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Abstrakt

Denna avhandling handlar om metoder för att hitta begränsningar för det
asymptotiska beteendet hos en förväntad uthoppstid fr̊an ett omr̊ade omkring
en fixpunkt för processer som har normalfördelad störning. I huvudsak be-
handlas olika typer av autoregressiva processer. Fyra olika metoder används.
En metod som använder principen för stora avvikelser samt en metod som
jämför uthoppstiden med en återkomsttid ger övre begränsningar för den
förväntade uthoppstiden. En martingalmetod och en metod för normalfördelade
stokastiska variabler ger undre begränsningar. Metoderna har alla b̊ade
förtjänster och nackdelar. Genom att kombinera de olika metoderna f̊ar man
de bästa resultaten. Vi f̊ar fram gränsvärdet för det asymptotiska beteen-
det hos en uthoppstid för den multivariata autoregressiva processen, samt
motsvarande gränsvärde för den univariata autoregressiva processen av ord-
ning n.
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1 Introduction

When trying to look into the future, one may find a mathematical model a
very useful tool. This holds in many situations, but let us for the moment
focus on the prediction of the future of some biological population. This
could be the growth of a population of salmon in a fish farm or some cul-
ture of bacteria, or prediction of the survival or extinction of some animal
population.

A population can be modelled by a sequence of real numbers, which
describe the number of individuals in each generation, or the density of the
population in each year. It is natural that the density or the number of
individuals should depend on the value in the previous time step. One can
also have vector-valued sequences. Often, deterministic models are used, but
nature is not deterministic. To make a model more true to life, one can
introduce an element of randomness in it. However, this adds difficulty to
the analysis of the model as well.

Figure 1: A simulation of 40 years of a bivariate model of the Northern
Spotted Owl. (Photograph by U.S. Fish and Wildlife Service, J. and K. Hollingsworth.)
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(a) Pt, the number of pairs (above) and
Sm,t, the number of single males (below).

(b) The Northern
Spotted Owl

As an example of a population model, consider figure 1. Here, we see
the short-term behaviour of a bivariate model of the Northern Spotted Owl
(for details of the model, see Allen et. al ([1]) or Jung (paper V)). At
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a given time (year) t, the population is described by a vector (Pt, Sm,t)
T ,

where Pt is the number of pairs of owls and Sm,t is the number of single male
owls. (Pt+1, Sm,t+1)T then depends on the previous step (Pt, Sm,t)

T and on a
random variable as well. For the parameter values chosen in our simulation,
the process stays in the neighbourhood of the fixed point (71.44, 20.98). This
means that the population consists of about 71 pairs of owls, about 21 single
male owls and about 21 single female owls (since the numbers of male and
female owls are assumed to be the same in this model).

The owl population in that simulation survived for at least forty years,
but, as we know from real life, in the long run all populations become extinct.
The question is how long the time until extinction is.

Since models describing real populations (such as the model for the North-
ern Spotted Owl) are often very complicated, we will now restrict our study
to much simpler models, to be able to obtain some theoretical results. This
is the reason why the focus in this thesis lies on autoregressive processes
of different types (univariate and multivariate), with normally distributed
noise. For these processes, we consider methods that can be used for obtain-
ing bounds of the asymptotics of the expected exit time from a set around
the fixed point of the process.

This summary is based on papers I-V in the list on page 2. In chapter 2,
we use the large deviation principle to get upper bounds of the expected exit
times of some autoregressive processes as ε becomes small. The chapter is
based on papers I and IV. In chapter 3, which is based on papers I and III,
and also contains previously unpublished material, we consider a martingale
method that gives lower bounds for some models. Chapter 4 is about a
method for lower bounds for normally distributed variables and is based on
paper IV. In chapter 5, which is based on paper II, we study a method that
connects the exit time with the stationary distribution of the process. Paper
V, which is a simulation study of the owl population mentioned above, is
discussed briefly in the final chapter.
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2 The large deviation method

In this chapter, which is based on papers I and IV , we use the large deviation
principle to get an upper bound of an exit time. Consider first a family of
past-dependent processes of the form

Xt = f(Xt−1) + εξt, t ≥ 1, X0 = x0, (1)

where Xt ∈ R, f : R 7→ R is a continuous function with a fixed point at the
origin (that is, f(0) = 0), ε is a small positive parameter and {ξt}t≥1 is a
sequence of independent and identically distributed standard normal random
variables (with mean 0 and variance 1). The starting point of the process is
X0 = x0 ∈ (−1, 1), and we will study the time until the process leaves the
interval (−1, 1). Thus, the exit time τ is defined by

τ := min{t ≥ 1 : |Xt| ≥ 1}. (2)

As an example, we illustrate the process in the case when f(x) = ax in
figure 2. When |a| < 1, the process stays near the origin for a while, and
then exits from the interval (−1, 1). Obviously, the exit time grows larger as
the parameter ε gets smaller (and if ε were to be 0, no exit at all would take
place).

By using the large deviation principle we will get bounds on the asymp-
totic behaviour of the expectation of the exit time τ as ε approaches zero.
That is, we will have a bound on the rate at which Eτ grows as ε→ 0.

We begin by defining the large deviation principle. The following defini-
tion is the one used by Varadhan ([15]):

Definition. A family of probability measures {Pε} on the Borel subsets of a
complete separable metric space Z satisfies the large deviation principle with
rate of speed q(ε) and a rate function I if there exists a function I from Z
into [0,∞] such that 0 ≤ I(z) ≤ ∞ for all z ∈ Z, I is lower semicontinuous,
the set {z : I(z) ≤ m} is compact in Z for all m <∞ and

lim sup
ε→0

q(ε) logPε(C) ≤ − inf
z∈C

I(z) for every closed set C ⊂ Z,

lim inf
ε→0

q(ε) logPε(G) ≥ − inf
z∈G

I(z) for every open set G ⊂ Z.

