
VATT-KESKUSTELUALOITTEITA
VATT-DISCUSSION PAPERS

170

INTEREST RATE
FORECASTING
WITH NEURAL
NETWORKS

Jan Täppinen

Valtion taloudellinen tutkimuskeskus
Government Institute for Economic Research

Helsinki 1998



ISBN 951-561-242-X

ISSN 0788-5016

Valtion taloudellinen tutkimuskeskus

Government Institute for Economic Research

Hämeentie 3, 00530 Helsinki, Finland

Email: etunimi.sukunimi@vatt.fi

J-Paino Oy

Helsinki, September 1998



TÄPPINEN JAN: INTEREST RATE FORECASTING WITH NEURAL
NETWORKS. Helsinki, VATT, Valtion taloudellinen tutkimuskeskus, Govern-
ment Institute for Economic Research, 1998, (C, ISSN 0788-5016, No 170).
ISBN 951-561-242-X.

Abstract:  This paper compares neural networks and linear regression models in
interest rate forecasting using US term structure data. The expectations hypothe-
sis gets some extra support from the neural network model as compared to the
regression model. A neural network with the whole yield curve spectre from the
difference between 1 and 3-month rates to the difference between 5 and 10-year
rates predicts changes in interest rates quite well. However, during 1994–1995
the neural networks (as well as the regression) fails in predicting the rising inte-
rest rates.
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Tiivistelmä:  Neuroverkkoja verrataan lineaarisiin regressiomalleihin ennustetta-
essa USA:n korkoja. Korkojen odotushypoteesi näyttää saavan enemmän tukea
neuroverkkomallista kuin regressiomallista. Neuroverkko, jossa muuttujina käy-
tetään koko tuottokäyrää, toimii kohtuullisen hyvin korkojen muutoksien enna-
koinnissa. Vain vuosien 1994–1995 ajanjakso muodostaa tässä suhteessa
poikkeuksen. Neuroverkot (samoin kuin regressiomallit) eivät kykene ennusta-
maan korkojen nousua mainittuna ajanjaksona.
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Yhteenveto

Korkojen odotushypoteesin mukaan pitkät korot ovat odotettujen lyhyiden kork-
ojen keskiarvo. Nouseva tuottokäyrä merkitsee silloin nousevia lyhyitä korkoja.
Jos odotushypoteesi pitää paikkansa, tulevaisuuden korot ovat ennustettavissa
tuottokäyrästä. Käytännössä tämä ei kuitenkaan ole onnistunut kovin hyvin re-
gressiomallilla, ehkä siksi että suhde ei ole lineaarinen. Tässä tutkimuksessa
yritetään ennustaa korkoja neuroverkkojen avulla. Neuroverkkoja voidaan kuvata
epälineaariseksi mallintatyökaluksi. Neuroverkkoja on käytetty hyvällä menes-
tyksellä monessa taloudellisessa sovelluksessa, mutta ne eivät juurikaan ole
tulleet hyväksytyiksi rahoitusmaailman akateemisissa piireissä. Syynä voi olla
että tehdyt tutkimukset yleensä ovat käyttäneet pieniä otoksia eivätkä yleensä ole
panostaneet mittaviin tulosten vakaustesteihin. Neuroverkkoja ei juurikaan ole
käytetty korkodatan kanssa. Siksi on erityisen kiinnostavaa tutkia neuroverkkojen
potentiaalia korkojen ennustamisessa.

Yhdysvaltojen korkoja on ennustettu kolme kuukautta eteenpäin 3, 6 ja 12 kuu-
kauden sekä 5 ja 10 vuoden koroilla. Jos ainoa tavoite olisi ollut korkojen ennus-
taminen olisi ollut syytä lisätä myös muita muuttujia, kuten esim. inflaatio. Nämä
muut muuttujat kärsivät kuitenkin erilaisista mittausongelmista ja käyttämällä
pelkästään korkodataa voidaan varmistaa, että data on niin hyvää kuin mahdol-
lista ja että kaikki saadut tulokset selittyvät valitulla menetelmällä. Tulokset
näyttävät, että neuroverkot ovat regressioanalyysiä parempi menetelmä korkojen
ennustamisessa. Varsinkin pitkien korkojen ennustukset olivat hyviä. Esimerkiksi
ennustettaessa 10 vuoden korkoja regressioanalyysi saavutti selitysasteen R2 ar-
von 0,12 kun neuroverkkojen vastaava tulos oli 0,36. Tämä on sopusoinnussa
muiden alueiden tutkimustulosten kanssa missä neuroverkot yleensä ovat an-
taneet perinteisiä tilastomenetelmiä paremmat tulokset.

