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ABSTRACT: In contrast with regression models duration models
are not robust against violation of the distributional
assumptions. There is thus a need for specification tests
which have power against a wide range of alternatives and
are easy to implement. In this paper the transformation
family introduced by MacKinnon and Magee is applied in the
Weibull duration framework to derive a score test for mis-
specification with one degree of freedom. The test statistic
is found to be sensitive for violation of three conditional
moment restrictions. The test is compared with a form of the
RESET-test as well as with score tests for sample hetero-
geneity in the location component and such type of duration
dependence which is related to the location component. An
empirical example is presented in which the derived test
clearly indicated violation of the third moment restriction
in the disturbances and was more powerful than the alterna-
tives considered. A decomposition of the test statistic
simultaneously accounts for the results given by the other
two score tests. It is suggested that the test statistic
should be routinely used in model diagnostics.

KEY WORDS: Weibull duration models, misspecification,
functional form.
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TIIVISTELMA: Tavallisista regressiomalleista poiketen duraa-
tiomallit ovat herkkia spe31f1kaat10v1rheille jakaumaoletuk-
sien ja otoksen heterogeenisuuden suhteen. Té&std syysta tar-
vitaan spe51f1kaat10testeja joilla on voimaa useiden vaih-
toehtogen suhteen ja joita on helppo soveltaa. MacKinnonin
ja Mageen esittamdn muunnosperheen avulla johdetaan yhden
vapausasteen;plsteytystest1 Weibull mallin spesifikaatiolle.

Testisuure osoittautuu herkdksi virhetermin kolmen ehdolli-
sten momenttien valisen rajoituksen patemiselle. Testid
verrataan sek& erdidnlaiseen RESET -testiin ettd yhden va-
pausasteen.plsteystestelhln jotka testaavat otoksen hetero-
geenisuutta 81Ja1nt1parametr1n ja sellaisen duraatioriippu-
vuuden suhteen, joka r11ppuu s1ja1nt1komponent1n koosta.

Egitettivissd empiirisessd esimerkissd testi paljastaa
selvasti kolmannen momenttirajoituksen patemdttdmyyden ja on
samalla voimakkaampi kuin em. vaihtoehdot. Testitunnusluku
voidaan jakaa tekijdihin, jotka paljastavat jédlkimmiisten
plsteystestlen tulokset. Testitunnuslukua suositellaan
rutiinikdyttdén osana mallin diagnostista tarkastelua.

AVAINSANAT: Weibull kestomallit, vdarinspesifiointi,
funktiomuoto.
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1. INTRODUCTION

Duration models based on parametric assumptions such as
exponential, Weibull or generalized Gamma distribution are
widely used to analyze count processes in econometrics. They
have been particularly popular in applied labour economics.
These models are usually estimated by solving numerically
the nonlinear estimating equations given by the principle of
maximum likelihood. Therefore, investigators often display
a natural reluctance to test the specification of the model
with the thoroughness and vigor comparable to the common
practice in the normal regression framework. In contrast it
is well known, however, that duration models are not robust
against specification errors such as sample heterogeneity
and violation of the distributional assumptions. There is
thus a need for specification tests of duration models which
have power against a wide range of alternatives and are easy
to implement and inexpensive to compute to complement other
methods of model evaluation.!

In this context it seems natural to consider the use of
gscore, or LM, tests because they require estimates only
under the null hypothesis and can often be computed by means
of artificial linear regressions. In this paper a misspeci-
fication test is derived by considering a possible misspeci-
fication in the transformation applied to the observed
values of the dependent variable in the Weibull duration
model.

In the statistical analysis transformations of the dependent
variable are used to obtain three objectives. The first is
to normalize the random variable in question. The second
objective is to stabilize its variance. A classic example of
a simultaneously normalizing and variance stabilizing trans-
formation concerns the sample correlation coefficient of a

1 In evaluating duration models informal graphical methods
which are based on plots of generalized residuals of the model
have proven to be of great value, see Aitkin & Clayton (1981),
Lancaster (1985) & (1990), Lancaster & Chesher (1985), and Kie-
fer (1985).
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bivariate normal distribution, where the transformation
tanh! is used. In regression (duration) models the third
objective is to obtain linearity of the conditional mean
(location or the proportional hazard component) for data

which have been conveniently transformed.

In econometrics the family of monotonic power transforma-
tions is widely used to obtain the above objectives (Box and
Cox, 1964). However, the Box-Cox transformation has a rather
limited use in Weibull duration models, since it does not
allow for a non-monotonous hazard function.

MacKinnon and Magee (1990) have proposed a family of trans-
formations which can sensibly be applied to variables that
can take negative values. It is interesting to apply their
method of analyzing ordinary regression models to duration
models with logarithmic dependent variables. MacKinnon and
Magee derive score tests for the null hypothesis that the
dependent variable has not been transformed against the
alternative that a transformation of this family has been
applied to it. These tests, which do not require that the
exact form of the transformation is specified and are thus
interpretable as implicit misspecification tests in the
sense of Hausman (1978), are 1in this paper extended to
Weibull duration models. To be more specific, this is accom-
plished by applying the transformation to logarithmic dura-
tion, i.e. to a variable which has the extreme value distri-
bution. The misspecification test is based on the score
under the null hypothesis and has one degree of freedom.

