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Chapter 1

Introduction

Arti�cial intelligence (AI) is revolutionizing the modern society. Whether
it is the voice assistance on smart phones, product suggestions in online
shopping or predicted maintenance of engines, the modern human being is
being a�ected by intelligent machines. Machine-learning is an essential part
of AI, which allows computers to handle new situations via observation and
self-training. Machine-learning has also found a path into the insurance
industry, where it can, for example, be used to estimate the risk premium
for customers, i.e. the expected cost of the customers.

For other ways of estimating the risk premium, the insurance companies
have relied on generalized linear models (GLMs), which are extensions of
linear models. The GLMs are recognized as the industry standard method
for pricing. According to Anderson et al. (2007, p. 4), they are commonly
used in Scandinavia and in other countries in Europe. The GLMs are also
gaining popularity in eastern European countries.

The purpose of this thesis is to explain the theory behind machine-
learning and GLMs, as well as to compare them in risk premium pricing.
To be able to tie the theory of machine-learning and GLMs to the insurance
industry, the thesis starts in chapter 2 with basic facts from the probabili-
ty theory. After the probability theory has been introduced, the insurance
industry is brie�y explained from a mathematical point of view. Chapter 2
also introduces the exponential family of distributions, which is an essential
part of the GLMs.

Chapters 3 and 4 cover the theory behind the GLMs and machine-learning.
Chapter 5 introduces two di�erent machine-learning algorithms which are
then used for the simulations in chapter 6. Since the area is wide and the
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thesis is limited, the thesis consists only of the most important elements of
the theory. Regardless, the aim is to provide a thorough review of the theory
needed to obtain the results.

The contents of the thesis is mainly based on four di�erent sources of lit-
erature. The underlying mathematics for the insurance industry is retrieved
from Practical risk theory for actuaries, Daykin et al. (1996). The theory
for the GLM is mainly obtained from A practitioner's guide to generalized
linear models, Anderson et al. (2007) and from An introduction to general-
ized linear models - second edition, Dobson (2002). The chapters regarding
machine-learning are based on An introduction to statistical learning with ap-
plication in R, James et al. (2013). The last mentioned book has a homepage
with programming laboratories which helped the coding.

Programming is required to be able to handle the methods presented
in the thesis, especially the machine-learning algorithms. Since the data
analyzed in the thesis are from an insurance company and not public, the
programs in chapter 6 are illustrated using built-in data sets. A part of the
source codes have also been saved in the Appendix, so that the user is able
to execute them. The software used in the thesis is called R, which is a
common, free and open source software for statistical computing.

The aim of the thesis is to provide an understanding of the most important
contents of the di�erent subjects reviewed, as well as an idea of what the
advantages and disadvantages of the di�erent methods are. According to
James et al. (2013, p. 29), "no one method dominates all others over all
possible data sets". As a large bene�t, I was able to use real insurance data for
the simulations. This allowed patterns and results to be explained, however,
all of it cannot be published. In using a real data set, some treatment of
the data set was required. This was a big bene�t from a learning point
of view, and the treatment of the data is shortly explained in chapter 6.
Chapter 7 presents conclusions. The issues of the modelling process with the
di�erent methods, the bene�ts, observations and the results of the models
are all summarized in the last chapter. I hope the reader �nds this thesis
interesting and perceptive. A big thank you to my supervisor at the insurance
company, whose name will not be published.
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Chapter 2

Insurance industry and some

underlying mathematics

2.1 Basic model of the insurance industry

An insurer′s �nancial operations consist of a series of cash in�ows and out-
�ows. Earned premiums with interest and income from investments increase
the surplus of assets, while payments of claims and operating costs form the
expenses of the insurer. In both life and non-life insurance, the insurance
companies provide their customers with compensation for �nancial losses
caused by di�erent adverse events. Such an event could be a �re causing
damage to a house, where the insurer cover the cost of the repair works. In
a life insurance, the death of the insured might result in compensation to
surviving family members in the form of pension payments.

To be able to provide compensation of these incidents, the insurer receives
payments in the form of insurance premiums from the insured. From the
insurer′s point of view, the premium income should cover the contingent
cost of these incidents and operating expenses. The premium payments are
therefore received in advance, before the covered events possibly happen.
Sometimes these events may not occur at all during the contract period.
This results in the insurer having funds in the balance sheet temporarily,
which can be invested pro�tably to generate investment returns.

Positive investments returns can be used to increase the insurer′s pro�t
margin, by o�setting the cost of incurred claims or the insurer′s operational
costs, such as wages or rents etc. The risk of the insurer not being able to
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meet its obligations should remain on an acceptable level, which means that
the assets of the insured should at all times be su�cient to cover liabilities
with a high probability.

2.2 Basic facts from the probability theory

De�nition 2.1.

(i) The function F with Df = R is a cumulative distribution function

if

(a) F is non-decreasing and right continuous,

(b) limx→−∞F (x) = 0 and limx→∞F (x) = 1.

(ii) The function f with Df = R is called a probability density function,
if it is non-negative, integrable and∫ +∞

−∞
f(x)dx = 1.

De�nition 2.2. Let Ω be a given non-empty set. The family F of Ω:s subsets
is said to be a σ-algebra if

(i) ∅ ∈ F ,

(ii) A ∈ F ⇒ AC ∈ F ,

(iii) Ai ∈ F , i = 1, 2, . . .⇒
∞⋂
i=1

Ai ∈ F .

De�nition 2.3. A probability measure P in (Ω,F) is a real-valued function

P : F → R

such that

(i) P(Ω) = 1,

(ii) P(A) > 0 ∀A ∈ F ,

(iii) P(
∞⋃
i=1

Ai) =
∞∑
i=1

P(Ai), where Ai ∈ F and Ai ∩ Aj = ∅, i 6= j.

6



De�nition 2.4. Let (Ω,F ,P) be a probability space. The function X : Ω→
R is a random variable if for every x ∈ R it holds

{ω : X(ω) 6 x} ∈ F .

De�nition 2.5. Let X be a random variable. The function

FX(x) = P(X 6 x), x ∈ R,

is called a cumulative distribution function (CDF) of X.

A random variable that can take on at most a countable number of possible
values is said to be a discrete random variable. A random variable whose set
of possible values is uncountable is called a continuous random variable.

De�nition 2.6.

(i) Random variable X is called discrete if it attains only countable di�er-
ent values a1, a2, . . . . The distribution function X is given by

FX(x) =
∑
ai≤x

P(x = ai).

(ii) Random variable X is called continuous if there exist a density function
fX such that

FX(x) =

∫ x

−∞
fX(t)dt.

Theorem 2.7. Assume f is continuous on the interval [a, b] and de�ne

F (x) =

∫ x

a

f(t)dt, x ∈ [a, b].

Then F is continuous on [a, b] and F ′(x) = f(x), ∀x ∈ (a, b).

Remark 2.8. If the variable X has the density f which is continuous in x,
it follows from 2.7 that

F ′X(x) = f(x).
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De�nition 2.9.

(i) Let X be a discrete random variable taking values in {a1, a2, . . . } with
the cumulative distribution function FX . It is said that X has the
expectation E[X] if

∞∑
i=1

|ai|bi <∞,

where bi := P(X = ai) = FX(ai)− FX(ai−). In this case,

E[X] =
∞∑
i=1

aibi.

(ii) Let X be a continuous random variable with the density function fX .
E[X] exist if and only if∫ ∞

−∞
|x|fX(x)dx <∞,

and in this case

E[X] =

∫ ∞
−∞

xfX(x)dx.

Theorem 2.10.

(i) Let X be a discrete random variable. Let g be a real-valued function
and assume the expected value of Y := g(X) exist. Then

E[Y ] =
∞∑
i=1

g(ai)P(X = ai).

(ii) Let X be a continuous random variable and let g be a Borel measurable
function. Assume the expectation of g(X) exist. Then

E[g(X)] =

∫ ∞
∞

g(x)fX(x)dx.

De�nition 2.11. Let X be a random variable such that E[X] exist. If E[(X−
E[X])2] <∞, it is said that the variance of X exist and it is given by

Var(X) = E

[
[X − E[X]]2

]
.

The number
√

Var(X) is called the standard deviation of X.
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2.3 Number of claims

According to Daykin et al. (1994, p. 30), both the number of claims and
the size of each claim can be viewed as random variables. The �nal model
is therefore constructed accordingly. In this section the focus is put on the
number of claims N , whereas the individual claim size is analyzed in section
2.4.

The behaviour of the discrete random variable N , which represents the
number of claims in a speci�c time period, can be described by its probability
distribution. The probability that exact k claims occur in a given time period
is

P(N = k), k = 0, 1, 2, . . . .

For insurance claims, it is impossible to forecast the exact time between the
events or the exact total number of claims. It can, however, be assumed that
the claims occur in a speci�c manner.

1. The number of claims occur independently of each other, in any two
disjoint time intervals.

2. Only one claim may arise from the same event.

3. The probability for a claim occuring in a speci�c time point is equal to
zero.

In that case, according to Daykin et al. (1994, p.32), the number of claims
in any given time period is Poisson-distributed.

De�nition 2.12. The discrete random variable N , taking values in the set
of nonnegative integers, is said to be Poisson distributed with the parameter
λ > 0, if for k = 0, 1, 2, . . .

P(N = k) = e−λ
λk

k!
, where λ > 0.

The expectation and the variance are given by

E[N ] = λ and Var[N ] = λ.

For a more precise description, let N(t) be de�ned as the number of claims
occuring during a time period [0, t]. Then, by following Daykin et al. (1994),
we assume that N(t) has the following properties:
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(i) N(t) ≥ 0,

(ii) N(t) is integer valued,

(iii) If s < t, then N(s) ≤ N(t),

(iv) For s < t, N(t)−N(s) equals the number of events that have occurred
in the interval (s, t].

(v) The number of claims N(t) possesses independent increments. In other
words, for any disjoint time intervals, the number of claims that occur
are independent. For example, the number of claims that have occurred
by time [0, t] that is N(t), is independent of the number of claims
occuring in the time period (t, t + s] that is N(t + s) − N(t) for all
s > 0.

(vi) At most one claim may occur at a given time point t, i.e. the probability
that more than one claim occurs at the same time is zero.

(vii) The number of claims N(t) possesses stationary increments. This
means that the number of claims occuring during the interval (t1, t2]
that is N(t2)−N(t1), has the same distribution as the number of claims
in the interval (t1 +s, t2 +s] that is N(t2 +s)−N(t1 +s), for all t1 < t2
and s > 0.

A stochastic process having properties (i)− (viii) is called a Poisson process.
The mathematical de�nition is as follows:

De�nition 2.13. A stochastic process {N(t), t ≥ 0} is said to be a Poisson
process having rate λ > 0, if:

(i) N(0) = 0,

(ii) the process has independent increments,

(iii) the number of events in any interval of length t is Poisson distributed
with mean λt, that is, for all s, t > 0,

P(N(t+ s)−N(s) = n) = e−λt
(λt)n

n!
, n = 0, 1, 2, . . . .
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Note that condition (iii) in De�nition 2.13 implies that a Poisson process
has stationary increments. The parameter λ is called the rate of the process.
The expected value of the Poisson process X at time t is (cf. (2.1))

E[N(t)] = λt. (2.1)
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Figure 2.1: Realization of a Poisson process when λ = 3. The source code is
found in appendix A.1.

For a Poisson process, let Xn denote the time between the (n− 1)st and the
nth event. The sequence {Xn, n ≥ 1} is called the sequence of the interarrival
times.

Theorem 2.14. The interarrival times Xn, n = 1, 2, . . . are independent
identically distributed exponential random variables having the mean 1/λ.

Proof. Note that the event {X1 > t} takes place if and only if no events in
the Poisson process occur in the interval [0, t]. Thus
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P(X1 > t) = P(N(t) = 0) = e−λt.

For X2, by using the arguments of independent and stationary increments,
we have

P(X2 > t+ s|X1 = s) = P( No events in (s, t+ s]| One event in (0, s))

= P( No events in (0, t)) = P(N(t) = 0) = e−λt.

Using the same reasoning,

P(Xn ≤ t) = 1−P(Xn > t) = 1−P(Xn > t+ s|Xn−1 = s)

= 1−P(N(t) = 0) = 1− e−λt ∼ Exp(λ).

Therefore, Xn, n = 1, 2, . . . , are independent exponentially distributed ran-
dom variables with parameter λ. Hence, E[Xn] = 1

λ
as claimed.

Theorem 2.15. Assume N(t) is a Poisson process and that exactly one event
has happened in the interval (0, t]. Then, X1 ∼ U(0, t).

Proof. For s ≤ t we have

P(X1 < s|N(t) = 1) =
P(X1 < s,N(t) = 1)

P(N(t) = 1)
=

P(1 event in[0, s), 0 events in[s, t))

P(N(t) = 1)

=
P(1 event in[0, s))P(0 events in[s, t))

P(N(t) = 1)
=

[e−λsλs][e−λ(t−s)]

e−λtλt
=
s

t
,

completing the proof.

The assumption of independent increments for the number of claims in the
insurance business is only approximately true. There are background factors,
which results in that the number of claims during disjoint time intervals are,
in fact, correlated. For example, the number of claims for car insurances
correlates with the season of the year.
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2.4 Amount of claims

The claim amount is the sum which the insurer has to pay in the occurence
of an event i.e. accident. The sum of these individual claims establish the
aggregate claim amount, which is one of the key concerns for an insurance
company. The aggregate claim amount is considered in a speci�c time inter-
val, which usually is a calendar year.

To set up a model for the aggregate claim amount, a doubly stochastic
modell is constructed. Let {N(t), t ≥ 0} be a Poisson process representing
the amount of claims for a certain time period, and let Zi be the amount size
of the i:th claim during the time period. The family {Zi, i ≥ 1} is assumed
to be independent and identically distributed random variables, that are
independent of {N(t), t ≥ 0}.

When these requirements are met, the aggregate claim amount
{X(t), t ≥ 0} is a stochastic process called a compound Poisson process,
where

X(t) =


N(t)∑
i=1

Zi, if N(t) > 0

0, if N(t) = 0.

(2.2)

The separation of the aggregate claim amount into the number of claims and
individual claims is due to a practical reason. The insurer usually has a wide
range of data for the individual claims, and the number of claims can be esti-
mated using the Poisson process. The assumption that the individual claims
Zi are identically distributed may, however, be unrealistic. For example,
in�ation may change the distribution of the individual claims. The derivation
of the claim size distribution is beyond the scope of this section. In this thesis,
however, using statistical models and machine-learning algorithms, we will
estimate the amount of claims for di�erent customers using observations from
insurance data.

The aim is to �nd an expression for the probability distribution of the
aggregate claim amount {X(t), t ≥ 0}, in terms of the claim number
probabilities and the distribution of the claim size. The event {X(t) ≤ x}
can occur in the following alternative ways:
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N(t) = 0 =⇒ X(t) = 0

N(t) = 1 =⇒ X(t) = Z1

N(t) = 2 =⇒ X(t) = Z1 + Z2

etc.

