
Turku Centre for Computer Science

TUCS Dissertations
No 168, December 2013

Ali Hanzala Khan

Consistency of
UML Based Designs
Using Ontology Reasoners





Consistency of UML Based Designs
Using Ontology Reasoners

Ali Hanzala Khan

To be presented, with the due permission of the Department of Information
Technologies at Åbo Akademi University, for public criticism in Auditorium
Gamma, at ICT building, Turku, Finland, on December 19, 2013, at 12 noon.

Åbo Akademi University
Department of Information Technologies

Joukahaisenkatu 3–5 A, 20520 Turku, Finland

2013



Supervisor

Professor Iván Porres
Department of Information Technologies
Åbo Akademi University
Joukahasenkatu 3–5 A, 20520 Turku
Finland

Reviewers

Professor Oscar Pastor
Centro de Investigación en Métodos de Producción de Software
Universidad Politécnica Valencia (Technical University of Valencia)
Valencia 46022
Spain

Professor Fernando Silva Parreiras
Laboratory of Advanced Information Systems - LAIS
Faculty of Business Sciences
FUMEC University
Av. Afonso Pena 3880
30130-009 Belo Horizonte - MG
Brazil

Opponent

Professor Oscar Pastor
Centro de Investigación en Métodos de Producción de Software
Universidad Politécnica Valencia (Technical University of Valencia)
Valencia 46022
Spain

ISBN 978-952-12-2985-5
ISSN 1239-1883



Dedicated to my beloved father and mother Mr. and Mrs. Muhammad Ali Khan
who gave me guidance, support and love endlessly throughout my life



“Seek knowledge from the cradle to the grave.”
Prophet Muhammad (Peace be upon him)



Abstract

Software plays an important role in our society and economy. Software de-
velopment is an intricate process, and it comprises many different tasks:
gathering requirements, designing new solutions that fulfill these require-
ments, as well as implementing these designs using a programming language
into a working system. As a consequence, the development of high quality
software is a core problem in software engineering. This thesis focuses on
the validation of software designs.

The issue of the analysis of designs is of great importance, since errors
originating from designs may appear in the final system. It is considered
economical to rectify the problems as early in the software development
process as possible. Practitioners often create and visualize designs using
modeling languages, one of the more popular being the Unified Modeling
Language (UML). The analysis of the designs can be done manually, but in
case of large systems, the need of mechanisms that automatically analyze
these designs arises.

In this thesis, we propose an automatic approach to analyze UML based
designs using logic reasoners. This approach firstly proposes the translations
of the UML based designs into a language understandable by reasoners in
the form of logic facts, and secondly shows how to use the logic reasoners
to infer the logical consequences of these logic facts. We have implemented
the proposed translations in the form of a tool that can be used with any
standard compliant UML modeling tool. Moreover, we authenticate the
proposed approach by automatically validating hundreds of UML based
designs that consist of thousands of model elements available in an online
model repository. The proposed approach is limited in scope, but is fully
automatic and does not require any expertise of logic languages from the
user. We exemplify the proposed approach with two applications, which
include the validation of domain specific languages and the validation of
web service interfaces.

i



ii



Sammanfattning
Programvara har en viktig roll i v̊art samhälle och v̊ar ekonomi. Program-
varuproduktion är en invecklad process som best̊ar av flera olika delsteg:
samling av krav, design av nya lösningar vilka uppfyller dessa krav, samt
implementering av dessa designer med hjälp av programmeringsspr̊ak till
ett fungerande system. Som en följd av detta är utvecklingen av program
av hög kvalitet ett centralt problem i programvaruproduktion. Denna av-
handling fokuserar p̊a validering av designer för programvara.

Analys av design är av stor betydelse, eftersom fel som härstammar
fr̊an designer kan framträda i det slutliga systemet. Det anses vara eko-
nomiskt att åtgärda problem s̊a tidigt som möjligt i utvecklingsprocessen.
Vanligtvis skapar och visualiserar utvecklarna sina designer med hjälp av
modelleringsspr̊ak, t.ex. med ett av de mer populära spr̊aken Unified Mo-
deling Language (UML). Analysen av designer kan göras manuellt, men för
större system finns ett behov för automatiserade mekanismer för analysen.

I denna avhandling lägger vi fram en automatisk metod för analys av
UML baserade designer med hjälp av logiska resonerare. För det första
lägger detta tillvägag̊angssätt fram översättningar av UML baserade de-
signer till ett spr̊ak som först̊as av resonerare i form av logiska fakta. För
det andra visar detta tillvägag̊angssätt hur logiska resonerare används för
att härleda de logiska konsekvenserna vilka dessa logiska fakta medför. Vi
har implementerat de framlagda översättningarna i form av ett verktyg som
kan användas tillsammans med alla vanliga UML kompatibla modellerings-
verktyg. Vidare har vi verifierat det framlagda tillvägag̊angssättet genom
att automatiskt validera hundratals UML baserade designer, best̊aende av
tusentals modellelement, vilka är tillgängliga i en on-line modelldatabas.
Det framlagda tillvägag̊angssättet är begränsat i omfattning, men är fullt
automatiserat och kräver inte expertkunskap om logiska spr̊ak av dess an-
vändare. Vi belyser tillvägag̊angssättet med tv̊a exempelapplikationer, vilka
inkluderar validering av domänspecifika spr̊ak samt validering av gränssnitt
för nätverkstjänster.

iii



iv



Acknowledgements

It is a pleasure for me to take this opportunity to express my deepest
gratitude to those who made this thesis possible.

First of all, I would like to thank my supervisor Professor Iván Porres
for having confidence in me and for supporting and guiding me in this work.
It has been a privilege for me to have had the opportunity to work closely
with Iván in many interesting projects.

I would also wish to thank Professor Oscar Pastor and Professor Fer-
nando Silva Parreiras for reviewing this thesis and for providing me with
useful comments. I would like to thank Prof. Oscar for kindly accepting
the task of being my opponent at the public defence.

I would like to thank my teachers of all the courses that I have studied
for my PhD degree. Especially Dragos Truscan, Barbro Back, Luigia Petre,
Elena Troubitsyna and Patrick Sibelius.

I also thank my co-authors Sören Höglund, Ye Liu, Espen Suenson and
Irum Rauf. I have had many interesting discussions with Espen and Irum
that helped me evolving this work. I would like to thank Sören and Ye for
helping me in the development of the translation tool.

I would like to thank Dragos, Espen and Irum for the proofreading of
my articles. I would also like to thank Marta, Kristian, Irum, Adnan, Max,
Benjamin and Jokhio for reviewing and proposing corrections in this work.

Furthermore, I would also like to extend my thanks to the administrative
and technical staff of our department. Especially, Christel, Nina and Tove
for keeping this department running and providing full support in all the
administrative matters. Also, Joakim and Magnus for providing excellent
technical support.

Thanks also goes to the colleagues at the Software Engineering Lab for
providing an enjoyable and fun place to work. In particular I would like
to thank Dragos, Adnan, Kristian, Max, Marta, Jeanette, Irum, Espen,
Fredrik, Tanvir, Nouman, Benjamin, Mehdi and Torbjörn. Moreover, I
would like to thank all my Pakistani friends, especially Moazzam, Qaisar,
Mohsin, Adnan, Jokhio and Kashif for always being there for me.

v



I am honored and grateful for the generous funding I received for four
years from VAMOLA project sponsored by Academy of Finland. I am also
thankful for the generous scholarships I received from Åbo Akademi and
Ulla Tuominen Foundation during the last year of my studies.

I would also like to thank all my family members Hyder, Asif, Umair,
Adnan and Aoug for their endless support, for missing me and praying for
me. I would like to thank my father (Baa) and mother (Ami), Mr. and
Mrs. Muhammad Ali Khan for guiding me throughout my life and loving
me endlessly. What I am today is only because of your prayers. I would
also like to thank my wife, Faiza Urooj Khan, and my daughter, Shahzeen
Khan for their understanding, unyielding devotion, support, patience and
unwavering love to lighten up my spirit to complete this thesis.

