

Thermal reactions of the

major hydrocarbon components of biomass gasification gas

Petteri Suominen

Laboratory of Industrial Chemistry and Reaction Engineering Process Chemistry Centre
Department of Chemical Engineering Åbo Akademi University

Turku/Åbo 2014

Thermal reactions of the major hydrocarbon components of biomass gasification gas

Petteri Suominen

Laboratory of Industrial Chemistry and Reaction Engineering
Process Chemistry Centre
Department of Chemical Engineering
Åbo Akademi University
Turku/Åbo 2014

Supervised by

Academy Professor Tapio Salmi
Laboratory of Industrial Chemistry and Reaction Engineering Process Chemistry Centre
Åbo Akademi University

Reviewers
Professor Pertii Koukkari
VTT Technical Research Centre of Finland
Professor Juha Tanskanen
Chemical Process Engineering, Faculty of Technology University of Oulu

Opponent
Professor Juha Tanskanen
Chemical Process Engineering, Faculty of Technology University of Oulu

Rome wasn't build in a day.

- But they were laying bricks every day

Even if the dream is big and sometimes seemingly unreachable, just do your daily work and don't lose the sight of your dream

Preface

This work was done between February 2008 and December 2013 at the Laboratory of Industrial Chemistry and Reaction Engineering, Department of Chemical Engineering at Åbo Akademi University. The research is a part of activities of the Åbo Akademi Process Chemistry Centre (PCC), a centre of excellence financed by Åbo Akademi University.

I would like to express my gratitude to my supervisor, Professor Tapio Salmi for his guidance which has been irreplaceable for writing this thesis. Likewise, the help of Dr. Pekka Simell (VTT) and Dr. Matti Reinikainen (VTT) is greatly appreciated. Also, invaluable help has been provided by Dr. Kari Eränen with instrumentation and experimental work.

I would like to thank all my colleagues from the Laboratory of Industrial Chemistry and Reaction Engineering. It has been a privilege and great opportunity to work with all of you. A special thank to Dr. Teuvo Kilpiö for sharing his knowledge and thoughts about modeling.

Last but by no means least, I would like thank my family members for their patience during past years. Thank you Hanna and my parents. And of course my aunt Leila.

The financial support of the Finnish Funding Agency for Technology and Innovation (TEKES) through the UCGFunda project (2008-2011) is gratefully acknowledged. In addition, the financial support from the Makarna Olins foundation (2011-2012) and Åbo Akademi University is gratefully acknowledged.

Åbo, November 2014
Petteri Suominen

Abstract

Gasification of biomass is an efficient method process to produce liquid fuels, heat and electricity. It is interesting especially for the Nordic countries, where raw material for the processes is readily available. The thermal reactions of light hydrocarbons are a major challenge for industrial applications. At elevated temperatures, light hydrocarbons react spontaneously to form higher molecular weight compounds. In this thesis, this phenomenon was studied by literature survey, experimental work and modeling effort.

The literature survey revealed that the change in tar composition is likely caused by the kinetic entropy. The role of the surface material is deemed to be an important factor in the reactivity of the system. The experimental results were in accordance with previous publications on the subject. The novelty of the experimental work lies in the used time interval for measurements combined with an industrially relevant temperature interval.

The aspects which are covered in the modeling include screening of possible numerical approaches, testing of optimization methods and kinetic modelling. No significant numerical issues were observed, so the used calculation routines are adequate for the task. Evolutionary algorithms gave a better performance combined with better fit than the conventional iterative methods such as Simplex and Levenberg-Marquardt methods.

Three models were fitted on experimental data. The LLNL model was used as a reference model to which two other models were compared. A compact model which included all the observed species
was developed. The parameter estimation performed on that model gave slightly impaired fit to experimental data than LLNL model, but the difference was barely significant.

The third tested model concentrated on the decomposition of hydrocarbons and included a theoretical description of the formation of carbon layer on the reactor walls. The fit to experimental data was extremely good. Based on the simulation results and literature findings, it is likely that the surface coverage of carbonaceous deposits is a major factor in thermal reactions.

Referat

Termiska reaktioner av låga kolväten med låga molekylvikter

Förgasning av biomassa erbjuder en effektiv process för produktion av bränsle, värme och elektricitet. Speciellt användbar är processen för de nordiska länderna som är rika på råmaterial med tanke på denna process. De termiska reaktionerna framför en stor utmaning för hela processen. Vid höga temperaturer, kolväten med låga molekylvikter reagerar spontant och producerar tyngre molekyler. I denna avhandling har detta fenomen studerats genom litteratursökning, experimentellt arbete samt matematisk modellering.

Litteraturarbetet avslöjade att skillnaderna i tjärans sammanfattning beror på kinetisk entropi. Ytmaterialet är en viktig variabel i reaktiviteten för systemet. De experimentella resultaten överensstämmer med tidigare publicerade data. Nyheten i det experimentellt arbetet ligger i det använda intervallet för reaktionstiderna samt industriellt relevant temperaturintervall.

De synpunkter som täcks av matematisk modellering är analys av möjliga numeriska problem, test av olika optimeringsmetoder samt kinetisk modellering. Inga betydande numeriska onoggrannheter observerades och de använda beräkningsrutinerna ansågs vara tillfredsställande. Evolutionära algoritmer fungerade effektivare och gav bättre anpassning till mätdata jämfört med de konventionella iterativa metoder så som Simplex- och Levenberg-Marquardt-metoder.

Tre olika modeller anpassades till experimentella data. LLNL modellen användes som referensmodell för de två övriga modeller. En kompakt modell som innehåller alla observerade komponenter utvecklades. Parameterestimering visade att anpassningen till experimentell data var en aning sämre än för LLNL -modellen men skillnaden var inte avsevärd.

Den tredje testade modellen koncentrerade sig på sönderfall av kolväten och inkluderade en teoretisk beskrivning av formation av kolskikt på reaktorväggarna. Anpassningen till experimentella data var ytterst bra. På basis av simuleringar och litteraturarbete, kan man konstatera högst sannolikt att ytans täckningsgrad av kolrester är en betydande faktor i högtemperaturreaktioner.

Articles \& manuscripts

This thesis is a monography based on the following articles and manuscripts.
I. Thermal Reactions of the Main Hydrocarbon Components in Gasification Gas, submitted
II. Parameter Estimation of Complex Chemical Kinetics with Covariance Matrix Adaptation Evolution Strategy, MATCH, Communications in Mathematical and in Computational Chemistry 68 (2012) No. 2, 469-476
III. A reduced reaction mechanism for light hydrocarbon thermal reactions, submitted
IV. Peak Function as a Correction Term for Radical Reaction Kinetics, submitted
V. Modeling of thermal reactions of methane-ethene-hydrogen mixture in quartz glass reactor, submitted

Articles I-V were written and edited by the author. All the experiments, coding and modeling was made by the author.

Conference presentations related to thesis

A reduced reaction mechanism for light hydrocarbon thermal reactions - oral presentation EU COST Action CM0901 Annual Meeting 2011 Zaragoza, Spain

Parameter Estimation of Complex Chemical Kinetics with Covariance Matrix Adaptation Evolutionary Strategy - oral presentation, Advanced Computational Methods in Engineering 2011 Liége, Belgium

Other scientific work

Hydrogenation of sugars - combined heat and mass transfer
Kilpiö, T., Suominen, P., Salmi, T., Sugar hydrogenation - combined heat and mass transfer, Computer Aided Chemical Engineering, 32 (2013), 67-72

Mass Transfer in a Porous Particle - MCMC Assisted Parameter Estimation of Dynamic Model under Uncertainties

Suominen, P., Kilpiö, T., Salmi, T., Mass Transfer in a Porous Particle - MCMC Assisted Parameter Estimation of Dynamic Model under Uncertainties, Computer Aided Chemical Engineering, 33 (2014), 277-82

Mass Transfer in a Porous Particle - MCMC Assisted Parameter Estimation of Dynamic Model under Uncertainties - accepted for oral presentation 24th European Symposium on Computer Aided Process Engineering 2014 Budapest, Hungary

Hydrogenation of sugars - combined heat and mass transfer - poster presentation
23rd European Symposium on Computer Aided Process Engineering 2013 Lappeenranta, Finland

Contents

Preface iv
Abstract v
Referat vii
Articles ix
Conference presentations related to thesis x
Other scientific work xi
Contents xii
1 Introduction 1
1.1 Biomass gasification 1
1.2 Aim and scope of this thesis 4
2 Experimental section 5
2.1 Materials 5
2.2 Reactor system 6
2.3 Analytical procedure 7
3 Modeling aspects 9
3.1 Optimization approach 10
3.1.1 Evolution algorithms in general 11
3.1.2 Evolutionary strategy with covariance matrix adaptation 13
3.1.3 In-house stochastic optimization routine based on the PyEvolve 13
3.2 Parameter estimation software 13
3.3 Key reactions 15
3.4 Entropy contributions 17
3.5 Modified Arrhenius equation - thermodynamic explanation for challenges in modeling 19
3.6 Positive and non-positive activation energies 20
3.7 The models used 22
3.7.1 LLNL model 22
3.7.2 A compact model 22
3.7.3 A surface activity corrected model 31
3.8 Reactor model 34
4 Experimental results, modeling and discussion 35
4.1 Experimental results 35
4.2 Summary of modeling efforts 47
4.2.1 Amount of good solutions 52
4.2.2 Differential algebra 52
4.2.3 Unconventional modelling solutions 52
4.3 Discussion - gas-phase or surface reaction? 55
5 Conclusions 59
Notations 63
References 64
Appendix I 68
Appendix II 83
Appendix III 135

1 Introduction

1.1 Biomass gasification

Gasification is a process which converts carbon-containing feedstock at high temperature to syngas. Optimal syngas is a mixture of hydrogen and carbon monoxide with a minor amount of carbon dioxide. The difference between combustion and gasification is in the amount oxygen. In gasification, the amount of oxygen is very small compared to combustion.

The gasification process consists of five principal processes. Dehydration, pyrolysis, combustion, gasification and water-gas shift reaction. During dehydration, water in the gasified material is evaporated. The second step, pyrolysis, produces volatiles and char. After the pyrolysis, resulting char, which can be up to 70% lighter than the raw material, is gasified and partially burnt. The simplified reaction mechanism for combustion is presented in Eq. 1. Carbon containing compounds (CCC) react with oxygen to produce carbon dioxide and other oxides depending on the composition of the feedstock. Simultaneously, char (CHAR) is gasified by steam. The reaction is given in Eq. 2. The water-gas shift reaction presented in Eq. 3. is a reversible reaction and it alters the carbon monoxide hydrogen ratio of syngas depending on the process conditions. In practice, syngas contains besides the desired components also methane and other light hydrocarbons. A reaction which produces methane is given in Eq. 4. A subsequent reaction producing ethane is shown in Eq. 5 .
$\mathrm{CCC}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
CHAR $+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2}+\mathrm{CO}$
$\mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{2}+\mathrm{CO}_{2}$
$4 \mathrm{CO}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{4}+3 \mathrm{CO}_{2}$
$\mathrm{CH}_{4}+\mathrm{CH}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+2 \mathrm{H}_{2}$

Gasification as such is an old process. First industrial-scale applications are from the $19^{\text {th }}$ century as town gas was produced either by gasification or carbonization. In 1920's, applications to manufacture synthetic chemicals were introduced and during World War I and II, the production of liquid fuels was an important application of gasification. The renaissance of gasification began in 1990's when the awareness of the green-house effect was increased. The gasification of biomass offers an carbonneutral way to produce energy.

The total use of biomass for energy production is globally approximately $52 \mathrm{EJ} / \mathrm{a}^{1}$. This is one tenth of the total global energy supply. Almost two thirds of this amount is consumed in developing countries for cooking and heating. However, gasification as a process for the utilization of biomass is still quite a minor application. Less than 5 MWth of synthesis gas is produced globally ${ }^{2}$.

Gasification of biomass is an efficient alternative for liquid fuel production via Fischer-Tropschsynthesis or for power and heat production. The gasification process has attended a large global attention and is particularly important for Nordic countries which are rich in woody biomass per capita.

One of the biggest challenges in the gasification of biomass is accompanied with tar formation. This is an obstacle specific to biomass treatment as the gasification of coal does not produce these components. Tar formation has been studied intensively but it still remains a challenge ${ }^{3}$. Tar components cause problems in several steps of the process, for instance, during cleaning and reforming
processes ${ }^{4}$ by blocking the pipelines. To overcome this big problem, fundamental knowledge about the tar formation and decomposition is needed. This implies that the reaction mechanisms and kinetic models of the radical and catalytic reactions involved should be determined.

At elevated temperatures, hydrocarbons undergo thermal reactions, which include rearrangement reactions, polymerizations, redistribution reactions and numerous decomposition reactions ${ }^{5}$. Even if the amount of tar components formed during the gasification could be suppressed, the lighter hydrocarbons, such as methane and ethene continuously react to produce tar throughout the process, provided that the temperature is sufficiently high. Tar can block pipelines and cause catalyst deactivation. Therefore, an accurate model of the cleaning and reforming processes must include even thermal reactions. In order to develop a model for these steps, it is necessary to understand the various reactions, which produce tar out of lighter hydrocarbons and to reveal how the tar components decompose.

The thermal reactions of the two major hydrocarbons in the gasification gas, ethene ${ }^{6}$ and methane ${ }^{7,8,9}$, have been investigated previously. There has been published even a study on a ethene-methane mixture but the pressures investigated were below atmospheric, the temperature range was narrower and the residence times used in the experiments were several magnitudes larger than in this work ${ }^{10}$.

Thermal reactions of hydrocarbons have been discussed traditionally in the context of crude oil cracking ${ }^{11}$. The thermal reactions are mostly considered to be reactions between radicals, but some important reaction routes between a radical species and a molecular species ${ }^{12,13}$ have been suggested, too. The reaction mechanisms are in general very complex.

A particular challenge in modeling this phenomenon is the high uncertainty in published parameter values. Several articles give uncertainties of up to an order of magnitude. This has lead to much debate in scientific community about the accurate values of the kinetic values and in many cases modeling efforts concentrate in fine-tuning a certain part of a large reaction mechanism.

1.2 Aim and scope of this thesis

The aim of this thesis was to investigate how the main hydrocarbon components in gasification gas react under the conditions of gasification gas reforming. The scope of the thesis is limited to atmospheric pressure in order to exclude the pressure from the variable list. The modeling part of the thesis concerns parameter estimation of complex systems appearing in the gasification gas, and discusses the reliability of the literature data of kinetic parameters.

2 Experimental section

2.1 Materials

The reactive gases $\mathrm{C}_{2} \mathrm{H}_{4}(99.995 \%), \mathrm{CH}_{4}(99.995 \%), \mathrm{H}_{2}(99.999 \%)$ and balance gas $\mathrm{N}_{2}(99.999 \%)$ were obtained from AGA Oyj (Finland). All gases were used without further purification. Quartz glass was chosen to the reactor material to avoid possibly catalytic materials present in stainless steel reactors. Two mixtures, the compositions of which are presented in Table 1, were investigated thoroughly. The experiments were conducted between $500^{\circ} \mathrm{C}$ and $1000^{\circ} \mathrm{C}$ with steps of $100{ }^{\circ} \mathrm{C}$. The residence times were within the range of 10 milliseconds to over 1 second. The amount of samples was in 10 samples at each of temperatures which were six total. The same applies for both mixtures. There were 13 analyzed and quantified species. This was considered to be enough for a reliable kinetic modeling.

Table 1. Gas mixture compositions used in this thesis.

Mixture	Ethene (mol-\%)	Methane (mol-\%)	Hydrogen (mol-\%)	Nitrogen (mol-\%)
1	2	10	0	88
2	2	10	35	53

The mole fractions of the reactive components in the gas mixture compositions were selected to correspond to realistic values for a gasification gas originating from biomass.

2.2 Reactor system

A tubular reactor (i.d. 9 mm , length 300 mm) operating in upflow mode was placed in a tubular oven (Carbolite Furnaces MTF 12/25A) for heating. The gas flows were controlled by mass flow controllers (Brooks 5850). The stainless steel tubesbetween the reactor and the analyzer, gas chromatograph (Hewlett-Packard 6890N) (GC), were heated to $170^{\circ} \mathrm{C}$ by electric coils to avoid condensation of high molecular weight products. The pressure in the system was monitored on-line and kept at the atmospheric level by withdrawing samples by a continuously running vacuum pump after the GC. This allowed higher flow rates as only a small portion of the total flow passed the narrow GC lines. If the whole flow would have been directed through the GC, the pressure in the system would have raised up to 2 atm . The reactor system is illustrated in Figure 1. The experimental setup is similar to ones used in many literature sources. None of the experimental setups in literature use a vacuum pump for sampling which enabled higher flow rates and lower residence times than are typically used in studies of this phenomenon.

Figure 1. Flowsheet of experimental apparatus.

2.3 Analytical procedure

The products were analyzed by an on-line GC (Hewlett-Packard 6890N) with two columns in series: Porapak HP-Plot Q (length 30 m , i.d. 0.53 mm , film $25 \mu \mathrm{~m}$) and HP-Mol Sieve (length 30 m , i.d. 0.53 mm , film $40 \mu \mathrm{n}$). Hydrogen and the lightest hydrocarbons were allowed to pass both columns but heavier hydrocarbons passed the first column only.

The main hydrocarbons, C1-C4 alkanes, alkenes, alkynes and 1,3-butadiene were calibrated against an internal standard. Off-line GC-MS (Agilent 6890N with Agilent 5973Network mass detector) was used
to identify the unknown compounds. The hydrocarbon concentrations were quantified by flame ionization detector (FID) and hydrogen concentration by a thermal conductivity detector (TCD).

The calibration gas mixtures which were used in the calibration have relative uncertainties, which influences the accuracy of the analysis results. These effects were calculated and they all were below 0.1%. The repeatability of the analysis was checked by doing parallel measurements at randomly selected temperatures and residence times. For each point tested the relative standard deviations were below 1.0 \%.

3 Modeling aspects

Modeling the thermal reactions of light hydrocarbons is in general a very tedious task. There are basically two possible directions where to proceed; either large, detailed models varying from several hundreds of reactions ${ }^{14,15}$ to over 16000 elementary reactions ${ }^{16}$ and everything in between ${ }^{17}$ or, alternatively engineering models based on the few non-elementary reactions can be considered.

For industrial applications, models based purely on hydrocarbon reactions are not sufficient as there are minor and trace compounds present in the gasification gas, for instance ammonia, NO_{x}, hydrogen sulfide, and SO_{x}, in product mixtures which affect the product distributions. Therefore, detailed models become even larger. They are needed to gain insight in the mechanisms of soot formation. As the models grow larger, their applicability to practical cases which require rapid solutions, is reduced.

Engineering models have their advantages as well as their disadvantages. Their computational cost is much lower, but they do not offer any mechanistic explanation to the physical phenomena behind the soot formation. They are also restricted to a quite narrow operating window. New parameters must be estimated always when the operating conditions are altered. The issue is that the new parameters might significantly differ from the old ones which makes the parameter estimation task harder. This kind of model has always a strongly adaptive character.

The parameter estimation, which is a numerical optimization problem, becomes more and more challenging as the dimensionality of the system increases. This is mainly because the choice of the initial parameter values becomes harder and harder as the amount of local minima increases in the
objective function. Another issue in the parameter estimation is presented in Figure 2. If the shape of the minimum is highly oblong, the path which an iterative method such as a Newton or a quasi-Newton algorithm takes may become long and the maximum allowed number of iterations is reached before the absolute minimum is reached.

Figure 2. Badly chosen initial value for a gradient-based method.

3.1 Optimization approach

Stochastic optimization methods such as evolutionary algorithms (EA), swarm algorithms, simulated annealing, quantum annealing and many others offer a way to overcome to some extent the previously presented problems related to the dimensionality of the optimization problem. A recent review article was written by L. Elliott et al. ${ }^{18}$

The main challenge in using classical Newton and quasi-Newton algorithms is the need of finding suitable initial values for the algorithm. If suitable initial values are found, iterative methods outperform the stochastic methods. In recent years, hybrid algorithms ${ }^{19}$ have gained popularity to combine the advantages of the both optimization method classes.

An interesting idea was presented by L. Elliott et al. ${ }^{20}$. In their work, they combined the parameter estimation with the mechanism reduction scheme. The results obtained by this method in their study are comparable to those obtained by commonly used mechanism reduction methods.

As a working hypothesis, it was assumed that a probable cause for the inaccuracies in model predictions could be the challenges in optimization. For that reason, a state-of-art, stochastic optimization algorithm, evolutionary strategy with covariance matrix adaptation(CMA-ES) ${ }^{21}$ was tested in this study.

The detailed models of tar formation from light hydrocarbons are very complex, consisting of several hundreds of reactions. As the amount of estimated parameters can be as high as three times the amount of reactions, parameter estimation of chemical kinetics for tar formation is a practical example of an optimization problem, for which conventional gradient/derivative based algorithms are difficult to implement. It has been proposed that the limit above which stochastic optimization methods outperform the gradient based methods is as low as ten dimensions.

After noticing that the problem was not in optimization, a more easily applicable stochastic optimization routine build around the PyEvolve ${ }^{22}$ package was used.

3.1.1 Evolution algorithms in general

Evolution algorithms are effective and robust methods for optimization. Their biggest disadvantage is the poor convergence performance and therefore they are most efficient in global optimization
problems that have many local optima. They have been used in parameter estimation of complex chemical kinetics, but have not gained popularity over conventional gradient/derivative based methods, which are computationally lighter in simpler parameter estimation tasks. In large parameter estimation tasks, however, evolution algorithms have a clear advantage as the choice of initial parameter values is by far simpler task as it is for gradient/derivative based methods.

Evolution algorithms can be divided in different techniques based on the implementation details. These techniques include genetic algorithm, genetic programming, evolution programming, neuroevolution and evolution strategy. For this paper, an evolution strategy (ES) was chosen for parameter estimation. The selection process in evolution strategies is based on the fitness rankings rather than the actual fitness values and it is deterministic. This is one of the main reasons for the robustness of ESs. Besides selection, mutation is used as a search operator. The step-size of mutation is often governed by selfadaptation to keep the progress in the evolution window. Another technique to ensure the convergence to the optimum of a function is cumulative step size adaptation.

Evolution strategies have been previously used in parameter estimation of complex chemical kinetics by Polifke et al^{23}. In that work, a simple $(\mu+\lambda)$-ES by Rechenberg et al^{24}. was used. Some improvements to this work has been proposed by Elliott el al ${ }^{18}$. including addition of recombination operation, which is occasionally used in evolution strategies to prevent the algorithm to stuck on local optima. Other types of evolution algorithms, mainly genetic algorithms, and also other types of stochastic algorithms, such as particle swarm and differential evolution (DE) have also been applied to parameter estimation in chemical kinetics.

3.1.2 Evolutionary strategy with covariance matrix adaptation

To our work, an evolution strategy with covariance matrix adaptation (CMA-ES) by Hansen and Ostermeier ${ }^{21}$ was chosen. Hansen and Ostermeier depict the step to CMA-ES from an ES with isotropic mutation distribution as comparable to a step from a simple gradient-based method to a quasi-Newton method, e.g. a step from local gradient to approximation of inverse Hessian matrix. CMA-ES has already been applied to many real-world search problems. The advantage of CMA-ES over the conventional ESs is the added invariance properties.

3.1.3 In-house stochastic optimization routine based on the PyEvolve

For parameter estimation of the surface corrected model, a stochastic optimization routine was programmed. The software utilizes the PyEvolve package ${ }^{22}$. The algorithm behind the package is not as sophisticated as the CMA-ES but much more easier to implement in practice and actually just as effective. The code of the our implemantion is presented in Appendix 2.

3.2 Parameter estimation software

The parameter estimation software mostly used in our laboratory, Modest ${ }^{25}$, was soon deemed too cumbersome to be applied in this kind of work. The reason for this is that many of the published models are available as a Chemkin ${ }^{26}$ input file which is completely different from Modest input files. Therefore, a new parameter estimation software was designed and programmed. The software is presented in detail in Appendix 1. It is based on the Chemkin II software ${ }^{26}$ which was distributed as a source code. The parameter estimation software utilized the pre-processor and Senkin modules of the Chemkin II to simulate the reaction scheme. The CMA-ES parameter estimation software was used to
find the optimal values for kinetic parameters. The software includes also an in-house driver and postprocessor. The software is schematically presented in Figure 3.

Figure 3. A schematic view of the parameter estimation software use in this work.

The initial strategy parameters are manually inserted to CMA-ES algorithm. Likewise, the model is written to an input file to the SENKIN module of the CHEMKIN II software package. The parameter estimation is started and CMA-ES sends the proposed coefficients for parameters to in-house driver program. The SENKIN module simulates the model with parameter values, which are calculated to be the product of the proposed coefficient and literature value of the respective kinetic parameter. After a successful simulation, the in-house driver starts the in-house post-processor, which calculates the sum of squares of the simulated values and our experimental results. The post-processor returns this value to driver which returns it to CMA-ES algorithm as a fitness value. At the same time, both in-house modules record the all-time best values. CMA-ES then proposes new values for coefficients, which
undergo the same process until a termination condition is met. When a termination condition is met, CMA-ES produces the results of its workings. The in-house driver produces a CHEMKIN input file with best found parameter values and post-processor gives results in a form, which can easily be plotted graphically.

3.3 Key reactions

The reaction network for this kind of system is complex. Figure 4 presents the possible reactions of hydrogen radicals with ethyne, ethene and ethane. There are two principal reactions: abstraction and addition. A radical species is created in both cases. The same applies for ethane and ethyne.

Figure 4. Hydrogen radical attack on ethyne, ethene and ethane.

The situation increases rapidly in complexity as illustrated in Figure 5. The number of possible reactions is now five as the length of hydrocarbon increases by one carbon atom. If similar figures would be drawn for even longer hydrocarbon species, the amount of reactions would increase further.

Figure 5. Hydrogen radical attack on propene.

It is worth noticing that at elevated temperatures, a variety of energetically strained radicals can exist which additionally increases the size of the reaction system.

Obviously, the hydrocarbons do not necessarily react solely with hydrogen radicals. It is totally possible that the opposite occurs, that is, hydrogen molecule reacts with hydrocarbon radicals, and the hydrocarbon-hydrocarbon reactions are also possible. The only limitation is that the molecule-molecule reactions are much slower than the molecule-radical reactions. Radical-radical reactions can also occur but the low concentrations of the radical species make these reactions less probable.

Campbell et al ${ }^{27}$ have studied the methyl radical coupling in the presence of catalytic materials. They concluded that at least 40% of the ethane formed is a result of gas-phase reactions, not surface reactions. Cho et al. ${ }^{28}$ concluded that the formation of hydrocarbon radicals cannot be solely a gas-
phase process. Grubbs and George ${ }^{29}$ have studied the effect of different reactor materials on the hydrogen radical concentrations and their results show that there is a clear difference in the concentrations depending on the reactor material.

It seems that even though the formation of radicals occurs in large extent on the surfaces of the reactor, even on the catalytically inactive ones, the radicals react in gas phase. Therefore, the physical properties of the surfaces in the reactor vessel affect strongly the product distributions. To further complicate the issue, the carbonaceous deposits formed in the reactor have different surface properties than the reactor materials which results in time-dependent sorption effects.

The results obtained by Kopinke et al. ${ }^{30}$ show that the formation of carbon layer depends on the reactor material. The process on steel surface is highly erratic. Some unsteady behavior can be observed also on quartz surfaces but the experimental data show that the process proceeds in S-curve like fashion.

The erratic characteristics of the carbon layer formation on steel surfaces is an unfortunate effect in modeling industrial applications. Fortunately, the surface area-to-volume ratio ${ }^{31}$ in industrial applications is such that the importance of the surface reactions is likely to be less than in a laboratory scale.

3.4 Entropy contributions

In an ab initio study, Li and $\mathrm{Brenner}^{32}$ calculated rate constants and analyzed the enthalpy and entropy effects on them. Based on quantum chemical calculations, they concluded that at temperatures relevant to this study, the entropy is an important variable when considering the product distributions. The
translational entropy increases the probability of the β-scission reaction, which is illustrated in Figure 6, compared to the addition of a hydrogen atom to an unsaturated hydrocarbon. These calculations are in accordance with experimental results of Rye ${ }^{33}$ and Balooch and Olander ${ }^{34}$. Similar results were also obtained by Frenklach ${ }^{35}$ by numerical simulations.

Figure 6. Beta-scission reaction.

Rotational entropy favors hydrogen abstraction reactions. Perhaps the most notable consequence of the entropy considerations is how the β-scission is favored over the hydrogen addition reaction at higher temperatures. This was experimentally observed by Rye ${ }^{33}$ and similar results were obtained by Li and Brenner ${ }^{32}$ by quantum chemical calculations. Without taking the entropy effects into account, addition reactions would dominate over β-scission even at high temperatures. Interestingly, the tar formed in lower temperatures is aliphatic but aromatic tar is formed at higher temperatures. The results obtained by Spence and Vahrman ${ }^{36}$ show that over 10% of dry tar can consist of paraffins and olefins. There is no literature about significant amounts of aliphatic compounds present in tars from high-temperature gasification processes.

Surface chemical studies would be highly interesting in estimating the role of entropy in the tar formation. A possible explanation to different kinds of tar produced in different temperatures is the reduction of rotational and translational entropy for molecules in an interaction with a surface. This would cause different products for pure gas-phase systems as well as catalyzed, Eley-Rideal and Langmuir-Hinshelwood types of reaction systems. Studying this would require experimental work to
determine at which temperatures surface reactions are possible on pure quartz and on carbonaceous deposits.

3.5 Modified Arrhenius equation - thermodynamic explanation for challenges in modeling

An interesting aspect in modelling the chemistry related to combustion and gasification processes is a modified Arrhenius equation presented in Eq. 6. The resemblence to an expression used in transition state theory (TST), which is shown in Eq. 7, is apparent.
$k=A \cdot\left(\frac{T}{T_{r e f}}\right)^{n} \cdot \exp ^{\frac{-E_{a}}{R \cdot T}}$
$k=\frac{k_{b} \cdot T}{h} \cdot \exp \frac{\Delta S_{c}^{{ }_{c}^{\circ, \mp}} R}{R} \cdot \exp ^{\frac{-\Delta H_{c}^{\circ, \mp}}{R \cdot T}}$

Based on the literature findings presented in previous chapter, it is clear that the entropy contributes to the product distributions of the thermal reactions. This leads intuitively to think that the exponential temperature dependency in modified Arrhenius equation in this application, actually depicts the entropy contribution of the reaction. If this thought is developed further, a probable cause for deviation of the predictions by detailed reaction mechanisms can be worked out. There are namely problems with applying transition theory to high temperature radical reactions.

First, the transition theory assumes that all the intermediate species can reach a Bolzmann distribution of energies. That is, the intermediate species are enough stable and therefore being enough long-lived. If this is not a case, then the momentum of reaction trajectory from reactants to intermediates can be
transferred to products, which affects the product distributions. As many of the hydrocarbon radical species are short-lived, there is a good chance that the product distributions differ from the theoretical ones even though the kinetic constants would be correctly defined for every elementary reaction in mechanism.

Second, the transition state theory fails if the atomic nuclei do not behave according classic mechanics. In quantum mechanics, for every barrier with finite amount of energy exists a possibility that a particle can tunnel across. Many of the activation energies are low in radical species reactions. Therefore, probability for tunneling increases and again, the product distributions may differ from the ones predicted by classical kinetics.

Third, according to transition state theory the reactions proceed through the lowest energy saddle point at potential energy surface. This is the case for reactions at low temperatures but at high temperatures, higher energy vibrational modes are populated. This leads to more complex behavior of the molecules and ultimately to transition states which are far away from the energetic minimum. And even this phenomenon increases the deviation from the predicted product distributions.

3.6 Positive and non-positive activation energies

Conventionally, the activation energy of a reaction is considered to be equivalent to the energy barrier between two minima of the potential energy. The value of activation energy is positive for both exoand endothermic reactions. In some cases the activation energy can be non-positive. The theoretical background for this phenomenon has been published by Houk and Rondan ${ }^{37}$ and Mozurkewich and

Benson ${ }^{38}$. The background is most easily presented by the Tolman interpretation of the activation energy ${ }^{39}$ presented in Eq. 8.
$\mathrm{E}_{\text {act }}=\langle\mathrm{E}\rangle_{\mathrm{TS}}-\langle\mathrm{E}\rangle_{\mathrm{R}}$

The activation energy ($\mathrm{E}_{\text {act }}$) is a difference of the average energies of the transition state $\left(\langle\mathrm{E}\rangle_{\mathrm{TS}}\right)$ and reactants $\left(\langle E\rangle_{R}\right)$. Three cases are possible.

In the first case, the transition state is a tight one. Some of the degrees of freedom are transformed to vibrational modes as the reactants are transformed to the transition state. Generally, this has a very minor effect on the average internal energy by the decrease in the kinetic energy and the increase in the potential energy by the breaking and forming of the bonds is much larger. In this case, which is also the most common one, the activation energy is positive.

The second alternative is that the transition state is loose. Neither the changes in the potential energy or the kinetic energy are significant and the activation energy is very close to zero.

A negative activation energy is the consequence of the third alternative. This can happen if the reaction which is assumed to be elementary is not truly elementary but proceeds via a stable intermediate. In this case, the types of the transition states between the reactants and the intermediate, and the intermediate and the products together with the magnitudes of their energy thresholds dictate the sign of the activation energy.

3.7 The models used

3.7.1 LLNL model

The LLNL model ${ }^{40}$ is a classical detailed reaction mechanism for gas-phase reactions of light hydrocarbons. It includes 687 reversible reactions and has been validated for n -butane, propane, ethyne, ethane and methane. It was chosen to be the standard model to which the other tested models were compared.

3.7.2 A compact model

In many literature sources, it is stated that some of the kinetic parameters for detailed mechanisms of gasification and combustion are not estimable at all or only in order of magnitude. The assumption was made that a reduction of the dimensionality of the model would result in easier parameter estimation tasks. Therefore, a compact model which includes all the observed species, was designed. The reaction mechanism consists of 37 reversible reactions and 30 species. This model is presented in Table 2.

Table 2. Rate constant parameters after the parameter estimation. Units are $\mathbf{c m}$, mole, cal, K and Pa. Reference is for the publication from which the reaction has been taken.

	reaction	A	n	E_{a}	Ref
1	$C_{2} \mathrm{H}_{4}+\mathrm{C}_{2} \mathrm{H}_{4} \leftrightarrow \mathrm{C}_{2} H_{5}^{+}+\mathrm{C}_{2} H_{3}^{\cdot}$	4.72 E 14	0.00	7.13 E 4	${ }^{41}$
2	$C_{2} \mathrm{H}_{4}+\mathrm{CH}_{4} \leftrightarrow \mathrm{C}_{2} H_{5}^{\cdot}+\mathrm{CH}_{3}^{\cdot}$	1.41 E 9	0.00	1.00 E 3	${ }^{14}$

3	$H_{2} \leftrightarrow H^{\bullet}+H^{\bullet}$	6.55 E 4	0.00	1.02 E 5	41
4	$\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \leftrightarrow \mathrm{C}_{2} \mathrm{H}_{5}^{*}+\mathrm{H}^{\bullet}$	1.03 E 13	0.00	6.82E4	41
5	$\mathrm{CH}_{4} \leftrightarrow \mathrm{CH}_{3}^{\bullet}+\mathrm{H}^{\bullet}$	6.26 E 20	0.00	1.02E5	41
6	$\mathrm{C}_{2} \mathrm{H}_{3}^{\bullet}+\mathrm{C}_{2} \mathrm{H}_{4} \leftrightarrow \mathrm{C}_{4} \mathrm{H}_{6}+\mathrm{H}^{\bullet}$	4.98 E 11	0.00	7.31E3	41
7	$\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}^{\bullet} \leftrightarrow \mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{H}_{2}$	7.00 E 13	0.00	2.87 E 3	41
8	$\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{2} \mathrm{H}_{5}^{\bullet} \leftrightarrow \mathrm{C}_{2} \mathrm{H}_{3}^{\bullet}+\mathrm{C}_{2} \mathrm{H}_{6}$	1.38 E 13	0.00	2.19 E 4	41
9	$\mathrm{C}_{2} \mathrm{H}_{5}^{\bullet}+\mathrm{H}_{2} \leftrightarrow \mathrm{C}_{2} \mathrm{H}_{6}+H^{\bullet}$	2.56 E 12	0.00	1.30E4	41
10	$\mathrm{C}_{2} \mathrm{H}_{5}^{\bullet}+\mathrm{C}_{2} \mathrm{H}_{5}^{*} \leftrightarrow \mathrm{C}_{4} \mathrm{H}_{10}$	1.07 E 13	0.00	0	41
11	$\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{2} \mathrm{H}_{5}^{*} \leftrightarrow \mathrm{C}_{4} \mathrm{H}_{9}^{*}$	2.83 E 11	0.00	8.06E3	41
12	$\mathrm{C}_{4} \mathrm{H}_{9}^{\bullet} \leftrightarrow \mathrm{C}_{4} \mathrm{H}_{8}+H^{\bullet}$	9.71 E 13	0.00	3.84 E 4	42
13	$\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{C}_{4} \mathrm{H}_{9}^{\bullet} \leftrightarrow \mathrm{C}_{3} \mathrm{H}_{5}^{\bullet}+\mathrm{C}_{3} \mathrm{H}_{6}$	7.22E11	0.00	9.00E3	43
14	$\mathrm{C}_{4} \mathrm{H}_{9}^{*} \leftrightarrow \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{CH}_{3}^{*}$	1.97 E 13	0.00	3.00 E 4	14
15	$\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{CH}_{3}^{+} \leftrightarrow \mathrm{C}_{3} \mathrm{H}_{7}^{+}$	3.34 E 11	0.00	7.71 E 3	14
16	$\mathrm{C}_{3} \mathrm{H}_{7}^{\cdot}+\mathrm{C}_{2} \mathrm{H}_{3}^{\bullet} \leftrightarrow \mathrm{C}_{3} \mathrm{H}_{8}+\mathrm{C}_{2} \mathrm{H}_{2}$	1.22 E 12	0.00	0	44
17	$\mathrm{CH}_{3}^{\cdot}+\mathrm{CH}_{3}^{\bullet} \leftrightarrow \mathrm{C}_{2} \mathrm{H}_{5}^{\bullet}+\mathrm{H}^{\bullet}$	1.05 E 13	0.00	1.07 E 4	45

18	$\mathrm{C}_{2} \mathrm{H}_{3}^{*} \leftrightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}^{\bullet}$	7.74 E 16	0.00	3.61 E 4	${ }^{41}$
19	$\mathrm{C}_{2} \mathrm{H}_{3}^{\bullet}+\mathrm{H}^{\bullet} \leftrightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}_{2}$	9.73 E 13	0.00	0	${ }^{41}$
20	$\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}^{\bullet} \leftrightarrow \mathrm{C}_{2} \mathrm{H}_{3}^{*}+\mathrm{H}_{2}$	2.99E14	0.00	1.54 E 4	${ }^{41}$
21	$\mathrm{CH}_{4}+\mathrm{H}^{\bullet} \leftrightarrow \mathrm{CH}_{3}^{\bullet}+\mathrm{H}_{2}$	1.84 E 14	0.00	1.25 E 4	${ }^{41}$
22	$\mathrm{CH}_{3}^{+}+\mathrm{C}_{2} \mathrm{H}_{3}^{+} \leftrightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{CH}_{4}$	3.92 E 11	0.00	0	${ }^{41}$
23	$C_{3} H_{6}+H^{\bullet} \leftrightarrow C_{3} H_{5}^{\bullet}+H_{2}$	3.14 E 13	0.00	5.63 E 3	46
24	$\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{M} \leftrightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{M}+\mathrm{H}_{2}$	4.00 E 15	0.00	9.03 E 4	${ }^{41}$
25	$\mathrm{C}_{4} \mathrm{H}_{6}+\mathrm{H}^{\bullet} \leftrightarrow \mathrm{C}_{4} \mathrm{H}_{5}^{*}+\mathrm{H}_{2}$	3.40 E 12	0.00	6.00E4	47
26	$\mathrm{C}_{4} \mathrm{H}_{5}^{\bullet}+\mathrm{H}^{\boldsymbol{\bullet}} \leftrightarrow \mathrm{C}_{3} \mathrm{H}_{3}^{\bullet}+\mathrm{CH}_{3}^{\text {- }}$	9.81 E 13	0.00	0	14
27	$\mathrm{C}_{3} \mathrm{H}_{3}^{\bullet}+\mathrm{C}_{3} \mathrm{H}_{3}^{\bullet} \leftrightarrow \mathrm{C}_{6} \mathrm{H}_{5}^{\bullet}+H^{\bullet}$	2.96 E 12	0.00	0	48
28	$\mathrm{C}_{3} H_{3}^{\bullet} \leftrightarrow \mathrm{C}_{3} \mathrm{H}_{2}^{+}+H^{\bullet}$	4.96 E 12	0.00	7.84E4	14
29	$\mathrm{C}_{3} \mathrm{H}_{3}^{*}+\mathrm{C}_{3} \mathrm{H}_{2}^{*} \leftrightarrow \mathrm{C}_{6} \mathrm{H}_{5}^{*}$	4.93 E 13	0.00	0	14
30	$\mathrm{C}_{6} \mathrm{H}_{5}^{\cdot}+\mathrm{CH}_{3}^{\cdot} \leftrightarrow \mathrm{C}_{7} \mathrm{H}_{8}$	3.95 E 12	0.00	0	14
31	$\mathrm{C}_{4} \mathrm{H}_{6}+\mathrm{C}_{3} H_{5}^{\bullet} \leftrightarrow \mathrm{C}_{5} H_{5}^{\bullet}+\mathrm{C}_{2} \mathrm{H}_{6}$	9.74 E 12	0.00	2.26E4	14
32	$\mathrm{C}_{6} \mathrm{H}_{5}^{\cdot}+\mathrm{H}_{2} \leftrightarrow \mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{H}^{\text {• }}$	3.95 E 12	0.00	7.89E3	14

33	$C_{6} H_{5}^{\bullet}+C_{2} H_{2} \leftrightarrow C_{8} H_{6}+H^{\bullet}$	3.95 E 12	0.00	1.01 E 4	${ }^{41}$
34	$C_{8} H_{6}+H^{\bullet} \leftrightarrow C_{8} H_{5}^{\bullet}+H_{2}$	2.51 E 14	0.00	1.60 E 4	${ }^{41}$
35	$C_{8} H_{5}^{\bullet}+C_{2} H_{2} \leftrightarrow C_{10} H_{7}^{\bullet}$	4.09 E 13	0.00	1.01 E 4	${ }^{41}$
36	$C_{10} H_{7}^{\bullet}+H_{2} \leftrightarrow C_{10} H_{8}+H^{\bullet}$	1.02 E 14	0.00	7.89 E 3	${ }^{41}$
37	$C_{5} H_{5}^{\bullet}+C_{5} H_{5}^{\bullet} \leftrightarrow C_{10} H_{8}+H^{\bullet}+H^{\bullet}$	9.83 E 10	0.00	8.00 E 3	${ }^{41}$

The presented reaction mechanism is based on the literature survey. Main source of reaction and kinetic data is the kinetic database of National Institute of Standards and Technology (NIST). The species in the model were chosen based on our experimental work. After the selection of the species, some wellknown reactions were chosen as a backbone of the model. Then several combinations of different published reactions were tested and the combination which gave the best fit to experimental data was chosen. During the whole process of selecting reactions, the different stages of chain reaction were considered, so that the necessary branching was obtained.

The goal of the modelling was to keep to the number of reactions to the minimum, with reasonable accuracy, so that the model could be implemented to engineering environment tools where computational effort is required to other calculations as well. The model was also limited to gas-phase reactions at the moment. Different surface reactions are of even greater interest than the gas-phase reactions but the analysis of such reactions would require a new experimental setup.

The mechanism is initiated by the reactions 1-5 forming the hydrogen, methyl, vinyl and ethyl radicals. The first molecular product formed is 1,3-butadiene by the Reaction 6 . Also C2-species, ethyne and ethane are formed in the early phase of the reaction scheme. There are several reactions leading to these species. They are needed to obtain the necessary form of the chain reaction with enough branching reactions compared to inhibiting ones. Combination reactions between C 2 -species form the C 4 -species and C3-species are formed mainly from the rearrangement reaction between C 2 -species and C 4 -species or by decomposition reactions of C 4 -species, although one reaction, number 15 , between a C 2 -species and methyl leads to formation of propyl radical.

1,3-butadiene is an important intermediate to the formation tar and soot precursors. Consecutive reactions with hydrogen radicals form a propargyl and propadienylidene radicals which form phenyl radical by the Reactions 30 and 32. Another route to cyclic compounds which was chosen to model proceeds also via 1,3-butadiene. Together with allyl radical it forms cyclopentadienyl which can react to other cyclic and polycyclic compounds. Ethyne is an important species for the growth of the aromatic compounds and the consecutive addition of ethyne to phenyl yields naphthalene according to Reactions 33-36. Naphthalene is also the heaviest compound in our model.

Hydrogen radicals are the driving force in the chain reaction. They are formed in 14 different reactions and consumed in 8 reactions. This explains also the importance of the form of the reaction mechanism. The mechanism needs to be constructed so that the formation rate of hydrogen radicals is equivalent to the formation rate of hydrogen radicals in the reactor. In a way, this may seem obvious but in constructing a reduced reaction mechanism which depicts the formation of tar and soot from the lighter hydrocarbons, it is not necessary to model every reaction and species. Some of the reactions and
species have very little or even no effect on the outcome of the model. These can be identified by mathematically analysing the equation system.

3.7.2.1 Sensitivity analysis of the reduced reaction mechanism

The sensitivity analysis was performed by SENKIN part of the Chemkin 2 software package. The results of these analyses were used to identify the most dominant parameters in the system. The sensitivity coefficients were calculated to the reactants: hydrogen, methane and ethene. Besides these, benzene was investigated by sensitivity analysis. This is unfortunately only a theoretical investigation as no experimental data is available for benzene. Benzene is among the unwanted species and therefore interesting compound for the sensitivity analysis. A positive coefficient indicates that the reaction enhances the species production and a negative one is a sign of opposite effect.

3.7.2.1.1 Methane

In the presence of hydrogen, methane at $1000{ }^{\circ} \mathrm{C}$ was sensitive to three reactions. Its production was enhanced by the Reactions 27 and 30. The Reaction 33 competes with the Reaction 30 and therefore methane production was negatively influenced by it. At $900^{\circ} \mathrm{C}$, the same reactions were important but two new important reactions appeared. Reaction 22 consumes methane and Reaction 24 forms methane. At $800^{\circ} \mathrm{C}$, methane is no longer sensitive towards Reactions 24 and 33. As temperature is lowered to $700^{\circ} \mathrm{C}$ and $600^{\circ} \mathrm{C}$, only Reaction 27 remains influential on the methane concentration. At $500{ }^{\circ} \mathrm{C}$, methane is not sensitive to any of the reactions. This according to literature findings which propose that methane works as a radical transfer species. Our experimental work does also support this as methane is neither formed nor consumed at lower temperatures. It seems that methane does have a
minor role in the formation aromatic compounds but otherwise it only affects the overall reactivity of the system.

In comparison, if the mixture did not contain hydrogen methane sensitivity was considerably lower at lower temperatures. On contrary, high temperatures exhibit a different behaviour. Methane sensitivity is higher if no initial hydrogen is present in the mixture. The probable cause is the formation of hydrogen from the methane by direct decomposition which is reported to happen at temperatures above $875^{\circ} \mathrm{C}$. At high temperatures, aromatic compounds are forming and as with previous mixture, methane is slightly affected by the Reactions 27, 30, 33, 34 and 37 at $900^{\circ} \mathrm{C}$ and $1000^{\circ} \mathrm{C}$. Likewise, at $800^{\circ} \mathrm{C}$ is still high enough temperature for the formation of aromatic compounds and methane was sensitive to Reactions 30, 33 and 34. Reactions 30 and 34 lower the methane concentration and Reactions 37, 33 and 27 increase it. At $700^{\circ} \mathrm{C}$, there is a clear difference to hydrogen containing mixture. Methane was sensitive to Reactions 30 and 33 instead of 27 and interestingly Reaction 30 affects negatively the concentration of methane rather than positively as it was the case in the hydrogen containing mixture. This depends most likely on the fact there is very little hydrogen in the system competing for the methyl radicals as the formation of hydrogen begins at temperatures over 700 degrees in hydrogen free mixtures. At 600 and $500^{\circ} \mathrm{C}$ methane was even more passive than in the presence of hydrogen.

3.7.2.1.2 Hydrogen

Initially hydrogen free mixture produces hydrogen at elevated temperatures. The sensitivity analysis of this mixture at 1000 degrees shows that many reactions affect the system. Reactions $18,24,27,33$ and 37 enhance the consumption of hydrogen and Reactions 22,30 and 34 produce hydrogen. Termination Reactions 22 and 30 cause the increase in hydrogen production as the amount free radicals in the
system diminishes and this increases the probability hydrogen radicals abstract hydrogen from molecular species. The Reaction 27 increases the concentration of phenyl radicals which then react with hydrogen and Reaction 24 produces precursor to this pathway. At $900{ }^{\circ} \mathrm{C}$ Reaction 21 is also sensitive for the hydrogen concentration and produces hydrogen. At $800^{\circ} \mathrm{C}$, same reactions were detected. Difference is that Reactions 18, 33 and 37 have a positive effect on the hydrogen concentration whereas Reaction 22 starts consuming hydrogen. At temperature below $800{ }^{\circ} \mathrm{C}$, only traces of hydrogen were observed in the experiments. This does not though affect the sensitivity analyses. Same reactions are sensitive as a new reaction, Reaction 15 becomes relevant. This indicates that the radical transfer properties of methane are important. As temperature is lowered by another 100 ${ }^{\circ} \mathrm{C}$ to $600{ }^{\circ} \mathrm{C}$, same reactions are still important, but also Reaction 25 becomes important. This would indicate that 1,3-butadiene plays some role also in the formation of aliphatic tar and not just in the formation of aromatic tar and soot compounds. At the lowest temperature in our work, the amount of relevant reactions increases. This suggests that hydrogen has an important role in the formation aliphatic tar compounds.

There were plenty of important reactions in the initially hydrogen free mixture but the case is different for hydrogen containing mixture. At $1000{ }^{\circ} \mathrm{C}$ and $900{ }^{\circ} \mathrm{C}$ only 3 reactions are sensitive. These are numbers 27 and 30 which consume hydrogen and number 33 which forms hydrogen. At $800{ }^{\circ} \mathrm{C}$ two more hydrogen consuming reactions are found, numbers 21 and 22 . This is caused most likely by the radical transfer properties of methane. At $700^{\circ} \mathrm{C}$ Reaction 33 produces hydrogen and Reactions 15, 20 and 22 consume it. At $600{ }^{\circ} \mathrm{C}$ and $500{ }^{\circ} \mathrm{C}$ only hydrogen consuming reactions were of some importance, namely 20 and 22.

3.7.2.1.3 Ethene

Ethene has the highest conversions of the initial compounds. At $1000^{\circ} \mathrm{C}$ without initial hydrogen its consumption is enhanced by the Reactions 33 and 37 and production is enhanced by the Reactions 30 and 34. At $900{ }^{\circ} \mathrm{C}$ the same reactions are enhancing the production but there are more reaction affecting the consumption, namely Reactions 18, 21, 22, 24, 25, 33 and 37 . One hundred degrees lower, at $800{ }^{\circ} \mathrm{C}$ still the same reactions are responsible for the enhancement of production rate but the consuming reactions alter again. This time the Reactions 21, 27, 33 and 37 were analysed. Even in the context of ethene reactivity, the transfer from aromatic products to aliphatic products can be observed in the sensitivity analysis. At $700^{\circ} \mathrm{C}$, Reactions 30 and 34 are enhancing the production of ethylene but amount of important consuming reactions diminishes and only Reaction 33 was identified by the sensitivity analysis. At even lower temperatures, there are no clearly influential reactions.

Comparison to hydrogen containing mixture it is interesting that as was the case with methane, the reactions effects can be inverted between the two mixtures. At $1000^{\circ} \mathrm{C}$, both Reaction 30 and 33 have opposite effects compared to hydrogen-free mixture. Reaction 33 enhances the formation and Reactions 24, 27 and 30 do the opposite. This is actually the opposite to the behaviour of methane. At $900{ }^{\circ} \mathrm{C}$ the situation is basically the same, only the numerical values are slightly lower and also Reaction 22 is important. At $800^{\circ} \mathrm{C}$ only consuming reactions were found. These are Reactions 15,20 , $21,22,24,25,27,30$ and $33.700^{\circ} \mathrm{C}$ is similar, there is one more consuming reaction, Reaction 19 , and the values are lower. At $600^{\circ} \mathrm{C}$, Reactions 15, 20, 21, 22, 27, 33 and 34 enhance the consumption of ethene. At $500^{\circ} \mathrm{C}$, the consuming reactions are $20,22,27$ and 34 .

3.7.2.1.4 Benzene

Benzene is one of the unwanted products of the thermal reactions. At $1000^{\circ} \mathrm{C}$, the strongest favouring effect on the formation comes from the Reactions 7 and 27. This corresponds to pathway via 1,3butadiene. The strongest opposite effect comes from the Reactions 3 and 33 . Reaction 33 is not wanted as it leads to heavier aromatic compounds. Reaction 3 is also the strongest inhibiting reaction at 900 ${ }^{\circ} \mathrm{C}$. The strongest formation favouring Reactions are 1 and 33 . At $800^{\circ} \mathrm{C}$, strongest formation favoring Reactions are 1, 2, and 33. The strongest reactions in favouring the consumption are 6 and 9 . At $700{ }^{\circ} \mathrm{C}$ and below, it becomes harder and harder to find reactions which would favour the consumption of benzene. Other side is that the production rate of benzene becomes practically zero.

Results from the hydrogen containing mixture are quite similar at $1000^{\circ} \mathrm{C}$ differing only slightly in magnitude. At $900{ }^{\circ} \mathrm{C}$ and below it is not possible to find reactions which would favour the consumption of benzene. It seems that hydrogen plays an important role in the formation of tar and soot.

3.7.3 A surface activity corrected model

The reaction mechanism presented in Eq 9-15 was fitted to experimental data ${ }^{49}$. As proposed by Cho et al ${ }^{50}$, even though the reactions mostly occur in gas-phase, the formation of radical species takes largely place on the surfaces of the reactor walls. Therefore, the mechanism includes a component for carbonaceous deposit (CD) on the reactor wall. The surface properties of quartz glass and the formed carboneous deposits are different and assumptions was made that carbon coating is more active in forming hydrocarbon radicals. Another assumption is that the formation of the layer occurs so that the growth of an existing deposit is more likely than a formation of a new nucleiting centre. This assumption is in accordance with the visual inspection of the reactor as after experiments with short
residence times, the reactor walls were covered with spots of deposits. With longer residence times, these spots grow in area.

The mechanism consists of six irreversible reactions and a sigmoidal growth curve for carbonaceous deposits (CD).
$\mathrm{CH}_{4}+\mathrm{CD} \rightarrow$ PSEUDO
$\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{PSEUDO}$
$\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{CD} \rightarrow$ PSEUDO
PSEUDO $+C D \rightarrow$ PRODUCTS
$\mathrm{PSEUDO}+\mathrm{CD} \rightarrow \mathrm{CH}_{4}$
$\mathrm{PSEUDO}+\mathrm{CD} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}$
$C D(t)=\frac{A_{1}-A_{2}}{1+e^{\frac{t-x_{0}}{d x}}}+A_{2}$

The idea behind the surface activity corrected model is that the formation of carbonaceous deposit on the reactor walls has a different proficiency to form hydrocarbon radicals than the clean quartz glass surface. The activity is assumed to increase in a fashion of a sigmoidal curve. This assumption was made based on visual inspections made occasionally on the reactor after an experiment. If the residence time was short, there were only tiny black spots spread around the reactor walls. With prolonged residence times, the spots grew covered more and more of the surface.

The purpose of this model is to answer the question whether the reactor surfaces affect the outcome of gas-phase reaction scheme. That is why the model concentrates on the decomposition of methane and ethene.

The mechanism consists of five components: methane $\left(\mathrm{CH}_{4}\right)$, ethene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$, pseudo intermediate (PSEUDO), stable products (PRODUCTS) and carbonaceous deposits (CD). Other components besides CD are stoichiometric but to depict a sigmoidal curve with elementary kinetics would have required several more reactions and therefore a Bolztmann curve was chosen to model the growth of the carbon layer on the reactor surface.

The Bolztmann curve is a sigmoidal curve which has four parameters. A_{1} and A_{2} are the initial and final value. Two other parameters, x_{0} and dx correspond to point of inflection and time constant. For the parameter A_{2}, unity was chosen for value. The parameter values for $\mathrm{A}_{1}, \mathrm{x}_{0}$ and dx were estimated. The Bolztmann curve was chosen over other sigmoidal curves because of its combination of simplicity and easy adjustability.

Many sources suggest that a molecule-molecule reaction between two ethene molecules is a typical initiation reaction for thermal reactions of major hydrocarbon components in biomass gasification gas. Therefore, it was chosen as an initiation reaction to mechanism. But a mechanism consisting only of molecule-molecule reactions is unrealistic and five reactions, one for each hydrocarbon component and three for pseudo intermediate was taken into mechanism. These reactions represent moleculeradical reactions.

This approach is limited to mixtures containing large amounts of hydrogen. Based on the work of Li and Brenner ${ }^{32}$ it was supposed that mainly hydrogen radicals affect reactivity.

3.8 Reactor model

Two reactor models were used in this study. The common thing for both is that the reactor is a tube reactor with plug flow. The plug flow conditions were confirmed by calculating the Reynolds number for the lowest used flows. In the first one, a temperature profile for the lower half of the reactor was measured. A pocket inside the reactor for the thermocouple does not allow measurements for the upper part of the reactor and therefore it was assumed that the temperature profile in the reactor was symmetric for the lower and the upper part of the reactor. The second model was an isothermal one. This type of model which takes into account only the isothermal part of the reactor is occasionally used in modeling thermal reactions. In a modern oven, the non-isothermal part is rather short compared to the iso-thermal one and it is assumed that it has a minor effect on the product distributions.

4 Experimental results, modeling and discussion

4.1 Experimental results

The experiments at the temperature interval of $500-1000^{\circ} \mathrm{C}$ follow the pattern previously described by Zhil'tsova et al ${ }^{51}$. There is a short induction period followed by a phase of an exponential growth. The exponential growth then decelerates to a more slowly reacting phase, either a growing or decreasing one, depending on the species. Eventually, a steady-state operation is reached. Our experimental results follow the three first phases but a steady-state operation was not reached in all temperatures. The concentration profiles of individual components for the two mixtures are presented in Figures 7-18. The chosen components are: hydrogen, methane, ethyne, ethene, ethane and 1,3-butadiene.

Figure 7. Hydrogen concentrations for mixture 1 as function of residence time.

Figure 8. Hydrogen concentrations for mixture 2 as function of residence time.

Figure 9. Methane concentrations for mixture 1 as function of residence time.

Figure 10. Methane concentrations for mixture 2 as function of residence time.

Figure 11. Ethane concentrations for mixture 1 as function of residence time.

Figure 12 Ethane concentrations for mixture 2 as function of residence time

Figure 13. Ethene concentrations for mixture 1 as function of residence time.

Figure 14. Ethene concentrations for mixture 2 as function of residence time.

Figure 15. Ethyne concentrations for mixture 1 as function of residence time.

Figure 16. Ethyne concentrations for mixture 2 as function of residence time.

Figure 17. 1,3-butadiene concentrations for mixture 1 as function of residence time.

Figure 18. 1,3-butadiene concentrations for mixture 2 as function of residence time.

From Figures $7-8$, the following observations can be made: in the experiments with hydrogen containing mixtures, the yield of hydrogen is more or less constant, while hydrogen is starting to form at $700{ }^{\circ} \mathrm{C}$ in the experiments without initial hydrogen in the initial mixture. This supports the reported behavior of the tar formation. Between 700 and $800^{\circ} \mathrm{C}$, there is a shift from the aliphatic tar to the aromatic one and therefore it can be expected that hydrogen is formed.

At $700{ }^{\circ} \mathrm{C}$, the steady-state is obtained at approximately 900 ms and the yield of hydrogen exceeds slightly $0.1 \mathrm{~mol}-\%$. At $800^{\circ} \mathrm{C}$, these values are 900 ms and $1 \mathrm{~mol}-\%$. As the temperature is raised to $900^{\circ} \mathrm{C}$, the figures become 600 ms and $3 \mathrm{~mol}-\%$. At our highest temperature $1000^{\circ} \mathrm{C}$, the steady-state is obtained even faster, in 400 ms and the yield of hydrogen is $10 \mathrm{~mol}-\%$.

The hydrogen concentration profiles for the mixture without initial hydrogen show that the hydrogen starts to form from the hydrocarbons somewhere within the interval $700-800^{\circ} \mathrm{C}$. This is also the same interval where the tar composition turns from aliphatic waxes to aromatic compounds. This phenomenon was not observed in the mixture with initial hydrogen. Therefore, in practical applications, the formation of hydrogen cannot be used as an indication of the formation of aromatic species.

As a result of the large excess of hydrogen in mixture 2, more ethane is formed compared to mixture 1. This would indicate that ethene as presented in Figures 13-14, and at higher temperatures even acetylene are hydrogenated to ethane. At higher temperatures, ethane concentrations are significantly lower than those of acetylene. This is expected as acetylene is the most thermally stable C_{2}-species.

Below $800{ }^{\circ} \mathrm{C}$, ethene behaves quite similarly for both mixtures. The hydrogen needed to convert ethene to ethane is formed mainly from methane if it is not present in the mixture initially. Above 800 ${ }^{\circ} \mathrm{C}$, the ethane formation is reduced if no initial hydrogen is present.

Acetylene is formed at temperatures exceeding $700^{\circ} \mathrm{C}$. It seems that acetylene has an important role in the formation of aromatic tar compounds.

An interesting observation from the methane concentration profiles showns in Figures 9-10 is that hydrogen stabilizes methane. Unfortunately, this effect is only temporary and after a certain delay, similar concentrations are obtained. This is likely to be caused by a direct decomposition to elements. This phenomenon is becomes visible at $875{ }^{\circ} \mathrm{C}^{52}$. However, at higher temperatures the decomposition curves have very similar topologies, indicating that even relatively small amounts of hydrogen are sufficient to have an impact on the hydrocarbon reactivities.

The yields of ethane in Figures 11-12 show a different behavior from hydrogen. In the hydrogencontaining mixture, the yields have a maximum at $600^{\circ} \mathrm{C}$. The amounts change from $500{ }^{\circ} \mathrm{C}$ to 1000 ${ }^{\circ} \mathrm{C}$ as follows: $0.2,0.8,0.5,0.2,0.15$, and $0.15 \mathrm{~mol}-\%$. The respective times to obtain these yields are $1000,900,400,100,100$, and 100 ms . It is worth noticing that at temperatures $900^{\circ} \mathrm{C}$ and $1000{ }^{\circ} \mathrm{C}$, ethane has a maximum yield at approximately 100 ms , after which the yields start to decrease. In nonhydrogen mixtures, the behavior is different from the hydrogen containing mixtures. The times needed to obtain the steady-state or the maximum yields are higher up to $800^{\circ} \mathrm{C}$. The values listed in the same order as previously: not observed, $1000,900,400,100$, and 100 ms . The maximum yields are practically similar in the investigated temperature interval, namely $0.01 \mathrm{~mol}-\%$.

Figures 15-16 show how acetylene was formed at $700{ }^{\circ} \mathrm{C}$ and $800^{\circ} \mathrm{C}$ faster in the hydrogen containing mixture. The maximum yields were approximately the same, $0.015 \mathrm{~mol}-\%$ and $0.15 \mathrm{~mol}-\%$ respectively. At $900^{\circ} \mathrm{C}$ and $1000{ }^{\circ} \mathrm{C}$, the acetylene formation took place faster and the maximal yields were higher, $0.5 \mathrm{~mol}-\%$ and $1.0 \mathrm{~mol}-\%$, respectively.
C_{3}-species are also important intermediate products in the tar formation process. Interestingly, propene was never observed in significant amounts. Contrary to ethane, propane is formed only in hydrogen-free mixtures. Therefore, the hydrogenation of unsaturated C_{3}-species does not occur in significant amounts. This is especially interesting as the lighter C_{2}-species are readily hydrogenated. A possible explanation for this behavior could be that propyne is resonance-stabilized with two isomers, propyne and propadiene. Propyne and propene are formed at temperatures over $700^{\circ} \mathrm{C}$, as there is no initial hydrogen present in the system and at temperatures exceeding $900{ }^{\circ} \mathrm{C}$ for the hydrogencontaining mixtures. Propene is likely to be consumed in dimerization reactions, too.

The product distributions of these dimerization reactions are expectedly influenced by the temperature profile of the reactor. Allylic hydrogen is more reactive than vinylic hydrogen and therefore leading to non-conjugated C_{6}-species especially at low temperatures. These species can relatively easily undergo rearrangement and cyclization reactions to mono-unsaturated cyclic compounds, which were observed in small quantities by off-line GC-MS. At higher temperatures even vinylic hydrogen is likely to be radicalized forming higher molecular-weight compounds with conjugated double bonds. For instance, a reaction between two propene molecules with vinylic radicals can react to 2,4-hexadiene.

At high temperatures, propene is formed and consumed rapidly most likely indicating the formation of heavier hydrocarbons; for instance, formation of cyclopentadiene according to reaction 6. However, at lower temperatures, a steady-state of the propene yield is obtained. As propene is formed only in hydrogen-free mixtures at lower temperatures, this could be interpreted as an indication of balanced dimerization reactions and corresponding decomposition reactions.

Besides 1,3-butadiene in Figures 17-18, C_{4}-species were observed in few occasions. At $500{ }^{\circ} \mathrm{C}$, nbutane was detected in small amounts, indicating the formation of aliphatic tar. On the contrary, at 900 and $1000{ }^{\circ} \mathrm{C}$, minor amounts of butenes and butanes were formed. 1,3-butadiene, on the other hand, was observed at each temperature and mixture. As reaction 3 shows, this compound is formed easily from the ethene which is abundantly converted to other hydrocarbons. Therefore, it seems that this compound is one of the most important intermediate products in the formation both aliphatic and aromatic tars.

Many of the compounds found in the product mixture are known from previous works done on the pyrolysis of ethene ${ }^{6,53}$. However, the product distributions obtained in this study differ vastly from the values reported previously. According to Back et al ${ }^{6}$., propene, ethane and 1 - butene are the main products of ethene pyrolysis at $500^{\circ} \mathrm{C}$. Practically no propene was observed in our experiments and 1,3 -butadiene was one of the main components instead. Compared to Norinaga et al ${ }^{14}$., the biggest difference is the low amounts of the C_{3}-species in their work carried out at $900{ }^{\circ} \mathrm{C}$. This can be explained, if the proposed decomposition reaction to ethenyl and methyl radicals is considered reversible and therefore balanced by the concentration of methyl radicals. The major reason for the lack of 1-butene in our experiments is probably the shorter residence times compared to those used by Bossard and Back ${ }^{10}$.They proposed that 1-butene is formed mainly by decomposition reactions and
these decomposition reactions are favored by low pressures ${ }^{54}$. Though methane conversions are low compared to ethylene conversions, it seems that even minute amounts methane-derived radicals affect the thermal chemistry of hydrocarbons.

The amount of carbon deposited in the reactor is higher than for the gasification gas when considering the mixture without hydrogen. When hydrogen is added to the reacting mixture, the amounts of tar compounds in the reactor correspond more accurately to those of real gasification gas. This is in accordance with hydrogen content inhibiting carbon deposition as proposed previously by Becker et al ${ }^{55}$.

Considering the thermal stability of the hydrocarbons, it is easy to notice that most of the light molecular weight compounds are intermediates. The huge difference in magnitude of the ethyne and 1,3-butadiene concentrations in two mixtures, indicate that hydrogen has a major role in the reactivity of these compounds.

Perhaps the most striking feature of the experimental data is the clear peak in the profiles before 0.5 seconds. At first, this was thought to be caused by mistakes in the experimental work but the phenomenon is too consistent to be caused by an inadequate laboratory practice. There are probably few experimental points which are caused by larger experimental scattering but in large scale, the probable reason is the growth of carbonaceous deposits on the quartz surface. The exact mechanism is unknown but the curvature of the profiles suggests that the mechanism resembles the Kisliuk mechanism ${ }^{56}$, i.e, the growth of existing deposits is more probable than the formation of new centra of growth.

4.2 Summary of modeling efforts

A purely homogeneous gas-phase reaction model is not suitable for a quantitative description of the system. Even the tested detailed model had difficulties in predicting the behavior of the system correctly.

A hypothesis was that this problem could be solved by parameter estimation. The uncertainties of the published kinetic parameter values ${ }^{57}$ are high. The uncertainties range from 30% up to a factor of 10 . As Figures 19-20 demonstrate, this is not the case, even though a better fit to experimental data was obtained but still better results were needed. A CMA-ES algorithm ${ }^{21}$ along with other schemes was tested and even though the evolutionary algorithms gave a better fit to the experimental data than iterative methods, probably due to the high dimensionality of the problem, the accuracy of the predictions remained inadequate.

Figure 19 Our compact model at $1000^{\circ} \mathrm{C}$

Figure 20 LLNL model at $1000^{\circ} \mathrm{C}$

Similar results were obtained by estimating the parameters of the LLNL model ${ }^{40}$ and our compact model. The simulation results by the LLNL have a slightly better accuracy than our compact model but the difference is not large. It is worth noticing that the LLNL with its approximately 600 reactions is much smaller than the detailed models which comprise of over ten thousand reactions.

Comparing the predictions of LLNL n-butane flame model and our model, it can be noticed that their predictions on the major species are very similar. The only observable difference is the fact that LLNL model performs better when the residence time exceeds approximately 1 s . This is due to fact that LLNL model includes the formation of carbonaceous deposits, whereas our model is limited to gasphase reactions only. This indicates that the gas-phase pre-equilibrium is reached in approximately 1 s , but the formation of condensed phase continues to grow slowly.

Figures 19-20 show that, both the LLNL and the developed reduced, reaction mechanism are able to describe the behaviour of the system quantitatively. The developed model performs well with short residence times. At longer residence times, the lack of depositing carbon affects the model predictions slightly negatively. To compare the goodness of the fit for the developed model regression analysis was performed in Excel by data analysis tool pack. The R2 value of the model was 0.823 prior to the parameter estimation and 0.966 after the parameter estimation. The calculated sum of least square values was over 10% lower for the parameter estimated model.

The major source of error in model are the minor compounds, such as ethyne and 1,3-butadiene, which are expected to participate in the formation of tar and soot. Therefore, a model which is limited to gas-
phase reactions, cannot predict these compounds accurately. Another possible source of error, a minor one compared to the previous one, is the analysis of hydrogen. Hydrogen is analysed by a temperature conductivity detector, which does not have the same detection limits as the flame ion detector gives for the analysis of hydrocarbons.

The goodness of the fit was estimated by the sum of squares, which was calculated from experimental results of our own. Kinetic experiments were conducted at six temperatures from $500{ }^{\circ} \mathrm{C}$ to $1000{ }^{\circ} \mathrm{C}$ and for two different compositions. Both mixtures contained $2 \mathrm{~mol}-\%$ ethene and $10 \mathrm{~mol}-\%$ methane and the other one had 35 mol - \% of hydrogen. Nitrogen was used as a balance gas. All in all, 120 experimental points were recorded for the calculation of sum of squares. The experimental setup is presented in detail in Suominen et al^{49}. In case of a detailed kinetic model from LLNL, the sum of squares was lower, even though the magnitude was the same as with our reduced kinetic model prior to the parameter estimation.

A regression analysis of the model predictions and the experimental values was performed by the data analysis toolpack in Excel. It was observed that the R^{2}-value, the coefficient of determination, increased significantly by the parameter estimation and was 0.966 after the parameter estimation. The R^{2}-value is a measure of how likely the model predicts the future outcomes. The sum of square values in both cases were over 10% lower after the parameter estimation compared to prior the parameter estimation. Graphical illustrations of the experimental values compared to model predictions prior to and after parameter estimation are presented in Figure 19-20.

In case of the LLNL model, the advantage of the adaptation of the mutation distribution could not be observed as the parameter values were not allowed to change more than 5% and the best combination
of parameter values was found at less than $30 n$ function evaluations which is according to Hansen and Ostermeier ${ }^{21}$ the limit for the adaptation to improve the strategy behaviour. In the case of our reduced model, more evaluations were required to obtain a solution with an acceptable accuracy. Therefore, the adaptation did have time to evolve. The same restriction of 5% was applied even here. Even in this case, the full advantage of the adaptation as the limit of $100 n^{2}$ function evaluations was not reached.

During the development of our model, we tried to perform the parameter estimation on preliminary models, too. In a case when the estimated parameters were not close to the literature findings, considerably more function evaluations were needed to reach a satisfactory accuracy for the model. In attempts like these, no restrictions were applied. This indicates that CMA-ES could be an interesting candidate for parameter estimation in such applications, where the magnitudes of the parameters are unknown and the amount of parameters is large. Possible applications are problems, in which diffusion and/or adsorption effects are added to complex chemical kinetics.

Hansen and Kern^{58} have reported that increasing the population, in many cases, considerably increases the performance of the algorithm. In our applications, this kind of behaviour could not be observed in significant magnitude. As some test functions in their report did not either exhibit such behaviour, this cannot considered a surprising result. It is, though, possible that the population size should have been increased even more than we did to obtain an increase in algorithm performance.

Different parameter estimation approaches were tested. We tried to estimate all the parameters in the modified Arrhenius equation presented in Eq. 6 and different combinations of them. The most efficient way was to estimate only one parameter. Intuitively, this is clear as the size of covariance matrix increases but the amount of data from which it is estimated does not increase.

4.2.1 Amount of good solutions

The difficulties in the parameter estimation lead to a hypothesis that there are many possible reaction mechanisms which give a good fit to experimental data. This assumption was tested by Markov Chain Monte Carlo (MCMC) assisted parameter estimation technique, where all possible reactions were given two parameters: a numeric rate constant and a Boolean parameter which either includes or excludes the reaction from the model. The purpose was to test whether the MCMC could converge to a right mechanism and to determine the amount of mechanisms which yield a good fit to experimental data. In the scheme, a mechanism of eight species was used. The pseudo experimental data consisted of simulation results at eight time points. The scheme was not able to the converge to right solution and the amount of solutions with good fit to experimental data was estimated to be approximately 2.5%.

4.2.2 Differential algebra

Differential algebra was tested to study the parameter estimability of the system. A similar approach as suggested in G. Margaria et al..59, N. Meshkat et al. ${ }^{60}$ and M. P. Saccomani et al. ${ }^{61}$ was tested but even the compact model was too large that the Rosenfeld-Groebner algorithm could have utilized. This is a definitely interesting approach to evaluate the parameter estimability in the future but the extremely high computational cost is too high for applications such as ours for the time being.

4.2.3 Unconventional modelling solutions

If a sigmoidal function such as a Boltzmann function, which is given in Equation 16, was used to model the growth of the deposits, the fit on experimental data is excellent. Similar results can be
obtained by a peak function correction to radical concentrations as suggested by Suominen and Salmi ${ }^{62}$. The sigmoidal function is presented below in Figure 21.

$$
\begin{equation*}
y(t)=\frac{A_{1}-A_{2}}{1+e^{\frac{t-x_{o}}{d x}}}+A_{2} \tag{1}
\end{equation*}
$$

Figure 21 An example of Boltzmann function

Basically, the success behind this function is that even the clean quartz glass creates radicals, in much slower rate than the carbenous deposits, though. By adjusting parameter A_{1}, the initial level can be
altered. Parameter dx affects the velocity by which the deposits grow and parameter A_{2} gives the upper limit, in this case, the evident choice is unity which corresponds logically to the situation where the whole quartz surface is covered by carbenous deposits. Finally, the parameter x_{0} affects the placement of the point of inflection, e.g. the point where the second derivative changes the sign.

Figure 22 concentration profiles at $700^{\circ} \mathrm{C}$; methane dashed line, ethylene dot-dashed line

The modeling results fit very well the experimental data as Figure 22 demonstrates. For methane and ethene, the fit is excellent. The swag at the lower temperatures is caused by the formation of the carbenous deposits on the reactor walls. The side product of this process is methane. The lower the temperature, the later the swag appears on the methane concentration profile. At temperatures high enough, the concentration profile of methane is flat indicating that the formation of carboneous deposits is so fast that our experimental setup cannot observe it.

Figure 23 presents the same experimental results without the correction. If the concentration profiles corrected for surface activity are compared to simulations of the same system without the CD effect, it is clear that the surface coverage of carbonaceous deposits is an important variable in the system studied. Modeling the delay without the sigmoidal curve would require a much more complex mechanism than ours.

4.3 Discussion - gas-phase or surface reaction?

The experimental data are in accordance with the previous studies on thermal reactions of light hydrocarbons. The reactivity of the mixture increases with temperature and more unsaturated compunds are formed at elevated temperatures

The HACA-mechanism ${ }^{63,64,65}$, hydrogen abstraction $-\mathrm{C}_{2} \mathrm{H}_{2}$ addition, is a classical theory for modelling the growth of aromatic species. There are several cases where the HACA-mechanism fails to explain the growth of aromatic molecules. Perhaps the main reason is that the HACA-mechanism is a slow mechanism ${ }^{66,67}$. Other proposed, more rapid, mechanisms include the PAC-mechanism, phenyl addition/cyclization, and MAC-mechanism, methyl addition/cyclization, ring-ring condensation, aryl-
aryl combination, particle filler model and condensation of an aromatic radical to a neutral species. A comparative study of the mechanisms was written by Shukla and Koshi. ${ }^{68}$

It is outside the scope for this thesis to analyze the soot formation in detail, but it is important that components which are a part of these mechanisms are observed in this study. These compounds include hydrogen, methane, ethyne and indirectly 1,3-butene as an intermediate to six-membered ring structures and ethane which is a stable product at lower temperatures. These compounds are chosen to be discussed in more detail.

A similar computational chemistry approach as Li and Brenner ${ }^{32}$ performed for ethyne, ethene, ethane and methane would be interesting to be applied for three and four carbon atom molecules. In this way, a better understanding for the possibilities of controlling the soot formation could be obtained.

The carbenous deposits on the reactor surface affect the system to a great extent. Even though they can be used to control the amount of tar formed, they also affect the conversion of light hydrocarbons if the reactor material has different surface properties than the carbonaceous deposits.

To which extent the reactions occur in the gas phase is an important and interesting question for which our experimental apparatus could not produce necessary data. The literature concerning this issue is controversial. If the change in tar composition from aliphatic to aromatic compounds is taught to be caused by the kinetic entropy, then the proportion of high molecular weight aliphatic compounds to aromatic compounds could be used to estimate the relation of gas-phase and surface reactions. As the kinetic entropy is severely reduced during sorption, the reactions should be directed towards the
aliphatic compounds even at elevated temperatures. Therefore, it seems that gas-phase reactions are the dominant ones at least at elevated temperatures.

The importance of the surfaces in forming radical ions is not as contradictory as the gas-phase versus surface reaction issue. A significant amount of radicals are formed on the surface. The formed carbenous deposits have different physical properties than the quartz glass used as the reactor material and the concentration profiles of the product mixture exhibit a behaviour which can be explained by a sigmoidal type of growth of the surface coverage by the carbonaceous deposits. An interesting question remains: to which extent the surface material affects the formation of radicals and how important is the specific surface area? Unfortunately we were unable to isolate enough carboneus deposits from the reactor to be able to measure its surface area. Nor were we able to make any measurements considering the possible time-dependent behaviour of the carbonaceous deposits.

Another problem related to the reactor material exists. This challenge is illustrated by Kopinke et al. ${ }^{30}$ Their measurements of deposits reveal that the mass of deposits in a steel reactor does not follow neither a linear nor an exponential growth. The same phenomenon was observed even in their measurements of deposits in quartz glass reactor but a distinct growth pattern can still be observed. This is an unfortunate effect when considering the modelling of soot formation in industrial scale equipment. Fortunately, the surface area-volume ratio ${ }^{31}$ for industrially applied reactors is more advantageous and the overall effect is likely to be less than in laboratory scale.

Figure 23 illustrates different reaction types. Reaction A is an Eley-Rideal type of reaction where one reactant is in the gas-phase while the other one is adsorbed on the surface. Reaction B illustrates a Langmuir-Hinshelwood type of reaction. The difference to the reaction A is that both reactants are
adsorbed on the surface. In reaction C , a radical species is formed as a molecular species comes in contact with a surface. Finally, reaction D depicts a situation where a molecule forms radical species in the gas-phase. The letter M is used to mark an atom or molecule to which the reacting species collides.

Figure 23. Different reaction types: A) Eley-Rideal B) Langmuir Hinshelwood C) Radical formation on surface D) Radical formation in gas-phase.

5 Conclusions

Description of the thermal decomposition kinetics of ethene-methane mixtures in the presence and absence of hydrogen was investigated by literature survey, kinetic experiments and modeling effort. Even though, the scope of the thesis was limited to the reactions of light hydrocarbon components present in gasification gas in the presence and absence of hydrogen, the system is very complicated.

The work on this thesis is illustrated in Figure 24. The work began from design of the experimental apparatus and planning of the kinetic experiments. Simultaneously with experimental work, first model was developed. The kinetic data was analyzed and need for better software to handle the huge model and large number of experimental data was recognized. With new software, a full kinetic model approach was tested. Then the efforts were concentrated on simplifying the model. By careful interpretation of findings from literature survey, a compact model with physical background was developed.

Figure 24. A flowsheet of the thesis work

The experimental work was carried out at a temperature interval of $500-1000{ }^{\circ} \mathrm{C}$. This temperature interval includes the transition temperature in product distributions from aliphatic tar to aromatic tar. The experimental data were obtained on a time interval seldomly used. There exist shock tube experiments from micro- to millisecond scale and there are experimental data from few hundred milliseconds up to several seconds but data from the intermediate area from 10-20 millisecond to few hundred milliseconds are scarce. All the experiments were carried out under atmospheric pressure. From industrial point of view, it would be interesting to obtain measurements from elevated pressures,
but the modeling effort would become more difficult, if the pressure would have to be taken as an additional parameter.

The experimental results showed a similar behavior which is depicted by Zhil'tsova et al ${ }^{51}$. There is a short induction period followed by an exponential growth of product molecules, after which the system reaches a steady state

A parameter estimation software based on the Chemkin simulation software was developed. The estimation of parameters was performed by a CMA-ES algorithm. Even other algorithms were tested but the results were either comparable or inferior to the results obtained by CMA-ES. It is though necessary to remember that the full power of CMA-ES was not utilized as the algorithm converged to a result before the covariance matrix update scheme was initiated.

The Markov Chain Monte Carlo (MCMC) simulations on a simple reaction system showed that finding a correct reaction mechanism is a tedious task, if it is based solely on experimental data. It has been discussed that a viable method to reduce the amount of mechanisms which yield good fit to experimental data is in-situ measurement of radical species. Unfortunately, we did not have a such an analytical apparatus at our disposal.

Reliable numerical data on kinetic parameters would be invaluable in modeling efforts. At the current moment, published kinetic data must be reviewed critically. Typically, uncertainties for reaction rate parameters are from 30% to a factor of 10 for this kind of systems. Some published models are based on the estimating simultaneously tens of parameters. The results of this kind of approach should be avoided.

The kinetic entropy seems to be among the reasons why the tar consists of aliphatic compounds at lower temperatures but more and more aromatic compounds are produced by thermal reactions at higher temperatures. This is affected by the reactor material and geometry.

The conversion of the light hydrocarbons to tar is affected by the forming carbonaceous deposits. The quartz glass reactor used in our experiments has a lower surface area than the carbonaceous deposits, and therefore, the amount of radicals formed at the surface is increased which leads to higher conversions of light hydrocarbons.

Notation

A pre-exponential parameter in Arrhenius equation
b exponential parameter in Arrhenius equation

CMA-ES covariance matrix adaptation evolutionary strategy
Ea activation energy
EA evolutionary algorithm
MCMC Markov Chain Monte Carlo

References

${ }^{1}$ E. Vakkilainen, K. Kuparinen, J. Heinimö, Large Industrial Users of Energy Biomass, IEA Bioenergy, Task 40: Sustainable International Bioenergy Trade, 2013, Lappeenranta, Finland ${ }^{2}$ C. Higman, State of the Gasification Industry - the Updated Worldwide Gasification Database, Gasification Technologies Conference, Colorado Springs, US, 2013
${ }^{3}$ L.P.L.M. Rabou, R.W.R. Zwart, B.J. Vreugdenhil, 1. Bos, Tar in biomass Producer Gas, the Energy research Centre of The Netherlands (ECN) Experience: An Enduring Challenge, Energy Fuels 23, 6189-6198, (2009)
${ }^{4}$ P. Cahill, M. Nieminen, M. Dutton, G. Rasmussen, K. Kangasmaa, The influence of tars on hot gas filter performance in air blown gasification of coal and biomass, in: E. Schmidt, P. Gäng, T. Pilz, A. Dittler (Eds.), High Temperature Gas Cleaning, Institut für Mechanise Verfahrenstechnik und Mechanik, Karlsruhe, Germany, 1996, pp. 782-793
${ }^{5}$ S.W. Benson, G.R. Haugen, Mechanisms for some high-temperature gas-phase reactions of ethylene, acetylene, and butadiene, J. Phys. Chem., 71, 1735-1746, (1967)
${ }^{6}$ M.H. Back, R. Martin, The thermal reactions of ethylene in the presence and absence of small quantities of oxygen, Int. J. Chem. Kin. 11, 757-774, (1979)
${ }^{7}$ C.J. Chen, M.H. Back, R.A. Back, The thermal decomposition of methane. I. Kinetics of the primary decomposition of methane and its pressure dependence, Can. J. Chem. 53, 3580-3590, (1975)
${ }^{8}$ C.J. Chen, M.H. Back, R.A. Back, The thermal decomposition of methane. II. Secondary reactions, autocatalysis, and carbon formation: non-Arrhenius nehavior of methyl radical with ethane, Can. J. Chem. 54, 3175-3184, (1976)
${ }^{9}$ C.J. Chen, M.H. Back, R.A. Back, The thermal decomposition of methane. III. Methyl radical exchange in methane-methane-d4 mixtures, Can. J. Chem. 55, 1624-1628, (1977)
${ }^{10}$ A.R. Bossard, M.H. Back, The homogenous thermal conversion of methane to higher hydrocarbons in the presence of ethylene, Can. J. Chem. 68, 1401-1407, (1990)
${ }^{11}$ B.S. Greensfelder, H.H. Voge, G.M. Good, Catalytic and thermal cracking of pure hydrocarbons Mechanisms of reaction, Ind. Eng. Chem. 41, 2573-2584, (1949)
${ }^{12}$ D. Wang, A. Violi, Radical-molecule reactions for aromatic growth: A case study for cyclopentadienyl and acenaphtylene, J. Org. Chem. 71, 8365-8371, (2006)
${ }^{13}$ D. Wang, A. Violi, D.H. Kim, J.A. Mulholland, Formation of naphtalene, indene, and benzene from cyclopentadiene pyrolysis: A DFT study, J. Phys. Chem. 110, 4719-4725, (2006)
${ }^{14}$ K. Norinaga, O. Deutschmann, Detailed kinetic modeling of gas-phase reactions in the chemical vapor deposition of carbon from light hydrocarbons, Ind. Eng. Chem. 46 3547-3557, (2007)
${ }^{15}$ K.Norinaga, V.N. Janardhanan, O. Deutschmann, Detailed chemical kinetic modeling of pyrolysis of ethylene, acetylene, and propylene at 1073-1373 K with a plug-flow reactor model, Int J Chem Kinet, 40, 199-208 (2008)
${ }^{16}$ E. Ranzi, A. Frassoldati, R. Grana, A. Cuoci, T. Faravelli, A.P. Kelley, C.K. Law, Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels, Progress in Energy and Combustion Science, 38 (4), pp. 468-501 (2012)
${ }^{17}$ H. Richter, S. Granata, W.H. Green, J.B. Howard: Detailed modeling of PAH and soot formation in a laminar premixed benzen/oxygen/argon low-pressure flame, Proc. Comb. Inst. 30, 1397-1405 (2005)
${ }^{18}$ L. Elliott, D.B. Ingham, A.G. Kyne, N.S. Mera, M. Pourkashanian, C.W. Wilson, Genetic algorithms for optimisation of chemical kinetics reaction mechanisms, Prog. Energy and Combust Sci. 30, 297328, (2004)
${ }^{19}$ V. Kelner, F. Capitanescu, O. Léonard, L. Wehenkel, A hybrid optimization technique coupling an evolutionary and local search algorithm, J. Comput. Appl. Math., 215, 448-456, (2008)
${ }^{20}$ L. Elliott, D.B. Ingham, A.G. Kyne, N.S. Mera, M. Pourkashanian, C.W. Wilson, Reaction mechanism reduction and optimization using genetic algorithms, Ind. Eng. Chem. Res. 44, 658-667, (2005)
${ }^{21}$ N. Hansen, A Ostermeier, Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation, 9, 159-195 (2001)
${ }^{22}$ C. S. Perone, Pyevolve: a Python open-source framework for genetic algorithms, ACM SIGEVOlution, 4, 12-20, (2009)
${ }^{23}$ W. Polifke, W. Geng, and K. Döbbeling. Optimization of Rate Coefficients for Simplified Reaction Mechanisms with Genetic Algorithms. Combustion and Flame, 113, 119-135, (1998)
${ }^{24}$ I. Rechenberg. Evolutionsstrategie '94. Frommann-Holzboog, Stuttgart-Bad Cannstadt (1994).
${ }^{25}$ H. Haario, ModEst 6.0 User Manual, Helsinki, (2010)
${ }^{26}$ A. Lutz. SENKIN, A Fortran program for predicting homogeneous gas phase kinetics with sensitivity analysis. Report 87-8248, Sandia National Laboratories.
${ }^{27}$ K.D. Campbell, E. Morales, J.H. Lunsford, Gas-phase coupling of methyl radicals during the catalytic partial oxidation of methane, J. Am. Chem. Soc. 109, 7900-7901, (1987)
${ }^{28}$ Y. Cho, K. Choi, Y. Kim, S. Lee, Kinetic investigation of oxidative methane pyrolysis at high $\mathrm{CH}_{4} / \mathrm{O}_{2}$ ratio in a quartz flow microreactor below 1073 K , Bull. Korean Chem. Soc. 29, 1609-1612, (2008)
${ }^{29}$ R.K. Grubbs, S.M. George, Attenuation of hydrogen radicals traveling under flowing gas conditions through tubes of different materials, J. Vac. Sci. Technol. 24, 486-496, (2006)
${ }^{30}$ F.D. Kopinke, G. Zimmerman, S. Nowak, On the mechanism of coke formation in steam cracking conclusions from results obtained by tracer experiments, Carbon, 26, 117-124, (1988)
${ }^{31}$ W.A. Bone, J.B. Gardner, Comparative Studies of the Slow Combustion of Methane, Methyl Alcohol, Formaldehyde, and Formic Acid, Proc. R. Soc. London A, 154, 297, (1936)
${ }^{32}$ Y. Li, D.W. Brenner, Ab initio study of the role of entropy in the kinetics of acetylene production in filament-assisted diamond growth environments, J. Phys. Chem. A, 110, 132-140, (2006)
${ }^{33}$ R.R. Rye, Reaction of thermal atomic hydrogen with carbon, Surf. Sci., 69, 653, (1977)
${ }^{34}$ M. Balooch, D.R. Olander, Reactions of modulated molecular beams with pyrolytic graphite. III. Hydrogen, J. Chem. Phys. 63, 4772, (1975)
${ }^{35}$ M.- Frenklach, The role of hydrogen in vapor deposition of diamond, J. Appl. Phys. 65, 5142, (1989)
${ }^{36}$ J.A Spence, M. Vahrman, Aliphatic hydrocarbons in a low-temperature tar, J. Appl. Chem. 17, 143146, (1967)
${ }^{37}$ K.N. Houk, N. G. Rondan, Origin of negative activation energies and entropy control of halocabrene cycloadditions and related fast reactions, J. Am. Chem. Soc., 106, 4293-4294, (1984)
${ }^{38}$ M. Mozurkewich, S.W. Benson, Negative Activation Energies and Curved Arrhenius Plots. 1. Theory of Reactions over Potential Wells, J. Phys. Chem. 88, 6429-6435, (1984)
${ }^{39}$ R.D. Levine, R.B. Bernstein, Molecular Reaction Dynamics, Oxford University Press, New York, USA (1974)
${ }^{40}$ N. Marinov, W. Pitz, C. Westbrook, A. Vincitore, M. Castaldi, S. Senkan. Aromatic and Polycyclic Aromatic Hydrocarbon Formation in a Laminar Premixed n-butane Flame. Combustion and Flame, 114,192-213, (1998)
${ }^{41}$ Tsang, W, Hampson, RF. Chemical kinetic data base for combustion chemistry. Part 1. Methane and related compounds. J. Phys. Chem. Ref. Data, 15, (1986)
${ }^{42}$ Curran, HJ, Rate constant estimation for C-1 to C-4 alkyl and alkoxy radical decomposition. Int. J. Chem. Kinet. 2006;38;250-75.
${ }^{43}$ Tsang W, Chemical kinetic data base for combustion chemistry. Part 4. Isobutane, J. Phys. Chem. Ref. Data. 1990;19;1-68.
${ }^{44}$ Tsang W, Chemical kinetic data base for combustion chemistry. Part 3. Propane, J. Phys. Chem. Ref. Data. 1988;17.
${ }^{45}$ Stewart, P.H., Larson, C.W., Golden, D.M., Pressure and temperature dependence of reactions proceeding via bound complex. 2. Application to 2CH3->C2H5+H. Combust. Flame, 1989;75;25-31
${ }^{46}$ Tsang W. Chemical kinetic data base for combustion chemistry. Part 5. Propene, J. Phys. Chem. Ref. Data. 1991;17; 221-73.
${ }^{47}$ Dean, AM. Predictions of pressure and temperature effects upon radical addition and recombination reactions. J. Phys. Chem. 1985:89:4600-8
${ }^{48}$ Burcat, A, Dvinyaninov, M. Detailed kinetics of cyclopentadiene decomposition studied in a shock tube. Int. J. Chem. Kinet. 1997;29; 505-14
${ }^{49}$ Suominen P.; Kangas M.; Eränen K.; Reinikainen M.; Simell P.; Salmi T. Thermal Reactions of the Major Hydrocarbon Components of the Gasification Gas at the Interval $500-1000$ Degrees Celsius, submitted
${ }^{50}$ Cho Y.; Choi K.; Kim Y.; Lee S. Kinetic investigation of oxidative methane pyrolysis at high $\mathrm{CH}_{4} / \mathrm{O}_{2}$ ratio in a quartz flow microreactor below 1073 K , Bull. Korean Chem. Soc. 2008, 29, 16091612
${ }^{51}$ I.V. Zhil'tsova, I.S. Zaslonko, Yu.K. Karasevich, H.Gg. Wagner, Nonisothermal effects in the process of soot formation in ethylene pyrolysis behind shock waves, Kin. Cat. 41, 76-89, (2000)
${ }^{52}$ R.H. Crabtree, Aspects of methane chemistry, Chem. Rev. 95 (1995) 987-1007
${ }^{53}$ K. Norinaga, O. Deutschmann, K. J. Hüttinger, Analysis of gas phase compounds in chemical vapor deposition of carbon from light hydrocarbons, Carbon 44, 1790-1800, (2006)
${ }^{54}$ A. Kossiakoff, F. O. Rice, Thermal decomposition of hydrocarbons, resonance stabilization and isomerization of free radicals, J. Am. Chem. Soc. 59 (1943) 590-595
${ }^{55}$ A. Becker, Z. Hu, K. J. Hüttinger, A hydrogen inhibition model of carbon from light hydrocarbons, Fuel 79 (2000) 1573-1580
${ }^{56}$ P. Kisliuk, The sticking probabilities of gases chemisorbed on the surface of solids, J- Phys. Chem. Solids, 1957, 95-101 (1957)
${ }^{57}$ W. Tsang, R.F. Hampson, Chemical kinetic data base for combustion chemistry. Part I. Methane and related compounds, J. Phys. Chem. Ref. Data, 15, 1087, (1986)
${ }^{58}$ N. Hansen, and S. Kern. Evaluating the CMA Evolution Strategy on Multimodal Test Functions. Parallel Problem Solving, Springer-Verlag (2004)
${ }^{59}$ G. Margaria, E. Riccomango, M.J. Chappell, H.P. Wynn, Differential algebra methods for the study of the structural identifiability of rational function state-space models in the biosciences, Math.
Biosciences, 174, 1-26, (2001)