By assuming that {Zi, i ≥ 1} are independent of {N(t), t ≥ 0}, the proba-
bility distribution of X(t) can now be written as

FX(x) = P(X(t) ≤ x) =
∞∑
k=0

P(X(t) ≤ x|N(t) = k)P(N = k)

=
∞∑
k=0

P(Z1 + Z2 + . . . Zk ≤ x)P(N = k).

The risk premium is the premium the insurance company requires to cover
the expected cost of claims. The risk premium E[X(t)], t ≥ 0 is based on the
following theorem.

Theorem 2.16. Let N(t), t ≥ 0 be a Poisson process with the rate λ and
let Zi, i = 1, 2, . . . be independent identically distributed random variables
independent of N(t). Assume E[Zi] = µ. Then

E[X(t)] = E[

N(t)∑
i=1

Zi] = µλt.

Proof. Let t > 0 and consider

E[X(t)] = E[

N(t)∑
i=1

Zi]

=
∞∑
n=1

E[

N(t)∑
i=1

Zi|N(t) = n]P(N(t) = n)

=
∞∑
n=1

E[
n∑
i=1

Zi|N(t) = n]P(N(t) = n),
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since N(t) is independent of Zi. Now we proceed as follows:

E[X(t)] =
∞∑
n=1

E[
n∑
i=1

Zi]P(N(t) = n)

=
∞∑
n=1

(
n∑
i=1

E[Zi])P(N(t) = n)

=
∞∑
n=1

(
n∑
i=1

µ)P(N(t) = n)

=
∞∑
n=1

nµP(N(t) = n)

= µE[N(t)]

= µλt.

The variance of the compound Poisson process is given in the following the-
orem.

Theorem 2.17. Let N(t), t ≥ 0 be a Poisson process with the rate λ and
let Zi, i = 1, 2, . . . be independent identically distributed random variables
independent of N(t). Assume E[Zi] = µ and Var[Zi] = σ2. Then

Var[X(t)] = Var[

N(t)∑
i=1

Zi] = λt(σ2 + µ2).

Proof. Let t > 0, and consider �rst

E[X(t)2] = E[(

N(t)∑
i=1

Zi)
2]

=
∞∑
n=1

E[(

N(t)∑
i=1

Zi)
2|N(t) = n]P(N(t) = n)

=
∞∑
n=1

E[(
n∑
i=1

Zi)
2|N(t) = n]P(N(t) = n),

15



where the independence of N(t), t ≥ 0 and {Z1, Z2, . . . } is used. Now,

E[X(t)2] =
∞∑
n=1

E[(
n∑
i=1

Zi)
2]P(N(t) = n)

=
∞∑
n=1

[Var[
n∑
i=1

Zi] + (E[
n∑
i=1

Zi])
2]P(N(t) = n)

=
∞∑
n=1

[nσ2 + (nµ)2]P(N(t) = n)

= σ2E[N(t)] + µ2E[N(t)2].

Since (E[X(t)])2 = (E[N(t)]E[Z])2, we obtain

Var[X(t)] = σ2E[N(t)] + µ2(E[N(t)2]− E[N(t)]2)

= σ2E[N(t)] + µ2Var[N(t)]

= λt(σ2 + µ2).

2.5 Exponential family of distributions

The exponential family is a class of distributions sharing the same density
form. It includes the normal, Poisson, inverse Gaussian, binomial, expo-
nential and other well-known distributions, see, e.g., Anderson et al. (2007,
p. 13). The GLMs assume that the response variables share a distribution
that belongs to the exponential family. Hence, the exponential family of
distributions is an essential part of the GLMs.

De�nition 2.18. Let Y be a random variable, which may be discrete or
continuous, whose probability distribution depends on a parameter θ. The
distribution belongs to the exponential family of distributions if its density
function can be written in the form

f(y; θ) = exp

{
a(y)b(θ) + c(θ) + d(y)

}
, y ∈ R (2.3)
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where a,b,c and d are known functions.

If a(y) = y, the distribution is said to be in the canonical form and b(θ) is
called the natural parameter of the distribution. If there are other parameters
in addition to θ they are regarded as nuisance parameters forming parts of
the functions a, b, c and d.

Example 2.19. We show that the Poisson distribution belongs to the expo-
nential family. For this consider

f(y; θ) =
e−θθy

y!
, y = 0, 1, 2, . . .

= e(ln(θ
y))e−θe−ln(y!)

= exp
{
yln(θ)− θ − ln(y!)

}
.

The Poisson distribution, is hence in the exponential family. The functions
a, b, c and d in De�nition (2.18) are in this case the following:

a(y) = y

b(θ) = lnθ

c(θ) = −θ
d(y) = −ln(y!), y = 0, 1, . . .

In particular, the Poisson distribution is in the canonical form.

Example 2.20. For the normal distribution N(µ, σ2), the parameter σ2 is
regarded as a nuisance parameter. The probability density function can, con-
sequently, be written as:

f(y;µ) =
1

(2πσ2)
1
2

exp

{
− 1

2σ2
(y − µ)2

}
= exp

{
ln(2πσ2)

1
2

}
exp

{
1

2σ2
(−y2 + 2yµ− µ2)

}
= exp

{
y
µ

σ2
− µ2

2σ2
− 1

2
ln(2πσ2)− y2

2σ2

}
.

The normal distribution is therefore also in the exponential family, and in
the canonical form. The functions a, b, c and d are the following:
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a(y) = y

b(µ) = µ
σ2

c(µ) = − µ2

2σ2 − 1
2
ln(2πσ2)

d(y) = − y2

2σ2 .

2.5.1 Properties of distributions in the exponential

family

In this section we will derive expressions for the expected value and variance
of a(Y ), where the distribution of the random variable Y , is assumed to
belong to the exponential family. Results that apply for any probability
density function will be used to �nd the expressions. Let f(y, θ) be a density
of a distribution function belonging to the exponential family. Since∫ ∞

−∞
f(y; θ)dy = 1, (2.4)

we obtain by di�erentiating both sides of (2.4) with respect to θ, and by
reversing the order of the integration and di�erentiation,∫

∂

∂θ
f(y; θ)dy = 0. (2.5)

By di�erentiating equation (2.5) again∫
∂2

∂θ2
f(y; θ)dy = 0. (2.6)

Since f is in the exponential family, we have by di�erentiating (2.3)

∂f(y; θ)

∂θ
=

(
a(y)b′(θ) + c′(θ)

)
f(y; θ). (2.7)

Integrating (2.7) and implementing the result from equation (2.5) yield

∫ (
a(y)b′(θ) + c′(θ)

)
f(y; θ)dy =

∫
∂

∂θ
f(y; θ)dy = 0

⇐⇒
∫
a(y)b′(θ)f(y; θ)dy +

∫
c′(θ)f(y; θ)dy = 0. (2.8)
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Using Theorem 2.10(ii) and equation (2.4), we obtain

∫
a(y)b′(θ)f(y; θ)dy = b′(θ)E[a(Y )],∫
c′(θ)f(y; θ)dy = c′(θ)

∫
f(y; θ)dy = c′(θ).

Rearranging the terms in equation (2.8) yield the result:

E[a(Y )] = −c
′(θ)

b′(θ)
. (2.9)

A similar procedure can be used to obtain the variance of a(Y ). For this,
notice that

∂2

∂θ2
f(y; θ) =

(
a(y)b′′(θ)+c′′(θ)

)
f(y; θ)+

(
a(y)b′(θ)+c′(θ)

)2

f(y; θ). (2.10)

By rewriting the second term on the right hand side of (2.10), and using
(2.9), we get

(
a(y)b′(θ) + c′(θ)

)2

f(y; θ)

= b′(θ)2
(
a(y)2 + 2a(y)

c′(θ)

b′(θ)
+

(
c′(θ)

b′(θ)

)2)
f(y; θ)

= b′(θ)2
(
a(y)2 − 2a(y)E[a(Y )] + E[a(Y )]2

)
f(y; θ)

= b′(θ)2
(
a(y)− E[a(Y )]

)2

f(y; θ).

Thus, by integrating (2.10), and by using (2.6), the following is obtained:

∫
∂2

∂θ2
f(y; θ)dy =

∫
a(y)b′′(θ)f(y; θ)dy +

∫
c′′(θ)f(y; θ)dy

+

∫
b′(θ)2

(
a(y)− E[a(Y )]

)2

f(y; θ)dy

= b′′(θ)E[a(Y )] + c′′(θ) + b′(θ)2Var[a(Y )] = 0,
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where it is applied that

∫ (
a(y)− E[a(Y )]

)2

f(y; θ)dy = Var[a(Y )].

Rearranging the terms, and using (2.9), the expression of the variance is
obtained as:

Var[a(Y )] =
−b′′(θ)E[a(Y )]− c′′(θ)

b′(θ)2

=
b′′(θ)c′(θ)

b′(θ)3
− c′′(θ)

b′(θ)2

=
b′′(θ)c′(θ)− b′(θ)c′′(θ)

b′(θ)3
.

Example 2.21. The results are used to verify the expectation and variance
for the Poisson and normal distribution.

For Y ∼ Poisson(θ), we include the results from example 2.19.

E[Y ] = E[a(Y )] = −c
′(θ)

b′(θ)
= −−1

1/θ
= θ.

Var[Y ] = Var[a(Y )] =
b′′(θ)c′(θ)− c′′(θ)b′(θ)

b′(θ)3
=
−−1

θ2

1
θ3

= θ.

Consequently, for the normal distribution N(µ, σ2), we use the results from
example 2.20.

E[Y ] = E[a(Y )] = −c
′(µ)

b′(µ)
= −
− µ
σ2

1
σ2

= µ.

Var[Y ] = Var[a(Y )] =
b′′(µ)c′(µ)− c′′(µ)b′(µ)

b′(µ)3
=

0− −1
σ2

1
σ2(

1
σ2

)3 = σ2.
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Chapter 3

Generalized linear models

3.1 Background of generalized linear models

Generalized linear models (GLMs), according to Anderson et al. (2007, p.
4), are today widely regarded as a standard statistical technique for pricing
insurances in the European Union market. The primary use of GLMs in
the insurance business is in insurance pricing and underwriting, although
there has been an increased use for marketing analysis. In insurance pricing,
the GLMs are used for estimating the risk premium and for studying the
insurance data.

In the past, actuaries have entrusted one-way analyses for pricing of in-
surances. A one-way analysis may summarize the insurance frequency or
loss-ratio for claims, but it does not take into consideration the a�ect of
multiple variables. By the loss ratio is meant the ratio of incurred losses to
earned premium. These analyses can be distorted by correlations between
the rating factors. For example, a one-way analysis of the age of a car will
probably show high claim frequency for old cars, but this may result from the
fact that older cars are generally driven by more high-risk younger drivers.

One-way analysis also does not consider how interactions between the
factors a�ect the claims. These interactions exist because of correlation
between the variables. The a�ect of one variable varies depending on the val-
ue of another variable. Multivariate methods, such as GLMs, adjust for the
correlations between the variables and allow investigation into the interaction
a�ects between the variables.
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3.2 Notations

The terms response, outcome and dependent variable are used for measure-
ments that are free to vary with respect to other variables called explanatory
variables, predictor variables or independent variables. In this thesis, the
terms response variable and predictor variable are preferred.

Let n denote the number of the observations in a sample. Every observa-
tion consists of values on p variables. The notation xij will therefore represent
the value of the jth variable for the ith observation, where i = 1, 2 . . . n and
j = 1, 2 . . . p. We let X denote an n× p matrix whose (i, j)th element is xij.
X is called the design matrix and has the form

X =


x11 x12 . . . x1p
x21 x22 . . . x2p
...

...
. . .

...
xn1 xn2 . . . xnp

 .

The rows of the design matrix are written as x1, x2, . . . xn. Here each xi, i =
1, . . . , n is a vector of length p. The columns ofX are written as x1,x2, . . . ,xp.
Each is a vector of length n. To summarize:

xi =


xi1
xi2
...
xip

 , xj =


x1j
x2j
...
xnj

 .

Using this notation, the matrix X can be written as

X = (x1,x2, . . . ,xp).

For the response variables, we use yi, i = 1, . . . , n to denote the ith obser-
vation. The observations y1, y2, . . . , yn are regarded as realizations of the
random variables Y1, Y2, . . . , Yn. We let Y represent a column vector with
components corresponding to the random variables Y1, Y2, . . . , Yn and let y
represent a column vector with components corresponding to the observed
values y1, y2, . . . , yn. Thus,
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y =

y1...
yn

 , Y =

Y1...
Yn

 .

In this thesis, the symbol ^ is used for estimates. The column vector β
denotes a vector of parameters, whose components β0, β1, . . . βp are usual-
ly to be determined by di�erent methods. β0 is called the intercept and
β1, β2, . . . , βp are called the slope of the model. Hence:

β =

β0...
βp


Estimating function f

Suppose that a set of values for a quantitative response variable
Y = (Y1, . . . , Yn)T and p di�erent predictors variables X1, X2, . . . , Xp are
observed. The models discussed in this thesis assume that there is some
relationship between Y = (Y1, . . . , Yn)T and X = (X1, X2, . . . , Xp). The
relationship is expressed according to James et.al (2013, p. 16) as

Y = f(X) + ε,

where f : Rp 7→ R, and ε is an error term with mean 0 and variance σ2 > 0
assumed to be independent of X.

The term ε, whose mean is zero and variance σ2 > 0, is an error term which
is independent of X. In this thesis, di�erent linear and non-linear methods
for estimating the unknown function f are introduced. These types of meth-
ods are either parametric or non-parametric. The non-parametric methods
are discussed in chapter 4 and in this chapter the focus is on the parametric
methods. The parametric methods �rst make an assumption of the form
of f , and once a model has been selected, the parameters β0, β1, . . . , βp are
estimated.

A common assumption is that f is linear:

f(X) = β0 + β1X1 + . . .+ βpXp. (3.1)
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For the parameter estimation in the linear model, the aim is to �nd values
for the parameters β0, β1, . . . , βp which best explain the observed data.

3.3 The structure of a generalized linear model

A generalized linear model has three components:

(i) Response variables Y1, . . . , Yn which are assumed to belong to the same
distribution from the exponential family, but could have, e.g., di�erent
means.

(ii) A set of explanatory variables and parameters β

X =

x11 . . . x1p
...

. . .
...

xn1 . . . xnp

 , β =

β0...
βp

 .

(iii) A di�erentiable and monotonic link function g such that

g(µi) = xTi β, where µi = E[Yi].

Therefore the GLM expresses the relationship between the expected value of
the response variables and the predictor variables as:

E[Yi] = g−1
(
xTi β

)
.