Ali Hanzala Khan
Turku, Finland.

vi



Contents

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . 6

1.3 List of Original Publications . . . . . . . . . . . . . . . . . . 6

1.4 Research Contribution Overview . . . . . . . . . . . . . . . 8

1.5 Thesis Organization Overview . . . . . . . . . . . . . . . . . 8

2 Background 9

2.1 MDE Foundations . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Four Layer OMG Modeling Hierarchy . . . . . . . . 9

2.1.2 UML . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 Meta Object Facility . . . . . . . . . . . . . . . . . . 11

2.1.4 Constraints . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.5 XML Metadata Interchange . . . . . . . . . . . . . . 13

2.2 Ontology Foundations . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Reasoners . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Description Logic . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Web Ontology Language OWL 2 . . . . . . . . . . . 16

2.2.4 Ontology Definition Metamodel . . . . . . . . . . . . 17

2.2.5 ODM vs UML . . . . . . . . . . . . . . . . . . . . . 18

2.2.6 Open and Closed world assumptions . . . . . . . . . 19

2.3 Analyzing UML Models . . . . . . . . . . . . . . . . . . . . 19

2.3.1 OWL 2 Reasoners . . . . . . . . . . . . . . . . . . . 21

2.3.2 Reasoning Tool Chain for UML Models . . . . . . . 22

3 Related Work 23

3.1 Consistency of UML Class Diagrams . . . . . . . . . . . . . 23

3.2 Consistency of Class and Statechart Diagrams . . . . . . . . 25

3.3 Consistency of REST Web Service Interfaces . . . . . . . . 27

3.4 Consistency of Class and Object Diagrams . . . . . . . . . . 29

3.5 Consistency of Multiple UML Diagrams . . . . . . . . . . . 30

vii



4 Representation of UML Class Diagrams in OWL 2 31

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Basic Class Diagrams . . . . . . . . . . . . . . . . . . . . . 32

4.2.1 Class . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.2 Class Specialization . . . . . . . . . . . . . . . . . . 32

4.2.3 Disjoint Classes . . . . . . . . . . . . . . . . . . . . . 32

4.2.4 Associations . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.5 Multiplicity . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.6 Bidirectionality . . . . . . . . . . . . . . . . . . . . . 34

4.2.7 Association Generalization . . . . . . . . . . . . . . 35

4.2.8 Class Attributes . . . . . . . . . . . . . . . . . . . . 35

4.2.9 Data Enumeration . . . . . . . . . . . . . . . . . . . 36

4.2.10 Composition . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Class Diagrams with DPF Constraints . . . . . . . . . . . . 38

4.3.1 Irreflexive . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.2 Injective . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.3 Jointly Injective . . . . . . . . . . . . . . . . . . . . 40

4.3.4 Surjective . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.5 Jointly Surjective . . . . . . . . . . . . . . . . . . . . 42

4.3.6 Bijective . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.7 Composition Morphism . . . . . . . . . . . . . . . . 43

4.3.8 Example . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Class Diagrams Including OCL Constraints . . . . . . . . . 45

4.4.1 Linking OCL Constraints with Classes in OWL 2 . . 45

4.4.2 Attribute Constraints . . . . . . . . . . . . . . . . . 46

4.4.3 Multiplicity Constraints . . . . . . . . . . . . . . . . 46

4.4.4 Boolean Operators . . . . . . . . . . . . . . . . . . . 48

4.4.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Application: Metamodel Validation 51

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.1 Validation Approach . . . . . . . . . . . . . . . . . . 53

5.1.2 Consistency Analysis of Metamodels . . . . . . . . . 53

5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Validation of Metamodels at Atlantic Zoo . . . . . . . . . . 54

5.3.1 Selection of Evaluation Data . . . . . . . . . . . . . 54

5.3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3.3 Validation Results . . . . . . . . . . . . . . . . . . . 56

5.4 Performance Test for Reasoners . . . . . . . . . . . . . . . . 58

5.4.1 Expressiveness . . . . . . . . . . . . . . . . . . . . . 58

5.4.2 Maturity of Reasoners . . . . . . . . . . . . . . . . . 59

5.4.3 Performance . . . . . . . . . . . . . . . . . . . . . . 59

viii



5.4.4 Complexity . . . . . . . . . . . . . . . . . . . . . . . 60

5.4.5 Problem Reporting . . . . . . . . . . . . . . . . . . . 61

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Consistency of Class Diagrams and Statechart Diagrams 63

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.2 Consistency of Class Diagrams and Statechart Diagrams . . 64

6.2.1 Class Diagram Representing Structure of CMS . . . 65

6.2.2 Statechart Diagram Representing Behavior of CMS . 65

6.2.3 State Invariants . . . . . . . . . . . . . . . . . . . . . 66

6.2.4 Invalid State Invariant . . . . . . . . . . . . . . . . . 67

6.3 Consistency Analysis . . . . . . . . . . . . . . . . . . . . . . 67

6.3.1 Reasoning . . . . . . . . . . . . . . . . . . . . . . . . 68

6.4 From Statechart Diagrams to OWL 2 DL . . . . . . . . . . 69

6.4.1 State and State Hierarchy . . . . . . . . . . . . . . . 69

6.4.2 Non-Orthogonal States are Exclusive . . . . . . . . . 70

6.4.3 Orthogonal States are Non-Exclusive . . . . . . . . . 70

6.5 State invariant into OWL 2 DL . . . . . . . . . . . . . . . . 71

6.5.1 State Constraints . . . . . . . . . . . . . . . . . . . . 72

6.5.2 A State Invariant Characterizes a State . . . . . . . 72

6.6 OCL to OWL 2 DL . . . . . . . . . . . . . . . . . . . . . . 72

6.7 Consistency Analysis using an OWL 2 Reasoning Tool . . . 74

6.7.1 Reasoning . . . . . . . . . . . . . . . . . . . . . . . . 75

6.7.2 Performance Analysis . . . . . . . . . . . . . . . . . 76

6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7 Application: Design of Behavioral REST Web Service In-
terfaces 79

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.2 REST Designs and their Inconsistencies . . . . . . . . . . . 80

7.2.1 Modeling REST Behavioral Interfaces . . . . . . . . 81

7.2.2 Inconsistency Problems . . . . . . . . . . . . . . . . 82

7.3 Consistency Analysis . . . . . . . . . . . . . . . . . . . . . . 82

7.3.1 Reasoning Tool Chain . . . . . . . . . . . . . . . . . 83

7.4 Structure of Behavioral RESTful Interfaces . . . . . . . . . 83

7.4.1 Structure of Resource Model . . . . . . . . . . . . . 84

7.4.2 Structure of Behavioral Model . . . . . . . . . . . . 86

7.5 From Resource and Behavioral Diagrams to OWL 2 DL . . 88

7.5.1 Resource Model in OWL 2 . . . . . . . . . . . . . . 88

7.5.2 Behavioral Model in OWL 2 . . . . . . . . . . . . . 90

7.6 Validation of RESTful Interfaces . . . . . . . . . . . . . . . 90

7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

ix



8 Consistency of Class and Object Diagrams 93
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.1.1 Overview of the Approach . . . . . . . . . . . . . . . 93
8.2 UML Object Diagrams . . . . . . . . . . . . . . . . . . . . . 95

8.2.1 UML Classes and Objects . . . . . . . . . . . . . . . 95
8.2.2 Class Memberships . . . . . . . . . . . . . . . . . . . 96
8.2.3 Class Memberships Within Inheritance Hierarchies . 96
8.2.4 UML Association and Links . . . . . . . . . . . . . . 97
8.2.5 Unique and Non-Unique Associations . . . . . . . . 97
8.2.6 Ordered Properties . . . . . . . . . . . . . . . . . . . 99

8.3 Implementation of a Model Conformance Tool . . . . . . . . 101
8.3.1 Translator . . . . . . . . . . . . . . . . . . . . . . . . 101
8.3.2 Reasoning Engine . . . . . . . . . . . . . . . . . . . 103
8.3.3 Conformance Report . . . . . . . . . . . . . . . . . . 103
8.3.4 Tool Validation . . . . . . . . . . . . . . . . . . . . . 103

8.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.4.1 Conformance of Objects against DPF Constraints . 105
8.4.2 Conformance of Objects against OCL Constraints . 108

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

9 Consistency of Multiple UML Diagrams using OWL 2 111
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
9.2 Model Merging using OWL 2 . . . . . . . . . . . . . . . . . 112
9.3 Consistency Analysis of Merged Models . . . . . . . . . . . 114

9.3.1 Validation of Merged Models . . . . . . . . . . . . . 114
9.3.2 Reasoner . . . . . . . . . . . . . . . . . . . . . . . . 115
9.3.3 Validation Report . . . . . . . . . . . . . . . . . . . 115

9.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

10 Conclusions 119

Appendices 123

A Validation Results of the Metamodel at the Atlantic Zoo 125
A.1 Composition cycle errors between several classes . . . . . . 125
A.2 Unsatisfiable class due to multiplicity constraints . . . . . . 126
A.3 Composition cycle errors involving a single class . . . . . . 126
A.4 Classes forced to have multiple owners . . . . . . . . . . . . 127
A.5 Multiple occurrences of a class name in a package . . . . . . 130

Bibliography 131

x



List of Figures

1.1 Example of modeling artifacts that we treat in this thesis. . 3

2.1 The four layer OMG Modeling Hierarchy. . . . . . . . . . . 10

2.2 A fragment of MOF Metametamodel. . . . . . . . . . . . . 12

2.3 A UML model depicting a class C1 being a subclass of a class
C2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 The UML Model representing two classes C1 and C2 con-
nected with each other using the association A. . . . . . . . 16