[^0]
Appendix I

The LLNL mechanism used in the work as a Chemkin input file:

```
! reference:
! Marinov, N. M., Pitz, W. J., Westbrook, C. K., Vincitore, A. M.,
! Castaldi, M. J., Senkan, S. M. "Aromatic and Polycyclic Aromatic
! Hydrocarbon Formation in a Laminar Premixed n-Butane Flame"
! Combustion and Flame 114 192-213 (1998).
! UCRL-WEB-204236
! Review and release date: May 19, 2004.
! Date: Tue, 19 Jan 1999 11:38:35 -0800 (PST)
! From: "Nick M. Marinov" <marinov1@llnl.gov>
elements h o c ar n end
species
h2 h
ch4 ch3 ch2 ch ch2o hco co2 co o2 o oh ho2 h2o2 h2o
c2h hcco c2h2 c2h3 c2h4 c2h5 c2h6 ch2oh ch3o hccoh h2ccch
c3h2 ch2(s) ch2co c4h2 c5h2 c5h3 c6h2 c2 c2o c hcoh
ch2chcch hcchcch h2cccch c6h5 c6h6 c6h5o
ch2chchch ch2chcch2
h2c4o ch2chchch2 ch3oh ch2hco
c-c5h5 c-c5h5o c-c5h6 c6h5oh c10h8 c-c5h4oh c-c5h4o
c4h10 pc4h9 sc4h9 c4h8-1 c4h8-2 c4h7
c3h6 ac3h5 pc3h5
sc3h5 ch2chcho pc3h4 ac3h4 ch3co c6h5ch2 c6h5ch3
ch2chco ch3chco ch3hco chocho
c3h8 ic3h7 nc3h7 ch3chcch2 ch3ccch2
c6h5c2h5 c10h10 c10h9 c10h7
c6h4c2h3 c6h4c2h c6h5c2h3 c6h5c2h c10h7o
c6h5cho c6h5co hoc6h4ch3 c6h5ch2oh oc6h4o
oc6h4ch3 c10h7ch2 c10h7ch3
ch3c6h4ch3 indene indenyl acenphthln phnthrn
ch3chcch ch3ch2cch ch3c6h4ch2
phnthryl-1 phnthryl-9 flrnthn
ch3c6h4c2h3 ch3c6h4c2h5
c-2*4c6h6o c-c5h7 l-c5h8 l-c5h7
c10h7c2h5 c10h7c2h3 c10h7oh c6h5cco
c6h5chch c6h5cch2 c10h7cch2 c10h7cch c10h6cch
anthracn ch3indene ch3indenyl ch3phnthrn pyrene
fluoryl fluorene h2cccch2 chchcho hcccho hccco
hc4-p(def)pthn hc4-p(def)pthyl phnthroxy-1 phnthroxy-9
bz(a)ndene bz(a)ndnyl phnthrol-1 phnthrol-9 biphenyl bz(a)phnthrn
bz(ghi)fln fulvene ch3cy24pd ch3cy24pd1 ch3dcy24pd cyc6h7
fulvenyl ar n2 end
thermo
end
reactions
\begin{tabular}{lrrrr} 
oh \(+\mathrm{h} 2=\mathrm{h}+\mathrm{h} 2 \mathrm{o}\) & \(2.14 \mathrm{E}+08\) & 1.52 & 3449.0 !Marinov 1995a \\
\(\mathrm{o}+\mathrm{oh}=\mathrm{o} 2+\mathrm{h}\) & \(2.02 \mathrm{E}+14\) & -0.4 & 0.0 !Marinov 1995a \\
\(\mathrm{o}+\mathrm{h} 2=\mathrm{oh}+\mathrm{h}\) & \(5.06 \mathrm{E}+04\) & 2.67 & 6290.0 !Marinov 1995a \\
\(\mathrm{h}+\mathrm{o} 2(+\mathrm{m})=\mathrm{ho} 2(+\mathrm{m})\) & \(4.52 \mathrm{E}+13\) & 0.0 & 0.0 !Marinov 1995a
\end{tabular}
```

```
low / 1.05E+19 -1.257 0.0 /
!Marinov 1995a
```

! h2o/0.0/ h2/0.0/ ch4/10.0/ co2/3.8/ co/1.9/
h2o/0.0/ h2/0.0/ n2/0.0/ ch4/10.0/ co2/3.8/co/1.9/
$\begin{array}{llll}\mathrm{h}+\mathrm{o} 2(+\mathrm{n} 2)=\text { ho } 2(+\mathrm{n} 2) & 4.52 \mathrm{E}+13 & 0.0 & 0.0 \text { !Marinov 1995a }\end{array}$
low / 2.03E+20 -1.59 0.0 / !Marinov 1995a
$\begin{array}{llll}h+o 2(+h 2)=h o 2(+h 2) & 4.52 \mathrm{E}+13 & 0.0 & 0.0\end{array}$!Marinov 1995a
low / 1.52E+19 -1.133 0.0 / !Marinov 1995a
h+o2 (+h20) =ho2(+h2o) $4.52 \mathrm{E}+13 \quad 0.0 \quad 0.0$!Marinov 1995a
low / 2.10E+23 -2.437 0.0 / !Marinov 1995a
oh + ho $2=h 2 \mathrm{o}+\mathrm{o} 2$
dup
oh+ho2=h2o+o2 9.10E+14 0.0 10964.0 !Hippler 1995
dup
h+ho2=oh+oh 1.50E+14 0.0 1000.0 !Marinov 1995a
h+ho2=h2+o2 8.45E+11 0.651241 .0 !Marinov 1995a
h+ho2=o+h20 $3.01 \mathrm{E}+13 \quad 0.0 \quad 1721.0$!Marinov 1995a
otho2=02+oh $3.25 \mathrm{E}+13 \quad 0.0 \quad 0.0$!Marinov 1995a
oh + oh $=0+h 20 \quad 3.57 \mathrm{E}+04 \quad 2.4$-2112.0 !Marinov 1995a
$h+h+m=h 2+m$
$1.00 \mathrm{E}+18$-1.0 0.0 !Marinov 1995a
h2o/0.0/ h2/0.0/
$\mathrm{h}+\mathrm{h}+\mathrm{h} 2=\mathrm{h} 2+\mathrm{h} 2 \mathrm{9.20E+16-0.6} \mathrm{\quad 0.0} \mathrm{!Marinov} \mathrm{1995a}$
$h+h+h 2 o=h 2+h 2 o$
$h+o h+m=h 20+m$
$6.00 \mathrm{E}+19-1.25 \quad 0.0 \quad$!Marinov 1995a
h2o/6.4/
$h+0+m=0 h+m \quad 4.71 \mathrm{E}+18-1.0 \quad 0.0$!Marinov 1995a
h2o/6.4/
$0+o+m=02+m \quad 1.89 \mathrm{E}+13 \quad 0.0-1788.0 \quad$!Marinov 1995a
ho2tho2=h2o2+o2 4.20E+14 0.011982 .0 !Marinov 1995a
dup
ho2+ho2=h2o2+o2 $\quad 1.30 \mathrm{E}+11 \quad 0.0-1629.0$!Marinov 1995 a
dup
oh + oh $(+m)=h 202(+m) \quad 1.24 \mathrm{E}+14-0.37 \quad 0.0$!Marinov 1995a
low / 3.04E+30 -4.63 2049.0 / !Marinov 1995a
troe / 0.470 100.0 2000.0 1.0E+15/
h2o2+h=ho2+h2 $1.98 \mathrm{E}+062.0 \quad 2435.0$!Marinov 1995a
$\mathrm{h} 2 \mathrm{o} 2+\mathrm{h}=\mathrm{oh}+\mathrm{h} 2 \mathrm{o} \quad 3.07 \mathrm{E}+13 \quad 0.0 \quad 4217.0$!Marinov 1995a
h2o2+o=ohtho2 9.55E+06 2.0 3970.0 !Marinov 1995a
h2o2+oh=h2otho2 2.40E+00 4.042-2162.0 !Marinov 1995a
$\operatorname{ch} 3+\operatorname{ch} 3(+\mathrm{m})=\mathrm{c} 2 \mathrm{~h} 6(+\mathrm{m}) \quad 9.22 \mathrm{E}+16-1.174636 .0$!Walter 1990
low / 1.14E+36-5.246 1705.0/ !Walter 1990
troe/ $0.405 \quad 1120.0 \quad 69.6 \quad 1.0 \mathrm{E}+15 /$
h2o/5.0/ h2/2.0/ co2/3.0/ co/2.0/
$\operatorname{ch} 3+h(+m)=\operatorname{ch} 4(+m) \quad 2.14 \mathrm{E}+15-0.4 \quad 0.0 \quad$!Tsang 1986
low/ 3.31E+30 -4.0 2108.0 /
! (a)
$\begin{array}{llll}\text { troe / } 0.0 & 1.0 \mathrm{E}-15 & 1.0 \mathrm{E}-15 & 40.0 /\end{array}$
h2o/5.0/ h2/2.0/ co2/3.0/ co/2.0/
ch $4+$ h=ch $3+h 2 \quad 2.20 \mathrm{E}+043.0 \quad 8750.0$!Miller 1992
ch $4+$ oh=ch $3+h 20 \quad 4.19 \mathrm{E}+062.0 \quad 2547.0$!Marinov 1995
ch $4+o=\operatorname{ch} 3+o h$
$6.92 \mathrm{E}+081.56 \quad 8485.0 \quad$ Marinov 1995
ch $4+$ ho $2=$ ch $3+h 202 \quad 1.12 \mathrm{E}+130.0 \quad 24640.0$! Marinov 1995
ch $3+h o 2=$ ch $30+$ oh
ch $3+$ ho $2=$ ch $4+$ o 2
ch $3+o=\operatorname{ch} 20+h$
$\operatorname{ch} 3+o 2=\operatorname{ch} 30+0$
7.00E+12 0.0 0.0 !Troe 1993
$3.00 \mathrm{E}+120.0 \quad 0.0 \quad$!Marinov 1995
$8.00 \mathrm{E}+130.0 \quad 0.0$!Marinov 1995
ch $3+02=$ ch $30+0$
$1.45 \mathrm{E}+130.0 \quad 29209.0$! Klatt 1991
ch $3+02=$ ch $20+o h$
ch3o+h=ch3+oh $\quad 1.00 \mathrm{E}+140.0 \quad 0.0$!Miller 1992
$2.51 \mathrm{E}+11 \quad 0.0 \quad 14640.0$!Marinov 1995
ch3+oh=ch2 (s) +h2o $\quad 2.65 \mathrm{E}+13 \quad 0.0 \quad 2186.0$! Humpfer 1994
ch $3+o h=\operatorname{ch} 2+h 2 o$
ch $3+o h=h c o h+h 2$ ch $3+\mathrm{oh}=\mathrm{ch} 2 \mathrm{o}+\mathrm{h} 2$ ch $3+h=$ ch $2+h 2$ ch $3+m=c h+h 2+m$ ch $3+m=\operatorname{ch} 2+h+m$ ch $3+$ oh $(+m)=\operatorname{ch} 3$ oh $(+m)$

$3.00 \mathrm{E}+06$	2.0	2500.0	!Marinov 1996
$5.48 \mathrm{E}+13$	0.0	2981.0	! Humpfer 1994
$2.25 \mathrm{E}+13$	0.0	4300.0	! (b)
$9.00 \mathrm{E}+13$	0.0	15100.0	!Miller 1992
$6.90 \mathrm{E}+14$	0.0	82469.0	!Markus 1992
$1.90 \mathrm{E}+16$	0.0	91411.0	!Markus 1992
$5.65 \mathrm{E}+13$	0.1	0.0	! Fagerstrom 1993
626.0		!	(c)

low 5.75E+41 -7.4 626.0 / ! (c)
troe / 0.025 1.0E-15 8000.0 3000.0/
h2o /16.0/ h2/2.0/ co2/3.0/ co/2.0/
$\operatorname{ch} 30 h(+m)=h \operatorname{coh}+\mathrm{h} 2(+\mathrm{m}) \quad 4.15 \mathrm{E}+16-0.15 \quad 92285.0$! (d)
low / 4.23E+44 -7.65 92911.0 /
troe / 0.025 1.0E-15 8000.0 3000.0/
h2o/16.0/ h2/2.0/ co2/3.0/ col2.0/
$\begin{array}{lllll}\text { ch3oh }+ \text { oh }=\text { ch } 20 h+h 20 \quad 2.61 E+05 & 2.182 & -1344.0 \quad \text { !Tsang } 1987\end{array}$
ch $30 h+0 h=\operatorname{ch} 30+h 20 \quad 2.62 \mathrm{~F}+062.056$ 916.0.197
ch3oh + o ch $20 h+$ oh $3.88 \mathrm{E}+05 \quad 2.5 \quad 3080.0 \quad$!Tsang 1987
$\begin{array}{lllll}\text { ch3oh }+\mathrm{h}=\mathrm{ch} 2 \mathrm{oh}+\mathrm{h} 2 & 1.70 \mathrm{E}+07 & 2.1 & 4868.0 \quad \text { !Tsang } 1987\end{array}$
ch3oh $+\mathrm{h}=\mathrm{ch} 3 \mathrm{o}+\mathrm{h} 2 \quad 4.24 \mathrm{E}+062.1 \quad 4868.0 \quad$!Tsang 1987
ch $30 h+h o 2=c h 2 o h+h 2 \circ 2$
$\mathrm{ch} 3 \mathrm{o}+\mathrm{m}=\mathrm{ch} 2 \mathrm{o}+\mathrm{h}+\mathrm{m}$
$\mathrm{ch} 2 \mathrm{oh}+\mathrm{m}=\mathrm{ch} 2 \mathrm{o}+\mathrm{h}+\mathrm{m}$
ch $30+h=\mathrm{ch} 2 \mathrm{o}+\mathrm{h} 2$
$9.64 \mathrm{E}+10 \quad 0.0 \quad 12578.0$
$5.45 \mathrm{E}+13 \quad 0.0 \quad 13497.0 \quad$! Choudhury1990
ch $20 h+h=c h 2 o+h 2$
ch $30+o h=c h 2 o+h 2 o$
ch $20 h+o h=c h 2 o+h 2 o$
ch $30+o=\operatorname{ch} 20+o h$
ch2oh+o=ch2o+oh
ch $30+o 2=$ ch $2 o+h o 2$
$1.00 \mathrm{E}+14 \quad 0.0 \quad 25000.0 \quad$!Miller 1992
$2.00 \mathrm{E}+13$ 0.0 $0.0 \quad$!Miller 1992
$2.00 \mathrm{E}+13$ 0.0 $0.0 \quad$!Miller 1992
$1.00 \mathrm{E}+130.0 \quad 0.0 \quad$!Miller 1992
$6.30 \mathrm{E}+10 \quad 0.0 \quad 2600.0 \quad$!Miller 1992
$1.57 \mathrm{E}+15$-1.0 $0.0 \quad$!Baulch 1992
dup
ch2oh+o2=ch2o+ho2
7.23E+13 0.0 $3577.0 \quad$!Baulch 1992
hcoh + oh=hco+h2o
hcoh $+\mathrm{h}=\mathrm{ch} 2 \mathrm{o}+\mathrm{h}$
$h \mathrm{coh}+\mathrm{o}=\mathrm{CO} 2+\mathrm{h}+\mathrm{h}$
$\mathrm{hcoh}+\mathrm{o}=\mathrm{CO}+\mathrm{oh}+\mathrm{h}$
$\mathrm{hcoh}+\mathrm{o} 2=\mathrm{co} 2+\mathrm{h}+\mathrm{oh}$
hcoh $+\mathrm{o} 2=\mathrm{co} 2+\mathrm{h} 2 \mathrm{o}$
$\mathrm{ch} 2+\mathrm{h}=\mathrm{ch}+\mathrm{h} 2$
$\mathrm{ch} 2+\mathrm{oh}=\mathrm{ch}+\mathrm{h} 2 \mathrm{o}$
ch $2+o h=c h 2 o+h$
$\mathrm{ch} 2+\mathrm{co} 2=\mathrm{ch} 2 \mathrm{o}+\mathrm{co}$
$\mathrm{ch} 2+\mathrm{o}=\mathrm{co}+\mathrm{h}+\mathrm{h}$
$\mathrm{ch} 2+\mathrm{o}=\mathrm{co}+\mathrm{h} 2$
$\operatorname{ch} 2+o 2=\operatorname{ch} 20+o$
$\mathrm{ch} 2+\mathrm{o} 2=\mathrm{co} 2+\mathrm{h}+\mathrm{h}$
$\mathrm{ch} 2+\mathrm{o} 2=\mathrm{co} 2+\mathrm{h} 2$
$\mathrm{ch} 2+\mathrm{o} 2=\mathrm{co}+\mathrm{h} 2 \mathrm{o}$ ch $2+\mathrm{o} 2=\mathrm{hco}+\mathrm{oh}$ $\operatorname{ch} 2+\operatorname{ch} 3=c 2 h 4+h$ $\mathrm{ch} 2+\mathrm{ch} 2=\mathrm{c} 2 \mathrm{~h} 2+\mathrm{h}+\mathrm{h}$ $\mathrm{ch} 2+\mathrm{hcco}=\mathrm{c} 2 \mathrm{~h} 3+\mathrm{co}$ $\mathrm{ch} 2+\mathrm{c} 2 \mathrm{~h} 2=\mathrm{h} 2 \mathrm{ccch}+\mathrm{h}$
$2.00 \mathrm{E}+13 \quad 0.0$
0.0 ! Marinov 1996
$2.00 \mathrm{E}+14 \quad 0.0 \quad 0.0 \quad$!Marinov 1996
$5.00 \mathrm{E}+13 \quad 0.0 \quad 0.0 \quad$!Marinov 1996
$3.00 \mathrm{E}+13 \quad 0.0 \quad 0.0 \quad$ Marinov 1996
$5.00 \mathrm{E}+12 \quad 0.0 \quad 0.0$! (e)
$3.00 \mathrm{E}+13 \quad 0.0 \quad 0.0 \quad$! (e)
$1.00 \mathrm{E}+18 \quad-1.56 \quad 0.0 \quad$!Miller 1992
$1.13 \mathrm{E}+07 \quad 2.0 \quad 3000.0 \quad$!Miller 1992
$2.50 \mathrm{E}+13 \quad 0.0 \quad 0.0 \quad$!Miller 1992
$1.10 \mathrm{E}+11 \quad 0.0 \quad 1000.0 \quad$!Miller 1992
$5.00 \mathrm{E}+13 \quad 0.0 \quad 0.0 \quad$!Miller 1992
$3.00 \mathrm{E}+13 \quad 0.0 \quad$! Miller 1992
3.29E+21-3.3 2868.0 ! (f)
$3.29 \mathrm{E}+21-3.3 \quad 2868.0$! (f)
$1.01 \mathrm{E}+21-3.3 \quad 1508.0$! (f)
$7.28 \mathrm{E}+19-2.54 \quad 1809.0$! (f)
$1.29 \mathrm{E}+20-3.3 \quad 284.0$! (f)
$4.00 \mathrm{E}+13 \quad 0.0 \quad 0.0 \quad$! Miller 1992
$4.00 \mathrm{E}+13 \quad 0.0 \quad 0.0$! Miller 1992
$3.00 \mathrm{E}+13 \quad 0.0 \quad 0.0 \quad$! Miller 1992
$\begin{array}{lllll}\text { ch2 }(\mathrm{s})+\mathrm{m}=\mathrm{ch} 2+\mathrm{m} & 1.00 \mathrm{E}+13 & 0.0 & 0.0 & \text { ! Miller } 1992\end{array}$
$\mathrm{h} / 12.0 / \mathrm{c} 2 \mathrm{~h} 2 / 4.0 / \mathrm{h} 20 / 3.0 /$
$\begin{array}{lllll}\operatorname{ch} 2(s)+\operatorname{ch} 4=\operatorname{ch} 3+\operatorname{ch} 3 & 4.00 \mathrm{E}+13 \quad 0.0 & 0.0 & \text { ! Miller } 1992\end{array}$
ch2 (s) $+\mathrm{c} 2 \mathrm{~h} 6=\mathrm{ch} 3+\mathrm{c} 2 \mathrm{~h} 5$
ch2 (s) $+\mathrm{o} 2=\mathrm{co}+\mathrm{oh}+\mathrm{h}$
ch2 $(\mathrm{s})+\mathrm{h} 2=\mathrm{ch} 3+\mathrm{h}$
ch2 (s) c ch h $2=\mathrm{h} 2 \mathrm{ccch}+\mathrm{h}$
ch2 $(\mathrm{s})+\mathrm{c} 2 \mathrm{~h} 4=\mathrm{ac} 3 \mathrm{~h} 5+\mathrm{h}$
ch2 (s) $+\mathrm{o}=\mathrm{Co}+\mathrm{h}+\mathrm{h}$
ch2 (s) +oh=ch2o+h
ch2 (s) $\mathrm{h}=\mathrm{h}=\mathrm{h}+\mathrm{h} 2$
ch2 $(\mathrm{s})+\mathrm{co} 2=\mathrm{ch} 2 \mathrm{o}+\mathrm{co}$
ch2 (s) $+\mathrm{ch} 3=\mathrm{c} 2 \mathrm{~h} 4+\mathrm{h}$
ch2 (s) $+\mathrm{ch} 2 \mathrm{co}=\mathrm{c} 2 \mathrm{~h} 4+\mathrm{co}$
$\mathrm{ch}+\mathrm{o} 2=\mathrm{hco}+\mathrm{o}$
$\mathrm{ch}+\mathrm{o}=\mathrm{CO}+\mathrm{h}$
ch + oh=hco+h
ch + oh $=\mathrm{c}+\mathrm{h} 2 \circ$
$\mathrm{ch}+\mathrm{co} 2=\mathrm{hco}+\mathrm{co}$
$\mathrm{ch}+\mathrm{h}=\mathrm{c}+\mathrm{h} 2$
$\mathrm{ch}+\mathrm{h} 2 \mathrm{o}=\mathrm{ch} 2 \mathrm{o}+\mathrm{h}$
$\mathrm{ch}+\mathrm{ch} 2 \mathrm{o}=\mathrm{ch} 2 \mathrm{co}+\mathrm{h}$
$\mathrm{ch}+\mathrm{c} 2 \mathrm{~h} 2=\mathrm{c} 3 \mathrm{~h} 2+\mathrm{h}$
$\mathrm{ch}+\mathrm{ch} 2=\mathrm{c} 2 \mathrm{~h} 2+\mathrm{h}$
$\mathrm{ch}+\mathrm{ch} 3=\mathrm{c} 2 \mathrm{~h} 3+\mathrm{h}$
ch + ch $4=c 2 h 4+h$
$\mathrm{C}+\mathrm{O}=\mathrm{CO}+\mathrm{O}$
$\mathrm{c}+\mathrm{oh}=\mathrm{CO}+\mathrm{h}$
$c+c h 3=c 2 h 2+h$
$c+c h 2=c 2 h+h$
ch2o+oh=hco+h2o
ch2o+h=hco+h2
ch $20+\mathrm{m}=\mathrm{hco}+\mathrm{h}+\mathrm{m}$
ch $20+0=h c o+o h$
hco + o $2=$ ho $2+\mathrm{co}$
$\mathrm{hco}+\mathrm{m}=\mathrm{h}+\mathrm{co}+\mathrm{m}$
h2o/5.0/h2/1
hco+oh=h $20+c o$
$\mathrm{hco}+\mathrm{h}=\mathrm{Co}+\mathrm{h} 2$
$\mathrm{hco}+\mathrm{O}=\mathrm{CO}+\mathrm{h}$
$\mathrm{hco}+\mathrm{o}=\mathrm{CO} 2+\mathrm{h}$
$\mathrm{co}+\mathrm{oh}=\mathrm{CO} 2+\mathrm{h}$
$\mathrm{co}+\mathrm{o}+\mathrm{m}=\mathrm{CO} 2+\mathrm{m}$
$\mathrm{co}+\mathrm{O}=\mathrm{Co} 2+\mathrm{o}$ $\mathrm{co}+\mathrm{ho} 2=\mathrm{CO} 2+\mathrm{oh}$
c $2 \mathrm{~h} 6+\mathrm{ch} 3=\mathrm{c} 2 \mathrm{~h} 5+\mathrm{ch} 4$
$\mathrm{c} 2 \mathrm{~h} 6+\mathrm{h}=\mathrm{c} 2 \mathrm{~h} 5+\mathrm{h} 2$ $c 2 h 6+o=c 2 h 5+o h$ c2h6+oh=c $2 h 5+h 20$ $\mathrm{c} 2 \mathrm{~h} 5+\mathrm{h}=\mathrm{c} 2 \mathrm{~h} 4+\mathrm{h} 2$ $\mathrm{c} 2 \mathrm{~h} 5+\mathrm{h}=\mathrm{ch} 3+\mathrm{ch} 3$ $\mathrm{c} 2 \mathrm{~h} 5+\mathrm{h}=\mathrm{c} 2 \mathrm{~h} 6$ c2h $5+o h=c 2 h 4+h 2 o$ c $2 \mathrm{~h} 5+o=\mathrm{ch} 3+\mathrm{ch} 2 \circ$ c2h $5+$ ho $2=$ ch $3+$ ch $20+o h$ c2h5+o2=c2h4+ho2 $\mathrm{c} 2 \mathrm{~h} 4+\mathrm{h}=\mathrm{c} 2 \mathrm{~h} 3+\mathrm{h} 2$ c $2 \mathrm{~h} 4+\mathrm{oh}=\mathrm{c} 2 \mathrm{~h} 3+\mathrm{h} 2 \mathrm{o}$ c2h $4+o=\operatorname{ch} 3+h c o$ $\mathrm{c} 2 \mathrm{~h} 4+\mathrm{o}=\mathrm{ch} 2 \mathrm{hco}+\mathrm{h}$

$20 \mathrm{E}+14$	0.0	0.0	Miller 1992
$7.00 \mathrm{E}+13$	0.0	0.0	Miller 1992
$7.00 \mathrm{E}+13$	0.0	0.0	Miller 1992
$1.50 \mathrm{E}+14$	0.0	0.0	Canosa-Mas85
$1.30 \mathrm{E}+14$	0.0	0.0	Canosa-Mas85
$3.00 \mathrm{E}+13$	0.0	0.0	Miller 1992
$3.00 \mathrm{E}+13$	0.0	0.0	Miller 1992
$3.00 \mathrm{E}+13$	0.0	0.0	Miller 1992
$3.00 \mathrm{E}+12$	0.0	0.0	Miller 1992
$2.00 \mathrm{E}+13$	0.0	0.0	Miller 1992
$1.60 \mathrm{E}+14$	0.0	0.0	Miller 1992
$3.30 \mathrm{E}+13$	0.0	0.0	Miller 1992
$5.70 \mathrm{E}+13$	0.0	0.0	Miller 1992
$3.00 \mathrm{E}+13$	0.0	0.0	! Miller 1992
$4.00 \mathrm{E}+07$	2.0	3000.0	! Miller 1992
$3.40 \mathrm{E}+12$	0.0	690.0	Miller 1992
$1.50 \mathrm{E}+14$	0.0	0.0	Miller 1992
$1.17 \mathrm{E}+15$	-0.75	0.0	Miller 1992
$9.46 \mathrm{E}+13$	0.0	-515.0	Miller 1992
$1.00 \mathrm{E}+14$	0.0	0.0	Miller 1992
$4.00 \mathrm{E}+13$	0.0	0.0	Miller 1992
$3.00 \mathrm{E}+13$	0.0	0.0	Miller 1992
$6.00 \mathrm{E}+13$	0.0	0.0	Miller 1992
$2.00 \mathrm{E}+13$	0.0	0.0	Miller 1992
$5.00 \mathrm{E}+13$	0.0	0.0	! Miller 1992
$5.00 \mathrm{E}+13$	0.0	0.0	! Miller 1992
$5.00 \mathrm{E}+13$	0.0	0.0	Miller 1992
$3.43 \mathrm{E}+09$	1.18	-447.0	Miller 1992
$2.19 \mathrm{E}+08$	1.77	3000.0	Miller 1992
$3.31 \mathrm{E}+16$	0.0	81000.0	Miller 1992
$1.80 \mathrm{E}+13$	0.0	3080.0	Miller 1992
$7.58 \mathrm{E}+12$	0.0	410.0	Timonen 1988
$1.86 \mathrm{E}+17$	-1.0	7000.0	Timonen 19

$1.00 \mathrm{E}+14$	0.0	0.0	! Miller	1992
$1.19 \mathrm{E}+13$	0.25	0.0	! Miller 1992	

$3.00 \mathrm{E}+130.0 \quad 0.0 \quad$! Miller 1992
$3.00 \mathrm{E}+130.0 \quad 0.0$! Miller 1992
$9.42 \mathrm{E}+03 \quad 2.25-2351.0 \quad$! (g)
$6.17 \mathrm{E}+14 \quad 0.0 \quad 3000.0$! Miller 1992
$2.53 \mathrm{E}+120.0 \quad 47688.0$! Miller 1992
$5.80 \mathrm{E}+130.022934 .0$! Miller 1992
5.50E-01 4.0 8300.0 ! Miller 1992
$5.40 \mathrm{E}+023.5 \quad 5210.0 \quad$! Miller 1992
$3.00 \mathrm{E}+07$ 2.0 5115.0 ! Miller 1992
$7.23 \mathrm{E}+062.0 \quad 864.0$! Baulch 1992
1.25E+14 0.0 8000.0 ! Marinov 1995
$3.00 \mathrm{E}+130.0 \quad 0.0$! Warnatz 1984
$1.00 \mathrm{E}+14 \quad 0.0 \quad 0.0$! Marinov 1996
$4.00 \mathrm{E}+13 \quad 0.0 \quad 0.0$! Marinov 1995
$1.00 \mathrm{E}+140.0 \quad 0.0$! Herron 1988
$3.00 \mathrm{E}+13 \quad 0.0 \quad 0.0$! Marinov 1995
$3.00 \mathrm{E}+20$-2.86 6760.0 ! Marinov 1995
$3.36 \mathrm{E}-07$ 6.0 1692.0 ! Dagaut 1990
2.02E+13 0.0 5936.0 ! Miller 1992
$1.02 \mathrm{E}+071.88 \quad 179.0 \quad$! Baulch 1994
$3.39 \mathrm{E}+061.88 \quad 179.0$! Baulch 1994
c2h $4+\operatorname{ch} 3=c 2 h 3+\operatorname{ch} 4 \quad 6.62 \mathrm{E}+003.7 \quad 9500.0$! Marinov 1995
$\mathrm{c} 2 \mathrm{~h} 4+\mathrm{h}(+\mathrm{m})=\mathrm{c} 2 \mathrm{~h} 5(+\mathrm{m}) \quad 1.08 \mathrm{E}+12 \quad 0.4541822 .0$! Feng 1993
low / 1.112E+34 -5.0 4448.0 / ! (h)
troe / 1.0 1.0E-15 $95.0 \quad 200.0 /$
h2o /5.0/ h2/2.0/ co2/3.0/ co/2.0/
$\mathrm{c} 2 \mathrm{~h} 4(+\mathrm{m})=\mathrm{c} 2 \mathrm{~h} 2+\mathrm{h} 2(+\mathrm{m}) \quad 1.8 \mathrm{E}+13 \quad 0.0 \quad 76000$. ! Towell 1961
low / 1.5E+15 0.0 55443. / Kiefer 1983
$\mathrm{c} 2 \mathrm{~h} 4(+\mathrm{m})=\mathrm{c} 2 \mathrm{~h} 3+\mathrm{h}(+\mathrm{m}) \quad 2.00 \mathrm{E}+16 \quad 0.0 \quad 110000$. ! Dean 1985
low / 1.4E+15 0.0 81833. / Kiefer 1983
$\mathrm{c} 2 \mathrm{~h} 3+\mathrm{h}=\mathrm{c} 2 \mathrm{~h} 2+\mathrm{h} 2 \quad 4.00 \mathrm{E}+13 \quad 0.0 \quad 0.0$! Miller 1992
$\mathrm{c} 2 \mathrm{~h} 3+\mathrm{o}=\mathrm{ch} 2 \mathrm{co}+\mathrm{h} \quad 3.00 \mathrm{E}+13$ 0.0 0.0 ! Miller 1992
c2h3+o2=ch2othco 1.70E+29-5.312 6500. ! Marinov 1998
$\mathrm{c} 2 \mathrm{~h} 3+\mathrm{o} 2=\mathrm{ch} 2 \mathrm{hco}+\mathrm{O} \quad 3.50 \mathrm{E}+14-0.611$ 5260. ! Marinov 1998
$\mathrm{c} 2 \mathrm{~h} 3+\mathrm{o}=\mathrm{c} 2 \mathrm{~h} 2+\mathrm{ho} 2 \quad 2.12 \mathrm{E}-066.0 \quad 9484.0$! cfm/nmm 1996
$\mathrm{c} 2 \mathrm{~h} 3+\mathrm{oh}=\mathrm{c} 2 \mathrm{~h} 2+\mathrm{h} 2 \mathrm{O} \quad 2.00 \mathrm{E}+13$ 0.0 0.0 ! Miller 1992
$c 2 h 3+c 2 h=c 2 h 2+c 2 h 2 \quad 3.00 \mathrm{E}+13 \quad 0.0 \quad 0.0$! Miller 1992
$\mathrm{c} 2 \mathrm{~h} 3+\mathrm{ch}=\mathrm{ch} 2+\mathrm{c} 2 \mathrm{~h} 2 \quad 5.00 \mathrm{E}+130.0 \quad 0.0$! Miller 1992
$\mathrm{c} 2 \mathrm{~h} 3+\mathrm{ch} 3=\mathrm{ac} 3 \mathrm{~h} 5+\mathrm{h} \quad 4.73 \mathrm{E}+02 \quad 3.75677 .0$! (i)
c2h $3+$ ch $3=c 3 h 6 \quad 4.46 \mathrm{E}+56-13.013865 .0$! (i)
c2h3+ch3=c2h2+ch4 2.00E+13 0.0 0.0 ! Fahr 1991
c2h $3+c 2 h 2=c h 2 c h c c h+h \quad 2.00 \mathrm{E}+120.0 \quad 5000.0$! Miller 1992
c2h3+c2h4=ch2chchch2+h 5.00E+11 0.0 7304.0 ! Tsang 1986
c2h3+c2h3=ch2chcch2+h
$7.00 \mathrm{E}+130.0 \quad 0.0$! Fahr 1991
$c 2 h 3+c 2 h 3=c 2 h 4+c 2 h 2 \quad 1.45 \mathrm{E}+130.0 \quad 0.0$! Fahr 1991
$\mathrm{c} 2 \mathrm{~h} 2+\mathrm{oh}=\mathrm{c} 2 \mathrm{~h}+\mathrm{h} 2 \mathrm{O} \quad 3.37 \mathrm{E}+07 \mathrm{2} .0 \quad 14000.0$! Miller 1992
$\mathrm{c} 2 \mathrm{~h} 2+\mathrm{h}=\mathrm{hccoh}+\mathrm{h} \quad 5.04 \mathrm{E}+052.313500 .0$! Miller 1992
c2h2+oh=ch2coth $2.18 \mathrm{E}-04$ 4.5 -1000.0 ! Miller 1992
dup
c2h2+oh=ch2co+h $2.00 \mathrm{E}+110.0 \quad 0.0$! Vandooren 1977
dup
c2h $2+$ oh $=$ ch $3+$ co
hccoh+h=ch2co+h
4.83E-04 4.0 -2000.0 ! Miller 1992
$\mathrm{c} 2 \mathrm{~h} 2+\mathrm{o}=\mathrm{ch} 2+\mathrm{co}$
$1.00 \mathrm{E}+130.0 \quad 0.0$! Miller 1992
$6.12 \mathrm{E}+062.0 \quad 1900.0 \quad$! (j)
$\mathrm{c} 2 \mathrm{~h} 2+\mathrm{o}=\mathrm{hcco}+\mathrm{h}$
$1.43 \mathrm{E}+07 \quad 2.0 \quad 1900.0 \quad$! (j)
$3.16 \mathrm{E}+15$-0.6 15000.0 ! Miller 1992
$\begin{array}{llllll}\mathrm{c} 2 \mathrm{~h} 2+\mathrm{ch} 3=\mathrm{c} 2 \mathrm{~h}+\mathrm{ch} 4 & 1.81 \mathrm{E}+11 & 0.0 & 17289.0 & \text { ! Tsang } 1986 \\ \mathrm{c} 2 \mathrm{~h} 2+\mathrm{o} 2=\mathrm{hcco}+\mathrm{oh} & 4.00 \mathrm{E}+07 & 1.5 & 30100 . & \text { ! Marinov } 1998\end{array}$

- 2 2h
$4.20 \mathrm{E}+160.0 \quad 107000.0$! Miller 1992
$\mathrm{c} 2 \mathrm{~h} 2+\mathrm{h} \quad(+\mathrm{m})=\mathrm{c} 2 \mathrm{~h} 3(+\mathrm{m}) \quad 3.11 \mathrm{E}+11 \quad 0.58 \quad 2589.0$! Knyazev 1995
low / 2.25E+40 -7.269 6577.0 / ! (k)
troe /1.0 1.0E-15 675.0 1.0E+15 /
h2o /5.0/ h2/2.0/ co2/3.0/ co/2.0/
ch $3 \mathrm{hco}+\mathrm{oh}=\mathrm{ch} 3 \mathrm{co}+\mathrm{h} 20 \quad 5.37 \mathrm{E}+100.73$-1110.0 ! Marinov 1995
ch3hco+h=ch3co+h2 4.09E+09 1.16 2400.0 ! Marinov 1995
ch3hco+o=ch3co+oh $5.89 \mathrm{E}+120.0 \quad 1810.0$! Marinov 1995
ch3hco+ho2=ch3co+h2o2 1.70E+12 0.0 10700.0 ! Marinov 1995
ch3hco+o2=ch3co+ho2 2.00E+13 0.5 42200.0 ! Marinov 1995
ch3hco+ch3=ch3co+ch4 2.00E-06 5.64 2464.0 ! Marinov 1996
ch $2 \mathrm{hco}+\mathrm{h}=\mathrm{ch} 2 \mathrm{co}+\mathrm{h} 2 \quad 4.00 \mathrm{E}+130.0 \quad 0.0$! Marinov 1996
ch2hco+o=ch2othco $\quad 1.00 \mathrm{E}+140.0 \quad 0.0$! Marinov 1996
ch $2 \mathrm{hco}+\mathrm{oh}=\mathrm{ch} 2 \mathrm{co}+\mathrm{h} 2 \mathrm{O} \quad 3.00 \mathrm{E}+130.0 \quad 0.0$! Marinov 1996
ch2hco+o2=ch2o+co+oh
ch $2 \mathrm{hco}+\mathrm{ch} 3=>\mathrm{c} 2 \mathrm{~h} 5+\mathrm{co}+\mathrm{h}$
$3.00 \mathrm{E}+100.0 \quad 0.0$! Baulch 1992
$4.90 \mathrm{E}+14-0.50 \quad 0.0$! (1)
ch $2 \mathrm{hco}=\mathrm{ch} 2 \mathrm{co}+\mathrm{h}$
3.95E+38 -7.649 45115.0 ! Marinov 1995
chocho $(+\mathrm{m})=\operatorname{ch} 20+\mathrm{co}(+\mathrm{m}) \quad 4.27 \mathrm{E}+12 \quad 0.0 \quad 50600.0$! Marinov 1995
low / 8.91E+16 0.0 49200.0 / Marinov 1995
chocho $=\mathrm{CO}+\mathrm{co}+\mathrm{h} 2$
$4.07 \mathrm{E}+42-8.5 \quad 69278.0$! (m)
chocho+oh=hco+co+h2o
chocho+o=hco+co+oh
chocho+h=ch2o+hco chocho+ho2=hco+co+h2o2 chocho + ch $3=$ hco $+\mathrm{co}+\mathrm{ch} 4$
chocho $+\mathrm{o} 2=\mathrm{hco}+\mathrm{co}+\mathrm{ho} 2$ $\operatorname{ch} 3 \mathrm{co}(+\mathrm{m})=\operatorname{ch} 3+\mathrm{co}(+\mathrm{m})$ low / 1.20E+15 0.0 $\mathrm{ch} 2 \mathrm{co}+\mathrm{o}=\mathrm{Co} 2+\mathrm{ch} 2$ $\mathrm{ch} 2 \mathrm{co}+\mathrm{h}=\mathrm{ch} 3+\mathrm{co}$ $\mathrm{ch} 2 \mathrm{co}+\mathrm{h}=\mathrm{hcco}+\mathrm{h} 2$ $\mathrm{ch} 2 \mathrm{co}+\mathrm{o}=\mathrm{hcco}+\mathrm{oh}$ ch2co+oh=hcco+h2o ch $2 \mathrm{co}+\mathrm{oh}=\mathrm{ch} 2 \mathrm{oh}+\mathrm{co}$ $\mathrm{ch} 2 \mathrm{co}(+\mathrm{m})=\mathrm{ch} 2+\mathrm{co}(+\mathrm{m})$ low / 3.60E+15 0.0 $\mathrm{c} 2 \mathrm{~h}+\mathrm{h} 2=\mathrm{c} 2 \mathrm{~h} 2+\mathrm{h}$
$\mathrm{c} 2 \mathrm{~h}+\mathrm{o}=\mathrm{ch}+\mathrm{co}$ $\mathrm{c} 2 \mathrm{~h}+\mathrm{oh}=\mathrm{hcco}+\mathrm{h}$ $\mathrm{c} 2 \mathrm{~h}+\mathrm{oh}=\mathrm{c} 2+\mathrm{h} 2 \mathrm{o}$ $\mathrm{c} 2 \mathrm{~h}+\mathrm{o} 2=\mathrm{Co}+\mathrm{co}+\mathrm{h}$ $\mathrm{c} 2 \mathrm{~h}+\mathrm{c} 2 \mathrm{~h} 2=\mathrm{c} 4 \mathrm{~h} 2+\mathrm{h}$ $\mathrm{c} 2 \mathrm{~h}+\mathrm{c} 2 \mathrm{~h} 4=\mathrm{ch} 2 \mathrm{chcch}+\mathrm{h}$ $h c c o+c 2 h 2=h 2 c c c h+c o$ $\mathrm{hcco}+\mathrm{h}=\mathrm{ch} 2(\mathrm{~s})+\mathrm{co}$ $\mathrm{hcco}+\mathrm{o}=\mathrm{h}+\mathrm{co}+\mathrm{co}$ $\mathrm{hcco}+\mathrm{o}=\mathrm{ch}+\mathrm{co} 2$ $\mathrm{hcco}+\mathrm{o} 2=\mathrm{hco}+\mathrm{Co}+\mathrm{o}$ $\mathrm{hcco}+\mathrm{o} 2=\mathrm{co} 2+\mathrm{hco}$ $\mathrm{hcco}+\mathrm{ch}=\mathrm{c} 2 \mathrm{~h} 2+\mathrm{co}$ $\mathrm{hcco}+\mathrm{hcco}=\mathrm{c} 2 \mathrm{~h} 2+\mathrm{co}+\mathrm{co}$ hcco+oh=c2o+h2o
$\mathrm{c} 2 \mathrm{o}+\mathrm{h}=\mathrm{ch}+\mathrm{co}$
$\mathrm{c} 2 \mathrm{O}+\mathrm{O}=\mathrm{CO}+\mathrm{CO}$ $\mathrm{c} 2 \mathrm{o}+\mathrm{oh}=\mathrm{co}+\mathrm{co}+\mathrm{h}$ $\mathrm{c} 2 \mathrm{O}+\mathrm{o} 2=\mathrm{Co}+\mathrm{Co}+\mathrm{o}$ $\mathrm{c} 2+\mathrm{h} 2=\mathrm{c} 2 \mathrm{~h}+\mathrm{h}$ $\mathrm{c} 2+\mathrm{o} 2=\mathrm{co}+\mathrm{co}$ $\mathrm{c} 2+\mathrm{oh}=\mathrm{c} 2 \mathrm{o}+\mathrm{h}$ c $3 \mathrm{~h} 8(+\mathrm{m})=\mathrm{c} 2 \mathrm{~h} 5+\mathrm{ch} 3(+\mathrm{m})$ low / 7.237E+27 -2.88 troe $/ 1.0$ 1.0E-15 1500.0 1.0E +15 h2o/5.0/ co2/3.0/ co/2.0/ h2/2.0/ c $3 \mathrm{~h} 8+\mathrm{o} 2=\mathrm{ic} 3 \mathrm{~h} 7+\mathrm{ho} 2$ $\mathrm{c} 3 \mathrm{~h} 8+\mathrm{o} 2=\mathrm{nc} 3 \mathrm{~h} 7+\mathrm{ho} 2$ c $3 \mathrm{~h} 8+\mathrm{ho} 2=\mathrm{nc} 3 \mathrm{~h} 7+\mathrm{h} 2 \mathrm{o} 2$ c3h8+ho2=ic3h7+h2o2 c $3 \mathrm{~h} 8+\mathrm{oh}=\mathrm{nc} 3 \mathrm{~h} 7+\mathrm{h} 2 \mathrm{o}$ c $3 \mathrm{~h} 8+\mathrm{oh}=\mathrm{ic} 3 \mathrm{~h} 7+\mathrm{h} 2 \mathrm{o}$ c $3 \mathrm{~h} 8+0=\mathrm{nc} 3 \mathrm{~h} 7+o \mathrm{~h}$ c $3 \mathrm{~h} 8+0=\mathrm{ic} 3 \mathrm{~h} 7+o \mathrm{~h}$ c $3 \mathrm{~h} 8+\mathrm{h}=\mathrm{ic} 3 \mathrm{~h} 7+\mathrm{h} 2$ c3h8+h=nc3h7+h2 c $3 \mathrm{~h} 8+\operatorname{ch} 3=\mathrm{nc} 3 \mathrm{~h} 7+\mathrm{ch} 4$ c $3 \mathrm{~h} 8+\operatorname{ch} 3=\mathrm{ic} 3 \mathrm{~h} 7+\operatorname{ch} 4$ $c 3 h 8+c 2 h 3=i c 3 h 7+c 2 h 4$ $c 3 h 8+c 2 h 3=n c 3 h 7+c 2 h 4$
$4.00 \mathrm{E}+13$
$\begin{array}{ll}4.00 \mathrm{E}+13 & 0.0 \\ 4.76 \mathrm{E}+04 & 2.55\end{array}$
$9.64 \mathrm{E}+03-2.6$
. Tsang 1988
$3.16 \mathrm{E}+07$ 1.8 934.0 ! Cohen 1991
$7.08 \mathrm{E}+06$ 1.9 -159.0 ! Cohen 1991
$3.73 \mathrm{E}+062.4 \quad 5504.0$! Cohen 1986
$5.48 \mathrm{E}+05 \quad 2.5 \quad 3139.0$! Cohen 1986
$1.30 \mathrm{E}+06$ 2.4 4471.0 ! Tsang 1988
$1.33 \mathrm{E}+06 \quad 2.54 \quad 6756.0$! Tsang 1988
$9.04 \mathrm{E}-01$ 3.65 7153.0 ! Tsang 1988
$1.51 \mathrm{E}+003.46 \quad 5480.0$! Tsang 1988
$1.00 \mathrm{E}+03 \quad 3.1 \quad 8830.0$! Tsang 1988
$6.00 \mathrm{E}+023.310500 .0$! Tsang 1988