Model formulation

The models described involve response variables Y = (Y1, . . . , Yn)T and usu-
ally several predictor variables. The model formulation consists of two com-
ponents:

1) Probability distribution of the response variable Y . For the GLMs,
the probability distributions all belong to the exponential family of dis-
tributions. The exponential family of distributions includes e.g. nor-
mal, binomial, Poisson and other common distributions. The exponen-
tial family of distributions was introduced in section 2.5.
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2) Equation linking the expected value of Y with a linear combination
of the predictor variables. The equation is of the general form

g[E(Y )] = β0 + β1X1 + . . .+ βpXp.

The right hand side of equation 3.2 is called the linear component.

The link function g must satisfy the condition that it is di�erentiable and
monotonic. Various link functions are commonly used, depending on the
assumed distribution of the response variable Y . Some typical choices for a
link function include:

Notation g(x) g(x)−1

Identity link x x
Log link ln(x) ex

Logit link ln(x/(1− x)) ex/(1 + ex)
Reciprocal link 1/x 1/x

According to Dobson (2002, p. 35), equation (3.2) can be written in matrix
notation as

g(E[Y ]) = Xβ,

where Y = (Y1, . . . , Yn)T is a vector of responses and

g[E(Y )] =

g[E(Y1)]
...

g[E(Yn)]


denotes a vector of functions for the terms E[Yi], i = 1, . . . , n.

3.4 Examples with various GLMs

Suppose a private car insurance has two categorical rating variables, territory
(urban or rural) and gender (male or female). Suppose we have access to the
following observations for the average claim severities.

Gender Urban Rural

Male 800 500
Female 400 200
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The vector of observations, the design matrix, and the vector of parameters
are as follows

y =


Male Urban
Male Rural

Female Urban
Female Rural

 =


800
500
400
200

 , X =


1 1 1
1 1 0
1 0 1
1 0 0

 and β =

β0β1
β2

 .

Note that a di�erent design matrix was chosen here than in Anderson et al.
(2007, p. 10). Further ahead in the thesis, outputs from statistical software
using GLMs are analyzed. The statistical software shows a speci�c value
of the intercept β0. To be able to obtain the same results as in statistical
software, the �rst column of the design row are only constants. The
observations of the second column is 1, if the observation is represented by
a male. Correspondingly, the observation of the third column is 1, if the
observation is represented by a customer in an urban area.

3.4.1 Solving with the method of least squares

The least squares estimation is thoroughly introduced in section 3.5.1. The
four observations above can be expressed as the system of equations:

y1 = 800 = β0 + β1 + β2 + ε1

y2 = 500 = β0 + β1 + ε2

y3 = 400 = β0 + β2 + ε3

y4 = 200 = β0 + ε4.

Consequently, the residual sum of squares are obtained from

RSS =ε21 + ε22 + ε23 + ε24
=(800− β0 − β1 − β2)2 + (500− β0 − β1)2

+ (400− β0 − β2)2 − (200− β0)2.

The parameters β0, β1 and β2 are determined by taking derivatives with
respect to each parameter:
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∂RSS

∂β0
= 0⇒ 2β0 + β1 + β2 = 950

∂RSS

∂β1
= 0⇒ 2β0 + 2β1 + β2 = 1300

∂RSS

∂β2
= 0⇒ 2β0 + β1 + 2β2 = 1200.

The solution to the equation system is given by the values:
β0 = 175

β1 = 350

β2 = 250

Gender Urban Rural

Male β0+β1 + β2 β0+β1
Female β0 + β2 β0

Gender Urban Rural

Male 775 525
Female 425 175

3.4.2 Normal error structure with an identity link func-

tion

The classical linear model assumes a normal error structure, and an identity
link function g(x) = x. The predicted values take the form

E[y] = g−1(Xβ) =


g−1(β0 + β1 + β2)
g−1(β0 + β1)
g−1(β0 + β2)
g−1(β0)

 =


β0 + β1 + β2
β0 + β1
β0 + β2
β0


The likelihood function is presented thoroughly in section 3.5.1. The likeli-
hood function of the normal distribution is

L(µ, σ2; y1, . . . , yn) =

(
1√

2πσ2

)n
exp

{
−

n∑
i=1

(yi − µi)2

2σ2

}
,

where µ = (µ1, . . . , µn). The corresponding log-likelihood function, is
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l(µ, σ2; y1, . . . , yn) = −n
2
ln(2πσ2)− 1

2σ2

n∑
i=1

(yi − µi)2.

Due to the identity link function, µi =
∑p

j=1 xijβj−1. Note that p has the
values p = 1, 2, 3. Therefore, the log-likelihood function becomes

l(µ, σ2; y1, . . . , yn) = −n
2
ln(2πσ2)− 1

2σ2

n∑
i=1

(yi −
p∑
j=1

xijβj−1)
2.

By inserting the values from the vector of observations and design matrix:

l(µ, σ2; y1, . . . , yn) = −n
2
ln(2πσ2)

− (800− β0 − β1 − β2)2

2σ2
− (500− β0 − β1)2

2σ2

− (400− β0 − β2)2

2σ2
− (200− β0)2

2σ2
.

To maximize the log-likelihood function, we take the derivative with respect
to each parameter. The resulting system of equations is as follows:

∂l

∂β0
= 0⇒ 2β0 + β1 + β2 = 950

∂l

∂β1
= 0⇒ 2β0 + 2β1 + β2 = 1300

∂l

∂β2
= 0⇒ 2β0 + β1 + 2β2 = 1200.


β0 = 175

β1 = 350

β2 = 250

Gender Urban Rural

Male β0+β1 + β2 β0+β1
Female β0 + β2 β0

Gender Urban Rural

Male 775 525
Female 425 175
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Consequently, it can be observed that these equations are identical to those
derived from example 3.4.1. To obtain a goodness of �t, the null- and residual
deviance is calculated. These will be more thoroughly explained in section
3.5.2. The null deviance and the residual deviance is obtained from the
following, where the mean of the observations is µ = 475:

Observations Null deviance Estimate Residual deviance

800 (800− 475)2 = 105625 775 (800− 775)2 = 625
500 (500− 475)2 = 625 525 (500− 525)2 = 625
400 (400− 475)2 = 5625 425 (400− 425)2 = 625
200 (200− 475)2 = 75625 175 (200− 175)2 = 625

The total null deviance and residual deviance is obtained from the sum of the
respective deviance. Therefore the null deviance for this model is 187500 and
the residual deviance is 2500. This means that the full model, including all
the parameters, explaines the data better and is hence preferred. However,
the predictor variables are not signi�cant in this model, according to the R
output in Appendix A.2. In Appendix A.2, the same example is demonstrated
by using the software R.

3.4.3 Poisson error structure with a logarithm link func-

tion

By modelling with the Poisson model, using a logarithm link function, the
predicted values are given by

E[y] = g−1(Xβ) =


g−1(β0 + β1 + β2)
g−1(β0 + β1)
g−1(β0 + β2)
g−1(β0)

 =


eβ0+β1+β2

eβ0+β1

eβ0+β2

eβ0

 .

The likelihood function of the Poisson distribution, whose parameter space
is θ = {µ|µ ∈ R, µ > 0}, is the following:
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L(µ; y1, . . . , yn) =
n∏
i=1

fµi(yi)

= e−µ1 · µ
y1
1

y1!
· . . . · e−µ1 · µ

yn
1

yn!
.

The corresponding log-likelihood function is

l(µ; y1, . . . , yn) =
n∑
i=1

lnfµi(yi)

=
n∑
i=1

(
− µi + yiln(µi)− ln(yi!)

)
.

Due to the logarithm link function, µi = exp{
∑p

j=1 xijβj−1}. The log-
likelihood function becomes:

l(µ; y1, . . . , yn) =
n∑
i=1

(
− exp{

p∑
j=1

xijβj−1}+ yi

p∑
j=1

xijβj−1 − ln(yi!)
)
. (3.2)

For the observations in this example, (3.2) becomes

l(µ; y1, . . . , yn) = y1(β0 + β1 + β2)− eβ0+β1+β2 − ln(y1!)

+ y2(β0 + β1)− eβ0+β1 − ln(y2!)

+ y3(β0 + β2)− eβ0+β2 − ln(y3!)

+ y4(β0)− eβ0 − ln(y4!).

By taking the derivative with respect to each parameter, the log-likelihood
function is maximized. The resulting system of equations becomes as follows:

∂l

∂β0
= 0⇒ eβ0+β1+β2 + eβ0+β1 + eβ0+β2 + eβ0 = 1900

∂l

∂β1
= 0⇒ eβ0+β1+β2 + eβ0+β1 = 1300

∂l

∂β2
= 0⇒ eβ0+β1+β2 + eβ0+β2 = 1200.
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By using the Newton-Raphson method, the solution to the system of equa-
tions is: 

β0 = 5.39840 . . .

β1 = 0.77319 . . .

β2 = 0.53900 . . .

The predicted values of the observations are, thus, as follows:

Gender Urban Rural

Male eβ0+β1+β2 eβ0+β1

Female eβ0+β2 eβ0

Gender Urban Rural

Male 821,05 478,95
Female 378,95 221,05

The mean of the observations is µ = 475. For the Poisson distribution, the
null deviance and residual deviance is calculated by the following:

Observations Null deviance

800 2(800(ln(800/475)− (800− 475)) = 184, 074
500 2(500(ln(500/475)− (500− 475)) = 1, 294
400 2(400(ln(400/475)− (400− 475)) = 12, 52
200 2(200(ln(200/475)− (200− 475)) = 204, 002

Estimate Residual deviance

821,05 2(800(ln(800/821, 05)− (800− 821, 05)) = 0, 544
478,95 2(500(ln(500/478, 95)− (500− 478, 95)) = 0, 912
378,95 2(400(ln(400/378, 95)− (400− 378, 95)) = 1, 148
221,05 2(200(ln(200/221, 05)− (200− 221, 05)) = 2, 072

The null deviance for this model is 401.889, and the residual deviance is
4, 677. The full model again explains the data better, however, according to
the R output for this model, the predictor variables are signi�cant. Note also
that the AIC of the R output 42.219 is less than the AIC of the Normal error
structure, which was 45.103. This indicates that the model with a Poisson
distribution is as a whole a better �t of the data. The R output for this
model is demonstrated in Appendix A.3.
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3.5 Model �tting of a GLM

The purpose of the GLMs is to express the relationship between the response
variables Y1, . . . , Yn and a number of predictor variables. The model-�tting
process involves three steps, which are to be introduced thoroughly in the
next sections:

1) Model formulation - The GLM is speci�ed with an assumed proba-
bility distribution for the response variable and an equation linking the
response and the predictor variables.

2) Estimation of the parameters of the model

3) Suitability of the model - Checking how well the model �ts or summa-
rizes the data. Calculating con�dence intervals and testing hypotheses
about the parameters

3.5.1 Parameter estimation

The most commonly used methods for estimation are the method of least
squares and maximum likelihood estimation. When solving for large data
sets the parameters are estimated by numerical techniques.

Least squares estimation

At the beginning of the nineteenth century, Carl Friedrich Gauss and Adrien-
Marie Legendre published papers on the method of least squares, which im-
plemented the earliest form of what is now known as linear regression. Lin-
ear regression is a method for predicting quantitative values for the response
variable Y . If we have only one predictor variable, the approach is called
simple linear regression. Consequently, the approach is called multiple linear
regression if we have access to more than one predictor variable.

In the case of linear regression, the parameters βj, j = 0, . . . , p, are un-
known and must be estimated. The method assumes an approximately linear
relationship between the response variable Y and the predictor variables X.
Given estimates β̂0, . . . , β̂p, predictions can be made using the formula

ŷ = β̂0 + β̂1x1 + β̂2x2 + . . .+ β̂pxp.
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Let ŷi = β̂0 + β̂1xi1 + . . . + β̂pxip be the predicted value for yi based on the
ith value of X. The residual, denoted by εi = yi − ŷi, i = 1, . . . , n, is then
the di�erence between the ith observed response value and the ith predicted
response value by the model. We de�ne the residual sum of squares (RSS)
by:

RSS = ε21 + . . .+ ε2n

=
n∑
i=1

(yi − ŷi)2

=
n∑
i=1

(yi − β̂0 − β̂1xi1 − β̂2xi2 − . . .− β̂pxip)2.

Figure 3.1: In a three-dimensional setting with two predictor variables, the
regression line becomes a plane. The plane is chosen to minimize the RSS,
i.e. the sum of the squared vertical distances between each observation and
the plane. The picture is obtained from James et al. (2013, p. 73).

The method of least squares consists of �nding the parameters βj, j = 0, . . . , p,
that minimizes the RSS. The parameters βj, j = 0, . . . , p, are usually obtained
by di�erentiating the RSS with respect to each element βj, j = 0, . . . , p, of
the column vector β and �nding β by the simultaneous equations
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∂RSS

∂βj
= 0, j = 0, 1, . . . , p.

It is then necessary to check that the solutions correspond to the minimum of
the RSS. The method of least squares is demonstrated in practice in example
3.4.1 later in this chapter.

Maximum likelihood estimation

The principle of maximum likelihood is relatively straightforward. Let
Y1, . . . , Yn denote a random sample from a distribution whose probability
density function is fθ(y). The maximum likelihood method attempts to �nd
the parameters which maximize the function

L(θ;Y1, . . . , Yn) =
n∏
i=1

fθ(Yi).

Example 3.1. Maximum likelihood estimation of the parameters of the nor-
mal distribution.

Let Y1, . . . , Yn be a random sample from N(µ, σ2) distribution. The param-
eter space is θ = {(µ, σ2)|µ ∈ R, σ2 > 0}. We will now �nd the maximum
points of the function

(µ, σ2) 7→ L(µ, σ2;Y1, . . . , Yn) =
n∏
i=1

(
1√

2πσ2

)
exp

{
− (Yi − µ)2

2σ2

}
=

(
1√

2πσ2

)n
exp

{
−

n∑
i=1

(Yi − µ)2

2σ2

}
.

Maximizing the likelihood function is equivalent to maximizing the log-
likelihood function:

l(µ, σ2;Y1, . . . , Yn) : = lnL(µ, σ2;Y1, . . . , Yn)

= ln

[
(2πσ2)−

n
2

]
+ ln

[
exp

{
−

n∑
i=1

(Yi − µ)2

2σ2

}]
= −n

2
ln(2πσ2)− 1

2σ2

n∑
i=1

(Yi − µ)2.
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To maximize l we take the derivatives with respect to µ and σ2 and set each
of them to zero. The resulting system of equations is:

∂

∂µ
l(µ, σ2;Y1, . . . , Yn) =

1

σ2

n∑
i=1

(Yi − µ) = 0

⇒ µ =
1

n

n∑
i=1

Yi =: Ŷ .