In case of misspecification in a duration model, the estima-
ted disturbances of logarithmic durations would be expected
to suffer from problems which would affect their conditional
moment restrictions in a way not allowed by an ordinary
extreme value model. The above implicit test for misspecifi-
cation based on the MacKinnon-Magee family of transforma-
tions has some power against a wide range of alternative
models. This is attributable to the way in which information
on the non-linear model of the location is confounded with
information concerning the distribution of disturbances. The
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lack of fit detected may be due to the location model, or
the disturbance model, or both. This feature is common to
all transformation families, eg. Box-Cox, that affect the
values of the dependent variable. To cater for the above
situation some additional score tests are discussed in the
the paper. The tests specialize in testing non-linearity in
the location component (RESET test) and sample heterogeneity
in the duration shape parameter and the location component,
respectively. The relative success of these three tests in
rejecting the null would suggest whether modifications in
modelling the location component, or sample heterogeneity,
or the form of duration dependence in the data would be

necessary.

In analogy with the results that MacKinnon and Magee derive
in an ordinary regression model, the transformation test
presented for Weibull duration models can be seen as testing
simultaneously for three restrictions that affect condi-
tional moments. The first restriction, which is closely
related to the well-known RESET test of Ramsey (1969), is
that there is no correlation between the squared conditional
location component and the generalized residuals of the
model. In this case one has to correct the residuals for

their expected values under possible censoring.

The second restriction is that there is no correlation
between the conditional 1location component and zero mean
’disturbance terms’ of the model. The latter are implicitely
defined by a second order conditional moment restriction,
which is satisfied by the estimated generalized residuals
and ‘disturbances’ of the model.

The third restriction directly tests for a third order
conditional moment restriction under the null. The restric-
tion is related to a well known test for sample heterogenei-
ty, see eg. Burdett et. al (1985) and Lancaster (1985). The
latter test is in this paper shown to test whether the
moment generating function of the estimated disturbances of
the model has its theoretical value at point two, ¢(2),
while the disturbances follow the extreme value distribution
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under the null hypothesis. In contrast the third order
moment restriction considered in this paper tests for the
theoretical wvalue of the second derivative of the moment
generating function at the point one, ¢" (1), under the null.
Keeping in mind that the estimated disturbances always
satisfy the theoretical values of ¢(1) and ¢’ (1), under the
null, the two tests are not identical but closely related.

Sample heterogeneity causes the parameter estimates from a
Weibull model to be inconsistent. It is thus a more severe
problem than in the case of ordinary regression. In additi-
on, because duration models are typically estimated using
cross-sectional data it is a problem likely to be encounte-
red quite often. Therefore a score test based on a specific
form of sample heterogeneity which affects the duration
shape parameter is discussed as an additional diagnostic
tool. The test which turns out to be direcly related to the
transformation test is inspired by an obvious analogy with
heteroscedasticity tests in a standard regression model. The
one degree of freedom form of the heteroscedasticity test is
originally due to Anscombe (1961).

An additional interesting feature of the paper is that in
deriving the test statistics and moment restrictions we
explicitely allow for a censoring mechanism by an indepen-
dent latent variable. The independence assumption allows us
to consider the censoring mechanism as nuisance parameters
which do not interfere neither with efficient estimation nor
statistical inference on the parameters of interest.

In the final sections of the paper we present a straightfor-
ward extension of the test to a competing risks framework
and illustrate the use of these tests by applying them to an
empirical example of estimating a vacancy duration model
using some Finnish data from the 1989. In this particuiar
case the implicit misspecification test based on the idea
introduced by MacKinnon and Magee (1990) is quite successful
in narrowing the type of misspecification present due to
violation of the third order conditional moment restriction
and is more powerful than the alternatives considered.



2. THE MACKINNON-MAGEE TRANSFORMATION IN WEIBULL DURATION
MODELS

The following family of transformations introduced by Mac-
Kinnon and Magee (1990) is considered in this paper

glyy) /v, (1)

where the function g is monotonic and satisfies the follo-

wing properties:

g(0) =0, (2)
g’ (0) =1, (3)
g’ (0) #0. (4)

If one allows for 4 to vary in a suitable way, the above
transformation (1) is homogeneous of degree one in y. This
property of scale invariance is not shared by the Box-Cox
transformation. In addition transformation (1) is applicable
to variables y that can have negative values.? These featu-
res make it interesting to examine the properties of (1) in
duration models, where logarithmic duration is considered.
Property (4) is needed because otherwise the partial deri-
vative of the loglikelihood function w.r.t. v would be zero
at the point y = 0. This, however, rules out skew-symmetric
functions g (see the example at the end of this section; for
detailed discussion, see MacKinnon and Magee, 1990).

Consider the following Weibull duration model, where the
observed duration t, t = 0, has the hazard function,

h(t;X™B) = at*lexp{-X78}, . (5)

? Note that applying the Box-Cox transformation t - t® =
(£ -1)/y in a Weibull duration model (see eq. (5)) produces a
random variable with a Weibull distribution if 4y = 0 and with a
Gompertz distribution if 4 = 1. However, the transformation al-
lows only for monotonic variation in the hazard function, since
dt® /dt = t*! > 0 (see Lancaster, 1979, Sec. 3.5).



and the survival function
S(t; X’8) = exp{-t*eXF}. (6)

Here X is a column vector of k independent variables and f
is a vector of parameters to be estimated together with a
shape parameter o. For the purposes of this study it is
convenient to work with the variable y = log(t). It is well
known that y follows the type I extreme value distribution,
y ~ EV(X'™8,a), with the survival function

S(y; X™8) = exp{-e® X} (7)

The variable, u, = oy, - X8 is a normalized disturbance term
in the sense that E(u)= y(0), and Var(u)=y’ (0) and has a
moment generating function, ¢(s)= T'(1+s).? The integrated
hazard, or alternatively the generalized residual of the
model, ¢, = exp(y), has a standard exponential distribution

with moments E(¢") = T'(l+m) = m!.