Now, for the family of processes defined in equality 1, it has been shown
by Klebaner and Liptser ([8]) that a large deviation principle holds with rate
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Figure 2: Sample paths of the process Xt = aXt−1 + εξt for t ≥ 1, X0 = 0,
for a = 0.5 and ε = 0.4 and 0.1, respectively.
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(a) For ε = 0.4, the process exits from the interval (−1, 1) at the time t = 38.
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(b) For ε = 0.1, the process is less volatile and no exit takes place during the first
100 steps.

of speed q(ε) = ε2 and rate function

J(ū) =

{
1
2

∑∞
t=1(ut − f(ut−1))2, when u0 = x0,

∞, otherwise.
(3)

When we know that the large deviation principle holds, we can calculate the
limit of an expression of the form q(ε) logP (B) for a set B, by computing
infima of the rate function. For the exit time τ , one can show that

Eτ ≤ 2M

infx0∈[−1,1] Px0(τ ≤M)
, and (4)

Eτ ≥ 1

supx0∈[−1,1] Px0(τ ≤M)
, (5)

for any positive integer M (for details, see paper I). Here, the index x0 in
Px0 denotes that the starting point of the process is x0. The exit time τ is
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smaller than or equal to M if and only if (X0, X1, . . .) ∈ B, where

B = {(u0, u1, . . .)|u0 = x0 and |ut| ≥ 1 for some t, 1 ≤ t ≤M}.

By using these inequalities for the choice M = 1, and thus minimizing the
rate function when |u1| ≥ 1, we get the following result for any function f
that satisfies the conditions:

Theorem 2.1. (For a proof, see paper I.) For the past-dependent process
defined in equality 1,

lim sup
ε→0

ε2 logEτ ≤ 1

2
, and (6)

lim inf
ε→0

ε2 logEτ ≥ 1

2
(1− max

x∈[−1,1]
|f(x)|)2. (7)

For the function f(x) ≡ 0, these upper and lower bounds coincide, and it
follows that limε→0 ε

2 logEτ = 1/2. This can of course also be calculated di-
rectly, since the process is then just a sequence of independent and identically
distributed standard normal random variables.

By specifying the function f , and using larger values of M , we will get
better bounds. To be able to determine the infimum of the rate function
explicitly, we need to choose f in a simple way.

2.1 The autoregressive process

The choice f(x) = ax in equality 1 gives what is called the autoregressive
process of order one, defined by

Xt = aXt−1 + εξt, t ≥ 1, X0 = x0, (8)

where Xt ∈ R, ε > 0, x0 is the starting point of the process, and {ξt}t≥1 is a
sequence of independent and identically distributed standard normal random
variables. We make the assumption that |a| < 1. Then the process has a
stationary distribution which is normal with mean 0 and variance ε2/(1−a2).
For the exit time

τ = min{t ≥ 1 : |Xt| ≥ 1}, (9)

we have the following result:

9



Lemma 2.2. For the autoregressive process, defined in equality 8,

lim sup
ε→0

ε2 logEτ ≤ 1− a2

2
. (10)

Proof: Shown by Klebaner and Liptser in [8]. The proof is also included in
paper I. It uses the upper bound in inequality 4 for an arbitrarily large value
of M .

It turns out that using the lower bound in inequality 5 for larger values
of M gives no better bound than the one already achieved for M = 1 in
inequality 7. That is, we get the bound

lim inf
ε→0

ε2 logEτ ≥ (1− |a|)2

2
, (11)

for the autoregressive process.
We note the correspondence between the variance ε2/(1− a2) of the sta-

tionary distribution of the autoregressive process and the bound of the upper
limit in lemma 2.2. It will be seen later, that this bound is sharp.

2.2 The multivariate autoregressive process

In this section, which is based on paper IV, we extend the large deviation
method to a multivariate case. We consider a multivariate version of the
autoregressive process, where

Xt = AXt−1 + εξt, t ≥ 1, X0 = x0, (12)

where Xt ∈ Rd, A is a real d × d matrix, ε > 0 and {ξt}t≥1 is a sequence
of independent and identically distributed multivariate normal random vari-
ables with mean zero and covariance matrix I (the identity matrix). We
make the assumption that all eigenvalues of A have absolute values that are
smaller than one. The process then has a stationary distribution which is
multivariate normal with the zero vector as mean, and the covariance matrix
ε2Σ∞, where Σ∞ satisfies the equation

Σ∞ = AΣ∞A
T + I. (13)

In the univariate case, we considered exits from the interval (−1, 1). The
corresponding exit time for the multivariate autoregressive process is

τ = min{t ≥ 1 : |cTXt| ≥ 1}, (14)

10



Figure 3: A sample path of the bivariate autoregressive process when A =(
0.7 1
0 0.5

)
and ε = 0.5, and the level curves of the stationary distribution.

The vector c is chosen as (−0.25,−0.5) and the exit time is τ = 65.
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where c is a vector in Rd, c 6= (0, . . . , 0)T . In figure 3, we see a sample path
of a bivariate autoregressive process and its exit from a set of this type.

For the univariate autoregressive process, we used the large deviation
principle shown by Klebaner and Liptser ([8]). We can show that a large de-
viation principle holds for the family of multivariate autoregressive processes
as well:

Theorem 2.3. (For a proof, see paper IV.) For the multivariate autoregres-
sive process defined in equality 12, a large deviation principle holds with rate
of speed q(ε) = ε2 and rate function

I(y0, y1, . . .) =
1

2

∞∑
t=1

(yt − Ayt−1)T (yt − Ayt−1), (15)

where y0 = x0, y1, y2, . . . ∈ Rd.

As could be expected, the rate function is the corresponding multivariate
version of the rate function in equality 3 in the univariate case. In the
univariate case we used inequality 4 to prove an upper bound. In this case,
the corresponding inequality is

Eτ ≤ 2M

inf |cT x0|<1 Px0(τ ≤M)
, (16)

11



where τ is defined in equality 14. By using this upper bound for an arbitrarily
large M , we can prove the following bound on the upper limit:

Lemma 2.4. (For a proof, see paper IV.) For τ defined as in equality 14,
we have the following bound of the upper limit:

lim sup
ε→0

ε2 logEτ ≤ 1

2cTΣ∞c
, (17)

where c is the vector in the definition of τ and ε2Σ∞ is the covariance matrix
of the stationary distribution.