∂

∂σ2
l(µ, σ2;Y1, . . . , Yn) = − n

2σ2
+

1

2σ4

n∑
i=1

(Yi − µ)2 = 0

⇒ σ2 =
1

n

n∑
i=1

(Yi − µ)2

⇒ σ2 :=
1

n

n∑
i=1

(Yi − Ŷ )2.

These values are therefore possible maximum points of the function. By
Hesse's matrix test, one can conclude that the values are in fact maximum
points. For normal distribution, the parameter estimates are therefore the
mean and the variance of the sample.

Solving for large data sets using numerical techniques

In section 3.4, simple examples using GLMs are demonstrated for under-
standing the mechanics involved in solving a GLM. In practice, there are
thousands of observations in the data sets for the insurance industry. There-
fore, it is not practical to �nd values of β which maximize the likelihood and,
instead, iterative numerical techniques are used. The numerical techniques
seek to optimize likelihood by seeking the values of β which set the �rst
di�erentials of the log-likelihood to zero. This is done by using an iterative
process, for example, Newton-Raphson iteration which uses the formula:

βn+1 = βn −H−1s,

where βn is the nth iterative estimate of the vector of the parameter esti-
mates β. The vector with the �rst derivatives of the log-likelihood is denot-
ed by s and H is a (p × p) matrix containing the second derivatives of the
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log-likelihood. This is a generalized form of the one-dimensional Newton-
Raphson equation

xn+1 = xn −
f ′(xn)

f ′′(xn)
,

which seeks to �nd a solution to f ′(x) = 0.

3.5.2 Suitability of the model

The true relationship is generally not known for real data. How well the
model �ts the data is analyzed using deviance tests and standard errors.
Using statistical software these values are obtained directly from the GLM
�t, regardless of how many parameters there are in the model.

The measure of the goodness of �t can be formed in various ways, but
we will primarly focus on the concept of deviance. The deviance, also called
the log likelihood (ratio) statistic is

D = 2[l(θmax; y1, . . . , yn)− l(θ̂, y1, . . . , yn)],

according to Dobson (2002, p. 76). The deviance is hence di�erent depending
on the distribution. According to McCullagh and Nelder (1983 p. 34), for
some common distributions in the exponential family, the deviance takes the
following forms:

Distribution Deviance function

Normal
∑

(yi − µi)2
Poisson 2

∑
(yiln(yi/µi)− (yi − µi))

Gamma 2
∑

(−ln(yi/µi) + (yi − µi)/µi
Inverse Gaussian

∑
(yi − µi)2/(µ2

i yi)

Note that the summation is over i = 1, . . . , n.

Example 3.2. Deviance for a normal linear model. Consider the model

E[Yi] = µi = xTi β; Yi ∼ N(µi, σ
2), i = 1, . . . n,

where the Yi:s are independent. The log-likelihood function of the normal
distribution was derived in section (3.4.2), and is the following:
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l(µ, σ2; y1, . . . , yn) = −n
2
ln(2πσ2)− 1

2σ2

n∑
i=1

(yi − µi)2.

Assume that the model parameters has been obtained, and every parameter
was used in the model. To obtain the maximum value of the log-likelihood
function, we di�erentiate it with respect to each µi. By solving the equations,
we obtain µ̂i = yi. The maximum value of the log-likelihood, of the saturated
model, is therefore:

l(µmax, σ
2; y1, . . . , yn) = −n

2
ln(2πσ2).

The log-likelihood function using the estimated µ̂i:s is

l(µ̂i, σ
2; y1, . . . , yn) = −n

2
ln(2πσ2)− 1

2σ2

n∑
i=1

(yi − µ̂i)2.

The deviance of the saturated normal linear model is hence:

D = 2[l(µmax, σ
2; y1, . . . , yn)− l(µ̂, σ2, y1, . . . , yn)]

=
1

σ2

n∑
i=1

(yi − µ̂i)2.

This is also called the residual deviance, i.e. we measure the deviance using
all the parameters in the model. In the special case where there is only one
parameter E[Yi] = µ for all i, we obtain the null deviance. The estimate of
µ becomes µ̂ = 1

n

∑n
i=1 yi = ȳ, and therefore:

D =
1

σ2

n∑
i=1

(yi − ȳ).

In general, a higher number of deviance indicates a worse �t of the model.
The programming language R reports the null deviance and the residual
deviance. The null deviance shows how well the response variable is pre-
dicted by a model that only includes the intercept, i.e. the µ is the mean
of the observations. For the residual deviance, µ is the estimate for each
observation.
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The software R also reports a value of the Akaike Information Criteria (AIC),
which is based on the deviance. The de�nition of the AIC will not be included
in this thesis, but a smaller value of the AIC indicates a better �t of the
model. For the purpose of demonstration, an output from R using a Poisson
distributed GLM with a logarithm link function is seen.

Deviance Res idua l s :
1 2 3 4
−0.7379 0 .9550 1 .0717 −1.4394

Co e f f i c i e n t s :
Estimate Std . Error z va lue Pr(>| z | )

( I n t e r c ep t ) 5 .39840 0.05068 106 .51 <2e−16 ∗∗∗
va r i ab l e 1 0 .77319 0.04935 15 .67 <2e−16 ∗∗∗
va r i ab l e 2 0 .53900 0.04756 11 .33 <2e−16 ∗∗∗
−−−
S i g n i f . codes : 0 ∗∗∗ 0 .001 ∗∗ 0 .01 ∗ 0 .05 . 0 . 1 1

Di spe r s i on parameter for po i s son fami ly taken to be 1

Nul l dev iance : 401 .889 on 3 degree s o f freedom
Res idua l dev iance : 4 .677 on 1 degree s o f freedom
AIC : 42 .219

Number o f F i sher Scor ing i t e r a t i o n s : 3

In this model there are three parameters β0, β1 and β2. The parameters β1
and β2 are the predictor variables in the data named variable1 and vari-
able2. R has estimated values β0 = 5, 40..., β1 = 0, 77... and β2 = 0, 54... for
the di�erent parameters, and calculated the standard error of the respective
parameters. The software has also computed the z-value and the signi�cance
level according to each parameter. The residual deviance is smaller than the
null deviance. This indicates that the model, included with all the parame-
ters, results in a better �t for the data set, than including only one parameter.
Note that the observations used for the model are the same as in example
3.4.3.

The Fisher Scoring iterations indicates how many iterations the software
needed to perform the Newtons method to obtain the �t. The standard
errors in the output can be used to compute con�dence intervals. Con�dence
intervals are a range of values, de�ned so, that there is a speci�ed probability
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that the value of a true parameter lies within it. For example a 95% con�-
dence interval is a range of values such that with 95% probability, the range
will contain the true unknown value of the parameter.

Standard errors can also be used to perform hypothesis tests on the param-
eters. The most common hypothesis test involves testing the null-hypothesis
of

H0 : β1 = 0 there is no relationship between X1 and Y = β0 +β1X1 + ε
against,

Ha : β1 6= 0 there is some relationship,

since if β1 = 0 the model reduces to Y = β0 + ε and X1 is not associated to
Y .

3.6 Risk premium modelling with GLM

The response variables for the frequency and severity, of the insurance claims,
follow di�erent distributions. Therefore, when modelling the risk premium,
it can be useful to split the risk premium into frequency and severity. This
provides a better understanding of the way in which di�erent predictor vari-
ables a�ect the cost of claims. This results also in that identi�cation and
removal of random e�ects are more easily done. Conclusively, the underlying
models need to be combined to generate the �nal loss model, fromwhere the
risk premium is obtained.

Claim frequencies follow a Poisson process. Therefore the frequency mod-
els are usually �tted with an assumed Poisson error structure and a logarith-
mic link function. By assuming a log link function, the condition of the
�tted frequencies being positive is guaranteed. For the insurance data, one
observation may be related to one month and another may be related to one
year. There is more information in the observation relating to the longer
exposure period. Therefore in the case of claim frequencies the prior weights
are typically set to be the exposure of each observation.

Severity models are usually �tted with an assumed gamma error structure
and a logarithmic link function. The use of the log link functions again
ensures the positivity of the �tted models. By the use of a gamma function,
we have a constant coe�cient of variance. Therefore the standard errors
around the �tted values are proportional to the �tted values.
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As a summary, when modelling the frequency and severity models, the
response variables becomes

Claim frequency = claim count
exposure

Claim severity = loss
claim count

The di�erent models are then combined to obtain the �nal model, whose
response variable is the estimated risk premium.

Risk premium = frequency × severity = loss
exposure
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Chapter 4

Machine-Learning

4.1 Background of machine Learning

Arti�cial intelligence (AI) is a �eld of computer science that has been stud-
ied for decades, however, AI is still one of the most elusive subjects. AI is a
broader concept of machines being able to carry out tasks, which normally
requires human intelligence. It operates today in almost every way we use
computers, and ranges from machines processing languages, to algorithms
used for playing board games. AI has it′s roots from the 1950s when Alan
Turing created the Turing Test, as a measure of machine intelligence. The
task of the computer was to convince a human being into believing the com-
puter was a human. Another important milestone for AI was in 1997, when
the IBM's Deep Blue challenged, and defeated, the world chess champion.

Machine-learning is a subset �eld of AI, which is the result of two impor-
tant breakthroughs. In the late 1950s rather than teaching computers how
to carry out di�erent tasks, the idea of the computers being able to teach
themselves broke through. This was realized by Arthur Samuel in 1959, he
thought that teaching computers to play games was very useful for develop-
ing tactics, appropriate to general problems. The second breakthrough was
due to the emergence of the internet. This resulted in a huge increase in the
amount of digital information being generated. Engineers now realized that
rather than teaching computers, it would be more e�cient to plug them to
the internet to give them information.

Therefore, machine-learning is now a current application of AI, based
around the idea that we give machines access to data, and let them learn
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for themselves. Today, the machine-learning algorithms enable computers to
communicate with humans. Sophisticated search machines, algorithms that
predicts suitable products for customers, and cars that drive by themselves
are present products of machine-learning. Machine-learning can be further
divided into supervised and unsupervised learning, depending on the aim
of the problem. Many machine-learning algorithms can also be used for
regression or classi�cation, and we will see that they may work too well in
some cases.

4.2 Supervised and unsupervised learning

As was mentioned, machine-learning algorithms can be classi�ed into two
categories, supervised and unsupervised learning, depending on the goal of
the algorithm. Supervised learning is used when the data set has access to
a response variable, that has to be predicted. In unsupervised learning, the
algorithm instead seeks to �nd hidden patterns in the data.

In supervised learning we have for each observation i = 1, . . . , n, access to
a response variable Yi, for every predictor measurement Xi. If the aim of the
method is prediction, the learning algorithm analyzes the available data, and
produces a inferred function, with the aim of accurately predicting future
observations. The available data is referred to as training data, while the
future observations are referred to as test data. The success of the predictive
algorithm is evaluated, by comparing the estimated predictions with the true
values within the test data. If the aim is to have a better understanding of the
relationship between the response and the predictors, the machine-learning
task is called inference.

Unsupervised learning describes the situation where for every
Yi, i = 1, . . . , n, we observe a vector of measurements (xi1, . . . , xip), but not
the response variable Yi itself. Unsupervised learning seeks to understand the
relationship between the observations, and possibly �nd hidden structures
within the data. It is not possible to �t a regression model, for example,
in this setting, since there is no response variable to predict. Therefore, in
unsupervised learning, there is no evaluation of the accuracy of the structure,
that is output by the algorithm. This is one way to distinguish unsupervised
learning from supervised learning.
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4.3 Regression and classi�cation problems

Supervised learning algorithms can further be divided into classi�cation and
regression algorithms. For a classi�cation problem, the goal is to predict a
discrete class label for the response variable, to a new unseen observation. For
a classi�cation problem, the set of possible values of the response variable,
belongs to k ∈ Z di�erent classes. In a regression problem, the response
variable is a quantitative variable, i.e. a continuous variable.

The distinction between regression and classi�cation algorithms is gener-
ally not so clear. Some algorithms may belong to both �elds and solve both
regression and classi�cation problems. Whether the predictor variables are
qualitative or quantitative, is less important. Both machine-learning algo-
rithms discussed in this thesis are capable of being applied, regardless of the
predictor type, given that any qualitative predictor is properly coded before
the analysis.

4.4 Measuring quality of �t

There is no single machine-learning algorithm that works best on every
possible data set. One algorithm may outperform other algorithms on a
particular data set, but other algorithms may work better on a di�erent data
set. In order to assess the performance of a machine-learning algorithm, for
a given data set, the extent to which the predictions are close to the true
values of the response variable needs to be evaluated.

In the regression setting, according to James et al. (2013, p. 29), the
most commonly used measure for prediction error is the mean squared error
(MSE), which is given by

MSE =
1

n

∞∑
i=1

(yi − f̂(xi))
2. (4.1)

where f̂(xi) is the prediction of the ith observation. The MSE in (4.1) is
computed using the training data that was used to �t the model, which is
referred to as the training MSE. However, we are generally not interested
in whether f̂(xi) ∼ yi, for the di�erent training observations i = 1, . . . , n.
Instead, we want to know if f̂(xn+1) ∼ yn+1, where (xn+1, yn+1) is a previously
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unseen test observation not used to train the model. We want to �nd the
model that gives the lowest test MSE as opposed to the lowest training MSE.

Therefore, if we have access to a large number of test observations, we
can compute the mean squared prediction error of these test observations
(xi, yi) where i = n+1, n+2, . . . , and select the model for which the average
of the test MSE is as small as possible. Unfortunately, in real-life prediction
problems, the test sets are usually not available. In this case it might be a
sensible approach to select the model that generates the lowest training error.
However, there is no guarantee that the model, with the lowest training MSE,
will also have the lowest test MSE.

Figure (4.1) illustrates this phenomenon. By modelling the training ob-
servations using three di�erent models, with di�erent �exibilities, the training
MSE was calculated. Not surprisingly, the model with the highest �exibility
resulted in the lowest training MSE. However, when the models estimated
previously unseen test data, the model with the highest �exibility resulted
in a high test MSE. The blue line is from a linear regression �t, which is
relatively in�exible. The red and green curves are two machine-learning
model �ts with di�erent level of �exibilities. As can be seen, the green curve
follow the observations well, and it is the most �exible model. Therefore the
green curve will result in a low training MSE.

On the bottom-graphs, the training and test MSEs are displayed as func-
tions of the �exibility. The horizontal line on the right graph represents the
irreducible error, V ar(ε), which will be presented in the next section. The
training MSE declines monotonically as the �exibility increases. The true f
is non-linear, hence, the linear regression �t is not �exible enough to estimate
f well. The test MSE also declines as the �exibility increases, but at some
point the test MSE start to increase, and form a U -shape. When a method
has a small training MSE, but a large test MSE, the method is said to over�t
the data. In this case, the machine-learning method is working too well to
�nd the patterns in the training data.

When over�tting has occurred, the model may be picking up patterns
that are caused by random chance, rather than following the true properties,
of the unknown function f that it strives to model. The patterns found in
the training data may not exist in the test data, therefore, the test MSE is
large. Whether or not over�tting has occurred, we expect the training MSE
to be smaller than the test MSE, since the aim of the models is to minimize
the training MSE.
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Figure 4.1: Top: Estimates of model �ts are generated from a linear regres-
sion (blue) and two machine-learning methods, with di�erent �exibilities (red
and green curves). Bottom-left: Training MSE and test MSE of the respec-
tive models. Bottom-right: By using more models with di�erent �exibilitites,
the same graph can look like the following, according to James et al. (2013,
p. 31). The source code to the graphs are left out of the thesis.

4.5 Bias-variance trade-o�

The U -shape in the test MSE curve, is the result of two properties in the
machine-learning methods. It is, according to James et al. (2013, p. 33),
possible to show that the expected test MSE, for a given test value xn+1, can
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always be set up by the sum of three quantities:

E[(yn+1 − f̂(xn+1))
2] = Var[f̂(xn+1)] + [Bias(f̂(xn+1))]

2 + Var(ε).

In order to minimize the expected test error, we need no select a machine-
learning model that achieves both low variance and low bias, which are both
non-negative. Therefore, the expected test MSE can never lie below V ar(ε),
which is the so-called irreducible error term. The irreducible error term rises
from the fact that Y is also a function of ε, which by de�nition cannot be
predicted using X.

Ideally, the estimate for f should not vary too much between di�erent
training sets. The term variance refers to the amount by which the estimate
of f would change, if we estimated it using di�erent sets. Bias refers to the
systematic error in the estimation. For example, linear regression assumes
a linear relationship between the predictor and response variables, linear
regression will therefore result in high bias. Real-life problems rarely have a
truly linear relationship. As a general rule, when the �exibility of the model
increases, the variance increases and the bias decreases.

4.6 Resampling methods

Resampling methods consists of drawing repeated samples from the origi-
nal data set. The methods yield samples from the data observations and
re�tts the model of interest on each sample, in order to acquire information
about the �tted model. In this chapter two of the most commonly used
resampling methods are introduced, these are called cross-validation and
bootstrap. These methods are important tools in the model assessment, i.e.
the process of evaluating the performance of a model. The theory is developed
for the purpose of introducing a method called k-fold cross validation. The
k-fold cross-validation is a signi�cant method for this thesis to minimize the
test error. In the end of this section the bootstrap will be introduced, which
is used to provide a measure of the accuracy of a parameter estimate.

4.6.1 Cross-validation

Cross-validation (CV) is used to estimate the test error for a given statistical
method. The method enables the user, therefore, to select the best model
with the most suitable parameters. The validation set approach is a simple
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alternative for this task. It involves splitting the observations into two parts,
a training set and validation set. The model is then �tted on the training set,
and the �tted model is used to predict the response values of the observations
in the validation set. The resulting validation set error rate provides an
estimate of the test error. However, the validation set can be highly variable,
depending on precisely which observations are included in the respective set.

Therefore, one can use a method called Leave-one-out cross-validation
(LOOCV). LOOCV involves splitting the observations into two parts, but
instead a single observation (x1, y1) is used as the validation set, and the re-
maining observations {(x2, y2) . . . (xn, yn)} form the training set. The machine-
learning method is then �tted on the training set and a prediction ŷ1 is made
for the held out observation. This process is repeated by selecting the ob-
servation (x2, y2) as the validation set, and �tting the method on the new
training set {(x1, y1), (x3, y3), . . . , (xn, yn)}.

By repeating this procedure n times, the respective test errors
MSEi = (yi − ŷi)

2, i = 1 . . . n are obtained. The LOOCV estimate of the
test MSE of the machine-learning method, is then the average of the n test
error estimates:

CV(n) =
1

n

n∑
i=1

MSEi.

The disadvantage of the LOOCV is that it can be highly variable, since it
is based on a single observation. LOOCV is also computationally expensive,
since it has to repeat the procedure n times. Therefore, an alternative to
the LOOCV is k-fold CV. This approach involves dividing the set of obser-
vations into k approximately equally sized groups. The same procedure is
then repeated as in LOOCV, however, each fold at a time is held out. Each
fold is in turn considered as the validation set, and the remaining k− 1 folds
as the training set.

CV(k) =
1

k

k∑
i=1

MSEi.

The LOOCV is therefore a special case of the k-fold CV, where k = n.

47



Bias-variance trade-o� for k-fold cross validation

Using k-fold CV, where k < n, is not only an advantage from a computa-
tional point of view, the estimate of the test error becomes more accurate.
This has to do with the bias-variance trade-o�. It was mentioned that the
validation set approach can be highly variable, and depends on the choice
of the validation set. However, LOOCV is less variable, since each training
set contains n− 1 observations. Each training set contains therefore almost
as many observations as in the full data set. Performing k-fold CV, will
therefore lead to an intermediate level of bias and variance.

Nonetheless, the choice of k a�ects the variance of the test error. When
performing LOOCV, the output of the test error rates are highly correlated
with each other. This is due to the fact that the outputs of the �tted
n models, are trained on an almost identical set of observations. When
performing k-fold CV, where k < n, the overlap between the di�erent training
sets are smaller, which leads to less correlated outputs of the model. This
reduces the variance of the test error. According to James et al. (2013,
p. 184), the most common choices for k in k-fold CV is using k = 5 or
k = 10. These particular values have been shown empirically to yield test
error estimates that does not have high bias, or high variance.

4.6.2 The Bootstrap

The bootstrap comes in as a useful tool for quantifying the uncertainty of
the model estimates. The bootstrap is a �exible and powerful statistical tool
that involves drawing random samples with replacement of the original data
set. These random samples are called bootstrap data sets, and are, therefore,
of the same size as the original data set. As a result some observations may
appear more than once in a given bootstrap data set, and some observations
not at all. The procedure is repeated B times for some large value of B, often
100 or 1000 times, in order to generate B di�erent bootstrap data sets. For
each of these data sets the mean can be computed, and this will generate a
histogram of the bootstrapped means. This provides an estimate of the shape
of the distribution of the mean, fromwhere the variability of the estimates
can be calculated.
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Chapter 5

Machine Learning Algorithms

5.1 K-nearest neighbours

The K-nearest neighbours (KNN), where K is a positive integer, is among
the simplest of all supervised machine-learning algorithms. The KNN can be
used for both classi�cation and regression problems. Despite the simplicity
of the algorithm, KNN has been successful in a large number of classi�cation
problems. Handwritten digits, satellite image scenes and EKG patterns have
all been developed using the KNN. Here we will introduce how it works for
classi�cation problems, followed by how it works in the regression setting.

Supposing we have m di�erent classes, the KNN works by �rst identifying
the K points in the training data that are closest to the test observation
xn+1. Let the K points selected belong to the set N . The algorithm then
estimates the conditional probability for class j, j = 1, . . . ,m, as a fraction
of observations in N , whose response variable equals class j:

P(Y = j|X = xn+1) =
1

K

K∑
i=1

I(yi = j), yi ∈ N.

The test observation xn+1, is then classi�ed to the class which has the highest
probability of the value j.

In �gure (5.1), a two dimensional binary classi�cation problem is illus-
trated. A test observation that is labelled as a cross is to be classi�ed by the
KNN. For K=3, the algorithm identi�es the three nearest training observa-
tions of the test observation, shown as a circle. By comparing the conditional
probabilities, the test observations is in that environment more likely to be-

49



Figure 5.1: Left: The test observation is shown as a black cross. Right: The
decision boundary by selecting K=3 is shown. Since the value of K is low
and the training data set is small, the model is prone to being an over�t to
the data. These pictures are obtained from James et al. (2013, p. 40)

long to the blue class. Therefore, the algorithm predicts the test observation
xn+1 to belong to the blue class. In the right-hand picture in �gure (5.1), the
black line indicates the decision boundary of the model. After every possible
set of observations have been classi�ed by the algorithm, a test observation
that belongs to the center orange region, will be assigned to the orange class
and vice versa.

The result of the KNN algorithm depends on the choice of K. When
K=1, the method will be overly �exible, and may �nd patterns in the data,
that are caused by the irreducible error. According to James et al. (2013, p.
40), this corresponds to a model with a low bias and a high variance. As K
grows, the �exibility of the method decreases, resulting in a lower variance
with a higher bias. The optimal value of K will depend, therefore, on the
bias-variance trade-o�, and the underlying observations.

KNN for regression is closely related to the KNN classi�er. Instead of
comparing the conditional probabilities, the KNN for regression takes the
average of the K-neighbours, and assigns the value of the test observation.
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To be more precise, for a given value of K, and a test observation xn+1, the
KNN measures the distances to the K nearest neighbours. If N is the set of
the neighbours, the KNN estimates f̂(xn+1), using the average of N .

f̂(xn+1) =
1

K

K∑
i=1

yi, yi ∈ N.

The distance function is an important tool of the identi�cation of the K
neighbours, and is chosen by the user. The most natural choice of the distance
function, for numeric attributes, is the Euclidean distance measure:

d(x, x′) =

√√√√ n∑
i=1

(xi − x′i)2.

The KNN algorithm can also use other distance functions. For example, the
Minkowski distance with a pre-de�ned number m, might result in a better
model.

d(x, x′) = (
n∑
i=1

|xi − x′i|m)1/m.

If m=1, the distance function becomes the Manhattan distance. Typically,
the Euclidean or Manhattan distances are chosen as the distance measures,
for the KNN algorithm.

The KNN may result in good predictions, if the number of variables p
in the observations is small. However, if p is large, one has to take into
consideration the fact that a given test observation may have no nearby
observations in its environment. Therefore, when the algorithm is identifying
the K nearest neighbours, the distance within the set of neighbours can be
very large. According to James et al. (2013, p. 108), this is called the curse
of dimensionality. It arises from the fact that when p increases, the space
becomes high-dimensional. Therefore, the distances between the observations
grows, which will lead to a poor KNN �t.

5.2 Decision Tree

In the following chapters we will introduce supervised machine-learning algo-
rithms, that have a di�erent approach than KNN, called tree-based methods.
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These methods involve splitting the predictor space into a number of sim-
ple regions. In order to make a prediction for a test observation, tree-based
methods typically uses the mean or mode of the training observations in the
region to where it belongs. Therefore, when the KNN uses a neighbourhood
of K neighbours for a test observation, tree-based methods, as a �rst step,
segments the training observations into similar groups.

Tree-based methods are useful since the information structure can be
presented graphically by a tree, with branches and leaves. Therefore, these
types of approaches are called decision tree methods. Decision trees can be
used for both classi�cation and regression problems. Here we will exclude the
presentation of the classi�cation setting, and focus on the regression setting.
The process of building a regression tree involves two steps:

1. The set of all possible values for X1, X2, . . . , Xp i.e the predictor space,
is divided into J distinct and non-overlapping regions R1, R2, . . . , RJ .

2. For every test observation that belongs to region Rj, we make the same
prediction. This is the mean of the response values for the training
observations in Rj.

In step one, the algorithm divides the predictor space into high-dimensional
boxes. The goal is to �nd the regions R1, R2, . . . , RJ , that minimize the RSS
of the model. The RSS is given by

RSS =
J∑
j=1

∑
i:xi∈Rj

(yi − ŷRj
)2,

where ŷRj
is the mean response of the training observations in the jth box.

Due to computational limitations, it is not possible to consider every possible
partition of the prediction space into the J boxes. For this reason, tree-based
methods uses an top-down approach called recursive binary splitting.

Recursive binary splitting involves, according to James et al. (2013, p.
307), selecting the predictor Xj and the cut point s, such that splitting the
predictor space into the regions {X|Xj < s} and {X|Xj ≥ s} leads to the
greatest possible reduction in the RSS. In greater detail, for any j and s, we
de�ne the pair of half-planes

R1(j, s) = {X|Xj < s} and R2(j, s) = {X|Xj ≥ s},

52



and seek the value of j and s that minimize the quantity∑
i: xiεR1(j,s)

(yi − ŷR1)
2 +

∑
i: xiεR2(j,s)

(yi − ŷR2)
2.

When the predictors and cut points have been identi�ed, the process is re-
peated. The method then searches the best predictor and cut point in order
to split the data further, to minimize the RSS within the resulting regions.
Therefore, instead of splitting the entire predictor space, the method splits
one of the two previously identi�ed regions. The process is then continued
until a stopping criterion is reached, which is to be de�ned by the user. When
the process is completed and the regions R1, R2, . . . , RJ have been created,
the algorithm predicts the value for a given test observation. The predicted
value of the test observation is the mean of the training observations, in the
region to which the test observation belongs.

Since the number of branches and leaves are increasing, the resulting
decision tree might become too complex. This a�ects the prediction accuracy
and might produce an over�tting model. On the other hand, a smaller tree
with fewer regions will lead to a lower variance, with an increased bias. James
et al. (2013, p. 308), argues that to �nd the optimal complexity of the tree,
one alternative is to build a very large tree T0, and prune it back in order
to obtain a subtree. The goal is to select a subtree that leads to the lowest
test-error rate using cross validation. However, due to computational limits,
a smaller set of subtrees should be favoured. A method for achieving this is
called cost complexity pruning. The method considers a sequence of trees,
indexed by a tuning parameter α. For each value of α, there corresponds a
subtree T ⊂ T0, so that

|T |∑
m=1

∑
i: xiεRm

(yi − ŷRm)2 + α|T |, (5.1)

is as small as possible. |T | refers to the number of terminal nodes in the tree
T, and Rm is the subset of the predictor space. The tuning parameter α,
therefore, controls the complexity of the tree and eschews the model from
over�tting. When α=0, equation (5.1) measures the training error and T=T0.
As α increases, (5.1) will tend to be minimized for a smaller subtree. To
summarize, the algorithm of building a regression three is as follows, by
James et al. (2013, p. 309):

53



1. Construct a large tree using recursive binary splitting on the training
data. The process stops when each terminal node has fewer than some
minimum number of observations.

2. Apply cost complexity pruning to the large tree, in order to obtain a
sequence of best subtrees, with varying α.

3. Use k-fold cross validation to chose α. For each step k = 1, . . . , K:

(a) Repeat steps 1 and 2 on all but the kth fold of the training data.

(b) Evaluate the mean squared prediction error on the data in the left-out
fold, as a function of α.

(c) Average the results for each value of α, and pick α to minimize the
average error.

4. Return the subtree from step 2, that corresponds to the chosen value
of α.

5.3 Random Forests

Decision trees entails useful properties. In particular, they can be displayed
graphically by a hierarchical diagram. The result of the algorithm is there-
fore easily interpreted and easily explained. At the same time, the decision
trees su�er from a major de�ciency. Decision trees have a high variance,
and, therefore, a low predictive power. In fact many other machine-learning
algorithms are more accurate in predicting test data than decision trees. To
solve this problem, the predictive performance of the method can be sub-
stantially improved by aggregating di�erent decision trees. These methods
include bagging and random forest.