Yksi neuroverkkojen ongelma on niiden herkkyys käytetyille parametreille.
Parametrejä on monia ja niiden virittämiseen vaaditaan paljon käytännön koke-
musta. Tämä vaikuttaa myös tulosten luotettavuuteen. Tässä tapauksessa useita
eri verkkoarkkitehtuureja testattiin kiinnittäen erityisesti huomiota datan jakoon
opetusdataan ja tulosten evaluointi-dataan. Samojen verkkojen onnistumista tule-
vaisuudessa ei voida kuitenkaan taata, joskin näyttää siltä, että neuroverkoilla on
potentiaalia korkojen ennustamisessa. Jatkotutkimukset tulevat osoittamaan,
pystytäänkö tätä potentiaalia kääntämään onnistuneeksi sovellukseksi.



Summary

The expectations theory states that longer term interest rates are averages of ex-
pected future short term rates. An upward sloping yield curve indicates rising
short term rates. If the expectations theory holds, this means that future interest
rates are predictable from the yield curve. In practise, however, this has not been
the case. One obvious reason is the (assumed) linear structure of the test equation.
Thus, a non-linear model might be a preferable specification. In this paper fore-
casting is done with neural networks, which are often described as highly simpli-
fied models of the human brain. Neural networks have been used a few years in
various financial applications with good success, but they have not been widely
accepted by the academic financial community. This is probably due to the ten-
dency to use small samples and not extensive enough testing of results stability in
published papers. Neural networks have also rarely been used with interest rate
data. Therefore it is of special interest to investigate the potential of neural net-
works in interest rate forecasting.

Interest rates from 3 months to 10 years are forecasted three months forward us-
ing 3, 6, 12-month and 5, 10-year interest rates from the USA. For the sole pur-
pose of forecasting some other variables could also have been of importance, for
example inflation. These other variables, however, suffer from various measure-
ment problems. This way we could ensure that the data is as pure as possible and
any effects seen are due to neural networks capability compared to regression
analysis. The results show that the neural networks outperform regression analy-
sis in interest rate forecasting. Especially forecasting interest rates in the longer
end provided good predictions. For example, when forecasting the 10-year inter-
est rate we received an R2 of 0.12 whereas the neural network received 0.36. This
is in line with previous research in other fields, where neural networks often out-
perform traditional statistical models.

One problem with neural networks is their sensitivity to different network pa-
rameters. There are many parameters and it is an art to tune the network up to a
good performance. This also affects the confidence in the results. In this case
several different networks were tested and special emphasis was put in the data
set division, which is crucial to reliability. A long time period was used both in
training the network and in evaluating the results. These actions cannot, however,
guarantee the success of the tested networks in the future, though they show that
there seems to be potential for using neural networks in interest rate forecasting.
Further research will show if this potential can be turned into successful applica-
tions.
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1. Introduction

The term structure of interest rates has been used to predict interest rates in a
large number of studies. The theoretical background leans on the expectations
theory in which an upward sloping yield curve will result in higher future rates
and vice versa. Non-linear methods for term structure modelling were suggested
as a response for the observed poor performance as long ago as 1979 by Shiller.
Since then several methods have been tried, for example by Tice and Webber
(1997) who used a model with chaotic behaviour. Recently neural networks,
which offer a very general class of non-linear models, have been extensively used
with finance data like currency and stock market data. They have, however, rarely
been tested with interest rate data. Therefore, it would be interesting to examine
the power of neural networks in interest rate prediction.

Neural networks, though widely used by financial practitioners and praised by
computers scientists, have not gained wide acceptance in the academic financial
community. The reason could be a lack of confidence in computer scientists cre-
ating robust results with their own tool, in an area they often are not too familiar
with. Or it could be that published research with neural networks in finance often
tends to use small samples, biasing results by reporting only good ones and ne-
glecting the ex ante principle in empirical design.

