Toimintamallitarkastelu – jatkuvatoimiset vedenlaatuasemat

MARJO TARVAINEN | JANNE SUOMELA
Toimintamallitarkastelu – jatkuvatoimiset vedenlaatuasemamat

MARJO TARVAINEN
JANNE SUOMELA
Sisältö

1 Johdanto ... 2

2 Jatkuvatoimisten vedenlaatuasemien verkosto ... 3
 2.1 Alueellinen verkosto .. 3
 2.2 Valtakunnallinen verkosto ... 6

3 Jatkuvatoimiset vedenlaatuasemat jokivesien tilan seurannassa
 – Varsinais-Suomen ELY-keskuksen malli ... 7
 3.1 Jatkuvatoimisen vedenlaatumittarin hankinta ... 7
 3.2 Jatkuvatoimisen vedenlaatuaseman perustaminen 8
 3.3 Mittausasemien huolto ja vesinäytteenotto ... 10
 3.4 Aineistojen laadunvarmistus ja hyödyntäminen 11

4 Vertailuvesinäytteet .. 12

5 Jatkuvatoimisen vedenlaatuaseman kustannukset .. 14

6 Vedenlaadun mittausasemien käytön lisääminen .. 16
 6.1 Vesinäytteet vai vedenlaatumittari ... 16
 6.2 Kehittämiskohteet tunnistettu ... 17
 6.3 Aineistojen hyödyntäminen ... 17

7 Menetelmäkehitys ja kansainvälinen yhteistyö .. 19

Lähteet ... 20
Liitteet ... 20
1 Johdanto

Automatisointia ja uusien menetelmien kehittämistä ja käyttöönottamista seurannan tuottavuuden paranemiseksi on tavoiteltu jo pitkään mm. erilaisten hankkeiden ja kehittämisehdotusten avulla (Huttula ym. 2009). Lisäksi ympäristön tilan seurannan strategian 2020 tavoitteena on uudistaa kokonaisvaltaisesti ympäristön tilan seurantoja ja korvata työvoimavaltaisia menettelyjä ajallisesti ja alueellisesti kattavilla tai niitä tukevilla menetelmillä.

Vedenlaatumittareilla ei kuitenkaan voida todeta, että perinteisenä menetelminä on parhampien mittareiden käyttöä. Lisäksi median määrässä voidaan olla erilaisia tekijöitä, kuten havainnoita ja laadunvarmistukseen liittyviä ongelmia. Vedenlaatumittareilla voidaan todeta, että perinteiset menetelmat ovat vielä tärkeämpiä ja niiden käyttöä on edelleen suositeltavaa.

Overhead view of a water quality monitor. Image: Asko Sydänäja
2 Jatkuvatoimisten vedenlaatuasemien verkosto

2.1 Alueellinen verkosto

Pysyvien vedenlaatuasemien lisäksi Varsinais-Suomen ELYssä on liikuteltavia kenttämittareita. Tällä hetkellä on käytössä CastAway CTD-sondi, joka mittaa veden sähköjohtavuutta, lämpötilaa ja syvyyttä. Toinen vedenlaatua mittava liikuteltava kenttämittari on YSIIn ProOdo, jolla voi mitata lämpötilaa, sähköjohtokykyä, liuennutta happea, pH:ta ja nitraattia.

Taulukossa 1 mainittujen muuttujien lisäksi Varsinais-Suomen ELYn asemiilla seurataan myös kiintoaineen, kokonaisfosforin ja kokonaisfoten pitoisuutta. Kiitoaineen ja kokonaisfosforin pitoisuudeet lasketaan mittarin mitaamasta sameesta ja kokonaisfoten pitoisuus mittarin mittaamasta nitraattista. Yläneenjoen asemalla sameuden ja kokonaisfosforin korrelaatio on heikko, joten siellä ei toistaiseksi voida seurata mitä avulla kokonaisfosforin pitoisuutta.

<table>
<thead>
<tr>
<th>Mittauspaikka</th>
<th>Muuttujat</th>
<th>Vuosi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kokemäenjoki</td>
<td>lämpötila, sameus, nitraattityypit, DOC ja TOC, pinnankorkeus</td>
<td>2016</td>
</tr>
<tr>
<td>Eurajoki (Vuojoen kartano)</td>
<td>lämpötila, sameus ja nitraattityyppi</td>
<td>2009</td>
</tr>
<tr>
<td>Eurajoki (Kuurnamäki)</td>
<td>lämpötila, happi, sähköjohtokyky, sameus, nitraattityypit, pinnankorkeus*</td>
<td>2013</td>
</tr>
<tr>
<td>Loimijoki (Rutavan pato)</td>
<td>lämpötila, sameus, nitraattityypit, pinnankorkeus</td>
<td>2009</td>
</tr>
<tr>
<td>Yläneenjoki</td>
<td>lämpötila, sameus, nitraattityypit, pinnankorkeus</td>
<td>2012</td>
</tr>
<tr>
<td>Paimionjoki</td>
<td>lämpötila, sameus, nitraattityypit, pinnankorkeus</td>
<td>2016</td>
</tr>
<tr>
<td>Aurajoki (Halinen)</td>
<td>lämpötila, sameus, nitraattityypit, pinnankorkeus</td>
<td>2009</td>
</tr>
<tr>
<td>USkelanjoki</td>
<td>lämpötila, sameus, nitraattityypit, pinnankorkeus, sähköjohtokyky**</td>
<td>2016</td>
</tr>
</tbody>
</table>

