
BIG DATA
PROCESSING
IN THE CLOUD:
A HYDRA/SUFIA
EXPERIENCE

Helsinki
June 2014

Collin Brittle
Zhiwu Xie

WHO?

Presenter
Presentation Notes
The work reported here is a collaboration between the University Libraries’ Center for Digital Research and Scholarship and the Smart Infrastructure Laboratory at Virginia Tech.

WHAT?

Presenter
Presentation Notes
The project centers around the Virginia Tech Signature Engineering Building, or SEB.

WHY?

Presenter
Presentation Notes
This new, one-hundred-and-sixty-thousand square-foot building will house a portion of Virginia Tech’s College of Engineering.

The Smart Infrastructure Laboratory, or VT-SIL, also wants to turn this building into a full-scale living laboratory.

SENSORS

Presenter
Presentation Notes
Which is why during the construction, VT-SIL mounted over two hundred and forty vibration-monitoring accelerometers and hundreds of temperature, air flow, and other sensors, in one hundred and thirty six different locations throughout the building.

Upon completion, the SEB will be the most instrumented building for vibrations in the world.

SMART INFRASTRUCTURE

Presenter
Presentation Notes
VT-SIL will utilize the collected data to improve the design, monitoring, and daily operation of civil and mechanical infrastructure.

The data will also be used to investigate how humans interact with the built environment.

DATA SHARING
• Encourage exploratory and multidisciplinary

research
• Foster open and inclusive communities around

• modeling of dynamic systems
• structural health monitoring and damage detection
• occupancy studies
• sensor evaluation
• data fusion
• energy reduction
• evacuation management
• …

Presenter
Presentation Notes
Moreover, VT-SIL wants to openly share much of the data with the public.

The objective is to encourage exploratory and multidisciplinary research, and to foster an open and inclusive community of researchers and educators.

The VT library’s involvement in this project focuses on data sharing and reuse, in particular, how to make the process more effective and efficient.

This is a big data problem that presents many distinctive challenges.

CHARACTERIZATION
• Compute intensive

• Storage intensive

• Communication intensive

• On-demand

• Scalability challenge

Presenter
Presentation Notes
Now let’s step back a little bit. Forget the specific nature of the data and instead focus on the more abstract but also more generalizable characteristics of the problem we face.

We believe there are at least five distinct characteristics that separate this problem from many other data related projects done in libraries, and we believe similar characteristics will be seen more and more often as libraries are involved in more data intensive research.

COMPUTE INTENSIVE
• About 6GB raw data per hour

• Must be continuously processed,

ingested, and further processed

• User-generated computations

• Must not interfere with data retrieval

Presenter
Presentation Notes
First, big data problems require intensive computing power. Take SEB data as an example- the SEB generates about six gigabytes of raw data per hour.

This may not sound much, but realize that we may need to do complicated processing to transform the raw data, to ingest it into the repository, and to extract various metadata and features. All while the data keeps pouring in.

As the data grows larger, fewer end users will have the resources to process it, and will naturally expect us to do at least some preliminary processing for them.

For example, seismologists researching earthquakes will only be interested in the portion of the data that involves earthquakes. These researchers will want us to identify the earthquake data segments for them, instead of downloading many years worth of data archives just to figure it out by themselves. Such user-generated computations will demand even more processing power.

Also, processing new data must not interfere with serving the ingested data.

STORAGE INTENSIVE
• SEB will accumulate about 60TB of raw data

per year
• To facilitate researchers, we must keep raw

data for an extended period of time, e.g.,
>= 5 years

• VT currently does not have an affordable
storage facility to hold this much data

• Within XSEDE, only TACC’s Ranch can
allocate this much storage

Presenter
Presentation Notes
Big data also poses a storage challenge.

For example, the SEB will accumulate roughly sixty terabytes of raw data each year.

In order to facilitate multidisciplinary research to detect, for example, structural deteriorations over time, we must keep raw data for an extended period of time, e.g., >= 5 years

VT does not currently have an affordable storage facility to hold this much data. Even for universities that have already built massive storage systems, sharing data across institutional boundaries is still very problematic.

Now let’s take a look at the existing national R&D infrastructure.