The purpose of this paper is to test whether predicting future interest rates from
today´s term structure using neural networks works better than ordinary least
squares regression. Special emphasis is put on the design of the empirical tests,
trying to determine the actual performance of neural networks, not forgetting the
reliability and stability of the results. Chapter 2 deals with the expectations hy-
pothesis and briefly explains the neural networks used in this paper. Some previ-
ous results in nonlinear interest rate models are also presented. Chapter 3 outlines
the methodology used in the empirical tests followed by results and conclusions
in chapter 4 and 5.
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2. Theory

In this chapter we briefly present the expectations hypothesis and some previous
work in modelling the term structure, both in a linear and a non-linear fashion.
Further neural networks are introduced, bringing up issues addressed in the em-
pirical section.

2.1 Expectations hypothesis

The expectations theory states that longer term interest rates are averages of ex-
pected future short-term rates plus a premium. Simply, if the yield curve is slop-
ing upward the short-term rates are expected to rise in the future. Shiller and
Campbell (1991)1 use the following equation for testing the expectations hy-
pothesis, assuming rational expectations:

( 1 ) s E R Rt
n m

t t m
n m

t
n( , ) ( ) ( )= −+

− ,

where s m n m St
n m

t
n m( , ) ( , )(( / ( ))≡ −  and n is the maturity of the longer term bond and

m is the maturity for the shorter term bond, while the spread S R Rt
n m

t
n

t
m( , ) = − . For

the simple case when n=2m equation ( 1 ) becomes

( 2 ) S E R Rt
n m

t t m
m

t
n( , ) ( ) ( )= −+ .

For example when using 3-month and 6-month rates equation ( 2 ) states that the
spread between 6 and 3-month bonds today should equal the difference between
the 3-month bond three months from now and the 6-month bond today.

Shiller and Campbell(1991), along with many others, find that regressing
E R Rt t m

m
t

n
+ −( ) ( ) onto a constant and its predicted value st

n m( , )  does not yield a posi-
tive slope coefficient at 1, as it should, but often a negative estimate. This doesn’t
support the expectations hypothesis, but Campbell and Shiller (1987) and also
Shiller and Campbell (1991) show that another approach, using a vector autore-
gressive (VAR) method for calculating a perfect foresight spread, shows some
evidence in support of the expectations hypothesis. It seems that, especially in the
USA, when long-term interest rates rise relative to short-term rates, this leads to
higher future short-term rates, but it does not lead to higher future long term
rates. Both should occur according to the expectations hypothesis. Hardouvelis
(1994) examines the phenomenon and finds as well as Gerlach and Smets (1997)
that the expectations hypothesis receives much stronger support outside the USA.
                                             
1 Shiller and Campbell (1991) points out that there are in fact many versions of the expectations theory,
though they are very similar in important respects.
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That is puzzling because the USA has the most liquid market, which also would
indicate that it is the most efficient market.

Several non-linear approaches in interest rate modelling have also been exam-
ined. Tice and Webber (1997) list a few. For instance, extended Vasicek (1977)
models permit time varying behaviour of the mean level to which the short rate
reverts. In the models of Hull and White (1990) and Babbs (1993) the reversion
level is allowed to be a function of time, enabling the model to fit any arbitrary
current term structure. Tice and Webber (1997) themselves examine a model with
chaotic behaviour, switching from high rate regimes to low rate regimes in a
manner suggestive of business cycles. They conclude that methods rooted in the
analysis of nonlinear systems may be applied directly to term structure data.

Very few attempts to use neural networks in term structure modelling have been
made. Wood and Dasgupta (1995) is an exception. They take an approach where
an encoded yield curve is used to predict the next day´s curve. Though their re-
sults are very promising at first glance, it seems that they simply exploit the data
distribution creating results that could be obtained with much simpler strategies.

2.2 Neural networks

There are many different types of neural networks. The ones that are used in this
paper are all multilayer perceptron networks (also called backpropagation net-
works)2. They consist of input neurons, as many as input variables, hidden neu-
rons and one or more output neurons. Compared to regression terminology the
input variables are independent variables and the output neuron is the dependent
variable.