In the sequel we consider the following generalized Weibull
model, where the observed log-duration y is generated by

riy,y) =glyy)/y ~ EV(XT8, «a). (8)

One important feature of (2) in logarithmic duration models
is that the probability of an survival lasting for at least
one time period, i.e. P(y > 0) is independent of the trans-
formation (1). On the other hand, Weibull models are scale
invariant in the sense that changing the unit of time measu-
rement changes only the value of the constant term in ex-
pression X'8. In addition it turns out that the relevant
score used to test for ¥ = 0 is independent on the time
gcale. Therefore the investigator is in principle able to
choose the point zero freely in order to maximize the local
power of the test which is dependent on g"(0).

’ Notation I' refers to the gamma function and y to the psi

function, ¥ (x) = dlogl (1+x)/dx. The higher order cumulants of u,
are obtainable through the derivatives of the psi function at
zero, Y(0) = -y, (Euler’s constant) and Var(u) = ¢y’ (0) = 7?/6,

etc., see Abramovitz & Stegun (1970).
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In the following we consider the score test for the null
hypothesis that ¥ = 0. Under this null r(0, y) reduces to y
and the model (8) reduces to the ordinary Weibull model.
This is easily verified by taking the appropriate limit of

r(y, y) and using g’ (0) = 1.

The survival function of the log-duration y is given by

S(y) = P(yzy) = P(r(y,¥) = r(y,y))
a8ty xrﬂ) (9)

= exp(—e Y

The corresponding hazard function w.r.t y = log(t) is given

by

h(y) = ag (vy) exp(?ﬁﬂ%@i - XTB). (10)

The above expression shows that the MacKinnon-Magee trans-
formation maintains the proportional hazard property present
in Weibull duration models.

The derivative of the hazard function w.r.t t is given by

B (t) = alyg” (yy) + al(g’ (v¥))? - g/ (vy) ] t2exp ifl‘fy_‘ﬂ_”; - XT.B),
(11)

where y = log(t).

Let ¥ > 0 with no loss of generality. The above expression
indicates that if g is a concave function of y, the hazard
function can be an initially increasing and a finally dec-
reasing function of t. Similarly, if g is a convex function,
the hazard function can be an initially decreasing and a
finally increasing function of t. In the ordinary Weibull
model, when ¥ = 0, the hazard function is always a monotonic
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function of t, and is strictly increasing if and only if «

> 1.4
Example

Consider the transformation

g =k (SToA), (12)

where k is a scaling constant to be determined later, S is
the survival function of the standardized extreme value
distribution, with S'(x) = log(-log(x)), and A is a given
standardized survival function, with A(0) = S(0) = e!. In
this case condition (2) is satisfied and (3) holds if

- (0) = kA (0) e =1, (13)

/ -
g (0) = K KOV Y AT

where A\ = -dA. In order to satisfy (13) one must set « =
[e AN(0)]! = £(0)/N(0) = hg(0)/n,(0), i.e. the ratio of the
hazard rates at zero. Similarly

g’ (0) = [1og(x(o))]2[h§(°) + 1y (0) 1og (A(0)) 1. (14)

This expression reveals that in order to have g"(0) # 0 one
must have h,’ (0) # h,2(0), i.e. the distribution A must be
such that the corresponding density function has no mode at
zero. In this case g"(0) = A (0)/N(0).

Similarly the survival function of the latent variable y is
given by

[

P(y>y) P(ar('y,z) -X8 > ar(y,y) —XTB)

(15)

°‘8(‘Yy) _XT

exp(—e Y ) = exp(-(—log(A(yy?))“”Ve'xmy

4 It is often reasonable to consider alternatives with non-
monotonic duration dependence, for instance the jobmatching mo-
del by Jovanovic (1979) predicts that hazard for leaving a job
is an initially increasing and a finally decreasing function of
job tenure.



9

In other words, one has taken a random variable distributed
according to A up to a scale factor ¥ and transformed it to
get a Weibull random variable, with a proportional hazard
term X,'B, and shape parameter ka/y. The corresponding

hazard function is in this case given by

ko [-1log (A (yy) ) 1% 1 h, (yy) e X®. (16)

The example shows that setting y = ko ensures that the score
test derived below has some power if one considers the
alternative hypotheses characterized by a base line hazard
function h, in the above example. The function h, is essen-
tially arbitrary up to the condition h’ (0) = h?(0).
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3. SCORE TEST FOR H,: vy = 0, WHEN CENSORING IS PRESENT

Consider the following censoring mechanism. The logarithmic
duration y' is not directly observable. Instead we observe

Yy, where

y=mnmin{y*, c}, (17)

The censoring variable c¢ is independent of y*, and has a
density function A and survival function A.

The loglikelihood of an individual observation, (I, ¥y, X).,
k =1, ...,n, where I, is an indicator function for a comp-
leted, uncensored duration, is given by

&=Ly, a, Bl L, v X)

= 1, [log (n(y,: X7B)) + 1og (S (v,; X7B))] + (1-I,) Log (S (¥, X))
+ L,log (A, (v3) ) + (1-I,) log (N, (¥,) ) .

Substituting (9) and (10) gives

5& =TI, ﬁog(a) + 1og(gJ(yyu) + fﬁi%?@l - Xfﬂ]

- exp[%’ﬁ - X,fﬁ] + Ilog (A, (y,)) + (1-I,) log (N (¥)). (18)

In the above formulation the censoring mechanism may vary
between the observations. The coefficients A (y,), and A (y,)
may be regarded as nuisance parameters which do not depénd
on the direct objects of interest, i.e. (o, f, 7). Therefo-
re it suffices to maximize that part of the loglikelihood
which involves the parameters of interest.
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The derivative of ¥, w.r.t vy is

. o |9 WYY glvyd)
Y v?
(19)

_ ol Y . gty
Y v?

Xp [ag (’;/YYIC) - XkTB] )

Applying l’Hopital’s rule to the term in the last brackets

implies
lim L TV _IOYD L1 s )42 (20)
y=-0 ¥ 3 59 Yir
Y :
giving

o2 2 :
B‘?] - g" (0) ﬁ" [yk . 02”‘ ] - ag”‘ exp (ay, - X,fm}. 21
v=0 :

The other derivatives of the loglikelihood function under
¥ = 0 are the same as in the ordinary Weibull model:

B:(ék] =L [E + Vi ~ Vi exp(ay; - X.B), (22 1)

7 o

B%] = [ -I, + exp(ay, - X:8) ]Xk. (22 11)
y=0

Under H, the maximum likelihood estimates of 8 and « in the
ordinary Weibull duration model satisfy

ase] _____z": 352,,]“0:0 ) 2":[_36%]“05 g%]“o' (23)

y=0 & k=t
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A score test for ¥ = 0 can always be interpreted as a test

for
. 1 0%
plim, m[_. ] = 0. (24)
' ndy], .,
Denoting the residuals of completed uncensored durations by

Tu, = oLy, - IX'8, one can easily show by partial integra-
tion that under y = 0

&(Ie") = J(l—S,,t(z)))\ck(z) dz - Ie’Su‘(z) A, (2) dz, (25 1)
&((1-1,) e") =JezS,,‘(z) A, (z) dz. (25 1)
Giving

E(e") = [(1-5,(2)\(2) dz = E(L) . (26)

In Weibull models some additional conditional moment identi-
ties are given by the recursion formula

g(y'e") =m&(Iu™") + &(Lu'), m=1. (27)

If the constant term is included among the regressors X,
the corresponding sample moments always satisfy (26) by the
first order conditions given by (22 ii). Formula (22 i) im-
plies that (27) holds for m = 1. In the case of no censoring
i.e. I, = 1, for all k, the above formulas reduce to the

moment recursions of the standard extreme value distribu-
tion.

One can write

g’ d
[ = [ (0) ] E I, (XkTB + U, + _;'_ (XkTB + uk)2 - % (Xkrﬂ.+ uk)zeu:

on Pyl

o
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¢ ¥ 22 (uet - 1,01+ uy) (28 11)

1 (.2 _ 2 (28 iii)
+ k; _é.ﬁ(uke I (u + 2uk)) .

Using the properties (26) & (27), one easily shows that each
of terms in (28 i-iii) have a probability limit of zero, as
n ¢+ o, In addition the above expression is independent of
the time scale and therefore the investigator is in princi-
ple able to choose freely the point zero in logarithmic
gcale in order to maximize the local power of the test which
is dependent on g"(0).’ ’ SR o

If one tests an ordinary Weibull model against an alternati-
ve defined by (8), one tests simultaneously for three rest-
rictions that affect conditional moments. The first pof
these, (28 i), may in this case also be seen asvé forﬁ’bf
regression test, where one tests that there is no correla-
tion between (X,'8)? and the generalized residual €, = exp (u)
when the latter is corrected for its expectation under the
censoring mechanism (17). This is in analogy with what a
popular RESET test by Ramsey (1969) tests for.

To see this consider instead of (8) the class of models

g(8x{B)
Ay = ———7¥L—— o, : - (29)

where the MacKinnon—Magee~transformatibn has been applied to
the location term, and test for 6 = 0 in (29). As before u
has the standardized extreme value distribution.

> To see this consider changing the time scale by dividing
the time t by, say pu. Now all other parameters of the model stay
unchanged expect for the constant term in X8, say (,. The new
estimated constant term is f, + (1/a)log(u). Inserting this to
(28 i)- (28 ii) gives the same value for the score as earlier
because of (22 ii), (26), and (27) for m = 1.
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Formulate the loglikelihood of an individual observation,
(I, Voo X)), k=1, ..., n, where I, is an indicator function
for a completed, uncensored duration. Then, in analogy with
(21) the derivative of & w.r.t 6, under 6 = 0 is given by

3L, g” (0) (XB)?Y .
E35}6=o= 2 : (e B Ik)' (30)

The other derivatives of the loglikelihood function under
6 = 0 are the same as in the ordinary Weibull model (22 i &

ii).

The score test for 6 = 0 is easily seen to be asymptotically
equivalent to a form of RESET test in which one includes an
additional explanatory variable (X,8)? in the model. 1In
duration models this form of the RESET test tests for 6 = 0
in a Weibull model where the proportional hazard component
is written as

X8 + 6(xB)?, (31)

where B~ is the maximum likelihood estimate of § in a preli-
minary Weibull model, with 6 = O.

The second restriction, (28 ii), is that there is no corre-
lation between (X,'8) and zero mean ’'disturbances’ which are
implicitely defined by the conditional moment restriction
(27) with m = 1.