2.5 A graphical overview of the ODM in a four layer OMG Mod-
eling Hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 An overview of a Metamodel/Model conformance hierarchy. 21

2.7 Workflow of the proposed consistency checking approach . . 22

4.1 Class Specialization . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Disjoint Classes . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Association . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Association Bidirectionality . . . . . . . . . . . . . . . . . . 34

4.5 Association Generalization A1 ⊆ A2 . . . . . . . . . . . . . 35

4.6 Class Attributes . . . . . . . . . . . . . . . . . . . . . . . . 36

4.7 Enumeration Datatype . . . . . . . . . . . . . . . . . . . . . 36

4.8 Composition C1 owns C2 . . . . . . . . . . . . . . . . . . . 37

4.9 The UML class diagram using DPF constraints depicting a
scenario that a PhD student cannot enroll in a course that
he is teaching by himself. . . . . . . . . . . . . . . . . . . . 39

4.10 Irreflexive Constraint . . . . . . . . . . . . . . . . . . . . . . 39

4.11 Injective Constraint . . . . . . . . . . . . . . . . . . . . . . 40

4.12 Jointly Injective Constraint . . . . . . . . . . . . . . . . . . 41

4.13 Surjective Constraint . . . . . . . . . . . . . . . . . . . . . . 41

4.14 Jointly Surjective Constraint . . . . . . . . . . . . . . . . . 42

4.15 Bijective Constraint . . . . . . . . . . . . . . . . . . . . . . 43

4.16 Composition Morphism . . . . . . . . . . . . . . . . . . . . 44

4.17 A UML class diagram with OCL constraints. . . . . . . . . 45

4.18 The grammar of the supported OCL fragment. . . . . . . . 46

xi



5.1 Examples of invalid metamodels. Top: Invalid due to the
multiplicity error. Bottom: Invalid due to the composition
error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 An erroneous model conforming to the bad metamodel in
the bottom of Figure 5.1. . . . . . . . . . . . . . . . . . . . 52

5.3 (As in [53, 1]) The metamodel fragment describes an Archi-
tectural Description, containing an unsatisfiable class Mod-
elElement. This metamodel is unsatisfiable due to the vio-
lation of the single owner restriction of composition. . . . . 56

5.4 (As in [17, 1]) The metamodel fragment describes a Busi-
ness Process Model with unsatisfiable classes Task and Com-
poundTask due to the composition cycle error. . . . . . . . 57

5.5 MOFScript transformation performance. . . . . . . . . . . . 60

5.6 Reasoner satisfiability checking performance. . . . . . . . . 61

6.1 The static view of Content Management System. . . . . . . 65

6.2 The behavioral view of the class Article of the class diagram
shown in Figure 6.1. . . . . . . . . . . . . . . . . . . . . . . 66

6.3 State and State Hierarchy . . . . . . . . . . . . . . . . . . . 69

6.4 Non-Orthogonal States are Exclusive . . . . . . . . . . . . . 70

6.5 Orthogonal States are Non-Exclusive . . . . . . . . . . . . . 70

6.6 OCL State invariant . . . . . . . . . . . . . . . . . . . . . . 71

6.7 OCL State invariant - Attribute Constraint . . . . . . . . . 73

6.8 OCL State invariant - Multiplicity Constraints . . . . . . . 73

6.9 OCL State invariant - Boolean Operators . . . . . . . . . . 73

6.10 Excerpt of the output ontology generated by the translation
tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.11 The satisfiability report of the ontology shown in Figure 8.8
generated by the OWL 2 reasoner Pellet. . . . . . . . . . . . 75

6.12 The graph of the total time (Translation time + Reasoning
time) to process valid and mutated models. . . . . . . . . . 76

7.1 Resource Model for RESTful Web Service with Invariants . 84

7.2 Behavioral Model of REST Web Service Interface . . . . . . 86

8.1 (a): A UML class diagram depicting a class hierarchy, a
composition and a non-unique association. (b): A consistent
UML object diagram conforms to the UML class diagram,
and (c): An inconsistent object diagram due to the shared
owner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.2 Automatic object and class diagram conformance process. . 94

xii



8.3 (a): A class diagram depicting an association P connecting
two classes, (b): A consistent object diagram for both unique
and non-unique P, (c): An inconsistent object diagram if P
is unique, and (d): A consistent object diagram if P is non-
unique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8.4 Top: A UML class diagram depicting ordered property. Bot-
tom: A UML object diagram depicting ordered links . . . . 100

8.5 Top: UML class diagram depicting Automated Teller Ma-
chine (ATM) login operation by using ordered property, Mid-
dle: Consistent UML object diagram, Bottom: Inconsistent
UML object diagram due to the non-unique index link. . . . 102

8.6 List of test cases and the conformance report summary of
invalid object diagrams. . . . . . . . . . . . . . . . . . . . . 104

8.7 (a) The UML metamodel depicting a condition that a PhD
student cannot enroll in a course that he is teaching by him-
self. (b) Invalid object diagram, (c) Valid object diagram. . 105

8.8 The OWL 2 translation of models shown in Figure 8.7(a)
and Figure 8.7(b). . . . . . . . . . . . . . . . . . . . . . . . 106

8.9 The SWRL rule for the [comp] constraint of the association
studyandteach shown in Figure 8.7(a). . . . . . . . . . . . . 107

8.10 The validation report of the OWL 2 ontology of the class
and object diagram shown in Figure 8.8 and Figure 8.9. . . 108

8.11 Top: A UML class diagram with OCL constraints. Bottom:
The object diagram of a class diagram depicted on top. . . 108

8.12 The OWL 2 translation of models shown in Figure 8.11. . . 109

9.1 The merge or union of two versions of a Model. . . . . . . . 112
9.2 The OWL 2 ontology of models M1 and M2 shown in Fig-

ure 9.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
9.3 The classification report of the OWL 2 ontology shown in

Figure 9.2 generated by Pellet. . . . . . . . . . . . . . . . . 114
9.4 The invalid merge of two valid UML models. . . . . . . . . 115
9.5 The OWL 2 ontology of the models M , M1 and M2 (Fig-

ure 9.4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

xiii



xiv



List of Tables

1.1 Research contribution overview. . . . . . . . . . . . . . . . . 8

2.1 DL interpretation of the main OWL 2 expressions used in
this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 UML elements which have the DL equivalent OWL 2 DL
elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 UML elements which do not have the DL equivalent OWL 2 DL
elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6.1 Time taken by the translation tool and reasoning engines to
process UML models. . . . . . . . . . . . . . . . . . . . . . 76

xv



xvi



Chapter 1

Introduction

1.1 Introduction

Software is a key element of our contemporary world. The presence of a
variety of software is increasing in all domains of life, therefore, the failure
of a software system may not only cause the loss of money and time, but
also may become life-threatening.

Software development is a complex process. It starts from gathering
requirements, to designing and analysis of specifications using models or
by other means, and then implementing the designs using a programming
language.

The quality of software is of great concern. There are a number of
techniques available in order to improve the quality of a software system,
being the most popular software testing.

In software testing, the quality of software is assured by first giving
inputs to the software system and then by checking whether the outputs
comply to the specification. A specification of software is a description of a
system to be developed. It plays an important role in the development of
software throughout the development process. Software testing is in many
cases a manual job and it involves an iterative loop between developers and
testers. Once a software module is developed, it is sent for testing, the
tester then checks the module by giving a set of inputs and then analyzes
the output. If the module is found erroneous, then the module is sent back
to the developer to fix the errors. This iterative loop continues until all
errors that are found using this technique are corrected.

Software testing as a quality assurance technique depends on the quality
of the system specification. Therefore, we need mechanisms to analyze the
specifications of a software system as early in the software development
process as possible. The sooner we discover an error, the cheaper it is to
fix it.

1



The specifications are usually written in the form of a natural language
or using mathematical notations. In order to analyze the specifications
during a software development process, practitioners often create models of
these specifications using a modeling language.

A software model usually comprises a number of diagrams. Each dia-
gram in a software model represents different viewpoint of a system. These
diagrams allow us to decompose the design of a large system into smaller
and more manageable views, and allow us to examine the software designs
in the early stages of a software development process. This helps in the
detection of errors or shortcomings beforehand, which allows us to make
corrections in software designs in a pre development phase. We assume
that if a model is a true depiction of a specification, then any error in the
model is considered a reflection of an error in the specification.

The diagrams in a software model are described using a particular mod-
eling language. The modeling language can be a general modeling language,
or can be limited to some specific domain. A well-known general modeling
language used by practitioners during software development process is the
Unified Modeling Language (UML) [77, 32]. A language that is limited
to some specific domain is called a Domain Specific Language (DSL) [37].
The definition of a modeling language is given in terms of a metamodel by
using a metamodeling language, such as Meta Object Facility (MOF) [71]
or Kernel Meta Meta Model (KM3) [52]. This thesis focuses on the analysis
of modeling artifacts, such as models and metamodels specified using UML
superstructure specification [77] and MOF. An example of the modeling
artifacts that we tackle in this thesis is shown in Figure 1.1.

