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SUMMARY 

The objective of the Heavy Vehicle Simulator tests  (HVS)  was to study the 
influence of the road cross section and edge effects on the structural 
strength and permanent deformations of low-volume roads. The purpose of 
the test results was to verify design methods and calculation  modets.  The 
second purpose was to verify laboratory tests in a full-scale model test. The 
tests were financed by the Finnish Road Administration,  Finnra.  

The test consisted of three test sections: one without a slope, one with 1:3 
slope and one with 1:1.5 slope. The test sections were constructed and 
instrumented in autumn 2000. The area was insulated during the winter and 
the test was performed one year later. The structures were designed to be 
equivalent to the structure of a low-volume road. All test sections consisted 
of a thin asphalt layer of 40 mm, a 400 mm base layer of crushed rock and a 
200 mm subbase layer of gravel. The gravel included fine-grained particles, 
so the capillary rise of the water is evident. 

Instrumentation and measurements were mainly focused on the dynamic 
and permanent deformations in pavement layers and slope in both vertical 
and horizontal direction during test loading. The water content, pore water 
and earth pressures were also measured. The deformation characteristics 
were determined with  triaxial  tests from test samples of each layer. The 
instrumentation was similar in all sections. Most test instruments seemed to 
work well during the test and give reliable results. 

The tested structures were designed to withstand only about 15000 passes. 
The structures were constructed carefully according to the quality 
requirements of  Finnra.  The quality of the construction was monitored using 
level control, density and bearing capacity measurements. The layers were 
of even thickness and clearly fulfilled the quality requirements. The densities 
of the layers did not completely fulfil the quality requirements. The bearing 
capacities were only about 20  -  35  %  of the  Finnra's  requirements. 

Test parameters and environmental conditions, including the water table 
regulation, were controlled during the  HVS  test. All sections were tested 
identically. At the beginning of the test, the water table was 50 mm below the 
surface of the clay  subgrade.  At the end of the test, the water table was 
elevated to the top of the gravel layer and to the centre of the crushed rock. 
Static and cumulative pore pressures were monitored using transducers. A 
super single wheel was used as a loading wheel and the load was raised 
with a step of 10  kN  from 30 to 50  kN.  

The wheel loaded the structure in three different positions: 400 mm, 700 mm 
and 1000 mm from the edge of the slope. One test step consisted of 600 
passes in each position. The pavement response to the moving wheel load 
with several offsets was measured and, finally, the pavement performance 
was evaluated with accelerated testing.  



The permanent and dynamic deformations were followed up with Emu-Coil 
sensors from the lowest part of the crushed rock and gravel and from the 
two topmost parts of the clay (each 200 mm thick). The permanent 
horizontal deformations were also followed from the side slopes.  HVS-
profilometer  measurements were used to monitor the deformations on the 
asphalt layer. Deformations were measured after each 600 passes. 

It was assumed that the asphalt layer (40 mm) did not deform during the test 
and all deformations happened in unbound layers. The distributions of 
permanent deformations were calculated for each 200 mm layer. 63 to 80  % 

 of the permanent deformations occurred in the base layer of crushed rock 
(400 mm) and were distributed evenly between the top and lowest 200 mm. 
The gravel layer underneath deformed about 8 to 13  %  and the upper part of 
the clay layer (400 mm) deformed by 4 to 6  %.  

There were significant deformations in the sloped structures and it can be 
assumed that the loading situation in the steepest structure with a high water 
table was quite close to failure. The damage of the sloped structures was 
easy to notice and the ruts were over 40 mm deep. 

A significant part of the relative vertical deformations of the structure with 
1:1.5 slope was concentrated in the upper 400 mm part of the structure. It is 
obvious that the failure surface develops in this part of the structure with the 
highest deformations and continues towards the slope. The measurements 
of the horizontal displacements from the side slopes confirm this. The 
horizontal displacements of the gentle slope (1:3) were concentrated near 
the surface, while no clear signs of the failure surface were detected. 

The development of the permanent deformations both in vertical and 
horizontal directions was compared with the dynamic deformations. The 
dynamic deformations were measured during one loading pulse. The 
permanent deformations remain quite moderate up to a certain threshold 
value, but beyond that they grow relatively fast.  ln  the gravel layer, the 
threshold value of dynamic deformation was about 100  micrometers/pass. 

 This threshold value can be compared to the yield strength of soil. Once the 
yield strength is exceeded the permanent deformations begin to grow. The 
structures should be designed in such a way that the yield strength is not 
exceeded. 

To be able to estimate the effect of the cross section on rutting in low- 
volume roads, a factor of geometry is introduced. With the help of this factor, 
the effect of the steepness of the slope and also the road width on the rutting 
can be estimated. The basic assumption was that the factor is 1, when the 
width of the road is 6.5 m and the steepness of the slope is 1:3. 

Besides the above observations, other significant results were  

-  The backward calculated resilient moduli of the gravel were a little lower 
than those defined by the laboratory tests. Therefore, the deformations of 
the layer exceeded the anticipated deformations.  

-  The backward calculated resilient moduli of the clay layer were a little 
higher than those defined by the laboratory tests. Therefore, the 
deformations of this layer were below the anticipated deformations.  

-  The speed of the rutting inside each loading step decelerated while the 
test proceeded except when the water table was raised near the asphalt. 
When this happened the speed of the rutting accelerated and it can be 
assumed that the loading situation was near failure.  



FOREWORD 

The research project on low-volume roads formed part of the Road 
Structures Research Project,  TPPT,  financed by the Finnish Road 
Administration  Finnra.  The low-volume road structure project was realised 
through co-operation between University of Oulu, and  VTT  Building and 
transport under a steering body consisting also of Finnish Road Authority 

 (Finnra)  and Finnish Road Enterprise representatives. 

The project steering body consisted of:  

Aarno Valkeisenmäki 	Finnish Road Enterprise, Chair  
Panu Tolla  Finnish Road Enterprise  
Pertti  Virtala  Finn  ra  
Ismo Iso-Heiniemi Finnra  
Tuomas Toivonen  Finnra  
Tuomo  Kallionpää Finnra  
Kari  Lehtonen Finnra  
Esko  Ehrola  University of Oulu, co-ordinator  
Jouko  Belt University of Oulu 
Laura  Apilo VTT  
Jouko Törnqvist  VTT  
Harri  Spoof  VTT 
Sami  Petäjä  VTT,  secretary 

The purpose of this research sub-project was to study the behaviour, 
bearing capacity, deforming and deterioration of various pavement 
structures with a slope under a Heavy Vehicle Simulator  (HVS)  load 
simulating the passing of a lorry. 

The research was carried out by \ITT Building and transport. Heikki  Kangas 
 was responsible for preparing the study, building the test structures and 

instrumentation. Loading of structures was carried out by  Pekka Halonen 
 and  Janne  Sikiö.  Laboratory tests were conducted by Rainer  Laaksonen  and 

structure modelling by  Markku  Juvankoski.  Pekka Jauhiainen  and  Leena 
 Korkiala-Tanttu  processed the test data. The sub-tasks were compiled, 

analysed and the report written by  Leena  Korkiala-Tanttu.  