*Kohteessa on kaksi mittalaitetta (S:can ja YSI).
**SYKE mittaa kohteessa sähköjohtokykyä erillisellä anturilla.
Kartta Varsinais-Suomen ELY-keskuksen jatkuvatoimisista vedenlaatuasemista syksyllä 2016.
Vedenlaatumittareiden verkoston laajentaminen

Pysyvien vedenlaadun mittaasemien avulla saadaan perustietoa jokien vedenlaadun sekä ravinne- ja kiintoainevuorotuksen kehityksestä pitkällä ajanjaksoilla. Uusia asemia perustettaessa tulee huomioi esimerkiksi vesivirtojen tavoitteet ja seurantatapet. Vailla jatkuvotoimista vedenlaadun seurantaa olevista joista suurimmat ovat Kiskonjoki (1047 km²) ja Karvianjoki (3438 km²). Mahdollisten uusien asemien mitattavia muuttujia valittaessa voidaan yleisimpien alueiden, sameuden, nitraatin, sähköjohtavuuden ja happipitoisuuden lisäksi harkita myös organisen hiilen (TOC ja DOC) mitaamista. Seuraamalla mittausalan kehitystä voidaan valita myös muita muuttuja, mikäli uudet laitteet tai mittaustenmietelmat ovat luotettavia ja käyttökelpoisia suomalaisiin vesistoihin.

Kattava pysyvien jatkuvatoimisten vedenlaatuaasemien verkosto, jota täydennetään liikutelavilla asemilla.

<table>
<thead>
<tr>
<th>Nro</th>
<th>Vesistöalue</th>
<th>Valuma-alueen pinta-ala km²</th>
<th>Mittausten toteuttaja</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>Kiskonjoki</td>
<td>1047</td>
<td>VARELY</td>
</tr>
<tr>
<td>25</td>
<td>Uskelanjoki</td>
<td>566</td>
<td>VARELY</td>
</tr>
<tr>
<td>26</td>
<td>Halikonjoki</td>
<td>307</td>
<td>SYKE</td>
</tr>
<tr>
<td>27</td>
<td>Paimionjoki</td>
<td>1088</td>
<td>VARELY</td>
</tr>
<tr>
<td>28</td>
<td>Aurajoki</td>
<td>874</td>
<td>VARELY, SYKE</td>
</tr>
<tr>
<td>29</td>
<td>Hirvijoki</td>
<td>284</td>
<td>SYKE</td>
</tr>
<tr>
<td>30</td>
<td>Mynäjoki</td>
<td>288</td>
<td>SYKE</td>
</tr>
<tr>
<td>31</td>
<td>Laajoki</td>
<td>393</td>
<td>SYKE</td>
</tr>
<tr>
<td>32</td>
<td>Sirppujoki</td>
<td>438</td>
<td>VARELY</td>
</tr>
<tr>
<td>33</td>
<td>Lapinjoki</td>
<td>462</td>
<td>VARELY</td>
</tr>
<tr>
<td>34</td>
<td>Eurajoki</td>
<td>1336</td>
<td>VARELY</td>
</tr>
<tr>
<td>35</td>
<td>Kokemäenjoki</td>
<td>27046</td>
<td>VARELY</td>
</tr>
<tr>
<td>36</td>
<td>Karvianjoki</td>
<td>3438</td>
<td></td>
</tr>
</tbody>
</table>

2.2 Valtakunnallinen verkosto

Mittausasemien perustamisen, ylläpidon ja laatu ja tarkastettujen aineistojen hankinnan voivat toteuttaa kokonaan oman tekijänä, ostopalveluna tai myöhemmin kuvattavan Varsinais-Suomen ELYn käyttämään osittaisen ostopalvelumallin mukaisesti. Mittaustoinnin järjestämiseen sekä aineistojen laadunvarmistukseen liittyvää tilaajaosaamista ja erityisasiantuntemusta, jonka saatavuudesta tulee huolehtia. Asemanverkoston toteuttamisessa kannattaa selvittää myös mahdollisuuksia ja edellytyksiä yhdistää ympäristöhallinnon omaan mittaustoimintaan muiden toimijoiden toteuttamaa mittausta, mikä laajentaisi verkoston kattavuutta.

Tarkempia mittauspaikkoja haettaessa mittaustoinnilla on eduksi, jos paikka on entuudestaan intensiivisen vesinäytteenoton kohde, lähellä on virtaaminen mittasemaa ja asema ympärivuotisen huollon järjestäminen on helppoa.

Valtakunnallisen verkoston toteuttamisen tapoihin ja mahdollisuuksiin aiheuttaa epävarmuutta aluehallintouudistus, jonka vaikutukset vesistöseurantojen toteuttamiseen ovat vielä epäselvät. Käytännön toteutukseen liittyvät kysymys myös kysymys siitä, miten valtakunnallisesti linjataan mittalaitteiden omistamiseen ja mittauspalveluiden tuottamiseen liittyviä asioita. Keskeisenä kysymyksenä on myös valtakunnallisen verkoston toteuttamisen ja ylläpidon edellyttämä pitkäaikaisen rahoituksen varmistaminen.