Figure 1 Multilayer perceptron network

Inputs Hidden neurons Output

                                             
2 Neural network theory can be found for example in Haykin (1994) or in a very clear and short form in
Turban (1993: 681–706).
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The nonlinearity resides in the neurons, where a neuron´s input is transformed
using non-linear activation functions. There are many different activation func-
tions, most common are: sigmoid, hyperbolic tangent and linear functions.

Figure 2 Activation functions

The difference between the sigmoid function and the hyperbolic tangent lies in
the fact that the sigmoid function is defined in the interval ]0,1[ while the hyper-
bolic tangent can take all values in ]-1,1[. The one chosen depends on the data,
which usually is preprocessed to fit in either of these intervals. The neuron output
Y when using tanh as the activation function and u is the weighed sum of the in-
puts of the neuron is calculated by

( 3 ) Y(u) = tanh(
u

2
) =

1

1

−
+

−

−
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e

u
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The activation function is not the only adjustable parameter when using neural
networks. The number of hidden neurons and layers, learning algorithms, learn-
ing rate, momentum, learning time and initial weights all must be chosen, thereby
giving an indefinite amount of alternatives. In fact, one of the main difficulties
with neural networks is the large amount of adjustable parameters that greatly
affects results. Even when a good architecture is found, there is always the prob-
lem with how stable the results are. If the results change very much, for example
when using different initial weights, it undermines their confidence.

Another main concern is the division of data into training and test sets. Regres-
sion analysis is nearly always done in-sample, that is, no test set is used. The re-
gression coefficient´s estimations are calculated from the same data set for which
the prediction power is evaluated. That is correct only if the estimated equation is
exactly the same the whole period. In practise that is not the case. By dividing
data into a training set which is used solely for calculating regression coefficients
and into a test set for evaluating results, we can observe the true out-of-sample
explanation power. With neural networks the data division into training and test
sets is absolutely necessary. Namely, it can be shown that neural networks can

yy

1 1

uu 00
sigmoidlinear
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approximate any continuous multivariate function, provided that sufficiently
many hidden neurons are available (see for example Hornik et al. 1989). As it is
the generalisation ability that is desirable, the network performance at out-of-
sample data is what counts.

Often, as in this paper, the test set is still divided in two parts. One of the parts,
which we here on refer to as the test set, is used to determine the stopping point
for the training procedure. In the training set the performance is improving infi-
nitely but by testing the performance on a smaller test set we can determine an
optimal stopping point for the training procedure. This is of course the optimal
point only for the test set. To really test the network performance on completely
out-of-sample data, the other part of the original test set is used, the validation
set.

Another problem is that different divisions in training and test sets often creates
widely different results. With cross-section data the crossvalidation3 technique is
often used to eliminate these differences. Time series data requires other solu-
tions. Especially when working with financial data, where the underlying funda-
mentals change over time, the crossvalidation technique is often less suitable.
One simple technique is to use such a long validation period that chance cannot
have a major influence on the results of the whole time period. Another technique
is called walk-forward, where the training, test and validation sets are moved
forward in time, one step at a time, retraining the network at each step. As a true
ex ante strategy this technique will provide fair results, as long as the time series
are long enough.

                                             
3 See for example Janssen et al. (1988)
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3. Empirical layout

3.1 Data and test equations

The data used are US daily spot rates for 1, 3, 6, 12-month and 5, 10-year matur-
ity. The sample period starts at June 1, 1988 and ends at May 12, 1997 making
2257 observations, holidays excluded4 (see Figure 3). US data was chosen of
quality reasons and because it has often been concluded that the expectations hy-
pothesis has especially little support in the USA (for example Hardouvelis 1994,
Gerlach and Smets 1997). If neural networks indeed improve results on US data,
then it will probably show up useful on other data as well. By using only interest
rate data we can ensure that the data in itself is free from measurement errors. For
the sole purpose of forecasting interest rates other variables could be of impor-
tance as well, but they all suffer from problems due to measurement and long
time intervals.