The third restriction, (28 iii), is that the conditional
moment restriction (27) holds for m = 2. The last two res-
tictions will be considered in a more detailed way in the
next section of the paper. In particular, we outline their
relation to sample heterogeneity and duration dependence in
Weibull models.

In summary, if the data were generated by (8) with y # 0,
and one estimated an ordinary Weibull model, the estimated
conditional moments would be expected to suffer from prob-
lems which would affect their theoretical restictions (26)
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& (27) in a way not allowed by the ordinary Weibull model.
These observations, made originally by MacKinnon and Magee
(1990) in ordinary regression models, carry over to the
Weibull model, albeit in a modified form.

The RESET test will have some power against ¢ # 0 in (8)
because of (28 i). If the fit of the Weibull model is "very
good" by which it is meant that o is large relative to the
variation of the location component X' = (1/a) (X,"8),° then
any violation to the condition that the probability limits
of (28 ii) and (28 iii) are zero, will contribute relatively
little to the score test. If the fit of the Weibull model is
poor, however, RESET test will have low power compared to
the score test against the above specific alternative hypot-
hesis (8). This follows from the observation that as a * o
then typically (X 8)? ¢ o, and the first term (28 i) will
dominate over the other two terms (28 ii) and (28 iii).

The easiest way to calculate the score test for y = 0 is to
replace the information matrix of the parameter estimates
with its finite sample approximation by the "Outer Product
of the Gradient," or OPG,

, oL a<LY” - _ X =
plim,,,, [[W][W]]y i 8’[ Wl =0—9‘. (32)

The OPG test statistic, popularized by Godfrey and Wickens
(1981), can be computed as n minus the sum of squared resi-
duals, or nR?, from the artificial linear regression

t =[%%]c+-remainder, (33)

where : is an n-vector of ones and the regressor matrix is
an n x p matrix of the derivatives of the loglikelihood of
each of the observations evaluated at the restricted or-
dinary Weibull model estimates. Here n = k + 2, and the cor-

¢ In Weibull model this implies a rapidly increasing hazard
function with the shape parameter o large relative to X;'b.
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responding components are given in the formulae (21) - (22).
Note that the actual value of g"(0) has no effect on the
test statistic and might as well be omitted.

Alternatively one can calculate the second derivatives of
the loglikelihood

LR _ g”(0) 2 _ 2 3y %, (34)
o] e oo

. . -
%] i g’ (0) ayi e X,. (35)
'Y vy =0 2

Partitioning the information matrix as

by Sy . (36)

N
g2»y 8(22

one can write the score gtatistic IM

7]
= L% -
"‘YY - 8(723(22%%,
v 2
[E I, (XkTB +u + —;- (X8 + uk)z) - %(Xkrﬁ + uk)zeu.] (37)
= k=1
v, -1V, '

where

I 7 1 1 | ol
Vow © g_//—(ov)yz = kZl g Ek (Xkﬂ tu t 3 (XkTB + uk)2 - 3 (Xkrﬂ + uk) € i| !
' (38 i)
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- -

n

oY &((v2 + ayd) e - 1,y?)
o 1 | £ (38 1i)

1, _77__"8h =
0 2 "
g (0) ) Z’((ayk)ze"'Xk)
k=1

and V is the estimated covariance matrix of the maximum
likelihood estimators of (a, BT™)T in the ordinary Weibull
duration model. The formulae for V, v, and 1,6 are given in
the appendix. They involve conditional moments of uncensored
observations up to the fourth degree and are straightfor-
ward, albeit relatively tedious to derive.

The above score test based on the MacKinnon-Magee family of
transformations has some power against a wide range of
alternative models. This is attributable to the way in which
information on the non-linear model of the location is
confouded with information concerning the distribution of
disturbances, affected by e.g. sample heterogeneity. The
lack of fit detected may be due to the location model, or
sample heterogeneity, or both. This feature of model (1) is
common to all transformation families, eg. Box-Cox, that
affect only the values of the dependent variable.

To cater for the above situation two score tests are consi-
dered below. These two tests specialise in testing sample-
heterogeneity in the constant term of the proportional
hazard component, and such duration dependence in the shape
parameter o of the model, which is related to the location
component, respectively. If any of these tests rejects the
null substantially more emphatically than the score test for
¥ = 0 in (8), that would suggest that (8) is not the appro-
priate model and modifications in modelling the proportional
hazard component, or sample heterogeneity would be necessa-

ry.
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4, SCORE TESTS FOR THE SAMPLE HETEROGENEITY

The standard procedure to introduce sample heterogeneity to
Weibull duration model is through the constant term in X8
e.g. Burdett et. al (1985) and Lancaster (1985). One intro-
duces a latent heterogeneity inducing variable n along with
an extreme value random disturbance term u® with the formula

U = U+ 1, (39)
where 5 has the density function ¢, and mean zero and va-

riance o?. The loglikelihood is obtained by replacing the
density and survival functions by

.Jf(ukln)\lz(n)dn , and jS(ukln)lﬁ(n)dn. (40)

For completeness one should also replace the nuisance para-
meters A, N by

‘JMuklnwm)‘dn , and JA(ukM)\ﬁ('r})dn. (41)

Next the conditional density function and survival function
are replaced by their second order Taylor expansions w.r.t.
7, at point » = 0. We get

flu|n) ~ £(u|0) + 19

af(uln)] .
a1 7= 0

S(u|n) ~ S(u|o0) +n[ﬂaun_|ﬂ] L M] . (42 11)
n=0

Substituting the relevant derivatives and integrating w.r.t.
7 gives in Weibull model’

£f(u*) ~f(u|0)[1+:;_2(1-3e"+e2")], and (43 1)

7 Note that the conditional density of u given 5, u|y, at x
is equal to the density of u’ at the point x-7.



19

S(u*) =~ S(u|0) [1 + _02_2 (e¥ - eu)], (43 ii)

The derivative of & w.r.t ¢*, under ¢’ = 0 is given by

ag 1 u H U U
%;]ho:.z_[rk (1 - 3e" +e™) + (1 -Ik)(ez'—e*)]. (44)

We get mean score

1 855 - 1 - 20, _ u,
n 802]02=0 " 2m ky:: [e 2Lie ]’ (4%)

because sample moments satisfy (26).