Paimionjoki. Kuva: Marjo Tarvainen

Jatkuvatoimisten vedenlaatuasemien valtakunnallisella verkostolla reaaliaikaista tietoa jokien vedenlaadusta ja kuormituksesta.
3.1 Jatkuvatoimisen vedenlaatumittarin hankinta

Uusimmat jatkuvatoimiset vedenlaatumittarat on hankittu kilpailuttamalla samaan aikaan mitattavissa, niiden en-siasennus sekä aineistojen tiedonsiirto ja laadunvarmistus. Tarjouksista on valittu kokonaistaloudellisesti edullisin painotuksella hankintahinta 30 % ja laatu 70 %. Laadun arvioinnissa on käytetty seuraavia alakriteerejä: laitteiston tekninen suorituskyky ja laitteiden toimintavarmuus, tiedonsiirron tekninen toteutustapa ja luotettavuus sekä aineistojen laadunvarmistuksen toteutus. Tarjoushinta tuli ilmoittaa kokonaishintana.

Hankittujen laitteiden ja palveluiden määrittelyt olivat tarjouspyynnössä seuraavat:

Automaattisten vedenlaadun mittausasemien käyttöolosuhteet ja käyttötarkoitus

Automaattisten vedenlaadun mittausasemien laatuvaatimukset
- mittausasemien tulee soveltua edellä mainittui-hin käyttöolosuhteisiin ja käyttötarkoituksseen
- mittausasemien tulee olla jatkuvatoimisia
- mittausasemien tulee soveltua ympärvuotiseen käyttöön
- mittausasemien tulee mitata **tähän haluttuja muuttuja**
- mittausmenetelmän tulee soveltaa häiriointymättä luonnovesien mittaamiseen mittauskohteittain seuraavilla vaihteluväleillä: **tähän asemakohtaisia tietoja vesinäytteen perusteella havaituista pitoisuksien vaihteluväleistä**
- lämpötilan mittausmenetelmän tulee kattaa vaihteluväli -1 - +30 °C ja mittaustarkkuuden tulee olla 0,1 °C
- mittausmenetelmien tulee toimia ilman kemikaaleja tai reagensseja
- vedenlaadun mittalaitteessa tulee olla automaat-tinen puhdistusmekanismi
- tiedonsiirron ja aineistojen laadunvarmistuksen vaatimukset
- mittauslaitteissa tulee olla tiedon kerääjä (dataloggeri) ja tiedon välittämiseen liittyvät laitteet, josta on vähintään päivittäinen tiedonsiirto GPRS- tai GSM-verkon kautta toimittajan tietopalveluun
- kerättyjen tietojen tulee säilyä mittauslaitteessa, jos tietojen lähettäminen laitteesta epäonnistuu
- tarjouksessa tulee kuvata langattoman tiedonsiirron tekninen toteutus ja luotettavuus
- toimittajalla tulee olla päivityst, joka valvoo tiedonsiirtoa ja aineiston laatua
- tilaajalle on pyydetäessä toimittettava raakadatumittaja tulee valita kalibroida mittalaitteet ELY-kes-kuksen toimittamiin vertailunäytteiden tulosten (vähintään 5 näytettä vuodessa) perusteella. Kalibrointinäytteistä analysoituu tai anturia mitaamien kemiallisten suureiden vertailunmääritysten lisäksi kiintoaine-, kokonaistyyppi- ja kokonaisfosforispensorisoituksissa
- anturin mittasuureiden ja kokonaistyyppen sekä kokonaisfosforin välille tulee laskea muuntoyhtälöt (tilaaja hyväksyy muuntoyhtälöt)
- toimittaja tarkistaa mittausaineiston ja esittää tarkistetun aineiston seurata aineistolle tehtäviä muutoksia
• tietopalvelusta mittalaitteiden keräämät tiedot tulee voida tarvittaessa vapaasti linkittää ELY-keskuksen määrittelemille www-sivuille

Asennus- ja käyttöpalveluiden sisältö ja laatuvaatimukset
• laitteiden asentaminen toimintakuntoon tilaajan osottamiin paikoiksi, joihin tilaajan toimesta on tarvittaessa asennettu erilliset kiinteät rakenteet (esim. laituri) sekä virransyöttö tai virtalähde
• laitteiden toimintakunnosta huolehtiminen vikapiivystyksineen (pl. laitteiden normaali mukaan normaalin virran tarvitsemattomuuden ja tilaajan toimesta)
• toimituksen tulee sisältää mittarin normaaliin huoltoon ja käyttöön mahdollisesti tarvittavat erikoistyökalut, -tarvikkeet ja tietokoneohjelmia

Lisäksi tarjoajilta edellytettiin referenssejä kolmen viikon kuluneen vuoden aikana toteutetuista vastauksistaan automaattisten mittausasemien ja niihin liittyvien tiedonsiirron sekä aineistojen laadunvarmistuksen toimituksista.