The empirical part strives to predict interest rates of 3, 6, 12-month and 5,
10-year maturities three months forward. The interest rate three months forward
is denoted byRt

m
+3
( ) , where m is the maturity. By subtracting today´s rate Rt

m( )  we

get ∆Rt t
m
+3,
( ) , the change in the interest rate three months forward. The three month

prediction horizon was considered suitable for all maturities. Firstly, for compari-
son it is justified to use the same horizon for all maturities. Secondly, short rates
are easier to predict at a longer forecast horizon5. And thirdly, the sample length
would suffer greatly if several years of forecast horizons for the longer maturities
were used. After all, if the spread indicates a rise in the 12-month interest rate,
why should it require waiting 12 months to see it.

The first equation to be tested is

( 4 ) ∆Rt t
m
+3,
( ) =a b R Rt

n
t

m+ − +[ ]( ) ( ) ε .

For example, when m refers to the 12-month rate, the change in 12-month rates 3
months forward is predicted by the spread between the 5-year rate, which is the
following maturity, and the 12-month rate. If the expectations theory holds, the
coefficient b should be positive.

                                             
4 Data up till 3 months after the last observation May 12th, 1997 is used when calculating ∆Rt t

m
+3,
( ) .

5 Some initial tests showed that very short prediction horizons, like 1 day, did not work well probably due
to the high short term volatility in the interest rates. Also Gerlach and Smets (1997) mentions that it is
easier to predict short rates over longer forecast horizons.
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Figure 3 US interest rates
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The setting was broadened to use the whole term structure to explain the future
change in interest rates. The idea of using the whole term structure came from the
Wood and Dasugptas (1995) neural network test setup for term structure predic-
tion6. The regression equation to be tested is:

( 5 ) ∆Rt t
m
+3,
( ) =a+b*GAP1+c*GAP2+d*GAP3+e*GAP4+f*GAP5+ε,

where GAP refers to the difference between a longer and a shorter maturity,
R Rt

n
t

m( ) ( )− . GAP1 for example,  is the difference between 3 and 1-month interest

rates. The same equation for neural networks written as an unknown function f is:

( 6 ) ∆Rt t
m
+3,
( ) =f(GAP1, GAP2, GAP3, GAP4, GAP5)

As the purpose of this paper is not to test the expectations hypothesis itself, but
rather tp see if neural networks predict future interest rates from the term struc-
ture better than a regression model, we do not follow the usual setup for expecta-
tions hypothesis tests. Equation ( 4 ) differs from equation ( 1 ), which is often
used for expectations hypothesis tests, in that Rt

m
+3
( ) - Rt

m( )  is used instead of
R Rt m

n m
t

n
+

− −( ) ( ) . Thus if you are always using a three months forecast horizon and
assuming that Rt

m( )  is approximately Rt
n( ) equation ( 1 ) would match equation

( 4 ). As m and n only four combinations are used, cutting down the number of
regressions. The empirical section emphasis is on comparing neural networks
(using equation 6) to regressions (using equation 5).
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3.2 Neural network test setup

The equations to be tested were fixed in a preliminary stage and the test setup
was also fixed in advance. This was to ensure that the empirical testing would not
result in a continuous search for better and better variables and networks until
good results would be found. The selection of the best neural network is in itself
a never-ending process, but we tried to keep it within sound limits.

First some initial tests were performed, locking the error measure and the data set
division. As learning algorithms a modified version of backpropagation7, time
delay neural networks (TDNN) were used. TDNN allows looking back in data,
lagging the input N periods of time. Thus it can be said to be ”seeing”,
”remembering” and using ”features” in the data over time. The average absolute
error8 (AAE) was chosen as error measure for the learning process because of its
direct interpretation as mean deviation from the true interest rate. The sample set
was roughly cut in half, using the first 1000 days of data for the training set, the
next 200 days for the test set and the rest of the days for the validation set (1057
days). Having a long validation period was deemed important, because it would
reveal true out-of-sample performance over a long period of time.