6	$1.51 \mathrm{E}+00$	3.46	7470.0		ng 1988
c3h $8+\mathrm{c} 2 \mathrm{~h} 5=\mathrm{nc} 3 \mathrm{~h} 7+\mathrm{c} 2 \mathrm{~h} 6$	9.03E-01	3.65	9140.0	!	Tsang 1988
c3h $8+a c 3 h 5=c 3 h 6+n c 3 h 7$	$2.35 E+02$	3.3	19842.0		Tsang 1988
c3h $8+a c 3 h 5=c 3 h 6+i c 3 h 7$	$7.83 \mathrm{E}+01$	3.3	18169.0		Tsang 1988
$\mathrm{nc} 3 \mathrm{~h} 7(+\mathrm{m})=\mathrm{c} 2 \mathrm{~h} 4+\mathrm{ch} 3(+\mathrm{m})$	$1.23 \mathrm{E}+13$	-0.1	30202.0	!	Bencsura 1992
low / 5.485E+49 -10.0	35766.0				Bencsura 1992
troe / 2.17 1.0E-15	251.0	85.0	/		
h2o /5.0/ h2/2.0/ co2/3.0/ col2.0/					
$\mathrm{nc} 3 \mathrm{~h} 7+\mathrm{o}=\mathrm{c} 3 \mathrm{~h} 6+\mathrm{ho} 2$	$3.58 \mathrm{E}+09$	0.0	-3532.0	!	Dagaut 1992
ic3h7+o2=c3h6+ho2	$6.10 \mathrm{E}+20$	-2.86	7910.0	!	(p)
c3h $6+h(+m)=$ ic $3 \mathrm{~h} 7(+\mathrm{m}$)	$5.70 \mathrm{E}+09$	1.16	874.0	!	Seakins 1993
low / 1.64E+54 -11.1	9364.0				Marinov 1996
troe / 1.0 1.0E-15	260.0	0.0 /			
h2o /5.0/ h2/2.0/ co2/3.0/ col2.0/					
ic $3 \mathrm{~h} 7+\mathrm{h}=\mathrm{c} 2 \mathrm{~h} 5+\mathrm{ch} 3$	$5.00 \mathrm{E}+13$	0.0	0.0		Tsang 1988
$\mathrm{nc} 3 \mathrm{~h} 7+\mathrm{h}=\mathrm{c} 2 \mathrm{~h} 5+\mathrm{ch} 3$	$1.00 \mathrm{E}+14$	0.0	0.0		Tsang 1988
c3h6=pc3h5 ${ }^{\text {ch }}$	$7.58 \mathrm{E}+14$	0.0	101300.0		Dagaut 1992
c3h $6=s c 3 h 5+h$	1. $45 \mathrm{E}+15$	0.0	98060.0		Dagaut 1992
c3h $6=c 2 h 2+$ ch 4	$2.50 \mathrm{E}+12$	0.0	70000.0	!	Hidaka 1992
c3h $6=a c 3 h 4+h 2$	$3.00 \mathrm{E}+13$	0.0	80000.0		Hidaka 1992
c3h6+ho2=ac3h5+h2o2	$9.64 \mathrm{E}+03$	2.6	13910.0	!	Tsang 1991
c $3 \mathrm{~h} 6+\mathrm{oh}+02=\mathrm{ch} 3 \mathrm{hco}+\mathrm{ch} 20+0 \mathrm{~h} 3.00 \mathrm{E}+10$		0.0	-8280.0		Dagaut 1992
c3h6+oh=ac3h5+h2o	$3.12 \mathrm{E}+06$	2.0	-298.0	!	Tsang 1991
c3h6+oh=sc3h5+h2o	$1.11 \mathrm{E}+06$	2.0	1451.0	!	Tsang 1991
c3h6+oh=pc3h5+h2o	$2.11 \mathrm{E}+06$	2.0	2778.0	!	Tsang 1991
c3h $6+0=$ ch $3 \mathrm{chco}+\mathrm{h}+\mathrm{h}$	$5.01 \mathrm{E}+07$	1.76	76.0	!	Tsang 1991
c3h $6+o=c 2 h 5+h c o$	$1.58 \mathrm{E}+07$	1.76	-1216.0	!	Tsang 1991
c3h6+o=ac3h5+oh	$5.24 \mathrm{E}+11$	0.7	5884.0	!	Tsang 1991
c3h6+o=pc3h5+oh	$1.20 \mathrm{E}+11$	0.7	8959.0	!	Tsang 1991
c3h $6+o=s c 3 h 5+o h$	$6.03 \mathrm{E}+10$	0.7	7632.0	!	Tsang 1991
c3h $6+h=c 2 h 4+c h 3$	$7.23 \mathrm{E}+12$	0.0	1302.0	!	Tsang 1991
c3h6+h=ac3h5+h2	1.73E+05	2.5	2492.0	!	Tsang 1991
c3h6+h=sc3h5+h2	$4.09 \mathrm{E}+05$	2.5	9794.0	!	Tsang 1991
c3h6+h=pc3h5+h2	$8.04 \mathrm{E}+05$	2.5	12284.0	!	Tsang 1991
c3h6+o2=pc3h5+ho2	$2.00 \mathrm{E}+13$	0.0	47600.0	!	Dagaut 1992
c3h $6+o 2=s c 3 h 5+h o 2$	$2.00 \mathrm{E}+13$	0.0	44000.0	!	Dagaut 1992
c3h6+o2=ac3h5+ho2	$2.29 \mathrm{E}+12$	0.0	39200.0	!	Dagaut 1992
c3h $6+$ ch $3=a c 3 h 5+$ ch 4	$2.22 \mathrm{E}+00$	3.5	5675.0	!	Tsang 1991
c3h $6+$ ch $3=$ sc $3 \mathrm{~h} 5+\mathrm{ch} 4$	$8.43 \mathrm{E}-01$	3.5	11656.0	!	Tsang 1991
c3h $6+$ ch $3=p \mathrm{c} 3 \mathrm{~h} 5+\mathrm{ch} 4$	$1.35 \mathrm{E}+00$	3.5	12848.0	!	Tsang 1991
c3h $6+h \mathrm{co}=\mathrm{ac} 3 \mathrm{~h} 5+\mathrm{ch} 20$	$1.08 \mathrm{E}+07$	1.9	17010.0	!	Tsang 1991
ch3chco+oh=ch2chcoth2o	$4.00 \mathrm{E}+06$	2.0	0.0	!	(q)
ch $3 \mathrm{chco}+\mathrm{o}=$ ch $2 \mathrm{chco}+\mathrm{oh}$	$7.60 \mathrm{E}+08$	1.5	8500.0	!	(q)
ch3chco+h=ch2chco+h2	$2.00 \mathrm{E}+05$	2.5	2500.0	!	(q)
ch3chco + h=c $2 \mathrm{~h} 5+\mathrm{co}$	$2.00 \mathrm{E}+13$	0.0	2000.0	!	(r)
ch3chco+o=ch3+hco+co	$3.00 \mathrm{E}+07$	2.0	0.0	!	(s)
ch2chcho+oh=ch2chcoth2o	$1.00 \mathrm{E}+13$	0.0	0.0	!	(t)
ch2 chcho+o=ch2chco+oh	$7.24 \mathrm{E}+12$	0.0	1970.0	!	(t)
ch2chcho+o=ch2co+hco+h	$5.01 \mathrm{E}+07$	1.76	76.0	!	(s)
ch2chcho+h=ch2chco+h2	$3.98 \mathrm{E}+13$	0.0	4200.0	!	(t)
ch 2 chcho+h=c2h4+hco	2.00E+13	0.0	3500.0	!	(r)
ch2chcho+o2=ch2chco+ho2	$3.00 \mathrm{E}+13$	0.0	36000.0	!	(u)
ch $2 \mathrm{chco=c} 2 \mathrm{~h} 3+\mathrm{co}$	$1.00 \mathrm{E}+14$	0.0	34000.0	!	(v)
$\mathrm{ch} 2 \mathrm{chco}+\mathrm{o}=\mathrm{c} 2 \mathrm{~h} 3+\mathrm{co} 2$	$1.00 \mathrm{E}+14$	0.0	0.0	!	(w)
ac3h5+o2=ch2chcho+oh	$1.82 \mathrm{E}+13$	-0.41	22859.0	!	Bozzelli 1993
$\mathrm{ac} 3 \mathrm{~h} 5+\mathrm{2}=\mathrm{ac} 3 \mathrm{~h} 4+\mathrm{ho} 2$	$4.99 \mathrm{E}+15$	-1.4	22428.0	!	Bozzelli 1993
ac3h5+o2=ch2hco+ch2o	$1.06 \mathrm{E}+10$	0.34	12838.0	!	Bozzelli 1993

ac $3 \mathrm{~h} 5+\mathrm{o} 2=\mathrm{c} 2 \mathrm{~h} 2+\mathrm{ch} 2 \mathrm{o}+\mathrm{oh} 2.78 \mathrm{E}+25-4.8$ 15468.0 ! Bozzelli 1993
ac3h5+ho2=ch2chcho+h+oh 1.00E+130.0 0.0 ! Tsang 1991
ac3h5+oh=ac3h4+h20 1.00E+13 0.0 0.0 ! Tsang 1991
ac3h5+h=ac3h4+h2 $5.00 \mathrm{E}+130.0 \quad 0.0$! Tsang 1991 (x)
ac3h5+h=c3h6 $\quad 1.88 \mathrm{E}+26$-3.6 5468.0 ! (y)
ac3h5+o=ch 2 chchoth $\quad 1.81 \mathrm{E}+14 \quad 0.0 \quad 0.0$! Slagle 1992
$\operatorname{ac} 3 h 5+\operatorname{ch} 3=\operatorname{ac} 3 h 4+\operatorname{ch} 4 \quad 3.02 \mathrm{E}+12-0.32-131.0 \quad$! Tsang 1991
ac3h $5+c 2 h 2=c-c 5 h 6+h \quad 2.95 E+32-5.8325733 .0 \quad$! (y)
ac $3 \mathrm{~h} 5+\mathrm{ch} 3=\mathrm{c} 4 \mathrm{~h} 8-1$
ac $3 h 5+c 2 h 3=c-c 5 h 6+h+h$
pc3h $5+o 2=c h 3 h c o+h c o$
$1.76 \mathrm{E}+50-11.018600 .0$! (y)
pc3h5+o2=ch $3 c h c o+h+o$ $1.09 \mathrm{E}+23-3.29 \quad 3892.0$! (z)
$1.60 \mathrm{E}+15 \quad-0.78 \quad 3135.0$! (z)
pc3h $5+o=\operatorname{ch} 3 c h c o+h \quad 1.00 \mathrm{E}+14 \quad 0.0 \quad 0.0$! (aa)
pc3h $5+h=p c 3 h 4+h 20.00 \mathrm{E}+130.0$! (aa)
pc3h $5+o h=p c 3 h 4+h 20 \quad 1.00 \mathrm{E}+13 \quad 0.0 \quad 0.0$! (aa)
pc3h5+h=ac3h5+h $\quad 1.00 \mathrm{E}+14 \quad 0.0 \quad 0.0$! Marinov 1996
$\operatorname{sc} 3 h 5+h=a c 3 h 5+h \quad 1.00 E+14 \quad 0.0 \quad 0.0 \quad$! Marinov 1996
sc $3 \mathrm{~h} 5+\mathrm{o} 2=\mathrm{ch} 3 \mathrm{co}+\mathrm{ch} 2 \mathrm{o}$
$1.09 \mathrm{E}+22-3.29 \quad 3892.0$! (z)
$\operatorname{sc} 3 \mathrm{~h} 5+o=\operatorname{ch} 2 \mathrm{co}+\operatorname{ch} 3$
sc $3 \mathrm{~h} 5+\mathrm{h}=\mathrm{pc} 3 \mathrm{~h} 4+\mathrm{h} 2$
$1.00 \mathrm{E}+14 \quad 0.0 \quad 0.0$! (aa)
sc $3 \mathrm{~h} 5+\mathrm{oh}=\mathrm{pc} 3 \mathrm{~h} 4+\mathrm{h} 2 \mathrm{o}$ ac3h $4+h=h 2 c c c h+h 2$ ac3h $4+o=c 2 h 4+c o$ $\begin{array}{llll}2.00 \mathrm{E}+13 & 0.0 & 0.0 & \text { ! } \\ 2.0 & \text { (aa) }\end{array}$ ac3h $4+o h=h 2 c c c h+h 20$ $\operatorname{ac} 3 \mathrm{~h} 4+\operatorname{ch} 3=\mathrm{h} 2 \mathrm{ccch}+\operatorname{ch} 4$ ac3h $4=p c 3 h 4$
2.00E+07 2.0 5000.0 ! Marinov 1998
$1.34 \mathrm{E}+07 \quad 1.88 \quad 179.0$! (bb)
$1.00 \mathrm{E}+07$ 2.0 1000.0 ! Marinov 1998
1.50E+00 3.5 5600.0 ! Marinov 1998
1.48E+13 0.0 60401. ! Lifshitz 1975
pc3h $4+h=h 2 c c c h+h 2 \quad 2.00 \mathrm{E}+07$ 2.0 5000.0 ! Marinov 1998
$\mathrm{pc} 3 \mathrm{~h} 4+\mathrm{o}=\mathrm{c} 2 \mathrm{~h} 4+\mathrm{co}$
1.50E+13 $0.0 \quad 2102.0$! Warnatz84 (cc)
pc3h4+oh=h2ccch+h2o
1.00E+07 2.0 1000.0 ! Marinov 1998
pc3h $4+\operatorname{ch} 3=h 2 c c c h+c h 4$
$1.50 \mathrm{E}+00$ 3.5 5600.0 ! Marinov 1998
pc3h $4+h=c h 3+c 2 h 2$
$5.12 \mathrm{E}+10 \quad 1.0 \quad 2060.0$! Marinov 1998
pc3h4+h(+m)=sc3h5(+m)
$6.50 \mathrm{E}+12 \quad 0.0 \quad 2000.0$! Wagner 1972
6577.0 / ! (dd)
8.45E+39-7.27
1.20E+11 0.69 3007.0 ! Tsang 1992
4448.0 / ! (ee)
8.49E+12 $0.0 \quad 2000.0$! Wagner 1972
4448.0 / ! (ee)
$\operatorname{ac} 3 \mathrm{~h} 4+\mathrm{h}(+\mathrm{m})=\operatorname{sc} 3 \mathrm{~h} 5(+\mathrm{m})$
low / 1.11E+34 -5.0
h $2 \mathrm{ccch}+\mathrm{o} 2=\mathrm{ch} 2 \mathrm{co}+\mathrm{hco}$
$h 2 c c c h+o=\operatorname{ch} 2 o+c 2 h$
h $2 \mathrm{ccch}+\mathrm{h}=\mathrm{c} 3 \mathrm{~h} 2+\mathrm{h} 2$
$h 2 c c c h+o h=c 3 h 2+h 2 o$
$3.00 \mathrm{E}+10 \quad 0.0$
2868.0 ! Miller 1992
$2.00 \mathrm{E}+130.0 \quad 0.0$! Miller 1992
$5.00 \mathrm{E}+13$ 0.0 3000.0 ! Miller 1992
$2.00 \mathrm{E}+130.0 \quad 0.0 \quad$! Miller 1992
9.63E+40-7.8 28820.0 ! Marinov 1996
h $2 \mathrm{ccch}+\mathrm{c} 2 \mathrm{~h} 3=\mathrm{c}-\mathrm{c} 5 \mathrm{~h} 5+\mathrm{h}$
h $2 \mathrm{ccch}+\operatorname{ch} 3=\operatorname{ch} 3 \operatorname{chcch} 2$
h2ccch+ch3=ch3ch2cch
$5.00 \mathrm{E}+120.0 \quad 0.0$! Wu 1987
h2ccch + ch=hcchcch + h
$5.00 \mathrm{E}+120.0 \quad 0.0$! Wu 1987
$h 2 \mathrm{ccch}+\mathrm{ch}=\mathrm{h} 2 \mathrm{cccch}+\mathrm{h}$
7.00E+13 0.0 0.0 ! Miller 1992
$h 2 c c c h+h(+m)=\operatorname{ac} 3 h 4(+m) \quad 1.66 E+15-0.37$
$7.00 \mathrm{E}+130.0$
0.0 ! Miller 1992
0.0 ! (ff)
! Kiefer 1995 (gg)
h2o/5.0/ h2/2.0/ co2/3.0/ co/2.0/ o2/2.0/c2h2/2.0/
$\mathrm{h} 2 \mathrm{ccch}+\mathrm{h}(+\mathrm{m})=\mathrm{pc} 3 \mathrm{~h} 4(+\mathrm{m}) \quad 1.66 \mathrm{E}+15-0.37 \quad 0.0$! (ff)
low / 8.78E+45-8.9 7974.0 / ! Kiefer 1995 (gg)
h2o /5.0/ h2/2.0/ co2/3.0/ co/2.0/ o2/2.0/ c2h2/2.0/
h2ccch + h $2 \mathrm{ccch}=\mathrm{c} 6 \mathrm{~h} 6 \quad 5.562 \mathrm{e} 20$-2.535 1692.0 ! Marinov 1998
h2ccch + ac $3 h 5=f u l v e n e+h+h 5.562 e 20-2.5351692 .0$! Marinov 1998
h2ccch + h 2 ccch $=\mathrm{c} 6 \mathrm{~h} 5+\mathrm{h} 2.00 \mathrm{e} 120.0 \quad 0.0$! Marinov 1998
$\mathrm{c} 3 \mathrm{~h} 2+\mathrm{o} 2=\mathrm{hcco}+\mathrm{coth} \quad 5.00 \mathrm{E}+130.0 \quad 0.0$! Miller 1992
c3h2+oh=c2h2+hco $5.00 \mathrm{E}+13 \quad 0.0 \quad 0.0$! Miller 1992

	$3.00 \mathrm{E}+12$	0.0	0.0	!	h)
chcho $=$ c $2 \mathrm{~h} 2+\mathrm{hco}$	$1.00 \mathrm{E}+14$	0.0	33000.0	!	(ii)
chchcho+h=ch2chco+h	$1.00 \mathrm{E}+14$	0.0	0.0	!	Marinov 1996
chchcho+oh=hcccho+h20	$1.00 \mathrm{E}+13$	0.0	0.0	!	(aa)
chchchoth=hcccho+h2	$2.00 \mathrm{E}+13$	0.0	0.0	!	(aa)
hcccho+h=c2h $2+\mathrm{hco}$	$1.00 \mathrm{E}+14$	0.0	3000.0	!	(jj)
hcccho+oh=hccco+h2o	$1.00 \mathrm{E}+13$	0.0	0.0		(t)
hccchoth=hcccoth2	$4.00 \mathrm{E}+13$	0.0	4200.0		(t)
$\mathrm{hccco}+\mathrm{O}=\mathrm{hco}+\mathrm{co}+\mathrm{co}$	$1.40 \mathrm{E}+09$	1.0	0.0		(kk)
$\mathrm{hccco}+\mathrm{h}=\mathrm{c} 2 \mathrm{~h} 2+\mathrm{co}$	$1.00 \mathrm{E}+14$	0.0	0.0		(kk)
$\mathrm{c} 4 \mathrm{~h} 10=\mathrm{c} 2 \mathrm{~h} 5+\mathrm{c} 2 \mathrm{~h} 5$	$2.00 \mathrm{E}+16$	0.0	81300.0		Pitz 1991
c 4 h $10=n c 3 h 7+$ ch 3	$1.74 \mathrm{E}+17$	0.0	85700.0		Pitz 1991
c4h10=pc4h9+h	$1.00 \mathrm{E}+14$	0.0	100000.0	!	Pitz 1991
c4h10=sc4h9+h	$1.00 \mathrm{E}+14$	0.0	100000.0		Pitz 1991
c $4 \mathrm{~h} 10+\mathrm{o}=\mathrm{pc} 4 \mathrm{~h} 9+\mathrm{ho} 2$	$2.50 \mathrm{E}+13$	0.0	49000.0	!	Pitz 1991
c4h10+o2=sc4h9+ho2	4.00E+13	0.0	47600.0		Pitz 1991
c4h10+ac3h5=pc4h9+c3h6	$6 \quad 7.94 \mathrm{E}+11$	10.0	20500.0		Pitz 1991
c4h10+ac3h5=sc4h9+c3h6	$63.16 \mathrm{E}+11$	10.0	16400.0		Pitz 1991
c $4 \mathrm{~h} 10+\mathrm{ch} 3=\mathrm{pc} 4 \mathrm{~h} 9+\mathrm{ch} 4$	$5.00 \mathrm{E}+11$	0.0	13600.0		Marinov 1998
c $4 \mathrm{~h} 10+\mathrm{ch} 3=s c 4 \mathrm{~h} 9+\mathrm{ch} 4$	$4.30 \mathrm{E}+11$	0.0	10500.0		Marinov 1998
c4h10+h=pc4h9+h2	$2.84 \mathrm{E}+05$	2.54	6050.0		Marinov 1998
c $4 \mathrm{~h} 10+\mathrm{h}=\mathrm{sc} 4 \mathrm{~h} 9+\mathrm{h} 2$	$5.68 \mathrm{E}+05$	2.40	3765.0		Marinov 1998
c4h10+oh=pc4h9+h2o	$4.13 \mathrm{E}+07$	1.73	753.0		Pitz 1991
c 4 h $10+$ oh=sc $4 \mathrm{~h} 9+\mathrm{h} 20$	$7.23 \mathrm{E}+07$	1.64	-247.0	!	Pitz 1991
c4h10+o=pc4h9+oh	$1.13 \mathrm{E}+14$	0.0	7850.0		Pitz 1991
c4h10+o=sc4h9+oh	$5.62 \mathrm{E}+13$	0.0	5200.0	!	Pitz 1991
c4h10+ho2=pc4h9+h2o2	1.70E+13	0.0	20460.0	!	Pitz 1991
c4h10+ho2=sc4h9+h2o2	$1.12 \mathrm{E}+13$	0.0	17700.0		Pitz 1991
sc4h9 (+m) = c $3 \mathrm{~h} 6+\mathrm{ch} 3(+\mathrm{m}$)	$2.14 \mathrm{E}+12$	0.65	30856.0		Knyazev 1996
low /6.323e58-12.85 35567./					
h2o/5./ h2/2./ co2/3./ co/2./					
sc4h9 = 4 4h8-1+h	$2.00 \mathrm{E}+13$	0.0	40400.0		Pitz 1991
sc4h9 $=$ c $4 \mathrm{~h} 8-2+\mathrm{h}$	$5.01 \mathrm{E}+12$	0.0	37900.0		Pitz 1991
```pc4h9(+m)=c2h5+c2h4(+m) 1.06e13 0.0 27828 low / 1.897e55 -11.91 32263./ h2o/5./ h2/2.0/ co2/3.0/ co/2.0/```					
$\mathrm{pc} 4 \mathrm{~h} 9=\mathrm{c} 4 \mathrm{~h} 8-1+\mathrm{h}$	$1.26 \mathrm{E}+13$	0.0	38600.0		Pitz 1991
c $4 \mathrm{~h} 8-1=\mathrm{c} 2 \mathrm{~h} 3+\mathrm{c} 2 \mathrm{~h} 5$	$1.00 \mathrm{E}+19$	-1.0	96770.0		Pitz 1991
$\mathrm{c} 4 \mathrm{~h} 8-1=\mathrm{h}+\mathrm{c} 4 \mathrm{~h} 7$	$4.11 \mathrm{E}+18$	-1.0	97350.0		Pitz 1991
c $4 \mathrm{~h} 8-1+\mathrm{ch} 3=\mathrm{c} 4 \mathrm{~h} 7+\mathrm{ch} 4$	$1.00 \mathrm{E}+11$	0.0	7300.0		Pitz 1991
$\mathrm{c} 4 \mathrm{~h} 8-1+\mathrm{h}=\mathrm{c} 4 \mathrm{~h} 7+\mathrm{h} 2$	$5.00 \mathrm{E}+13$	0.0	3900.0	!	Pitz 1991
c4h8-1+o=nc3h7+hco	$1.80 \mathrm{E}+05$	2.5	-1029.0		Pitz 1991
c4h8-1+o=ch 2 chcho + ch $3+$	+h 9.67E+04	42.5	-1029.0		Pitz 1991
c4h8-1+oh=c 4 h $7+h 20$	$2.25 \mathrm{E}+13$	0.0	2217.0		Pitz 1991
c $4 \mathrm{~h} 8-1+\mathrm{ac} 3 \mathrm{~h} 5=\mathrm{c} 4 \mathrm{~h} 7+\mathrm{c} 3 \mathrm{~h} 6$	$67.90 \mathrm{E}+10$	0.0	12400.0		Pitz 1991
c4h8-1+o2=c4h7+ho2 4	$4.00 \mathrm{E}+12$	0.0	33200.0		Pitz 1991
c4h8-2=h+c4h7 4	$4.11 \mathrm{E}+18$	-1.0	97350.0		Pitz 1991
c4h $8-2+$ ch $3=c 4 h 7+$ ch 41	1.00E+11	0.0	8200.0	!	Pitz 1991
$\mathrm{c} 4 \mathrm{~h} 8-2+h=\mathrm{c} 4 \mathrm{~h} 7+\mathrm{h} 2 \mathrm{5}$	$5.00 \mathrm{E}+13$	0.0	3800.0		Pitz 1991
c4h8-2+o=ic3h7+hco 2	2.79E+06	2.12	-1775.0		Pitz 1991
c4h8-2+oh=c4h7+h2o 3	3.90E+13	0.0	2217.0		Pitz 1991
c4h8-2+o=ch $3 \mathrm{co}+\mathrm{c} 2 \mathrm{~h} 51$	1.53E+07	1.87	-1476.0		Adusei 1994
c4h8-2+o=ch3+ch3chco+h	h 8.22E+06	1.87	-1476.0		Adusei 1994
c 4 h $8-2+02=c 4 h 7+h o 28$	$8.00 \mathrm{E}+13$	0.0	37400.0		Pitz 1991
c4h7=ch2chchch2+h 1	$1.00 \mathrm{E}+14$	0.0	55000.0		Pitz 1991
c4h7+oh=ch2chchch2+h20 1.00E+13		0.0	0.0		Pitz 1991
4 8.00E+12 0.0			0.0	!	Pitz 1991

c4h7+ac3h5=c3h6+ch2chchch2 6.31E+12 0.0 0.0 ! Pitz 1991 c4h7+o2=ch2chchch2+ho2 1.00E+09 0.0 0.0 ! Pitz 1991
$\mathrm{c} 4 \mathrm{~h} 7+\mathrm{h}=\mathrm{ch} 2$ chchch $2+\mathrm{h} 2$ 3.16E+13 $0.0 \quad 0.0$ ! Pitz 1991
ch2chchch2+oh=ch2chchch+h2o 2.00E+07 2.0 5000.0 ! Miller 1992 ch2chchch2+oh=ch2chcch2+h2o 2.00E+07 2.0 2000.0 ! Miller 1992
ch 2 chchch $2+0=$ hco + ac $3 \mathrm{~h} 5 \quad 6.02 \mathrm{E}+08$ 1.45-858.0 ! Adusei 1993
ch 2 chchch $2+0=$ ch $2 h c o+c 2 h 3 \quad 1.00 \mathrm{E}+120.0 \quad 0.0$ ! Pitz 1991
ch2chchch2+h=ch2chchch+h2 3.00E+07 2.0 13000.0 ! Miller 1992
ch 2 chchch $2+$ h=ch 2 chcch $2+$ h2 $3.00 \mathrm{E}+072.06000 .0$ ! Miller 1992
ch 3 ch 2 cch + oh=ch 3 chcch + h 20
ch 3 ch $2 c c h+h=c 2 h 5+c 2 h 2$
$1.00 \mathrm{E}+07 \quad 2.0 \quad 2000.0$ ! (q)
$1.00 \mathrm{E}+14 \quad 0.0 \quad 3000.0$ ! (jj)
ch 3 chcch $2+$ oh=ch 2 chcch $2+$ h 20
ch 3 chcch $2+o h=c h 3 c c c h 2+h 20$
ch3chcch $2+o h=c h 3 c h c c h+h 2 o$
E+07
$1.00 \mathrm{E}+07$
2.02000 .0 !
$2.00 \mathrm{E}+072.02500 .0$ ! (ll)
$5.00 \mathrm{E}+07 \quad 2.0 \quad 5000.0$ ! (q) $1.50 \mathrm{E}+07 \quad 2.0 \quad 6000.0$ ! (ll) $3.00 \mathrm{E}+072.06500 .0$ ! (11) $2.00 \mathrm{E}+13 \quad 0.0 \quad 2000.0$ ! (r) $1.00 \mathrm{E}+140.0 \quad 0.0$ ! Marinov 1996 $4.16 \mathrm{E}+100.02510 .0$ ! Slagle 1992 $3.00 \mathrm{E}+13 \quad 0.0 \quad 0.0$ ! (mm) $1.00 \mathrm{E}+14 \quad 0.0 \quad 0.0$ ! (nn) $3.00 \mathrm{E}+13 \quad 0.0 \quad 0.0$ ! (nn) $3.00 \mathrm{E}+110.014900 .0$ ! Marinov 1996 $1.00 \mathrm{E}+140.0 \quad 0.0$ ! Marinov 1996 $4.16 \mathrm{E}+10$ 0.0 2510.0 ! Marinov 1996 $1.00 \mathrm{E}+14 \quad 0.0 \quad 8000.0 \quad$ ! (mm) $1.00 \mathrm{E}+13 \quad 0.0 \quad 0.0 \quad$ ! (mm) $1.00 \mathrm{E}+140.0 \quad 0.0$ ! Miller 1992 $2.00 \mathrm{E}+07$ 2.0 1000.0 ! Miller 1992 $3.00 \mathrm{E}+07 \mathrm{2.0} 1000.0$ ! Miller 1992 1.60E+16-1.33 5400.0 ! Wang 1994 ch3chcch $(+m)=\operatorname{ch} 2 \operatorname{chcch}+\mathrm{h}(+\mathrm{m}) \quad 1.00 \mathrm{E}+130.049000 .0$ ! (pp) low / 2.00E+14 0.0 41000.0 / ! (pp)
ch3ccch $2(+m)=h 2 \operatorname{cccch} 2+h(+m) \quad 1.00 \mathrm{E}+130.056000 .0$ ! Marinov 1996
low / 2.00E14 0.0 48000.0/ ! Marinov 1996 ch2chcch2 $(+\mathrm{m})=\operatorname{ch} 2 \operatorname{chcch}+\mathrm{h}(+\mathrm{m}) 1.00 \mathrm{E}+140.050000 .0$ ! Miller 1992 low / 2.00E+15 0.0 42000.0 / Miller 1992 ch 2 chchch $(+\mathrm{m})=\operatorname{ch} 2 \operatorname{chcch}+\mathrm{h}(+\mathrm{m}) \quad 1.00 \mathrm{E}+140.037000 .0$ ! Miller 1992 low / 1.00E+14 0.0 30000 / Miller 1992 ch2chchch+o2=chchcho+ch2o 1.00E+12 $0.0 \quad 0.0$ ! (qq) ch2chchch+o2=ch2chcch+ho2 1.00E+07 2.0 10000.0 ! (rr) ch3ccch2+h2ccch=c6h5ch2+h 3.00E+12 0.0 0.0 ! Marinov 1996 ch3chcch+h2ccch=c6h5ch2+h 3.00E+12 0.0 0.0 ! Marinov 1996 ch 3 ccch $2+$ ch 3 ccch $2=$ ch $3 c 6 h 4$ ch $2+h 3.00 \mathrm{E}+120.00 .0$ ! Marinov 1996 ch 3 chcch + ch 3 chcch $=$ ch $3 c 6 h 4$ ch $2+h 3.00 \mathrm{E}+120.0$ 0.0 ! Marinov 1996 h2cccch2+oh=h2cccch+h2o 2.00E+07 2.02000 .0 ! (ss) h 2 cccch $2+h=h 2$ cccch + h 2 ch2chcch+oh=hcchcch+h2o ch2chcch+h=hcchcch+h2 ch 2 chcch + oh $=$ h 2 cccch + h 20 ch2chcch+h=h2cccch+h2 hcchcch+h=h2cccch+h hcchcch+c2h2=c6h5 hcchcch + o2=hcccho+hco h2cccch+o2=ch2co+hcco $3.00 \mathrm{E}+072.06000 .0$ ! (ss)
$7.50 \mathrm{E}+062.05000 .0$ ! Miller 1992
$2.00 \mathrm{E}+072.015000 .0$ ! Miller 1992
$1.00 \mathrm{E}+072.02000 .0$ ! Miller 1992
$3.00 \mathrm{E}+072.05000 .0$ ! Miller 1992
$1.00 \mathrm{E}+140.0 \quad 0.0$ ! Miller 1992
$9.60 \mathrm{E}+70-17.77$ 31300.! Wang 1994
$3.00 \mathrm{E}+120.0 \quad 0.0$ ! (tt)
$1.00 \mathrm{E}+120.0 \quad 0.0$ ! Miller 1992
$3.00 \mathrm{E}+130.0 \quad 0.0$ ! Miller 1992
$h 2 c c c c h+o=c h 2 c o+c 2 h$
h 2 cccch $+\mathrm{o}=\mathrm{h} 2 \mathrm{c} 4 \mathrm{o}+\mathrm{h}$
$\mathrm{h} 2 \mathrm{cccch}+\mathrm{h}=\mathrm{c} 4 \mathrm{~h} 2+\mathrm{h} 2$
h2cccch + ch $2=a c 3 h 4+c 2 h$
h $2 \mathrm{cccch}+\mathrm{c} 2 \mathrm{~h} 2=\mathrm{c} 6 \mathrm{~h} 5$
$\mathrm{h} 2 \operatorname{cccch}(+\mathrm{m})=\mathrm{c} 4 \mathrm{~h} 2+\mathrm{h}(+\mathrm{m})$
low / 2.0E+15 0.0 40000.0/
hcchcch ( +m ) $=\mathrm{c} 4 \mathrm{~h} 2+\mathrm{h}(+\mathrm{m})$
low / 1.00E+14 0.0
$\mathrm{c} 4 \mathrm{~h} 2+\mathrm{ch} 2=\mathrm{c} 5 \mathrm{~h} 3+\mathrm{h}$
$\mathrm{c} 4 \mathrm{~h} 2+\mathrm{ch}=\mathrm{c} 5 \mathrm{~h} 2+\mathrm{h}$
$\mathrm{c} 4 \mathrm{~h} 2+\mathrm{ch} 2(\mathrm{~s})=\mathrm{c} 5 \mathrm{~h} 3+\mathrm{h}$
$\mathrm{c} 4 \mathrm{~h} 2+\mathrm{c} 2 \mathrm{~h}=\mathrm{c} 6 \mathrm{~h} 2+\mathrm{h}$
c4h2+oh=h2c4o+h
$c 4 h 2+o=c 3 h 2+c o$
$\mathrm{h} 2 \mathrm{c} 4 \mathrm{o}+\mathrm{h}=\mathrm{c} 2 \mathrm{~h} 2+\mathrm{hcco}$ h $2 \mathrm{c} 4 \mathrm{o}+\mathrm{oh}=\mathrm{ch} 2 \mathrm{co}+\mathrm{hcco}$
l-c5h8+oh=l-c5h7+h2o
l-c5h8+h=l-c5h7+h2
l-c5h8+h=ac3h5+c2h4
$c-c 5 h 7=c-c 5 h 6+h$
c-c5h7=l-c5h7
l-c5h7+o=ch2chcho+c2h3
l-c5h7+h=l-c5h8
c-c5h $6+o 2=c-c 5 h 5+h o 2$
$\mathrm{c}-\mathrm{c} 5 \mathrm{~h} 6+\mathrm{ho} 2=\mathrm{c}-\mathrm{c} 5 \mathrm{~h} 5+\mathrm{h} 2 \mathrm{o} 2$
c-c5h $6+o h=c-c 5 h 5+h 2 o$
$c-c 5 h 6+o=c-c 5 h 5+o h$
$\mathrm{c}-\mathrm{c} 5 \mathrm{~h} 6+\mathrm{h}=\mathrm{c}-\mathrm{c} 5 \mathrm{~h} 5+\mathrm{h} 2$
$c-c 5 h 6+\operatorname{ch} 3=c-c 5 h 5+\operatorname{ch} 4$
$c-c 5 h 6+c 2 h 3=c-c 5 h 5+c 2 h 4$
$\mathrm{c}-\mathrm{c} 5 \mathrm{~h} 6+$ ch 2 chchch $=\mathrm{c}-\mathrm{c} 5 \mathrm{~h} 5+$ ch 2
$c-c 5 h 6+c 6 h 5 o=c-c 5 h 5+c 6 h 5 o h$
c-c5h5+h=c-c5h6
$c-c 5 h 5+o=c-c 5 h 40+h$
c-c5h5+ho2=c-c5h5o+oh
$\mathrm{c}-\mathrm{c} 5 \mathrm{~h} 5+o \mathrm{~h}=\mathrm{c}-\mathrm{c} 5 \mathrm{~h} 40 \mathrm{~h}+\mathrm{h}$
c-c5h5+c-c5h5=c10h8+h+h
$\mathrm{c}-\mathrm{c} 5 \mathrm{~h} 5 \mathrm{o}=\mathrm{ch} 2 \mathrm{chch} \mathrm{ch}+\mathrm{co}$
c-c5h4oh=c-c5h4o+h
$c-c 5 h 4 o=c o+c 2 h 2+c 2 h 2$
c 6 h $6+o 2=c 6 h 5+h o 2$
c6h $6+o h=c 6 h 5+h 20$
c6h6+oh=c 6 h5oh+h
c $6 \mathrm{~h} 6+\mathrm{o}=\mathrm{c} 6 \mathrm{~h} 5 \mathrm{o}+\mathrm{h}$
c6h $6+h=c 6 h 5+h 2$
c6h5+h=c6h6
c $6 \mathrm{~h} 5+\mathrm{c} 2 \mathrm{~h} 4=\mathrm{c} 6 \mathrm{~h} 5 \mathrm{c} 2 \mathrm{~h} 3+\mathrm{h}$
$c 6 h 5+c 2 h 2=c 6 h 5 c 2 h+h$
c6h5+oh=c6h5o+h
c 6 h $5+o=c-c 5 h 5+c o$ c 6 h $5+02=c 6 h 50+0$ c 6 h $5+o 2=o c 6 h 4 o+h$ c6h5+c6h5=biphenyl c6h5+c6h6=biphenyl+h oc $6 \mathrm{~h} 4 \mathrm{o}=\mathrm{c}-\mathrm{c} 5 \mathrm{~h} 4 \mathrm{o}+\mathrm{co}$ c 6 h $50=c o+c-c 5 h 5$
$2.00 \mathrm{E}+130.0 \quad 0.0$ ! Miller 1992
$2.00 \mathrm{E}+130.0 \quad 0.0$ ! Miller 1992
$5.00 \mathrm{E}+130.0 \quad 0.0$ ! Miller 1992
$2.00 \mathrm{E}+130.0 \quad 0.0$ ! Miller 1992
$3.00 \mathrm{E}+110.014900 .0$ ! (uu)
1.00E+14 0.0 47000.0 ! Marinov 1998
! Marinov 1998
$1.00 \mathrm{E}+140.036000 .0$ ! Miller 1992
30000.0 ! Miller 1992
$1.30 \mathrm{E}+130.0 \quad 4326.0$ ! Miller 1992
$1.00 \mathrm{E}+140.0 \quad 0.0$ ! Miller 1992
$3.00 \mathrm{E}+130.0 \quad 0.0$ ! Miller 1992
$9.60 \mathrm{E}+130.0 \quad 0.0$ ! Marinov 1996
$6.66 \mathrm{E}+120.0-410.0$ ! Miller 1992
$1.20 \mathrm{E}+120.0 \quad 0.0$ ! Miller 1992
$5.00 \mathrm{E}+130.03000 .0$ ! Miller 1992
$1.00 \mathrm{E}+072.02000 .0$ ! Miller 1992
$7.00 \mathrm{E}+062.0 \quad 0.0$ ! (q)
$7.00 \mathrm{E}+062.0 \quad 5000.0$ ! (q)
$3.35 \mathrm{E}+081.52000 .0$ ! (r)
$3.16 \mathrm{E}+150.036000 .0$ ! Arends 1993
$3.16 \mathrm{E}+150.039500 .0$ ! Arends 1993
$2.00 \mathrm{E}+140.0 \quad 0.0$ ! Marinov 1996
$1.00 \mathrm{E}+140.0 \quad 0.0$ ! Marinov 1996
$5.00 \mathrm{E}+130.035400 .0$ ! (vv)
1.99E+12 0.0 11660.0 ! Emdee 1992
3.43E+09 1.18-447.0 ! Emdee 1992
$1.81 \mathrm{E}+130.03080 .0$ ! Emdee 1992
2.19E+08 1.77 3000.0 ! Emdee 1992
$3.11 \mathrm{E}+11 \quad 0.0 \quad 5500.0$ ! (ww)
$6.00 \mathrm{E}+120.0 \quad 0.0$ ! Emdee 1992
$3.16 \mathrm{E}+110.0 \quad 8000.0$ ! Emdee 1992
$2.00 \mathrm{E}+140.0 \quad 0.0$ ! Marinov 1996
$1.00 \mathrm{E}+140.0 \quad 0.0$ ! Marinov 1996
$3.00 \mathrm{E}+130.00 .0$ ! Emdee 1992
$3.00 \mathrm{E}+130.0 \quad 0.0$ ! Emdee 1992
$2.00 \mathrm{E}+130.08000 .0$ ! Marinov 1998
$2.51 \mathrm{E}+110.043900 .0$ ! Emdee 1992
$2.10 \mathrm{E}+130.048000 .0$ ! Emdee 1992
1.00E+15 0.0 78000.0 ! Emdee 1992
$6.30 \mathrm{E}+130.060000 .0$ ! Emdee 1992
$1.63 \mathrm{E}+081.421454 .0$ ! Baulch 1992
$6.70 \mathrm{E}+120.010592 .0$ ! He 1988 ( xx )
2.40E+13 0.0 4670.0 ! Leidreiter 1989
$3.03 \mathrm{E}+023.3 \quad 5690.0$ ! (yy)
$8.00 \mathrm{E}+130.0 \quad 0.0$ ! Baulch 1992
7.23E+01 3.5 8345.0 ! Yu 1994
$3.98 \mathrm{E}+130.010099 .0$ ! Stein 1989
$5.00 \mathrm{E}+130.0 \quad 0.0$ ! Miller 1992
$1.00 \mathrm{E}+140.0 \quad 0.0$ ! Frank 1994
2.60E+13 0.0 6120.0 ! Frank 1994
3.00E+13 0.0 8981.0 ! Frank 1994
$5.00 \mathrm{E}+120.0 \quad 0.0$ ! Fahr 1989
$4.00 \mathrm{E}+110.04000 .0$ ! Fahr 1989
$1.00 \mathrm{E}+150.078000 .0$ ! Marinov 1996
7.40E+11 0.0 43850.0 ! Frank 1994
c6h5o h h = c 6 h 50 h c 6 h $50+h=c-2 * 4 c 6 h 6 o$ c 6 h $50 h+o h=c 6 h 5 o+h 2 o$ c 6 h $50 h+\operatorname{ch} 3=c 6 h 5 o+\operatorname{ch} 4$ c 6 h $50 h+h=c 6 h 5 o+h 2$ c 6 h $50 h+o=c 6 h 5 o+o h$ c $6 \mathrm{~h} 5 \mathrm{oh}+\mathrm{c} 2 \mathrm{~h} 3=\mathrm{c} 2 \mathrm{~h} 4+\mathrm{c} 6 \mathrm{~h} 5 \mathrm{o}$ c 6 h $50 h+c 6 h 5=c 6 h 6+c 6 h 5 o$ $c-2 * 4 c 6 h 6 o+h=c-c 5 h 7+c o$ c 6 h 5 ch $3=c 6 h 5+$ ch 3 c 6 h $5 \operatorname{ch} 3+o 2=c 6 h 5 \operatorname{ch} 2+h o 2$ c 6 h $5 \operatorname{ch} 3+o h=c 6 h 5 \operatorname{ch} 2+h 2 o$ c $6 \mathrm{~h} 5 \mathrm{ch} 3+0=\mathrm{c} 6 \mathrm{~h} 5 \mathrm{ch} 2+o h$ c 6 h 5 ch $3+h=c 6 h 5 c h 2+h 2$ c 6 h $5 \operatorname{ch} 3+h=c 6 h 6+\operatorname{ch} 3$ c $6 \mathrm{~h} 5 \mathrm{ch} 3+o=0 \mathrm{c} 6 \mathrm{~h} 4 \mathrm{ch} 3+\mathrm{h}$ c 6 h $5 \operatorname{ch} 3+\operatorname{ch} 3=\operatorname{ch} 4+c 6 h 5 \operatorname{ch} 2$ c 6 h $5 \operatorname{ch} 3+c 6 h 5=c 6 h 6+c 6 h 5 \operatorname{ch} 2$ c 6 h $5 \operatorname{ch} 2+h=c 6 h 5 \operatorname{ch} 3$
$1.00 \mathrm{E}+140.00 .0$ ! Arends 1993
$1.00 \mathrm{E}+140.00 .0$ ! Arends 1993
$2.95 \mathrm{E}+062.0-1310.0$ ! Knispel 1990
$1.81 \mathrm{E}+110.0 \quad 7716.0$ ! Mulcahy 1965
$1.58 \mathrm{E}+130.06100 .0$ ! Arends 1993
$2.81 \mathrm{E}+130.0 \quad 7352.0$ ! Emdee 1992
$6.00 \mathrm{E}+120.00 .0$ ! Emdee 1992
$4.91 \mathrm{E}+120.04400 .0$ ! Emdee 1992
$2.51 \mathrm{E}+130.04700 .0$ ! Arends 1993
1.40E+16 0.0 99800.0 ! Emdee 1992
$2.00 \mathrm{E}+120.039080 .0$ ! Ingram 1994
1.26E+13 0.0 2583.0 ! Emdee 1992
$5.00 \mathrm{E}+081.58000 .0$ ! Emdee 1992
$3.98 \mathrm{E}+023.443120 .0$ ! Emdee 1992
1.20E+13 0.0 5148.0 ! Emdee 1992
1.63E+13 0.0 3418.0 ! Emdee 1992
3.16E+11 0.0 9500.0 ! Emdee 1992
$2.10 \mathrm{E}+120.04400 .0$ ! Emdee 1992
1.80E+14 0.0 0.0 ! Emdee 1992
c6h5ch $2+c 6 h 50 h=c 6 h 5 o+c 6 h 5 c h 31.05 E+110.09500 .0$ ! Emdee 1992
c 6 h 5 ch $2+$ hoc 6 h 4 ch $3=o c 6 h 4 \operatorname{ch} 3+c 6 h 5 \operatorname{ch} 31.05 E+110.09500 .0$ ! Emdee 1992
c6h5ch $2+0=\mathrm{c} 6 \mathrm{~h} 5 \mathrm{cho}+\mathrm{h} \quad 2.50 \mathrm{E}+140.0 \quad 0.0$ ! Emdee 1992
c6h $5 \mathrm{ch} 2+0=\mathrm{c} 6 \mathrm{~h} 5+\mathrm{ch} 20 \quad 8.00 \mathrm{E}+130.0 \quad 0.0$ ! Emdee 1992
c 6 h 5 ch $2+$ ho $2=c 6 h 5$ cho + h + oh c 6 h 5 ch $2+h o 2=c 6 h 5+c h 2 o+o h$ c 6 h 5 ch $2+\operatorname{ch} 3=c 6 h 5 c 2 h 5$ c 6 h $5 \mathrm{ch} 2+\mathrm{h} 2 \mathrm{ccch}=\mathrm{c} 10 \mathrm{~h} 10$ c 6 h 5 ch $2+c 2 h 2=$ indene + h c 6 h $5 \mathrm{ch} 2+\mathrm{c} 6 \mathrm{~h} 5 \mathrm{ch}=\mathrm{c} 6 \mathrm{~h} 5 \mathrm{ch} 3+\mathrm{c} 6 \mathrm{~h} 5 \mathrm{co} 2.77 \mathrm{E}+032.815773 .0$ ! Emdee 1992 c6h5ch $2+$ oh $=$ c6h5ch $20 h \quad 6.00 \mathrm{E}+130.0 \quad 0.0$ ! Emdee 1992 c $6 \mathrm{~h} 5 \mathrm{ch} 2 \mathrm{oh}+\mathrm{oh}=\mathrm{c} 6 \mathrm{~h} 5 \mathrm{cho}+\mathrm{h} 2 \mathrm{o}+\mathrm{h}$ c $6 \mathrm{~h} 5 \mathrm{ch} 2 \mathrm{oh}+\mathrm{h}=\mathrm{c} 6 \mathrm{~h} 5 \mathrm{cho}+\mathrm{h} 2+\mathrm{h}$ 8.43E+12 0.0 2583.0 ! Emdee 1992 8.00E+13 0.08235 .0 ! Emdee 1992 1.20E+13 0.05148 .0 ! Emdee 1992 c 6 h $5 \operatorname{ch} 20 h+c 6 h 5 \operatorname{ch} 2=c 6 h 5 \operatorname{cho}+c 6 h 5 \operatorname{ch} 3+h 2.11 \mathrm{E}+110.0$ 9500. ! Emdee 92 c6h5ch2oh+c6h5=c6h5cho+c6h6+h 1.40E+12 0.0 4400.0 ! Emdee 1992 c 6 h 5 cho o o $2=\mathrm{c} 6 \mathrm{~h} 5 \mathrm{co}+\mathrm{ho} 2$ c 6 h $5 \mathrm{cho}+\mathrm{oh}=\mathrm{c} 6 \mathrm{~h} 5 \mathrm{co}+\mathrm{h} 2 \mathrm{o}$ c $6 \mathrm{~h} 5 \mathrm{cho}+\mathrm{h}=\mathrm{c} 6 \mathrm{~h} 5 \mathrm{co}+\mathrm{h} 2$ c 6 h 5 cho $h=c 6 h 5+c h 20$ c 6 h $5 \mathrm{cho}+\mathrm{h}=\mathrm{c} 6 \mathrm{~h} 6+\mathrm{hco}$ c $6 \mathrm{~h} 5 \mathrm{cho}+\mathrm{o}=\mathrm{c} 6 \mathrm{~h} 5 \mathrm{co}+\mathrm{oh}$ c 6 h 5 cho $+\operatorname{ch} 3=\operatorname{ch} 4+c 6 h 5 c o$ c 6 h 5 cho $+c 6 h 5=c 6 h 6+c 6 h 5 c o$ c 6 h $5 \mathrm{co}=\mathrm{c} 6 \mathrm{~h} 5+\mathrm{co}$ oc 6 h 4 ch $3+h=h o c 6 h 4$ ch 3 oc $6 \mathrm{~h} 4 \mathrm{ch} 3=\mathrm{c} 6 \mathrm{~h} 6+\mathrm{h}+\mathrm{co}$ hoc $6 \mathrm{~h} 4 \mathrm{ch} 3+o h=o c 6 h 4 \operatorname{ch} 3+h 20$ hoc 6 h 4 ch $3+h=o c 6 h 4 \operatorname{ch} 3+h 2$ hoc 6 h $4 \operatorname{ch} 3+h=c 6 h 5 \operatorname{ch} 3+o h$ hoc $6 \mathrm{~h} 4 \mathrm{ch} 3+\mathrm{h}=\mathrm{c} 6 \mathrm{~h} 5 \mathrm{~h}+\mathrm{ch} 3$ c 6 h $5 c 2 h 5+o h=c 6 h 5 c 2 h 3+h 2 o+h$ c $6 h 5 c 2 h 5+h=c 6 h 5 c 2 h 3+h 2+h$ c $6 \mathrm{~h} 5 \mathrm{c} 2 \mathrm{~h} 3+\mathrm{oh}=\mathrm{c} 6 \mathrm{~h} 4 \mathrm{c} 2 \mathrm{~h} 3+\mathrm{h} 2 \mathrm{o}$ c $6 \mathrm{~h} 5 \mathrm{c} 2 \mathrm{~h} 3+\mathrm{h}=\mathrm{c} 6 \mathrm{~h} 4 \mathrm{c} 2 \mathrm{~h} 3+\mathrm{h} 2$ c 6 h $5 c 2 h 3+o h=c 6 h 5 c c h 2+h 2 o$ c $6 \mathrm{~h} 5 \mathrm{c} 2 \mathrm{~h} 3+\mathrm{h}=\mathrm{c} 6 \mathrm{~h} 5 \mathrm{cch} 2+\mathrm{h} 2$ c 6 h 5 chch $+h=c 6 h 5 c c h 2+h$
1.02E+13 0.0 38950.0 ! Emdee 1992
1.71E+09 1.18-447.0 ! Emdee 1992
5.00E+13 0.04928 .0 ! Emdee 1992
$2.00 \mathrm{E}+13 \quad 0.0 \quad 2000.0$ ! (r)
1.20E+13 0.0 5148.0 ! Emdee 1992
$9.04 \mathrm{E}+120.03080 .0$ ! Emdee 1992
2.77E+03 2.81 5773.0 ! Emdee 1992
$7.01 \mathrm{E}+110.04400 .0$ ! Emdee 1992
$3.98 \mathrm{E}+140.029400 .0$ ! Emdee 1992
2.50E+14 0.0 0.0 ! Emdee 1992
$2.51 \mathrm{E}+110.043900 .0$ ! Emdee 1992
6.00E+12 $0.0 \quad 0.0$ ! Emdee 1992
1.15E+14 0.0 12400.0 ! Emdee 1992
2.21E+13 0.0 7910.0 ! Emdee 1992
1.20E+13 0.05148 .0 ! Emdee 1992
8.43E+12 0.0 2583. ! Emdee 1992
8.00E+13 0.0 8235.0 ! Emdee 1992
1.63E+08 1.42 1454.0 ! Marinov 1996
3.03E+02 3.3 5690.0 ! Marinov 1996
1.00E+07 2.0 2000.0 ! Marinov 1996
$2.00 \mathrm{E}+072.06000 .0$ ! Marinov 1996
$1.00 \mathrm{E}+140.0 \quad 0.0$ ! Marinov 1996
c6h5cch2+oh=c6h5c2h+h2o c 6 h $5 c c h 2+h=c 6 h 5 c 2 h+h 2$ $\mathrm{c} 6 \mathrm{~h} 5 \mathrm{c} 2 \mathrm{~h}+\mathrm{o}=\mathrm{c} 6 \mathrm{~h} 5 \mathrm{cco}+\mathrm{h}$ c 6 h $5 \mathrm{cco}+02=\mathrm{c} 6 \mathrm{~h} 5 \mathrm{co}+\mathrm{co} 2$ c $6 \mathrm{~h} 5 \mathrm{c} 2 \mathrm{~h}+\mathrm{oh}=\mathrm{c} 6 \mathrm{~h} 4 \mathrm{c} 2 \mathrm{~h}+\mathrm{h} 2 \mathrm{o}$ c $6 h 5 c 2 h+h=c 6 h 4 c 2 h+h 2$ c $6 h 5 c 2 h+c h 3=c 6 h 4 c 2 h+c h 4$ c $6 \mathrm{~h} 4 \mathrm{c} 2 \mathrm{~h}+\mathrm{c} 2 \mathrm{~h} 2=\mathrm{c} 10 \mathrm{~h} 7$ c $6 \mathrm{~h} 4 \mathrm{c} 2 \mathrm{~h} 3+\mathrm{ch} 3=$ indene $+\mathrm{h}+\mathrm{h}$
$2.00 \mathrm{E}+130.0$
$5.00 \mathrm{E}+130.0$
$4.80 \mathrm{E}+091.0$
$1.00 \mathrm{E}+12 \quad 0.0$
1.63E+08 1.42 1454.0 ! Marinov 1996
3.03E+02 3.3 5690.0 ! Marinov 1996
1.67E+12 0.0 15057.0 ! Marinov 1996
$1.068 \mathrm{E}+042.324-657.3$ !Total Wang 94
$2.00 \mathrm{E}+130.0 \quad 0.0$ ! (eee)
ch $3 \mathrm{c} 6 \mathrm{~h} 4 \mathrm{ch} 3+$ oh=ch $3 \mathrm{c} 6 \mathrm{~h} 4 \mathrm{ch} 2+h 202.95 \mathrm{E}+130.02623 .0$ ! Marinov 1996
ch $3 \mathrm{c} 6 \mathrm{~h} 4 \mathrm{ch} 3+\mathrm{o}=\mathrm{ch} 3 \mathrm{c} 6 \mathrm{~h} 4 \mathrm{ch} 2+$ oh $5.00 \mathrm{E}+081.58000 .0$ ! Marinov 1996
ch $3 \mathrm{c} 6 \mathrm{~h} 4 \mathrm{ch} 3+\mathrm{h}=\mathrm{ch} 3 \mathrm{c} 6 \mathrm{~h} 4 \mathrm{ch} 2+\mathrm{h} 2$ 3.98E+02 3.44 3120.0 ! Marinov 1996
ch3c6h4ch2+c2h2=c10h10+h 3.20E+11 0.0 7000.0 ! Marinov 1996
ch3c6h4ch2+c2h2=ch3indene+h 3.20E+11 0.0 7000.0 ! Marinov 1996
ch $3 \mathrm{c} 6 \mathrm{~h} 4 \mathrm{ch} 2+\mathrm{h}=\mathrm{ch} 3 \mathrm{c} 6 \mathrm{~h} 4 \mathrm{ch} 3$
ch $3 c 6 h 4 c h 2+c h 3=c h 3 c 6 h 4 c 2 h 5$
indene+oh=indenyl+h2o
indene+o=indenyl+oh
indene+h=indenyl+h2 indenyl+h=indene indenyl+o=c6h5chch +co indenyl+ho2=c6h5chch+co+oh indenyl+c-c5h5=phnthrn+h+h ch $3 c 6 h 4 c 2 h 5+o h=c h 3 c 6 h 4 c 2 h 3+h 2 o+h$ ch $3 c 6 h 4 c 2 h 5+h=c h 3 c 6 h 4 c 2 h 3+h 2+h$ ch $3 \mathrm{c} 6 \mathrm{~h} 4 \mathrm{c} 2 \mathrm{~h} 3+\mathrm{oh}=$ indene+h+h2o ch $3 \mathrm{c} 6 \mathrm{~h} 4 \mathrm{c} 2 \mathrm{~h} 3+\mathrm{h}=$ indene $+\mathrm{h}+\mathrm{h} 2$ ch3indene+oh=ch3indenyl+h2o ch3indene+o=ch3indenyl+oh ch3indene+h=ch3indenyl+h2 ch3indene+h=indene+ch3 ch3indenyl+h=ch3indene ch3indenyl+c-c5h5=ch3phnthrn+h+h c10h10+oh=c10h9+h2o c10h10+o=c10h9+oh c10h10+h=c10h9+h2 c10h9+h=c10h10 c10h8+h=c10h9 c10h8+oh=c10h7+h2o c10h8+oh=c10h7oh+h c10h8+o=c10h7o+h $\mathrm{c} 10 \mathrm{~h} 8+\mathrm{h}=\mathrm{c} 10 \mathrm{~h} 7+\mathrm{h} 2$ c10h7+h=c10h8 c10h7+o2=c10h7o+o c10h7+oh=c10h7o+h c10h7+ch3=c10h7ch $2+h$ c10h7+c2h2=acenphthln+h c10h7+c2h2=c10h7cch $+h$ c10h7+c6h5=flrnthn+h+h c10h7+c6h6=flrnthn+h+h2 c10h7o+h=c10h7oh c10h7oh+oh=c10h7o+h2o c10h7oh+h=c10h7o+h2 c10h7o=indenyl+co c10h7ch $3+o h=c 10 h 7 c h 2+h 2 o$ c10h7ch3+o=c10h7ch2+oh $\mathrm{c} 10 \mathrm{~h} 7 \mathrm{ch} 3+\mathrm{h}=\mathrm{c} 10 \mathrm{~h} 7 \mathrm{ch} 2+\mathrm{h} 2$

| $7.46 \mathrm{E}+13$ | 0.0 | 78.0 | ! Brand 1990 |
| ---: | ---: | ---: | :--- | :--- |
| $6.00 \mathrm{E}+12$ | 0.0 | 221.0 ! Marinov 1996 |  |

$3.43 \mathrm{E}+091.18$-447.0 ! Marinov 1996
$1.81 \mathrm{E}+130.03080 .0$ ! Marinov 1996
$2.19 \mathrm{E}+081.773000 .0$ ! Marinov 1996
$2.00 \mathrm{E}+140.0 \quad 0.0$ ! Marinov 1996
$1.00 \mathrm{E}+140.0 \quad 0.0$ ! Marinov 1996
$1.00 \mathrm{E}+130.0 \quad 0.0$ ! Marinov 1996
$1.00 \mathrm{E}+130.08000 .0$ ! Marinov 1998
0.02583 .0 ! Marinov 1996
0.0 8235.0 ! Marinov 1996
0.02583 .0 ! Marinov 1996
3.443120 .0 ! Marinov 1996
1.18 -447.0 ! Marinov 1996
0.03080 .0 ! Marinov 1996
1.773000 .0 ! Marinov 1996
0.05200 .0 ! Marinov 1996
$0.0 \quad 0.0$ ! Marinov 1996
0.08000 .0 ! Marinov 1998
$2.0 \quad 0.0$ ! Marinov 1996
0.76000 .0 ! Marinov 1996
2.52500 .0 ! Marinov 1996
$0.0 \quad 0.0$ ! Marinov 1996
0.05000 .0 ! Sauer 1970
1.421454 .0 ! Marinov 1996
0.010592 .0 ! Marinov 1996
0.01792 .0 ! Frerichs 1990

$4.55 \mathrm{E}+02$	3.3	5690.0	! Marinov 1996
$1.00 \mathrm{E}+14$	0.0	0.0	! Marinov 1996

$1.00 \mathrm{E}+130.0 \quad 0.0$ ! (fff)
$5.00 \mathrm{E}+13 \quad 0.0 \quad 0.0$ ! Marinov 1996
$2.00 \mathrm{E}+130.0 \quad 0.0$ ! (eee)
$1.00 \mathrm{E}+20-2.0812000 .0$ ! Wang 1994
1.17E-7 5.248-9482.0 ! Total Wang 1994
$5.00 \mathrm{E}+12 \quad 0.0 \quad 0.0!\quad(\mathrm{ggg})$
$4.00 \mathrm{E}+11 \quad 0.0 \quad 4000.0$ ! (hhh)
$1.00 \mathrm{E}+14 \quad 0.0 \quad 0.0$ ! Marinov 1996
$2.95 \mathrm{E}+06$ 2.0 -1312.0 ! Marinov 1996
$1.58 \mathrm{E}+13$ 0.0 6100.0 ! Marinov 1996
$7.40 \mathrm{E}+110.043850 .0$ ! Marinov 1996
$1.27 \mathrm{E}+13 \quad 0.0 \quad 2583.0$ ! Marinov 1996
$5.00 \mathrm{E}+081.58000 .0$ ! Marinov 1996
$3.98 \mathrm{E}+023.443120 .0$ ! Marinov 1996
c10h7ch3+h=c10h8+ch3 c10h7ch2+h=c10h7ch3 c10h $7 \mathrm{ch} 2+o=c 10 h 7+$ ch 20 c10h7ch2+ho2=>c10h7+ch2o+oh c10h7ch2+c2h2=bz (a) ndene+h c10h7ch $2+c h 3=c 10 h 7 c 2 h 5$ c10h7c2h5+oh=c10h7c2h3+h2o+h c10h7c2h5+h=c10h7c2h3+h2+h c10h7c2h3+oh=c10h7cch $2+h 2 o$ $c 10 h 7 c 2 h 3+h=c 10 h 7 c c h 2+h 2$ c10h $7 \mathrm{cch} 2+o h=c 10 h 7 c c h+h 2 o$ c10h7cch2+h=c10h7cch+h2 c10h7cch+oh=c10h6cch+h2o c10h7cch+h=c10h6cch+h2 c10h7cch+h=acenphthln+h c10h6cch+c2h2=phnthryl-1 fluorene+oh=fluoryl+h2o fluorene+o=fluoryl+oh fluorene+h=fluoryl+h2 fluoryl+h=fluorene bz (a) ndnyl+h=bz (a) ndene bz (a) ndene+oh=bz (a) ndnyl+h2o bz (a) ndene+o=bz (a) ndnyl+oh bz (a) ndene+h=bz (a) ndnyl+h2 bz (a) ndnyl+c-c5h5=bz (a) phnthrn+h phnthrn+oh=phnthryl-1+h2o phnthrn+oh=phnthryl-9+h2o phnthrn+oh=phnthrol-1+h phnthrn+oh=phnthrol-9+h phnthrn+h=phnthryl-1+h2 phnthrn+h=phnthryl-9+h2 anthracn=phnthrn phnthryl-1+h=phnthrn phnthryl-9+h=phnthrn phnthryl-1+o2= phnthroxy-1+o phnthryl-9+o2= phnthroxy-9+o phnthrol-1+oh=phnthroxy-1+h2o phnthrol-1+h=phnthroxy-1+h2 phnthroxy-1+h=phnthrol-1 phnthrol-9+oh=phnthroxy-9+h2o phnthrol-9+h=phnthroxy-9+h2 phnthroxy-9+h=phnthrol-9 phnthroxy-1=bz (a) ndnyl+co phnthroxy-9=fluoryl+co phnthryl-1+c2h2=pyrene+h phnthryl-1+ch3=hc4-p (def) pthn+h+h ch3phnthrn+oh=hc4-p (def) pthn+h2o+h ch3phnthrn+h=hc4-p (def) pthn+h2+h ch3phnthrn+h=phnthrn+ch3 hc4-p (def) pthn+oh=hc4-p (def) pthyl+h2o hc4-p (def) pthn+o=hc4-p (def) pthyl+oh hc4-p (def) pthn+h=hc4-p (def) pthyl+h2 hc4-p (def) pthyl+h=hc4-p (def) pthn bz (a) phnthrn $+\mathrm{h}=\mathrm{bz}$ (ghi) $\mathrm{fln} \mathrm{n}+\mathrm{h} 2+\mathrm{h}$ bz (a) phnthrn+oh=bz (ghi)fln+h2o+h h 2 ccch + ch $2=$ ch 2 chcch + h
c-c5h5+ch3=ch3cy24pd

$1.20 \mathrm{E}+13$	0.0	5148.0	! Marinov 1996
$1.00 \mathrm{E}+14$	0.0	0.0	! Marinov 1996
$1.00 \mathrm{E}+14$	0.0	0.0	! Marinov 1996
$1.00 \mathrm{E}+13$	0.0	0.0	! Marinov 1996
$3.20 \mathrm{E}+11$	0.0	7000.0 ! Marinov 1996	
$1.19 \mathrm{E}+13$	0.0	221.0	! Marinov 1996
$8.44 \mathrm{E}+12$	0.0	2583.0	! Marinov 1996
$8.00 \mathrm{E}+13$	0.0	8235.0	! Marinov 1996
$1.00 \mathrm{E}+07$	2.0	2000.0	! Marinov 1996
$2.00 \mathrm{E}+07$	2.0	6000.0 ! Marinov 1996	
$2.00 \mathrm{E}+13$	0.0	0.0 ! Marinov 1996	
$5.00 \mathrm{E}+13$	0.0	0.0 ! Marinov 1996	
$1.63 \mathrm{E}+08$	1.42	1454.0 ! Marinov 1996	

$1.068 \mathrm{E}+042.324-657.3$ ! Total Wang 1994
$3.43 \mathrm{E}+09$ 1.18 -447.0 ! Marinov 1996
$1.81 \mathrm{E}+13 \quad 0.0 \quad 3080.0$ ! Marinov 1996
$2.19 \mathrm{E}+08 \quad 1.773000 .0$ ! Marinov 1996
$2.00 \mathrm{E}+140.0 \quad 0.0$ ! Marinov 1996
$2.00 \mathrm{E}+140.0 \quad 0.0$ ! Marinov 1996
3.43E+09 1.18 -447.0 ! Marinov 1996
1.81E+13 0.0 3080.0 ! Marinov 1996
$2.19 \mathrm{E}+081.773000 .0$ ! Marinov 1996
8000.0 ! nmm 1996
1454.0 ! Marinov 1996
1454.0 ! Marinov 1996
10592.0 ! Marinov 1996
10592.0 ! Marinov 1996
5690.0 ! Marinov 1996
5690.0 ! Marinov 1996
65000.0 ! Colket 1994
0.0 ! Marinov 1996
0.0 ! Marinov 1996
0.0 ! (fff)

$1.00 \mathrm{E}+13$	0.0	0.0	(fff)
$2.95 \mathrm{E}+06$	2.0	-1310.0 ! Marinov 1996	

    \(\begin{array}{rrr}2.95 \mathrm{E}+06 & 2.0 & -1310.0 \text { ! Marinov } 1996 \\ 1.59 \mathrm{E}+13 & 0.0 & 6100.0 \text { ! Marinov } 1996\end{array}\)
    \(\begin{array}{rrr}1.59 \mathrm{E}+13 & 0.0 & 6100.0 \\ 1.00 \mathrm{E}+14 & 0.0 & 0.0\end{array}\)
    \(2.95 \mathrm{E}+062.0\)-1310.0 ! Marinov 1996
    \(1.59 \mathrm{E}+13 \quad 0.0 \quad 6100.0\) ! Marinov 1996
    \(1.00 \mathrm{E}+140.0 \quad 0.0\) ! Marinov 1996
    \(7.40 \mathrm{E}+110.0 \quad 43850.0\) ! Marinov 1996
    \(7.40 \mathrm{E}+110.0 \quad 43850.0\) ! Marinov 1996
    \(3.492 \mathrm{E}+100.5575658 .0\) ! Total Wang 1996
    \(2.00 \mathrm{E}+130.0 \quad 0.0\) ! (eee)
    \(1.27 \mathrm{E}+130.0 \quad 2583.0\) ! nmm 1996
    \(3.98 \mathrm{E}+023.44 \quad 3120.0\) ! nmm 1996
    \(1.20 \mathrm{E}+13 \quad 0.0 \quad 5148.0\) ! Marinov1996
    \(3.43 \mathrm{E}+09 \quad 1.18-447.0\) ! nmm96
    \(1.81 \mathrm{E}+13 \quad 0.0 \quad 3080.0 \quad\) ! nmm96
    \(2.19 \mathrm{E}+08 \quad 1.77 \quad 3000.0\) ! nmm96
    \(2.00 \mathrm{E}+14 \quad 0.0 \quad 0.0\) !Marinov 1996
    \(3.03 \mathrm{E}+02 \quad 3.3 \quad 5690.0\) !Marinov 1996
    \(1.63 \mathrm{E}+08 \quad 1.42 \quad 1454.0\) !Marinov 1996
    \(4.00 \mathrm{E}+13 \quad 0.0 \quad 0.0\) !Miller 1992
    \(1.76 \mathrm{E}+50\)-11.0 18600. !Ritter 1990
    ch $3 \mathrm{cy} 24 \mathrm{pd}+\mathrm{h}=\mathrm{c}-\mathrm{c} 5 \mathrm{~h} 6+\mathrm{ch} 3$
c6h6+h=ch3cy24pd1
cyc 6 h $7=$ ch 3 cy $24 \mathrm{pd1}$
ch3cy24pd1+h=ch3cy24pd
ch3cy $24 \mathrm{pd} 1+\mathrm{h}=\mathrm{c}-\mathrm{c} 5 \mathrm{~h} 5+\mathrm{ch} 3$
cyc6h7=ch3dcy24pd
c6h6+h=cyc6h7
ch3dcy24pd+h2=ch3cy24pd+h
fulvene=c6h6
fulvene+h=c6h6+h
fulvene+h=fulvenyl+h2
fulvene+oh=fulvenyl+h2o
fulvenyl+h=c6h5+h
fulvenyl+o2=c-c5h4o+hco
end

$1.00 \mathrm{E}+13$	0.0	1300.0	! Ritter 1990
$2.39 \mathrm{E}+27$	-3.92	29200.	! Ritter 1990
$5.00 \mathrm{E}+12$	0.0	38100.	! Ritter 1990
$1.00 \mathrm{E}+14$	0.0	0.0	!Marinov 1998
$1.00 \mathrm{E}+14$	0.0	0.0	!Marinov 1998
$5.50 \mathrm{E}+10$	0.0	23500.	! Ritter 1990
$4.87 \mathrm{E}+56$	-12.73	26800.	!Ritter 1990
$4.00 \mathrm{E}+12$	0.0	15000.	! Ritter 1990
$9.84 \mathrm{E}+37$	-7.4	76979.	! Shandross 1996
$3.00 \mathrm{E}+12$	0.5	2000.0	!Marinov 1998
$3.03 \mathrm{E}+2$	3.3	5690.	!Marinov 1998
$1.63 \mathrm{E}+8$	1.42	1454.	!Marinov 1998
$1.00 \mathrm{E}+14$	0.0	0.0	!Marinov 1998
$1.00 \mathrm{E}+12$	0.0	0.0	!Marinov 1998

## Appendix II

The driver routine used in the parameter estimation software.

PROGRAM LEAST

IMPLICIT DOUBLE PRECISION (A-H, O-Z), INTEGER (I-N)