3.2 Jatkuvatoimisen vedenlaatuaseman perustaminen

Mittauspaikan valinta

Mittausasemien paikkoja valittaessa tärkeintä on paikalta saattavien tulosten käytökoepoisuus siihen tarkoitukseen mihin asemaa olisi perustettava. Monien asemien pääasiallinen tarkoitus on saada parempaa tietoa ainemääristä, joten paikka on pyritty löytämään mahdollisimman makuuohtavasti vastaavien automaattisten mittausasemien ja niihin liittyvien tiedonsiirron sekä aineistojen laadunvarmistuksen toimituksista.

Aseman paikkaa valittaessa kiinnitetään huomiota ylänkäynnin sijaintiin. Useimmissa alueen merkittävissä joissa on virtaamaa virtaamittauspaikat jo ympäristöhallinnon tai suurten julkisilla risteilytaloilla. Varsinais-Suomen ELY:n alueella olevat virtaamittauspaikat päävensa puolesta: 24 Kiskonjoki + Perniönjoki (1 kpl) 25 Uskelanjoki (1 kpl) 27 Paimionjoki (4 kpl) 28 Aurajoki (2 kpl) 32 Sirppujoki (1 kpl) 33 Lapinjoki (1 kpl) 34 Eurajoki (4 kpl)

• joenpohja on profiiliitaa mittaukseen sopiva
• virtaaman mittauspisteen sijainti suhteessa vedenlaatuasemaan

Lisäksi mittausaseman paikan valinnassa huomioi

daan ”Virtavesien vedenlaadun jatkuvatoiminen mittaus - käytännön opas” (Tattari ym. 2015) julkaisussa mainitut paikan ominaisuuDET.
Ainemäärien laskentaa varten tarvittavat virtaamataiedot saadaan siten jo olemassa olevista virtaaman mittauspaikoista, useimmista paikoista on saatavilla myös tuntitason tietoa. Vesistömallijärjestelmän simulointuja aineistoa on myös mahdollista käyttää. Useimmissa Varsinais-Suomen ELY:n vedenlaadun mittausasemilla on myös pinnankorkeusanturit, joiden pääasiallinen käyttötarkoitus on ilmaista mittarin päällä olevan vesipatsaan korkeus.

Mittausasemmat maastossa

Varsinais-Suomen ELY:n jatkuvatoimisten vedenlaatuasuasetuksien koostuu veteen sijoitettusta mittarista ja rannalle suojakaappiin asennettusta dataloggerista, kompressorista (tai vaihtoehtoisesti paineilmapullossa), akusta, akkulaturista, lämmittimestä ja antennista. Yhtä asemaa lukuun ottamatta kaikki asemat ovat verkkovirrassa. Lisäksi muutamia asemiin on liitetty aurinkopaneeli. Asemilla on myös infolaput, joissa kerrotaan mitä kohteessa mitataan ja mistä tuloksia voi katsoa.

Vedenlaatumittareiden metallitelineitä on kiinnitetty puu- ja kivilaitureihin, patoon sekä mm. kulkusiltaan (kuvat alla). Puulaitureiden tukipaalut on pyritty asentamaan rantapenkaan (esim. Eurajoki, Kuurnamäki).

3.3 Mittausasemien huolto ja vesinäytteenotto

Tulosten hyvän laadun varmistamiseksi mittarit on avovesikaudella puhdistettava ja laitteisto huollettava parin viikon välein. Huollon yhteydessä puhdistetaan mittarit ja tarkistetaan sekä huolletaan aseman muita laitteita. Palveluntarjoaja seuraa asemien toimintaa ja tarvittaessa ilmoittaa yhteyshenkilölle ongelmista. Kaikki huolto- ja ympäristöyhtälöiden huollon ja vertailuvesinäytteen toimintaa varmistetaan. Vaihtoehtojen vertailussa otettiin huomioon mm. kustannukset, laatu ja eri vaihtoehtojen joustavuus, jotta mittareiden toimintahäiriöt voidaan selvittää ja korjata mahdollisimman nopeasti. Häiriöitä voivat aiheuttaa mm. akun lataustason lasku, paineilmapullon tyhjentäminen, mittausanturin aiheuttama, paineilmapullon tyhjentäminen, mittausanturin eteen tulevat kasvit tai

Paimionjoen vedenlaatumittarin putkisysteemillä rantapenkkaan toteutettu asennusratkaisu (kuva Marjo Tarvainen).
muut usein yllättävätkin tekijät, jotka vaativat käyntiä mittausasemalla.

Varsinais-Suomen ELYssä päädyttiin asemien huollon osalta toistaiseksi sekamalliin, jossa osa mittaereista huoleltaan omana työnä ja osan huollostaa vastaa paikallinen yhteistyökumppani. Lähellä ELY:n toimipaikkoja (Turku ja Pori) sijaitsevat asemat hoitetaan omalla työllä ja osan huollosta vastaa paikallinen yhteistyökumppani tai muu palveluntarjoaja.

3.4 Aineistojen laadunvarmistus ja hyödyntäminen

Näytteenoton optimoinnilla nopeammin luotettavia tuloksia.