According to Hastie et al. (2009, p. 587), the essential idea in bagging
is to average many decision trees, and hence reduce the variance. Since
di�erent training sets are not accessible, the bootstrap, discussed in section
4.6.2, is used to take B single samples from the original training data set.
By training B di�erent models, using each training set b = 1, . . . , B, the
resulting predictions can be averaged for a new unseen test observation xn+1.
Therefore, the prediction of the test observations xn+1 is obtained from:

54



f̂bag(x) =
1

B

B∑
b=1

f̂ b(x).

The resulting model of bagging cannot be graphically displayed, and is hence
more di�cult to interpret. An overall summary of the importance of each
predictor can be obtained however, using the RSS for bagging regression
trees. The total amount of the decrease of the RSS, due to the splits over a
given predictor, can be recorded and averaged over all B trees. A large value
will indicate an important predictor. This can be plotted by the software
used in this thesis and is known as variable importance.

Random forest is a machine-learning algorithm that works in a manner
similar to bagging, with an additional improvement. As in bagging, a number
of decision trees are built on bootstrapped training samples. For each split,
according to James et al. (2013, p. 320), the random forest algorithm instead
uses a random sample of m < p predictors as split candidates. The split is
then allowed to only use one of the m predictors. For every split, a new set
of m predictors are chosen. The value m is typically chosen to be m ≈ √p.
The coice of m a�ects therefore the outcome of the model. If the predictor
variables are correlated, the model might become better for a small value of
m. If m = p, the random forest algorithm reduces to bagging.

The random forest algorithm is not allowed to consider a majority of
the predictors at the di�erent splits. The bene�ts of this has to do with
controlling the variance in the di�erent training samples. Suppose there
would be a strong predictor variable in the data set, then most of the trees
would use this strong predictor variable in the top split. Random forest
overcome this problem by forcing each split to consider only a subset of the
p predictor variables. As in James et al. (2013, p. 320): "We can think
of this process as decorrelating the trees, thereby making the average of the
resulting trees less variable and hence more reliable".

55



Chapter 6

Simulations and results

The purpose of this thesis is to analyze how the GLM models the risk premi-
um for real insurance data compared to the machine-learning methods. By
removing a certain part of the data and thereby predicting it, the main goals
are the following:

1) Estimate future values by the di�erent models as accurately as pos-
sible, and measure the results.

2) Obtain di�erent trends from the models, and study the results.

The data obtained is from a insurance company whose name and type of
observations is unpublished. The data consists of observations from a period
of six years. By modelling the �ve �rst years with the di�erent models, the
models then estimates the risk premium of the sixth year. The trends in the
data is analyzed from the models that are optimized, using the observations
from the �rst �ve years.

6.1 Simulations

6.1.1 The data and the treatment

For the data obtained, the type of insurance consisted of di�erent subsets of
insurances types. Therefore, it was possible to analyze how di�erent predictor
variables a�ected each type of insurance. The number of observations, and
the number of predictor variables will, however, be unpublished. Before the
modelling could begin, treatment of the data was necessary.
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When using real data, potential problems may arise even before the mod-
elling can begin. One example of the problems are outliers in the data. An
outlier is a observation whose value is far from the value predicted by the
model, and di�er signi�cantly from the other observations. These outliers
can in insurance data, for example, be large claims, deviating from the other
claims. To solve the problem of large claims, a decision was made to reduce
the large claims to a certain value. In A.4 it is shown how this is done using
the software R, where the large claims are reduced to 100000 euro.

Another problem that arouse from the data was observations containing
too speci�c values. For example, the birthdates of the customers were too
speci�c in the data and needed to be clustered into explicit age clusters.
The bene�t of clustering, is that the output of the model is more easily
interpreted. The clustering of the data was done manually, and the di�erent
clusters were decided in advance. An example is shown in A.5, where the
age of the customers is clustered into age groups of four years. Another set
of issues in the data was negative claims, empty observations, columns with
the same values etc. These issues needed to be dealt with separately.

For each of the di�erent brands of insurances in the data set, every ob-
servation had a value for the amount of claims and the sum of the claims.
In addition, the data had a speci�c exposure for each observation. As was
mentioned in section 3.6, to model the claim frequency for a certain insurance
brand, the response variable was modi�ed to be the claim count/exposure.
To model the severity, the response variable was modi�ed to the total cost
of claims / amount of claims.

6.1.2 The GLMs and Machine Learning algorithms in

statistical software

Using the statistical software R, generalized linear models are �t using the
glm() function. In R, the form of the GLM function is:

glm(formula, family =familytype(link =linkfunction), data =data�le)

where the formula, familytype, linkfunction and data�le is speci�ed by the
user. The formula de�nes to the program which predictor variables are to
be included in the GLM, and can, for example, be Y = X1 +X2 +X3, if the
variables are named accordingly in the data set.
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To be able to use the K-Nearest neighbors algorithm in R, a package was
acquired to be downloaded. For this thesis the package kknn was used. The
user de�nes the values of K and the value of the distance function, which
are represented here by k and d. The form of the KNN function train.kknn
using the mentioned package is:

train.kknn(formula, K =k, distance =d, data =data�le)

A certain package is also required to be able to use the random forest al-
gorithm in R, in this thesis the package randomForest was used. The user
de�nes the number of trees and the number of variables to use for each split,
which are represented by t and m. The form of the randomForest function
using the package is the following:

randomForest(formula, ntree =t,mtry =m, data =data�le)

The GLMs, K-Nearest neighbours- and random forest algorithms do have
more inputs in the software R. These are, however, left out of the thesis.

6.1.3 Cross-validation in R

To avoid over- or under�tting, the machine-learning algorithms needs to be
optimized using resampling methods, as was discussed in section 4.6. In
this thesis this was done manually using cross-validation with 5 folds. Since
the amount of data was large, k was chosen to be 5 instead of 10 due to
computational advantages. By choosing di�erent sequences of the parameters
in the machine-learning algorithms, the average test MSE was measured and
saved for each combination. To demonstrate the procedure, the data set
Boston will be used, which is a built-in data set in the software R. By using
the principle on the Boston data set the output of the program was the
following, where the source code is found in Appendix A.7:

[ 1 ] "TestMSE , nt ree =50,mtry=2:17.4657208145429 "
[ 1 ] "TestMSE , nt ree =50,mtry=4:16.6089961698928 "
[ 1 ] "TestMSE , nt ree =50,mtry=6:17.3133815070617 "
[ 1 ] "TestMSE , nt ree =100 ,mtry=2:16.6915167334573 "
[ 1 ] "TestMSE , nt ree =100 ,mtry=4:16.3203167477015 "
[ 1 ] "TestMSE , nt ree =100 ,mtry=6:17.190588433958 "
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[ 1 ] "TestMSE , nt ree =150 ,mtry=2:16.754537109479 "
[ 1 ] "TestMSE , nt ree =150 ,mtry=4:16.344288927649 "
[ 1 ] "TestMSE , nt ree =150 ,mtry=6:17.1475543021365 "
[ 1 ] "TestMSE , nt ree =200 ,mtry=2:16.8390160490675 "
[ 1 ] "TestMSE , nt ree =200 ,mtry=4:16.3058607531488 "
[ 1 ] "TestMSE , nt ree =200 ,mtry=6:17.1438815888588 "
[ 1 ] "Optimal_testMSE , nt r ee =200 ,mtry=4:16.3058607531488 "

Information about the Boston data set is obtained from Appendix A.6. By
programming that the model would automatically use the combination of
parameters that resulted in the lowest average test MSE, the models would
optimize themselves. Below is an example code where a random forest algo-
rithm is optimized by the coded program:

r e qu i r e ( randomForest )
mse = func t i on ( e r r o r ){

mean( e r r o r ^2)
}
k_fold_value=5
t_value_seq=seq (200 ,250 ,50)
m_value_seq=seq (6 , 12 , 3 )
l i s t_ t=l i s t ( )
l ist_m=l i s t ( )
l i s t_mse=l i s t ( )

yourData=d a t a f i l e [ sample ( nrow ( d a t a f i l e ) ) , ]
f o l d s = cut ( seq (1 , nrow ( yourData ) ) , breaks=k_fold_value ,

l a b e l s=FALSE)

t i c k e r=1
for ( t in t_value_seq ){

for (m in m_value_seq ){
cv . e r r o r=rep (0 , k_fold_value )
for ( i in 1 : k_fold_value ){

t e s t I ndexe s = which ( f o l d s==i , a r r . ind=TRUE)
tra inData = yourData[− t e s t Indexe s , ]
testData = yourData [ t e s t Indexe s , ]
t r a i n i n g . r f=randomForest (Y=X1+X2+X3 , data=trainData ,

n t r ee=t , mtry=m)
tes tPred=pr ed i c t ( t r a i n i n g . r f , newdata=testData )
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te s tData$tes tPred=testPred
e r r o r=testData$Risk−te s tPred
testMSE=mse ( e r r o r )
cv . e r r o r [ i ]=testMSE
}

testMSE=sum( cv . e r r o r )/ k_fold_value
l i s t_ t [ [ t i c k e r ] ]=( t )
list_m [ [ t i c k e r ] ]=(m)
l i st_mse [ [ t i c k e r ] ]=( testMSE )
t i c k e r=t i c k e r+1
}

}
Model=randomForest (Y=X1+X2+X3 , data=da t a f i l e ,
n t r ee=l i s t_ t [ [ which . min ( l i s t_mse ) ] ] ,
mtry=list_m [ [ which . min ( l i s t_mse ) ] ] )

The program begins by sampling the data set, dividing the sampled data set
into the number of folds, de�ned by the user. The speci�c parameters of
the model are obtained from the values in the sequences t_value_seq and
m_value_seq. The program then uses the �rst combination of parameters
leaving out the last fold of the data set, and predicts the values of the last
fold. The errors in the prediction are saved in an array called cv.error. By
repeating the process with all the folds, the average test MSE is calculated
using the mean of the values in cv.error. The results are then saved in a list
called list_mse.

The parameters used to obtain the values are continuously saved in the
lists list_t and list_m. The program then repeats the process with all the
di�erent combination of parameters. When the process is done, the program
searches for the index in the list list_mse that resulted in the lowest average
test MSE using the which_min function. It then obtains the objects from
the list_t and list_m, with the same indexes used for the best result. A �nal
model is then constructed using the parameters that resulted in the lowest
average test MSE.

6.1.4 The di�erent models used

As was mentioned in section 3.5.2, software as R shows a statistical output
of the goodness of �t of the GLM. This output includes information about
the signi�cance level of each predictor variable. In practice when modelling
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with the GLMs, many models are tested before the �nal model is obtained.
All the predictor variables in the data are included in the �rst model. There-
after, according to Anderson et al. (2007, p. 52), the variables that are not
signi�cant are dropped one by one, until a �nal model is obtained. The �nal
model thus consists only of signi�cant predictor variables.

Therefore, to be able to compare the di�erent models, two di�erent sets of
GLMs and machine-learning models were used. One set of models included
only the signi�cant variables, according to the GLM outputs. The other set
of models included all the variables. The aim was to �nd out how much
the models deviated from each other using all available predictor variables,
compared to using only the signi�cant predictor variables. To summarize
the procedure, with all variables as well as with the signi�cant variables, the
resulting models were the following:

Frequency Severity

Signi�cant variables GLM Poisson with log link GLM Gamma with log link
KNN KNN
RF RF

All variables GLM Poisson with log link GLM Gamma with log link
KNN KNN
RF RF

For the insurance company's data set, two di�erent type of insurances were
available. For both insurance types, observations of the number of claims
and total amount of claims were accessible in the data set. The aim was to
model frequency and severity separately. To obtain the risk premium, as was
discussed in section 3.6, the frequency and severity estimates of the models
were multiplied. The models constructed using machine-learning algorithms
were optimized using cross-validation. The optimized values for K, distance,
ntrees and mtry of the K-Nearest neighbors- and random forest models will
not be published.

6.2 Predictions and �nding the trends

By leaving out the last year of the data set, it was possible to measure how
well the models estimated the known future values. The MSE was used to
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measure the error of the prediction, where the response variable was the risk
premium. For the aim of being more practical, the sum of all claims, the
mean claim amount and average severity were estimated. To predict values
on a certain data set, the function prediction is used in R. The command is
the same for every model used in the thesis as the following:

predict(model, newdata =data�le)

When using the GLMs, software as R is able to show a statistical output of
the GLM �t to the data. The output can be studied to obtain information
about the di�erent predictor variables. From this output the user can obtain
trends in the data, and receive information about the discrepancy within
the predictor variables. This enables the user, for example, to study the
claim frequency for a certain type of insurance, depending on the customers
residence area. A thorough analysis of the GLM output is left out of the
thesis.

When using the machine-learning algorithms, however, a similar summary
of the model is not available. Using the random forest algorithm, nonetheless,
it is possible to obtain which predictor variables are the most important for a
�tted model. This is done using the built-in function varImpP lot(), and the
importance of the variable is measured with the unit IncNodePurity. The
IncNodePurity is, according to James et al. (2013, p. 330), a measure of the
total decrease in the training RSS that results from splits over a variable,
averaged over all trees. The theoretical background for this output is also
left out of the thesis.

To be able to compare the di�erent models, and for the aim of under-
standing how they modeled the training data, the models were examined in
a similar manner. When the models had been �tted on the training data,
they were made to predict the response value on the same data it was trained
on. By categorizing the observations in the data, the model estimates of the
response variable were studied for each category, within a certain predictor
variable.

To demonstrate the procedure, the built-in data set Auto will be used,
which is introduced in Appendix A.6. The aim is to model the miles per
gallon mpg using the variables cylinders, horsepower, weight, acceleration
and year of the car. In the data set are �ve di�erent values of the cylinders
variable, 3,4,5,6 and 8. Suppose we are interested in how much the number of
cylinders a�ects the miles per gallon according to the models. After modelling
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the di�erent models on the data set using the variable mpg as a response
variable, the estimated values on were divided into di�erent tables, according
to the number of cylinders. The estimates of the mpg for each value of the
cylinder were studied, and the mean and con�dence interval was obtained.
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Figure 6.1: The mean and con�dence interval of the estimates of each cylin-
ders value are shown. From the bottom-right graph, the output of the vari-
able importance function using the random forest algorithm is shown. The
importance of the variable is measured with the unit IncNodePurity, which
is a built-in unit for the random forest algorithm. According to the out-
put, the variables cylinders and weight are the most important variables for
estimating the mpg of the car.

From the di�erent graphs, the user receive information about how discrep-
ancy within the cylinder variable a�ects the mpg variable, within the model
estimates. The source code is found in Appendix A.8. The same principle
was used on the insurance data set, whose results is obtained from the next
section.
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6.3 Results

Predictions

For both insurance types in the data set, each model predicted the claim
frequency and average claim severity of the last year in the data set. The
predictions of the total claim cost, MSE, number of claims and average claim
severity can be obtained from the following table:

Model

True values

Total claims

GLM sign. var.