```
CHARACTER KEYWRD*4, LINE*80, BBB*2, CCC*1, DDD*2
CHARACTER REAC*26, REST*80, REST2*30, CHECK*1, FEND*3
LOGICAL OK, OK2
OK = .FALSE.
OK2 = .FALSE}
LLIN = 2
LLOUT = 6
LLNEW = 3
LSQCHA = 4
LRES = 7
LCHEM = 8
LINP = 9
LPARS = 10
LLSQS = 11
LBEST = 12
LTEST = 13
LEVO = 14
LTEST2 = 15
LCHECK = 16
I = 1
ILSQ = 1
J=1
K=1
BEST = 1000000
FEND = 'END'
 OPEN (LTEST, FORM='FORMATTED', STATUS='OLD',
FILE='pars.txt')
 OPEN (LTEST2, FORM='FORMATTED', STATUS='SCRATCH')
 OPEN (LCHEM, FORM='FORMATTED', STATUS='SCRATCH')
 OPEN (LINP, FORM='FORMATTED', STATUS='OLD',
1 FILE='chem.inp')
OPEN (LPARS, FORM='FORMATTED', STATUS='OLD',
1 FILE='chem.tmp')
```

C Opens needed files.
DO $\mathrm{I}=1,1500$
READ (LTEST, '(A1)',END=100),CHECK

C Check that proposed constants are not negative
IF (CHECK.EQ.'-') THEN
TOTLSQ = 100000. 0
CLOSE(LTEST)
CLOSE(LTEST2)

```
CLOSE(LCHEM)
CLOSE(LINP)
CLOSE(LPARS)
GOTO 900
END IF
END DO
```

C If some constant is negative then give very large
C fit value and skip the simulation to save time
100 REWIND(LTEST)
$\mathrm{OK}=$. TRUE.
I = 1
DO I = 1,1500
IF (I.LT.7) THEN
READ (LPARS,'(A68)',END=120),REST
WRITE (LCHEM,'(A)'),REST
ELSE
IF (OK.EQV..TRUE.) THEN
READ (LPARS,'(A1)',END=120),CHECK
IF (CHECK.EQ.'!') THEN
OK = .FALSE
BACKSPACE(LPARS)
READ (LPARS,'(A80)',END=120),REST
WRITE (LCHEM,'(A)'),REST
ELSE
BACKSPACE (LPARS)
READ (LPARS,'(A26,X,1PE11.5,A30)',
1 END=120),REAC,A,REST2
READ (LTEST,'(F7.5,A2,A1,A2)',END=120),
1 AAA,BBB,CCC,DDD
WRITE (LTEST2,'(F7.5,A,A)'),AAA,BBB,DDD
BACKSPACE (LTEST2)
READ (LTEST2,'(1PE11.5)'),AAAA
AAAA = AAAA/100
A $=$ A*AAAA
WRITE (LCHEM,'(A,1PE11.5,X,A)'),REAC,A,REST2
ENDIF
ELSE
READ (LPARS,'(A80)','END=120),REST
WRITE (LCHEM,'(A)'),REST
OK = .TRUE.
ENDIF
ENDIF
ENDDO
C Read the proposed values and change the windows exp format
C to unix exp format aka $\mathrm{E}+023$ to $\mathrm{E}+23$. Update chem.inp
$120 \quad \mathrm{I}=1$
REWIND(LCHEM)
DO I = 1,5000
READ (LCHEM,'(A80)',END=150),REST
WRITE (LINP,'(A)'),REST
END DO
150 WRITE (LINP,'(A)'),FEND
CLOSE (LCHEM)
CLOSE (LINP)
CLOSE (LTEST)
CLOSE (LTEST2)
CLOSE (LPARS)

C Updating chem.inp ends here

C Ckinterp -> reads the reaction system and thermodynamic data
C Then it is ready for senkin. This has to be edited later to
C a subroutine... Much faster.

$$
\mathrm{DO} \mathrm{~J}=1,96
$$

C TESTING WITH ONE TEMPERATURE AND TIME

## OPEN (LLIN, FORM='FORMATTED', STATUS='OLD',

1 FILE='senk.txt')
OPEN (LLNEW, FORM='FORMATTED', STATUS='REPLACE',
1 FILE='senk.inp')

DO I $=1,15$
READ (LLIN, '(A4,A80)',END=101) KEYWRD, LINE
WRITE (LLNEW, '(A4,A)') KEYWRD, LINE
IF (KEYWRD .EQ. 'END') GOTO 200
END DO
101 PRINT *,'error'
REWIND (LLIN)
$\mathrm{I}=1$
DO I $=1,15$
READ (LLNEW, '(A4,A80)',END=200) KEYWRD, LINE
WRITE (LLIN, '(A4,A80)')KEYWRD, LINE
END DO

200 CLOSE (LLNEW)
C Updated senk.inp. Senk.txt
CALL SYSTEM('senk.exe')
CALL SYSTEM('post.exe')
CALL SYSTEM('del savesenk.bin')
C Call senkin and post-processor. Like before, has to be revised
C to subroutines...

> OPEN (LLSQS, FORM='FORMATTED', STATUS='OLD',

1 FILE='lsqsums.txt')
$\mathrm{I}=1$
ILSQ = 12 TOTLSQ $=0$
DO I=1,50000
READ (LLSQS,'(2PD22.15)',END=320,ERR=315),SQSUM IF (SQSUM.EQ.5000000) THEN

ILSQ = ILSQ - 1
ELSE
TOTLSQ = TOTLSQ+SQSUM
ENDIF
END DO
315 PRINT *,'ERROR'
320 CLOSE (LLSQS)
IF (ILSQ.EQ.0) THEN
TOTLSQ $=5000000$

```
ELSE
TOTLSQ = TOTLSQ/ILSQ
ENDIF
 END DO
 CALL SYSTEM('del Isqsums.txt')
 OPEN (LBEST, FORM='FORMATTED', STATUS='UNKNOWN',
 1 FILE='best.txt')
 OPEN (LINP, FORM='FORMATTED', STATUS='OLD',
 1 FILE='chem.inp')
321 I = 1
 READ (LBEST,'(2PD22.15)'),BEST
 REWIND(LBEST)
 IF (TOTLSQ.LT.BEST) THEN
 BEST = TOTLSQ
 WRITE (LBEST,'(2PD22.15)'),BEST
 DO I = 1, 5000
 READ (LINP,'(A80)',END=330), REST
 WRITE (LBEST,'(A)'),REST
 END DO
 END IF
330 CLOSE(LBEST)
 CLOSE(LINP)
900 OPEN (LEVO, FORM='FORMATTED', STATUS='REPLACE',
 | FILE='toevo.txt')
 WRITE (LEVO,'(1PE20.14)'),TOTLSQ
 CLOSE (LEVO)
END
```

The post processor routine used in the parameter estimation software.

```
PROGRAM post
 DOUBLE PRECISION equi,p,tau,flrt,v,q,tempin,temp,x0(100),y(100)
 DOUBLE PRECISION ynew(100),lsqsum,coff
 integer nn,k,nsys,kk,ii, loop
 logical lsens, htwo
 character word*7
 htwo = .FALSE.
 open(unit=20,file='savesenk.bin',status='unknown',
 # form='unformatted')
 open(unit=52,file='lsqsums.txt',status='unknown',
 1 form='formatted', access='append')
 read(20) lsens
 read(20) nsys,kk,ii
 read(20,end=100, err=200) tau,p,temp,(y(k), k=1,kk)
 goto 50
```

```
 close(20)
 LSQSUM = 500
 OPEN (UNIT=77,FILE='senk.inp',STATUS='OLD',
 FORM='FORMATTED')
 DO LOOP = 1,500
 READ (77,'(A7)' , END=120), WORD
 IF (WORD .EQ. 'REAC H2') THEN
 HTWO = .TRUE.
 END IF
END DO
 CALL LSQ(Y,TEMP,TAU,LSQSUM,HTWO)
 WRITE(52,'(2PE22.15)'),LSQSUM
 CLOSE (52)
 continue
 end
```

        SUBROUTINE LSQ (YPRIME,TEM, TIM, LSQSUM, HTWO)
        DOUBLE PRECISION YEXP1 (20), YEXP2 (20), TIME,TEMP
        DOUBLE PRECISION YPRIME (100), TEM,TIM,LSQSUM
        INTEGER LOOP1, LOOP2, LOOP3
        LOGICAL HTWO
        PRINT *,TEM,TIM
        IF (HTWO .EQV. .TRUE.) THEN
                IF (TEM .GT. 799 .AND. TEM .LT. 801) THEN
            IF (TIM .GT. 13.0 .AND. TIM .LT. 13.2) THEN
                \(\operatorname{YEXP} 1(1)=0\)
                YEXP1 (2) \(=0.045286\)
                \(\operatorname{YEXP1}(3)=0.077211\)
                YEXP1 (4) \(=0\)
                \(\operatorname{YEXP1}(5)=0\)
                YEXP1 (6) \(=0\)
            \(\operatorname{YEXP1}(7)=0.020113\)
                YEXP1 (8)=0
                \(\operatorname{YEXP1}(9)=0.007517\)
                \(\operatorname{YEXP1}(10)=0\)
                \(\operatorname{YEXP} 1(11)=0\)
                YEXP1 (12) \(=0\)
                YEXP1 (13) \(=0\)
                YEXP1 \((14)=0\)
                YEXP1 (15) \(=0.0000764\)
                YEXP1 (16) \(=0\)
                \(\operatorname{YEXP} 1(17)=0\)
                YEXP1 \((18)=0\)
                \(\operatorname{YEXP1}(19)=0.0000641\)
                YEXP1 \((20)=0\)
                    ELSE IF (TIM .GT. 6.4 .AND. TIM .LT. 6.6) THEN
                    YEXP1 (1) =0
    ```
 YEXP1 (2) =0.039292
 YEXP1 (3) =0.088571
 YEXP1 (4)=0
 YEXP1 (5)=0
 YEXP1 (6)=0
YEXP1 (7) =0.027141
 YEXP1 (8) =0
 YEXP1 (9) =0.004839
 YEXP1 (10)=0
 YEXP1 (11)=0
 YEXP1 (12)=0
 YEXP1 (13)=0
 YEXP1 (14)=0
 YEXP1 (15) =0.00008
 YEXP1 (16)=0
 YEXP1 (17) =0
 YEXP1 (18) =0.0000318
 YEXP1 (19) =0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 3.5 .AND. TIM .LT. 3.7) THEN
 YEXP1 (1)=0
 YEXP1 (2) =0.039309
 YEXP1 (3) =0.084259
 YEXP1 (4)=0
 YEXP1 (5) =0
 YEXP1 (6)=0
YEXP1 (7) =0.026631
 YEXP1 (8)=0
 YEXP1 (9) =0.001467
 YEXP1 (10) =0
 YEXP1 (11)=0
 YEXP1 (12)=0
 YEXP1 (13)=0
 YEXP1 (14)=0
 YEXP1 (15)=0
 YEXP1 (16) =0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19) =0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 1.7 .AND. TIM .LT. 1.9) THEN
 YEXP1 (1)=0
 YEXP1 (2) =0.040357
 YEXP1 (3) =0.086976
 YEXP1 (4)=0
 YEXP1 (5)=0
 YEXP1 (6)=0
YEXP1 (7) =0.032695
 YEXP1 (8)=0
 YEXP1 (9) =0.00092
 YEXP1 (10) =0
 YEXP1 (11)=0
 YEXP1 (12)=0
 YEXP1 (13)=0
 YEXP1 (14) =0
 YEXP1 (15)=0
 YEXP1 (16)=0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19) =0
YEXP1 (20)=0
```

ELSE IF (TIM .GT. 1.1 .AND. TIM .LT. 1.3) THEN
YEXP1 (1) =0
YEXP1 (2) $=0.040226$
YEXP1 (3) $=0.088297$
YEXP1 (4) =0
$\operatorname{YEXP1}(5)=0$
$\operatorname{YEXP1}(6)=0$
$\operatorname{YEXP} 1(7)=0.032454$
YEXP1 (8) $=0$
$\operatorname{YEXP1}(9)=0.000911$
YEXP1 (10) $=0$
$\operatorname{YEXP} 1(11)=0$
YEXP1 (12) $=0$
$\operatorname{YEXP} 1(13)=0$
YEXP1 (14) $=0$
$\operatorname{YEXP} 1(15)=0$
YEXP1 (16) $=0$
$\operatorname{YEXP} 1(17)=0$
$\operatorname{YEXP1}(18)=0$
YEXP1 (19) $=0$
YEXP1 $(20)=0$

ELSE IF (TIM .GT. 0.8 .AND. TIM .LT. 1.0) THEN
YEXP1 (1) =0
YEXP1 (2) $=0.040311$
$\operatorname{YEXP1}(3)=0.087871$
YEXP1 (4) $=0$
$\operatorname{YEXP1}(5)=0$
YEXP1 (6) $=0$
YEXP1 (7) $=0.032179$
YEXP1 (8) $=0$
$\operatorname{YEXP1}(9)=0.000856$
YEXP1 (10) $=0$
$\operatorname{YEXP} 1(11)=0$
$\operatorname{YEXP1}(12)=0$
$\operatorname{YEXP} 1(13)=0$
YEXP1 (14) $=0$
$\operatorname{YEXP} 1(15)=0$
YEXP1 (16) $=0$
$\operatorname{YEXP} 1(17)=0$
YEXP1 (18) $=0$
YEXP1 $(19)=0$
YEXP1 (20) $=0$

ELSE IF (TIM .GT. 0.6 .AND. TIM .LT. 0.8) THEN
YEXP1 (1) =0
YEXP1 (2) $=0.034868$
YEXP1 (3) $=0.057104$
$\operatorname{YEXP1}(4)=0$
YEXP1 (5) $=0$
YEXP1 (6) $=0$
$\operatorname{YEXP} 1(7)=0.017192$
YEXP1 (8) =0
$\operatorname{YEXP1}(9)=0.000629$
YEXP1 (10) $=0$
$\operatorname{YEXP} 1(11)=0$
YEXP1 (12) $=0$
$\operatorname{YEXP} 1(13)=0$
YEXP1 (14) =0
YEXP1 $(15)=0$
YEXP1 (16) =0
$\operatorname{YEXP1}(17)=0$

```
 YEXP1 (18)=0
 YEXP1 (19) =0
 YEXP1 (20) =0
 ELSE IF (TIM .GT. 0.4 .AND. TIM .LT. 0.6) THEN
 YEXP1 (1)=0
 YEXP1 (2) =0.038147
 YEXP1 (3) =0.068358
 YEXP1 (4)=0
 YEXP1 (5) =0
 YEXP1 (6)=0
YEXP1 (7) =0.025259
 YEXP1 (8)=0
 YEXP1 (9) =0.0000988
 YEXP1 (10)=0
 YEXP1 (11)=0
 YEXP1 (12)=0
 YEXP1 (13)=0
 YEXP1 (14)=0
 YEXP1 (15)=0
 YEXP1 (16) =0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19)=0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 0.3 .AND. TIM .LT. 0.4) THEN
 YEXP1 (1)=0
 YEXP1 (2) =0.035859
 YEXP1 (3) =0.085206
 YEXP1 (4)=0
 YEXP1 (5) =0
 YEXP1 (6)=0
YEXP1 (7) =0.030514
 YEXP1 (8) =0
 YEXP1 (9) =0.000154
 YEXP1 (10) =0
 YEXP1 (11)=0
 YEXP1 (12)=0
 YEXP1 (13)=0
 YEXP1 (14)=0
 YEXP1 (15)=0
 YEXP1 (16) =0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19) =0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 0.1 .AND. TIM .LT. 0.3) THEN
 YEXP1 (1)=0
 YEXP1 (2) =0.040739
 YEXP1 (3) =0.087231
 YEXP1 (4)=0
 YEXP1 (5)=0
 YEXP1 (6)=0
YEXP1 (7) =0.031537
 YEXP1 (8)=0
 YEXP1 (9) =0.00017
 YEXP1 (10) =0
 YEXP1 (11)=0
 YEXP1 (12)=0
 YEXP1 (13)=0
YEXP1 (14)=0
```

```
 YEXP1 (15)=0
 YEXP1 (16) =0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19) =0
 YEXP1 (20)=0
 ELSE
 GO TO 500
 END IF
 ELSE IF (TEM.GT. 899 .AND. TEM .LT. 901) THEN
 IF (TIM .GT. 11.0 .AND. TIM .LT. 12.0) THEN
 YEXP1 (1) =0
 YEXP1 (2) =0.036939
 YEXP1 (3) =0.087853
 YEXP1 (4)=0
 YEXP1 (5)=0
 YEXP1 (6) =0
YEXP1 (7) =0.015934
 YEXP1 (8)=0
 YEXP1 (9) =0.01559
 YEXP1 (10)=0
 YEXP1 (11)=0
 YEXP1 (12)=0
 YEXP1 (13) =0
 YEXP1 (14)=0
 YEXP1 (15)=0.000118
 YEXP1 (16) =0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19) =0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 5.0 .AND. TIM .LT. 6.0) THEN
 YEXP1 (1)=0
 YEXP1 (2) =0.040084
 YEXP1 (3) =0.089972
 YEXP1 (4)=0
 YEXP1 (5)=0
 YEXP1 (6)=0
YEXP1 (7) =0.021861
 YEXP1 (8)=0
 YEXP1 (9) =0.010505
 YEXP1 (10)=0
 YEXP1 (11)=0
 YEXP1 (12)=0
 YEXP1 (13) =0
 YEXP1 (14)=0
 YEXP1 (15)=0.000174
 YEXP1 (16)=0
 YEXP1 (17)=0
 YEXP1 (18)=0
 YEXP1 (19) =0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 3.0 .AND. TIM .LT. 3.7) THEN
 YEXP1 (1)=0
YEXP1 (2) =0.037811
YEXP1 (3) =0.086237
YEXP1 (4)=0
YEXP1 (5)=0
```

YEXP1 (6) $=0$
YEXP1 (7) $=0.025502$
YEXP1 (8) $=0$
YEXP1 (9) $=0.005311$
YEXP1 (10) $=0$
YEXP1 (11) $=0$
YEXP1 (12) $=0$
YEXP1 $(13)=0$
YEXP1 $(14)=0$
YEXP1 (15) $=0.000152$
YEXP1 $(16)=0$
YEXP1 (17) $=0$
$\operatorname{YEXP} 1(18)=0$
YEXP1 (19) $=0$
YEXP1 $(20)=0$
ELSE IF (TIM.GT. 1.5.AND. TIM .LT. 1.9) THEN YEXP1 (1) =0
YEXP1 (2) $=0.040774$
YEXP1 (3) $=0.087478$
YEXP1 (4) $=0$
YEXP1 (5) $=0$
YEXP1 (6) =0
YEXP1 (7) $=0.032495$
YEXP1 (8) $=0$
YEXP1 (9) $=0.001254$
YEXP1 $(10)=0$
YEXP1 (11) $=0$
YEXP1 (12) $=0$
YEXP1 (13) $=0$
$\operatorname{YEXP} 1(14)=0$
YEXP1 (15) =0
$\operatorname{YEXP} 1(16)=0$
YEXP1 (17) =0
$\operatorname{YEXP1}(18)=0$
YEXP1 (19) =0
$\operatorname{YEXP} 1(20)=0$
ELSE IF (TIM .GT. 1.0 .AND. TIM .LT. 1.2) THEN YEXP1 (1) =0
YEXP1 (2) $=0.039994$
YEXP1 (3) $=0.087333$
$\operatorname{YEXP1}(4)=0$
YEXP1 (5) =0
YEXP1 (6) $=0$
YEXP1 (7) $=0.031907$
YEXP1 (8) $=0$
YEXP1 (9) $=0.001092$
YEXP1 (10) $=0$
YEXP1 $(11)=0$
YEXP1 (12) $=0$
YEXP1 (13) $=0$
YEXP1 (14) $=0$
YEXP1 (15) =0
YEXP1 $(16)=0$
YEXP1 $(17)=0$
YEXP1 (18) $=0$
YEXP1 (19) =0
YEXP1 (20) $=0$
ELSE IF (TIM.GT. 0.8 .AND. TIM .LT. 0.9) THEN YEXP1 (1) =0
YEXP1 (2) $=0.043559$

YEXP1 (3) $=0.093641$
$\operatorname{YEXP1}(4)=0$
YEXP1 (5) $=0$
YEXP1 (6) $=0$
YEXP1 (7) $=0.033773$
YEXP1 (8) $=0$
$\operatorname{YEXP1}(9)=0.000965$
YEXP1 (10) $=0$
$\operatorname{YEXP} 1(11)=0$
$\operatorname{YEXP1}(12)=0$
$\operatorname{YEXP} 1(13)=0$
YEXP1 (14) $=0$
$\operatorname{YEXP} 1(15)=0$
YEXP1 (16) $=0$
$\operatorname{YEXP} 1(17)=0$
YEXP1 $(18)=0$
YEXP1 (19) $=0$
YEXP1 $(20)=0$

ELSE IF (TIM .GT. 0.6 .AND. TIM .LT. 0.7) THEN
YEXP1 (1) $=0$
YEXP1 (2) $=0.03449$
YEXP1 (3) $=0.073317$
YEXP1 (4)=0
YEXP1 (5) $=0$
YEXP1 (6) $=0$
$\operatorname{YEXP} 1(7)=0.026069$
YEXP1 (8) =0
$\operatorname{YEXP1}(9)=0.000788$
YEXP1 (10) $=0$
$\operatorname{YEXP} 1(11)=0$
YEXP1 (12) $=0$
$\operatorname{YEXP} 1(13)=0$
YEXP1 $(14)=0$
$\operatorname{YEXP} 1(15)=0$
YEXP1 $(16)=0$
YEXP1 $(17)=0$
YEXP1 (18) =0
YEXP1 (19) $=0$
YEXP1 (20) =0