We note that the bound depends on the covariance matrix of the station-
ary distribution, as in the univariate case. We will show later that the bound
is sharp.

2.3 The autoregressive process of order n

In the previous section, we extended the autoregressive process to the multi-
dimensional case. Now, we consider another extension of the autoregressive
process. This is the univariate autoregressive process of order n, where Xt

depends on the n previous steps, instead of only the last one. This process
is defined by the recursion formula

Xt = b1Xt−1 + . . .+ bnXt−n + εξt, t ≥ n,X0 = x0, . . . , Xn−1 = xn−1, (18)

where Xt ∈ R, b1, . . . , bn are real parameters, ε > 0 and {ξt}t≥n is a sequence
of i.i.d. standard normal random variables. The exit time considered is

τ = min{t ≥ n : |Xt| ≥ 1} (19)

(as in the case with the autoregressive process of order 1). We can use the
large deviation method here as well. This is easiest if we see the process as
a multivariate process. Let

Yt = (Xt, . . . , Xt−n+1)T . (20)

Then the process can be written as

Yt = BYt−1 + ε(ξt, 0, . . . , 0)T , t ≥ n, Yn−1 = (xn−1, . . . , x0)T , (21)

12



where

B =


b1 b2 · · · bn
1 0 · · · 0

0
. . . 0 0

0 · · · 1 0

 . (22)

We make the assumption that the parameters b1, . . . , bn are such that all
eigenvalues of the matrix B are smaller than one in absolute value. Then the
process defined by equality 21 has a stationary distribution, which is mul-
tivariate normal with mean (0, . . . , 0)T and covariance matrix ε2Σ∞, where
Σ∞ satisfies the equation

Σ∞ = BΣ∞B
T + (1, 0, . . . , 0)T (1, 0, . . . , 0). (23)

Since the multivariate process has this stationary distribution, the original
univariate autoregressive process of order n has a stationary distribution
which is (univariate) normal with mean 0 and variance ε2σ2, where

σ2 =
∞∑
k=0

(Bk
11)2, (24)

where Bk
11 denotes the element at the first row and the first column of the

matrix Bk.
This multivariate process is similar to the multivariate autoregressive pro-

cess. The same arguments as in that case can be used to show that the family
of processes satisfies a large deviation principle:

Theorem 2.5. (For a proof, see paper IV.) For the family of probability
measures induced by the multivariate process {Yt}t≥n−1, a large deviation
principle holds with rate of speed ε2 and rate function

I(yn−1, yn, . . .) =


1
2

∑∞
t=n((yt −Byt−1)1)2 if (yt −Byt−1)k = 0

∀k = 2, . . . , n, ∀t ≥ n
and yn−1 = (xn−1, . . . , x0)T

∞, otherwise,

where yn−1, yn, . . . ∈ Rn and (yt − Byt−1)k denotes the k:th element of the
vector yt −Byt−1.

13



Now, for the exit time τ defined in equality 19, one can prove the following
bound of the upper limit by using the inequality

Eτ ≤ 2M

inf |x0|<1,...,|xn−1|<1 Px0,...,xn−1(τ ≤M)
, (25)

for an arbitrarily large M :

Lemma 2.6. (For a proof, see paper IV.) For the autoregressive process of
order n,

lim sup
ε→0

ε2 logEτ ≤ 1

2σ2
,

where ε2σ2 is the variance of the stationary distribution of the process.

Again, the bound depends on the variance of the stationary distribution,
and, again, the bound is sharp (the corresponding lower bound will be shown
later).

3 The martingale method

In this chapter, which is partly based on papers I and III, and partly previ-
ously unpublished, we consider a method for lower bounds of the asymptotics
of an exit time. The method involves a certain martingale, which was intro-
duced by Novikov in [11]. The basis of the method is the Cauchy-Frullani
integral formula from calculus: If the function f is such that the integral∫ A

ε

f(x)

x
dx

exists for all positive ε and A, and the limits

f(0) := lim
ε↓0

f(x) and f(∞) := lim
A→∞

f(x)

exist, then ∫ ∞
0

f(ax)− f(bx)

x
dx = (f(∞)− f(0)) log

a

b
.

(For a proof, see for example Ostrowski ([12]).) What is useful to us here, is
that the value of the integral does not depend on the function f , but only
on its values at zero and at infinity.

14



3.1 A martingale for the autoregressive process

This section is based on paper I, and the details can be found there. Let
{Xt}t≥0 be the univariate autoregressive process, where

Xt = aXt−1 + εξt, t ≥ 1, X0 = x0, (26)

where 0 < a < 1. The case −1 < a < 0 is analogous, and the case a = 0 is
not treated at all with this method. Let

ϕ(u) :=
u2ε2

2(1− a2)
. (27)

Define the process {Nt}t≥0 by

Nt :=

∫ ∞
0

cosh(uXt)− cosh(ux0)

u
e−ϕ(u) du− t log

1

a
, ∀t ≥ 0. (28)

One can show, by using the Cauchy-Frullani integral formula, that the process
{Nt}t≥0 is a martingale. This implies the following for the exit time τ from
(−1, 1) defined in equality 9:

Eτ log
1

a
= E

(∫ ∞
0

cosh(uXτ )− cosh(ux0)

u
e−ϕ(u) du

)
(29)

≥
∫ ∞

0

cosh(u)− cosh(ux0)

u
e−ϕ(u) du, (30)

where the inequality holds because |Xτ | ≥ 1. Now, the integral on the right
hand side in inequality 30 does not depend on the process {Xt}t≥0 at all, and
straightforward calculations give the lower bound in the following lemma:

Lemma 3.1. (For a proof, see paper I.) For the autoregressive process {Xt}t≥0,
and the exit time τ = min{t ≥ 1 : |Xt| ≥ 1},

lim inf
ε→0

ε2 logEτ ≥ 1− a2

2
. (31)

Recall that the corresponding upper bound was given in lemma 2.2. Thus,
we know that this lower bound is sharp.
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3.2 A Cauchy-Frullani double integral

The martingale used in the previous section was tailored to fit the autore-
gressive process. We would like to use the same method for a multivariate
process as well, but then a multivariate version of the Cauchy-Frullani inte-
gral formula is needed. In paper III, the following bivariate version of the
formula was constructed, where

gA(u) = | det(u,Au)|, (32)

and (u,Au) is the matrix with columns u and Au:

Theorem 3.2. (For a proof, see paper III). Assume that u = (u1, u2)T ∈ R2,
A is a real 2 × 2 matrix with non-real eigenvalues λ(cosα ± i sinα), where
sinα 6= 0 and λ > 0, and the continuous function f : R2 7→ R is such that
the limits f(∞) := lim|u|→∞ f(u) and f(0) := lim|u|→0 f(u) exist. Then∫ ∫

R2

f(Au)− f(u)

gA(u)
du1du2 = (f(∞)− f(0))CA, (33)

where CA = 2π log λ/(λ| sinα|), if f is such the integral is convergent.