Espoo,  February 2003 

 VTT  Building and transport  

Tiehallinto 
 Konsultointi  
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GENERAL DESCRIPTION OF THE TEST BASIN AND LOAD 

I GENERAL DESCRIPTION OF THE TEST BASIN AND 
LOAD 

1.1 Test basin  

\JTT  has test basins in  Otaniemi, Espoo,  for conducting load tests with the 
Heavy Vehicle Simulator (HVS). A concrete basin was used for the low- 
volume structures (Figure 1.1). 

The test basin walls are reinforced concrete and the walls and base are 
insulated on the outside with 100 mm thermal insulation. The water level in 
the test basin can be regulated with water from the municipal water 
distribution system. 

4000 
2000 

A( fl mm 

Crushed rock 400 mm 
W2 

Gravel 200 mm 

Single type truck wheel 

 

YULALI  

Clay  1350mm  

 

2500  

0 
 \  Sand 600 mm  

\OO 	c 	o 	o 	O 	/  
3000 

Figure 1.1 	Cross section of low-volume structure (no slope, 1:3 and 1:1.5 
slopes). 

1.2 Load with Heavy Vehicle Simulator  (HVS)  

The Heavy Vehicle Simulator (HVS) is 23 m long, 3.7 m wide, 4.2 m high 
and its total mass is 46 metric tons. The maximum width of HVS's loading 
area is 1.5 m. The total length of the loading area is eight metres, of which 
six metres can be used with even wheel load and speed. At either end of the 
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loading area, a distance of one metre is necessary for accelerating and 
braking the wheel, and, in one-way application of load, for lowering and 
lifting the wheel to and from the surface. The speed of the wheel can be 
adjusted between 1 to 15 km/h. However, in long-term load, the maximum 
speed is 12 km/h. Any distribution with 50 millimetre lateral adjustments can 
be selected as the lateral movement of the test wheel. The load can be 
applied either one-way or in both directions. 

Figure 1.2 	The Heavy Vehicle Simulator  (HVS).  

The maximum load achieved with the simulator is 110 kN and the minimum 
25 to 30 kN. The load can be applied on the structure via either a lorry single 
tyre or twin tyre. The simulator includes a heating/cooling unit for keeping 
the road structure to be tested at a desired temperature. ln this test, the 
temperature was +10 ETC. 

2 CONSTRUCTION 

2.1 Tested structures 

Three different structures were constructed in the test basin: one with no 
slope, one with gentle slope (1:3) and one with steep slope (1:1.5). Before 
moving the HVS to the test site, the slopes were covered with filter cloth and 
filled with gravel to facilitate the move, after which the slopes were dug open 
again. 
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The materials of the structure and the thickness of layers were identical on 
all load sections. The length of each section was 8 m, with the load 
parameters and conditions remaining constant on 6 m (Figure 2.1). 

3m 
'I'. 	 Edge of concrete basin 

	 3m 

sjopel:1,5 	 I  
siope  13 	 bi- 

	

conventional 	component 

I 	I 	I 	I 	I 	I 	I 	 gectectule 

rnpønent 	 convent coal 	 0  
,cE1e ------- --!etdII -----------------------------------------------------

Leading section 3 	 Loading Section 2 	 Loading  stion  1 

Em 	 Em 	 Em 

12m 14m 

North 

Figure 2.1. Map of the structure. 

The  subgrade  of the structure consisted of the existing subsoil drainage and 
a clay layer which had been constructed for studying frost test structures in 
1997. The thickness of the pavement was increased from the previous test 
by removing approximately 150 mm of clay and replacing it with gravel, thus, 
creating a pavement with a total thickness of approximately 640 mm (Figure 
1.1) 

2.2 Construction work 

The surface of the  subgrade  clay was carefully levelled. An application class 
3 filter cloth was fitted over it and a 3-metre wide  bi -component  geotextile, 

 the functioning of which has been the subject of a separate report  /Korkiala-
Tanttu  et al. 2002/, was fitted to the ends of the basin. 

The lowest layer of the unbound pavement (subbase) consisted of a 200 mm 
layer of compacted gravel (sandy gravel) and an upper layer (base course) 
of 400 mm of crushed rock. A more detailed description of the materials can 
be found in Section 4. The subbase was applied so that it could also be 
compacted in the slope structures for the whole width of the loading area. 
The gravel was compacted by a smooth roller  (approx.  10 tons) with three 
passes without vibration. The layer of crushed rock was spread and 
compacted as one layer. It could not be spread as thinner layers because 
the bearing capacity of the gravel layer underneath was low at the time of 
construction. Compacting was carried out using a 400 kg vibrating plate and 
three passes. The bound pavement consisted of 40 mm asphalt  (AB16/100) 

 with grain size of 0 to 16 mm, and bitumen B70/100. The layer was 
compacted in the normal way with a smooth vibratory roller. 

The construction work was carried out in autumn 2000 and the test structure 
was then protected for the winter by insulating it. The actual testing began in 
June 2001. The quality control results of the construction phase are 
presented in Appendices 1 to 3.  
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2.3 Regulating the water table level 

The basic water table level was +15.70. In the final phases of loading each 
section, the ground water table was elevated to the level of the top of the 
gravel layer (W2) at the minimum, and on sections with gentle or steep 
slope, also to the layer of crushed rock (W3 +16.15). The variation in the 
ground water level and the loads on each section are presented in Figure 
2.2. 

Figure 2.2 	The ground water level and the loading times of the different sections. 

3 INSTRUMENTATION 

All sensors were carefully installed according to a separate instrumentation 
plan. The sensors were calibrated before installation and their functioning 
was double-checked immediately prior to installation. Sensors for volumetric 
water content, earth pressure, pore pressure and displacements (Emu-Coil 
sensors and settlement profile tubes) were installed during the construction. 
Detail drawings of the instrumentation of various structures are given in 
Appendix 4. 

Post-construction instrumentation consisted of instruments including 
installation tubes for measuring temperature, water content in the structures 
and variations in the pore pressure, as well as asphalt deflection and slope 
displacement. Surface layer deflection was measured in the asphalt with an 
accelerometer, which was installed in each structure immediately prior to 
beginning the test. After being dug open,  LVDT  displacement gauges were 
installed in the slopes to measure horizontal displacement in the slope. The 
static water table level was monitored in a pilot well.  
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4 TESTING 

4.1 Structural measurements before testing 

The purpose of the tests and measurements conducted during construction 
and before actual  HVS  testing was to study those properties of test 
structures the changes in which were to be monitored during and after the 
testing. The tests also formed part of the quality control of the test structure. 

Falling weight deflectometer measurements 

Falling weight  deflectometer  (FWD) measurements were conducted on the 
surface of the structure on three instances: 23 May 2001 when the structure 
was 'dry'; 21 June 2001 when the water level was elevated to level W2; and 
finally, 9 July 2001 after it was lowered to the basic level before the testing. 
The results are presented in Appendix 5. 

Radiometric measurements 

Radiometric measurements were conducted when the ground water table 
was at level W2 +15.95 (25 June 2001) and after it had been lowered to 
level  Wi  +1575 (29 June 2001). The results for different sections are 
presented in Appendix 6. 

4.2 Laboratory tests of unbound materials 

ln  addition to grain size distribution and  compactibility  tests, only tests to 
determine the resilient moduli and permanent deformations were conducted. 
The strength properties of the materials were not determined. 