4 Vertailuvesinäytteet

Varsinais-Suomen ELY:n OHKE - hankkeessa tehdyn tilastotarkastelun tulokset osoittavat, että vedenlaatu- mittareiden tulosten laadunvarmistamiseksi ja muuntohytälöiden luomiseksi tarvittavien vesinäytteiden määrää ja etenkin otosajankohtaa tarkemmin suunnittelema olisi mahdollista vähentää näytteiden määrää ja nopeuttaa laadunvarmistamisen kannalta tärkeiden vesinäytteiden saantia.

Tilastotarkastelussa havaittiin, että vaikka vesinäytteenoton on pritty ajoittamaan eri tilanteisiin, on perinteisellä vesinäytteenotolla hyvin vaikeaa saada etenkin sameuden korkeimpia ja usein myös lyhytkestoisia piikejä kiinni (ks. kuva alla).

Vesinäytteenoton kustannukset eivät sinällään ole kovin korkeat (oletuksena vähintään 5 näytettä vuodessa), jos näytteet voidaan ottaa vedenlaatumittarin huollon yhteydessä eläkään analysiivalikoima ole kovin laaja. Sen sijaan näytteenoton paremmalla ajoitukse- lai eri tilanteisiin saadaan nopeammin varmistettua seka mittareiden tulosten laatua että luotettavasti toimivat muuntohytälöt eri vedenlaatu- ja virtaamattilanteissa.

Vesinäytteitä pitäisi myös olla yli kolmen vuoden ajalta. Vastaavaa suositusta ei ole vielä tehty Suomen olosuhteisiin.

![Vertailuvesinäytteet](image-url)
Automaattinen vesinäytteenotin

Automaattisen vesinäytteenottimen avulla voi parantaa näytteenoton optimointia. Jatkuvatoimisen vedenlaatumittarin vertailuvesinäytteiden ottamisessa kannattaa kiinnittää huomiota seuraaviin näytteenottimen ominaisuuksiin:

• Etäohjausmahdollisuus. Seuraamalla reaaliaikaisesti tai lähes reaaliaikaisesti jatkuvatoimisen vedenlaatumittarin tuloksia, sadantaa tai virtaamaa voidaan etäohjauksen avulla käynnistää näytteenoton ottamaan vesinäytteitä halutuissa tilanteissa. Tämä mahdollistaa näytteenoton tilanteissa, jolloin vedenlaatu muuttuu ja/tai virtaamapiikki tulee nopeasti. Etäohjauksen avulla ehditään nopeissa tilanteissa ottamaan näytteitä myös kauempana olevilla mitausasemilla.

• Useamman pullon ns. karuselli ja virtaama- tai aikaohjaus. Tämän avulla vesinäytteitä voidaan ottaa vaikka tunnin välein, jolloin on mahdollista saada näytteet virtaamahuipun kaikista vaiheista. Tilanteen jälkeen voi virtaama- ja mittaritulosten perusteella tehdä päätöksen analysoitavista näytteistä. Näytteet on aina saatava nopeasti laboratorioon ja näytteiden säilymistä parantaa näytteenottimessa oleva viilennysominaisuuksia ja näytteiden pimeäsäilytys.

Vesinäytteenottimen käyttöä parantaisi, jos sen voidisi ohjelmoida ottamaan automaattisesti vesinäytteitä esimerkiksi eri sameustilanteista. Näytteenottimet on lähinnä suunniteltu jättevesien näytteenottoon, mutta monet niistä soveltuvat myös luonnonvesien näytteenottoon.
Jatkuvatoimisten vedenlaatuasemien perustamisen, käytön ja ylläpidon kustannuksista on saatavilla vain vähän tietoa tai arvioita. Kustannukset vaihtelevatkin paljon riippuen aseman hankintatavasta (esim. vuokraus/hankinta omaksi), asennusratkaisusta, huoltoetäisyydestä, tiedonsiirto- ja datapalveluratkaisusta, vesinäytteiden määrästä ja muista osittain vaikeasti

kennakohtavista kuluista.

Kustannukset / asema (alv 0\%):
- Investointikustannukset (laitteet ja aseman rakentaminen): 17 200 €
- Käyttö ja ylläpito
 - Huollon kustannukset (palkat, matkakustannukset) 1 900 €/vuosi
 - Tiedonsiirto, datapalvelu, vesinäytteet 2 300 €/vuosi
 - Muu työpanos 1 500 €/vuosi
- Yhteensä 5 700 €/vuosi

Varsinsais-Suomen ELYn asemien kustannukset on laskettu seuraavilla tiedoilla ja oletuksilla:
- laitteet hankittu ELYn omistukseen
- asemat liitetty sähköverkkoon, ilmanpainepuhdistus
- vesinäytteitä vähintään 5 kertaa vuodessa (vähintään kokonaisravinteet, liuokiset ravinteet, sameus ja kiintoaine), otetaan muun huollon yhteydessä
- datapalvelu tilattu ulkopuolisesta toimialalta
- keskimääräinen meno-paluumatka/asema 70 km, matkat vuokra-autolla
- huoltokertoja vuodessa keskimäärin 20 kpl

Kustannuksista on huomioitava, että muun työpanoksen määrä vaihtelee huomattavasti eri tilanteissa. Aseman perustamisvaiheessa aiheutuu huomattava työmäärä laitteiden kilpailuttamisesta, sopivan mitattavuuden hakemisesta tai hankkimisesta, asennuksen suunnittelusta jne. Tässä on työpanoksen osalta oletettu tilanne, jolloin asema on jo toiminnassa ja toimii moitteettomasti.

Myös tiedonsiirrosta, datapalvelusta ja vesinäytteistä aiheutuu yhteensä merkittäviä kustannuksia. Tässä on kuitenkin huomattava, että datapalvelu sisältää myös lähes reklaamialaisten laadunvarmistuksen. Tämä takaavat tuotteen käyttökelpoisuuden ja mahdollistaa aloitteen jatkuvalla asemilla olevat tiedonsiirto- ja vesinäytteistä ja asemilla uusi tiedonsiirto- ja vesinäytteistä.

5 Jatkuvalimisen vedenlaatuaseman kustannukset

huollon suorittaa yksi henkilö, keskimääräinen
asemallalta vienttymä 30 min sisältäen huolto-
päiväkirjan ylläpidon
muu työpanos sisältää asemen käytön ja ylläpidon
organisointia, suunnittelua ym. yleistä
asemistua huolehtimista

Kustannusten arviointi

Laskentataulukon avulla voi arvioida laitteiden ja aseman vuosikohtaista investointikustannuksia ottaen huomioon arvioitu laitteiden ja tai aseman käyttöikä. Laitteiden huollon kustannuksia voi arvioida sekä kerta- että vuositasolla. Muita kustannuksia voivat olla erilaiset tarvikkeet ja korjaukset, tiedonsiirto, datapalvelu, sähkö sekä vesinäytytteet. Korjauskustannuksia on ennalta vaikea arvioida, mutta mikäli on tiedossa laitteiden kuluvien osien vaihto tietyllä aikavälillä, niin sen voi myös ottaa kustannuskentatakunnassa huomioon.

Vesinäytyteennon kustannuksia voi arvioida, kun tietää analyysivalikoiman, analyysien hinnat ja näytteiden lukumäärän sekä näytteenottoon kuluvan työajan ja matkakulut. Vesinäytteenoton kustannuksia voi arvioida per näytteenottotauko tai vuositasolla. Täytettäessä jatkuvatoimisen vedenlaatutmittarin ja vesinäytteenoton kustannuksia käsittelevät taulukot, päivitytty vertailutaulukko on automaattisesti molempien vuositason kustannukset.

Kustannuksia vertailtaessa on myös huomioitava, ettei laskentajärjestelmä eri menetelmien (mittari – vesinäyte) avulla saatavien tulosten hyötyä tai arvoa. Lissäksi on selvää, ettei vesinäytteillä voida saada yhtä tiheästi tietoa vedenlaadusta kuin mitä vedenlaatutmittarilla on saatavissa. Toisaalta mittarilla voidaan mitata vain rajallista määrää muuttujia. Esimerkiksi monien haitallisten aineiden seuranta edellyttää edelleen vesinäytyntotoa.

Joissakin tapauksissa vedenlaatuaseman tietojen siirtoon voi olla mahdollista käyttää hydrologisten aseman tiedonsiirtoyksiköitä, mikä pienentää jonkin verran tiedonsiirtokustannuksia. Operaattoreiden perimmät tiedonsiirron kustannukset ovat kuitenkin alhaiset verrattuna muihin asemien aiheutuviin kustannuksiin.

Rahoitus

Rahoitusmalli:

- Jatkuvatoimisten vedenlaatuasemien perustamisen investointikustannuksiin erikseen haettavia määrärahoja.
- Toiminnassa olevien asemien käyttöön ja ylläpitoon pysyvää rahoitusta.

Vesinäytyteenoton kustannuksia voi arvioida, kun tietää analyysivalikoiman, analyysien hinnat ja näytteiden lukumäärän sekä näytteenottoon kuluvan työajan ja matkakulut. Vesinäytyteenoton kustannuksia voi arvioida per näytteenottotauko tai vuositasolla. Täytettäessä jatkuvatoimisen vedenlaatutmittarin ja vesinäytteenoton kustannuksia käsittelevät taulukot, päivitytty vertailutaulukko on automaattisesti molempien vuositason kustannukset.

Kustannuksia vertailtaessa on myös huomioitava, ettei laskentajärjestelmä eri menetelmien (mittari – vesinäyte) avulla saatavien tulosten hyötyä tai arvoa. Lisäksi on selvää, ettei vesinäytteillä voida saada yhtä tiheästi tietoa vedenlaadusta kuin mitä vedenlaatutmittarilla on saatavissa. Toisaalta mittarilla voidaan mitata vain rajallista määrää muuttujia. Esimerkiksi monien haitallisten aineiden seuranta edellyttää edelleen vesinäytyntotoa.

Joissakin tapauksissa vedenlaatuaseman tietojen siirtoon voi olla mahdollista käyttää hydrologisten aseman tiedonsiirtoyksiköitä, mikä pienentää jonkin verran tiedonsiirtokustannuksia. Operaattoreiden perimmät tiedonsiirron kustannukset ovat kuitenkin alhaiset verrattuna muihin asemien aiheutuviin kustannuksiin.

Rahoitus

6 Vedenlaadun mittausasemien käytön lisääminen

6.1 Vesinäytteet vai vedenlaatumittari

Vedenlaatumittareiden käytön kannattavuuden arviointia varten luotiin kustannuslaskentataulukon lisäksi yksinkertaistettu päättelypuumalli vesinäytteiden ja jatkuvatoimisten vedenlaatumittareiden valintakritertinä vasta vedenlaatutiedon hankinnanä. Päättelypuussa merkittävät kohdat ovat vedenlaadun vaihtelun määrä, tarvittavan tiedon mitattavuus mittareilla sekä taloudellisten resurssien määrä. Taloudellisten resurssien riittävyyttä voi arvioida kuten liitteenä olevan kustannuslaskentataulukon avulla.

On huomattava, että reaaliaikaisen tai tiheän mittatiedon tarve voi olla myös vesistöstä, jonka vedenlaadun vaihtelun katsotaan olevan vähäistä. Tarve voi liittyä esimerkiksi ainemäärien tarkempana laskennalle, mallinnukseen tai vesiensuojelutoimenpiteiden pitkän ajan vaikutusten seuraamiseen. Myös mahdollisten poikkeavien tilanteiden havaitsemisessa mittari voi olla tarpeellinen.

Jos vedenlaadun vaihtelu on suurta, mutta ei ole resurssolla käyttää jatkuvatoimista mittareita, voi vesinäytteillä olla haastavaa saada laadunvaihtelua kiinni. Tällöin on arvioitava saatavan tiedon riittävyyttä suhteessa tiedontarpeeseen. Lisäksi on huomattava, että jatkuvatoimisten vedenlaatumittareiden kanssa tarvitaan myös vesinäytteitä tulosten laadunvarmistamiseksi, muuntoyhtälöiden tekemiseksi sekä tulosten tulkinnan taustatiedoksi.

Päättelypuu vesinäytteiden ja vedenlaatumittarin valinnasta vedenlaatutiedon hankinnan. Taustakuva: ELY-keskuksen kuvapankki
6.2 Kehittämiskohteet tunnistettu

Jatkuvatoimisten vedenlaatuasemien käytön lisäämiseen on yleensä jo hyvin tunnettua. Uusien menetelmiin, joihin myös jatkuvatoimiset vedenlaatuasemat voivat liittyä, laajemman käyttöönoton haasteiksi on tunnistettu mm. seuraavia asioita (Tarvainen ym. 2015):

- Laitteiden korkeat hankintajärjestelyt ja käyttökustannukset
- Siirtyminen uuden menetelmän käyttöön kalliista
- Uudella menetelmällä ei saada tarvittavaa tietoa ja laatuväärin kulutukset eivät täyty
- Aineistojen laaduvastuusat
- Tiedonsiirron ja tietoaineiden kehittämömyys
- Kenttämittarilla mitatut tulokset eivät ole rekisterikiertoisia viranomaiskäytössä
- Osaamisen ja asiantuntemuksen puolesta
- Automaatti- ja kenttämittareihin liittyvää osaamista

Kehittämiskohteet ovat siten selvästi tunnistettuja ja mittauta kattavissa tänään hetkiset rajoitteet tiedetään. Jatkuvatoimisten vedenlaatuasemien tuottaman tiedon arvo on kuitenkin monissa tapauksissa niin merkittävä, että niiden käyttöä kannattaa edistää. Automati- ja kenttämittareihin liittyvää osaamista paranetaan mm. ympäristönäytteenottajien sertifioinnin ja viranomaistestauksen tarjoamalla myös taloudellisia resursseja käytön lisäämiseksi. Tämän lisäksi laajampaan kehittämistyön tarvitaan monipuolisen asiantuntemuksen ja ohjelmistotaidon lisäämistä sekä teknisillä resursseilla kannattaa investoida. Tämä takaa säännöllisen kehittämisen sekä tuottaa selkeät toimintatavat.

Vastuullista kehittämistyötä

6.3 Aineistojen hyödyntäminen

Yleisesti ottaen eri toimijoiden tuottamien aineistojen hyödyntämistä on osaltaan hidastanut laadunvarmistuksen vaihteleva taso. Laadunvarmistus on edellä mainitusta asiasta huomattavasti kriittinen, koska se määrittelee myös tuotettavan aineiston arvon ja käytettävyyden. Muihin osa-alueisiin liittyy vaativia asiantuntijatyöntekijöitä, jotka ovat kiintäneet laadunvarmistuksen menetelmiin. Materiaaleja ja tietoja on tarjolla, mutta nykyinen aineistotietoliikenne on tarpeeton kiintäntävaan ja tietotekniikan kehittämistä edistää. Tämä parlamentaarinen toiminta tarvitsee edistämistä, jotta kehittämistä saadaan eteenpäin kohti yhdenmukaisia käytäntöjä ja laadukkaista mitattuista ja ylläpitettävistä tietoja.

toiminnassa vuodesta 2009 asti, joten pitkiäkin aikasarjoja ja huomattavia tietomääriä on käytettävissä mm. sameudesta, kiintoaineesta, nitraatista ja kokonaisfosforista sekä -tystä.