When using the Cauchy-Frullani double integral formula to construct a mar-
tingale, we need the following corollary:

Corollary 3.3. Under the assumptions in theorem 3.2,∫ ∫
R2

f(Atu)− f(u)

gA(u)
du1du2 = t(f(∞)− f(0))CA, (34)

for any integer t ≥ 1.

Proof: One can write f(Atu)− f(u) as the telescoping sum

f(Atu)− f(At−1u) + f(At−1u)− . . .+ f(Au)− f(u).

Then∫ ∫
R2

f(Atu)− f(u)

gA(u)
du1du2 =

t∑
i=1

∫ ∫
R2

f(Aiu)− f(Ai−1u)

gA(u)
du1du2,

where each integral in the sum equals (f(∞)−f(0))CA according to theorem
3.2.

16



3.3 A martingale for the bivariate autoregressive
process

Now that we have a Cauchy-Frullani double integral formula, we consider
the bivariate autoregressive process {Xt}t≥0, where

Xt = AXt−1 + εξt, X0 = x0, (35)

where Xt ∈ R2 ∀t ≥ 0, A is a real 2× 2 matrix, ε is a positive parameter and
{ξt}t≥1 is an i.i.d. sequence of bivariate standard normal random variables.
For t ≥ 1, Xt can be written as

Xt = Atx0 + ε
t−1∑
i=0

Aiξt−i. (36)

It is then easy to see that Xt has a bivariate normal distribution with mean
Atx0 and covariance matrix ε2Σt, where

Σt =
t−1∑
i=0

Ai(AT )i. (37)

One can also write the matrix Σt with a recursion formula,

Σt = AΣt−1A
T + I, (38)

where I is the identity matrix. We make the assumption that the eigenvalues
of A are smaller than one in absolute value, so that the bivariate autoregres-
sive process has a stationary distribution which is bivariate normal with mean
(0, 0)T and covariance matrix ε2Σ∞, where Σ∞ is

Σ∞ =
∞∑
i=0

Ai(AT )i. (39)

The matrix Σ∞ is also the solution of the equation

Σ∞ = AΣ∞A
T + I. (40)

Now that we are going to use a Cauchy-Frullani integral with the denominator
gAT (u), we must make the additional assumption that the eigenvalues of A
are non-real. The following results have not been published elsewhere, so the
proofs are included here for completeness.
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Lemma 3.4. When {Xt}t≥0 is the bivariate autoregressive process and A
has only non-real eigenvalues with absolute value smaller than one,

Nt :=

∫ ∫
R2

cosh(uTXt)− cosh(uTx0)

gAT (u)
e−

1
2
ε2uT Σ∞u du1du2 + tCAT , (41)

(where CAT is the appropriate constant for a Cauchy-Frullani integral with
the matrix AT ) is a martingale.

Proof: Clearly, Nt is Ft-measurable when the filtration is Ft = σ(Xs, s ≤ t).
We will now show that E|Nt| is finite. We have

E|Nt| ≤
∫ ∫

R2

E(cosh(uTXt))− 1

gAT (u)
e−

1
2
ε2uT Σ∞u du1du2

+

∫ ∫
R2

cosh(uTx0)− 1

gAT (u)
e−

1
2
ε2uT Σ∞u du1du2 + t|CAT |. (42)

The second integral on the right hand side is positive. To show that it is
bounded from above, split the integration area R2 into the sets {gAT (u) ≤ 1}
and {gAT (u) > 1}. Consider the integral over {gAT (u) ≤ 1}. The area
is limited and the integrand is positive. The integrand is bounded in a
neighbourhood of the origin, because

cosh(uTx0)− 1 =
(uTx0)2

2
+O((uTx0)4) ≤ ||u||

2||x0||2

2
+O(||u||4), (43)

and

gAT (u) = | det(u,ATu)| = ||u||2gAT

(
u

||u||

)
≥ ||u||2 min

||u||=1
gAT (u). (44)

Thus
cosh(uTx0)− 1

gAT (u)
≤ ||x0||2

2 min||u||=1 gAT (u)
+O(||u||2), (45)

so it is bounded near the origin, and we get that∫ ∫
g
AT (u)≤1

cosh(uTx0)− 1

gAT (u)
e−

1
2
ε2uT Σ∞u du1du2 ≤ K, (46)
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for a positive constant K that does not depend on ε. For the integral over
the area {gAT (u) > 1}, we have∫ ∫

g
AT (u)>1

cosh(uTx0)− 1

gAT (u)
e−

1
2
ε2uT Σ∞u du1du2

≤
∫ ∫

R2

cosh(uTx0)e−
1
2
ε2uT Σ∞u du1du2

=
2π

ε2
√
|Σ∞|

∫ ∫
R2

cosh(uTx0)√
(2π)2| 1

ε2
Σ−1
∞ |

e−
1
2
ε2uT Σ∞u du1du2

=
2π

ε2
√
|Σ∞|

E(cosh(xT0U)) =
2π

ε2
√
|Σ∞|

E(ex
T
0 U)

for a bivariate normal random variable U with mean (0, 0)T and covariance
matrix (1/ε2)Σ−1