In formal methods, the specification of a system is written in the form
of mathematical notations. These notations represent an abstraction of a
system. Once the specification is produced, the specification is used as a
guide for the development of a system. One way to write the specification
is in the form of preconditions and postconditions. A precondition is a
condition that must be true before a function in software is invoked, and a
postcondition is a condition that must be true after the invoked function is
completed.

UML models can also be represented in the form of mathematical log-
ics [69], such as, description logics [13] or predicate logics [35]. A consistent
logical theory is the one which does not contain a contradiction [91, 12].
Similarly, a model which does not contain a contradiction is considered as
consistent.

A model in many cases comprises of classes and their associations,
whereas in mathematical/description logic the classes are considered as
concepts and associations as roles. A mathematical theory in many cases
comprises a number of formulas. In mathematical theory these formulas
are also known as well−formed formulas [69]. A mathematical theory is

2



Class

Association

State Transition
*

outgoing1 source

*
incoming1 target

«instance Of»

«instance Of»

 
«instance Of»

«instance Of»

Logged in

Logged out

Login()
 

Logot()

«instance Of»

«instance Of»

«instance Of»

Login()

«instance Of»

«instance Of»

«instance Of»

M3 (MetaMetaModel)

M2 (MetaModel)

M1 (Model)

System.User
Login()
Logout()

 
 

«instance Of»

me:System.User
M0 (Instances)

Class

«instance Of»

 
«instance Of»

Figure 1.1: Example of modeling artifacts that we treat in this thesis.

considered as consistent if and only if all formulas in the theory are true. In
mathematical logic the true formulas of a mathematical theory are called
satisfiable formulas [33]. Consequently, the formulas which are not true
are called unsatisfiable formulas.

Similar to the formulas of mathematical logic, the modeling artifacts
may also have unsatisfiable concepts, and the presence of any unsatisfiable
concept in a modeling artifact makes the whole artifact inconsistent. Con-
sequently, such artifacts cannot be instantiated, meaning that if an artifact
is inconsistent, then a system based on that artifact cannot exist. More
correctly, if a class diagram has unsatisfiable classes, then the objects of
these classes cannot exist. Furthermore, in case of an inconsistent behavior
diagram (such as inconsistent statechart diagrams), an object cannot enter
into an unsatisfiable state.

3



The unsatisfiable concepts in modeling artifacts should be identified
as early in the modeling process as possible. In this thesis we propose an
approach that automatically checks the consistency of modeling artifacts. If
an artifact is found to be inconsistent, then the proposed approach indicates
the unsatisfiable concepts that make the whole artifact inconsistent.

We call the task of finding out the inconsistencies in modeling artifacts
the model validation. The problem of the validation of modeling artifacts
has been discussed in many research papers [104, 85, 96, 15, 41, 3], how-
ever, it still remains open. A software model usually comprises a number of
structural and behavioral diagrams that represent static and dynamic ab-
stractions of a system, respectively. In each type of a diagram in a model,
there are a number of validation problems that have been discussed by
other researchers in the past.

Among the validation problems in behavioral diagrams that has already
been discussed by other researchers are for instance, analysis of the control
looping to find deadlocks [104], analysis of method invocations against the
class description for finding deadlocks [85]. Also, checking the consistency
of statechart diagrams and class diagrams by using the π-calculus [96].

The validation problems of structural diagrams are very vast. A num-
ber of problems that have been discussed by other researchers include, the
consistency of UML class diagrams with hierarchy constraints [15], the rea-
soning of UML class diagrams [19], the Full satisfiability of UML class
diagrams [11], and the inconsistency management in model driven engi-
neering [94]. Moreover, there is a number of theorem proving tools avail-
able that are based on a high order logic, such as HOL [41]. These tools
are very powerful but they require interaction with an expert human user.
Also, there are model finders, such as Alloy [10] or Microsoft formula [3],
which are automatic, but require that we artificially limit the search space.
Furthermore, there are reasoners for logics with the efficient decision pro-
cedures that are automatic [90, 83]. In order to use these reasoners we
need a mechanism, which translates the designs from the languages used
by designers to the input language used by reasoning tools.

In this thesis we propose an approach that first automatically translates
the modeling artifacts into logical facts, and then uses automatic logical
reasoners to infer the logical consequences in the translated logical facts.
Also, the approach we present in this thesis is implemented in the form of
a tool that can be used with any standard compliant UML modeling tool.
The implemented tool takes a UML model as an input then processes it.
This allow us to integrate our approach with different modeling tools.

Although, a lot of research work has already been done in the area of
the validation of structural and behavioral diagrams, we still believe there
is a room for improvements in the existing work. In this thesis we address
the issues that have been inadequately or not addressed in the previous

4



research. The novelty of our work is that we offer the validation of many
modeling concepts under one approach. The modeling concepts that can
be validated using our approach include the following: classes, objects, as-
sociations, links, labeled links, domain and range, multiplicity, composition
(herein unshearedness and acyclicity), unique and non-unique associations,
ordering, class generalization, and association generalization. Furthermore,
the proposed approach also allows us to analyze the conformance of ob-
ject diagrams against class diagrams, consistency of class diagrams and
statchart diagrams, consistency of state invariants written using a subset
of object constraint language, and the consistency of multiple models of the
same metamodels when merged together.

This thesis also contains several applications of the proposed approach.
These include the validation of DSLs and the validation of REST web ser-
vice interfaces. The DSLs are usually defined in the form of class diagrams.
We exemplify the proposed approach by validating more than 300 DSLs
comprising of thousands of model elements available in an online repository
(the Atlantic metamodel zoo [1]). Another application is the validation of
REST web service interfaces. REST [36] is an architectural style to design
scalable web services which play well with the existing infrastructure of
web. They usually offer simple interfaces that can create, retrieve, update
and delete information from a database. In this application, we address the
problem of determining the consistency of REST interface design models
and explain our reasoning approach. The REST interface design models
usually consist of class diagrams and statechart diagrams with state in-
variants. Here, the class diagrams and the statchart diagrams depict the
structural and behavioral abstractions of the REST web services respec-
tively, whereas the state invariant characterizes a state in the statechart
diagram. The state invariant is written using a subset of object constraint
language and it must be true in case of a specific state is active.

The detection of errors in the above mentioned models, and the results
of the performance tests of the proposed approach is the evidence that
the proposed approach is viable and practical, and can be applied in the
industry.

In the next section we describe the main objectives of the research work
that we present in this thesis.

5



1.2 Research Objectives

The main objective of this thesis is to study and develop an automatic
approach addressing the following research questions:

I How can one ensure that a class model is consistent?

II How can one detect inconsistencies between different models, expressed
in different languages such as class diagrams and statechart diagrams?
Assuming the each model is valid with respect to its language, we still
need to ensure that the model elements of one model do not contradict
with the model elements of the other model.

III How can one validate the constraints applied to models such as: State
invariants in the form of Object Constraint Language (OCL)?

IV How can one validate a given model against its metamodel?

V How can one detect the possible inconsistencies that arise due to the
merging of multiple models representing different views of the same
system using the same metamodel?

VI How can we integrate our approach in existing UML modeling tools?

1.3 List of Original Publications

This thesis is based on the articles listed below. The details about the
contribution of the author is stated in the description of each article. In
addition, the research work presented in this thesis extends and in some
cases improves the content of some of the listed publications.

I Höglund, Sören and Khan, Ali Hanzala and Liu, Ye and Porres, Ivan.
Representing and Validating Metamodels using OWL 2 and SWRL. In
Proceedings of the 9th Joint Conference on Knowledge-Based Software
Engineering JCKBSE, Aug 2010 [46].
Author’s contribution: The author jointly developed the main
idea of this paper with other authors. The author contributed to the
translations of UML class diagrams to OWL 2.

II Liu, Ye and Höglund, Sören and Khan, Ali Hanzala and Porres, Ivan.
A Feasibility Study on the Validation of Domain Specific Languages
Using OWL 2 Reasoners. In Third Workshop on Transforming and
Weaving OWL Ontologies and MDE at TOOLS, Jun 2010 [63].
Author’s contribution: This article is the implementation and the
validation of the work presented in Article I. The author jointly de-
veloped the main idea of this paper with other authors. The author

6



contributed to the implementation of UML class diagram to OWL 2
translations in the form of a MOFScript-based translation tool. The
translation tool is used to translate UML metamodels of the Atlantic
Zoo into OWL 2 in order to conduct the study shown in this article.

III Khan, Ali Hanzala and Suenson, Espen and Porres, Ivan. Representa-
tion and Conformance of UML Models Containing Ordered Properties
Using OWL 2. In OrdRing First International Workshop on Ordering
and Reasoning, at The 10th International Semantic Web Conference
(ISWC) Oct 2011 [57].
Author’s contribution: The main idea of this article was jointly
developed by all authors. The author and Suenson proposed the trans-
lations of UML object diagrams to OWL 2 and developed the transla-
tion tool using MOFScript.

IV Khan, Ali Hanzala and Suenson, Espen and Porres, Ivan. Class and
object diagram Conformance using OWL 2 Reasoners. In 12th Sym-
posium on Programming Languages and Software Tools SPLST, Oct
2011 [58].
Author’s contribution: This article is the extension of the work
presented in Article III. The main idea of this article was jointly de-
veloped by all authors. The author and Suenson proposed the transla-
tions of UML object diagrams with ordered properties to OWL 2 and
developed the translation tool using MOFScript.

V Khan, Ali Hanzala and Rauf, Irum and Porres, Ivan. Consistency of
UML Class and Statechart Diagrams. In First International Confer-
ence on Model-Driven Engineering and Software Development, MOD-
ELSWARD Feb 2013 [56].
Author’s contribution: The main idea of this article was jointly
developed by all authors. The author and Rauf proposed the trans-
lations of UML statechart diagrams and OCL constraints to OWL 2
and developed the prototype of the translation tool using Python.

VI Rauf, Irum and Khan, Ali Hanzala and Porres, Ivan. Analyzing Con-
sistency of Behavioral REST Web Service Interfaces . The 8th Interna-
tional Workshop on Automated Specification and Verification of Web
Systems, WWV, Jun 2012 [86].
Author’s contribution: This article is the implementation and
evaluation of the work presented in Article V. The main idea of this
article was also jointly developed by all authors. The author and Rauf
proposed the translations of UML diagrams and OCL constraints de-
picting an interface of a REST Web service to OWL 2 and developed
the prototype of the translation tool using Python.

7



1.4 Research Contribution Overview

The summary of the research objectives that we address in different articles
is given in Table 1.1. In this table, the rows refer to the research objectives
that we address in this thesis, and the columns point to the articles on
which these research objectives are based.

Table 1.1: Research contribution overview.

Research Publications
Objectives I II III IV V VI

I X X
II X X
III X X
IV X X
V X X X X
VI X X X X X X

1.5 Thesis Organization Overview

This thesis is organized as follows: Chapter 2 discusses the terminologies
used in this thesis, such as: MDE, UML, ontology foundations, description
logic and OWL 2. Chapter 3 describes the related work. The related work is
categorized according to the problems discussed in the rest of the chapters.
Chapter 4 discusses the translations of UML class diagram concepts, DPF
and OCL constraints into OWL 2. This chapter is based on the work
presented in Articles I, III and V. Chapter 5 presents the application of the
UML class diagrams translations proposed in Chapter 1, and discusses how
to validate the UML class diagrams available in the Atlantic metamodel
zoo (an online repository containing more than 300 metamodels) by using
OWL 2 reasoners. This chapter is based on the work presented in Article
II. Chapter 6 addresses the issue of the consistency of class diagrams and
statechart diagrams with state invariants. This chapter is based on the
work presented in Articles I and V. Chapter 7 presents the application
of the work discussed in Chapter 6 by using a scenario of a REST web
service interface. It is based on the work described in Articles V and VI.
Chapter 8 discusses the translation of UML object diagraming concepts into
OWL 2, and also describes how to validate these concepts using OWL 2
reasoners. This chapter is based on the work presented in Articles I, III
and IV. Chapter 9 proposes the method of the validation of multiple UML
diagrams of the same metamodel using OWL 2 reasoners. This chapter is
based on the lessons learned from the Articles I, III, IV and V. Finally,
Chapter 10 concludes the thesis.

8



Chapter 2

Background

In this chapter, we give an overview of the MDE foundations, ontology
foundations and the validation problems that we address in this thesis. We
also discuss the proposed approach that addresses these problems.

2.1 MDE Foundations

Model Driven Engineering (MDE) [55] advocates the use of models to rep-
resent the most relevant design decisions of a software development project.
Each software development project involves the creation of many models.
A model is a description or an analogy used for describing, visualizing and
observing different viewpoints of a system at different levels of abstrac-
tions [77]. Each model in a software development project is described by
using a particular modeling language, such as UML or DSL. A modeling lan-
guage is an abstract syntax for models that specifies the allowed elements
and their relationships in the form of a metamodel [77]. Similarly, each
modeling language is designed by using a meta-language, such as Meta Ob-
ject Facility (MOF) [71] or Kernel Meta Meta Model [52]. A meta-language
is defined in term of metametamodel that describes the meta-language ar-
chitecture for the designing of metamodels or DSLs [77].

2.1.1 Four Layer OMG Modeling Hierarchy

The Object Management Group (OMG) [71] specifies the object oriented
modeling concepts in the form of a four layer modeling hierarchy. Each
layer represents different types of instances involved in the object oriented
modeling such as, objects are the instances of classes, and the classes are
the instances of meta-classes, where classes are the part of a model, and
meta-classes are the part of a metamodel ([43], p.5). These layers are named
as M3, M2, M1 and M0. A graphical overview of these layers is given in
Figure 2.1. The details about these layers are as follows:

9



M3 (MetaMetaModel)
		                                                        MOF 
  
M2 (MetaModel)
                                                    UML / DSL
  
M1 (Model)
                  Class Diagrams / StateChart Diagrams / Object Diagrams /.....
 
M0 (Instances)
                                              Object Diagrams

«snapshot»                      

 
«instance»

 
«instance»

 
«instance»

Figure 2.1: The four layer OMG Modeling Hierarchy.

M3 The M3 layer is the top most layer of the OMG modeling hier-
archy and known as a metametamodel layer. This layer holds a
specification of a language in terms of a metametamodel that is
used to describe modeling languages. The OMG uses MOF in
this layer. The MOF is a metametamodel or an abstract syn-
tax of modeling languages specified by the OMG. It comprises of
model elements such as, Classes, Attributes and Associations [94].
There are two different variants of MOF, i.e., Essential MOF
(EMOF) and Complete MOF (CMOF). In this thesis we focus
on the analysis of MOF based models.

M2 The metamodel layer M2 is an instance of a metametamodel layer
M3, and it holds the specification of DSLs in the form of meta-
models. A metamodel also consists of model elements, and the
model elements of a metamodel are the instances of the model
elements of a metametamodel.

M1 The M1 layer is responsible to represent the knowledge of a cer-
tain domain by using the instances of a modeling language speci-
fied at the M2 layer. For example, if M2 layer defines an abstract
syntax of UML class diagrams then layer M1 defines the class
diagrams.

M0 The last layer M0 of the MDE hierarchy is responsible for holding
the runtime instances of model elements defined at the M1 layer.
For instance, if the M1 layer specifies a class diagram of a certain
part of a software, then the M0 layer defines the instances of a
model element defined in the class diagram of the layer M1 in the
form of object diagrams.

The OMG proposes the use of UML for the designing of modeling arti-
facts at all levels of modeling hierarchy [72].

10



2.1.2 UML

The Unified Modeling Language (UML) is a widely used graphical notation
for the designing of modeling artifacts at all layers of the OMG modeling
hierarchy, i.e., Metametamodel, Metamodel and Model layer [77, 43]. The
UML was formally proposed by OMG in 1997 ([60], p.176) and it is based
on MOF. The main purpose of UML is to help IT professionals in the de-
signing of computer applications. With time UML evolved considerably
and still the scope of UML is expanding rapidly. Nowadays, UML is not
only used in the designing of computer applications, but also in the auto-
matic model based software development, which includes automatic code
generation from models.

A software project involves the creation of many designs that depict
both static and behavior abstractions of a software project. The UML has
a capacity to portray both kinds of abstractions. The static structure of a
software project is captured by using a class diagram, whereas, a behavior
of the software is designed using statechart diagrams or sequence diagrams.
A class diagram is a collection of classes and their associations. A class in
a class diagram can depict the attributes and operations, but the actual
behavior of these operations is captured by using behavioral diagrams.

The UML behavioral diagrams, such as statechart diagrams and se-
quence diagrams, are used to describe behaviour of an object of a class
during its lifetime. These diagrams are composed of states and transitions,
where each transition is annotated with an operation. The operation on the
transition describes what happens to the object during its whole lifetime.
Each state in a statechart diagram is made using state invariant. A state
invariant is a condition that characterises the state and must be true in
case of a specific state is active. These invariants are written using object
constraint language or some other constraint language.

In this thesis, we are focused on the analysis of modeling artifacts based
on UML/MOF.

2.1.3 Meta Object Facility

The Meta Object Facility (MOF) is a standard for MDE [55], and it is based
on the UML superstructure specifications [77] specified by OMG. The MOF
is used for defining UML based metamodels. It consists of model elements
such as, Classes, Attributes and Associations [94]. The relevant part of
MOF architecture used in this thesis is shown in Figure 2.2. In this thesis
we mainly focus on the validation of metamodels and models. The model
validation includes the validation of class diagrams, object diagrams and
statechart diagrams including constraints written using a subset of OCL.
Therefore, the MOF architecture that we present here is restricted to the

11



fragment, which describes the metamodels that are capable to define both
static and behavioral structure of a software project.

ModelElement
name: String

Namespace Constraint TypedElement

GeneralizableElement

Package Classifier

Class Association Datatype
Operation

EnumerationType

Feature

Behavioral 
Feature

StructuralFeature
multiplicity: MultiplicityType

Exception

Reference

Attributes

AssociationEnd
isNavigable: Boolean
multiplicity: MultiplicityType

 
exposedEnd

 *

     referencedEnd
 
 *

     type

 *

MultiplicityType
upper: Integer
lower: Integer
isUnique: Boolean
isOrdered: Boolean

 *

subtype

Figure 2.2: A fragment of MOF Metametamodel.

The model of MOF is based on the foundation of object relationship
modeling. Here, the model elements Class, Association and Datatype
are used to define the objects, links and data values, respectively. All
these model elements are derived by Classifier, and every Classifier
is derived by a GeneralizableElement and has a Namespece. Each el-
ement of the Namespace is derived by a ModelElement. Every object
can have attributes and operations which are described by the model el-
ement Attributes and Operations respectively, where the model element
Attributes is derived by StructuralFeature and the model elementOperat−
ion is derived by BehavioralFeature. Similarly the attributes of associ-
ations, such as multiplicity, ordering, uniqueness and navigability are de-
scribed by the attributes of the model element AssociationEnd. The model
element AssociationEnd is derived by the model element TypeElement.
The referenced and exposed end of the association is defined by the model
elementReference, which is derived from the model element StructuralFe−
ature. The additional constraints on metamodels in the form of OCL or in

12



the other textual format are described by the model element Constraint.
The model element Constraint in the MOF metametamodel is derived by
ModelElement.

2.1.4 Constraints

The UML models can be annotated with constraints. The constraints are
used to add additional restrictions on the models. These constraints may
also have errors and can make whole model inconsistent. In this thesis,
we also discuss the semantic meaning of a subset of constraint languages
and show how to validate the UML diagrams with constraints using logic
reasoners. The constraint languages that are supported by the proposed
approach are as follows:

Object Constraint Language (OCL): OMG specifies the UML well-
formedness rules and a part of UML semantics by using the Object Con-
straint Language (OCL) [74]. The OCL is a textual constraint language and
is always specified by using certain OCL constructs, for example, context,
inv, value and size. The OCL constraints are also used to apply additional
restrictions over UML diagrams that cannot be applied using existing UML
notations. The constraints are also known as invariants.

Diagram Predicate Framework (DPF): In order to apply restric-
tions on UML diagrams, there are also other textual constraint languages
available, one of them is proposed by the Diagram Predicate Framework
DPF [61]. DPF proposes to apply constraints by adding a textual symbol
over the existing UML notations, such as [irr], [inj] and [bij].

The detail about the semantics of different types of constructs supported
in our approach, and how to analyze UML diagrams with these constraints
will be discussed later in different chapters of this thesis.

2.1.5 XML Metadata Interchange

The XML Metadata Interchange (XMI) [73] is a Extendable Markup Lan-
guage (XML) [99] based standard for a model interchange specified by
OMG. The models are composed of model elements and each model el-
ement has some attributes. In XMI each model element of a model is
represented as a XML element with unique ID, and an attribute of a model
element is represented as a XML element attribute. In models, the model
elements are usually interconnected with each other. In XMI the intercon-
nection between XML elements is achieved by using the ID of one XML
element as a reference in another. The modeling tools usually generate

13



the XMI of UML models in some specific format. The XMI format that is
understandable by our approach is the XMI 2.1 schema for UML 2.3.

2.2 Ontology Foundations

An ontology is a specification of a conceptualization [62]. In this thesis
our understanding of the term ”specification of a conceptualization” is the
specification of concepts and relationships that can represent an abstraction
of a program. The abstraction of a program is typically expressed in the
form of models by using modeling languages such as UML or DSLs. For
example the fact that a class C1 is a subclass of a class C2 is drawn by
using UML, as given in Figure 2.3.

C2

C1

Figure 2.3: A UML model depicting a class C1 being a subclass of a class
C2.

In logics the abstraction of a program is expressed in the form of logi-
cal facts using logical languages such as description logic [48] or predicate
logic [35]. For example the fact depicted in Figure 2.3 that the class C1 is
a subclass of the class C2 is written in description logics as:

C1 ⊆ C2

In ontologies the concepts are represented in the form of axioms that
depict the specification of a conceptualization [62]. These axioms represent
concepts as classes, and the relationship among concepts as properties.
Since the ontology deals with concepts and their relationships, the language
used for writing an ontology is semantically very close to the language used
to express the logic [62]. This allows us to write the logical facts as axioms
in the ontology. For example, the specialization relation C1 ⊆ C2 (shown
in Figure 2.3) is written in ontology as:

SubClassOf( C1 C2 )

The ontologies are typically used at the semantic level, due to this, they
play an essential role in the interoperability of heterogeneous systems. Also,
ontologies are part of the W3C standards [23]. The main role of ontologies
in the semantic web is to act as a knowledge base that represents data mod-
els at all levels of abstractions. The prominent use of ontologies includes

14



interoperability of systems containing multiple database searches using dif-
ferent web services [62]. However, in this thesis we are using ontologies to
represent the semantics of UML models as logical facts, so that we may
able to infer the logical consequences from these logical facts automatically
using a reasoner.

2.2.1 Reasoners

A reasoner is a utility that automatically infers the logical consequences
from a set of logical facts. The reasoning performed by a reasoner is based
on the inference rules [14]. These rules are written in a form of a logic, often
by using description logic or first-order predicate logic [14]. The reasoning
is typically carried out by forward chaining and backward chaining [28]. A
reasoner takes a set of logical facts as an input and then checks if each rule
is valid or not. A fact is valid if it follows the inference rules implemented
in a reasoner. If the fact is true under an interpretation, then so is the
conclusion.

2.2.2 Description Logic

The Description Logic (DL) used in our approach is classified as SROIQ [48].
Description Logic is made up of concepts, denoted here by C,D, and roles,
denoted here by R,Q. A concept or role can be named, also called atomic,
or it can be composed from other concepts and roles.

An interpretation I consists of a non-empty set ∆I and an interpreta-
tion function which assigns a set CI ⊆ ∆I to every named concept C and
a binary relation RI ⊆ ∆I ×∆I to every named role R.

The constructors of Description Logic are as follows:

Everything >I = ∆I

Nothing ⊥I = ∅
Complement (¬C)I = ∆I\CI

Inverse (R−)I = {(y, x) | (x, y) ∈ RI}
Intersection (C uD)I = CI ∩DI

Union (C tD)I = CI ∪DI

Restriction

Universal (∀R.C)I = {x | ∀y.(x, y) ∈ RI → y ∈ CI}
Existential (∃R.C)I = {x | ∃y.(x, y) ∈ RI ∧ y ∈ CI}
Cardinality (≥ nR)I = {x | #{y | (x, y) ∈ RI} ≥ n}

(≤ nR)I = {x | #{y | (x, y) ∈ RI} ≤ n}

15



where #X is the cardinality of X. The axioms in DL can be either inclu-
sions C v D, C v D or equalities C ≡ D, R ≡ Q.

An interpretation satisfies an inclusion C v D if CI ⊆ DI and an
inclusion R v Q if RI ⊆ QI . An interpretation satisfies an equality C ≡ D
if CI = DI and an equality R ≡ Q if RI = QI . I satisfies a set of axioms
if it satisfies each axiom individually – I is then said to be a model of the
set of axioms. Given a set of axioms K, a named concept C is said to be
satisfiable if there exists at least one model I of K in which CI 6= ∅. A set
of axioms is said to be satisfiable if all of the named concepts that appear
in the set are satisfiable. If a set of axioms K is satisfiable, we say that an
axiom φ is satisfiable with respect to K if K ∪ {φ} is satisfiable. Similarly,
we say that φ is unsatisfiable (w.r.t. K) if K ∪ {φ} is unsatisfiable.

The decidability of SROIQ is demonstrated by Horrocks et al. [48], and
there exist several reasoners that can process answer satisfiability problems
automatically [90, 83].