The materials and their grain size distribution 

The unbound materials used in the tests were lean clay, sandy gravel and 
crushed rock. The lean clay came from Lahti, sandy gravel (#0-50 mm) from 

 Hyvinkää  and the crushed rock (#0-32 mm) from  Teisko.  Grains of over 32 
mm were removed from the crushed rock and gravel before the tests. The 
grading curves of the materials are presented in Figure 4.1.  
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Figure 4.1 	Grading cutves of the materials studied. 

Corn  pactibility  

Improved Proctor tests were conducted on the sandy gravel and crushed 
rock to determine the maximum dry bulk density and optimum water content. 
The results are presented in Table 4.1. The table also records the dry 
density and water content of the clay sample studied. 

Table 4.1. 	Results of the Proctor tests on the materials and the density and 
water content values for clay. 

Maximum dry bulk density  /  
Material dry density Optimum water 

_____________________________ (91cm 3  I_kNIm content  (%) __________________  
Crushed rock 2.23  /  21.9 5.0  
Sandygravel  2.17/21.3 6.5  

Leanclay(insituvalues) 	I  1.46/14.4 32 

The state of the samples in the deformation tests 

The laboratory tests were conducted, as far as possible, in stress states that 
would be realised in the structures during loading. The stress states were 
estimated with  Plaxis  element program using resilient modulus values typical 
of the soil layers and loads that would be realised in the  HVS  tests. The 
density and water content of the materials were selected on the basis of the 
results of  volumeter  tests and radiometric measurements on the gravel and 
crushed rock. The clay was tested for the in situ bulk density and water 
content (Table 4.2).  
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Table 4.2. 	The target stress states, bulk densities and moisture content at the 
beginning of resilient modulus tests and deformation tests 

Confining  Deviatoric  Bulk density  
Water 

Material pressure stress (kN/m3)  content  
________________________ (kPa) (kPa) ______________ (%)  

Crushed rock, upper layer 60 17- 350 20.15 4.0 

Crushed rock, middle layer 25 7- 140 20.15 4.0 

Crushed rock. lowest layer 15 4-85 20.15 4.0  
Sandygravel  10 2-40 19.56 6.0  

Leanclay  18 1 - 21  ___________ _________  

Loading and measurements 

The tests were conducted with the selected confining pressures and axial 
loads. During the tests, confining pressure was kept constant, while the axial 
stress varied cyclically within pre-set limits. The target duration for the tests 
was 400,000 cycles, but the maximum permissible value for axial 
deformation was set at approximately 2%. During the test, vertical 
deformation of the sample was measured so that the resilient modulus and 
both dynamic and permanent deformation could be calculated at cycles 10, 
100, 10,000, 100,000 (400,000), unless the test was suspended earlier due 
to reaching the deformation limits. 

The load used was a sinusoidal force pulse, the corresponding stress 
amplitudes of which are given in Table 5. The loading frequency was 5 Hz. 

The average densities, water contents and confining pressures realised in 
the samples during testing are presented in Table 4.3. 

Resilient moduli 

A resilient modulus was calculated for each material on the basis of the test 
results. Three moduli were defined for crushed rock, one for gravel and two 
for clay. From one test, two values were calculated for clay, because the 
amplitude of the loading pulse was increased during the test. The results are 
collected in Table 4.4. The values presented in the table were calculated at 
100 load cycles. The other values are presented in Figure 4.2. The target  
deviatoric  stress value was not quite achieved for clay.  
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Table 4.3. State variables and stress states realised in the tests. 

Confining Deviatoric  Density I Bulk Water 
Material pressure stress density content 

_____________________ (kPa) (kPa) (g/cm 3  I  kNlm 3) (%)  
Crushed rock, 

upper_layer 60.0 ___________ 19-350 ________________ 2.09/20.5 ________________  3.7  

Crushed rock, 
middle_layer 25.4 ___________ 8.5- 140 ________________ 2.09/20.5 ________________ 3.6  ____________  

Crushed rock, 
lowest_layer 15.6 ___________ 6.0-80 _______________ 2.11/20.7 _______________ 3.6  

Sandygravel  10.7 4.2-40 2.03/19.9 6.0  
Leanclay  18.3 9.0-14 1.46/14.4 32  
Leanclay  18.3 4.0-20 1.46/14.4 32 

Table 4.4. 	The resilient moduli, and stress and deformation values realised at 
100 load cycles. 

Resilient  Deviatoric  Dynamic Permanent 
Material I 	modulus stress relative relative  

______________________________________ 
(MPa) (kPa)  

____________________________ 

deformation 
(-) 

deformation 
(-)  

Crushed rock, 
____________________ 

upper_layer 349 ___________ 18.9-350 ________________ 0.00095 ______________  0.00384  
Crushed rock, 
middle_layer 213 ___________ 8.2-140 ________________ 0.00062 ______________ 0.00098  ______________  

Crushed rock, 
lowest layer 179 5.6 -85 0.00044 0.00053  

Sandygravel  80 4.3-40 0.00044 	I 0.01670  
Leanclay  11.7 9.0-14 0.00041 0.00839 
Lean clay 1  (10,000 cycles) 7.0 4.2  -  19 0.00213 0.0155 

ss, 
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a) -0- Crushed  rock_upp 
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Figure 4.2. 	Resilient modulus values as a function of a cumulative number of 
load repetitions (cycles).  
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Permanent deformation 

A value for permanent deformation was defined for each test as a function of 
the number of cycles. Permanent deformation for all tests is presented in 
Figure 4.3. Figure 4.4 compares the relationship between the dynamic and 
permanent deformation in crushed rock on different load levels and load 
cycles. The results clearly reveal that after a certain dynamic deformation 
(stress state), the proportion of permanent deformations significantly 
increases,  ln  this test, the threshold value is approximately 0.055% to 
0.06%. 

10.00 

-'-Crushed  rock_upper 
-u-Crushed  rock_mid  
-å- Crushed  rock_lower 
-*-  Gravel  
-*-  Clay 

1,00 

0 
0 
0 

5, 

J 
0,01 

10 	 100 	 1000 	 10000 	 100000 	1000000 

Number of load cycles 

Figure 4.3. 	Development of permanent deformation in the tests due to the 
number of load repetitions.  
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Figure 4.4. 	Crushed rock: the relationship between resilient and permanent 
deformation. 

4.3 Loading programme 

All the structures in the low volume test were loaded according to the same 
loading programme (Table 4.5).  ln  addition, the sloped structures were 
finally loaded with a load of 50  kN,  after the water table level had been 
elevated to half-way through the crushed rock. The tyre pressure on all 
wheel loads was 700  kPa.  The centre lines of loading and instrumentation 
were located 700 mm from the edge of the surface layer.  ln  interpreting the 
results, the position 400 mm from the edge corresponds to 300 mm to the 
right of the centre line and the position 1000 mm corresponds to 300 mm to 
the left of the centre line (-300 mm). 

Table 4.5. 	Loading programme  

________________ _________ 	All structures 

Number of load 
repetitions _______________  

Wheel 
load (kN) 

Water table level 
from the surface 

layer (mm) 

Lateral position of wheel from 
the edge of the surface layer 

(mm). 
0 -250 20 700 300  -  1100 (at 50 mm intervals) 

250-340 30 700 400,  700and  1000 
340-430 40 700 400,  700and  1000 
430-520 50 700 400,  700and  1000 
520 -5900 30 700 400. 700 and 1000 

5900-11300 40 700 400,  700and  1000 
11300-14900 50 700 400,  700and  1000 
14900-16700 50 	I 450 400,  700and  1000 

Sloped structures also: 
16700- 18500 	50 	 250 	 400, 700 and 1000 
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5 MEASUREMENT RESULTS 

5.1 Pore pressure measurements 

The development of pore pressure in each load section was monitored with 
pore pressure sensors. The sensor tips were located in the clay  subgrade  at 
least 60 mm below the basic water level. The measurement results are 
presented in Appendix 7. The changes in load levels, which are clearly 
visible in the results, have been indicated with arrows. 

5.2 Earth pressure measurements 

Earth pressure measurements were conducted to monitor earth pressure in 
the upper surface of the gravel and clay layers. Each measuring point had 3 
earth pressure cells. The measurements are the average results from these 
three cells. The measurement results by section are presented in Appendix 
8. The results of earth pressure measurements seem reliable and 
correspond quite well to the changes in loading. The cells measure total 
pressure, that is, the sum of the contact pressure and pore pressure. The 
elevation of the water table level towards the end of the testing is evident in 
the results, particularly for the clay layer. 

5.3 Asphalt deformation 

Accelerometers 

The deflection of the load section centre line in the surface of the asphalt 
was measured with accelerometers in each structure. Appendix 9 presents 
the accelerometer results from the various loading sections. 

The vertical displacements measured at different sections for wheel loads 30 
and 40  kN  increase as the slope steepness increases. With the maximum 
wheel load, 50  kN,  there is a great difference between the  slopeless 

 structure and the structures with slope. The difference in the maximum value 
for transient vertical displacement in the structure with no slope and 
structures with slope is more than double (from 1.9 mm to over 4 mm). The 
steepness of the slope is not significant as regards the maximum value, as 
the transient vertical displacements were nearly equal for 1:3 and 1:1.5 
slopes.  
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Profilometer  measurements 

The development of ruts as a function of load was measured with a laser 
 profilometer.  The  profilometer  measurements were conducted on three 

levelling lines on each loading section. The average development of a rut on 
different loading sections is presented in Appendix 10. A clear increase in 
the speed of rutting could be detected in the  slopeless  section after 9,600 
load repetitions. At that time, the water content of the structure increased 
due to heavy rain. The greatest increases in the speed of rutting could be 
detected in all structures in connection with elevating the water table level.  

Loadman  measurements 

Appendix 11 presents the results of  Loadman  measurements from the top 
surface of the structure for different sections during testing. The results of 
the  Loadman  measurements only reflect the bearing capacity of the top 
Layers. For the structure with no slope, there is a measurement from 29 
August 2001, in which the bearing capacity has dropped due to increased 
water content (heavy rains). 

5.4 Deformation in unbound layers 

The permanent and resilient deformations in the lowest part of crushed rock, 
subbase and top part of the clay layer were monitored with Emu-Coil 
sensors in each section. The sensors were at approximately 200 mm 
intervals at the beginning of the test. The permanent and resilient 
deformation measurement results for the sensors are presented in 
Appendices 12 to 14. 

5.5 Lateral displacement 

Permanent lateral displacements of the surface layer on all loading sections 
were monitored in relation to a reference tack on the side of the basin. 
Lateral displacement gauges monitored both permanent and resilient 
horizontal displacements in the middle of the crushed rock and gravel layers 
on both sections with slopes. (Appendix 15). 

5.6 Distress survey 

Distress surveys were made on the top of the surface layer immediately after 
the first cracks appeared. Subsequently, the damage was surveyed after 
each loading phase. The damage was recorded on maps, which indicated 
when they appeared and the corresponding loading figure. Only some minor 
damage (short, narrow cracks) was observed in structures with no slope or 
gentle slope. The structure with steep slope, however, showed significant  
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cracks, with the largest appearing behind the rut. Appendix 17 presents 
images of the damage in the structure with steep slope. 

6 MODELLING 

6.1 Defining the task 

The purpose of studying the structures of the Heavy Vehicle Simulator 
 (HVS)  by calculations was to find out how well the calculated results 

correspond to the results measured in the structures. The calculated results 
were compared to loading results from  HVS  structure measurements 
corresponding to "one pass of the load".  

HVS  loads were simulated in the calculations according to the loading 
programme in a total of nine calculations: for all three slope  steepnesses 

 and three different load positions. Each calculation also included all three 
loading levels used in the test programme (wheel loads 30  kN,  40  kN,  50 

 kN).  Figure 6.1 presents the monitoring points used in the element grid 
corresponding to the sensor locations in the structure. 
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E 
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a) 
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0,0 
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0,5 	1,0 	1,5 	2,0 	2,5 	3,0 	3,5 	4,0 
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—Ground level 
—Asphalt  
- -  Crushed rock 

 -  —Gravel  
- - -  Sand 

Figure 6. 1. 	The positions of the element grid monitoring points, structure with 
deep slope (correspond mainly to sensor positions in the test 
structure). 

Modelling the structures was carried out with 3D-FLAC  v. 2.00 software. It is 
a numerical modelling tool based on an explicit finite difference formulation 
for analysing soil and rock structures developed by the  U.S.  company Itasca 
Consulting Group.  
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The element grids used in the study for the 1:1.5 slope are given in 
Appendix 18. The figures in the appendices also show the pavements in the 
structures and their division into elements. 

6.2 Material parameters and material models 

The material parameter values used in studying the various materials are 
given in Table 6.1.  ln  the study, the asphalt layer is described as an elastic 
material and the soil materials as based on Mohr-Coulomb's elastic-plastic 
model. 

Table 6.1. 	The material properties used in studying the various materials. 

Material 

_____________ 

Bulk density 

________ 

Modulus 

E _______ 

Poisson's 
ratio 

________ 

Angle of 
friction I 
dilatation 

l(j) 

Cohesion 

c ________ 

Bulk 
modulus 

K _______ 

Shear 
modulus 

G  _________ 
________________ kg/rn 3  kPa - kPa  Pa Pa 

Asphalt, AB 2400 2000 0.35  - - 2 . 22*10 7 . 41*10  
Base course 1,  KaM  2000 349 0.30 38(8) 5  2 . 91*10 1 . 34*10  
Base course 2,  KaM  2000 194 0.30 38(8) 5  1 . 78*10 8 . 19*10/ 
Basecourse3, KaM  2000 125 0.30 38(8) 5  1 . 49*10 6 . 88*10/  

Subbase, Sr 1900 80 0.35 33(1) 5  8 . 89*10/ 2 . 96*10/ 
Subgrade,  Sa  1800 7 0.45 5 (0) 30  2 . 33*101 2 . 41*lOb  

Sand 1900 60 0.35 34 (4) 5  6 . 67*10/ 2 . 22*10/  

6.3 Results from the calculations and comparison with 
observed responses 

Appendix 18 (load nearest to the slope, slope 1:1.5) presents the level 
curves for the displacement of the surface of the whole structure, and the 
graphs of the state of the structure's elements on the load line. 