∞ . Thus,∫ ∫
g
AT (u)>1

cosh(uTx0)− 1

gAT (u)
e−

1
2
ε2uT Σ∞u du1du2 ≤

2π

ε2
√
|Σ∞|

e
1

2ε2 x
T
0 Σ−1
∞ x0 , (47)

which is finite. We now consider the first integral on the right hand side in
inequality 42. Recall that Xt has a normal distribution with mean Atx0 and
covariance matrix ε2Σt. Then

E(eu
TXt) = eu

TAtx0+ 1
2
ε2uT Σtu, (48)

which implies that

E(cosh(uTXt)) = cosh(uTAtx0)e
1
2
ε2uT Σtu. (49)

For the first integral on the right hand side in inequality 42, we then have∫ ∫
R2

E(cosh(uTXt))− 1

gAT (u)
e−

1
2
ε2uT Σ∞u du1du2

=

∫ ∫
R2

cosh(xT0 (AT )tu)e
1
2
ε2uT Σtu − 1

gAT (u)
e−

1
2
ε2uT Σ∞u du1du2

=

∫ ∫
R2

h((AT )tu, x0)− h(u, x0)

gAT (u)
du1du2

+

∫ ∫
R2

cosh(uTx0)− 1

gAT (u)
e−

1
2
ε2uT Σ∞u du1du2, (50)
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where

h(u, x0) = cosh(xT0 u)e−
1
2
ε2uT Σ∞u,

h((AT )tu, x0) = cosh(xT0 (AT )tu)e−
1
2
ε2((AT )tu)T Σ∞(AT )tu,

and we have used that Σt − Σ∞ = −AtΣ∞(AT )t. Now, the first integral on
the right hand side in equation 50 is finite because it is a Cauchy-Frullani
integral, and the second integral was already shown to be finite. Thus, we
have shown that E|Nt| <∞. It also holds that

E(Nt+1 −Nt|Ft)

=

∫ ∫
R2

cosh((ATu)TXt)e
1
2
ε2uT Σ2u − cosh(uTXt)

gAT (u)
e−

1
2
ε2uT Σ∞u du1du2 + CAT

=

∫ ∫
R2

h(ATu,Xt)− h(u,Xt)

gAT (u)
du1du2 + CAT = 0,

because we get a Cauchy-Frullani double integral that equals −CAT (we have
lim|u|→∞ h(u,Xt) = 0 and limu→0 h(u,Xt) = 1). Thus, {Nt}t≥0 is a martin-
gale, and the proof is finished.

In the following lemma, we will use this martingale to get a lower bound of
the exit time

τ = min{t ≥ 1 : |cTXt| ≥ 1}, (51)

where c is a vector in R2, c 6= (0, 0)T . (This is the exit time used in chapter
2, where an upper bound was achieved.)

Lemma 3.5. If the starting point x0 of the bivariate autoregressive process
satisfies

xT0 Σ−1
∞ x0 −

1

cTΣ∞c
< 0,

we have

lim inf
ε→0

ε2 logEτ ≥ 1

2cTΣ∞c
, (52)

where ε2Σ∞ is the covariance matrix of the stationary distribution of the
process {Xt}t≥0.

Proof: Since {Nt}t≥0 is a martingale and τ is a stopping time with respect
to the filtration Ft, the stopped process {Nτ∧t}t≥0 (where τ ∧ t = min(τ, t))
is also a martingale. Thus, ENτ∧t = EN0 = 0, which means that
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E(τ ∧ t) =
1

|CAT |
E

(∫ ∫
R2

cosh(uTXτ∧t)− cosh(uTx0)

gAT (u)
e−

1
2
ε2uT Σ∞u du1du2

)
.

Here, −CAT is written as |CAT | for clarity, since CAT is always negative under
our assumption that the eigenvalues of A, and thus also those of AT , have
absolute values smaller than one. Now, let t→∞. It is known that Eτ <∞
(since τ ≤ min{t ≥ 1 : |ξt| ≥ 2}, which has finite expectation) and τ ∧ t ↑ τ ,
so by the monotone convergence theorem, limt→∞E(τ ∧ t) = Eτ . For the
right hand side, we use Fatou’s lemma and get

lim
t→∞

E

(∫ ∫
R2

cosh(uTXτ∧t)− cosh(uTx0)

gAT (u)
e−

1
2
ε2uT Σ∞u du1du2

)
= lim

t→∞
E

(∫ ∫
R2

cosh(uTXτ∧t)− 1

gAT (u)
e−

1
2
ε2uT Σ∞u du1du2

)
+

∫ ∫
R2

1− cosh(uTx0)

gAT (u)
e−

1
2
ε2uT Σ∞u du1du2

≥ E

(∫ ∫
R2

cosh(uTXτ )− 1

gAT (u)
e−

1
2
ε2uT Σ∞u du1du2

)
+

∫ ∫
R2

1− cosh(uTx0)

gAT (u)
e−

1
2
ε2uT Σ∞u du1du2

= E

(∫ ∫
R2

cosh(uTXτ )− cosh(uTx0)

gAT (u)
e−

1
2
ε2uT Σ∞u du1du2

)
.

Thus, we have the inequality

Eτ ≥ 1

|CAT |
E

(∫ ∫
R2

cosh(uTXτ )− cosh(uTx0)

gAT (u)
e−

1
2
ε2uT Σ∞u du1du2

)
. (53)

Consider the integral on the right hand side.

E

(∫ ∫
R2

cosh(uTXτ )− cosh(uTx0)

gAT (u)
e−

1
2
ε2uT Σ∞u du1du2

)
= E

(∫ ∫
R2

cosh(uTXτ )− 1

gAT (u)
e−

1
2
ε2uT Σ∞u du1du2

)
(54)

+

∫ ∫
R2

1− cosh(uTx0)

gAT (u)
e−

1
2
ε2uT Σ∞u du1du2.
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The first integral on the right hand side in equality 54 is greater than or
equal to ∫ ∫

Λi

cosh(uTXτ )− 1

gAT (u)
e−

1
2
ε2uT Σ∞u du1du2 (55)

for any set Λi ⊆ R2, because the integrand is positive. Now we will choose
to integrate over a certain set Λi. Consider the following four squares:

Λi = {u ∈ R2 : u =
1

ε2cTΣ∞c
c+ (p, q)T}, (56)

where c is the vector in the definition of τ and

p, q ∈ [0, 1] for i = 1,

p ∈ [0, 1], q ∈ [−1, 0] for i = 2,

p ∈ [−1, 0], q ∈ [0, 1] for i = 3,

p, q ∈ [−1, 0] for i = 4.

Each of the squares has area 1, and a corner in the point (1/(ε2cTΣ∞c))c.
One of these squares is such that

|uTXτ | ≥
1

ε2cTΣ∞c
|cTXτ |

on that square. For which one of the squares this holds, depends on the
sign of cTXτ and on the signs of the two elements of Xτ . This is shown in
the following way: We know that |cTXτ | ≥ 1 (because an exit takes place
at t = τ). If cTXτ ≤ −1 and Xτ,1 > 0 and Xτ,2 < 0, choose Λ3. For
(u1, u2)T ∈ Λ3, u1 < (1/(ε2cTΣ∞c))c1 and u2 > (1/(ε2cTΣ∞c))c2, so

u1Xτ,t + u2Xτ,2 <
1

ε2cTΣ∞c
c1Xτ,1 +

1

ε2cTΣ∞c
c2Xτ,2 (57)

=
1

ε2cTΣ∞c
cTXτ =

−1

ε2cTΣ∞c
|cTXτ |, (58)

which implies that

|uTXτ | ≥
1

ε2cTΣ∞c
|cTXτ |. (59)
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One can go through all of the eight possible cases in a similar way. In all of
the cases we can choose the suitable set Λi and get∫ ∫

Λi

cosh(uTXτ )− 1

gAT (u)
e−

1
2
ε2uT Σ∞u du1du2

≥ (cosh(
1

ε2cTΣ∞c
|cTXτ |)− 1)

∫ ∫
Λi

e−
1
2
ε2uT Σ∞u

gAT (u)
du1du2, (60)

which is greater than or equal to(
cosh(

1

ε2cTΣ∞c
)− 1

)
e
− 1

2
ε2( 1

ε2cT Σ∞c
cT +(p′,q′))Σ∞( 1

ε2cT Σ∞c
c+(p′,q′)T )

gAT ( 1
ε2cT Σ∞c

c+ (p′, q′)T )
(61)

(by the mean value theorem for integrals), for some vector (p′, q′), where
|p′| < 1 and |q′| < 1. By introducing the notation v for the constant
1/(cTΣ∞c), we can write this expression as

e
v

2ε2 (1
2

+ 1
2
e−

2v
ε2 − e−

v
ε2 )e−v(p′,q′)Σ∞ce−

1
2
ε2(p′,q′)Σ∞(p′,q′)T

gAT ( v
ε2
c+ (p′, q′)T )

(62)

The second integral on the right hand side in equality 54 is negative, and can
be written as a sum of two integrals over {gAT (u) ≤ 1} and {gAT (u) > 1},
respectively. As we know from inequalities 46 and 47 in the proof of lemma
3.4, it is greater than or equal to

−K − 2π

ε2
√
|Σ∞|

e
1

2ε2 x
T
0 Σ−1
∞ x0 , (63)

where K is a positive constant. Adding the terms in 62 and 63 together
results in the expression

e
v

2ε2

gAT ( v
ε2
c+ (p′, q′)T )

[(
1

2
+

1

2
e−

2v
ε2 − e−

v
ε2

)
e−v(p′,q′)Σ∞ce−

1
2
ε2(p′,q′)Σ∞(p′,q′)T

−gAT (
v

ε2
c+ (p′, q′)T )

(
K +

2π

ε2
√
|Σ∞|

e
1

2ε2 x
T
0 Σ−1
∞ x0

)
e−

v
2ε2

]
(64)

Now, if
1

2
xT0 Σ−1

∞ x0 −
v

2
< 0, (65)
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that is, if

xT0 Σ−1
∞ x0 −

1

cTΣ∞c
< 0, (66)

then the product of ε2 and the logarithm of expression 64 approaches v/2 as
ε→ 0. This implies that

lim inf
ε→0

ε2 logEτ ≥ 1

2cTΣ∞c
, (67)

and the proof is finished.

This lower bound is sharp, considering the corresponding upper bound
achieved in the more general multivariate case in lemma 2.4.

Figure 4: An illustration of the condition on x0 in inequality 66, in the case

when A =

(
−0.2 0.4
−1 −0.6

)
and c = (1,−1). The condition is satisfied if x0

is inside the ellipse. The area {x ∈ R2 : |cTx| < 1}, from which exits take
place, is also drawn.
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This martingale method cannot be extended directly to the general mul-
tivariate case, since the Cauchy-Frullani integral formula does not work for
odd-numbered dimensions. The matrix AT then necessarily has a real eigen-
value and the denominator gAT (u) in the Cauchy-Frullani integral is zero
along the corresponding eigenvector.
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4 A lower bound for normal random vari-

ables

This chapter is about another method of getting lower bounds for certain exit
times. It is based on paper IV. For a sequence of normally distributed ran-
dom variables with mean zero and bounded variance, we have the following
theorem:

Theorem 4.1. (For a proof, see paper IV.) Let {Yt}t≥1 be a sequence of
normally distributed random variables, all with mean 0 and assume that

Var(Yt) ≤ q(ε)σ2, ∀t ≥ 1,

for some σ2 > 0 and some positive function q(ε), where limε→0 q(ε) = 0. Let
τ := min{t ≥ 1 : |Yt| ≥ 1}. Then

lim inf
ε→0

q(ε) logEτ ≥ 1

2σ2
.

4.1 Application to autoregressive processes

This theorem can be applied to the multivariate autoregressive process {Xt}t≥0.
If the starting point of the process is assumed to be x0 = (0, . . . , 0)T , cTXt

is normally distributed with mean zero, and the variance of cTXt is bounded
by ε2cTΣ∞c, where ε2Σ∞ is the covariance matrix of the stationary dis-
tribution of the process. Then we can use theorem 4.1 for the exit time
τ = min{t ≥ 1 : |cTXt| ≥ 1}, and get the following lemma.