To establish confidence in the network results two different strategies were used:
First, a network architecture creating good results at one maturity was chosen
(strategy A). The selection was done by choosing the best architecture on valida-
tion data from a top ten list that the used software created with the above chosen
parameters.9 The software uses genetic algorithms in a process where the archi-
tecture, hidden neurons, number of connections and time delays are continually
changed.10 As the process is never-ending by its very nature the results improve
by providing longer computer-time, though in practise the improvement ap-
proaches zero quite soon. The network found this way is guaranteed to give good
results on the tested maturity. By using the same, well-performing network on all
maturities, one can establish whether this network results are stable over different
maturities.

                                                                                                                                    
6 Wood and Dasgupta (1995) didn’t use the original data for input as we do. They extracted the signs of
the gaps and used them as input.
7 Backpropagation is the most common learning algorithm in multilayer perceptron networks, first used in
these networks by Rumelhart et al. (1986).

8 AAE
Yactual Ypredicted

=
−∑

sample size
9 This level cannot be achieved in practise because network evaluation on validation data cannot be done
in advance (data from the future is not available).
10 Other parameters were fixed in this case.



9

Secondly, a complete ex ante strategy was used to find the best architecture
(strategy B). The software is set to iterate one hour and the results of the network
which fits test data best will be reported. This strategy shows the performance
level one can expect to achieve with new, fresh data.

For all maturities several non-neural network comparison measures are calcu-
lated. Regression analysis in the form of ordinary OLS is performed with the
same sample division as with the networks. AAE, R2 and a percentage measure of
the correct forecast direction11 are calculated.

                                             
11 A correct direction forecast means that the actual change in the rate 3 months forward shows the same
sign as the predicted change. The prediction of an actual zero change is considered to be false if the pre-
diction is not also zero.
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4. Results

4.1 In-sample regression

Regressions with equation ( 4 ), all 2257 observations, yields results in line with
previous research. As Table 1 shows, the slope coefficient varies a lot between
the maturities and is in all cases except the 3-month maturity far away from 1.12

The results improve by adding GAP1–GAP5 as independent variables, equation
( 5 ). As we can see in Table 2 they have higher R2 than those of equation ( 4 ).

Table 1 Regression results, equation ( 4 )

m n �a �b R2

3 months 6 months -0.194 1.251 0.118
(-14.697)*** (17.358)***

6 months 12 months -0.187 0.493 0.027
(-9.731)*** (7.981)***

12 months 5 years -0.139 0.114 0.018
(-7.742)*** (6.467)***

5 years 10 years -0.185 0.321 0.023
(-8.940)*** (7.239)***

Regression, equation 4 :∆Rt t
m
+3,
( ) = a b R Rt

n
t

m+ − +[ ]( ) ( ) ε , t-values below in parantheses

*= significant at 5 % level
**=significant at 1 % level
***=significant at 0.1 % level

Table 2 Regression results, equation ( 5 )

m �a �b �c �d �e �f R2

3 months -0.252 0.244 1.350 -0.148 -0.068 0.271 0.126
(-8.250)***(2.958)*** (11.285)*** (-1.414) (-1.856) (2.794)***

6 months -0.236 0.325 0.282 0.146 -0.003 0.202 0.042
(-6.790)***(3.453)*** (2.070)* (1.230) (-0.076) (1.828)

12 months -0.134 0.410 0.192 -0.580 0.079 0.258 0.037
(-3.289)***(3.711)*** (1.204) (-4.159)***(1.598) (1.990)*

5 years -0.088 0.149 -0.187 -0.589 -0.052 0.527 0.077
(-2.527)** (1.581) (-1.375) (-4.951)***(-1.227) (4.764)***

10 years 0.066 0.017 -0.309 -0.606 0.154 -0.157 0.070
(2.214)** (0.215) (-2.656)** (-5.975)***(4.297)*** (-1.664)

Regression, equation 6: ∆Rt t
m
+3,
( ) = a+b*GAP1+c*GAP2+d*GAP3+e*GAP4+f*GAP5+ε

                                             
12 The slope coefficient showed up significantly negative at some maturities in a test using only the first
1000 observations (regression with equation 4).
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Figure 4 In-sample regressions, 5 years maturity
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Dotted lines: data set division lines included for comparison to Figure 4 and 5.
The left-hand graph uses equation (4): ∆Rt t

m
+3,
( ) = a b R Rt

n
t

m+ − +[ ]( ) ( ) ε and the

right-hand graph equation (6): ∆Rt t
m
+3,

( ) = a+b*GAP1+c*GAP2+d*GAP3+e*GAP4+f*GAP5+ε

All results above are with in-sample regressions and so cannot be compared to
the neural network results that will follow. Notice though that using the whole
term structure as an input gives quite a good fit (see Figure 4). This indicates that
useful information can be found in the yield curve when predicting future interest
rates.