The other derivatives of the loglikelihood function under
02 = 0 are the same as in the ordinary Weibull model (22 i &
ii). The score test for o’ = 0 is easily seen to be asympto-
tically equivalent to a conditional moment test in which one
compares the second moment of the generalized residual € =
exp(u) with its theoretical value under H,. The expectation
can be calculated by Taylor-series expansion and applying
(27) to give

Z(ue™)
m!

.

g™ = ¥ = 2&(I,e"). | (46)

m=0

More generally one can show that the moment generating

function of u, is

p(r) = &(e'™) =T(r+1) &(I,e"). | (47)

Therefore score test can be seen as testing whether the
second sample moment of generalized residuals is equal to
its theoretical counterpart ¢(2).

On the other hand, part (28 iii) of the score test which is
based on the MacKinnon-Magee family of transformations
effectively tests for the sample moment restriction which
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corresponds to the value of ¢"(1). Note that by construction
the Weibull model errors u, always satisfy the theoretical
values ¢ (1) and ¢’ (1) by (26)-(27). The above considerations
show that these two tests are related though they refer to
different tYpe of moment restrictions.® A general sequence
of conditional moment restrictions are obtainable through
the recursion

&(u'e™)

i}

r&(Iule’ ) + m&(Tup e M),

(48)
mz=1, r=1.

The above recursion effectively characterizes the theoreti-
cal counterparts of all the derivatives ¢%(m), under the

null, where r,m=1,2,....,,,

Another form of sample heterogeneity which is briefly dis-
cussed involves the Weibull shape parameter «. Consider a
Weibull model, where the shape parameter is replaced by

a=o,9' (6XT6), (49)

where g is a monotonic function which satisfies properties
(2)-(4). In the above model the shape parameter of the du-
ration depends on the proportional hazard component through
the derivative of function g.

Possible functional forms for g’, which define locally equi-
valent alternative models, include the exponential function,
e*, giving

g’ (6X™B) = exp(6X7B), (50 1)

considered in testing for heteroscedasticity in regression
models, or the affine function, 1 + x, with x > -1, giving

' An intuitive reason for not obtaining complete correspon-
dence between the two restrictions is that the above sample he-
terogeneity test is derivable as an information matrix test, see
Chesher (1984), which involves the second derivatives of the log
likelihood.
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g (6X™B) =1 + 6XTB. (50 ii)

In the sequel a score test for the hypothesis 6 = 0 is
considered. The motivation for basing the test on model (49)
is that duration dependence which is in Weibull models
characterized by o may be related to values of some impor-
tant explanatory variables in the model. These wvariables
correlate with the location, X,'8, and the test for 6 = 0 is
likely to have some power even in the case where duration
dependence is related to the values of a single important
explanatory variable. The above idea was proposed originally
for testing heteroscedasticity in regression models by
Anscombe (1961), see also Breusch & Pagan (1979).

Using (18) the derivative of & w.r.t 6, under & = 0 is

given by

B%k] = 0109‘// (0) XkTB |Erk [E]l-_ + Yk] - Y exp(ayk _ Xkrﬂ)]l (51)
5=0

0

Giving mean score

'ﬁ%]m’ g’ (0 |3 = (e - 3) -
(52)

(uke“ - I, (1 + uk)).

The other derivatives of the loglikelihood function under

6 = 0 are the same as in the ordinary Weibull model (22 i &
ii). The score test for 6§ = 0 is equivalent with the first
two terms in the expression characterizing the score test
derived earlier (28 i-ii) with the exception that the second

term should be split in half.
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5. EXTENSION TO COMPETING RISKS FRAMEWORK

In the present case the duration may end in m alternative
ways which are here called exit channels. Both the length of
duration and the label of the corresponding exit channel are
observed. The standard competing risks model for duration is
obtained by defining m mutually independent random variates

* .

Y;,» J =1, ..., m and setting the observed duration y,

y=min{y;, ..., ¥n, C } (53)

The censoring variable c¢ is independent of all y'’s, and has
density function A and survival function A.

In the specific case considered here the log-durations vy,
j =1, ..., m, are generated by applying a set of MacKinnon-
Magee transformations g;, separately to each of them to get
m random variables following the extreme value distribution.
These variates are defined by (8) with shape parameters o
and location terms where the latter are linear combinations
of the explanatory variables X(j) with coefficients ;.