The calculated results were compared to results measured in the structure. 
The results observed in the actual structure are calculated as an average of 
1 to 3 individual results. The results for displacements and deformations 
observed and calculated for different slope  steepnesses  are compared in 
Figure 6.2.  
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Figure 6.2. 	Main results measured in the structures for different slope gradients. 
Displacements and deformations.  

ln  general, when comparing the results observed and calculated for different 
slope  steepnesses,  it can be noted that:  

-  the calculated displacements in the top surface of the asphalt (transient 
settlement) corresponded reasonably well to the measured 
displacements (variation from —15% to +45%).  

-  the calculated relative deformations in the lowest part of the crushed rock 
corresponded reasonably well to the measured deformations (variation 
from —29% to +32%). 
the calculated relative horizontal tensile strain in the lowest part of the 
crushed rock were greater than the measured ones (variation from +85% 
to +149%).  

-  the calculated relative deformations in the gravel were greater than the 
observed ones (variation from +50% to +112%).  

-  the calculated relative deformations in the top part of the clay were 
smaller than the observed ones (variation from —33% to —42%).  

-  the calculated relative horizontal tensile strains in the top part of the clay 
corresponded reasonably well to the measured tensile strains (variation 
from —9% to +53%).  

-  the calculated relative deformations in the "middle part" of the clay were 
smaller than the measured ones (variation from —22% to —38%).  

-  the calculated horizontal displacements in the slope corresponded poorly 
to the measured displacements (variation from +103% to +120% in 
crushed rock and +723% in gravel). 

On the basis of this comparison, it can be said that the deformations and 
stresses appearing in the test structures during loading can be estimated 
reasonably well with quite rough initial values and models. The greatest 
differences seem to be related to horizontal tensile strains and deformations 
in the gravel and clay layers.  ln  general, it can be said that the calculated  
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failure mechanisms of a deforming structure do not correspond to those in a 
real, tested structure. 

6.4 The effect of the test basin on deformations in the 
structures 

Before the testing began, a pilot study was carried out with  Plaxis  element 
program on the effect of the test basin on the scale of deformations  /Kangas 

 &  Törnqvist  2001/. The effect of the basin was studied with two different 
calculations: the first with the actual test basin and a second which modelled 
a wider cross section. On the basis of the calculations, both displacements 
and failure loads in the basin structure were smaller than in the 
corresponding wider cross section. For failure load, the differences were in 
the order of —12 to —33%, for horizontal displacements —4 to —7% and for 
vertical displacements —12 to —15%. For failure load, the range was quite 
wide, for displacements it was smaller. 

7 DISCUSSION 

7.1 Quality of construction 

The basis for test structure design was to construct a structure that 
corresponds to the structure of a low-volume road.  ln  actual practice, the 
structure was designed with a  multilayer  programme to have such a load 
capacity that the structure rutted sufficiently under a reasonable number of 
load repetitions (approximately 15,000 passes). That is, the structure was 
not designed to correspond to any actual road class. 

According to the compaction measurements and laboratory tests, the 
average degree of compaction achieved was 93.6% and the individual 
minimum value was 91.5% (Appendix 2). The average E 300  bearing capacity 
defined on the basis of  Loadman  measurements was 22.5  MPa  and the 
lowest value 20  MPa,  which is clearly below the general minimum bearing 
capacity for subbase, 105  kPa.  

According to the compaction measurements of base course crushed rock, 
the average degree of compaction was 93.9% and the lowest value 89%. 
The average value from falling weight  deflectometer  measurements was 46 

 MPa  and lowest individual value 37  MPa.  The average F300  defined on the 
basis of  Loadman  measurements was 44  MPa  and the lowest value 38  MPa 

 (Figure 7.1). The general minimum bearing capacities for the base course 
(215  kPa)  were also not met.  
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Figure 7.1. 	Bearing capacity measurements from the top of each layer before 
testing. 

The thickness of the surface layer was calculated from the levelling results. 
According to them, the average thickness of the surface layer in the 
structure with no slope was 47 mm, that of the structure with gentle slope 37 
mm and that of the structure with steep slope 41 mm. On the basis of  APAS 

 calculations, it can be estimated that the 10 mm difference in the thickness 
of the surface layer increases stress in the base course by 11 to 29% and in 
the subbase by 5 to 11%. The thinness of the surface layer in the structure 
with gentle slope is clearly evident in the bearing capacity measurements 
conducted on the top of the surface layer (Figure 7.1). 

7.2 The distribution of permanent deformations in the structure 

The amount of permanent deformations in the structures was monitored with 
Emu-Coil measurements. The top sides of the upper Emu-Coil sensors were 
levelled after the tests and the deformation of the base course and the 
surface layer was calculated from the results. It was assumed that the 
asphalt layer was incompressible. Figure 7.2 shows the proportion of 
deformation in each layer in the total rutting defined in this way. Changes in 
the water table level had a crucial effect on the results, so the comparisons 
were based on cases in which the water table level was identical, +15.95. 
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Figure 7.2. 	The proportion of the deformation of total rutting in 200 mm layers, 
with the water table level in all structures at +15.95. 

The results indicate that in structures with no slope or gentle slope, the 
greatest deformations occur in the lowest part of the base course, while in 
the structure with steep slope, the deformations were equally  targe  in both 
parts. 63 to 80% of permanent deformations occur in the 400 mm thick base 
course and the surface layer. The share of the subbase (200 mm) of the 
settlements is approximately 9 to 13%, and that of the upper parts of the  subgrade  (400 mm) 4 to 6%. The permanent deformations for the different 
200 mm layers are presented in Figure 7.3. 
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Figure 7.3. 	The deformations (calculated from maximum settlement) for the 
different 200 mm layers.  
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The development of permanent deformations in different structures under 
different loads is presented in Figures 7.4 to 7.6. The deformation for the 
upper part of crushed rock is calculated, the others are based on Emu-Coil 
measurements.  ln  the structure with no slope, the maximum of permanent 
deformations develops in the lowest part of the crushed rock layer 
approximately 0.24 to 0.44 m from the surface when the load increases to 40 

 kN  or greater.  ln  both structures with slopes, however, the deformations 
concentrate the more strongly on the upper part of the crushed rock the 
greater the load and the higher the water table level. According to 
calculations, the thinner surface layer of the structure with gentle slope 
increases the stress in the upper layers and, thus, deformations in relation to 
corresponding layers in other structures should also be greater. Yet, the 
measurements did not reveal any significant increase in deformations. 
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Figure 7.4. 	The development of deformations under different loads in the 
structure with no slope.  
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Figure 7.5. 	The development of deformations under different loads in the 
structure with 1:3 slope. 
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Figure 7.6. 	The development of deformations under different loads in the 
structure with 1:1.5 slope. 