4.2 Neural network

The test setup outlined in chapter 3 is followed with equation ( 6 ),13 that is using
the whole term structure as input. One network architecture is selected based on
results of the 10-year data. A network with 5 hidden neurons predicts the 10-year
interest rate quite well (network 1 in Table 3). This network is tested predicting
the other maturities as well. The results get worse as the maturity gets shorter,
which is quite natural because the network is optimized predicting the 10-year
interest rate. As a second network (network 2 in Table 3) selected by the same
strategy shows a corresponding trend, it can be concluded that one network is not
suitable for predicting all maturities. The regression results in Table 3 are calcu-
lated in the same manner as the neural networks and are thus comparable. That is,
the data set is divided into a training, test and a validation set as explained in
chapter 3.2. As one can see, the neural network usually beats regression analysis
                                             
13 Neural networks were also tested with equation ( 4 ) but it seems like it is very difficult for the network
to converge with such highly fluctuating time series with only one input variable. It is possible that one
could achieve better success with other kinds of learning algorithms.
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with a substantial margin in the validation set when predicting the correct future
direction and R2 of the model. AAE is larger for the neural networks than for the
regression analysis, which probably stems from the fact that the neural network
prediction fluctuates more and often lies on the wrong level, even though it usu-
ally predicts the turning points correctly. See Figure 5 and 6.

The neural networks perform well at the true out-of-sample set, the validation set,
while the regression is much better for the training set. This is a bit unusual. One
of neural networks strengths is their ability to generalise. It might be that because
the network training (on training data) is stopped at the point where the results
are best on test data (giving a very good test set fit14), the network has not yet
learned all small characteristics in the training set. In Figure 5 the regression line
is plotted on the left-hand side and the neural network fit (strategy A, network 1)
on the right-hand side. It seems like the network has learned the big movements
in training data, but has not yet adjusted to the right levels. The same tendency
can also be seen in the validation set. This could explain why the regression is
better for the training data than the neural network, as it fluctuates a lot less than
the neural network fit. On the other hand, all this could be an indication that the
division in training, test and validation sets is bad and that (for example) a longer
test period would give better results. But, it could also mean that the results are
good just because the test set happened to be suitable for predicting the validation
set.

Figure 5 Neural network vs regression (equation 5 and 6)
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14 All graphs shows an excellent test set fit for the neural networks.
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Table 3 Neural network and regression results

Training set Test set Validation set
AAE % R2 AAE % R2 AAE % R2

Reg. NN Reg. NN Reg. NN Reg. NN Reg. NN Reg. NN Reg. NN Reg. NN Reg. NN
Strategy A, network 1
3 months 0.48 1.06 66 % 11 % 0.080.42 0.43 0.37 62 % 64 % 0.31 0.40 0.51 1.41 30 %39 % 0.22 0.49
6 months 0.52 1.00 65 % 15 % 0.040.40 0.39 0.38 67 % 65 % 0.24 0.31 0.60 1.43 32 %38 % 0.36 0.48
12 months 0.57 1.24 66 % 21 % 0.080.44 0.43 0.31 63 % 80 % 0.11 0.60 0.71 1.71 33 %39 % 0.36 0.48
5 years 0.44 0.73 61 % 34 % 0.210.51 0.54 0.31 73 % 84 % 0.15 0.61 0.60 1.07 42 %49 % 0.24 0.47
10 years 0.36 0.54 60 % 44 % 0.190.49 0.48 0.23 57 % 85 % 0.14 0.56 0.50 0.76 46 %50 % 0.12 0.45