Define hazard functions h; and survival functions §; for each
individual exit channel. Now the loglikelihood of an indi-
vidual observation, (yi, L(j) | X(j); 3 =1, ..., m), k =
l, ...,n, where I,(j) is an indicator function for a comp-
leted, uncensored duration through exit channel j, is given
by

f=Lly, ajlﬁjlrk(j) » Yo X (3))

=Y I(J) Log (B (v,i X () 7B,)) + Y log (S, (¥ X (1)78,)) + log (4, ()
j=1 i=1

m

+ 11 —E I(F) log (8, (Y,; X, (1)7B,)) + log (A, (¥;)) |- | (54)
i1 i=1
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Rearranging the terms, and substituting for the functional
forms for hazard and survival functions shows that

% =Y %(j), where : (55)
j=1

L9 = T [109<a,-> + log (g (yy) + BENL Xku)’@-]
J

_exp[ﬁif}ﬂ - X ()7B,| +I.(3) Log (A, (%)) + (2 ~I,(3)) 1og (N, (%)) -
j .

The above expression shows that each set of the'parameters
of interest, i:e. (o, B;r v can be estimated by maximizing
that part of the loglikelihood which involves the parameters
df interest, ie. £(3) = £ %(5).° In particular the equa-
tions for first order conditions (22 i & ii) and the scores
w.r.t. ¥’s (21) stay the same expect for the substitution
for the indices j in the indicator variables, I,, and para-
meters, etc. Considering each likelihood component separa;
tely we can derive m score tests for misspecification, one

per each exit channel.®

® The coefficients A (yy), and A\ (y,) may be regarded as nui-
sance parameters which do not depend on the parameters of inte-
rest, i.e. (a, B, v)’s. Alternatively the censoring variable may
have a fixed distribution with some estimable parameters.

10 Note that equations (25 i)-(26) have to be modified to
allow for an 'augmented censoring mechanism’ which includes the
other exit channels than the one we are explicitely concerned
with. With these modifications all the moment restrictions given
earlier in the paper remain true if one substitutes I, (j) for I,.
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6. AN EMPIRICAL EXAMPLE

The implicit misspecification test derived above is applied
to an empirical example analyzed earlier by the second
author (Rantala, 1991). The data concerns vacancies reported
to employment offices in the province of Uusimaa, Finland in
1989.!! Vacancies were for employees, with upper secondary
education in science and technology programs.

In the data (2531 observations) two exit channels are consi-
dered, the first is recruitment through employment offices
(30 per cent of the cases) and the second, recruitment
through other channels (45 per cent of the cases). The
remaining vacancies were withdrawn by the employers from the
employment office registers. The latter are here considered
as censored observations. In duration models the following
explanatory variables were used, dummy variables accounting
for occupation (11 categories), industry (6 categories),
type of work (permanent/temporary), worktime (regular/shift
work), and sub-region (3 categories). In addition U/V -
ratios, i.e. the number of unemployed divided by the number
of vacancies, were calculated separately for each sub-region
and occupation at the end of the duration in question. The
resulting continuous variable was used in the analysis to
capture the effect of local labour market conditions.

In the analysis, we used twenty explanatory variables and
2531 observations, 25 per cent of which were considered as
censored. In the bulk of the data recruitment was through
the second channel and the mean duration in the data was 46
days. A competing risks Weibull duration model with (44
parameters) was subjected to the score tests for misspe-
cification derived in the paper. Test results are given in
Table 1, separately for the two exit channels considered.

' In the data complete durations are recorded for all va-
cancies. The province of Uusimaa is the most populated in Fin-
land and the capital, Helsinki, is situated there.
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TABLE 1
PERFORMANCE OF THE WEIBULL MODEL FOR VACANCIES!

Mean score Test statistic
Test x*- form t-form
Channel 1
LM (7y,) -0.0998 119.20 -11.13
LM, 0.0065 7.25
LM, 0.0067 0.69%
LM, -0.1131 119.36"
RESET 7.25 2.68
HETGEN 31.76 -5.65
HETDUR 10.23 3.19
Channel 2
LM (7,) -0.1526 208.18 -14.99
LM, -0.0021 4.73
LM, 0.0027 0.288
LM, -0.1532 228.128
RESET 4.73 -2.17
HETGEN 93.80 -9.82
HETDUR 0.83 -0.91

The score test statistics are asymptotically x?(1) when the underlying
competing risks (Weibull) model is actually generating the data. The
first row gives the score test for misspecification. The values LM, 1M,
and LM, correspond to the decomposition of the score, given in eqgs. (28
i-iii), respectively, and indicate the contributions of the misspecifi-
cation of the proportional hazard component, and two conditional moment
restrictions in the implied disturbance distribution corrected for
censoring. The RESET row gives the test statistic for misspecification
in the functional form of the proportional hazard component, with score
given in eq. (30). The last two rows give the test statistics for sample
heterogeneity, with the scores given in egs (45) and (52), respectively.
In their calculation the outer product forms were used, and corres-
ponding asymptotically equivalent statistics based on Student’s t-
distribution are given in the last column.

2 A complete set of results obtainable by request.

B Thegse are pseudo-statistics with the values calculated by
a mechanical application of the OP-method, and have by themsel-
ves no interpretation as score statistics.
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The highly significant test statistics LM(y,) and LM(y,)
clearly indicate that the model is misspecified. Interes-
tingly enough this rejection does not seem to have been
markedly influenced by the misspecification of the location
or alternatively the proportional hazard component, rows
RESET, nor the second moment restriction (28 ii), row LM,.
In contrast the row LM; suggests that the violation of the
third moment restriction (28 iii) is the main underlying
problem. This restriction is closely related to sample
heterogeneity as the test statistic reported in row HETGEN
confirms. Here our test statistic and particularly the
restiction (28 iii) seems to be more powerful in detecting
misspecification than the heterogeneity test, which is
derivable as an information matrix test (Chesher, 1984).

