the Tester automaton injects the packet after routes are discovered;
and if the protocol is reactive (AODVv2), the Tester injects the packet for
route discovery process and the routes are discovered later after packet injec-
tion. It means that only the time interval that the Tester transition is enabled
differs for reactive and proactive protocols.

6 Related Work

Formal modelling and analysis of the WMNs and Mobile Ad-hoc Networks
(MANETs) and their routing protocols is among challenging tasks, and formal
verification of such systems has attracted the attention from formal methods
community [3,11,17]. Fehnker et al. [8] applied the Uppaal model checker [2] for
analysing qualitative properties of the AODV protocol in all network topologies
with five nodes. Kamali et al. [15] focused on formal modelling and verifying
OLSR protocol in network topologies with five nodes. They have also applied
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Event-B to model OLSR and have analysed this protocol in large networks (no
size barrier w.r.t. the size of the network) [14]. Chaudhary et al. [4] formally
modelled BATMAN routing protocol using Uppaal model checker revealing sev-
eral ambiguities in the RFC. They verified their model for loop-freedom, bidirec-
tional link discovery, and route-discovery. Fehnker et al. [9] modelled and verified
LMAC protocol of wireless sensor networks applying Uppaal. Their study was
carried out to detect and resolve collision in networks consisting of four and five
nodes.

There are several studies using (statistical) model checking to analyse WMN
and MANET routing protocols. Höfner and McIver [13] made a comparison of
the AODV and DYMO protocols on arbitrary networks up to five nodes con-
sidering perfect communication among nodes, applying the Uppaal SMC model
checker. Their analysis shows that DYMO has worsened performance compared
to AODV. Dal Corso et al. [6] studied the extended and generalised work done
by [13] to 4×3 grids with lossy communication. They showed contrary results,
indicating that DYMO is performing better compared to AODV. Kamali et
al. [16] investigated and compared the performance and looping property of
the most recent version of AODV protocol [21] with DYMO on 3×3 grids. Their
results indicate that the more recent version of AODV pays the price of degraded
performance compared to DYMO to remain loop-free.

There are other studies providing formal frameworks for modelling and ver-
ifying MANETs. Liu et al. [18] presented a formal modelling framework for
MANETs consisting of several mobility models together with wireless communi-
cation applying Real-Time Maude [20]. They analysed the AODV protocol using
their framework and their mobility models. Their framework mainly focuses only
on integrating a number of mobility models together with wireless communi-
cation. Yousefi et al. [22] have modelled MANETs using the extension of an
actor-based modelling language bRebeca. They provided a framework to detect
malfunctioning of MANET protocols, addressing local broadcast and topology
changes. They have modelled the core functionality of AODV protocol and found
some malfunctioning of this protocol (loop existence).

Our work differs from the other previous works in the sense that it models the
core functionality of WMN routing protocols, considering wireless communica-
tion, topology, message loss, message queuing, link failure, etc. It is also possible
to model timing aspects of protocols (both reactive and proactive) and to allow
probabilities to have both qualitative and quantitative analysis.

In addition, networks of timed automata as the specification language used
for introducing our generic framework (the main common components of routing
protocols) are more manageable to alter based on the protocols specifications.
It means that adapting our framework allows protocol designers to have an
insight of the system before the deployment since timed automata is an easy-
to-understand specification language and Uppaal SMC simulator provides the
means to validate the system which later can be also used for verification. Pro-
tocol designers can simply modify the C-like code in the declarations based on
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the protocol specification where the general structure of networks of different
automata remains unchanged.

7 Conclusion

This paper presented an adaptive, generic and reusable framework as well as
crucial generic properties to model and verify WMN routing protocols. This
framework uses Uppaal SMC to capture timing aspect of protocols, communi-
cation between nodes, and probabilities to model message loss, link breakage,
etc.

This paper discussed the general structure of Uppaal models, and how this
influences the design of models for network routing protocols. It described how
to build reusable components within the constraints imposed by the Uppaal
modelling language. It identified the main components that routing protocols
have in common, and how to map them to data structures, processes, channels,
and timed automata in the Uppaal language. We demonstrated the applicability
of the approach by implementing three different protocols in this framework:
AODVv2, OLSR and BATMAN.

One of the characteristics of these models is that they move much of the logic
to functions inside of the Uppaal model. They rely less on the subtle interplay
of channels, urgent locations, or committed locations. Instead, they standardise
proven patterns that have been used in the community to model routing proto-
cols. This also means that the core of the protocol resides as code fragments in
the model, and becomes available to be standard code reviewing practices.

An observation that was made is that Uppaal as modelling language would
benefit if it would adopt more mechanisms to structure code. It would be bene-
ficial if the model could reflect that a number of templates share access to data
structures to the exclusion of others. Often the workaround for sharing informa-
tion is to make data global, without mechanisms to enforce its consistent use.
Furthermore, code that is included for verification is currently scattered across
the model. It might be worth to consider verification as a cross-cutting concern,
similarly to how these are dealt with in aspect-oriented programming.
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