MSE predictions

KNN sign. var.

Type 1: Claims

RF sign. var.

Type 1: Aver. sev.

GLM all var.

Type 2: Claims

KNN all var.

Type 2: Aver. sev.

RF all var.

1624682.1

752226.8

1009971.2

1121655.4

751426.6

1185227.7

1559681.1

0

13525074

14763660

13113843

13507334

13185386

13221856

1051.00

232.60

436.87

416.49

234.65

421.90

492.06

2491.58

2695.97

2027.19

2496.72

2638.23

2611.64

2936.52

578.00

154.89

150.23

113.83

153.14

108.36

137.89

689.30

807.87

827.75

718.50

864.37

769.53

832.00

Note that the values in the table are rounded. The total claim cost of the last
year in the data set was 73% larger than the average of the previous years.
Hence the estimates of the models were generally lower than the true values.
For both insurance types, the models estimated the average claim severity
with better results than the average claim count. This can be explained due
to the fact that the observations are integers of the claim numbers, which
generally contains many zero-values.

To be able to compare the estimated values further, the estimated total
cost of the last year were studied for di�erent groups in the data. For ex-
ample, the estimates of the total cost of each age group in the data set is
presented. We will also demonstrate the estimates of total cost for customers
having di�erent sums insured. The exact sums insured will not be published.
However, di�erent levels will be shown where a higher number indicates a
higher sum insured of the customer.
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Figure 6.2: The model estimates of total cost vs di�erent ages groups and
di�erent sums insured are shown
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The trends in the data set

To be able to compare how the di�erent models modeled the training da-
ta, the procedure presented in section 6.2 was used. The following is the
frequency of a certain insurance claim according to the age of the customer.
For this particular data set, the frequency of the unpublished insurance types
are generally higher for younger customers.
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Figure 6.3: The procedure discussed in section 6.2 is used to compare how
the age of the customer a�ects the claim frequency according to the models
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Chapter 7

Conclusions

7.1 The modelling process

The time it takes for the GLMs, KNN and RF to model the data has so far
been left out of the discussion. The time for the modelling di�ers signi�cantly
between the models and depends on the amount of data and the parameters
in the machine-learning models. To demonstrate the di�erence, the time was
measured for the GLM, KNN and RF to model di�erent data sets where
the number of observations was increasing. The parameters in the models
were constant. It can be seen in �gure 7.1, that the time for the modelling
is increasing exponentially for the machine-learning algorithms. Since cross-
validation is required when modelling with the machine-learning algorithms,
the modelling process could, as a whole, last hours using a large data set.

When the machine-learning algorithms are used for modelling data, the
user is required to test a di�erent set of parameters using cross-validation.
As could be seen in section 6.1.3, a major amount of coding is required to
optimize the models. The best combination of the parameters is then used for
the �nal model. When the number of parameters included and the amount
of data are increasing, computational issues may arise and the time required
becomes substantial. This can be solved by only choosing a subset of the
predictor variables in the model. This procedure may, however, a�ect the
results, and the result depends on the choice of predictor variables.

As was mentioned in chapter 5.3, the random forest algorithm models
bootstrapped data sets from the training data, from where the �nal model
is obtained as a mean of the models. This implies that over- or under�tting

68



● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0

0.2

0.4

0.6

0 2000 4000 6000

Observations

T
im

e

●●●

●●●

●●●

GLM

KNN

RF

Time of modelling

Figure 7.1: The time for modelling was measured using a random forest,
k -nearest neighbor and a GLM, where the parameters in the models were
constant and the number of observations were increasing. The measured
times for each model were then �tted using a GLM to obtain smoother lines.
The source code is left out of the thesis.

is avoided by the model itself, before using the cross-validation. The K-
nearest neighbors algorithm does not work in a similar manner, and is not
a mean of di�erent models. The cross-validation is therefore an important
aspect when using the KNN-algorithm, so that the user receives information
about the sensitivity of changes in the parameters within the model. For
the modelling process, it was noticed that the value for K in the K-nearest
neighbors algorithm does not a�ect the cross-validation result as much as the
distance-parameter. This suggests that the user is required to try several
combinations with varying values for the distance-parameter.

GLMs, however, does not require the user to test a set of di�erent pa-
rameters. Contrarily, when modelling with the GLM, the user is required to
understand the data, so that the appropriate distribution of the exponential
family and link functions are selected. When the distribution and link func-
tions are chosen, the modelling with GLMs in statistical software does not
require additional programming. If the user would be unfamiliar to the data
set, cross-validation could in theory be used on GLMs; the user would then
test a set of distributions and link functions for �nding the best model.
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7.2 Comparing the models

According to the table-values and di�erent graphs from section 6.3, it seems
that the machine-learning models are more suitable than the GLM for pre-
dicting future values for the particular data set used. This can be explained
from the fact that the GLM was possibly an under- or over�t for the data,
or, in other words, that the family type or link function was not appropriate
for the data set.

Since the total claim cost for the last year in the data set was larger than
the previous years, all the models underestimated the values. The random
forest algorithm using all the variables resulted in the best estimate, while
both GLMs resulted in substantial underestimates. For both types of insur-
ances, all the models estimated a considerably lower number of claims. This
might have to do with the fact that the training data contained customers
with no claims at all, which might a�ect the model. Another explanation
is that the data for the last year had a higher number of claims than the
average in the training data.

The model estimates of the average severity, however, was signi�cantly
closer to the true data. This might have to do with the fact that the models
used training data where the number of claims were non-zero. This results
in that the models were able to model the data more accurately, since it used
training data with less zero-value observations.

The model estimates in �gure 6.2 shows that the random forest algorithm
using all predictor variables is closest to the true values. Except for the
GLMs, there was a considerable variability in the model estimates. The
GLM estimates using only the signi�cant variables does not di�er almost
at all from GLM using all the predictor variables. It can be seen that the
machine-learning model estimates di�er when they only use a subset of the
predictor variables. The data set for the last year seems to contain patterns
that no model could estimate. The total cost for the age groups 25-30 and the
level 1 sum insured had a greater total cost than any of the model estimates.

According to �gure 6.3, the GLM predictions have less variability than
the machine-learning model estimates, which is shown by the con�dence in-
tervals. This suggests that the GLMs have a higher bias and less variance,
discussed in section 4.5, which implies that both GLMs are under�ts to the
data. This also explains why the GLM predictions deviated from the other
model predictions on the data set for the last year. By comparing the results
in �gure 6.3, it can be seen that the estimates of GLM using only signi�cant
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variables and GLM using all variables does not di�er. Rather, the results
are almost identical. This cannot be said about the machine-learning models
where the estimates had a greater variability.

The biggest di�erence between the models in �gure 6.3 is that the machine-
learning models estimate a lower frequency for the younger customers than
the GLM estimates. This might be a result of the GLM models being under-
�ts to the data set. The machine-learning models are also estimating broader
results for the age groups 65-75, which is not the case for the GLM models.

From the variable importance plot obtained from the random forest algo-
rithm, it can be seen which variables are the most important for the frequency
or severity for both insurance brands. This information is valuable from an
insurer′s point of view. Unfortunately, for the data used, the variable impor-
tance plot from the random forest algorithm will not be published.

7.3 Summary

These results suggest that the models derived from machine-learning algo-
rithms are able to model the data set with less bias and more variance than
the GLMs. Thus, the predictions of the machine-learning models are also
more accurate for the last year in the data set. The results also shows that
when all the predictor variables are included in the machine-learning models,
the estimates of the models have more variability. Using all the variables,
the machine-learning algorithms are able to �nd certain patterns in the data
set. This cannot be said about the GLMs, whose results are almost identical
when only using the signi�cant predictor variables in the modelling process.
It is unfortunately impractical to include all variables in the machine-learning
algorithms, since the time required for the modelling becomes too long.

It was concluded that for this particular data set, the random forest al-
gorithm using all the variables was the most accurate when predicting future
values. The total number of claims and average severity of claims to insur-
ance type 1 was closest to the true values. Figure 6.2 shows that for the age
groups and sums insured, the random forest algorithm using all variables was
able to predict values that were closest to the true values for almost every
group.

As was discussed in section 3.5.2, when using GLMs in statistical software,
the user obtains an output of the �tted model. From the output the user
can receive information about the coe�cients in the model, measures for the
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goodness of �t, such as deviance and AIC, and a thorough overview about
the model for understanding the training data. A complete introduction of
the GLM output was left out of the thesis, but the user is able to obtain
information that is valuable from an insurer′s point of view. By including
factors in the model, the user can, for example, �nd which residence areas
result in the highest and lowest frequency or number of claims, directly from
the model output.

The same output cannot be obtained from the machine-learning algo-
rithms. This is due to the fact that the theory behind the machine-learning
algorithms is di�erent from the theory of GLMs. Using the random forest
algorithm, however, the user obtain information about which predictor vari-
ables are the most important for estimating the response variable, as was
discussed in sections 5.3 and 6.2. Using the KNN algorithm, however, a
built-in function for understanding the training data is not obtainable.

Hence, to understand the training data, the GLM would be a suitable
option for the user. If the aim is predicting future values, the results in
section 6.3 suggest that the machine-learning algorithms are more suitable.
The user is also not required to understand the data in advance when using
the machine-learning algorithms and, by �nding the best parameters, the
machine-learning models will optimize themselves. No particular method
is, however, regarded as the best one, as was mentioned by James et al.
(2013 p.29): No method dominates all others over all possible data sets. For
a particular data set, one speci�c method may work best, but some other
method may work better for a similar but di�erent data set.
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Chapter 8

Svenskspråkig sammanfattning

Målet med denna avhandling är att introducera den centrala teorin inom
generaliserade linjära modeller (GLM) och maskininlärning, samt påvisa
hur man använder dessa för att modellera riskpremien inom försäkrings-
branschen. Till modelleringen används två kända algoritmer ur maskinin-
lärning. Modellerna jämförs genom att för- och nackdelarna med de olika
modellerna diskuteras och analyseras.

Den första helheten handlar om att få en noggrannare inblick i försäkrings-
matematiken. För att kunna presentera försäkringsmatematiken, börjar
avhandlingen med de centrala begreppen ur sannolikhetsläran. Sannolikhets-
lärans teori används som en byggsten till de olika helheterna, och är en
väsentlig del speciellt inom försäkringsmatematiken. Den första helheten
kulmineras i hur man modellerar antalet skador och storleken på skadorna
ur en matematisk synvinkel.

De två följande helheterna utvecklar teorin inom GLM samt maskinin-
lärning. Bakgrunden till GLM, modelleringsproceduren och den exponen-
tiella familjen av fördelningar tas upp och teorin sammanknyts med räkne-
exempel. För att få en inblick i maskininlärning, presenteras den bakom-
liggande teorin i kapitel 4. I kapitel 5 presenteras de två algoritmerna som
slutligen tas med i avhandlingen.

Den fjärde helheten handlar om simulationer och hur man åstadkommer
dem med hjälp av programmering. För att kunna jämföra de olika modellerna
används försäkringsdata vars innehåll, tid och storlek inte kan publiceras i
denna avhandling. Försäkringsdata består av två olika försäkringstyper, där
varje observation innehåller �era beroende variabler. För att kunna jämföra
hur metoderna fungerar, används olika uppsättningar av beroende variabler
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för modelleringen. Vissa metoder använder sig av alla beroende variabler
medan vissa använder sig enbart av de signi�kanta variablerna. En hel del
programmering behövs för modelleringen, och exempelprogrammen hittas
som bilaga.

Till sist jämförs modellerna sinsemellan. Jämförelserna baseras på att
man låter modellerna estimera framtida värden, där de framtida värdena är
kända. Dessutom analyseras hur de olika metoderna har modellerat data i
fråga. Resultaten presenteras i form av tabeller och grafer. Här diskuteras
varför resultaten ser ut som de gör, hur de olika metoderna skiljer sig åt
samt vilka metoder som modellerade data bäst. Till sist diskuteras för- och
nackdelar med de olika metoderna, och slutligen avslutas avhandlingen med
analyser och slutsatser i det sista kapitlet.

Materialet som undersöks i denna avhandling hör till ett brett område. I
och med att avhandlingen är begränsad försöker jag få med och utveckla den
nödvändigaste teorin. Till själva undersökningen används en enda uppsätt-
ning av data och slutresultatet baseras på hur metoderna modellerade denna
datauppsättning. För att förbättra analysen kunde �era olika uppsättningar
av data samt �era observationer tagits med i undersökningen. Från bör-
jan var det tänkt att �era algoritmer inom maskininlärning skulle innefattas
i avhandlingen, men dessa rymdes inte med. För fortsatt läsning rekom-
menderar jag att man läser om logistisk regression (logistic regression), stöd-
vektormaskin (support vector machine) samt neuronnät (neural networks).
Teorin till dessa hittas bland annat i Hastie et al. (2009).
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Appendix A

R codes for chapters 2-5

A.1 Realization of a Poisson process with R

r e qu i r e ( ggplot2 )
va lues=data . frame ( matrix ( nco l=4,nrow=40))
colnames ( va lues )=c ( "x" , "y" , "xend" , "yend" )
va lues [1 ,1 ]=0
va lues [ , 2 ]= c ( 0 : 3 9 )
va lues [ , 3 ]=cumsum( rexp (40 , ra t e =3))
va lues [ , 4 ]= c ( 0 : 3 9 )
for ( i in 2 :40 ){

va lues [ i ,1 ]= va lues [ i −1 ,3]
}

p = ggplot ( values , aes ( x=x , y=y , xend=xend , yend=yend ) ) +
geom_point ( ) +
geom_point ( aes (x=xend , y=y ) , shape=1) +
geom_segment ( ) +
g g t i t l e ( "Poisson  proce s s " , s u b t i t l e="Rea l i z a t i on  when lambda = 3" ) +
xlab ( "Time" ) + ylab ( "Number o f  events " ) +
theme ( legend . t i t l e=element_blank ( ) ) +
expand_limits ( x=c (0 , 12 ) ) +
scale_x_continuous ( breaks = seq (0 , 15 , 2 ) )
scale_y_continuous ( breaks = seq (0 , 40 , 5 ) )

p l o t (p)

A.2 Normal error structure with an identity

link function with R

For the following examples A.2 and A.3, the data has been manually gener-
ated to the software. The data is generated by the following source code:

UrbanRural_table=data . frame ( matrix ( nco l=3,nrow=4))
colnames ( UrbanRural_table)=c ( "Y" , " gender " , " t e r r i t o r y " )
UrbanRural_table [ , 1 ]= c (800 ,500 ,400 ,200)
UrbanRural_table [ , 2 ]= c (1 , 1 , 0 , 0 )
UrbanRural_table [ , 3 ]= c (1 , 0 , 1 , 0 )
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Observation Y Gender Territory
1 800 1 1
2 500 1 0
3 400 0 1
4 200 0 0