An additional interesting feature of the example is that the
decomposition of the score (first column in Table 1) gives
some useful information about the possible source of misspe-
cification including the information in the other score-
tests taylored to test separately for the misspecification
of the proportional hazard and such sample heterogeneity
which is related to the constant term and the scale (durati-
on shape) parameter in the model (rows HETGEN and HETDUR) .

¥ In the original analysis of the data the poor fit of the
Weibull model was detected by using the generalized gamma dist-
ribution with an additional parameter. This family nests both

extreme value distributed and normally distributed disturbances
in logarithmic duration.
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7. CONCLUSION

In the paper the transformation family introduced by MacKin-
non and Magee has been applied in Weibull duration framework
to derive a score test for misspecification with one degree
of freedom. The test statistic is found to be sensitive for
violation of three conditional moment restrictions in the
implied disturbance distribution of the model. The test is
compared with a form of the RESET-test as well as with score
tests which also have one degree of freedom and test for
sample heterogeneity in the location component and such
duration dependence which is related to the location com-
ponent. Finally, an empirical example has been presented in
which the derived test clearly indicates violation of the
third conditional moments restriction and simultaneously
accounts for the results given by the other two score tests
mentioned above. Furthermore, our test statistic seems to be
more powerful than the alternatives considered. Because the
test statistic is easy to implement, it is recommended that
it should be routinely calculated and used in model diag-
nostics in applications based on the Weibull model.”

Use of specification tests, such as the one developed in the
paper, to examine model adequacy are best seen as a comple-
mentary rather than an alternative tool to other diagnostic
methods such as informal residual plots, which are well
established in the literature, eg. Aitkin & Clayton (1981),
Lancaster (1985) & (1990), Lancaster & Chesher (1985), and
Kiefer (1985). Similar considerations apply with respect to
estimation methods with less reliance on distributional
assumptions, such as semi- or nonparametric estimation of
the base line hazard function, based on the Kaplan-Meier
estimate of the survival function, eg. Lancaster (1990),
Sec. 9.4.

Diagnostic methods may, however, result in the recognition

5 It is relatively straightforward to derive the correspon-
ding transformation test statistic for other parametric families
such as lognormal, or generalized gamma distributions.
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of important phenomena that might otherwise have gone unde-
tected if one had relied exclusively on robust methods. In
fact indentification of such phenomena that results in a
marked lack of fit may have at least equal scientific impor-
tance than the analysis of the bulk of data.
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APPENDIX

Below we give the necessary formulae for calculating the
variance of the score, under H,. These are derived by using
the equations for the conditional moments restrictions in
the Weibull model (26), (27), and (48). First, one can write

oﬂ,,w n r 1 r , 1 r 2u2
o e T 2 F (KB e 300 e w) - Gl et

<
1

@(‘XEB Fu)? e (KB v u® ¢ 2 (KB ukf‘)]

L}
%

|
%R

Y 8| 3 B+ u)te™|

k=1

+

By (48) the last two terms cancel out, leaving

n

NPT

V =
k=1
= E g[Ik (X8 + u)? + % (X¢B + uk)4eu']' (& 1)
k=1
by (27).
Similarly,
oY (v + ayd) " - 1,y})
1,= % g = 1 [*
k4 g./l (0) %y 2 n» .
-y Z’((ayk)’e'xk)
k=1

[ l

Ellz g7(((Xkrﬂ ru)let + 21, (X8 + uk))

0|

—kz:: g’((XkTB + ,uk)zeu')xk
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iy £z, ((x78 + v + 3 (KB + up)? + 2 (x7B + u))
1 k=1
= 3 . (A 2)
-E g(Ik (.Xkrﬁ + uk)2 + 2 (Xkﬁ + uk)))xk
k=1
Further,
PE g 3L
vl - da da da 3BT
B do a8 ap”
1 - T 2 5 1 “ r u, T
= EZ’(I,,+ (X8 + u) e') - Eg((XkB+uk)e'Xk
- o j=1 o
1% g8 e u ey, Y #le™ %X
L k=1 k=1 i
&1‘ Z g(r, 1+ xf8 +u?) -1y g(1, (1 + xI8 + u,) )x7
- k=1 ) . (A 3)
_;_! E (Ik(1+XkTB+uk))Xk EZ’(Ik) XkaT
ey

After collecting the terms in (Al)-(A3) we can write in
terms of uncensored observations

1
v, - 1TVl = z[A4 + 4A, + 44,

- (B,+2B,)T (M +M (B, +B,) D™ (B, +B)) TM™") (B, +2B)

+ 2(B,+2B,)TM™ (B, +B)) D! (A; +34,+24)

(A 4)
- (B,+32,+22,)7D (A,+34,+24))],

n

a =y g’(Ik(XkB +u)" )

k=1

n

B, =Y, Z(Ik(x,fﬁ + uk)’")Xk ,

k=1
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n
M=Y &(1,) XX,
k=1

D = (A,+2A,+A,) - (B+B,)™M (B, +B,) .

Finally, in the case of no censoring i.e. I, = 1, one may
calculate

Z(xB + u)" = E(’:) (X78 + ¥(0))™ E(u,—y (0))”

v=0

= (X8« $(0)7 + T T} (KB + y ()b 0), (a 5)

v=l
for m = 1. Note that

Y0(0) = (-1)ely (L + k)Y, for v = 1.
. k=0