ELSE IF (TIM .GT. 0.4 .AND. TIM .LT. 0.5) THEN
YEXP1 (1) =0
YEXP1 (2) $=0.031946$
YEXP1 (3) $=0.074296$
YEXP1 (4) =0
YEXP1 (5) $=0$
YEXP1 (6) $=0$
YEXP1 (7) $=0.026403$
YEXP1 (8) =0
$\operatorname{YEXP1}(9)=0.0000104$
YEXP1 (10) =0
YEXP1 $(11)=0$
YEXP1 (12) $=0$
YEXP1 (13) $=0$
YEXP1 $(14)=0$
$\operatorname{YEXP} 1(15)=0$
YEXP1 (16) $=0$
YEXP1 $(17)=0$
YEXP1 (18) $=0$
YEXP1 $(19)=0$
YEXP1 $(20)=0$

```
 ELSE IF (TIM .GT. 0.25 .AND. TIM .LT. 0.3) THEN
 YEXP1 (1)=0
 YEXP1 (2) =0.037396
 YEXP1 (3) =0.088594
 YEXP1 (4)=0
 YEXP1 (5) =0
 YEXP1 (6)=0
YEXP1 (7) =0.031755
 YEXP1 (8)=0
 YEXP1 (9) =0.000135
 YEXP1 (10)=0
 YEXP1 (11)=0
 YEXP1 (12)=0
 YEXP1 (13)=0
 YEXP1 (14)=0
 YEXP1 (15)=0
 YEXP1 (16)=0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19)=0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 0.1 .AND. TIM .LT. 0.25) THEN
 YEXP1 (1)=0
 YEXP1 (2) =0.038183
 YEXP1 (3) =0.089412
 YEXP1 (4)=0
 YEXP1 (5)=0
 YEXP1 (6)=0
YEXP1 (7)=0.0323336
 YEXP1 (8)=0
 YEXP1 (9) =0.000151
 YEXP1 (10)=0
 YEXP1 (11)=0
 YEXP1 (12)=0
 YEXP1 (13)=0
 YEXP1 (14)=0
 YEXP1 (15)=0
 YEXP1 (16) =0
 YEXP1 (17)=0
 YEXP1 (18)=0
 YEXP1 (19) =0
 YEXP1 (20)=0
 ELSE
 GO TO 500
 END IF
 ELSE IF (TEM .GT. 999 .AND. TEM .LT. 1001) THEN
 IF (TIM .GT. 10.0 .AND. TIM .LT. 11.0) THEN
 YEXP1 (1)=0
 YEXP1 (2) =0.036574
 YEXP1 (3) =0.087705
 YEXP1 (4)=0
 YEXP1 (5) =0.000297
 YEXP1(6)=0
YEXP1 (7) =0.019578
 YEXP1 (8)=0
 YEXP1 (9) =0.009099
 YEXP1 (10)=0
 YEXP1 (11)=0
```

```
 YEXP1 (12)=0
 YEXP1 (13)=0
 YEXP1 (14)=0
 YEXP1 (15) =0.000365
 YEXP1 (16)=0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19) =0
 YEXP1 (20) =0
 ELSE IF (TIM .GT. 5.0 .AND. TIM .LT. 6.0) THEN
 YEXP1 (1)=0
 YEXP1 (2) =0.037811
 YEXP1 (3) =0.086418
 YEXP1 (4)=0
 YEXP1 (5) =0.000304
 YEXP1 (6)=0
YEXP1 (7) =0.020944
 YEXP1 (8)=0
 YEXP1 (9) =0.008848
 YEXP1 (10)=0
 YEXP1 (11) =0
 YEXP1 (12)=0
 YEXP1 (13) =0
 YEXP1 (14)=0
 YEXP1 (15) =0.0000821
 YEXP1 (16)=0
 YEXP1 (17)=0
 YEXP1 (18)=0
 YEXP1 (19) =0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 2.5 .AND. TIM .LT. 3.7) THEN
 YEXP1 (1)=0
 YEXP1 (2) =0.038674
 YEXP1 (3) =0.087424
 YEXP1 (4) =0
 YEXP1 (5) =0.000264
 YEXP1 (6)=0
YEXP1 (7) =0.022769
 YEXP1 (8)=0
 YEXP1 (9) =0.007635
 YEXP1 (10)=0
 YEXP1 (11)=0
 YEXP1 (12)=0
 YEXP1 (13) =0
 YEXP1 (14)=0
 YEXP1 (15)=0.000434
 YEXP1 (16)=0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19) =0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 1.4 .AND. TIM .LT. 1.9) THEN
 YEXP1 (1)=0
 YEXP1 (2) =0.032502
 YEXP1 (3) =0.070963
 YEXP1 (4)=0
 YEXP1 (5)=0
 YEXP1 (6)=0
YEXP1 (7) =0.022548
 YEXP1 (8) =0
```

```
 YEXP1 (9) =0.002242
 YEXP1 (10) =0
 YEXP1 (11)=0
 YEXP1 (12)=0
 YEXP1 (13)=0
 YEXP1 (14) =0
 YEXP1 (15)=0.000204
 YEXP1 (16) =0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19) =0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 0.85 .AND. TIM .LT. 0.99) THEN
 YEXP1 (1)=0
YEXP1 (2) =0.039816
YEXP1 (3) =0.086759
YEXP1 (4)=0
YEXP1 (5)=0
YEXP1 (6)=0
YEXP1 (7) =0.030522
 YEXP1 (8)=0
 YEXP1 (9) =0.002183
 YEXP1 (10)=0
 YEXP1 (11)=0
 YEXP1 (12)=0
 YEXP1 (13) =0
 YEXP1 (14)=0
 YEXP1 (15) =0.0000468
 YEXP1 (16) =0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19) =0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 0.7 .AND. TIM .LT. 0.8) THEN
 YEXP1 (1)=0
YEXP1 (2) =0.041009
YEXP1 (3) =0.088882
YEXP1 (4)=0
YEXP1 (5)=0
YEXP1 (6)=0
YEXP1(7)=0.031449
YEXP1 (8)=0
YEXP1 (9) =0.001847
YEXP1 (10)=0
YEXP1 (11)=0
YEXP1 (12) =0
YEXP1 (13)=0
YEXP1 (14)=0
YEXP1 (15) =0.0000309
YEXP1 (16)=0
YEXP1 (17)=0
YEXP1 (18)=0
YEXP1 (19) =0
YEXP1 (20)=0
ELSE IF (TIM .GT. 0.55 .AND. TIM .LT. 0.6) THEN
YEXP1 (1)=0
YEXP1 (2) =0.036012
YEXP1 (3) =0.076826
YEXP1 (4)=0
YEXP1 (5)=0
```

$\operatorname{YEXP} 1(6)=0$
YEXP1 (7) $=0.02632$
YEXP1 (8) $=0$
YEXP1 (9) $=0.001647$
YEXP1 (10) $=0$
YEXP1 (11) $=0$
YEXP1 (12) $=0$
YEXP1 $(13)=0$
YEXP1 $(14)=0$
YEXP1 (15) $=0.000104$
YEXP1 $(16)=0$
YEXP1 (17) $=0$
$\operatorname{YEXP} 1(18)=0$
YEXP1 (19) $=0$
YEXP1 $(20)=0$
ELSE IF (TIM .GT. 0.4 .AND. TIM .LT. 0.5) THEN YEXP1 (1) =0
YEXP1 (2) $=0.03404$
YEXP1 (3) $=0.078938$
YEXP1 (4) =0
YEXP1 (5) $=0$
YEXP1 (6) $=0$
YEXP1 (7) =0.029074
YEXP1 (8) $=0$
YEXP1 (9) $=0.000255$
YEXP1 $(10)=0$
YEXP1 (11) =0
YEXP1 (12) $=0$
YEXP1 (13) =0
$\operatorname{YEXP} 1(14)=0$
YEXP1 (15) =0
$\operatorname{YEXP} 1(16)=0$
YEXP1 (17) =0
YEXP1 $(18)=0$
YEXP1 (19) =0
YEXP1 (20) $=0$
ELSE IF (TIM .GT. 0.23.AND. TIM .LT. 0.27) THEN YEXP1 (1) =0
YEXP1 (2) $=0.037721$
YEXP1 (3) $=0.088671$
$\operatorname{YEXP1}(4)=0$
YEXP1 (5) =0
YEXP1 (6) $=0$
YEXP1 (7) =0.031699
YEXP1 (8) $=0$
YEXP1 (9) $=0.000157$
YEXP1 (10) $=0$
YEXP1 $(11)=0$
YEXP1 (12) $=0$
YEXP1 (13) $=0$
YEXP1 (14) $=0$
YEXP1 (15) =0
YEXP1 $(16)=0$
YEXP1 $(17)=0$
YEXP1 (18) $=0$
YEXP1 (19) =0
YEXP1 (20) $=0$
ELSE IF (TIM.GT. 0.1.AND. TIM .LT. 0.22) THEN YEXP1 (1) =0
$\operatorname{YEXP} 1(2)=0.038354$

```
 YEXP1 (3) =0.088601
 YEXP1 (4)=0
 YEXP1 (5)=0
 YEXP1 (6)=0
YEXP1 (7) =0.031469
 YEXP1 (8)=0
 YEXP1 (9) =0.000145
 YEXP1 (10) =0
 YEXP1 (11)=0
 YEXP1 (12)=0
 YEXP1 (13) =0
 YEXP1 (14)=0
 YEXP1 (15)=0
 YEXP1 (16) =0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19) =0
 YEXP1 (20)=0
 ELSE
 GO TO 500
 END IF
 ELSE IF (TEM .GT. 1099 .AND. TEM .LT. 1101) THEN
 IF (TIM .GT. 9.0 .AND. TIM .LT. 11.0) THEN
 YEXP1 (1)=0
 YEXP1 (2) =0.036262
 YEXP1 (3) =0.092035
 YEXP1 (4)=0
 YEXP1 (5) =0.001306
 YEXP1 (6)=0
YEXP1 (7) =0.018047
 YEXP1 (8)=0
 YEXP1 (9) =0.003201
 YEXP1 (10) =0
 YEXP1 (11)=0
 YEXP1 (12)=0
 YEXP1 (13)=0
 YEXP1 (14)=0
 YEXP1 (15) =0.000119
 YEXP1 (16)=0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19) =0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 4.5 .AND. TIM .LT. 6.0) THEN
 YEXP1 (1) =0
 YEXP1 (2) =0.038038
 YEXP1 (3) =0.09038
 YEXP1 (4)=0
 YEXP1 (5) =0.0017
 YEXP1 (6)=0
YEXP1 (7) =0.020808
 YEXP1 (8)=0
 YEXP1 (9) =0.003355
 YEXP1 (10) =0.0000264
 YEXP1 (11)=0
 YEXP1 (12)=0
 YEXP1 (13)=0
 YEXP1 (14)=0
```

$\operatorname{YEXP} 1(15)=0.000152$
YEXP1 $(16)=0$
YEXP1 $(17)=0$
YEXP1 (18) $=0$
YEXP1 (19) $=0$
YEXP1 $(20)=0$
ELSE IF (TIM .GT. 2.3 .AND. TIM .LT. 3.0) THEN
$\operatorname{YEXP} 1(1)=0$
$\operatorname{YEXP1}(2)=0.037601$
YEXP1 (3) $=0.085925$
YEXP1 (4) =0
YEXP1 (5) $=0.001945$
$\operatorname{YEXP} 1(6)=0$
YEXP1 (7) $=0.022122$
YEXP1 (8) $=0$
$\operatorname{YEXP1}(9)=0.002956$
YEXP1 (10) $=0.0000273$
$\operatorname{YEXP} 1(11)=0$
YEXP1 (12) $=0$
YEXP1 (13) $=0$
YEXP1 $(14)=0$
$\operatorname{YEXP1}(15)=0.000805$
$\operatorname{YEXP1}(16)=0$
$\operatorname{YEXP} 1(17)=0$
YEXP1 (18) $=0$
YEXP1 $(19)=0$
YEXP1 $(20)=0$
ELSE IF (TIM .GT. 1.2 .AND. TIM .LT. 1.5) THEN
$\operatorname{YEXP} 1(1)=0$
YEXP1 (2) $=0.040181$
YEXP1 (3) $=0.087734$
$\operatorname{YEXP} 1(4)=0$
YEXP1 (5) $=0.001$
$\operatorname{YEXP} 1(6)=0$
$\operatorname{YEXP} 1(7)=0.027645$
YEXP1 (8) $=0$
$\operatorname{YEXP} 1(9)=0.003971$
$\operatorname{YEXP1}(10)=0$
$\operatorname{YEXP} 1(11)=0$
$\operatorname{YEXP} 1(12)=0$
YEXP1 (13) $=0$
$\operatorname{YEXP} 1(14)=0$
$\operatorname{YEXP1}(15)=0.000859$
$\operatorname{YEXP1}(16)=0$
$\operatorname{YEXP1}(17)=0.0000138$
$\operatorname{YEXP1}(18)=0$
YEXP1 (19) $=0$
YEXP1 $(20)=0$
ELSE IF (TIM .GT. 0.85 .AND. TIM .LT. 0.99) THEN
$\operatorname{YEXP} 1(1)=0$
YEXP1 (2) $=0.040467$
YEXP1 (3) $=0.088763$
$\operatorname{YEXP1}(4)=0$
$\operatorname{YEXP1}(5)=0.00066$
YEXP1 (6) $=0$
$\operatorname{YEXP1}(7)=0.028601$
$\operatorname{YEXP1}(8)=0$
$\operatorname{YEXP1}(9)=0.003721$
YEXP1 (10) $=0$
YEXP1 (11) $=0$

```
 YEXP1 (12) =0
 YEXP1 (13)=0
 YEXP1 (14)=0
 YEXP1 (15) =0.000169
 YEXP1 (16)=0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19) =0
 YEXP1 (20) =0
 ELSE IF (TIM.GT. 0.65 .AND. TIM .LT. 0.7) THEN
 YEXP1 (1)=0
 YEXP1 (2) =0.023386
 YEXP1 (3) =0.053538
 YEXP1 (4)=0
 YEXP1 (5) =0.000302
 YEXP1 (6)=0
YEXP1 (7) =0.017699
 YEXP1 (8) =0
 YEXP1 (9) =0.00217
 YEXP1 (10)=0
 YEXP1 (11)=0
 YEXP1 (12)=0
 YEXP1 (13)=0
 YEXP1 (14)=0
 YEXP1 (15) =0.000476
 YEXP1 (16) =0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19) =0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 0.50 .AND. TIM .LT. 0.55) THEN
 YEXP1 (1)=0
 YEXP1 (2) =0.025334
 YEXP1 (3) =0.046024
 YEXP1 (4)=0
 YEXP1 (5) =0.00019
 YEXP1 (6) =0
YEXP1 (7) =0.01398
 YEXP1 (8) =0
 YEXP1 (9) =0.001378
 YEXP1 (10)=0
 YEXP1 (11)=0
 YEXP1 (12)=0
 YEXP1 (13) =0
 YEXP1 (14)=0
 YEXP1 (15) =0.000321
 YEXP1 (16)=0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19) =0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 0.3 .AND. TIM .LT. 0.4) THEN
 YEXP1 (1)=0
 YEXP1 (2) =0.037498
 YEXP1 (3) =0.088588
 YEXP1 (4)=0
 YEXP1 (5)=0.0000802
 YEXP1 (6)=0
YEXP1 (7) =0.031231
 YEXP1 (8)=0
```

```
 YEXP1 (9) =0.00081
 YEXP1 (10)=0
 YEXP1 (11)=0
 YEXP1 (12)=0
 YEXP1 (13) =0
 YEXP1 (14)=0
 YEXP1 (15) =0.000329
 YEXP1 (16)=0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19) =0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 0.21 .AND. TIM .LT. 0.24) THEN
 YEXP1 (1)=0
YEXP1 (2) =0.0352
YEXP1 (3) =0.084095
YEXP1 (4)=0
YEXP1 (5) =0.0000262
YEXP1 (6) =0
YEXP1 (7) =0.029857
 YEXP1 (8)=0
 YEXP1 (9) =0.000484
 YEXP1 (10)=0
 YEXP1 (11)=0
 YEXP1 (12)=0
 YEXP1 (13) =0
 YEXP1 (14)=0
 YEXP1 (15)=0.000158
 YEXP1 (16) =0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19) =0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 0.1 .AND. TIM .LT. 0.20) THEN
 YEXP1 (1)=0
YEXP1 (2) =0.036621
YEXP1 (3) =0.086467
YEXP1 (4)=0
YEXP1 (5)=0
YEXP1 (6)=0
YEXP1(7)=0.030594
YEXP1 (8)=0
YEXP1 (9) =0.000301
YEXP1 (10)=0
YEXP1 (11)=0
YEXP1 (12)=0
YEXP1 (13)=0
YEXP1 (14)=0
YEXP1 (15) =0.0000575
YEXP1 (16)=0
YEXP1 (17) =0
YEXP1 (18)=0
YEXP1 (19) =0
YEXP1 (20)=0
ELSE
GO TO 500
END IF
```

ELSE IF (TEM .GT. 1199 .AND. TEM .LT. 1201 ) THEN
IF (TIM .GT. 8.5 .AND. TIM .LT. 9.0) THEN
$\operatorname{YEXP} 1(1)=0$
YEXP1 (2) $=0.029661$
YEXP1 (3) $=0.027812$
YEXP1 (4) =0
YEXP1 (5) $=0.000949$
YEXP1 (6) $=0$
$\operatorname{YEXP} 1(7)=0.00367$
YEXP1 (8) =0
$\operatorname{YEXP1}(9)=0.000281$
YEXP1 (10) $=0$
YEXP1 $(11)=0$
YEXP1 (12) $=0$
YEXP1 (13) $=0$
YEXP1 (14) =0
$\operatorname{YEXP} 1(15)=0.000064$
YEXP1 (16) $=0$
$\operatorname{YEXP} 1(17)=0$
YEXP1 (18) $=0$
YEXP1 (19) =0
YEXP1 (20) =0

ELSE IF (TIM .GT. 4.1 .AND. TIM .LT. 4.5) THEN
YEXP1 (1) =0
YEXP1 (2) $=0.031588$
YEXP1 (3) $=0.053182$
YEXP1 (4) $=0$
YEXP1 (5) $=0.0025$
YEXP1 (6) $=0$
YEXP1 (7) $=0.008305$
YEXP1 (8) $=0$
$\operatorname{YEXP1}(9)=0.000539$
YEXP1 (10) $=0.0000317$
YEXP1 $(11)=0$
YEXP1 (12) $=0$
YEXP1 (13) $=0$
YEXP1 $(14)=0$
$\operatorname{YEXP} 1(15)=0.000352$
YEXP1 (16) =0
YEXP1 $(17)=0$
YEXP1 (18) =0
YEXP1 (19) $=0$
YEXP1 $(20)=0$

ELSE IF (TIM .GT. 2.3 .AND. TIM .LT. 2.5) THEN
YEXP1 (1) =0
YEXP1 (2) $=0.036882$
YEXP1 (3) $=0.084624$
YEXP1 (4) =0
YEXP1 (5) $=0.005511$
YEXP1 (6) =0
$\operatorname{YEXP} 1(7)=0.015259$
YEXP1 (8) $=0$
YEXP1 (9) $=0.000846$
YEXP1 (10) $=0.0000842$
YEXP1 $(11)=0$
YEXP1 (12) $=0$
YEXP1 (13) $=0$
YEXP1 (14) =0
$\operatorname{YEXP} 1(15)=0.000874$
YEXP1 $(16)=0$
YEXP1 $(17)=0$

```
 YEXP1 (18)=0
 YEXP1 (19) =0
 YEXP1 (20) =0
 ELSE IF (TIM .GT. 1.2 .AND. TIM .LT. 1.3) THEN
 YEXP1 (1)=0
YEXP1 (2) =0.041205
YEXP1 (3) =0.089856
YEXP1 (4)=0
YEXP1 (5) =0.004607
YEXP1 (6)=0
YEXP1 (7) =0.023285
YEXP1 (8)=0
YEXP1 (9) =0.002321
YEXP1 (10) =0.0000822
YEXP1 (11) =0
YEXP1 (12) =0
YEXP1 (13) =0
YEXP1 (14)=0
YEXP1 (15) =0.001211
YEXP1 (16) =0
YEXP1 (17) =0.0000758
YEXP1 (18)=0
YEXP1 (19) =0.0000675
YEXP1 (20)=0
ELSE IF (TIM .GT. 0.80 .AND. TIM .LT. 0.85) THEN
YPRIME (1)=1
YEXP1 (1)=YPRIME (1)
YPRIME (2)=1
YEXP1 (2)=YPRIME (2)
 YPRIME (3)=1
YEXP1 (3)=YPRIME (3)
 YPRIME (4)=1
YEXP1 (4)=YPRIME (4)
 YPRIME (5)=1
YEXP1 (5)=YPRIME (5)
 YPRIME (6)=1
YEXP1 (6) =YPRIME (6)
 YPRIME (7) =1
YEXP1 (7) =YPRIME (7)
 YPRIME (8)=1
YEXP1 (8)=YPRIME (8)
 YPRIME (9)=1
YEXP1 (9)=YPRIME (9)
 YPRIME (10)=1
YEXP1 (10)=YPRIME (10)
 YPRIME (11)=1
YEXP1 (11)=YPRIME (11)
 YPRIME (12)=1
YEXP1 (12)=YPRIME (12)
 YPRIME (13)=1
YEXP1 (13)=YPRIME (13)
 YPRIME (14)=1
YEXP1 (14)=YPRIME (14)
 YPRIME (15)=1
YEXP1 (15)=YPRIME (15)
 YPRIME (16)=1
YEXP1 (16)=YPRIME (16)
 YPRIME (17) =1
YEXP1 (17)=YPRIME (17)
 YPRIME (18)=1
YEXP1 (18)=YPRIME (18)
```

YPRIME (19) =1
YEXP1 (19) =YPRIME (19)
YPRIME (20) =1
YEXP1 (20) =YPRIME (20)
ELSE IF (TIM .GT. 0.6 .AND. TIM .LT. 0.65) THEN
$\operatorname{YEXP1}(1)=0$
YEXP1 (2) $=0.042121$
YEXP1 (3) $=0.091778$
YEXP1 (4) $=0$
YEXP1 (5) $=0.003447$
YEXP1 (6) $=0$
$\operatorname{YEXP} 1(7)=0.026118$
YEXP1 (8) $=0$
$\operatorname{YEXP1}(9)=0.002289$
YEXP1 $(10)=0.0000715$
$\operatorname{YEXP} 1(11)=0$
YEXP1 (12) $=0$
$\operatorname{YEXP} 1(13)=0$
$\operatorname{YEXP1}(14)=0$
YEXP1 (15) $=0.00113$
$\operatorname{YEXP1}(16)=0$
$\operatorname{YEXP1}(17)=0.0000565$
$\operatorname{YEXP1}(18)=0$
YEXP1 (19) $=0.00005$
YEXP1 (20) $=0$

ELSE IF (TIM .GT. 0.48 .AND. TIM .LT. 0.52) THEN
YPRIME (1)=1
YEXP1 (1) =YPRIME (1)
YPRIME (2)=1
YEXP1 (2) =YPRIME (2)
YPRIME (3)=1
YEXP1 (3) =YPRIME (3)
YPRIME (4)=1
YEXP1 (4) =YPRIME (4)
YPRIME (5) =1
YEXP1 (5) =YPRIME (5)
YPRIME (6) $=1$
YEXP1 (6) =YPRIME (6)
YPRIME (7) $=1$
YEXP1 (7) =YPRIME (7)
YPRIME (8)=1
YEXP1 (8) =YPRIME (8)
YPRIME (9) = 1
YEXP1 (9) =YPRIME (9)
YPRIME (10) =1
YEXP1 (10) =YPRIME (10)
YPRIME (11)=1
YEXP1 (11) =YPRIME (11)
YPRIME (12) =1
YEXP1 (12) =YPRIME (12) YPRIME (13) =1
YEXP1 (13) =YPRIME (13) YPRIME $(14)=1$
YEXP1 (14) =YPRIME (14) YPRIME (15) =1
YEXP1 (15) =YPRIME (15) YPRIME (16) =1
YEXP1 (16) =YPRIME (16) YPRIME (17) =1
YEXP1 (17) =YPRIME (17) $\operatorname{YPRIME}(18)=1$

```
 YEXP1 (18)=YPRIME (18)
 YPRIME (19) =1
 YEXP1 (19) =YPRIME (19)
 YPRIME (20)=1
 YEXP1 (20)=YPRIME (20)
 ELSE IF (TIM .GT. 0.3 .AND. TIM .LT. 0.4) THEN
 YEXP1 (1)=0
 YEXP1 (2) =0.037899
 YEXP1 (3) =0.088671
 YEXP1 (4)=0
 YEXP1 (5) =0.001246
 YEXP1 (6)=0
YEXP1 (7) =0.029314
 YEXP1 (8) =0
 YEXP1 (9) =0.001081
 YEXP1 (10) =0.0000365
 YEXP1 (11)=0
 YEXP1 (12)=0
 YEXP1 (13)=0
 YEXP1 (14)=0
 YEXP1 (15) =0.000887
 YEXP1 (16) =0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19) =0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 0.20 .AND. TIM .LT. 0.22) THEN
 YEXP1 (1)=0
 YEXP1 (2) =0.037154
 YEXP1 (3) =0.087353
 YEXP1 (4)=0
 YEXP1 (5) =0.000481
 YEXP1 (6)=0
YEXP1 (7) =0.029839
 YEXP1 (8)=0
 YEXP1 (9) =0.000794
 YEXP1 (10)=0
 YEXP1 (11)=0
 YEXP1 (12)=0
 YEXP1 (13)=0
 YEXP1 (14) =0
 YEXP1 (15) =0.000625
 YEXP1 (16) =0
 YEXP1 (17)=0
 YEXP1 (18)=0
 YEXP1 (19)=0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 0.1 .AND. TIM .LT. 0.19) THEN
 YEXP1(1)=0
 YEXP1 (2) =0.03918
 YEXP1 (3) =0.090987
 YEXP1 (4)=0
 YEXP1 (5) =0.000241
 YEXP1 (6)=0
YEXP1 (7) =0.031512
 YEXP1 (8)=0
 YEXP1 (9) =0.000633
 YEXP1 (10) =0
 YEXP1 (11)=0
 YEXP1 (12) =0
```

```
 YEXP1 (13)=0
 YEXP1 (14) =0
 YEXP1 (15)=0.000439
 YEXP1 (16) =0
 YEXP1 (17)=0
 YEXP1 (18)=0
 YEXP1 (19) =0
 YEXP1 (20)=0
 ELSE
 GO TO 500
 END IF
 ELSE IF (TEM .GT. 1299 .AND. TEM .LT. 1301) THEN
 IF (TIM .GT. 8.0 .AND. TIM .LT. 9.0) THEN
 YEXP1 (1)=0
 YEXP1 (2) =0.021563
 YEXP1 (3) =0.035802
 YEXP1 (4)=0
 YEXP1 (5) =0.000801
 YEXP1 (6)=0
YEXP1 (7) =0.001137
 YEXP1 (8)=0
 YEXP1 (9) =0.0000399
 YEXP1 (10)=0
 YEXP1 (11)=0
 YEXP1 (12)=0
 YEXP1 (13)=0
 YEXP1 (14)=0
 YEXP1 (15)=0
 YEXP1 (16) =0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19)=0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 4.0 .AND. TIM .LT. 5.0) THEN
 YEXP1 (1)=0
 YEXP1 (2) =0.039751
 YEXP1 (3) =0.090732
 YEXP1 (4)=0
 YEXP1 (5) =0.007581
 YEXP1 (6) =0
YEXP1 (7) =0.009045
 YEXP1 (8)=0
 YEXP1 (9) =0.000354
 YEXP1 (10)=0.000116
 YEXP1 (11)=0
 YEXP1 (12)=0
 YEXP1 (13)=0
 YEXP1 (14) =0
 YEXP1 (15)=0.000663
 YEXP1 (16) =0
 YEXP1 (17)=0
 YEXP1 (18)=0
 YEXP1 (19)=0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 2.2 .AND. TIM .LT. 2.4) THEN
 YEXP1 (1)=0
 YEXP1 (2) =0.039463
```

```
 YEXP1 (3) =0.089804
 YEXP1 (4)=0
 YEXP1 (5) =0.009988
 YEXP1 (6) =0
YEXP1 (7) =0.0104
 YEXP1 (8)=0
 YEXP1 (9) =0.000332
 YEXP1 (10)=0.000165
 YEXP1 (11) =0
 YEXP1 (12)=0
 YEXP1 (13) =0
 YEXP1 (14)=0
 YEXP1 (15)=0.000932
 YEXP1 (16) =0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19) =0.0000216
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 1.0 .AND. TIM .LT. 1.5) THEN
 YEXP1 (1)=0
 YEXP1 (2) =0.040765
 YEXP1 (3) =0.088429
 YEXP1 (4)=0
 YEXP1 (5) =0.010321
 YEXP1 (6) =0
YEXP1 (7) =0.014118
 YEXP1 (8)=0
 YEXP1 (9) =0.002099
 YEXP1 (10) =0.000195
 YEXP1 (11)=0
 YEXP1 (12) =0.000241
 YEXP1 (13) =0
 YEXP1 (14)=0
 YEXP1 (15)=0.001232
 YEXP1 (16) =0
 YEXP1 (17) =0.00019
 YEXP1 (18)=0
 YEXP1 (19)=0.000157
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 0.70 .AND. TIM .LT. 0.80) THEN
 YPRIME (1)=1
 YEXP1 (1)=YPRIME (1)
 YPRIME (2)=1
 YEXP1 (2)=YPRIME (2)
 YPRIME (3)=1
 YEXP1 (3)=YPRIME (3)
 YPRIME (4)=1
 YEXP1 (4)=YPRIME (4)
 YPRIME (5)=1
 YEXP1 (5)=YPRIME (5)
 YPRIME (6)=1
 YEXP1 (6)=YPRIME (6)
 YPRIME (7)=1
YEXP1 (7)=YPRIME (7)
 YPRIME (8)=1
 YEXP1 (8)=YPRIME (8)
 YPRIME (9)=1
 YEXP1 (9)=YPRIME (9)
 YPRIME (10)=1
 YEXP1 (10)=YPRIME (10)
 YPRIME (11)=1
```

```
 YEXP1 (11)=YPRIME (11)
 YPRIME (12)=1
YEXP1 (12)=YPRIME (12)
 YPRIME (13) =1
YEXP1 (13)=YPRIME (13)
 YPRIME (14)=1
YEXP1(14)=YPRIME (14)
 YPRIME (15)=1
YEXP1 (15)=YPRIME (15)
 YPRIME (16) =1
YEXP1 (16)=YPRIME (16)
 YPRIME (17) =1
YEXP1 (17)=YPRIME (17)
 YPRIME (18) =1
YEXP1 (18)=YPRIME (18)
 YPRIME (19)=1
YEXP1 (19)=YPRIME (19)
 YPRIME (20)=1
YEXP1 (20)=YPRIME (20)
 ELSE IF (TIM .GT. 0.55 .AND. TIM .LT. 0.6) THEN
 YEXP1 (1)=0
YEXP1 (2) =0.042585
YEXP1 (3) =0.092583
YEXP1 (4) =0
YEXP1 (5) =0.009856
YEXP1 (6)=0
YEXP1 (7) =0.016806
YEXP1 (8) =0
YEXP1 (9) =0.002425
YEXP1 (10)=0.000202
YEXP1 (11) =0
YEXP1 (12) =0.00028
YEXP1 (13)=0
YEXP1 (14) =0
YEXP1 (15) =0.001243
YEXP1 (16) =0
YEXP1 (17) =0.000215
YEXP1 (18)=0
YEXP1 (19) =0.000169
YEXP1 (20)=0
ELSE IF (TIM .GT. 0.42 .AND. TIM .LT. 0.47) THEN
YPRIME (1)=1
YEXP1 (1)=YPRIME (1)
YPRIME (2)=1
YEXP1 (2) =YPRIME (2)
 YPRIME (3)=1
YEXP1 (3) =YPRIME (3)
 YPRIME (4)=1
YEXP1 (4)=YPRIME (4)
 YPRIME (5)=1
YEXP1 (5) =YPRIME (5)
 YPRIME (6)=1
YEXP1 (6) =YPRIME (6)
 YPRIME (7)=1
YEXP1 (7) =YPRIME (7)
 YPRIME (8)=1
YEXP1 (8)=YPRIME (8)
 YPRIME (9)=1
YEXP1 (9) =YPRIME (9)
 YPRIME (10)=1
YEXP1 (10) =YPRIME (10)
```

YPRIME (11)=1
YEXP1 (11) =YPRIME (11)
YPRIME (12) =1
YEXP1 (12) =YPRIME (12)
YPRIME (13) =1
YEXP1 (13) =YPRIME (13)
YPRIME $(14)=1$
YEXP1 (14) =YPRIME (14)
YPRIME (15) =1
YEXP1 (15) =YPRIME (15)
YPRIME (16) =1
YEXP1 (16) =YPRIME (16)
YPRIME (17) =1
YEXP1 (17) =YPRIME (17)
YPRIME (18) =1
YEXP1 (18) =YPRIME (18)
YPRIME (19) =1
YEXP1 (19) =YPRIME (19)
$\operatorname{YPRIME}(20)=1$
YEXP1 (20) =YPRIME (20)
ELSE IF (TIM .GT. 0.3 .AND. TIM .LT. 0.38) THEN
$\operatorname{YEXP1}(1)=0$
YEXP1 (2) $=0.037673$
$\operatorname{YEXP1}(3)=0.08801$
$\operatorname{YEXP} 1(4)=0$
YEXP1 (5) $=0.007797$
$\operatorname{YEXP} 1(6)=0$
$\operatorname{YEXP} 1(7)=0.021627$
YEXP1 (8) $=0$
$\operatorname{YEXP1}(9)=0.000439$
$\operatorname{YEXP1}(10)=0.000206$
$\operatorname{YEXP} 1(11)=0$
$\operatorname{YEXP1}(12)=0$
$\operatorname{YEXP1}(13)=0$
$\operatorname{YEXP1}(14)=0$
$\operatorname{YEXP} 1(15)=0.001136$
$\operatorname{YEXP1}(16)=0$
$\operatorname{YEXP} 1(17)=0$
$\operatorname{YEXP} 1(18)=0$
YEXP1 (19) $=0.0000334$
YEXP1 $(20)=0$
ELSE IF (TIM .GT. 0.18 .AND. TIM .LT. 0.20) THEN
$\operatorname{YEXP} 1(1)=0$
YEXP1 (2) $=0.037166$
YEXP1 (3) $=0.08805$
$\operatorname{YEXP} 1(4)=0$
YEXP1 (5) $=0.005468$
YEXP1 (6) $=0$
YEXP1 (7) $=0.024221$
YEXP1 (8) $=0$
$\operatorname{YEXP1}(9)=0.000478$
$\operatorname{YEXP1}(10)=0.000306$
$\operatorname{YEXP} 1(11)=0$
$\operatorname{YEXP1}(12)=0$
$\operatorname{YEXP} 1(13)=0$
YEXP1 (14) $=0$
YEXP1 (15) $=0.00104$
$\operatorname{YEXP1}(16)=0$
$\operatorname{YEXP} 1(17)=0$
$\operatorname{YEXP1}(18)=0$
$\operatorname{YEXP1}(19)=0.0000194$

```
 YEXP1(20)=0
 ELSE IF (TIM .GT. 0.1 .AND. TIM .LT. 0.165) THEN
 YEXP1 (1)=0
 YEXP1 (2) =0.038857
 YEXP1 (3) =0.089756
 YEXP1 (4)=0
 YEXP1 (5) =0.002294
 YEXP1 (6)=0
 YEXP1 (7) =0.028351
 YEXP1 (8) =0
 YEXP1 (9) =0.000626
 YEXP1 (10)=0.000167
 YEXP1 (11)=0
 YEXP1 (12)=0
 YEXP1 (13)=0
 YEXP1 (14)=0
 YEXP1 (15)=0.000866
 YEXP1 (16)=0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19) =0
 YEXP1 (20)=0
 ELSE
 GO TO 500
 END IF
 ELSE
 PRINT *,'SOMETHING WRONG'
 END IF
ELSE
 IF (TEM .GT. 799 .AND. TEM .LT. 801) THEN
 IF (TIM .GT. 13.0 .AND. TIM .LT. 13.2) THEN
 YEXP1 (1)=0
 YEXP1 (2)=0
 YEXP1 (3) =0.034851
 YEXP1 (4)=0
 YEXP1 (5)=0
 YEXP1 (6) =0
 YEXP1 (7) =0.01246
 YEXP1 (8)=0
 YEXP1 (9) =0
 YEXP1 (10)=0
 YEXP1 (11)=0
 YEXP1 (12) =0
 YEXP1 (13)=0
 YEXP1 (14) =0
 YEXP1 (15) =0
 YEXP1 (16)=0
 YEXP1 (17) =0
 YEXP1 (18) =0
 YEXP1 (19) =0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 6.4 .AND. TIM .LT. 6.6) THEN
 YEXP1 (1)=0
 YEXP1 (2)=0
 YEXP1 (3) =0.036449
```

```
 YEXP1 (4)=0
 YEXP1 (5)=0
 YEXP1 (6)=0
YEXP1 (7) =0.012861
 YEXP1 (8)=0
 YEXP1 (9) =0
 YEXP1 (10)=0
 YEXP1 (11)=0
 YEXP1 (12)=0
 YEXP1 (13)=0
 YEXP1 (14)=0
 YEXP1 (15) =0
 YEXP1 (16) =0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19) =0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 3.5 .AND. TIM .LT. 3.7) THEN
 YEXP1 (1)=0
 YEXP1 (2)=0
 YEXP1 (3) =0.037505
 YEXP1 (4)=0
 YEXP1 (5)=0
 YEXP1 (6)=0
YEXP1 (7) =0.013221
 YEXP1 (8)=0
 YEXP1 (9)=0
 YEXP1 (10)=0
 YEXP1 (11)=0
 YEXP1 (12)=0
 YEXP1 (13)=0
 YEXP1 (14)=0
 YEXP1 (15)=0
 YEXP1 (16) =0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19)=0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 1.7 .AND. TIM .LT. 1.9) THEN
 YEXP1(1)=0
 YEXP1 (2)=0
 YEXP1 (3) =0.037613
 YEXP1 (4)=0
 YEXP1 (5)=0
 YEXP1 (6)=0
YEXP1 (7) =0.013259
 YEXP1 (8)=0
 YEXP1 (9)=0
 YEXP1 (10)=0
 YEXP1 (11)=0
 YEXP1 (12)=0
 YEXP1 (13)=0
 YEXP1 (14)=0
 YEXP1 (15)=0
 YEXP1 (16) =0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19)=0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 1.1 .AND. TIM .LT. 1.3) THEN
```

$\operatorname{YEXP} 1(1)=0$
YEXP1 (2) $=0$
YEXP1 (3) $=0.037336$
YEXP1 (4) $=0$
YEXP1 (5) $=0$
YEXP1 (6) $=0$
YEXP1 (7) $=0.013374$
YEXP1 (8) $=0$
$\operatorname{YEXP1}(9)=0$
$\operatorname{YEXP1}(10)=0$
$\operatorname{YEXP} 1(11)=0$
YEXP1 (12) $=0$
$\operatorname{YEXP} 1(13)=0$
YEXP1 (14) $=0$
$\operatorname{YEXP} 1(15)=0$
YEXP1 (16) $=0$
$\operatorname{YEXP} 1(17)=0$
YEXP1 (18) $=0$
YEXP1 (19) =0
YEXP1 (20) $=0$

ELSE IF (TIM .GT. 0.8 .AND. TIM .LT. 1.0) THEN
YEXP1 (1) =0
YEXP1 (2) $=0$
YEXP1 (3) $=0.035584$
YEXP1 (4) $=0$
YEXP1 (5) $=0$
YEXP1 (6) $=0$
$\operatorname{YEXP} 1(7)=0.012748$
YEXP1 (8) =0
$\operatorname{YEXP} 1(9)=0$
YEXP1 (10) =0
$\operatorname{YEXP} 1(11)=0$
YEXP1 (12) $=0$
$\operatorname{YEXP} 1(13)=0$
YEXP1 $(14)=0$
YEXP1 (15) $=0$
YEXP1 $(16)=0$
$\operatorname{YEXP} 1(17)=0$
YEXP1 (18) =0
YEXP1 (19) $=0$
YEXP1 $(20)=0$