The table in the R-session, named UrbanRural_table

model=glm (Y~gender+t e r r i t o r y , data=UrbanRural_table ,
fami ly=gauss ian )

summary(model )

Cal l :
glm ( formula = Y ~ gender + t e r r i t o r y , fami ly =
gauss ian , data = UrbanRural_table )

Deviance Res idua l s :
1 2 3 4
25 −25 −25 25

Co e f f i c i e n t s :
Estimate Std . Error t value Pr(>| t | )

( I n t e r c ep t ) 175 .0 43 .3 4 .041 0.1544
gender 350 .0 50 .0 7 .000 0.0903 .
t e r r i t o r y 250 .0 50 .0 5 .000 0.1257
−−−
S i g n i f . codes : 0 ∗∗∗ 0 .001 ∗∗ 0 .01 ∗ 0 .05 . 0 .1 1

Di spe r s i on parameter for gauss ian fami ly taken to be 2500

Null deviance : 187500 on 3 degree s o f freedom
Res idual deviance : 2500 on 1 degree s o f freedom
AIC : 45.103

Number o f F i sher Scor ing i t e r a t i o n s : 2

A.3 Poisson error structure with a logarithm

link function

model=glm (Y~gender+t e r r i t o r y , data=UrbanRural_table ,
fami ly=po i s son )

summary(model )

Cal l :
glm ( formula = Y ~ gender + t e r r i t o r y , fami ly = po i s son
, data = UrbanRural_table )

Deviance Res idua l s :
1 2 3 4
−0.7379 0.9550 1.0717 −1.4394

Co e f f i c i e n t s :
Estimate Std . Error z value Pr(>| z | )

( I n t e r c ep t ) 5 .39840 0.05068 106.51 <2e−16 ∗∗∗
gender 0 .77319 0.04935 15 .67 <2e−16 ∗∗∗
t e r r i t o r y 0.53900 0.04756 11 .33 <2e−16 ∗∗∗
−−−
S i g n i f . codes : 0 ∗∗∗ 0 .001 ∗∗ 0 .01 ∗ 0 .05 . 0 .1 1

Di spe r s i on parameter for po i s son fami ly taken to be 1

76



Null deviance : 401.889 on 3 degree s o f freedom
Res idual deviance : 4 .677 on 1 degree s o f freedom
AIC : 42.219

Number o f F i sher Scor ing i t e r a t i o n s : 3

A.4 Reduction of large claims

for ( i in 1 : nrow ( data ) ){
i f ( data$sum_of_claims [ i ]>100000 ){
data$sum_of_claims [ i ]=100000
}

}

A.5 Clustering of data

for ( i in 1 : nrow ( data ) ){
format=format ( data$b i r thdate [ i ] , '%Y ' )
data$age [ i ]= format

}
ages=unique ( data$age )
ages=so r t ( ages )
b i r thyea r= c ( "1915−1925" , "1926−1929" , "1930−1933" , "1934−1937" , "1938−1941" , "1942−1945" ,
"1946−1949" , "1950−1953" , "1954−1957" , "1958−1961" , "1962−1965" , "1966−1969" , "1970−1973" ,
"1974−1977" , "1978−1981" , "1982−1985" , "1986−1989" , "1990−1993" , "1994−1997" , "1998−2000" )
for ( i in 1 : nrow ( data ) ){

i f ( data$age [ i ]==ages [ 1 ] | data$age [ i ]==ages [ 2 ] | data$age [ i ]==ages [ 3 ] |
data$age [ i ]==ages [ 4 ] | data$age [ i ]==ages [ 5 ] | data$age [ i ]==ages [ 6 ] |
data$age [ i ]==ages [ 7 ] | data$age [ i ]==ages [ 8 ] | data$age [ i ]==ages [ 9 ] )

{ data$customer_agec luster [ i ]= b i r thyea r [ 1 ]
}
i f ( data$age [ i ]==ages [ 1 0 ] | data$age [ i ]==ages [ 1 1 ] | data$age [ i ]==ages [ 1 2 ] |
data$age [ i ]==ages [ 1 3 ] )

{ data$customer_agec luster [ i ]= b i r thyea r [ 2 ]
}
.
.
.
i f ( data$age [ i ]==ages [ 7 8 ] | data$age [ i ]==ages [ 7 9 ] | data$age [ i ]==ages [ 8 0 ] |
data$age [ i ]==ages [ 8 1 ] )

{ data$customer_agec luster [ i ]= b i r thyea r [ 1 9 ]
}
i f ( data$age [ i ]==ages [ 8 2 ] | data$age [ i ]==ages [ 8 3 ] | data$age [ i ]==ages [ 8 4 ] )

{ data$customer_agec luster [ i ]= b i r thyea r [ 2 0 ]
}

}
data$b i r thdate=NULL
data$age=NULL
data=data [ , c ( 1 , 2 , 3 , 17 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 ) ]
rm( l i s t=s e t d i f f ( l s ( ) , "data" ) )

A.6 The Auto and Boston data sets

The Auto data set is found in the package "ISLR", which is a package created
by the authors of An introduction to statistical learning with application in
R. Miles per gallon, horsepower, weight and other information is obtained
for di�erent vehicles. The data set has 392 rows and 14 columns.

The Boston data set is found in the library "MASS". The data set con-
tains housing values and other information about Boston suburbs. It has
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506 rows and 14 columns. The response variable used in the thesis is named
medv, which is the median value of owner-occupied homes in $1000s.

A.7 Cross validation using the Boston data sets

l i b r a r y (MASS)
r equ i r e ( randomForest )
s e t . seed (101)

mse = func t i on ( e r r o r ){
mean( e r r o r ^2)

}

k_fold_value=5
a_value_seq=seq (50 ,200 ,50)
b_value_seq=seq (2 , 6 , 2 )

l i s t_a=l i s t ( )
l i s t_b=l i s t ( )
l i st_mse=l i s t ( )

yourData=Boston [ sample ( nrow ( Boston ) ) , ]
f o l d s = cut ( seq (1 , nrow ( yourData ) ) , breaks=k_fold_value , l a b e l s=FALSE)

t i c k e r=1
for ( a in a_value_seq ){

for (b in b_value_seq ){
cv . e r r o r=rep (0 , k_fold_value )
for ( i in 1 : k_fold_value ){

t e s t Indexe s = which ( f o l d s==i , a r r . ind=TRUE)
trainData = yourData[− t e s t Indexes , ]
testData = yourData [ t e s t Indexes , ]
t r a i n i n g . r f=randomForest (medv~crim+indus+chas+nox+tax+l s t a t ,
data=trainData , nt ree=a , mtry=b)
tes tPred=pred i c t ( t r a i n i n g . r f , newdata=testData )
tes tData$tes tPred=testPred
e r r o r=testData$medv−tes tPred
testMSE=mse ( e r r o r )
cv . e r r o r [ i ]=testMSE

}
testMSE=sum( cv . e r r o r )/ k_fold_value
p r in t ( paste0 ( "TestMSE , nt ree=" ,a , " ,mtry=" ,b , " : " , testMSE ) )
l i s t_a [ [ t i c k e r ] ]=( a )
l i s t_b [ [ t i c k e r ] ]=( b)
l i st_mse [ [ t i c k e r ] ]=( testMSE )
t i c k e r=t i c k e r+1

}
}
pr in t ( paste0 ( "Optimal_testMSE , nt ree=" , l i s t_a [ [ which . min ( l i st_mse ) ] ] , " ,
mtry=" , l i s t_b [ [ which . min ( l i st_mse ) ] ] , " : " , l i st_mse [ [ which . min ( l i st_mse ) ] ] ) )

A.8 A�ect of number of cylinders on miles per

gallon

The models were �tted with the following models:

• GLM using a normal distribution with identity link function

• KNN using K = 20 and distance = 1.5
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• Random forest using ntree = 270 and mtry = 3

The code for the graph using the package ggplot2 is demonstrated only for
the GLM model.

l i b r a r y ( ISLR)
r equ i r e ( ggplot2 )

cylinder_vs_mpg=data . frame ( matrix ( nco l =17,nrow=5))
colnames ( cylinder_vs_mpg)=c ( "Cyl inder " , "True_mean" , "True_down" , "True_up" ,
" True_re la t iv i ty " , "GLM_pred_mean" , "GLM_pred_down" , "GLM_pred_up" , "GLM_relativity" ,
"KNN_pred_mean" , "KNN_pred_down" , "KNN_pred_up" , "KNN_relativity" , "RF_pred_mean" ,
"RF_pred_down" , "RF_pred_up" , "RF_relat iv i ty " )
cy l inder_va lues=unique ( Auto$cy l inders )
cy l inder_va lues=so r t ( cy l inder_va lues )
cylinder_vs_mpg [ ,1 ]= cy l inder_va lues

GLM_predict = pr ed i c t (GLM_fit , newdata=Auto )
Auto$GLM_predict = GLM_predict
for ( i in 1 : 5 ){
cylinder_vs_mpg [ i ,6 ]= with (Auto [ , c ( 2 , 1 0 ) ] [ Auto [ , c ( 2 , 1 0 ) ] $ c y l i nd e r s==cy l inder_va lues+
[ i ] , ] , mean(GLM_predict ) )
cylinder_vs_mpg [ i ,7 ]= t . t e s t (Auto [ Auto$cy l inders==cy l inder_va lues [ i ] , ] [ 1 0 ] ) $conf . int [ 1 ]
cylinder_vs_mpg [ i ,8 ]= t . t e s t (Auto [ Auto$cy l inders==cy l inder_va lues [ i ] , ] [ 1 0 ] ) $conf . int [ 2 ]
}
for ( i in 1 : 5 ){
cylinder_vs_mpg [ i ,9 ]= cylinder_vs_mpg [ i , 6 ] / cylinder_vs_mpg [ 1 , 6 ]
}

KNN_predict = pr ed i c t (KNN_fit , newdata=Auto )
Auto$KNN_predict = KNN_predict
for ( i in 1 : 5 ){
cylinder_vs_mpg [ i ,10]= with (Auto [ , c ( 2 , 1 1 ) ] [ Auto [ , c ( 2 , 1 1 ) ] $ c y l i nd e r s==cy l inder_va lues+
[ i ] , ] , mean(KNN_predict ) )
cylinder_vs_mpg [ i ,11]= t . t e s t (Auto [ Auto$cy l inders==cy l inder_va lues [ i ] , ] [ 1 1 ] ) $conf . int [ 1 ]
cylinder_vs_mpg [ i ,12]= t . t e s t (Auto [ Auto$cy l inders==cy l inder_va lues [ i ] , ] [ 1 1 ] ) $conf . int [ 2 ]
}
for ( i in 1 : 5 ){
cylinder_vs_mpg [ i ,13]= cylinder_vs_mpg [ i , 1 0 ] / cylinder_vs_mpg [ 1 , 1 0 ]
}

RF_predict = pr ed i c t (RF_fit , newdata=Auto )
Auto$RF_predict = RF_predict
for ( i in 1 : 5 ){
cylinder_vs_mpg [ i ,14]= with (Auto [ , c ( 2 , 1 2 ) ] [ Auto [ , c ( 2 , 1 2 ) ] $ c y l i nd e r s==cy l inder_va lues+
[ i ] , ] , mean(RF_predict ) )
cylinder_vs_mpg [ i ,15]= t . t e s t (Auto [ Auto$cy l inders==cy l inder_va lues [ i ] , ] [ 1 2 ] ) $conf . int [ 1 ]
cylinder_vs_mpg [ i ,16]= t . t e s t (Auto [ Auto$cy l inders==cy l inder_va lues [ i ] , ] [ 1 2 ] ) $conf . int [ 2 ]
}
for ( i in 1 : 5 ){
cylinder_vs_mpg [ i ,17]= cylinder_vs_mpg [ i , 1 4 ] / cylinder_vs_mpg [ 1 , 1 4 ]
}

g2=ggplot ( cylinder_vs_mpg , aes (x=f a c t o r ( Cyl inder ) ) ) +
geom_point ( aes (y=GLM_pred_mean, co lour="Mean" ) , group=1, s i z e =1) +
geom_line ( aes (y=GLM_pred_mean, co lour="Mean" ) , group=1, s i z e =1) +
geom_point ( aes (y=GLM_pred_down, co lour="95% con f idence  i n t e r v a l " ) , group=2, s i z e =1) +
geom_line ( aes (y=GLM_pred_down, co lour="95% con f idence  i n t e r v a l " ) , group=2, s i z e =1) +
geom_point ( aes (y=GLM_pred_up, co lour="95% con f idence  i n t e r v a l " ) , group=3, s i z e =1) +
geom_line ( aes (y=GLM_pred_up, co lour="95% con f idence  i n t e r v a l " ) , group=3, s i z e =1) +
g g t i t l e ( "Cyl inder  vs mpg − GLM p r ed i c t i o n s " ) + xlab ( "Cyl inders " ) + ylab ( "Mpg" ) +
theme ( text = element_text ( s i z e =27) , legend . t i t l e=element_blank ( ) ) +
scale_colour_manual ( va lues=c ( " red " , " blue " ) )
p lo t ( g2 )
ggsave ( "Cylinder_vs_mpg_GLM . pdf " , width=11, he ight =8.5)

79



Bibliography

[1] Anderson, D.; Feldblum, S.; Modlin, C.; Schirmacher, D.; Schirmacher, E.;
Thandi, N.: A Practitioner's Guide to Generalized Linear Models, CAS Study
Note 2007

[2] Boland, P.J.: Statistical and probabilistic methods in actuarial science, Chap-
man & Hall/CRC 2007

[3] Daykin, C.D.; Pentikäinen, T.; Pesonen, M.: Practical risk theory for actuaries,
Chapman & Hall 1996

[4] Dobson, A.: An introduction to generalized linear models - second edition,
Chapman & Hall/CRC 2002

[5] Hastie, T.; Tibshirani, R.; Friedman, J.: The elements of statistical learning -

second edition, Springer 2009

[6] James, G.; Witten, D.; Hastie, T.; Tibshirani, R.: An introduction to statistical

learning with application in R, Springer 2013

[7] McCullagh, P.; Nelder, J.A.: Generalized linear model, Chapman & Hall 1983

[8] Parvinen, K.: Riskiteoria, Matematiikan laitos, Turun Yliopisto 2009

[9] Prakasa Rao, B.L.S.: A �rst course in probability and statistics, World Scienti�c
Publishing Co. Pte. Ltd, 2009

[11] Ross, S.M.: Stochastic processes, John Wiley & Sons, Inc 1983

[10] Ross, S.M.: Introduction to probability models - 9th edition, Elsevier 2007

[12] Salminen, P.: Sannolikhetslära, Matematik och statistik, Åbo Akademi 2010

80