2.2.3 Web Ontology Language OWL 2

The Web Ontology language OWL 2 [23] is a language for defining ontolo-
gies. The OWL 2 provides axioms to express model-theoretic semantics
which are compatible with the DL SROIQ such as classes, properties,
individuals and data values [23]. The OWL 2 is also supported by logic
reasoners such as Pellet [90] and HermiT [83]. In this thesis, we use the
OWL 2 functional syntax (OWL2fs) [20] to explain the translations of UML
concepts to OWL 2 axioms. The UML to OWL 2 translation that we pro-
pose in this thesis is also implemented in the form of a translation tool. The
translation tool generates OWL 2 files that contain the translations of UML
models in two different syntaxes such as: OWL2fs and OWL 2 Manchester
syntax. The reason of generating outputs in two different OWL 2 syn-
taxes is because we want to analyze the performance of different reasoners.
The detail about the performance of different reasoners will be discussed
in Chapter 5. The interpretation of the main OWL 2 expressions used in
this thesis is shown in Table 2.1. A complete description of the OWL 2
semantics, including support for data types can be found in [23].

C2

C1

min..max
A

Figure 2.4: The UML Model representing two classes C1 and C2 connected
with each other using the association A.

16



Table 2.1: DL interpretation of the main OWL 2 expressions used in this
thesis

OWL 2 DL

SubClassOf(C D) C v D
EquivalentClasses(C D) C ≡ D
DisjointClasses(C D) C uD = ∅
ObjectIntersectionOf(C D) C uD
ObjectUnionOf(C D) C tD
SubObjectPropertyOf(R1 R2) R1 v R2
InverseObjectProperties(R1 R2) R1 ≡ R2−1

InverseFunctionalObjectProperty(R) > v (≤ 1R−)
ObjectPropertyDomain(R C) ∃R.> v C
ObjectPropertyRange(R C) > v ∀R.C
ObjectMinCardinality(n R) ≥ nR
ObjectMaxCardinality(n R) ≤ nR
ObjectExactCardinality(n R) (≥ nR) u (≤ nR)
ClassAssertion(C x) C(x)
ObjectPropertyAssertion(R x y) R(x, y)
NegativeObjectPropertyAssertion(R x y) −R(x, y)

Example: The OWL 2 translation of the UML model shown in Fig-
ure 2.4 is as follows:

Declaration(Class(C1))

Declaration(Class(C2))

Declaration(ObjectProperty(A))

ObjectPropertyDomain( A C1 )

ObjectPropertyRange( A C2 )

SubClassOf( C1 ObjectMinCardinality( min A ) )

SubClassOf( C1 ObjectMaxCardinality( max A ) )

2.2.4 Ontology Definition Metamodel

The OMG specifies the Ontology Definition Metamodel (ODM) [75] that
makes the concepts of OMG modeling hierarchy applicable to the ontol-
ogy engineering [75]. The ODM follows the similar hierarchy as the one
mentioned in a four layer OMG modeling hierarchy (see Figure 2.1). The
overview of the ODM hierarchy is shown in Figure 2.5.

The ODM is a specification of ontology structure, and it is derived from
MOF [75, 60]. It comprises of classes, associations and constraints ([60],
ch.7).

17



M3 (MetaMetaModel)
                                                       MOF
  
M2 (MetaModel)
                            Ontology Definition Metamodel (ODM)
 
M1 (Model)
                                     A particular OWL ontology
 
M0 (Instances)
                                                 Individuals  

 
«instance»

 
«instance»

 
«instance»

Figure 2.5: A graphical overview of the ODM in a four layer OMG Modeling
Hierarchy.

The core of ODM represents formal logic languages, such as Descrip-
tion Logic (DL), Common Logic (CL) and first-order predicate logic. The
scope of these languages covers the representations of higher order complex
representations of simple taxonomic expressions [75].

The other metamodel derived from MOF that is essential for ODM is
the UML [75, 60]. The UML is the widely used modeling language for the
designing of conceptual and logical models. The UML is also derived from
MOF, and there exist commonalities between UML and ODM specification.
Therefore UML notations are also used for ontology modeling([60], ch.7).

The ODM includes a number of metamodels that provide the modeling
specification of languages such as: OWL and Resource Definition Frame-
work [50]. In our approach, we use ODM metamodel OWL in order to
represent the MOF/UML based models. In our approach we use a decid-
able fragment of OWL 2 that is based on DL. This fragment is known as
OWL 2 DL.

2.2.5 ODM vs UML

The UML and ODM are derived from MOF [75, 60], therefore there exist
commonalties, as well as differences between them. The summary of the
common features of UML and ODM is shown in Table 2.2. Since in this
thesis we use OWL 2 DL as a specification language for ontologies, the
comparison between UML and ODM mentioned here is given in terms of
UML and OWL 2 DL.

There are some features in UML which do not have equivalent OWL 2
elements (see Table 2.3). In such cases we translate the UML elements by
using a combination of existing OWL elements which have an equivalent DL
meaning as UML. These translations will be discussed later in this thesis
in different chapters.

18



Table 2.2: UML elements which have the DL equivalent OWL 2 DL ele-
ments

UML Elements OWL Elements

class class

instance individual

binary association property

binary association link property assertion

class generalization subclass

property generalization subproperty

enumeration oneOf

multiplicity min/max/exact Cardinality

navigation domain/range

datatype datatype

2.2.6 Open and Closed world assumptions

Although there are commonalities between UML and OWL, still there ex-
ists a foundational difference between UML and OWL, i.e. the open world
and closed world assumptions. The UML follows closed world assumptions
where complete knowledge is assumed to be provided, whereas in OWL 2
the knowledge, which is not provided, remains unknown. This knowledge
includes the well-formedness rules which are defined in the UML super-
structure specifications [77].

While reasoning about the UML models using an OWL reasoner we
realize that the representation of UML elements using only the obvious
OWL 2 axioms is not enough, because it lacks UML well-formedness. For
example in UML an object cannot belong to two classes, except when these
two classes are in a specialization relationship, whereas in OWL 2 an in-
dividual (class assertion or object) can belong to many classes except to
those classes, which are marked as disjoint with each other. In this thesis,
we make sure that the translations that we present in this thesis follow the
UML well-formedness rules and also bridge the gap of open-close assump-
tions between UML and ontologies.

2.3 Analyzing UML Models

Analysis of UML models and metamodels is very important at all layers
of OMG modeling hierarchy [104, 85, 96, 15, 41, 3]. The analysis approach
of UML models presented in this thesis addresses a number of validation

19



Table 2.3: UML elements which do not have the DL equivalent OWL 2 DL
elements

UML Elements OWL Elements

ordering X

composition X

composition unshearedness X

composition acyclicity X

non-unique properties X

label on a link X

state X

transition X

state invariant X

OCL constructs X

DPF textual symbols/constructs X

problems throughout the MOF modeling hierarchy. The validation prob-
lems that we address in this thesis are as follows:

Validation of Metamodels against MOF: Two problems are ad-
dressed: (1) Are all model elements of metamodels at layer M2 instances
of model elements of a metametamodel that exists at layer M3?, (2) Do
all model elements of a metamodel at layer M2 follow the well-formedness
rules specified at the layer M3?

Validation of Models against Metamodels: Two problems are ad-
dressed: (1) Are all model elements of the models at layer M1 instances of
model elements of a metamodel that exists at layer M2? (2) Do all model
elements at layer M1 follow the constraint expressing the well-formedness
and other constraints in the form of OCL or textual symbols specified at
layer M2?

Validation of Models against Models with Constraints: Two
problems are addressed: (1) Do the valid models of different metamodels
at layer M1 contradict with one another when viewed together? We address
this problem by checking consistency of a class diagram and a statechart
diagram with state invariants altogether. (2) Do the valid models of the
same metamodel at layer M1 contradict with one another when viewed
together. We address this problem by validating multiple valid models of
the same metamodel together, so that the possible contradictions that arise
when we view multiple models together can be detected.

20



M3 (MetaMetaModel)
		                                                         MOF
  
M2 (MetaModel)
                                                    UML / DSL
  
M1 (Model)
                  Class Diagrams / StateChart Diagrams / Object Diagrams /.....
 
 
M0 (Instances)
                                              Object Diagrams «snapshot»                      

 
conforms-to

 
conforms-to

 
conforms-to

conforms-to

Figure 2.6: An overview of a Metamodel/Model conformance hierarchy.

Validation of Object Diagrams against Class Diagrams: Two
problems are addressed: (1) Are model elements of object diagrams at layer
M0 instances of the model elements of class diagrams that exist at layer
M1, (2) Do model elements on layer M0 follow the well-formedness rules
and other constraints expressed by using OCL or textual symbols specified
at layer M1.

In order to address all above mentioned validation problems, we propose
to automatically translate UML metamodels and/or models into OWL 2 [48],
and analyze these translations using automated OWL 2 reasoners [90, 83].

2.3.1 OWL 2 Reasoners

We have several selection criteria for the reasoners, which include, first, a
complete support for OWL 2 and Semantic Web Rule Language (SWRL,
discussed later Chapter 4), and second, the reasoner is freely available as
open source. The first requirement is motivated by the ontologies used in
our research. The second requirement ensures that the research is easily
repeatable by others.