The distribution of permanent horizontal displacements in the sloped 
sections is presented in Figures 7.7 (1:3 slope) and 7.8 (1:1.5 slope) as a 
function of the load. The uppermost measurement is based on the 
displacements of reference tacks in the surface of the structure and the 
lower ones on lateral displacement gauges in the slopes. According to the 
measurements, on gentle slopes, the displacements are at their greatest 
near the surface, and on steep slopes, the displacements concentrate in the 
crushed rock layer. The structure with steep slope is very near to failure and  
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the deformations generated are great. The concentration of permanent 
deformations in the crushed rock layer indicates that the failure surface is 
located in this layer. Whereas, in the structure with gentle slope, the 
deformations concentrate in the upper parts of the structure, in which case 
the failure surface is probably located higher and reaches the soil surface. 
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Figure 7.7 	The development of horizontal displacement under different loads in 
the structure with 1:3 slope. 
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7.3 The ratio of resilient and permanent deformations 

7.3.1 The ratio of horizontal deformations 

The ratio of resilient and permanent (plastic) horizontal deformations adhere 
to the principle that permanent deformations increase as resilient 
deformations increase. Figure 7.9 shows the ratio of horizontal deformations 
in the lowest part of crushed rock under a load of 50  kN.  Both resilient and 
permanent deformations were measured with lateral displacement gauges 
that were in the slopes. The positions of the lateral displacement gauges are 
shown in the cross section in Appendix 4. 

The figure 7.9 shows a clear increase in permanent deformations per pass 
once a certain threshold value in resilient deformations is exceeded. This 
threshold value for crushed rock and gravel is approximately 100  jim.  The 
extent of resilient deformations depends on the stress state prevalent in the 
structure at the time. The increase in permanent deformations is also 
significantly influenced by changes in water content and the steepness of the 
slope. 

The great differences in resilient horizontal deformations, while the 
steepness of the slope and the water content remained the same, are due to 
the way the structure was loaded. The structure was loaded in cycles of 600 
passes so that the loading wheel was first positioned on the left side of the 
rut, approximately 300 mm from the centre, then in the centre and finally 300 
mm to the right of the rut (positions 1, 2 and 3 in Figure 1.1). The greatest 
displacements were naturally observed in load position 3 when the wheel 
was nearest to the slope, and the smallest when the load was the farthest 
from the slope.  
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Figure 7.9 	Ratios of horizontal deformations in the lowest part of crushed rock 
tinder a load of 50 kN. 
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7.3.2 The ratio of vertical deformations 

Vertical deformations were compared on the basis of Emu-Coil 
measurements. The comparison follows the same principles as for horizontal 
deformations. However, the position of the sensors differed significantly, as 
the lateral displacement gauges were located in the slope whereas 
deformation sensors were directly underneath the centre line of loading. 
Vertical deformations have only been compared for measurements from 
directly under the load. 

Figure 7.10 presents the ratios of resilient and permanent vertical 
deformations in the lowest part of crushed rock under a load of 50  kN. ln  this 
study, resilient deformation is the total deformation, that is, it is the sum of 
dynamic and plastic resilient deformation. Such a clear turning point or 
threshold value as for horizontal deformations cannot be detected for vertical 
ones. 
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Figure 7. 10 Ratios of vertical deformations in the lowest part of the crushed rock. 

7.3.3 Resilient moduli back-calculated from the structure  

\Alhen  the transient stress state of the structure (earth pressure  c zmax )  and 
resilient deformation  zmax  (Emu-Coil) are known, the corresponding dynamic 
resilient moduli can be determined with the Formula 7.1: 

E =  A0: max 	 (7.1) 
A 8 max 

in which 	E 
	

dynamic resilient modulus  (MPa)  
AEzmax 	incremental resilient vertical deformation 
A(5zmax 
	incremental transient vertical earth pressure  
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Earth pressure was monitored in both the gravel and clay layers. The 
dynamic resilient modulus of gravel is presented in Figure 7.11 and that of 
clay in Figure 7.12. The figures furthermore show the change in wheel load 
during the testing and the results from  Loadman  bearing capacity 
measurements of the gravel layer. The values of the moduli, for gravel, in 
particular, show significant variation. The average values for the moduli are 
given in Table 7.2. 
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Figure 7.11 	The dynamic resilient modulus of the gravel layer. 
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On the basis of the results, it cannot be said that the steepness of the slope 
influenced the values of the modulus in an unambiguous way. The structure 
with steep slope received higher modulus values than structures with no 
slope or gentle slope, particularly in the gravel layer. The greater variation in 
measurement results in the gravel layer can be due to defective functioning 
of earth pressure cells and/or Emu-Coil measurements in granular materials. 
The modulus defined for clay in laboratory tests after 10,000 load cycles is 
approximately 7.0 MPa and for gravel after 100 cycles 80 MPa in the 
corresponding range of stress. The E 300  resilient modulus values (Loadman) 
measured from the surface of the gravel varied between 20 and 25 MPa. 

Table 7.1. Average resilient moduli in clay and gravel layers for different structures. 

Structure Resilient modulus, gravel,  MPa  Resilient modulus, clay,  MPa  
laboratory result 80 7 

no slope 62 17 
1:3 46 16 

1:1,5 76 15 

7.4 Separate interesting phenomena 

According to profilometer measurements, the speed of rutting within each 
load step decreased (Figures 7.13 and 7.14) in all structures. The results 
show some variation, but, on average, the trend is clear. However, if the 
material's water content increased (heavy rains, elevating the water table 
level to W2 and W3), rutting speed also increased, ln the structure with 
steep slope, the elevation of the water table level to the crushed rock (W3) 
significantly accelerated rutting speed. It is even possible that continuing the 
loading might have caused a local failure. 
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Figure 7.13 Rutting speed, no slope.  
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GEOM  FACTOR 

0 	 5000 	 10000 	 15000 	 20000 
Number of load repetitions 

Figure 7. 14 Rutting speed, slope 1:1.5 

8 GEOM FACTOR 

8.1  GEOM  factor on the basis of  HVS  tests 

A structural deformation design method developed in the low-volume road 
project represents the width of the road and the steepness of the slope with 
the  GEOM  factor. The  GEOM  factor was determined in the  HVS  test on the 
basis of the development of rut deepness measured by a  profilometer. 

 Figure 8.1 shows the development of rut deepness for all three structures. 

Thus, in order to determine the  GEOM  factor, there was data on the 
development of rut deepness inflicted on the structure on different 
structures, different distances from the edge of the slope and different loads. 
As for the road width that affects the factor, it was decided on the basis of 
the results that loading 450 mm from the edge corresponded to road width 
5.5 m, loading at 750 mm to 6.5 m and loading at 1050 mm to 7.5 m. The 
solution was arrived at on the basis of average rut positions measured on 
roads. That is, the  GEOM  factor cannot be directly applied for roads with 
wider pavements.  
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GEOM  FACTOR  
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- 

-_I  ____  I_II,LI IUILI  I- _. __ 
I  _. I ___  I  - I __ 

___  

I_-  ; UR  
_____  

0 	2000 	4000 	6000 	8000 	10000 	12000 	14000 	16000 	18000 

Number of load repetitions 

Figure 8.1 	Development of rut deepness as a function of load. 

The results for rutting speed are comparable, except for the results on the 
structure with no slope after 9,500 load repetitions. After this number of load 
repetitions, the development of rut deepness shows a strong increase as 
compared with the corresponding results for other structures. This was due 
to the structure getting wet because of heavy rains, thus increasing rutting. 

Because of the limitations caused by the increase in water content, it was 
decided to use development of rut deepness for 500 to 9,500 passes as 
basic data for all structures (load 30/40  kN)  and, for sloped structures, 
development of rut deepness that occurred at 11,300 to 14,900 passes (load 
50  kN).  A suitable fitted curve was sought on the basis of these rutting 
speeds. 