ELSE IF (TIM .GT. 0.6 .AND. TIM .LT. 0.8) THEN
YEXP1 (1) =0
YEXP1 (2) $=0$
YEXP1 (3) $=0.036716$
YEXP1 (4) $=0$
YEXP1 (5) $=0$
YEXP1 (6) =0
YEXP1 (7) $=0.013084$
YEXP1 (8) =0
YEXP1 (9) =0
YEXP1 (10) =0
$\operatorname{YEXP} 1(11)=0$
YEXP1 (12) $=0$
YEXP1 (13) $=0$
YEXP1 $(14)=0$
YEXP1 $(15)=0$
YEXP1 $(16)=0$
$\operatorname{YEXP} 1(17)=0$
YEXP1 (18) =0
YEXP1 $(19)=0$

```
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 0.4 .AND. TIM .LT. 0.6) THEN
 YEXP1 (1)=0
 YEXP1 (2)=0
 YEXP1 (3) =0.037368
 YEXP1 (4)=0
 YEXP1 (5) =0
 YEXP1 (6)=0
YEXP1 (7) =0.013243
 YEXP1 (8)=0
 YEXP1 (9) =0
 YEXP1 (10)=0
 YEXP1 (11)=0
 YEXP1 (12)=0
 YEXP1 (13)=0
 YEXP1 (14)=0
 YEXP1 (15)=0
 YEXP1 (16) =0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19)=0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 0.3 .AND. TIM .LT. 0.4) THEN
 YEXP1 (1)=0
 YEXP1 (2)=0
 YEXP1 (3) =0.036729
 YEXP1 (4)=0
 YEXP1 (5)=0
 YEXP1 (6)=0
YEXP1 (7) =0.012882
 YEXP1 (8)=0
 YEXP1 (9)=0
 YEXP1 (10)=0
 YEXP1 (11)=0
 YEXP1 (12)=0
 YEXP1 (13)=0
 YEXP1 (14)=0
 YEXP1 (15)=0
 YEXP1 (16) =0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19)=0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 0.1 .AND. TIM .LT. 0.3) THEN
 YEXP1 (1)=0
 YEXP1 (2)=0
 YEXP1 (3) =0.060572
 YEXP1 (4)=0
 YEXP1 (5)=0
 YEXP1 (6) =0
YEXP1 (7) =0.021132
 YEXP1 (8)=0
 YEXP1 (9)=0
 YEXP1 (10) =0
 YEXP1 (11)=0
 YEXP1 (12)=0
 YEXP1 (13) =0
 YEXP1 (14)=0
 YEXP1 (15) =0
 YEXP1 (16) =0
```

```
 YEXP1 (17)=0
 YEXP1 (18) =0
 YEXP1 (19) =0
 YEXP1 (20)=0
 ELSE
 GO TO 500
 END IF
 ELSE IF (TEM .GT. 899 .AND. TEM .LT. 901) THEN
 IF (TIM .GT. 11.0 .AND. TIM .LT. 12.0) THEN
 YEXP1 (1)=0
 YEXP1 (2) =0
 YEXP1 (3) =0.030759
 YEXP1 (4)=0
 YEXP1 (5)=0
 YEXP1 (6)=0
YEXP1 (7) =0.011394
 YEXP1 (8)=0
 YEXP1 (9)=0
 YEXP1 (10)=0
 YEXP1 (11)=0
 YEXP1 (12)=0
 YEXP1 (13)=0
 YEXP1 (14)=0
 YEXP1 (15) =0.000095
 YEXP1 (16) =0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19) =0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 5.0 .AND. TIM .LT. 6.0) THEN
 YEXP1 (1)=0
 YEXP1 (2)=0
 YEXP1 (3) =0.036072
 YEXP1 (4)=0
 YEXP1 (5)=0
 YEXP1 (6) =0
YEXP1 (7) =0.012903
 YEXP1 (8)=0
 YEXP1 (9) =0
 YEXP1 (10)=0
 YEXP1 (11)=0
 YEXP1 (12)=0
 YEXP1 (13) =0
 YEXP1 (14)=0
 YEXP1 (15) =0.0000313
 YEXP1 (16) =0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19) =0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 3.0 .AND. TIM .LT. 3.7) THEN
 YEXP1 (1)=0
 YEXP1 (2)=0
 YEXP1 (3) =0.038906
 YEXP1 (4)=0
 YEXP1 (5) =0
 YEXP1 (6)=0
YEXP1 (7) =0.013316
```

```
 YEXP1 (8)=0
 YEXP1 (9)=0
 YEXP1 (10)=0
 YEXP1 (11)=0
 YEXP1 (12)=0
 YEXP1 (13)=0
 YEXP1 (14)=0
 YEXP1 (15)=0
 YEXP1 (16) =0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19) =0
 YEXP1 (20)=0
 ELSE IF (TIM.GT. 1.5 .AND. TIM .LT. 1.9) THEN
 YEXP1 (1)=0
 YEXP1 (2)=0
 YEXP1 (3) =0.037852
 YEXP1 (4)=0
 YEXP1 (5) =0
 YEXP1 (6)=0
YEXP1 (7) =0.013368
 YEXP1 (8)=0
 YEXP1 (9)=0
 YEXP1 (10)=0
 YEXP1 (11) =0
 YEXP1 (12)=0
 YEXP1 (13) =0
 YEXP1 (14)=0
 YEXP1 (15) =0
 YEXP1 (16) =0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19) =0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 1.0 .AND. TIM .LT. 1.2) THEN
 YEXP1 (1)=0
YEXP1 (2)=0
YEXP1 (3) =0.03737
YEXP1 (4)=0
YEXP1 (5)=0
YEXP1 (6)=0
YEXP1 (7) =0.013344
YEXP1 (8)=0
YEXP1 (9)=0
YEXP1 (10)=0
YEXP1 (11) =0
YEXP1 (12)=0
YEXP1 (13) =0
YEXP1 (14)=0
YEXP1 (15)=0
YEXP1 (16) =0
YEXP1 (17) =0
YEXP1 (18)=0
YEXP1 (19) =0
YEXP1 (20)=0
ELSE IF (TIM .GT. 0.8 .AND. TIM .LT. 0.9) THEN
YEXP1 (1)=0
YEXP1 (2)=0
YEXP1 (3) =0.037305
YEXP1 (4)=0
```

```
 YEXP1 (5)=0
 YEXP1 (6)=0
YEXP1 (7) =0.013268
 YEXP1 (8)=0
 YEXP1 (9)=0
 YEXP1 (10)=0
 YEXP1 (11)=0
 YEXP1 (12)=0
 YEXP1 (13) =0
 YEXP1 (14)=0
 YEXP1 (15) =0
 YEXP1 (16)=0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19) =0
 YEXP1 (20) =0
 ELSE IF (TIM .GT. 0.6 .AND. TIM .LT. 0.7) THEN
 YEXP1 (1)=0
 YEXP1 (2)=0
 YEXP1 (3) =0.036827
 YEXP1 (4)=0
 YEXP1 (5)=0
 YEXP1 (6) =0
YEXP1 (7) =0.013056
 YEXP1 (8)=0
 YEXP1 (9)=0
 YEXP1 (10)=0
 YEXP1 (11)=0
 YEXP1 (12) =0
 YEXP1 (13) =0
 YEXP1 (14)=0
 YEXP1 (15)=0
 YEXP1 (16) =0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19) =0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 0.4 .AND. TIM .LT. 0.5) THEN
 YEXP1 (1)=0
 YEXP1 (2)=0
 YEXP1 (3) =0.03728
 YEXP1 (4)=0
 YEXP1 (5)=0
 YEXP1 (6) =0
YEXP1 (7) =0.013212
 YEXP1 (8)=0
 YEXP1 (9)=0
 YEXP1 (10) =0
 YEXP1 (11)=0
 YEXP1 (12) =0
 YEXP1 (13) =0
 YEXP1 (14)=0
 YEXP1 (15) =0
 YEXP1 (16) =0
 YEXP1 (17) =0
 YEXP1 (18) =0
 YEXP1 (19) =0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 0.25 .AND. TIM .LT. 0.3) THEN
 YEXP1 (1)=0
```

```
 YEXP1 (2) =0
 YEXP1 (3) =0.036943
 YEXP1 (4)=0
 YEXP1 (5)=0
 YEXP1 (6)=0
YEXP1 (7) =0.012959
 YEXP1 (8)=0
 YEXP1 (9) =0
 YEXP1 (10)=0
 YEXP1 (11)=0
 YEXP1 (12)=0
 YEXP1 (13)=0
 YEXP1 (14)=0
 YEXP1 (15)=0
 YEXP1 (16) =0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19)=0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 0.1 .AND. TIM .LT. 0.25) THEN
 YEXP1 (1)=0
 YEXP1 (2)=0
 YEXP1 (3) =0.061838
 YEXP1 (4)=0
 YEXP1 (5) =0
 YEXP1 (6)=0
YEXP1 (7) =0.021571
 YEXP1 (8)=0
 YEXP1 (9)=0
 YEXP1 (10)=0
 YEXP1 (11)=0
 YEXP1 (12)=0
 YEXP1 (13)=0
 YEXP1 (14)=0
 YEXP1 (15)=0
 YEXP1 (16) =0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19)=0
 YEXP1 (20)=0
 ELSE
 GO TO 500
 END IF
 ELSE IF (TEM .GT. 999 .AND. TEM .LT. 1001) THEN
 IF (TIM .GT. 10.0 .AND. TIM .LT. 11.0) THEN
 YEXP1 (1)=0
 YEXP1 (2) =0.00000201
 YEXP1 (3) =0.033863
 YEXP1 (4)=0
 YEXP1 (5) =0.0000177
 YEXP1 (6)=0
YEXP1 (7) =0.011818
 YEXP1 (8)=0
 YEXP1 (9)=0.0000148
 YEXP1 (10)=0
 YEXP1 (11)=0
 YEXP1 (12) =0.000167
 YEXP1 (13) =0
```

```
 YEXP1 (14) =0
 YEXP1 (15) =0.000433
 YEXP1 (16) =0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19) =0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 5.0 .AND. TIM .LT. 6.0) THEN
 YEXP1 (1)=0
 YEXP1 (2)=0
 YEXP1 (3)=0.03468
 YEXP1 (4)=0
 YEXP1 (5) =0
 YEXP1 (6)=0
YEXP1 (7) =0.012044
 YEXP1 (8) =0
 YEXP1 (9) =0.0000105
 YEXP1 (10)=0
 YEXP1 (11)=0
 YEXP1 (12)=0
 YEXP1 (13)=0
 YEXP1 (14)=0
 YEXP1 (15) =0.000207
 YEXP1 (16) =0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19)=0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 2.5 .AND. TIM .LT. 3.7) THEN
 YEXP1(1)=0
 YEXP1 (2)=0
 YEXP1 (3) =0.037255
 YEXP1 (4)=0
 YEXP1 (5)=0
 YEXP1 (6)=0
YEXP1 (7) =0.012843
 YEXP1 (8)=0
 YEXP1 (9)=0
 YEXP1 (10)=0
 YEXP1 (11)=0
 YEXP1 (12)=0
 YEXP1 (13) =0
 YEXP1 (14)=0
 YEXP1 (15) =0.000088
 YEXP1 (16)=0
 YEXP1 (17)=0
 YEXP1 (18)=0
 YEXP1 (19) =0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 1.4 .AND. TIM .LT. 1.9) THEN
 YEXP1 (1)=0
 YEXP1 (2)=0
 YEXP1 (3) =0.036963
 YEXP1 (4)=0
 YEXP1 (5)=0
 YEXP1 (6)=0
YEXP1 (7) =0.012992
 YEXP1 (8)=0
 YEXP1 (9)=0
YEXP1 (10)=0
```

```
 YEXP1 (11)=0
 YEXP1 (12) =0
 YEXP1 (13) =0
 YEXP1 (14)=0
 YEXP1 (15) =0.0000465
 YEXP1 (16)=0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19) =0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 0.85 .AND. TIM .LT. 0.99) THEN
 YEXP1 (1)=0
 YEXP1 (2)=0
 YEXP1 (3) =0.032873
 YEXP1 (4)=0
 YEXP1 (5)=0
 YEXP1 (6)=0
YEXP1 (7) =0.011513
 YEXP1 (8)=0
 YEXP1 (9) =0
 YEXP1 (10)=0
 YEXP1 (11)=0
 YEXP1 (12) =0
 YEXP1 (13)=0
 YEXP1 (14)=0
 YEXP1 (15) =0.0000275
 YEXP1 (16) =0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19) =0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 0.7 .AND. TIM .LT. 0.8) THEN
 YEXP1 (1)=0
 YEXP1 (2)=0
 YEXP1 (3) =0.036577
 YEXP1 (4)=0
 YEXP1 (5)=0
 YEXP1 (6)=0
YEXP1 (7) =0.013019
 YEXP1 (8)=0
 YEXP1 (9)=0
 YEXP1 (10)=0
 YEXP1 (11)=0
 YEXP1 (12) =0
 YEXP1 (13) =0
 YEXP1 (14) =0
 YEXP1 (15)=0
 YEXP1 (16) =0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19)=0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 0.55 .AND. TIM .LT. 0.6) THEN
 YEXP1 (1)=0
 YEXP1 (2) =0
 YEXP1 (3) =0.036524
 YEXP1 (4)=0
 YEXP1 (5)=0
 YEXP1 (6)=0
YEXP1 (7) =0.012961
```

```
 YEXP1 (8)=0
 YEXP1 (9)=0
 YEXP1 (10)=0
 YEXP1 (11)=0
 YEXP1 (12) =0
 YEXP1 (13)=0
 YEXP1 (14)=0
 YEXP1 (15)=0
 YEXP1 (16) =0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19) =0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 0.4 .AND. TIM .LT. 0.5) THEN
 YEXP1 (1)=0
 YEXP1 (2)=0
 YEXP1 (3) =0.036472
 YEXP1 (4)=0
 YEXP1 (5) =0
 YEXP1 (6)=0
YEXP1 (7) =0.0129
 YEXP1 (8)=0
 YEXP1 (9)=0
 YEXP1 (10)=0
 YEXP1 (11) =0
 YEXP1 (12)=0
 YEXP1 (13) =0
 YEXP1 (14)=0
 YEXP1 (15) =0
 YEXP1 (16) =0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19) =0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 0.23 .AND. TIM .LT. 0.27) THEN
 YEXP1 (1)=0
YEXP1 (2)=0
YEXP1 (3) =0.036246
YEXP1 (4)=0
YEXP1 (5)=0
YEXP1 (6)=0
YEXP1 (7) =0.012716
YEXP1 (8)=0
YEXP1 (9)=0
YEXP1 (10)=0
YEXP1 (11)=0
YEXP1 (12)=0
YEXP1 (13) =0
YEXP1 (14)=0
YEXP1 (15)=0
YEXP1 (16) =0
YEXP1 (17) =0
YEXP1 (18)=0
YEXP1 (19) =0
YEXP1 (20)=0
ELSE IF (TIM.GT. 0.1 .AND. TIM .LT. 0.22) THEN
YEXP1 (1)=0
YEXP1 (2)=0
YEXP1 (3)=0.057504
YEXP1 (4)=0
```

```
 YEXP1 (5)=0
 YEXP1 (6)=0
YEXP1 (7) =0.020184
 YEXP1 (8)=0
 YEXP1 (9)=0
 YEXP1 (10)=0
 YEXP1 (11)=0
 YEXP1 (12)=0
 YEXP1 (13) =0
 YEXP1 (14)=0
 YEXP1 (15) =0
 YEXP1 (16)=0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19) =0
 YEXP1 (20)=0
 ELSE
 GO TO 500
 END IF
 ELSE IF (TEM .GT. 1099 .AND. TEM .LT. 1101) THEN
 IF (TIM .GT. 9.0 .AND. TIM .LT. 11.0) THEN
 YEXP1 (1)=0
 YEXP1 (2) =0.00016
 YEXP1 (3) =0.033305
 YEXP1 (4)=0
 YEXP1 (5) =0.000575
 YEXP1 (6)=0
YEXP1(7)=0.010136
 YEXP1 (8)=0
 YEXP1 (9) =0.0000873
 YEXP1 (10)=0.000195
 YEXP1 (11)=0
 YEXP1 (12) =0.000668
 YEXP1 (13)=0
 YEXP1 (14) =0
 YEXP1 (15) =0.001455
 YEXP1 (16) =0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19)=0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 4.5 .AND. TIM .LT. 6.0) THEN
 YEXP1 (1)=0
 YEXP1 (2) =0.0000526
 YEXP1 (3)=0.029286
 YEXP1 (4)=0
 YEXP1 (5) =0.000145
 YEXP1 (6)=0
YEXP1 (7) =0.007112
 YEXP1 (8)=0
 YEXP1 (9)=0.0000503
 YEXP1 (10) =0.0000443
 YEXP1 (11) =0
 YEXP1 (12) =0.000333
 YEXP1 (13)=0
 YEXP1 (14)=0
 YEXP1 (15)=0.000494
 YEXP1 (16) =0
```

$\operatorname{YEXP} 1(17)=0$
YEXP1 (18) $=0$
YEXP1 (19) $=0$
YEXP1 $(20)=0$

ELSE IF (TIM .GT. 2.3 .AND. TIM .LT. 3.0) THEN
$\operatorname{YEXP} 1(1)=0$
YEXP1 (2) $=0$
YEXP1 (3) $=0.037241$
YEXP1 (4) =0
$\operatorname{YEXP1}(5)=0.0000553$
YEXP1 (6) $=0$
$\operatorname{YEXP} 1(7)=0.012728$
YEXP1 (8) =0
YEXP1 (9) =0
YEXP1 (10) =0
YEXP1 (11) $=0$
YEXP1 (12) $=0.000146$
YEXP1 (13) $=0$
YEXP1 (14) $=0$
$\operatorname{YEXP1}(15)=0.000303$
YEXP1 (16) =0
YEXP1 $(17)=0$
YEXP1 (18) =0
YEXP1 (19) =0
YEXP1 (20) =0

ELSE IF (TIM .GT. 1.2 .AND. TIM .LT. 1.5) THEN
YPRIME (1)=1
YEXP1 (1) =YPRIME (1)
YPRIME (2) =1
YEXP1 (2) =YPRIME (2)
YPRIME (3)=1
YEXP1 (3) =YPRIME (3)
YPRIME (4)=1
YEXP1 (4)=YPRIME (4)
YPRIME (5) =1
YEXP1 (5) =YPRIME (5)
YPRIME (6) $=1$
YEXP1 (6) =YPRIME (6) YPRIME (7) = 1
YEXP1 (7) =YPRIME (7)
YPRIME (8)=1
YEXP1 (8)=YPRIME (8) YPRIME (9)=1
YEXP1 (9) =YPRIME (9) YPRIME (10) =1
YEXP1 (10) =YPRIME (10) YPRIME $(11)=1$
YEXP1 (11) =YPRIME (11) YPRIME (12) =1
YEXP1 (12) =YPRIME (12) YPRIME (13) =1
YEXP1 (13) =YPRIME (13) YPRIME $(14)=1$
YEXP1 (14) =YPRIME (14) YPRIME (15) =1
YEXP1 (15) =YPRIME (15) YPRIME (16) $=1$
YEXP1 (16) =YPRIME (16) YPRIME (17) =1
YEXP1 (17) =YPRIME (17) $\operatorname{YPRIME}(18)=1$

```
 YEXP1 (18)=YPRIME (18)
 YPRIME (19) =1
 YEXP1 (19) =YPRIME (19)
 YPRIME (20)=1
 YEXP1 (20)=YPRIME (20)
 ELSE IF (TIM .GT. 0.85 .AND. TIM .LT. 0.99) THEN
 YEXP1 (1)=0
 YEXP1 (2) =0
 YEXP1 (3) =0.036708
 YEXP1 (4) =0
 YEXP1 (5) =0.0000108
 YEXP1 (6)=0
YEXP1 (7) =0.013078
 YEXP1 (8)=0
 YEXP1 (9) =0
 YEXP1 (10)=0
 YEXP1 (11)=0
 YEXP1 (12)=0
 YEXP1 (13)=0
 YEXP1 (14)=0
 YEXP1 (15) =0.0000844
 YEXP1 (16) =0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19) =0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 0.65 .AND. TIM .LT. 0.7) THEN
 YEXP1 (1)=0
 YEXP1 (2)=0
 YEXP1 (3) =0.035159
 YEXP1 (4)=0
 YEXP1 (5) =0.012398
 YEXP1 (6)=0
YEXP1 (7) =0
 YEXP1 (8)=0
 YEXP1 (9)=0
 YEXP1 (10)=0
 YEXP1 (11)=0
 YEXP1 (12)=0
 YEXP1 (13)=0
 YEXP1 (14)=0
 YEXP1 (15) =0.0000438
 YEXP1 (16)=0
 YEXP1 (17)=0
 YEXP1 (18)=0
 YEXP1 (19)=0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 0.50 .AND. TIM .LT. 0.55) THEN
 YEXP1 (1)=0
 YEXP1 (2)=0
 YEXP1 (3) =0.035786
 YEXP1 (4)=0
 YEXP1 (5)=0
 YEXP1 (6)=0
YEXP1 (7) =0.012679
 YEXP1 (8)=0
 YEXP1 (9)=0
 YEXP1 (10)=0
 YEXP1 (11)=0
YEXP1 (12)=0
```

```
 YEXP1 (13)=0
 YEXP1 (14) =0
 YEXP1 (15)=0
 YEXP1 (16)=0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19) =0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 0.3 .AND. TIM .LT. 0.4) THEN
 YEXP1 (1)=0
 YEXP1 (2)=0
 YEXP1 (3) =0.035857
 YEXP1 (4)=0
 YEXP1 (5)=0
 YEXP1 (6)=0
YEXP1 (7) =0.012681
 YEXP1 (8)=0
 YEXP1 (9) =0
 YEXP1 (10)=0
 YEXP1 (11)=0
 YEXP1 (12) =0
 YEXP1 (13) =0
 YEXP1 (14) =0
 YEXP1 (15)=0
 YEXP1 (16) =0
 YEXP1 (17) =0
 YEXP1 (18) =0
 YEXP1 (19) =0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 0.21 .AND. TIM .LT. 0.24) THEN
 YEXP1 (1)=0
 YEXP1 (2)=0
 YEXP1 (3) =0.037854
 YEXP1 (4)=0
 YEXP1 (5)=0
 YEXP1 (6)=0
YEXP1 (7) =0.013254
 YEXP1 (8)=0
 YEXP1 (9) =0
 YEXP1 (10) =0
 YEXP1 (11)=0
 YEXP1 (12) =0
 YEXP1 (13) =0
 YEXP1 (14)=0
 YEXP1 (15)=0
 YEXP1 (16) =0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19) =0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 0.1 .AND. TIM .LT. 0.20) THEN
 YEXP1 (1)=0
 YEXP1 (2)=0
 YEXP1 (3) =0.0596
 YEXP1 (4)=0
 YEXP1 (5)=0
 YEXP1 (6) =0
YEXP1(7)=0.020796
 YEXP1 (8)=0
 YEXP1 (9)=0
```

```
YEXP1 (10) =0
YEXP1 (11)=0
YEXP1 (12) =0
YEXP1 (13)=0
YEXP1 (14)=0
YEXP1 (15)=0
YEXP1 (16)=0
YEXP1 (17)=0
YEXP1 (18) =0
YEXP1 (19)=0
YEXP1 (20)=0
ELSE
GO TO 500
END IF
```

ELSE IF (TEM .GT. 1199 .AND. TEM .LT. 1201 ) THEN
IF (TIM .GT. 8.5 .AND. TIM .LT. 9.0) THEN
$\operatorname{YEXP} 1(1)=0$
YEXP1 (2) $=0.000275$
YEXP1 (3) $=0.021071$
YEXP1 (4) =0
YEXP1 (5) $=0.00089$
YEXP1 (6) $=0$
$\operatorname{YEXP1}(7)=0.002864$
YEXP1 (8) $=0$
YEXP1 (9) $=0.0000992$
YEXP1 (10) $=0.000223$
$\operatorname{YEXP} 1(11)=0$
YEXP1 (12) $=0.000185$
YEXP1 $(13)=0$
YEXP1 (14) $=0$
$\operatorname{YEXP1}(15)=0.000594$
YEXP1 (16) $=0$
YEXP1 $(17)=0$
YEXP1 (18) =0
$\operatorname{YEXP1}(19)=0.00000691$
YEXP1 (20) =0
ELSE IF (TIM .GT. 4.1 .AND. TIM .LT. 4.5) THEN
YEXP1 (1) =0
YEXP1 (2) $=0.000103$
$\operatorname{YEXP1}(3)=0.027341$
YEXP1 (4) =0
YEXP1 (5) $=0.000517$
YEXP1 (6) $=0$
$\operatorname{YEXP} 1(7)=0.004055$
YEXP1 (8) =0
YEXP1 (9) $=0.0000718$
YEXP1 (10) $=0.000181$
$\operatorname{YEXP} 1(11)=0$
YEXP1 (12) $=0.000291$
$\operatorname{YEXP} 1(13)=0$
YEXP1 (14) $=0$
YEXP1 (15) $=0.000597$
YEXP1 (16) $=0$
$\operatorname{YEXP} 1(17)=0$
YEXP1 (18) $=0$
YEXP1 $(19)=0$
YEXP1 (20) $=0$

```
 ELSE IF (TIM .GT. 2.3 .AND. TIM .LT. 2.5) THEN
 YEXP1 (1)=0
 YEXP1 (2)=0
 YEXP1 (3) =0.037221
 YEXP1 (4)=0
 YEXP1 (5) =0.000024
 YEXP1 (6)=0
YEXP1 (7) =0.013059
 YEXP1 (8)=0
 YEXP1 (9) =0
 YEXP1 (10)=0
 YEXP1 (11)=0
 YEXP1 (12)=0
 YEXP1 (13)=0
 YEXP1 (14)=0
 YEXP1 (15) =0.000158
 YEXP1 (16)=0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19)=0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 1.2 .AND. TIM .LT. 1.3) THEN
 YEXP1(1)=0
 YEXP1 (2) =0.0000889
 YEXP1 (3) =0.031331
 YEXP1 (4)=0
 YEXP1 (5) =0.000497
 YEXP1 (6)=0
YEXP1 (7) =0.009374
 YEXP1 (8)=0
 YEXP1 (9) =0.0000694
 YEXP1 (10)=0.000149
 YEXP1 (11) =0
 YEXP1 (12) =0.000498
 YEXP1 (13)=0
 YEXP1 (14) =0
 YEXP1 (15) =0.000165
 YEXP1 (16) =0
 YEXP1 (17)=0
 YEXP1 (18)=0
 YEXP1 (19) =0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 0.80 .AND. TIM .LT. 0.85) THEN
 YEXP1 (1)=0
 YEXP1 (2)=0.0000541
 YEXP1 (3) =0.035898
 YEXP1 (4)=0
 YEXP1 (5) =0.000275
 YEXP1 (6)=0
YEXP1 (7) =0.012148
 YEXP1 (8) =0
 YEXP1 (9) =0.0000371
 YEXP1 (10) =0.0000587
 YEXP1 (11)=0
 YEXP1 (12) =0.00037
 YEXP1 (13)=0
 YEXP1 (14)=0
 YEXP1 (15) =0.000539
 YEXP1 (16) =0
 YEXP1 (17) =0
 YEXP1 (18) =0
```

$\operatorname{YEXP1}(19)=0$
YEXP1 $(20)=0$

ELSE IF (TIM .GT. 0.6 .AND. TIM .LT. 0.65) THEN
YEXP1 (1) =0
YEXP1 (2) $=0.0000328$
YEXP1 (3) $=0.035719$
YEXP1 (4) =0
YEXP1 (5) $=0.000168$
YEXP1 (6) $=0$
YEXP1 (7) $=0.012322$
YEXP1 (8) $=0$
YEXP1 (9) $=0.00002$
$\operatorname{YEXP1}(10)=0.0000256$
$\operatorname{YEXP} 1(11)=0$
YEXP1 (12) $=0.000245$
$\operatorname{YEXP} 1(13)=0$
YEXP1 (14) $=0$
YEXP1 $(15)=0.0000739$
YEXP1 (16) $=0$
$\operatorname{YEXP} 1(17)=0$
$\operatorname{YEXP} 1(18)=0$
$\operatorname{YEXP} 1(19)=0$
YEXP1 $(20)=0$
ELSE IF (TIM .GT. 0.48 .AND. TIM .LT. 0.52) THEN
YEXP1 (1) =0
YEXP1 (2) $=0$
YEXP1 (3) $=0.034634$
YEXP1 (4) $=0$
YEXP1 (5) $=0.0000703$
YEXP1 (6) $=0$
$\operatorname{YEXP} 1(7)=0.012152$
YEXP1 (8) $=0$
YEXP1 (9) $=0$
YEXP1 (10) $=0$
$\operatorname{YEXP} 1(11)=0$
YEXP1 (12) $=0.0000997$
$\operatorname{YEXP} 1(13)=0$
YEXP1 (14) $=0$
$\operatorname{YEXP1}(15)=0.000176$
YEXP1 (16) $=0$
$\operatorname{YEXP} 1(17)=0$
YEXP1 (18) $=0$
$\operatorname{YEXP1}(19)=0$
YEXP1 $(20)=0$

ELSE IF (TIM .GT. 0.3 .AND. TIM .LT. 0.4) THEN
YEXP1 (1) =0
YEXP1 (2) $=0$
YEXP1 (3) $=0.0359$
YEXP1 (4) =0
YEXP1 (5) $=0.000026$
YEXP1 (6) $=0$
$\operatorname{YEXP} 1(7)=0.012648$
YEXP1 (8) $=0$
YEXP1 (9) =0
YEXP1 $(10)=0$
$\operatorname{YEXP} 1(11)=0$
YEXP1 (12) $=0$
YEXP1 (13) $=0$
YEXP1 (14) =0
$\operatorname{YEXP1}(15)=0.0000183$

```
 YEXP1 (16) =0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19)=0
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 0.20 .AND. TIM .LT. 0.22) THEN
 YEXP1 (1)=0
YEXP1 (2) =0
YEXP1 (3)=0.03534
YEXP1 (4)=0
YEXP1 (5) =0.0000179
YEXP1 (6)=0
YEXP1 (7) =0.010352
YEXP1 (8)=0
YEXP1 (9)=0
YEXP1 (10)=0
YEXP1 (11) =0
YEXP1 (12)=0
YEXP1 (13) =0
YEXP1 (14)=0
YEXP1 (15) =0.00000811
YEXP1 (16) =0
YEXP1 (17) =0
YEXP1 (18)=0
YEXP1 (19) =0
YEXP1 (20)=0
ELSE IF (TIM .GT. 0.1 .AND. TIM .LT. 0.19) THEN
YEXP1 (1)=0
YEXP1 (2)=0
YEXP1 (3) =0.055282
YEXP1 (4)=0
YEXP1 (5) =0.0000121
YEXP1 (6)=0
YEXP1 (7) =0.019467
YEXP1 (8)=0
YEXP1 (9)=0
YEXP1 (10) =0
YEXP1 (11)=0
YEXP1 (12)=0
YEXP1 (13) =0
YEXP1 (14)=0
YEXP1 (15)=0.0000131
YEXP1 (16)=0
YEXP1 (17)=0
YEXP1 (18)=0
YEXP1 (19) =0
YEXP1 (20)=0
ELSE
GO TO 500
END IF
ELSE IF (TEM .GT. 1299 .AND. TEM .LT. 1301) THEN
IF (TIM .GT. 8.0 .AND. TIM .LT. 9.0) THEN
YEXP1 (1)=0
YEXP1 (2) =0.004247
YEXP1 (3) =0.042054
YEXP1 (4)=0
YEXP1 (5) =0.005843
```

$\operatorname{YEXP} 1(6)=0$
YEXP1 (7) $=0.003349$
YEXP1 (8) $=0$
YEXP1 (9) $=0.000283$
$\operatorname{YEXP1}(10)=0.000356$
YEXP1 (11) $=0$
YEXP1 (12) $=0$
YEXP1 $(13)=0$
YEXP1 $(14)=0$
YEXP1 (15) $=0.000823$
$\operatorname{YEXP} 1(16)=0$
YEXP1 (17) $=0.0000848$
YEXP1 $(18)=0$
YEXP1 (19) $=0.0000306$
YEXP1 $(20)=0$
ELSE IF (TIM .GT. 4.0 .AND. TIM .LT. 5.0) THEN YEXP1 (1) =0
YEXP1 (2) $=0.002731$
YEXP1 (3) $=0.050966$
YEXP1 (4) $=0$
YEXP1 (5) $=0.007608$
YEXP1 (6) $=0$
YEXP1 (7) $=0.006037$
YEXP1 (8) $=0$
YEXP1 (9) $=0.000298$
$\operatorname{YEXP1}(10)=0.000768$
YEXP1 (11) =0
$\operatorname{YEXP1}(12)=0.000264$
YEXP1 (13) $=0$
YEXP1 $(14)=0$
YEXP1 (15) $=0.000172$
$\operatorname{YEXP} 1(16)=0$
YEXP1 (17) $=0.0000466$
$\operatorname{YEXP1}(18)=0$
YEXP1 (19) $=0.0000229$
YEXP1 $(20)=0$
ELSE IF (TIM.GT. 2.2 .AND. TIM .LT. 2.4) THEN YPRIME (1) =1
YEXP1 (1) =YPRIME (1)
YPRIME (2) =1
YEXP1 (2) =YPRIME (2) YPRIME (3) = 1
YEXP1 (3) =YPRIME (3) YPRIME (4)=1
YEXP1 (4) =YPRIME (4) YPRIME (5) = 1
YEXP1 (5) =YPRIME (5) YPRIME (6) = 1
YEXP1 (6) =YPRIME (6) YPRIME (7) = 1
YEXP1 (7) =YPRIME (7)
YPRIME (8)=1
YEXP1 (8) =YPRIME (8) YPRIME (9)=1
YEXP1 (9) =YPRIME (9) YPRIME (10) =1
$\operatorname{YEXP1}(10)=Y P R I M E(10)$ YPRIME (11) =1
YEXP1 (11) =YPRIME (11) YPRIME (12) =1
YEXP1 (12) =YPRIME (12)

YPRIME (13) =1
YEXP1 (13) =YPRIME (13)
YPRIME (14) =1
YEXP1 (14) =YPRIME (14)
YPRIME (15) =1
YEXP1 (15) =YPRIME (15)
YPRIME $(16)=1$
YEXP1 (16) =YPRIME (16)
YPRIME (17) =1
YEXP1 (17) =YPRIME (17)
YPRIME (18) =1
YEXP1 (18) =YPRIME (18)
YPRIME (19) =1
YEXP1 (19) =YPRIME (19)
$\operatorname{YPRIME}(20)=1$
YEXP1 (20) =YPRIME (20)
ELSE IF (TIM .GT. 1.0 .AND. TIM .LT. 1.5) THEN
$\operatorname{YEXP} 1(1)=0$
YEXP1 (2) $=0.001752$
YEXP1 (3) $=0.051578$
$\operatorname{YEXP} 1(4)=0$
YEXP1 (5) $=0.0066$
YEXP1 (6) $=0$
$\operatorname{YEXP} 1(7)=0.00837$
$\operatorname{YEXP1}(8)=0$
YEXP1 (9) $=0.000294$
$\operatorname{YEXP} 1(10)=0.000951$
YEXP1 $(11)=0$
$\operatorname{YEXP1}(12)=0.000041$
$\operatorname{YEXP} 1(13)=0$
$\operatorname{YEXP1}(14)=0$
$\operatorname{YEXP} 1(15)=0.002321$
$\operatorname{YEXP} 1(16)=0$
$\operatorname{YEXP1}(17)=0.0000165$
$\operatorname{YEXP1}(18)=0$
YEXP1 $(19)=0.0000972$
$\operatorname{YEXP1}(20)=0$
ELSE IF (TIM .GT. 0.70 .AND. TIM .LT. 0.80) THEN
$\operatorname{YEXP1}(1)=0$
YEXP1 (2) $=0.001499$
YEXP1 (3) $=0.052957$
$\operatorname{YEXP1}(4)=0$
$\operatorname{YEXP1}(5)=0.006233$
YEXP1 (6) $=0$
YEXP1 (7) $=0.010036$
$\operatorname{YEXP1}(8)=0$
YEXP1 (9) $=0.000337$
$\operatorname{YEXP} 1(10)=0.001037$
$\operatorname{YEXP} 1(11)=0$
$\operatorname{YEXP} 1(12)=0.000532$
$\operatorname{YEXP} 1(13)=0$
$\operatorname{YEXP1}(14)=0$
$\operatorname{YEXP} 1(15)=0.002631$
$\operatorname{YEXP} 1(16)=0$
YEXP1 $(17)=0.0000129$
YEXP1 (18) $=0$
$\operatorname{YEXP1}(19)=0.000099$
$\operatorname{YEXP} 1(20)=0$
ELSE IF (TIM .GT. 0.55 .AND. TIM .LT. 0.6) THEN $\operatorname{YEXP} 1(1)=0$

```
 YEXP1 (2) =0.000953
 YEXP1 (3)=0.056777
 YEXP1 (4)=0
 YEXP1 (5)=0.004507
 YEXP1 (6)=0
YEXP1 (7) =0.013342
 YEXP1 (8)=0
 YEXP1 (9) =0.000364
 YEXP1 (10) =0.00109
 YEXP1 (11) =0
 YEXP1 (12)=0.000865
 YEXP1 (13)=0
 YEXP1 (14)=0
 YEXP1 (15) =0.002972
 YEXP1 (16) =0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19) =0.000107
 YEXP1 (20)=0
 ELSE IF (TIM .GT. 0.42 .AND. TIM .LT. 0.47) THEN
 YEXP1 (1)=0
 YEXP1 (2) =0.000445
 YEXP1 (3) =0.056447
 YEXP1 (4)=0
 YEXP1 (5) =0.002327
 YEXP1 (6)=0
YEXP1 (7) =0.016008
 YEXP1 (8)=0
 YEXP1 (9) =0.000299
 YEXP1 (10)=0.000712
 YEXP1 (11)=0
 YEXP1 (12)=0.001028
 YEXP1 (13)=0
 YEXP1 (14)=0
 YEXP1 (15) =0.002055
 YEXP1 (16) =0
 YEXP1 (17) =0
 YEXP1 (18)=0
 YEXP1 (19) =0.00000931
 YEXP1 (20) =0
 ELSE IF (TIM.GT. 0.3 .AND. TIM .LT. 0.38) THEN
 YEXP1 (1)=0
 YEXP1 (2) =0.000179
 YEXP1 (3) =0.055773
 YEXP1 (4)=0
 YEXP1 (5) =0.000973
 YEXP1 (6)=0
YEXP1 (7) =0.018032
 YEXP1 (8)=0
 YEXP1 (9) =0.000147
 YEXP1 (10)=0.000262
 YEXP1 (11)=0
 YEXP1 (12)=0.000761
 YEXP1 (13)=0
 YEXP1 (14) =0
 YEXP1 (15)=0.000997
 YEXP1 (16) =0
 YEXP1 (17) =0
 YEXP1 (18) =0
 YEXP1 (19) =0
 YEXP1 (20)=0
```

ELSE IF (TIM .GT. 0.18 .AND. TIM .LT. 0.20) THEN
YEXP1 (1) =0
YEXP1 (2) $=0.0000514$
YEXP1 (3) $=0.056242$
YEXP1 (4) =0
YEXP1 (5) $=0.000317$
$\operatorname{YEXP} 1(6)=0$
YEXP1 (7) $=0.017106$
YEXP1 (8) $=0$
$\operatorname{YEXP1}(9)=0.0000448$
YEXP1 (10) $=0.0000464$
$\operatorname{YEXP1}(11)=0$
YEXP1 (12) $=0.000315$
$\operatorname{YEXP} 1(13)=0$
$\operatorname{YEXP1}(14)=0$
YEXP1 (15) $=0.0000809$
YEXP1 (16) $=0$
$\operatorname{YEXP} 1(17)=0$
$\operatorname{YEXP} 1(18)=0$
YEXP1 $(19)=0$
YEXP1 $(20)=0$
ELSE IF (TIM .GT. 0.1 .AND. TIM .LT. 0.165) THEN
$\operatorname{YEXP} 1(1)=0$
$\operatorname{YEXP} 1(2)=0$
YEXP1 (3) $=0.056291$
YEXP1 (4) $=0$
YEXP1 (5) $=0.000166$
YEXP1 (6) $=0$
$\operatorname{YEXP} 1(7)=0.017663$
$\operatorname{YEXP} 1(8)=0$
$\operatorname{YEXP1}(9)=0.0000259$
YEXP1 $(10)=0.0000209$
$\operatorname{YEXP} 1(11)=0$
$\operatorname{YEXP} 1(12)=0.0002$
$\operatorname{YEXP} 1(13)=0$
YEXP1 (14) $=0$
YEXP1 $(15)=0.0000586$
YEXP1 $(16)=0$
$\operatorname{YEXP} 1(17)=0$
$\operatorname{YEXP} 1(18)=0$
$\operatorname{YEXP} 1(19)=0$
YEXP1 $(20)=0$
ELSE
GO TO 500
END IF

## ELSE

PRINT *,'SOMETHING WRONG'
END IF
ENDIF
IF (YEXP1 (2) .EQ. 0) THEN
$\operatorname{YEXP} 2(1)=Y P R I M E(2)$
ELSE
$\operatorname{YEXP} 2(1)=(\operatorname{YPRIME}(2)-\operatorname{YEXP} 1(2)) / \operatorname{YEXP} 1(2)$
END IF
IF (YEXP1 (3) .EQ. 0) THEN

```
 YEXP2 (2) = YPRIME (3)
 ELSE
 YEXP2 (2) = (YPRIME (3)-YEXP1 (3))/YEXP1 (3)
 END IF
 IF (YEXP1(5) .EQ. 0) THEN
 YEXP2(3) = YPRIME (5)
 ELSE
 YEXP2(3) = (YPRIME (5) -YEXP1 (5))/YEXP1 (5)
 END IF
 IF (YEXP1(7) .EQ. 0) THEN
 YEXP2(4) = YPRIME(7)
 ELSE
YEXP2(4) = (YPRIME (7)-YEXP1 (7))/YEXP1 (7)
 END IF
 IF (YEXP1(9) .EQ. 0) THEN
 YEXP2(5) = YPRIME (9)
 ELSE
 YEXP2(5) = (YPRIME (9) -YEXP1 (9))/YEXP1 (9)
 END IF
 IF (YEXP1(10) .EQ. 0) THEN
 YEXP2(6) = YPRIME(10)
 ELSE
 YEXP2(6) = (YPRIME (10)-YEXP1 (10))/YEXP1 (10)
 END IF
 IF (YEXP1(12) .EQ. 0) THEN
 YEXP2(7) = YPRIME(12)
 ELSE
 YEXP2(7) = (YPRIME (12)-YEXP1 (12))/YEXP1 (12)
 END IF
 IF (YEXP1 (14) .EQ. 0) THEN
 YEXP2(8) = YPRIME(14)
 ELSE
 YEXP2(8) = (YPRIME (14)-YEXP1(14))/YEXP1 (14)
 END IF
 IF (YEXP1(15) .EQ. 0) THEN
 YEXP2(9) = YPRIME(15)
 ELSE
 YEXP2 (9) = (YPRIME (15)-YEXP1 (15))/YEXP1 (15)
 END IF
 IF (YEXP1(17) .EQ. 0) THEN
 YEXP2(10) = YPRIME(17)
 ELSE
 YEXP2(10) = (YPRIME(17)-YEXP1(17))/YEXP1 (17)
 END IF
 IF (YEXP1(19) .EQ. 0) THEN
 YEXP2(11) = YPRIME(19)
 ELSE
 YEXP2(11) = (YPRIME (19)-YEXP1 (19)) /YEXP1 (19)
 END IF
C
C
C
C DO LOOP2=1,100
C READ(21,'(F8.0,E14.7,F10.7)',END=50),TEMP,TIME,YEXP
C END DO
END DO
C50 CLOSE (UNIT=21)
```

```
LSQSUM =((YEXP2 (1)**2) +(YEXP2 (2)**2) +(YEXP2 (3)**2) +(YEXP2 (4)**2)
1 +(YEXP2 (5)**2) +(YEXP2 (6)**2) +(YEXP2 (7)**2) +(YEXP2 (8)** 2)
 +(YEXP2 (9)**2)+(YEXP2 (9)**2)+(YEXP2 (10)**2)+
 (YEXP2 (10)**2) +(YEXP2 (1)**2) +(YEXP2 (2)**2))
 PRINT *,LSQSUM
 LSQSUM = (ABS (YPRIME (2) - YEXP2 (2)))**2+YPRIME (3)-YEXP2 (3)))**2+
 YPRIME (5) -YEXP2 (5)))**2+YPRIME (7) -YEXP2 (7))) **2+
 YPRIME (9) -YEXP2 (9)))**2+YPRIME (10) -YEXP2 (10)))** * +
 YPRIME (12) -YEXP2 (12)))**2+YPRIME (14) -YEXP2 (14))) **2+
 YPRIME (15) -YEXP2 (15)))**2+YPRIME (17) -YEXP2 (17)))**2+
 YPRIME (18) -YEXP2 (18)))**2
 LSQSUM = 0.1
 END
 PRINT *,'problem: ctrl-c, please'
 GO TO 50
```


## Appendix III

The driver routine used in the parameter estimation software
FROM __FUTURE__ IMPORT PRINT_FUNCTION

FROM $\qquad$ FUTURE IMPORT DIVISION

FROM PYEVOLVE IMPORT G1DList, GSimpleGA, SELECTORS, SCALING, DBADAPTERS, MuTATORS, InItiALIZATORS, CONSTS
FROM PYEVOLVE IMPORT GALLELE
FROM RANDOM IMPORT SEED, RANDINT, RANDOM

FROM PYLAB IMPORT *
IMPORT MATPLOTLIB.PYPLOT AS PLT

IMPORT OS
IMPORT SYS
IMPORT TIME
FROM NUMPY IMPORT *
IMPORT PARSER
FROM SCIPY IMPORT *
FROM PYLAB IMPORT *
FROM SCIPY IMPORT OPTIMIZE
FROM SCIPY IMPORT INTEGRATE
FROM SCIPY.INTEGRATE IMPORT ODEINT
FROM SCIPY.OPTIMIZE IMPORT LEASTSQ

DEF LSQ_100(TS,CONCS):
\#TEST_VAR $=\operatorname{MIN}\left(\operatorname{RANGE}(\operatorname{LEN}(T S)), \operatorname{KEY}=L A M B D A I: A B S\left(T S[I]-S A M P L E _P O I N T S[2][0]\right)\right)$
SAMPLING_TIMES $=[$ TIMES[0] FOR TIMES IN SAMPLE_POINTS_1000]
\#PRINT(CONCS)
TEST $=[]$
FOR I IN RANGE(0,LEN(SAMPLING_TIMES)):
\#PRINT(I, "LOOP")
TEMP $=\operatorname{MIN}\left(E N U M E R A T E(T S), \operatorname{KEY}=L A M B D A X: A B S\left(X[1]-S A M P L I N G _T I M E S[I]\right)\right)$
\#PRINT(TEMP[0])
IF TEMP[1] > SAMPLING_TIMES[I]:
\#PRINT("LARGER")
TEMP_2 $=$ [TEMP[0]-1,TEMP[0],TEMP[1],I]
\#PRINT(TEMP_2)
ELSE:
\#PRINT("SMALLER")
TEMP_2 = [TEMP[0], TEMP[0]+1, TEMP[1],I]
\#PRINT(TEMP_2)
\#TEST.APPEND(MIN(ENUMERATE(TS), KEY=LAMBDA X: ABS(X[1]-
SAMPLING_TIMES[I])))
IF I > 0:
TEST.APPEND(TEMP_2)
\#PRINT(TEST)
\#TEST_VAR[I] = MIN(ENUMERATE(TS) $, \operatorname{KEY}=\operatorname{LAMBDA} X: \operatorname{ABS}(X[1]-$
SAMPLING_TIMES[I]))
\#PRINT(TEST)
\#PRINT(TS[108],TS[109],SAMPLE_POINTS[2][0])
\#PRINT(CONCS[108][1],CONCS[108][3],CONCS[108][5],CONCS[108][7])
\#PRINT(CONCS[109][1],CONCS[109][3],CONCS[109][5],CONCS[109][7])
\#NORMALIZING1 $=$ MAX $([\operatorname{SPECIES[1]~FOR~SPECIES~IN~CONCS]~})$
\#NORMALIZING2 $=$ MAX $([\operatorname{SPECIES[3]~FOR~SPECIES~IN~CONCS]~})$
\#NORMALIZING3 $=$ MAX $([$ SPECIES[5] FOR SPECIES IN CONCS] $])$
\#NORMALIZING4 $=$ MAX $([\operatorname{SPECIES[7]~FOR~SPECIES~IN~CONCS]~})$

SS_SUM = 0

FOR TIME_POINT IN TEST:
\#PRINT(CONCS[TIME_POINT[0]][0],CONCS[TIME_POINT[0]][1],CONCS[TIME_POINT[0]][2],CON CS[TIME_POINT[0]][2],CONCS[TIME_POINT[0]][4])
\#RAW_INPUT("CTRL-C")
SUM1 $=$ CONCS[TIME_POINT[0]][0]+(CONCS[TIME_POINT[1]][0]-CONCS[TIME_POINT[0]][0])*(SAMPLE_POINTS_1000[TIME_POINT[3]][0]-TS[TIME_POINT[0]])/(TS[TIME_POINT[1]]-TS[TIME_POINT[0]])

SUM2 $=$ CONCS[TIME_POINT[0]][1]+(CONCS[TIME_POINT[1]][1]-CONCS[TIME_POINT[0]][1])*(SAMPLE_POINTS_1000[TIME_POINT[3]][0]-TS[TIME_POINT[0]])/(TS[TIME_POINT[1]]-TS[TIME_POINT[0]])

SUM3 $=$ CONCS[TIME_POINT[0]][2]+(CONCS[TIME_POINT[1]][2]CONCS[TIME_POINT[0]][2])* $($ SAMPLE_POINTS_1000[TIME_POINT[3]][0]-TS[TIME_POINT[0]])/(TS[TIME_POINT[1]]-TS[TIME_POINT[0]]) SUM4 $=$ CONCS[TIME_POINT[0]][3]+(CONCS[TIME_POINT[1]][3]-CONCS[TIME_POINT[0]][3])*(SAMPLE_POINTS_1000[TIME_POINT[3]][0]-TS[TIME_POINT[0]])/(TS[TIME_POINT[1]]-TS[TIME_POINT[0]]) SUM5 $=$ CONCS[TIME_POINT[0]][4]+(CONCS[TIME_POINT[1]][4]-CONCS[TIME_POINT[0]][4])*(SAMPLE_POINTS_1000[TIME_POINT[3]][0]-TS[TIME_POINT[0]])/(TS[TIME_POINT[1]]-TS[TIME_POINT[0]])
\#PRINT(SUM3,SAMPLE_POINTS_1000[TIME_POINT[3]][2])
\#PRINT(SUM1,SAMPLE_POINTS[TIME_POINT[3]][3],NORMALIZING1)
\#NORMSS $1=(($ SUM1/NORMALIZING1 $)-$
(SAMPLE_POINTS[TIME_POINT[3]][3]/NORMALIZING1))**2
\#NORMSS2 $=((S U M 2 /$ NORMALIZING2 $)-$
(SAMPLE_POINTS[TIME_POINT[3]][1]/NORMALIZING2)) ${ }^{* * 2}$

```
 #NORMSS3 = ((SUM3/NORMALIZING3)-
(SAMPLE_POINTS[TIME_POINT[3]][2]/NORMALIZING3))**2
 #NORMSS4 = ((SUM4/NORMALIZING4)-
(SAMPLE_POINTS[TIME_POINT[3]][4]/NORMALIZING4))**2
 SS1 = (SUM1-SAMPLE_POINTS_1000[TIME_POINT[3]][3])**2 #H2
 Ss2 = (SUM2-SAMPLE_POINTS_1000[TIME_POINT[3]][5])**2 #CH4
 Ss3 = (SUM3-SAMPLE_POINTS_1000[TIME_POINT[3]][1])**2 #C2H4
 SS4 = (SUM4-SAMPLE_POINTS_1000[TIME_POINT[3]][2])**2 #C2H6
 SS5 = (SUM5-SAMPLE_POINTS_1000[TIME_POINT[3]][4])**2 #C4H6
 #PRINT(SS2)
 IF SS1<1E-12:
 SS1 = 0.0
 IF SS2 < 1E-12:
 SS2 = 0.0
 IF SS3 < 1E-12:
 SS3 = 0.0
 IF SS4 < 1E-12:
 SS4 = 0.0
 IF SS5 < 1E-12:
 Ss5 = 0.0
 SS_TOT = (Ss1+Ss2+SS3+SS4+SS5)
 SS_SUM = SS_SUM + SS_TOT
 IF SUM1 < 0 OR SUM2 < 0 OR SUM3 < 0 OR SUM4 < 0 OR SUM5 < 0:
 SS_SUM = 50000
 #PRINT(NORMALIZING1,NORMALIZING2,NORMALIZING3,NORMALIZING4)
 #SUM1 = CONCS[108][1]+(CONCS[109][1]-CONCS[108][1])*(SAMPLE_POINTS[2][0]-
TS[108])/(TS[109]-TS[108])
 #SUM2 = CONCS[108][3]+(CONCS[109][3]-CONCS[108][3])*(SAMPLE_POINTS[2][0]-
TS[108])/(TS[109]-TS[108])
 #SUM3 = CONCS[108][5]+(CONCS[109][5]-CONCS[108][5])*(SAMPLE_POINTS[2][0]-
TS[108])/(TS[109]-TS[108])
 #SUM4 = CONCS[108][7]+(CONCS[109][7]-CONCS[108][7])*(SAMPLE_POINTS[2][0]-
TS[108])/(TS[109]-TS[108])
 #PRINT(SUM1,SAMPLE_POINTS[2][1])
 #SS1 = (SUM1-SAMPLE_POINTS[2][3])**2
 #SS2 = (SUM2-SAMPLE_POINTS[2][1])**2
 #SS3 = (SUM3-SAMPLE_POINTS[2][2])**2
 #SS4 = (SUM4-SAMPLE_POINTS[2][4])**2
 #PRINT(Ss1,ss2,ss3,ss4)
 #NORMSS1 = ((SUM1/NORMALIZING1)-(SAMPLE_POINTS[2][3]/NORMALIZING1))**2
 #NORMSS2 = ((SUM2/NORMALIZING2)-(SAMPLE_POINTS[2][1]/NORMALIZING2))**2
 #NORMSS3 = ((SUM3/NORMALIZING3)-(SAMPLE_POINTS[2][2]/NORMALIZING3))**2
 #NORMSS4 = ((SUM4/NORMALIZING4)-(SAMPLE_POINTS[2][4]/NORMALIZING4))**2
 #PRINT(NORMSS1,NORMSS2,NORMSS3,NORMSS4)
```