XSEDE, the consortium including all NSF funded supercomputer centers, has a list of storage allocations. From the list we can easily figure out that the Texas Advanced Computer Center’s Ranch is the only storage system that can allocate sufficient long-term storage for the SEB project. But getting the allocation approved isn’t easy.

COMMUNICATION
INTENSIVE

• What if hundreds of researchers around
the world each tried to download
hundreds of TB of our data?

Presenter
Presentation Notes
Of course big data also poses the challenge of big data transfer.

Even if we don’t have to pay for the bandwidth, imagine how crowded the network will be if we have hundreds of researchers around the world, and each tried to download hundreds of terabytes of data from us? It’s not very practical. It will take weeks, if not months, to move the data sets around. Is it really worth the trouble?

A more efficient and effective way to deal with this problem is to help the researchers reduce the data to more manageable sizes before sharing. But this, again, goes back to the first challenge of user-generated computation load.

ON DEMAND

• Explorative and multidisciplinary
research cannot predict the data usage
beforehand

Presenter
Presentation Notes
We also predict much of the data processing will be on-demand.

This is because explorative and multidisciplinary research cannot predict the data usage beforehand.

New ideas will pop up from time to time that will require the data being manipulated in totally different ways from before.

And it will be very hard to predict how much processing power is enough.

SCALABILITY

• How to deal with these challenges in a
scalable manner?

Presenter
Presentation Notes
All this leads the fifth challenge. How can this scale?

BIG DATA + CLOUD

• Affordable

• Elastic

• Scalable

Presenter
Presentation Notes
We believe the cloud is a viable, and for now, probably the only feasible solution to move forward.

The cloud is affordable, can cope with the on-demand workloads, and scales well without needing the high initial investment with hardware.

Bandwidth cost is the major drawback, which we hope to mitigate by processing the data where it is stored.

FRAMEWORK
REQUIREMENTS

• Mix local and remote content

• Support background processing

• Be distributable

Presenter
Presentation Notes
Those characteristics became framework requirements. The chosen framework needed to mix local and remote content…

… support background processing…

…and be distributable.

FRAMEWORK
REQUIREMENTS

• Mix local and remote content

• Support background processing

• Be distributable

Presenter
Presentation Notes
Let’s start with mixing local and remote content. This supports the storage intensive characteristic. If we can’t store data remotely, we can’t store all the data.

OBJECTS AND
DATASTREAMS

Local Object

Meta Meta File

Presenter
Presentation Notes
So, instead of keeping everything locally…

OBJECTS AND
DATASTREAMS

Local Object

Meta Meta File

Presenter
Presentation Notes
…we keep a pointer to the remote file. In effect, we are keeping a way of getting the remote data.

REMOTE
STORAGE

Local
Repository

EC2 Glacier S3

Amazon

Presenter
Presentation Notes
This is another way of looking at it. The local repository is pointing to the data somewhere in Amazon.

FRAMEWORK
REQUIREMENTS

• Mix local and remote content

• Support background processing

• Be distributable

Presenter
Presentation Notes
Next, the framework needs to be able to process data asynchronously in the background. This helps fulfill the compute intensive characteristic.

Worker

Worker

Worker

Database

Public
Server

Clients

Redis

BACKGROUND
PROCESSING

Presenter
Presentation Notes
Here, the workers on the right are the important bit. They’re going to all the data processing for us.

0100
0010

FROM QUEUES
TO THE CLOUD

1010
0101

0101
0101

1100
0011

Presenter
Presentation Notes
Now, I’m going to show a quick demonstration of the workers and the queuing system. Here’s some data we’re going to be working with.

1010
0101

FROM QUEUES
TO THE CLOUD

1010
0101

1100
0011

1010
0101

Presenter
Presentation Notes
Some of the data is queued up into three queues. Some of the data is in multiple queues, and some is just in one. The queues here represent different kinds of processing that the workers will do.

1010
0101

FROM QUEUES
TO THE CLOUD

1010
0101

1100
0011

1010
0101

Presenter
Presentation Notes
And here’s our worker.

1010
0101

FROM QUEUES
TO THE CLOUD

1010
0101

1100
0011

1010
0101

Presenter
Presentation Notes
Here it’s picking up its first job off a queue. Which queue it chooses depends on how the worker was created. It may prefer or avoid certain queues.

FROM QUEUES
TO THE CLOUD

1010
0101

1010
0101

1010
0101

1100
0011

Presenter
Presentation Notes
Now it has the data, and is ready to work.