In the last phase of determining the  GEOM  factor, the value of rutting speed 
for 6.5 m road width and 1:3 slope was set as a reference value. The value 
of this rutting speed was defined as 1 and other figures were converted to 
correspond to the reference value. This gives the equation in Formula 8.1 for 
the  GEOM  factor. Figure 8.2 presents the value of the  GEOM  factor in a 
graphic format. 

—0.273•B 2  +2.785•B-4.971  
GEOM =  0.407 + 	 (kas'I/) 	 (8. 1) 
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in which 
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Figure 8.2 	The GEOM factor as a function of slope steepness and road width. 

9 CONCLUSIONS AND SUGGESTIONS FOR FURTHER 
RESEARCH 

A great deal of measurement data was generated in different phases of the 
 HVS  tests.  ln  this report, the data has been analysed in view of the aims of 

the study. The results will be analysed further in the future. Further research 
will look more deeply into the ways permanent deformations are created and 
the effect changes in water content have on them. 

On the basis of research already carried out, it can be concluded that:  

-  Most of the deformation in the test structures occurred in the lowest part 
of the base course, 240 to 440 mm from the surface of the road. 63 to 
80% of total rutting occurred in the uppermost 400 mm of the unbound 
layers. The share of the gravel layer deeper down was 9 to 13%.  ln  the 
structure with no slope, the deformation maximum was located deeper 
(250 to 450 mm) than in structures with slope  -  1:3 slope in particular  - 

 in which the maximum was located the highest (50 to 250 mm).  

-  Deformations in the structure with gentle slope were not much greater 
compared to other structures even though its surface layer was, on 
average, the thinnest.  

-  Changes in the structure's water content had a significant effect on 
permanent deformations.  

-  Permanent deformations begin to increase significantly after exceeding a 
threshold value for stress (dynamic deformation) that depends on the 
material and its state of compaction. This phenomenon was observed in  
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both laboratory tests and the test structures. It was particularly clear for 
horizontal displacements. The threshold value for resilient horizontal 
deformation for both gravel and crushed rock was approximately 100 .tm. 

-  It was possible to design the test structure in advance quite well. 

-  Although the test structure was constructed carefully, there were 
significant variations in the thickness of the surface layer, bearing 
capacities and densities of the layers. Preloading the structures before 
testing adjusted these differences slightly. 

-  Apart from the settlement profile measurements, the results of 
deformation measurements were reliable. 

On the basis of studying the modelling, it can be said that the 
deformations and stresses appearing in the test structures during loading 
can be estimated reasonably well with quite rough initial values and 
models. 

-  The location of the failure surface in different structures can be deduced 
on the basis of the results of deformation measurements. 

•  The structure with steep slope was very near failure limit state, and 
the deformations generated were great. The greatest horizontal 
displacements in the slope were located in the gravel layer, which 
suggests that the whole slope moved horizontally to a significant 
extent and that the failure surface was located deeper in the gravel 
layer. 

•  The greatest horizontal displacements in the structure with gentle 
slope occurred in the upper parts of the slope. The majority of 
displacements, both horizontally and vertically, occurred in the upper 
parts of the structure, so the failure surface was also mainly located 
in the crushed rock layer. 

• ln  structures with no slope, the failure surface ran through the lowest 
part of the crushed rock and rose higher immediately outside the 
loading area. 

The resilient moduli back-calculated for the gravel layer from the 
measurements were lower than those determined in laboratory tests, and 
the back-calculated moduli for the clay layer were higher. 
Correspondingly, it was observed that according to various 
measurements, less stresses are concentrated in the gravel layer and 
more in the upper part of the clay layer than was anticipated on the basis 
of the modelling. 

The speed of rutting decreased in each load step as the number of load 
repetitions increased. 

-  Rut deepness, slope steepness and load distances from the edge were 
used to deduce the equation for the GEOM factor representing the shape 
of a road cross section, which can be used for designing improved road 
structures. This factor allows estimation of the impact of the cross 
section on rutting speed. 
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APPENDICES 

LEVELLING RESULTS FOR THE UPPER SURFACE OF 
DIFFERENT LAYERS 

Clay top surface __________  
Date: 27.10.2000] 

No slope Slope 1:3 Slope 
1:1,5 

average 15.739 15.738 15.746 
deviation 0.012 0.011 0.010 

min 15.722 15.713 15.729 
max 15.762 15.754 15.767 

Gravel 
central level control line __________  

Date: 113.11.20001 
No slope Slope 1:3 	Slope 

I  jue 
 Planned 

+15.75  

/ jue 
 Planned  

1:1,5 
15.951 15.950 15.959 
0.005 0.005 0.003 
15.939 15.934 15.954 
15.966 15.960 15.967 
0.212 0.212 0.213 

115.11,20001 
No slope Slope 1:3 Slope 

1:1,5 
16.348 16.343 16.362 
0.007 0.007 0.004 
16.337 16.329 16.351 
16.359 16.356 16.368 
0.396 0.393 0.402 

24.11.20001 
No slope Slope 1:3 Slope 

1:1,5 
16.395 16.380 16.403 
0.002 0.006 0.003 
16.391 16.369 16.397 
16.398 16.389 16.407 
0.047 0.037 0.041 

average 
deviation 

min 
max 

thickness of the 
layer 

Crushed rock 
Date: 

average 
deviation 

min 
max 

thickness of the 
layer 
AC 

Date: 

average 
deviation 

min 
max 

thickness of layer 

+  15.95 

I  jue 
 Planned  

+  16.35 

I  jue 
 Planned  

+  16.40 

Average  thicknessess  of the layers. 

Layer Noslope 1:3slope 1:1,5slope 
AC4Omm  47 37 41 

Crushed rock 
400 mm  396 

_____________ 
393 

_____________ 
402 

_____________ 
Gravel200mm  212 212 213  
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APPENDICES 

DENSITY MEASUREMENTS OF STRUCTURAL LAYERS  

Troxier  and volumeter test results for the gravel layer. The maximum dry 
bulk density according to laboratory tests is 21.3 kN/m 3. The comparison of 
degree of density was carried out between that and the volumeter tests 
considered more reliable. 

Degree of density  %  

Measurement 
Water content  Bulk density,  kN/m3  

Dry bulk density, Sand cone 

7.11.2000 
w-%  Troxier  I  volumeter 

kN/m 3  volumeter  I 
Troxter  I  volumeter Troxier  I  volumeter  maximum dry bulk  

______________________ __________________ _____________________ ____________________  density 
No slope 7.70  /  9.07 21.56  /  21.27 20.02  /  19.49 91.5 
Slope 1:3 8.37/8.05 21.77/22.31 20.08/20.65 96.9 

Slope 1:1.5 7.27/7.83 21.53  /  21.22 20.07  /  19.69 92.4 
Average 7.8/8.3 21.6/21.6 20.1 /19.9 93.6  

Troxler  and sand cone volumeter test results for the crushed rock layer. The 
maximum dry bulk density according to laboratory tests is 21.9 kN/m 3. The 
comparison of degree of density was carried out between that and the 

 volymeter  tests considered more reliable. 

Degree of density  %  
Water content Dry bulk density, Sand cone  

Measurement w-% Bulk density,  kN/m 3  kN/m3  volumeter  I 
15.11.2000  Troxler /  sand cone  Troxler  I sand cone  Troxler  I sand cone maximum dry bulk  

______________________ 
volumeter 

__________________ 
volumeter 

____________________ 
volumeter 

____________________  density 
No slope 3.26  /  3.3 21.34  /  20.15 20.67  /  19.49 89.0 
Slope 1:3 4.95  /  4.5 19.47  /  21.85 18.58  /  20.91 95.5 

Slope 1:1,5 4.78/4.6 20.58/21.28 19.65/21.28 97.2 
Average 4.3/4.1 20.5/21.1 19.6/20.6 93.9  
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APPENDICES 

BEARING CAPACITY MEASUREMENTS OF 
STRUCTURAL LAYERS  

Loadman  measurements on gravel level 
Li 

Line 1,  pointl  24 20 23 
Line 1,  point2  24 19 25 
Line 1, point 3 23 16 25  
Linelpoint4  23 17 24  
Linel,point5  23 15 23 
Line 2, point 1 21 20 30 
Line 2, point 2 21 20 27 
Line 2, point 3 20 20 28 
Line 2, point 4 20 20 28 
Line 2, point 5 20 20 28 
Line 3, point 1 24,0 22,0 23,0 
Line 3, point 2 23 24 24 
Line 3, point 3 22 23 25 
Line 3, point 4 22 23 24 
Line 3, point 5 22 23 23 

Average 2213 20,13 25,33  

Loadman  measurements on crushed rock layer 

Line 1, point 1 35 38 29 
Line 1, point 2 43 46 46 
Line 1, point 3 51 46 48 
Line 1, point 4J 52 47 47 
Line 1,  point5  51 46 51 
Line 2, point 22 26 28 
Line 2, point 2 34 40 40 
Line 2, point 3 39 42 41 
Line 2, point 4 40 44 42 
Line 2, point 5 40 44 43 
Line 3, point 1 29 36 25 
Line 3, point 2 43 51 38 
Line 3,  point3  48 54 41 
Line 3, point 4 48 57 42 
Line 3, point 5 48 56 44 

Average 43,2 50.8 38  
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FALLING WEIGHT  DEFLECTOMETER  MEASUREMENTS 

Falling weight deflectometer measurements on top of crushed rock 
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11 	 16 	 21 	 26 	 31 	 36 
Distance  (mj  

Falling weight  deflectometer  measurements on top of crushed rock. 
Deflections. 

Falling weight deflectometer measurements on top of asphalt I 
Deflections [50 kN] 	 Asphalt temperature 6 3  oC  

No slope 1:3 	pe  J 115  sloPe  — 110opebt  
component  geotextile 

Noslope  a 
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APPENDICES 

MAP AND CROSS SECTIONS OF TEST SITE 
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Effect of steepness of sideslope on rutting 	 Appendix 5 (1/2) 

APPENDICES 

FALLING WEIGHT DEFLECTOMETER MEASUREMENTS BEFORE TESTING 

FWD-measurements on tope of asphalt I Bearing capacity 
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Figure 1. Results of bearing capacity measurements 23 May, 21 June and 9 July 2001 
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Figure 2. Bearing capacity measurements 23 May 2001 
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Effect of steepness of  sideslope  on rutting 
	 Lute 6 (1/2) 

APPENDICES 

RADIOMETRIC DENSITY AND MOISTURE MEASUREMENTS BEFORE 
TESTING 
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Figure 3. Slope 1:1.5. Pore pressure measurements. Arrows indicate testing dates. 
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EARTH PRESSURE MEASUREMENTS 

Earth pressure on top of gravel,  structute  with no slope 
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Earth pressure on top of gravel, 1:3 slope 
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Dynamic vertical displacement, accelerometers, 1:1.5 -slope 

Figure 3. Resilient vertical displacement, accelerometer, test section with 1:1.5 slope  
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LOADMAN  measurements on top of surface layer, section with no slope 
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Figure 1.  Loadman  measurements on top of asphalt, section with no slope. 
Measurements on different levelling lines Al, A2 and A3. Al is located in the  bi - 
component  geotextile  area. Lines A2 and A3 are located over conventional  
geotextile.  Heavy rain occurred on 28 August and the structure got wet.  
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LOADMAN  measurements on top of surface layer, section with 1:1.5 slope  

Figure 3.  Loadman  measurements on top of asphalt, section with 1:1.5 
slope. Measurements on different levelling lines  Cl,  C2 and 03. C3 is 
located in the  bi-component  geotextile  area. Lines  Cl  and C2 are located 
over conventional  geotextile. 
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CRUSHED ROCK DEFORMATIONS 

Permanent deformations in lowest part of crushed rock in different sections  
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Figure 1. Permanent vertical deformations in the lowest 200 mm of crushed rock. 

Dynamic deformations in lowest part of crushed rock in different sections 
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Figure 2. Resilient vertical deformations in the lowest 200 mm of crushed rock.  
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Figure 1 Permanent vertical deformations in the gravel (200 mm). 
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Permanent deformations in  cravel  in different sections 

Dynamic deformations in gravel in different sections 
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Figure 2. Resilient vertical deformations in the gravel (200 mm).  
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Figure 3. Permanent horizontal displacements in surface of crushed rock and gravel. 

Dynamic horizontal displacements in surface of crushed rock and gravel in 
different sections 
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Figure 4. Resilient horizontal displacements in surface of crushed rock and gravel.  
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Permanent deformations in clay (0-200 mm) in different sections 
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Figure 1. Permanent vertical deformations in clay (0-200 mm) 

Dynamic deformations in clay (0-200 mm), in different sections 
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Figure 2. Resilient vertical deformations in clay (0-200 mm)  
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Figure 4. Resilient vertical deformations in clay (200-400 mm)  
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Figure 3. Permanent vertical deformations in clay (200- 400 mm) 

Dynamic deformations in clay (200-400 mm) in different sections 
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Permanent horizontal displacements in clay in 200 mm depth 
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Figure 5. Permanent horizontal displacements in clay in 200 mm depth. 

Dynamic horizontal displacements in clay in 200 mm depth 

70 

60 

50 

40 z 

30 1 
20 

10 

DO 

0 

Number of load repetitions 

Figure 6. Resilient horizontal displacements clay in 200 mm depth.  



Effect of steepness of  sideslope  on rutting 
	 Lute 15 (114) 

APPENDICES 

LATERAL DISPLACEMENTS 

Permanent lateral displacement in relation to the reference tack 
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Figure 1. Permanent lateral displacements in reference to the reference tack, 
different sections with slopes. 
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Figure 2. Resilient horizontal total deformations in the crushed rock, 1:3 slope. 
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Figure 3. Resilient horizontal total deformations in the cravel, 1:3 slope. 
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Figure 4. Resilient horizontal total deformations in the crushed rock, 1:1.5 slope. 
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Figure 5. Resilient horizontal total deformations in the  cravel,  1:1.5 slope. 

Static values of lateral displacement gauges, 1:3 slope 
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Figure 7. Permanent horizontal displacements in crushed rock and gravel, 1:1.5 slope.  
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CRACKING, STEEP SLOPE 

Rgure  1. Cracks of the entire structure. Slope on right. 

Figure 2. Cracks of middle part of structure. 
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