Strategy A, network 2

3 months 0.48 0.68 66 % 47 % 0.080.49 0.43 0.48 62 % 77 % 0.31 0.64 0.51 0.68 30 %53 % 0.22 0.49
6 months 0.52 0.63 65 % 29 % 0.040.49 0.39 0.39 67 % 77 % 0.24 0.65 0.60 0.74 32 %48 % 0.36 0.45
12 months 0.57 0.76 66 % 25 % 0.080.52 0.43 0.46 63 % 78 % 0.11 0.72 0.71 0.98 33 %39 % 0.36 0.42
5 years 0.44 0.56 61 % 53 % 0.210.59 0.54 0.37 73 % 80 % 0.15 0.68 0.60 0.95 42 %51 % 0.24 0.48
10 years 0.36 0.42 60 % 45 % 0.190.58 0.48 0.26 57 % 86 % 0.14 0.65 0.50 0.75 46 %54 % 0.12 0.46

Strategy B

3 months 0.480.35 66 %73 % 0.08 0.59 0.43 0.25 62 % 74 % 0.31 0.40 0.51 0.79 30 %33 % 0.22 0.43
6 months 0.52 0.54 65 % 53 % 0.040.49 0.39 0.24 67 % 83 % 0.24 0.67 0.60 0.69 32 %43 % 0.36 0.43
12 months 0.57 1.16 66 % 21 % 0.080.43 0.43 0.29 63 % 83 % 0.11 0.67 0.71 1.67 33 %40 % 0.36 0.48
5 years 0.44 0.70 61 % 32 % 0.210.47 0.54 0.25 73 % 89 % 0.15 0.76 0.60 1.00 42 %52 % 0.24 0.46
10 years 0.360.34 60 %68 % 0.19 0.60 0.48 0.22 57 % 84 % 0.14 0.60 0.50 0.61 46 %50 % 0.12 0.36
Regression, equation 5: ∆Rt t

m
+ 3,

( ) =a+b*GAP1+c*GAP2+d*GAP3+e*GAP4+f*GAP5+ε, corresponding equation 6:∆Rt t
m
+3,

( ) =f(GAP1, GAP2, GAP3, GAP4, GAP5)

Reg.=Regression, NN=Neural network, Bold face=Neural network result better than regression result
AAE=Average absolute error, %=percentage correctly predicted direction of future interest rate movement
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Generally the longer end provides better looking plots than the shorter end. In
Figure 6 strategy B networks are plotted. Graphically one can see that in most
figures the predictions tend to go wrong in the beginning at the validation set,
around observations 1400–1700, that is from December 1993 to March 1995.
This shows up especially in the longer end. This is not a difficult time period just
for the neural networks, but for the regression analysis as well (see Figure 5).
There can be a reasonable economic explanation for why this time interval is es-
pecially hard to predict. In fact, the market could have been surprised by the
tightening monetary policy15 at this time period. Besides this time period the neu-
ral networks predictions are generally quite good. The prediction line is often
drawn on the wrong level, but the shape of the line is in some plots very accurate.

Neural network results are very sensitive for neural network architecture and ini-
tial weight selection. Even though the results are good with one network archi-
techtures and data set division, it does not tell us whether this same architecture
will also work in the future. We used a validation period of several years and the
prediction power was best in the end of the period. This is a sign of stability but
one cannot be sure that this is not just a consequence of a lucky data set division.
Here we used a simple data division technique, but to establish further confidence
in the ability of neural networks to forecast interest rates one should test other
data divisions as well. Longer test periods as well as the computation intensive
walk-forward strategy are examples of these.

                                             
15 The federal funds rate increases at this 15 months time period from 3 % to 6 %.
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Figure 6 Neural network prediction plots
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5. Conclusions

According to the expectations hypothesis the interest rate term structure is an in-
dicator of the market beliefs of future interest rates. Research has not empirically
been able to verify this relationship completely even though some support has
been found. It seems like the whole term structure contains more useful informa-
tion than a single difference between individual interest rates and neural networks
were found to provide good results especially in the longer maturity end contrary
to linear regression models. In fact, neural networks seemed to beat regression
analysis in almost every respect.

This paper has shown that neural networks have some potential for interest rate
forecasting. Whether this potential can be turned into stronger support for the
expectations hypothesis or not, is an issue for further research. Especially the in-
pact of data set division as well as the stability of the neural network results with
different network parameters should be investigated further. Also whether the
results hold with other than US data should be examined.
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