FROM QUEUES
TO THE CLOUD

1010
0101

1010
0101

1100
0011

0011
1100

1010
0101

Presenter
Presentation Notes
So it works, and creates the new metadata, and updates the item in the database.

FROM QUEUES
TO THE CLOUD

1010
0101

1010
0101

1010
0101

Presenter
Presentation Notes
We’re back to the beginning.

FROM QUEUES
TO THE CLOUD

1010
0101

1010
0101

1010
0101

Presenter
Presentation Notes
Choose a queue…

FROM QUEUES
TO THE CLOUD

1010
0101

1010
0101

1010
0101

Presenter
Presentation Notes
… pick up data…

FROM QUEUES
TO THE CLOUD

1010
0101

1111
0000

1010
0101

1010
0101

Presenter
Presentation Notes
… and process.

FROM QUEUES
TO THE CLOUD

1010
0101

1010
0101

Presenter
Presentation Notes
Repeat.

QUEUEING

Presenter
Presentation Notes
These screens are pulled from the demo application I created. Here’s what it looks like with nothing going on. Nothing in the queues (on the side), and no workers running.

QUEUEING

Presenter
Presentation Notes
Now we’re working! There are plenty of jobs queued up to keep the one worker busy. Unfortunately, trying to do all this data crunching on a single server will bog down all the other tasks the server is trying to do, like serve web pages.

So, background workers speed up the server by allowing web pages to be served while work is going on, but they still slow the server down, as the hardware has limits. In short, this won’t scale.

FRAMEWORK
REQUIREMENTS

• Mix local and remote content

• Support background processing

• Be distributable

Presenter
Presentation Notes
But if we can distribute the workload to multiple servers, we can get the work done faster, with less impact to our patrons. This meets the scalability characteristic.

0101
0101

0101
0101

FROM QUEUES
TO THE CLOUD

Presenter
Presentation Notes
Let’s visit our worker again. It used to be able to keep up with the jobs as they came in.

0010
0100

0010
0100

0010
0100

1010
0101

1010
0101

1010
0101

1100
0011

1100
0011

1100
0011

Presenter
Presentation Notes
But now it’s overwhelmed. In our case, 6 terabytes of data per hour will do that.

1100
0011

FROM QUEUES
TO THE CLOUD

1010
0101

1100
0011

0010
0100

0000
0010

Presenter
Presentation Notes
So we start up new workers on new hardware to help. But we’re not going to buy more hardware! We’re already using Amazon for storage, they can handle our hardware too.

Database

Public
Server

Clients

Redis
Master

Redis
Slave

Private
Server

Private
Server

Private
Server

DISTRIBUTED
PROCESSING

Presenter
Presentation Notes
The load on our system is going to change, though, and we’re going to want more and more workers to deal with longer and longer queues.

Now that they are not on our public server, with is easier to accommodate.

And since Amazon still charges up for idle workers, we wind down if demand tapers off.

SCALE UP

Presenter
Presentation Notes
In our demo, it looks like this. Here’s the one worker from before.

SCALE UP

Presenter
Presentation Notes
Now we’ve scaled up, and the average time spent in a queue is falling.

WE CHOSE SUFIA

WHAT IS SUFIA?

• Ruby on Rails framework…

• Based on Hydra…

• Using Fedora Commons…

• And Resque

FRAMEWORK
REQUIREMENTS

• Mix local and remote content

• Support background processing

• Be distributable

Presenter
Presentation Notes
Sufia checks two of our framework requirements out of the box.

Fedora lets us mix local and remote content, and Resque gives us packground processing.

QUESTIONS?
 rotated8 (who works at) vt.edu

	Big Data processing �in The Cloud:�A Hydra/Sufia experience
	WHO?
	What?
	WHY?
	SENSORS
	smart	infrastructure
	DATA SHARING
	CHARACTERIZATION
	Compute intensive
	Storage intensive
	Communication intensive
	On Demand
	Scalability
	Big data + Cloud
	Framework Requirements
	Framework Requirements
	Objects and Datastreams
	Objects and Datastreams
	Remote�Storage
	Framework Requirements
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Framework Requirements
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	We Chose sufia
	What is Sufia?
	Framework Requirements
	Questions?�

