Do casualties affect troop deployment?
Steffi Raes¹, Cind Du Bois and Caroline Buts
Vrije Universiteit Brussel

Abstract

In 1994 ten Belgian soldiers were murdered during the UN Assistance Mission for Rwanda. Shortly thereafter Belgium withdrew its soldiers from the peacekeeping mission (Van der Lijn & Dundon, 2014) as the Belgian government did not want to risk any further casualties² (Des Forges, 1999). This case provides anecdotal evidence for the assumption that politicians are susceptible to the impact of casualties. Although we assume that political leaders make cost-benefit decisions, it could be argued that this decision was rather emotional than rational and that decisions may be influenced by a form of casualty aversion. The link between casualties, public opinion and foreign policy has been studied extensively. A reduced public support for participation in military missions caused by military casualties has been labelled as ‘the body bag syndrome’ or ‘casualties hypothesis’. Although empirical studies do not seem to support the hypothesis (Kull, 1995; Burk, 1999; Everts, 2001), its (alleged) existence does seem to influence foreign policy decisions (Kull & Ramsay, 2001). As policymakers believe in the body bag syndrome, they may adapt their foreign policy accordingly, leading to reduced military participation (Feaver & Gelpi, 2005).

This concern constitutes the starting point for our research. Our goal is to study the impact that casualties have on the probability of participation and size of the contribution. If there is no decline in participation or the size of the contribution when casualties are incurred during previous periods, this self-fulfilling expectation among politicians is unlikely to exist. A dataset was constructed containing 27 NATO countries³. We set up a dyad structure of NATO countries deploying to conflict locations. Based on the determinants of troop contribution provided in the literature (Bove and Elia, 2011), we extend the model to casualties incurred during previous periods in order to assess whether or not they will actually lead to reduced

¹ Corresponding author: stefraes@vub.ac.be
Steffi Raes is a PhD student at department of Applied Economics of the Vrije Universiteit Brussel.
Cind Du Bois is an associate professor at the department of Economics, Management and Leadership of the Royal Military Academy, Belgium.
Caroline Buts is an assistant professor at the department of Applied Economics of the Vrije Universiteit Brussel and post-doctoral researcher of the Research Foundation Flanders (FWO).
² Casualties and fatalities are often used together in literature. In this paper we will use casualties meaning deaths during the military missions irrespective of the cause.
³ Iceland was left out of the dataset, as the country has no active military deployments.
participation or a declining size of contributions. The model consists of both conflict related variables and donor characteristics. Conflict characteristics are the intensity of the conflict and the amount internally displaced people. Distance to the conflict, the amount of simultaneous peacekeeping missions and real GDP per capita are, among others, considered the donor characteristics.

As the decision on whether or not to participate precedes the decision on the amount of troops to send (Bove and Elia, 2011), a distinction can be made between both. These were tested separately as participation is a dichotomous variable and the size of contribution is a continuous variable. The participation hypothesis is tested through a probit regression. The Classical Linear Regression Model is used to test for the size of contribution. Working with panel data, we have to account for heterogeneity among the different countries. A random effects model was introduced and the Mundlak (1978) correction is applied. To avoid multicollinearity problems, covariates with a high correlation were not simultaneously added to the model. By consequence, the deaths of the previous year and two years preceding the decision were not added simultaneously. To account for the effect of the deaths of two years before the decision to participate, the sum was taken into account.

During the research, we noticed that results were driven by two missions: International Security Assistance Force (ISAF) in Afghanistan and Multi-National Force (MNF) in Iraq. Therefore, we performed tests including and excluding these missions. Depending on whether or not the ISAF and MNF mission are included in the dataset, different conclusions can be drawn. When excluding the missions, NATO countries did not reduce their participation. In fact, mounting casualties are slightly increasing chances of participation, although this was only weakly significant. When including the missions in the regression, previous year casualties did not affect participation results, although casualties of two antecedent years caused for a reduction in participation probability. These tests were combined with some robustness tests from which interesting conclusions could be drawn. First, conflict related variables were determining participation more than the characteristics of NATO countries. Furthermore, when excluding the NATO organised missions, there seems to be a threshold for participating in peacekeeping missions as countries have limited capacity. This threshold is not present when specific NATO missions are included. This could imply that a threshold exists when deciding to participate in peacekeeping missions for organisations other than
regional organisations, as NATO countries will be most likely to participate in NATO missions.

References