Lemma 4.2. (For a proof, see paper IV.) For the multivariate autoregressive
process and the exit time τ defined in equality 14, we have the following bound
of the lower limit:

lim inf
ε→0

ε2 logEτ ≥ 1

2cTΣ∞c
,

if the starting point of the process is x0 = (0, . . . , 0)T .

Obviously, the lower bound for the univariate autoregressive process is a
special case of this result:

Corollary 4.3. For the univariate autoregressive process {Xt}t≥0, with
x0 = 0, and τ = min{t ≥ 1 : |Xt| ≥ 1},

lim inf
ε→0

ε2 logEτ ≥ 1

2
(1− a2).
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The theorem can also be used for the autoregressive process of order n:

Lemma 4.4. (For a proof, see paper IV.) For the autoregressive process of
order n, when x0 = . . . = xn−1 = 0,

lim inf
ε→0

ε2 logEτ ≥ 1

2σ2
,

where ε2σ2 is the variance of the stationary distribution of the process.

We note that this method gives sharp lower bounds, but that it requires
the additional assumption that the processes start at the origin.

5 Exit times and stationary distributions

As we have seen in the previous chapters, the asymptotic behaviour of the
expected exit time depends on the stationary distribution of the process.
In this chapter, which is based on paper II, we explore this connection by
comparing the exit time with a certain return time to a set. In 1947, Kac
([7]) showed that the expected return time of a discrete Markov chain to
a point x is the reciprocal of the invariant probability π(x). Cogburn ([2])
extended the result to chains on general measure spaces in 1975.

We leave the autoregressive processes for a moment and consider the more
general past-dependent multivariate process {Xt}t≥0, where

Xt = f(Xt−1) + εξt, t ≥ 1, X0 = x0 ∈ Rd. (68)

Here, f is assumed to be a continuous and contractive function, the param-
eter ε is positive and {ξt}t≥1 is a sequence of independent and identically
distributed random variables with mean zero and finite covariance matrix.
Note that the ξt:s are not yet assumed to have a normal distribution. We
assume that f and {ξt}t≥1 are such that the process is Harris recurrent. The
process then has an invariant probability measure which we denote by π. We
consider the exit time from a set Γ ∈ Rd:

τ := min{t ≥ 1 : Xt /∈ Γ}. (69)

For fixed positive η and h, we define the set Aη as

Aη = {x ∈ Rd : η < inf
y∈Γ
||y − x|| ≤ η + h}. (70)

By comparing the exit time τ with the time of the M :th return of the process
to the set Aη, we get the following upper bound of the expectation of τ :
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Theorem 5.1. (For a proof, see paper II.) There is an M > 0 (that depends
on η) such that

Eτ ≤ M

π(Aη)
, (71)

where π is the invariant probability measure of the process.

To get more explicit results, we need to know the stationary distribution.

5.1 Results for autoregressive processes

We now apply theorem 5.1 to a general multivariate autoregressive process.
Let

Xt = RXt−1 + εSξt, t ≥ 1, X0 = x0, (72)

whereR is an d×dmatrix, S is an d×pmatrix for some p ≤ d and {ξt}t≥1 is an
i.i.d. sequence of multivariate standard normal random variables in Rp. We
assume thatR and S are such that the process has a stationary distribution π.
This distribution is multivariate normal with mean (0, . . . , 0)T and covariance
matrix ε2Σ∞. For the exit time τ , we have the following result:

Theorem 5.2. (For a proof, see paper II.) When τ is defined as in equality
69,

lim sup
ε→0

ε2 logEτ ≤ inf
u∈A0

1

2
uTΣ−1

∞ u, (73)

where A0 = {x ∈ Rd : 0 < infy∈Γ ||y − x|| ≤ h}, and ε2Σ∞ is the covariance
matrix of the stationary distribution.

The infimum on the right hand side is attained in the point where the level
curve of the density of the stationary distribution of the process touches the
boundary of the set Γ, as illustrated in figure 5.

As a special case, we now assume that S = I (the identity matrix) and
consider the exit time τ = min{t ≥ 1 : |cTXt| ≥ 1} (we then have the
multivariate autoregressive process that was also used in chapter 2). This
means that we consider exits from the set

Γ = {x ∈ Rd : |cTx| < 1}. (74)

By using Lagrange multipliers, we can minimize 1
2
uTΣ−1

∞ u under the condition
that |cTu| = 1 and obtain the minimum 1/(2cTΣ∞c). Thus, we get the same

27



Figure 5: Example of a set Γ, and the level curves of the stationary distri-

bution when A =

(
0.7 1
0 0.5

)
.
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upper bound as the one that was obtained by the large deviation method in
lemma 2.4.

As another example, we consider the exit time from the unit sphere of the
multivariate autoregressive process, that is, τ = min{t ≥ 0 : ||Xt|| ≥ 1}.
Then Γ = {x ∈ Rn : ||x|| < 1}. We determine the infimum by minimizing
1
2
uTΣ−1

∞ u under the condition that uTu = 1. Using Lagrange multipliers for
this, we get the following result:

Corollary 5.3. When τ is the exit time from the unit sphere of the multi-
variate autoregressive process,

lim sup
ε→0

ε2 logEτ ≤ 1

2λ
, (75)

where λ is the largest eigenvalue of the matrix Σ∞ and ε2Σ∞ is the covariance
matrix of the stationary distribution.
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6 Results and conclusions

We have now discussed several methods to get bounds on the asymptotic
behaviour of an expected exit time of a process.

In chapter 2, the large deviation method was treated. It gives some (non
sharp) upper and lower bounds even in the general univariate case when

Xt = f(Xt−1) + εξt, t ≥ 1, X0 = x0, (76)

where the function f is not specified. In the univariate autoregressive case,
when f(x) = ax, it gives a sharp upper bound, and we have extended the
method so that it can be used in the multivariate autoregressive case, when
x ∈ Rd and f(x) = Ax for a d×d matrix A. The large deviation method also
gives us a sharp upper bound in the case of the autoregressive process of order
n, which is really a type of multivariate process. The method in itself might
be useful for a more complicated function f as well, but it is then difficult to
minimize the rate function explicitly. It is not known whether the achieved
upper bounds would be sharp in that case. The large deviation method has
its limitations. We can only study exits from a symmetric interval around
zero in the univariate case, and, in the multivariate case, exits from sets of
the type

{x ∈ Rd : |cTx| ≥ 1},

for a vector c that is not the zero vector. Also, we do not get sharp lower
bounds. For these, we have to turn to other methods.

In chapter 3, the martingale method introduced by Novikov was explored.
It involves some technical difficulties, but it gives a sharp lower bound for the
asymptotics of the mean exit time of the univariate autoregressive process.
We were able to extend this method to the bivariate autoregressive process,
where a sharp lower bound was found, with some additional assumptions on
the matrix A and on the starting point x0 . It is not possible to extend the
method directly to the general multivariate case.

In chapter 4, a lower bound for normal random variables was used. The
principle was first shown to me by M.M. Lifshits (by personal communica-
tion). The result holds for processes where each element is normal with mean
zero and bounded variance. Thus, we get a sharp lower bound in the au-
toregressive cases, by assuming that the starting point is at the origin. For a
more general function f , each element in the process does not have a normal
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distribution, and the method is not useful. On the other hand, the method
might be used with other distributions than the normal distribution, if the
distribution and the function f are such that each element has the same
distribution with mean zero and bounded variance.

In chapter 5, the asymptotic behaviour of the mean exit time is connected
to the stationary distribution. To get explicit results with this method, we
need to know the stationary distribution (which we do know, in the case of
the autoregressive process). The advantage of this method is that we get
results for exits from more general sets than in the previous chapters. This
method only gives upper bounds, and in the autoregressive example, the
upper bound is sharp.

As we have seen, a combination of the different methods gives us stronger
results. We formulate a couple of them here. By combining lemma 2.4 and
lemma 3.5, we have the following theorem:

Theorem 6.1. For the bivariate autoregressive process {Xt}t≥0 and the exit
time τ = min{t ≥ 1 : |cTXt| ≥ 1},

lim
ε→0

ε2 logEτ =
1

2cTΣ∞c
,

if A has non-real eigenvalues with absolute value smaller than one, and the
starting point x0 satisfies

xT0 Σ−1
∞ x0 −

1

cTΣ∞c
< 0.

By combining lemma 2.4 and lemma 4.2, we get the following theorem for
the exit time of a multivariate autoregressive process, starting at the origin:

Theorem 6.2. For the exit time τ = min{t ≥ 1 : |cTXt| ≥ 1}, where {Xt}t≥0

is the multivariate autoregressive process, and x0 = (0, . . . , 0)T ,

lim
ε→0

ε2 logEτ =
1

2cTΣ∞c
,

where ε2Σ∞ is the covariance matrix of the stationary distribution of the
process.

By combining lemma 2.6 and lemma 4.4, we get the following theorem
for the exit time of a univariate autoregressive process of order n, when the
starting points are zeroes:
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Theorem 6.3. For the univariate autoregressive process {Xt}t≥0 of order n,
and the exit time τ = min{t ≥ n : |Xt| ≥ 1},

lim
ε→0

ε2 logEτ =
1

2σ2
,

assuming that all eigenvalues of B are smaller than one in absolute value,
and that x0 = . . . = xn−1 = 0.

We now have some results for the asymptotic behaviour of the mean
exit times for autoregressive processes. The original reason for studying exit
times, was our wish to study the time until extinction of some population
model. Is the autoregressive process a good approximation of such a popu-
lation model?

Figure 6: A comparison of sample paths. The paths are colour coded so that
the points get lighter coloured as time passes.
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(a) A sample path of the branching process. Extinction took place at τ = 1830.
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(b) A sample path of the approximating bivariate autoregressive process. No
extinction during the first 5000 steps.
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In the introduction, a multitype branching process model for the North-
ern Spotted Owl was mentioned. This is a much more complicated process
than the autoregressive process. Paper V contains simulation studies of this
model, and of simpler approximations of it. In the context of this thesis, the
relevant part of the paper is the one where an approximation with a bivari-
ate autoregressive process is tried. When simulating the exit time from a
relatively small area around the equilibrium, the result is very close to the
one achieved for the original process. But when we simulate the time un-
til extinction, the approximation with an autoregressive process is very bad
indeed.

In figure 6 sample paths of the two processes are shown. The time until
extinction of the bivariate autoregressive process is much larger than that of
the original branching process.

Paper V illustrates that approximation with the autoregressive process
may be useful near the equilibrium of the process, but does not give good
results for the extinction time. We need other tools as well, to study the
extinction time of a complicated process such as the model of the Northern
Spotted Owl.
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[4] G. Högnäs, B. Jung, Analysis of a stochastic difference equation: Exit
times and invariant distributions, Fasc. Math. 44 (2010), 69-74.

[5] B. Jung, The Cauchy-Frullani integral formula extended to double inte-
grals, Math. Sci., 37 (2012), 1-6.

[6] B. Jung, Exit times for multivariate autoregressive processes, Stoch. Proc.
Appl. 123 (2013), 8, 3052-3063.

[7] M. Kac, On the notion of recurrence in discrete stochastic processes, Bull.
Amer. Math. Soc. 53 (1947), 1002-1010.

[8] F. Klebaner, R. Liptser, Large deviations for past-dependent recursions,
Probl. Inf. Transm. 32 (1996), 23-34. Revised version 2006, available at
http://arxiv.org/abs/math/0603407

[9] J. Lynch, J. Sethuraman, Large deviations for processes with independent
increments, Ann. Probab. 15 (1987), 2, 610-627.

[10] S. P. Meyn, R. L. Tweedie, Markov Chains and Stochastic Stability,
Springer-Verlag, London, 1993.

[11] A. A. Novikov, On the first passage time of an autoregressive process
over a level and an application to a ”disorder” problem,Theory. Probab.
Appl., 35 (1990), 2.

[12] A. Ostrowski, Vorlesungen über Differential- und Integralrechnung, vol.
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