\#SS_TOT $=1000^{*}($ NORMSS1+NORMSS2+NORMSS3+NORMSS4 $)$
\#PRINT(SS_SUM,"1000")
RETURN SS_SUM

```
DEF DERIV(X,T,K):
 #GLOBAL K,SOOT
 #C12 = 4.04-(2*x[3]+2*x[5]+4*x[7]+x[2])
 #H2 = 8.08-(2*x[1]+4*x[3]+6*x[5]+6*x[7]+4*x[2])
 #PRINT(X)
 #RAW_INPUT("ENTER")
 #IF C12 == 0:
 # REL_SOOT = 0
 #ELSE:
 # REL_SOOT = H2/C12
 #SOOT_LINE = [C12,H2,REL_SOOT]
 #SOOT.APPEND(SOOT_LINE)
 #PRINT(X[0],X[1],X[2],X[3],X[4],X[5],X[6],X[7],X[8])
 #PRINT(x[0]+2*x[1]+3*x[2]+4*x[3]+5*x[4]+6*x[5]+5*x[6]+6*x[7]+6*x[8],2*x[2]+2*x[
3]+2*x[4]+2*x[5]+4*x[6]+4*x[7]+6*x[8])
 #RAW_INPUT("CTRL-C")
 RETURN [K[8]*x[5]*x[5]-K[9]*x[0]*x[5],
 -K[2]*X[1]*X[5]+K[10]*X[5]*X[6],
 -2*K[0]*x[2]*x[2]-K[1]*X[2]*x[5]+K[7]*X[6]*x[5],
 K[4]*X[5]*X[6]-K[6]*X[3]*X[5],
 K[3]*X[5]*X[6]-K[5]*X[4]*X[5],
 8*K[0]*X[2]*X[2]+4*K[1]*X[2]*X[5]+4*K[2]*X[1]*X[5]-6*K[3]*X[5]*X[6]-
6*K[4]*x[5]*x[6]+6*K[5]*x[4]*x[5]+6*K[6]*x[3]*x[5]-4*K[7]*x[5]*x[6]-
2*K[8]*x[5]*x[5]+2*K[9]*x[0]*x[5]-4*K[10]*x[5]*x[6],
 4*K[0]*X[2]*X[2]+2*K[1]*X[2]*X[5]+K[2]*X[1]*X[5]-4*K[3]*X[5]*X[6]-
2*K[4]*X[5]*X[6]+4*K[5]*X[4]*\textrm{X}[5]+2*K[6]*\textrm{X}[3]*\textrm{X}[5]-2*\textrm{K}[7]*\textrm{X}[5]*\textrm{X}[6]-\textrm{K}[10]*\textrm{X}[5]*\textrm{X}[6]]
DEF FUNC(K):
 #PRINT(K)
 START=0
 END=2.2
 NUMSTEPS=10000
 TIMES=LINSPACE(START,END,NUMSTEPS)
 Y0=ARRAY([0.0,10.2,2.02,0.0,0.0,0.0,0.0])
 #FITNESS_100 = 25000
 RESULT_100,OUTPUT_100 = INTEGRATE.ODEINT(DERIV,Y0,TIMES,ARGS=(K,), MXSTEP=5000,
FULL_OUTPUT = 1)
 BIG_QUESTION_100 = OUTPUT_100['MESSAGE']
 IF BIG_QUESTION_100 == 'INTEGRATION SUCCESSFUL.':
 FITNESS_100 = LSQ_100(TIMES,RESULT_100)
 #PRINT(FITNESS_100,"BFGS")
 RETURN FITNESS_100
```

```
DEF DERIV_700(X,T):
 GLOBAL K,SOOT
 C12 = 4.04-(2*x[3]+2*x[5]+4*x[7]+X[2])
 H2 = 8.08-(2*x[1]+4*x[3]+6*x[5]+6*x[7]+4*x[2])
 #PRINT(X[1])
 IF C12 == 0:
 REL_SOOT = 0
 ELSE:
 REL_SOOT = H2/C12
 SOOT_LINE = [C12,H2,REL_SOOT]
 SOOT.APPEND(SOOT_LINE)
 #PRINT(X[0],X[1],X[2],X[3],X[4],X[5],X[6],X[7],X[8])
 #PRINT(x[0]+2*x[1]+3*x[2]+4*x[3]+5*x[4]+6*x[5]+5*x[6]+6*x[7]+6*x[8],2*x[2]+2*x[
3]+2*x[4]+2*x[5]+4*x[6]+4*x[7]+6*x[8])
 #RAW_INPUT("CTRL-C")
 RETURN [6*K[16]*X[3]*x[3]+2*K[17]*X[3]*X[3]+2*K[18]*X[3]*X[3]+2*K[19]*x[2]*x[4]-
2*K[21]*X[0]*X[0]+6*K[22]*x[5]+6*K[23]*X[7],
 K[16]*X[3]*X[3]+K[19]*X[2]*X[4]+K[21]*X[0]*X[0]-2*K[20]*X[1]*X[4],
 -K[19]*X[2]*X[4],
 -2*K[16]*X[3]*x[3]-2*K[17]*X[3]*X[3]-
2*K[18]*x[3]*X[3]+K[20]*X[1]*X[4],
 4*K[16]*x[3]*x[3]+2*K[17]*X[3]*X[3]-
2*K[20]*X[1]*X[4]+2*K[22]*X[5]+4*K[23]*X[7],
 K[17]*X[3]*X[3]-K[22]*X[5],
 0,
 K[18]*X[3]*X[3]-K[23]*X[7],
 0]
DEF DERIV_800(X,T):
 GLOBAL K,SOOT
 C12 = 4.04-(2*x[3]+2*x[5]+4*x[7]+x[2])
 H2 = 8.08-(2*x[1]+4*x[3]+6*x[5]+6*x[7]+4*x[2])
 #PRINT(X[1])
 IF C12 == 0:
 REL_SOOT = 0
 ELSE:
 REL_SOOT = H2/C12
 SOOT_LINE = [C12,H2,REL_SOOT]
 SOOT.APPEND(SOOT_LINE)
 #PRINT(X[0],X[1],X[2],X[3],X[4],X[5],X[6],X[7],X[8])
 #PRINT(x[0]+2*x[1]+3*x[2]+4*x[3]+5*x[4]+6*x[5]+5*x[6]+6*x[7]+6*x[8],2*x[2]+2*x[
3]+2*x[4]+2*x[5]+4*x[6]+4*x[7]+6*x[8])
 #RAW_INPUT("CTRL-C")
```

```
 RETURN[6*K[8]*x[3]*x[3]+2*K[9]*x[3]*x[3]+2*K[10]*x[3]*x[3]+2*K[11]*x[2]*x[4]-
2*K[13]*X[0]* }\textrm{X}[0]+6*\textrm{K}[14]*\textrm{X}[5]+6*\textrm{K}[15]*\textrm{X}[7]
 K[8]*x[3]*x[3]+\textrm{K}[11]*\textrm{X}[2]*\textrm{X}[4]+\textrm{K}[13]*\textrm{X}[0]*\textrm{X}[0]-2*\textrm{K}[12]*\textrm{X}[1]*\textrm{X}[4],
 -K[11]*x[2]*x[4],
 -2*K[8]*x[3]*x[3]-2*K[9]*x[3]*x[3]-2*K[10]*x[3]*x[3]+K[12]*x[1]*x[4],
 4*K[8]*X[3]*X[3]+2*K[9]*X[3]*X[3]-
2*K[12]*X[1]*X[4]+2*K[14]*X[5]+4*K[15]*X[7],
K[9]*X[3]*X[3]-K[14]*X[5],
0,
K[10]*X[3]*X[3]-K[15]*X[7],
0]
DEF LSQ_1000(TS,CONCS):
\#TEST_VAR \(=\operatorname{MIN}(\operatorname{RANGE}(\operatorname{LEN}(T S))\), KEY=LAMBDA I: ABS(TS[I]-SAMPLE_POINTS[2][0]))
SAMPLING_TIMES \(=\) [TIMES[0] FOR TIMES IN SAMPLE_POINTS_1000]
\#PRINT(CONCS)
TEST \(=\) [\(]\)
FOR I IN RANGE(0,LEN(SAMPLING_TIMES)):
\#PRINT(I,"LOOP")
TEMP \(=\) MIN(ENUMERATE(TS), KEY=LAMBDA X: ABS \(\left.\left(X[1]-S A M P L I N G \_T I M E S[I]\right)\right)\)
\#PRINT(TEMP[0])
IF TEMP[1] > SAMPLING_TIMES[I]:
\#PRINT("LARGER")
TEMP_2 \(=\) [TEMP[0]-1,TEMP[0],TEMP[1],I]
\#PRINT(TEMP_2)
ELSE:
\#PRINT("SMALLER")
TEMP_2 \(=\) [TEMP[0], TEMP[0] +1 , TEMP[1],I]
\#PRINT(TEMP_2)
\#TEST.APPEND(MIN(ENUMERATE(TS), KEY=LAMBDA X: ABS(X[1]-
SAMPLING_TIMES[I])))
IF I > 0:
TEST.APPEND(TEMP_2)
\#PRINT(TEST)
\#TEST_VAR[I] \(=\operatorname{MIN}(E N U M E R A T E(T S), \operatorname{KEY}=\operatorname{LAMBDA} X: \operatorname{ABS}(X[1]-\)
SAMPLING_TIMES[I]))
\#PRINT(TEST)
\#PRINT(TS[108],TS[109],SAMPLE_POINTS[2][0])
\#PRINT(CONCS[108][1],CONCS[108][3],CONCS[108][5],CONCS[108][7])
\#PRINT(CONCS[109][1],CONCS[109][3],CONCS[109][5],CONCS[109][7])
\#NORMALIZING1 \(=\) MAX \(([\operatorname{SPECIES[1]~FOR~SPECIES~IN~CONCS]~})\)
\#NORMALIZING2 \(=\) MAX \(([\operatorname{SPECIES[3]~FOR~SPECIES~IN~CONCS]~})\)
\#NORMALIZING3 \(=\) MAX \(([\operatorname{SPECIES[5]~FOR~SPECIES~IN~CONCS]~})\)
\#NORMALIZING4 \(=\) MAX \(([\operatorname{SPECIES[7]~FOR~SPECIES~IN~CONCS]~})\)
```

SS_SUM $=0$

FOR TIME_POINT IN TEST:
\#PRINT(CONCS[TIME_POINT[0]][0],CONCS[TIME_POINT[0]][1],CONCS[TIME_POINT[0]][2],CON CS[TIME_POINT[0]][2],CONCS[TIME_POINT[0]][4])
\#RAW_INPUT("CTRL-C")
SUM1 $=$ CONCS[TIME_POINT[0]][0]+(CONCS[TIME_POINT[1]][0]-
CONCS[TIME_POINT[0]][0])*(SAMPLE_POINTS_1000[TIME_POINT[3]][0]-
TS[TIME_POINT[0]])/(TS[TIME_POINT[1]]-TS[TIME_POINT[0]])
SUM2 $=$ CONCS[TIME_POINT[0]][1]+(CONCS[TIME_POINT[1]][1]-
CONCS[TIME_POINT[0]][1])*(SAMPLE_POINTS_1000[TIME_POINT[3]][0]-TS[TIME_POINT[0]])/(TS[TIME_POINT[1]]-TS[TIME_POINT[0]])

SUM3 $=$ CONCS[TIME_POINT[0]][2]+(CONCS[TIME_POINT[1]][2]-CONCS[TIME_POINT[0]][2])*(SAMPLE_POINTS_1000[TIME_POINT[3]][0]-TS[TIME_POINT[0]])/(TS[TIME_POINT[1]]-TS[TIME_POINT[0]])

SUM4 $=$ CONCS[TIME_POINT[0]][3]+(CONCS[TIME_POINT[1]][3]-CONCS[TIME_POINT[0]][3])*(SAMPLE_POINTS_1000[TIME_POINT[3]][0]-TS[TIME_POINT[0]])/(TS[TIME_POINT[1]]-TS[TIME_POINT[0]]) SUM5 = CONCS[TIME_POINT[0]][4]+(CONCS[TIME_POINT[1]][4]-CONCS[TIME_POINT[0]][4])*(SAMPLE_POINTS_1000[TIME_POINT[3]][0]-TS[TIME_POINT[0]])/(TS[TIME_POINT[1]]-TS[TIME_POINT[0]])
\#PRINT(SUM3,SAMPLE_POINTS_1000[TIME_POINT[3]][2])
\#PRINT(SUM1,SAMPLE_POINTS[TIME_POINT[3]][3],NORMALIZING1)
\#NORMSS1 = ((SUM1/NORMALIZING1)-
(SAMPLE_POINTS[TIME_POINT[3]][3]/NORMALIZING1))**2
\#NORMSS2 $=(($ SUM2/NORMALIZING2 2$)-$
(SAMPLE_POINTS[TIME_POINT[3]][1]/NORMALIZING2)) ${ }^{*} * 2$
\#NORMSS3 $=(($ SUM3/NORMALIZING3 $)-$
(SAMPLE_POINTS[TIME_POINT[3]][2]/NORMALIZING3)) $* * 2$
\#NORMSS4 = ((SUM4/NORMALIZING4)-
(SAMPLE_POINTS[TIME_POINT[3]][4]/NORMALIZING4)) ${ }^{* *} 2$
SS1 = (SUM1-SAMPLE_POINTS_1000[TIME_POINT[3]][3]) ${ }^{* *} 2$ \#H2
SS2 $=($ SUM2-SAMPLE_POINTS_1000[TIME_POINT[3]][5] $) * * 2$ \#CH4
SS3 $=(\text { SUM3-SAMPLE_POINTS_1000[TIME_POINT[3]][1]) })^{*} 2$ \#C2H4
SS4 $=($ SUM4-SAMPLE_POINTS_1000[TIME_POINT[3]][2] $) * * 2$ \#C2H6
SS5 $=($ SUM5-SAMPLE_POINTS_1000[TIME_POINT[3]][4] $) * * 2$ \#C4H6
\#PRINT(SS2)
IF SS $1<1 \mathrm{E}-12$ :
$\mathrm{SS} 1=0.0$
IF SS2 < 1E-12:
$\mathrm{SS} 2=0.0$
IF SS3 < 1E-12:
$\mathrm{SS} 3=0.0$

```
IF SS4<1E-12:
 SS4 = 0.0
IF SS5 < 1E-12:
 SS5 = 0.0
SS_TOT = (SS1+SS2 +SS3+SS4+SS5)
SS_SUM = SS_SUM + SS_TOT
```

IF SUM1 < 0 OR SUM2 < 0 OR SUM3 < 0 OR SUM4 < 0 OR SUM5 < 0 :
SS_SUM $=50000$
\#PRINT(NORMALIZING1,NORMALIZING2,NORMALIZING3,NORMALIZING4)
\#SUM1 = CONCS[108][1]+(CONCS[109][1]-CONCS[108][1])*(SAMPLE_POINTS[2][0]-TS[108])/(TS[109]-TS[108])
\#SUM2 = CONCS[108][3]+(CONCS[109][3]-CONCS[108][3])*(SAMPLE_POINTS[2][0]-TS[108])/(Ts[109]-TS[108])
\#SUM3 = CONCS[108][5]+(CONCS[109][5]-CONCS[108][5])*(SAMPLE_POINTS[2][0]-TS[108])/(TS[109]-TS[108])
\#SUM4 = CONCS[108][7]+(CONCS[109][7]-CONCS[108][7])*(SAMPLE_POINTS[2][0]-TS[108])/(TS[109]-TS[108])
\#PRINT(SUM1,SAMPLE_POINTS[2][1])
\#SS1 $=($ SUM1-SAMPLE_POINTS[2][3] $) * * 2$
\#SS2 $=($ SUM2-SAMPLE_POINTS[2][1] $) * * 2$
\#SS3 $=($ SUM $3-$ SAMPLE_POINTS[2][2] $) * * 2$
\#SS4 $=($ SUM4-SAMPLE_POINTS[2][4] $) * * 2$
\#PRINT(SS1,SS2,SS3,SS4)
\#NORMSS1 = ((SUM1/NORMALIZING1)-(SAMPLE_POINTS[2][3]/NORMALIZING1))**2
\#NORMSS2 $=(($ SUM2/NORMALIZING2 $)-($ SAMPLE_POINTS[2][1]/NORMALIZING2 $) ~) ~ * * 2$
\#NORMSS3 $=((\text { SUM3/NORMALIZING3 })-(\text { SAMPLE_POINTS[2][2]/NORMALIZING3 }))^{* *} 2$
\#NORMSS4 $=(($ SUM4/NORMALIZING4)-(SAMPLE_POINTS[2][4]/NORMALIZING4) $) * * 2$
\#PRINT(NORMSS1,NORMSS2,NORMSS3,NORMSS4)
\#SS_TOT $=1000^{*}($ NORMSS1+NORMSS2+NORMSS3+NORMSS4 $)$
\#PRINT(SS_SUM,"1000")
RETURN SS_SUM

DEF LSQ_700(TS,CONCS):
\#TEST_VAR $=\operatorname{MIN}(\operatorname{RANGE}(\operatorname{LEN}(T S))$, KEY=LAMBDA I: ABS(TS[I]-SAMPLE_POINTS[2][0]) $)$
SAMPLING_TIMES $=[$ TIMES[0] FOR TIMES IN SAMPLE_POINTS_700]
\#PRINT(CONCS)
TEST $=[]$
FOR I IN RANGE(0,LEN(SAMPLING_TIMES)):
\#PRINT(I,"LOOP")
TEMP $=\operatorname{MIN}\left(E N U M E R A T E(T S)\right.$, KEY $=$ LAMBDA X: ABS $\left.\left(X[1]-S A M P L I N G _T I M E S[I]\right)\right)$
\#PRINT(TEMP[0])
IF TEMP[1] > SAMPLING_TIMES[I]:
\#PRINT("LARGER")
TEMP_2 $=$ [TEMP[0]-1,TEMP[0],TEMP[1],I]
\#PRINT(TEMP_2)

ELSE:
\#PRINT("SmALLER")
TEMP_2 $=$ [TEMP[0], TEMP [0] +1, TEMP [1],I]
\#PRINT(TEMP_2)
\#TEST.APPEND(MIN(ENUMERATE(TS), KEY=LAMBDA X: ABS(X[1]-
SAMPLING_TIMES[I])))
IF I > 0 :
TEST.APPEND(TEMP_2)
\#PRINT(TEST)
\#TEST_VAR[I] = MIN(ENUMERATE(TS), KEY=LAMBDA X: ABS(X[1]-
SAMPLING_TIMES[I]))
\#PRINT(TEST)
\#PRINT(TS[108],TS[109],SAMPLE_POINTS[2][0])
\#PRINT(CONCS[108][1],CoNCS[108][3],CONCS[108][5],CONCS[108][7])
\#PRINT(CONCS[109][1],CONCS[109][3],CONCS[109][5],CONCS[109][7])
NORMALIZING $1=$ MAX ([SPECIES[1] FOR SPECIES IN CONCS] $)$
NORMALIZING2 $=$ MAX $([\operatorname{SPECIES[3]~FOR~SPECIES~IN~CONCS]~})$
NORMALIZING3 $=$ MAX ([SPECIES[5] FOR SPECIES IN CONCS] $)$
NORMALIZING4 $=$ MAX([SPECIES[7] FOR SPECIES IN CONCS])
SS_SUM $=0$
FOR TIME_POINT IN TEST:
SUM1 = CONCS[TIME_POINT[0]][1]+(CONCS[TIME_POINT[1]][1]-CONCS[TIME_POINT[0]][1])*(SAMPLE_POINTS_700[TIME_POINT[3]][0]-TS[TIME_POINT[0]])/(TS[TIME_POINT[1]]-TS[TIME_POINT[0]])

SUM2 $=$ CONCS[TIME_POINT[0]][3]+(CONCS[TIME_POINT[1]][3]-CONCS[TIME_POINT[0]][3])*(SAMPLE_POINTS_700[TIME_POINT[3]][0]-TS[TIME_POINT[0]])/(TS[TIME_POINT[1]]-TS[TIME_POINT[0]])

SUM3 $=$ CONCS[TIME_POINT[0]][5]+(CONCS[TIME_POINT[1]][5]-CONCS[TIME_POINT[0]][5])*(SAMPLE_POINTS_700[TIME_POINT[3]][0]-TS[TIME_POINT[0]])/(TS[TIME_POINT[1]]-TS[TIME_POINT[0]])

SUM4 $=$ CONCS[TIME_POINT[0]][7]+(CONCS[TIME_POINT[1]][7]-CONCS[TIME_POINT[0]][7])*(SAMPLE_POINTS_700[TIME_POINT[3]][0]-TS[TIME_POINT[0]])/(TS[TIME_POINT[1]]-TS[TIME_POINT[0]])

SUM5 $=$ CONCS[TIME_POINT[0]][2]+(CONCS[TIME_POINT[1]][2]-CONCS[TIME_POINT[0]][2])*(SAMPLE_POINTS_700[TIME_POINT[3]][0]-TS[TIME_POINT[0]])/(TS[TIME_POINT[1]]-TS[TIME_POINT[0]])
\#PRINT(SUM1,SUM2,SUM3,SUM4)
\#PRINT(SUM1,SAMPLE_POINTS[TIME_POINT[3]][3],NORMALIZING1)
\#NORMSS 1 = ((SUM1/NORMALIZING1)-
(SAMPLE_POINTS[TIME_POINT[3]][3]/NORMALIZING1))**2
\#NORMSS2 = ((SUM2/NORMALIZING2)-
(SAMPLE_POINTS[TIME_POINT[3]][1]/NORMALIZING2))**2
\#NORMSS3 = ((SUM3/NORMALIZING3)-
(SAMPLE_POINTS[TIME_POINT[3]][2]/NORMALIZING3))**2

```
 #NORMSS4 = ((SUM4/NORMALIZING4)-
(SAMPLE_POINTS[TIME_POINT[3]][4]/NORMALIZING4))**2
 SS1 = (SUM1-SAMPLE_POINTS_700[TIME_POINT[3]][3])**2
 SS2 = (SUM2-SAMPLE_POINTS_700[TIME_POINT[3]][1])**2
 Ss3 = (SUM3-SAMPLE_POINTS_700[TIME_POINT[3]][2])**2
 SS4 = (SUM4-SAMPLE_POINTS_700[TIME_POINT[3]][4])**2
 SS5 = (SUM5-SAMPLE_POINTS_700[TIME_POINT[3]][5])**2
 #PRINT(NORMSS1,NORMSS2,NORMSS3,NORMSS4)
 IF SS1<1E-12:
 SS1 = 0.0
 IF SS2 < 1E-12:
 SS2 = 0.0
 IF SS3 < 1E-12:
 SS3 = 0.0
 IF SS4 < 1E-12:
 SS4 = 0.0
 IF SS5 < 1E-12:
 Ss5 = 0.0
 SS_TOT = (Ss1+Ss2+Ss3+SS4+Ss5)
 SS_SUM = SS_SUM + SS_TOT
 IF SUM1 < 0 OR SUM2 < 0 OR SUM3 < 0 OR SUM4 < 0 OR SUM5 < 0:
 SS_SUM = 50000
 #PRINT(NORMALIZING1,NORMALIZING2,NORMALIZING3,NORMALIZING4)
 #SUM1 = CONCS[108][1]+(CONCS[109][1]-CONCS[108][1])*(SAMPLE_POINTS[2][0]-
TS[108])/(TS[109]-TS[108])
 #SUM2 = CONCS[108][3]+(CONCS[109][3]-CONCS[108][3])*(SAMPLE_POINTS[2][0]-
TS[108])/(TS[109]-TS[108])
 #sum3 = CONCS[108][5]+(CONCS[109][5]-CONCS[108][5])*(SAMPLE_POINTS[2][0]-
TS[108])/(TS[109]-TS[108])
 #SUM4 = CONCS[108][7]+(CONCS[109][7]-CONCS[108][7])*(SAMPLE_POINTS[2][0]-
TS[108])/(TS[109]-TS[108])
 #PRINT(SUM1,SAMPLE_POINTS[2][1])
 #SS1 = (SUM1-SAMPLE_POINTS[2][3])**2
 #SS2 = (SUM2-SAMPLE_POINTS[2][1])**2
 #Ss3 = (SUM3-SAMPLE_POINTS[2][2])**2
 #SS4 = (SUM4-SAMPLE_POINTS[2][4])**2
 #PRINT(Ss1,ss2,ss3,ss4)
 #NORMSS1 = ((SUM1/NORMALIZING1)-(SAMPLE_POINTS[2][3]/NORMALIZING1))**2
 #NORMSS2 = ((SUM2/NORMALIZING2)-(SAMPLE_POINTS[2][1]/NORMALIZING2))**2
 #NORMSS3 = ((SUM3/NORMALIZING3)-(SAMPLE_POINTS[2][2]/NORMALIZING3))**2
 #NORMSS4 = ((SUM4/NORMALIZING4)-(SAMPLE_POINTS[2][4]/NORMALIZING4))**2
 #PRINT(NORMSS1,NORMSS2,NORMSS3,NORMSS4)
 #SS_TOT = 1000*(NORMSS1+NORMSS2+NORMSS3+NORMSS4)
 #PRINT(SS_SUM)
```

\#PRINT(SS_SUM,"700")
RETURN SS_SUM

DEF LSQ_800(TS,CONCS):
\#TEST_VAR $=\operatorname{MIN}(\operatorname{RANGE}(\operatorname{LEN}(T S)), \operatorname{KEY}=$ LAMBDA I: ABS(TS[I]-SAMPLE_POINTS[2][0]) $)$
SAMPLING_TIMES $=$ [TIMES[0] FOR TIMES IN SAMPLE_POINTS]
\#PRINT(CONCS)
TEST = []
FOR I IN RANGE(0,LEN(SAMPLING_TIMES)):
\#PRINT(I,"LOOP")
TEMP $=\operatorname{MIN}\left(E N U M E R A T E(T S)\right.$, KEY $=$ LAMBDA X: ABS $\left.\left(X[1]-S A M P L I N G _T I M E S[I]\right)\right)$
\#PRINT(TEMP[0])
IF TEMP[1] > SAMPLING_TIMES[I]:
\#PRINT("LARGER")
TEMP_2 $=$ [TEMP[0]-1,TEMP[0],TEMP[1],I]
\#PRINT(TEMP_2)
ELSE:
\#PRINT("SMALLER")
TEMP_2 $=$ [TEMP[0], TEMP[0]+1, TEMP[1],I]
\#PRINT(TEMP_2)
\#TEST.APPEND(MIN(ENUMERATE(TS), KEY=LAMBDA X: ABS(X[1]-
SAMPLING_TIMES[I])))
IF I > 0:
TEST.APPEND(TEMP_2)
\#PRINT(TEST)
\#TEST_VAR[I] $=\operatorname{MIN}(E N U M E R A T E(T S)$, KEY=LAMBDA X: ABS (X[1]-
SAMPLING_TIMES[I]))
\#PRINT(TEST)
\#PRINT(TS[108],TS[109],SAMPLE_POINTS[2][0])
\#PRINT(CONCS[108][1],CONCS[108][3],CONCS[108][5],CONCS[108][7])
\#PRINT(CONCS[109][1],CONCS[109][3],CONCS[109][5],CONCS[109][7])
NORMALIZING1 $=$ MAX $([\operatorname{SPECIES[1]~FOR~SPECIES~IN~CONCS]~}])$
NORMALIZING2 $=$ MAX $([$ SPECIES[3] FOR SPECIES IN CONCS $])$
NORMALIZING3 $=$ MAX $([$ SPECIES[5] FOR SPECIES IN CONCS $])$
NORMALIZING4 $=$ MAX $([\operatorname{SPECIES[7]~FOR~SPECIES~IN~CONCS]~}])$

SS_SUM $=0$

FOR TIME_POINT IN TEST:
SUM1 = CONCS[TIME_POINT[0]][1]+(CONCS[TIME_POINT[1]][1]-
CONCS[TIME_POINT[0]][1])*(SAMPLE_POINTS[TIME_POINT[3]][0]-
TS[TIME_POINT[0]])/(TS[TIME_POINT[1]]-TS[TIME_POINT[0]])
SUM2 $=$ CONCS[TIME_POINT[0]][3]+(CONCS[TIME_POINT[1]][3]-
CONCS[TIME_POINT[0]][3])*(SAMPLE_POINTS[TIME_POINT[3]][0]-
TS[TIME_POINT[0]])/(TS[TIME_POINT[1]]-TS[TIME_POINT[0]])

SUM3 $=$ CONCS[TIME_POINT[0]][5]+(CONCS[TIME_POINT[1]][5]-CONCS[TIME_POINT[0]][5])*(SAMPLE_POINTS[TIME_POINT[3]][0]-TS[TIME_POINT[0]])/(TS[TIME_POINT[1]]-TS[TIME_POINT[0]])

SUM4 $=$ CONCS[TIME_POINT[0]][7]+(CONCS[TIME_POINT[1]][7]-CONCS[TIME_POINT[0]][7])*(SAMPLE_POINTS[TIME_POINT[3]][0]-TS[TIME_POINT[0]])/(TS[TIME_POINT[1]]-TS[TIME_POINT[0]])

SUM5 $=$ CONCS[TIME_POINT[0]][2]+(CONCS[TIME_POINT[1]][2]-CONCS[TIME_POINT[0]][2])*(SAMPLE_POINTS[TIME_POINT[3]][0]-TS[TIME_POINT[0]])/(TS[TIME_POINT[1]]-TS[TIME_POINT[0]])
\#PRINT(SUM1,SUM2,SUM3,SUM4)
\#PRINT(SUM1,SAMPLE_POINTS[TIME_POINT[3]][3],NORMALIZING1)
\#NORMSS1 = ((SUM1/NORMALIZING1)-
(SAMPLE_POINTS[TIME_POINT[3]][3]/NORMALIZING1))**2
\#NORMSS2 = ((SUM2/NORMALIZING2)-
(SAMPLE_POINTS[TIME_POINT[3]][1]/NORMALIZING2))**2
\#NORMSS3 = ((SUM3/NORMALIZING3)-
(SAMPLE_POINTS[TIME_POINT[3]][2]/NORMALIZING3))**2
\#NORMSS4 = ((SUM4/NORMALIZING4)-
(SAMPLE_POINTS[TIME_POINT[3]][4]/NORMALIZING4))**2
SS1 = (SUM1-SAMPLE_POINTS[TIME_POINT[3]][3])**2
SS2 $=($ SUM2 - SAMPLE_POINTS[TIME_POINT[3]][1] $) * * 2$
ss3 $=($ SUM3-SAMPLE_POINTS[TIME_POINT[3]][2] $) * * 2$
SS4 $=\left(\right.$ SUM4-SAMPLE_POINTS[TIME_POINT[3]][4]) ${ }^{* *} 2$
SS5 $=($ SUM5-SAMPLE_POINTS[TIME_POINT[3]][5] $) * * 2$
\#PRINT(NORMSS1,NORMSS2,NORMSS3,NORMSS4)
IF SS $1<1 \mathrm{E}-12$ :
ss1 $=0.0$
IF SS2 < 1E-12:
SS2 $=0.0$
IF SS3 < 1E-12:

$$
\text { ss3 }=0.0
$$

IF SS4 < 1E-12: SS4 $=0.0$
IF SS5 < 1E-12:

$$
\text { SS5 }=0.0
$$

ss_TOT $=(\mathrm{Ss} 1+\mathrm{Ss} 2+\mathrm{SS} 3+\mathrm{SS} 4+\mathrm{Ss} 5)$
SS_SUM = SS_SUM + SS_TOT
IF SUM1 < 0 OR SUM2 < 0 OR SUM3 < 0 OR SUM4 < 0 OR SUM5 < 0 :
SS_SUM $=50000$
\#PRINT(NORMALIZING1,NORMALIZING2,NORMALIZING3,NORMALIZING4)
\#SUM1 = CONCS[108][1]+(CONCS[109][1]-CONCS[108][1])*(SAMPLE_POINTS[2][0]-TS[108])/(TS[109]-TS[108])
\#SUM2 = CONCS[108][3]+(CONCS[109][3]-CONCS[108][3])*(SAMPLE_POINTS[2][0]-TS[108])/(TS[109]-TS[108])

```
 \#SUM3 \(=\) CONCS[108][5]+(CONCS[109][5]-CONCS[108][5])*(SAMPLE_POINTS[2][0]-
```

TS[108])/(TS[109]-TS[108])
\#SUM4 $=$ CONCS[108][7] $+(\operatorname{CONCS}[109][7]-C O N C S[108][7]) *\left(S A M P L E _P O I N T S[2][0]-\right.$
TS[108])/(TS[109]-TS[108])
\#PRINT(SUM1,SAMPLE_POINTS[2][1])
\#SS1 $=($ SUM1-SAMPLE_POINTS[2][3] $) * * 2$
$\# \mathrm{SS} 2=(\mathrm{SUM} 2-\text { SAMPLE_POINTS[2][1] })^{*} * 2$
\#SS3 $=($ SUM3-SAMPLE_POINTS[2][2] $) * * 2$
\#SS4 $=\left(\right.$ SUM $\left.4-S A M P L E _P O I N T S[2][4]\right) * * 2$
\#PRINT(SS1,SS2,SS3,SS4)
\#NORMSS1 = ((SUM1/NORMALIZING1)-(SAMPLE_POINTS[2][3]/NORMALIZING1) $) * * 2$
\#NORMSS2 $=(($ SUM2/NORMALIZING2)-(SAMPLE_POINTS[2][1]/NORMALIZING2) $) * * 2$
\#NORMSS3 $=((\text { SUM3/NORMALIZING3 })-(\text { SAMPLE_POINTS[2][2]/NORMALIZING3 }))^{* *} 2$
\#NORMSS4 $=\left((\right.$ SUM4/NORMALIZING4)-(SAMPLE_POINTS[2][4]/NORMALIZING4) $){ }^{*} * 2$
\#PRINT(NORMSS1,NORMSS2,NORMSS3,NORMSS4)
\#SS_TOT $=1000^{*}($ NORMSS1+NORMSS2+NORMSS3+NORMSS4)
\#PRINT(SS_SUM,"800")
RETURN SS_SUM
DEF EVAL_ODE(COEFFICIENTS):
GLOBAL BEST
\#SOOT $=[0.0,0.0]$
\#SOOT[2] = SOOT[0]+SOOT[1]
\#K = COEFFICIENTS
LOWER $=[0.12383158860828203,0.0082889278632296056,0.064548634394218415$,
96.546963522128578, 752.48863740816182, 0.00076575280707778272,
$0.0012263260030934081,0.037061857125076647]$
$\mathrm{K}=[1] * 8$
$\mathrm{KS}=[0.001$,
0.005 ,
0.9 ,
0.4 ,
0.001 ,
150.0,
0.1 ,
2.5]
$\#$ KPRIME $=[0.11328835771394888,0.33263377629458646,1.1640089079868086$, $2.0667372877095214,0.41012816741839597,0.10000000000000001]$
$\# \mathrm{~K}[0]=0.0001$
$\# \mathrm{~K}[1]=0.00050000000000000001$
$\# \mathrm{~K}[2]=3.7331083789351216$
\#K[3] $=\mathrm{KS}[3] *$ COEFFICIENTS[0]
\#K[4] $=0.10000000000000001$
\#K[5] $=\mathrm{KS}[5] *$ COEFFICIENTS[1]
\#K[6] $=0.012967137223098181$
\#K[7] $=0.77350066708682985$
FOR LINE IN RANGE ( $0, \operatorname{LEN}(\mathrm{KS})$ ):
$\mathrm{K}[$ LINE $]=$ COEFFICIENTS[LINE] ${ }^{*} \mathrm{KS}[$ LINE $]$
\#K[LINE] $=$ KPRIME[LINE] ${ }^{*} \mathrm{KS}[$ LINE $]$
\#K[5] $=\mathrm{K}[5] *$ COEFFICIENTS[0]

FITNESS_800 $=10000$
FITNESS_700 $=10000$
FITNESS_1000 = 10000
\#RAW_INPUT("ENTER")
\#DERIV $=-2^{*} \mathrm{~K}[0]^{*} \mathrm{Y}[0]^{*} \mathrm{Y}[0]-\mathrm{K}[1]^{*} \mathrm{Y}[0]^{*} \mathrm{Y}[1]-\mathrm{K}[2]^{*} \mathrm{Y}[0]^{*} \mathrm{Y}[4]-\mathrm{K}[3]^{*} \mathrm{Y}[0]^{*} \mathrm{Y}[4]$, $\mathrm{K}[0]^{*} \mathrm{Y}[0]^{*} \mathrm{Y}[0]+\mathrm{K}[2]^{*} \mathrm{Y}[0]^{*} \mathrm{Y}[4]-\mathrm{K}[1]^{*} \mathrm{Y}[0]^{*} \mathrm{Y}[1]-\mathrm{K}[4] * \mathrm{Y}[1]^{*} \mathrm{Y}[3], \mathrm{K}[0]^{*} \mathrm{Y}[0]^{*} \mathrm{Y}[0]-$
$\mathrm{K}[5]^{*} \mathrm{Y}[6] * \mathrm{Y}[2]+\mathrm{K}[3] * \mathrm{Y}[0]^{*} \mathrm{Y}[4], \mathrm{K}[1] * \mathrm{Y}[0]^{*} \mathrm{Y}[1]-\mathrm{K}[4] * \mathrm{Y}[1] * \mathrm{Y}[3]$,
$\mathrm{K}[1]^{*} \mathrm{Y}[0]^{*} \mathrm{Y}[1]+\mathrm{K}[5]^{*} \mathrm{Y}[6] * \mathrm{Y}[2]-\mathrm{K}[2]^{*} \mathrm{Y}[0]^{*} \mathrm{Y}[4]-\mathrm{K}[3]^{*} \mathrm{Y}[0]^{*} \mathrm{Y}[4], \mathrm{K}[4] * \mathrm{Y}[1] * \mathrm{Y}[3]$,
$\left.\mathrm{K}[2]^{*} \mathrm{Y}[0]^{*} \mathrm{Y}[4]-\mathrm{K}[5]^{*} \mathrm{Y}[6]^{*} \mathrm{Y}[2], \mathrm{K}[5]^{*} \mathrm{Y}[6]^{*} \mathrm{Y}[2]\right]$
START=0
END=2.2
NUMSTEPS $=10000$
TIMES=LINSPACE(START,END,NUMSTEPS)
$\mathrm{Y} 0=\operatorname{ARRAY}([0.0,10.2,2.02,0.0,0.0,0.0,0.0])$
\#TRY:
$K=[1.2258349879616048,7.3573498930818539,0.5655378938692821$, $0.24190720312068753,0.072096923193689905,9.0958851170494324,16.791712803451617$, $0.2903035978514783,8.5373138448440482,9.533406414781723,0.26863078207250535]$
$\mathrm{X} 0=(\mathrm{K}[0], \mathrm{K}[1], \mathrm{K}[2], \mathrm{K}[3], \mathrm{K}[4], \mathrm{K}[5], \mathrm{K}[6], \mathrm{K}[7], \mathrm{K}[8], \mathrm{K}[9], \mathrm{K}[10])$
RESULT_1000,OUTPUT_1000 = INTEGRATE.ODEINT(DERIV,Y0,TIMES, ARGS=(K,), MXSTEP=5000, FULL_OUTPUT = 1)

BIG_QUESTION_1000 = OUTPUT_1000['MESSAGE']

IF BIG_QUESTION_1000 == 'INTEGRATION SUCCESSFUL.':
FITNESS_1000 = LSQ_1000(TIMES,RESULT_1000)
OPT_VALUE $=[0.0] * 8$
TOTAL_FITNESS $=$ FITNESS_1000
BOUNDS $=$
$\left[\left(0.1 *_{K}[0], 10.0 *_{K}[0]\right),(0.1 * K[1], 10.0 * K[1]),(0.1 * K[2], 10.0 * K[2]),(0.1 * K[3], 10.0 * K[3]),(0.1 * K[4], 1\right.$ $\left.0.0 * \mathrm{~K}[4]),\left(0.1 * \mathrm{~K}[5], 10.0 * \mathrm{~K}_{\mathrm{K}}[5]\right),\left(0.1 * \mathrm{~K}_{\mathrm{K}}[6], 10.0 *_{\mathrm{K}}[6]\right),\left(0.1 *_{\mathrm{K}}[7], 10.0 * \mathrm{~K}[7]\right)\right]$

IF TOTAL_FITNESS < BEST:
\#PRINT("FMIN")
SOL $=$ OPTIMIZE.FMIN $(F U N C, X 0, M A X F U N=500000$, MAXITER $=500000)$
\#PRINT(SOL)
\#BEST $=$ SOL[1]
\#PRINT(BEST,"AFTER BFGS")
OPT_VALUE $=$ STR $($ SOL[1] $)+\operatorname{STR}($ SOL[0] $)+" \ N "$
\#TOTAL_FITNESS = SOL[1]
F = OPEN("OPTIM.TXT","A")

```
F.WRITE(OPT_VALUE)
F.CLOSE()
```

\#RESULT_700,OUTPUT_700 = INTEGRATE.ODEINT(DERIV,Y0,TIMES, MXSTEP=5000, FULL_OUTPUT = 1)
\#BIG_QUESTION_700 = OUTPUT_700['MESSAGE']
\#IF BIG_QUESTION_700 == 'INTEGRATION SUCCESSFUL.':
\# FITNESS_700 = LSQ_700(TIMES,RESULT_700)
\#RESULT_800,OUTPUT_800=INTEGRATE.ODEINT(DERIV,Y0,TIMES, MXSTEP=5000, FULL_OUTPUT = 1)
\#BIG_QUESTION_800 = OUTPUT_800['MESSAGE']
\#IF BIG_QUESTION_800 == 'INTEGRATION SUCCESSFUL.':
\# FITNESS_800 = LSQ_800(TIMES,RESULT_800)
\#ELSE:
\# PASS
\#EXCEPT EXCEPTION:
\# PRINT("FAILED")
\#RAW_INPUT("CTRL-C")
\#FITNESS_1000 \#+ FITNESS_700 + FITNESS_800
\#PRINT(K[0],K[7])
\#FOR LOOP IN RANGE(0,):
\# IF K[LOOP]<LOWER[LOOP]:
\# TOTAL_FITNESS $=100000$
\# PRINT(LOOP)
PRINT(TOTAL_FITNESS)

RETURN TOTAL_FITNESS

SAMPLE_POINTS $=[[0,2.02,0,0,0,10.2]$,
[0.0211,1.9968,0,0,0,10.007],
[0.0238,1.9885, 0, 0, 0, 10.078],
[0.0319, 1.9768, 0, 0, 0,9.7744],
[0.0383, 1.9768, 0, 0, 0,9.7563],
[0.0503, 1.9355, 0, 0, 0.00354,9.5978],
[0.0616,2.0351,0,0,0.00681,9.0885],
[0.1183,1.9791,0,0,0.02445,9.126],
[0.2317,1.7245,0.00742,0.11565,0.04053,8.0976], [0.4099,1.5839,0.01273,0.34817,0.11791,8.101], [0.815, 1.3282,0.01757,0.76986,0.13657,8.3721], [1.625,0.94035,0.01222,1.1069,0.0908,6.1623]]
SAMPLE_POINTS_700 $\quad[[0.0,2.02,0.0,0.0,0.0,10.2]$,
$[0.02,1.941,0.0,0.0,0.0,9.6696]$,
$[0.023,1.9809,0.0,0.0,0.0,9.8734]$,
$[0.0319,2.0085,0.0,0.0,0.0,9.9297]$,
$[0.0389,2.0176,0.0,0.0,0.0,9.9424]$,
$[0.0521,2.0265,0.0,0.0,0.0,9.9556]$,
$[0.0646,1.8057,0.0,0.0,0.00224,9.8341]$,
$[0.0854,2.0209,0.0,0.0,0.00375,10.054]$,
$[0.127,1.9968,0.0,0.0,0.00709,10.129]$,
$[0.2517,1.8823,0.00153,0.0,0.01676,9.4775]$,
$[0.4477,1.8499,0.00216,0.00438,0.03512,9.2688]$,

$[0.88874515,1.7663,0.00619,0.10863,0.02562,8.875]$,

$[1.7843,1.4695,0.011,0.20582,0.02019,8.434]]$

SAMPLE_POINTS_1000 $=[[0.0,2.02,0.0,0.0,0.0,10.2]$, [0.0209,1.6933,0.00232,0.0,0.00292,9.5231], [0.0232,1.639,0.00401,0.06851,0.00402,9.3432], [0.03,1.7266,0.01309,0.23804,0.04949,9.3384], [0.0354,1.528,0.02659,0.59076,0.10173,9.4216], [0.0456,1.2657,0.03221,1.2582,0.14623,9.4185], [0.0552,0.94797,0.02967,1.9695,0.1289,8.7469], [0.0712,0.78873,0.02588,2.2974,0.11345,8.4992], [0.1991,0.30803,0.0243,5.4354,0.03927,6.7635], [0.3499,0.1772,0.0049,7.8337,0.02031,5.8438], [0.6926,0.13798,0.00296,8.9574,0.01153,4.8415], [1.3781,0.09141,0.00172,9.831,0.00691,3.2477]]

```
#PARS = [2.0, 3.0, 4.0, 5.0, 6.0, 7.0,]
#ETHENE = [POINT[1] FOR POINT IN SAMPLE_POINTS]
#PRINT(ETHENE)
#SetOfAlLELES = GAllele.GAlLeles()
#FOR I IN RANGE(0,8):
IF I == 2 OR I == 5:
A = GAlLELE.GALLELERANGE(0.05,5.0,REAL=TRUE)
ELIF I == 4:
A = GAllele.GAlleleRaNGE(0.5,50.0,REAL=TRUE)
ELSE:
A = GAllele.GAlleleRANGE(0.1,10.0,REAL=TRUE)
BEST = 1500
GENOME = G1DLIST.G1DLIST(11)
```

```
GENOME.EVALUATOR.SET(EVAL_ODE)
GENOME.SETPARAMS(RANGEMIN=0.1, RANGEMAX=10.0)
#GENOME.SETPARAMS(ALLELE=SETOFALLELES)
GENOME.MUTATOR.SET(MUTATORS.G1DLISTMUTATORREALGAUSSIAN)
GENOME.INITIALIZATOR.SET(INITIALIZATORS.G1DLISTINITIALIZATORREAL)
GA = GSIMPLEGA.GSIMPLEGA(GENOME)
#GA.NGENERATIONS = 2
GA.SETMINIMAX(CONSTS.MINIMAXTYPE["MINIMIZE"])
GA.SELECTOR.SET(SELECTORS.GROULETTEWHEEL)
GA.SETGENERATIONS(10)
GA.SETCROSSOVERRATE(0.7)
GA.SETPOPULATIONSIZE(5)
GA.SETMUTATIONRATE(0.3)
SQLITE_ADAPTER = DBADAPTERS.DBSQLITE(IDENTIFY="EX2")
GA.SETDBADAPTER(SQLITE_ADAPTER)
#PRINT(POP)
 #PRINT(GA)
#POP.SCALEMETHOD.SET(SCALING.LINEARSCALING)
#GA.STEP()
#RAW_INPUT("ENTER")
GA.EVOLVE(2)
PRINT(GA.BESTINDIVIDUAL())
#WINNER = GA.BESTINDIVIDUAL()
#PRINT(WINNER)
```


[^0]:    ${ }^{60}$ N. Meshkat, M. Eisenberg, J.J. DiStefano III, An algortihm for finding globally identifiable parameter combinations of nonlinear ODE models using Gröbner Bases, Math. Biosciences, 222, 6172, (2009)
    ${ }^{61}$ M.P. Saccomani, S. Audoly, G. Bellu, L. D'Angiò, Examples of testing global identifiability of biological and biomedical models with the DAISY software, Computers in Biology and Medicine, 40, 402-407, (2010)
    ${ }^{62}$ P. Suominen, T. Salmi, Peak Function as a Correction Term for Radical Reaction Kinetics, submitted ${ }^{63}$ M. Frenklach, H. Wang, Proc. Combust. Inst. 23, 1559, (1991)
    ${ }^{64}$ M. Frenklach, D.W. Clary, W.C. Gardiner, S.E. Stein, Proc. Combust. Inst., 20, 887, (1985)
    ${ }^{65}$ H. Wang, M. Frenklach, Combust. Flame, 110, 173-221, (1997)
    ${ }^{66}$ H. Bockhorn, F. Fetting, H.W. Wenz, Ber. Bunsen-Ges. Phys. Chem. 87, 1067, (1983)
    ${ }^{67}$ H. Böhm, H. Jander, D. Tanke, Proc. Combust. Inst. 27, 1605-1612, (1998)
    ${ }^{68}$ B. Shukla, M. Koshi, Comparative study on the growth mechanisms of PAHs, Combustion and Flame, 158, 369-375, (2011)