Laatutarkastettujen aineistojen käyttöä voisi lisätä esimerkiksi seuraaviin tarkoituksiin:

- mallien, esimerkiksi ravinne- ja kiintoainekuormitusmallien, tarkentaminen
- vesien- ja merenhoidon kuormitusvähennystavoitteiden toteutumisen seuranta
- satelliitti- ja ilmakuvien tulkinnan apuna
- vedenlaadun dynamiikan selvittäminen, tiedonlouhinnan menetelmät ilmiöiden havaitseessa
- ympäristötiedon lähes reaaliaikainen jakaminen, tiedonlouhinnan menetelmät ilmiöiden havaitseessa
- poikkeuksellisten ilmiöiden havainnointi, valvonta
- ympäristön tilan raportointi

Aineistojen parempaa hyödyntämistä edistää myös käyttäjien kokemusten ja hyvien käytäntöjen jakaminen. Tähän tarkoituksen soveltuvat hyvin esimerkiksi pienimuotoiset työpajat, joissa on helppo vaihtaa hyviä ja huonoja kokemuksia sekä luoda yhteistyöverkostoja tai hankkeita.

Yritteisiä voisi kannustaa käyttämään enemmän jatkuvatoimista vesitaajuista. Jatkuvatoimisten mittareiden tuottama lähdes reaaliaikainen tieto voisi houkutella yritteisiä innovaatioiden ja nettisovellusten kehittämiseen, mikä voisi tuoda ympäristön tilan raportointi

ja satelliittikuva. Jatkuvatoimisten vedenlaatuasemien tuotoksiin käytettävä tieto on myös hyödynnetty ympäristötiedon jakamisessa.

Vain aineistojen ja tietojen parempaa hyödyntämistä edistäisiin myös data-assimilaatioon liittyvät kysymykset eli miten yhdistetään vedenlaatuasemien, hydrologisten asemien, vesinäytteiden, kaukokartoituksen ym. menetelmien aineistoja. Eri menetelmillä saatujen tietojen yhdistäminen mahdollistaisi monipuolisen kuvan saamisen ympäristön tilasta. Data-assimilaatioon liittyvää tietoa ottaa vahvistavaa aineistoa, jos valuma-alueen ympäristön tilaa on käytettävissä enemmän ajantasaisissa tietoissa.

Aineistojen parempaa hyödyntämistä edistää myös käyttäjien kokemusten ja hyvien käytäntöjen jakaminen. Tähän tarkoituksen soveltuvat hyvin esimerkiksi pienimuotoiset työpajat, joissa on helppo vaihtaa hyviä ja huonoja kokemuksia sekä luoda yhteistyöverkostoja tai hankkeita.

Yritteisiä voisi kannustaa käyttämään enemmän jatkuvatoimista vesitaajuista. Jatkuvatoimisten mittareiden tuottama lähdes reaaliaikainen tieto voisi houkutella yritteisiä innovaatioiden ja nettisovellusten kehittämiseen, mikä voisi tuoda ympäristön tilan raportointi

ja satelliittikuva. Jatkuvatoimisten vedenlaatuasemien tuotoksiin käytettävä tieto on myös hyödynnetty ympäristötiedon jakamisessa.

Vain aineistojen ja tietojen parempaa hyödyntämistä edistäisiin myös data-assimilaatioon liittyvät kysymykset eli miten yhdistetään vedenlaatuasemien, hydrologisten asemien, vesinäytteiden, kaukokartoituksen ym. menetelmien aineistoja. Eri menetelmillä saatujen tietojen yhdistäminen mahdollistaisi monipuolisen kuvan saamisen ympäristön tilasta. Data-assimilaatioon liittyvää tietoa ottaa vahvistavaa aineistoa, jos valuma-alueen ympäristön tilaa on käytettävissä enemmän ajantasaisissa tietoissa.

Lisäksi tulisi aktiivisesti seurata maailmalla tapahtuvaa menetelmäkehitystä ja testata uusia lupaaavia tai muuten erityisen kiinnostavia menetelmiä, sensoreita ja laitteita. Erityisen suuren mielenkiinnon kohteena ovat liuokasta fosforia mittaavat laitteet, joita käytetään viljien yhän Suomessa niihin liittyvien monien haasteiden johdosta.

Vedenlaadun mittaustekniikan kehittämiseen pannostetaan voimakkaasti maailmalla. Käyttäjillä on selvä tarve saada lisää mitattavia muuttujia ja käytettävyydeltään parempia laitteita haastaviin ympäristöoloihin. Lämpimissä oloissa mittareiden ongelmana on erityisesti voimakas likaantuminen ja kylmissä oloissa pakkasen ja jäätmisen aiheuttamat käyttöhaasteet.

7 Menetelmäkehitys ja kansainvälinen yhteistyö
Lähteet

Liitteet

Kustannuslaskentataulukko (Excel -tiedosto). Laskentataulukko avautuu klikkaamalla klemmaria.
Toimintamallitarkastelu – jatkuvatoimiset vedenlaatuasemat

Tiivistelmä
Sammandrag

Nyckelord (enligt Allärs)

vattenkvalitet, kontinuerlig mätning, nätverk av kontinuerligt fungerande vattenkvalitetsstationer, verksamhetsmodell, kvalitetssäkring, kostnader