Based on these criteria, we have chosen the following two reasoners:

1. Pellet [90]: An open source Java-based ontology reasoner developed
by Clark& Parsia LLC, which is an R&D firm, specializing in Seman-
tic Web and advanced systems.

2. HermiT [83]: An open source reasoner that is implemented in Java,
and developed by the Information Systems Group of Oxford Univer-
sity.

21



Metamodel and/or Models 
with/without Invariants
 

Translation Tool

 OWL2 OntologyOWL2 ReasonerReport

Figure 2.7: Workflow of the proposed consistency checking approach

Both reasoners are implemented in Java, offer complete support for OWL 2
and SWRL and are freely available as open source, which satisfy our re-
quirements.

2.3.2 Reasoning Tool Chain for UML Models

The workflow of our approach is shown in Figure 2.7. A number of UML
metamodels/class diagrams and object diagrams or statechart diagrams are
taken as an input. All the inputs are translated to a decidable fragment
of OWL 2, i.e., OWL 2 DL [20]. We have chosen OWL 2 DL to represent
our UML models, because there exist several OWL 2 reasoners [90, 83] for
checking concept satisfiability. In the next step, the OWL 2 translations
of UML diagrams are passed to a reasoner in the form of an ontology.
The reasoner processes the ontology and produces a validation report. The
validation report reveals the inconsistencies in the ontology representing the
UML models. The detailed discussion about the contents of the validation
report are discussed later in different chapters of this thesis.

22



Chapter 3

Related Work

In this chapter, we discuss the most important related works done by other
researchers in the area of model validation. The discussion included in this
chapter is categorized according to the problems that we address in the rest
of the thesis.

3.1 Consistency of UML Class Diagrams

Description Logics: The pioneering work in the area of DL formaliza-
tion of UML class diagrams was presented by Berardi et al. [19]. Their ap-
proach is purely theoretical, and gives very detailed formalization of UML
class diagrams using DL. We consider their work as a starting point of
our research, specially in the area of metamodel validation. In our work of
metamodel validation, we expand the scope of their work, by addressing the
formalization of some of the important class diagram concepts, which were
not addressed in their work, such as composition, property specialization
and the most specific class assumption. Also, we propose and implement
the DL equivalent OWL 2 translations of UML class diagram concepts in
the form of a translation tool. We have tested the translation tool on pub-
lished metamodels. The results indicate that most of the errors discovered
involve composition. This clearly shows the importance of the validation
of composition and the feasibility of our approach in practice.

Artale et al. [11] proposed an approach that is similar to our approach.
However, the problem that they solved, i.e., full satisfiability, is a special
case of satisfiability. It is not clear why they limit themselves in this way,
since the general case of satisfiability is much more useful for validation.

Several authors have proposed formalizations of UML, MOF and Ecore
metamodeling languages, including Akehurst et al. [31], Alanen and Por-
res [9], Clark et al. [29], Varró [95] and Van Der Straeten [94]. Balaban
et al. [15] discussed the consistency of UML class diagrams with hierarchy

23



constraints. These formalizations can be seen as alternatives to the one
presented here.

Although a lot of work has already been done in the area of class di-
agram satisfiability, there is a still room for improvements in the existing
works. The existing works are mostly theoretical or leave out the valida-
tion of modeling concepts that we discuss in this thesis. Therefore, whether
they are actually suited to that purpose, only an actual implementation can
show. The importance of a usable, automatic implementation of a valida-
tion approach that has been tested on published examples, as the present,
cannot be underestimated. The detail, about the testing of our approach
on published examples are discussed in Chapter 5.

Ontology: Parreiras et al. proposed the OntoDSL an ontology based
framework for defining DSLs [101]. Their framework uses KM3, Ontology
and OCL combination at the metametamodel layer M3, whereas our ap-
proach uses MOF at layer M3. Their approach also gives the facility of
reasoning of DSLs drawn by using their framework, whereas our approach
gives the facility of reasoning of any MOF based DSL which is drawn by
using any tool that follows UML 2 3.0.0. The main evidence of this claim is
the validation of 303 DSLs that exist in the Atlantic Metamodel Zoo. The
detail about the validation of these DSLs and the results are discussed in
Chapter 5.

Gašević et al. discussed the use of UML diagrams to construct ontolo-
gies [39]. This is a totally different domain than ours, since their work is
basically in the domain of Ontology Development Modeling.

Rahmani et al. proposed a mapping from OWL to Ecore [84]. The
main idea of their work is to preserve the web knowledge available in the
form of ontologies into Ecore. Their work is basically opposite to our work.
We translate UML to OWL and their work translates OWL to Ecore.

Alloy: Alloy Analyzer [10] is a tool for the formalization, simulation
and verification of UML models. In order to use Alloy, we can either make
a metamodel using Alloy script or draw the diagram of a metamodel in a
UML modeling tool such as: Magic draw or Topcased and then translate
the metamodel into an Alloy script by using UMLtoAlloy translator [89].
However, the UMLtoAlloy translator does not provide the translations of
all UML concepts that we discuss in this thesis. These include composition,
ordered properties, non-unique associations and the translation of OCL and
textual constraints. However, any missing translation of UML concepts or
constraints during the translation of UML to Alloy script may lead the
whole validation result to become false positive.

24



OCL: USE [40] is a tool for the validation of UML models using OCL
expressions. In this tool, a UML model is taken as an input along with all
its possible well-formedness rules in the form of OCL expressions. Then,
the parser parses the UML model and OCL expressions, and checks whether
the UML model is according to the specifications mentioned in the OCL
expression or not. It means that the overall validation process is based on
the OCL expressions, and if any well-formedness rule of UML is missing,
the overall validation process may produce false positive results.

DPF: The Diagram Predicate Framework (DPF) [87] provides a cate-
gory theory and graph transformation based formal approach for designing
metamodels and models. The DPF workbench [61] allows us to draw meta-
models and models based on UML notations. Also, it gives the facility to
draw textual symbols on UML models to express constraints such as: [irr]
for irreflexive, [comp] for association composition morphism, [surj] for sur-
jective and [inj] for injunctive associations. However, the DPF workbench
does not provide any facility to validate metamodels. Therefore, we also
address this issue in Chapter 4 by translating the textual constraint into
an OWL 2 ontology and then validate the ontology by using an OWL 2
reasoner.

TWOUSE Approach: The TWOUSE approach [6] is focused on two
areas: The first is the ontology development modeling [78], and the second
is the validation of DSLs by using OWL 2 reasoners [100]. The TWOUSE
approach proposes the same methodology for the validation of DSLs as pre-
sented in this thesis for the validation of metamodels. However, it leaves
out some of the important UML concepts such as: composition including
unshared and acyclicity constraints, open-world assumptions in the transla-
tion of class specializations and class memberships, non-unique associations,
ordered properties, and the validation of basic textual constraints like OCL
and the constraints proposed by the DPF. Their work is mainly conducted
in parallel with our work on the metamodel validation i.e., during the year
2010. Moreover, their work on the validation is limited to the validation
of DSLs and does not offer the validation of object diagrams against the
class diagrams, nor analyzes the consistency of statechart diagrams with or
without invariants.

3.2 Consistency of Class and Statechart Diagrams

Description Logics: The use of ontology languages and description
logic in the context of model validation has been proposed in the past by
different authors [94, 102, 19, 16]. However, to the best of our knowledge,

25



none of them has addressed the reasoning of the satisfiability of state invari-
ants using OWL 2 DL. These works focus on the problem of class diagrams
satisfiability, i.e. whether a class diagram can generate consistent object
diagrams or not. Furthermore, the TWOUSE approach [100] is focused on
two areas: The first is the ontology development modeling, and the second
is the translation and validation of Domain Specific Languages (DSL) by
using OWL 2. The TWOUSE approach proposed the same methodology
for the validation of DSLs as presented in this thesis. However, their work
on validation is limited to the validation of DSLs, and has not yet offered
the validation of statechart diagrams with state invariants.

B-Method and CSP: Yeung et al. [104] analyzed control looping to find
deadlocks, by translating class diagrams into the B-Method and statechart
diagrams into CSP. Their approach does not focus on the consistency of
state invariants, the translation is done manually and there is no discussion
about the verification method, whether it is manual or automatic.

Object-Z, CSP and FDR: Rasch et al. [85], used Object-Z for the
formalization of class diagrams and CSP for statechart diagrams. Their
approach analyzes method invocations against the class description and
finds deadlocks by running the class and statechart diagram formalization
in FDR. Their approach is not focused on analyzing the consistency of state
invariants.

π-Calculus: Lam et al. [96] analyzed the consistency of statechart dia-
grams and class diagrams by using the π-calculus. The translation of UML
diagrams to π-calculus is done manually and the consistency is analyzed
by running the π-calculus script on the Workbench. Their work is not
analyzing the consistency of state invariants.

Program Statements in Transitions: Emil Sekerinski [88] verified
the UML statecharts, in which the events are manually translated into
generalized program statements, and these statements appear as the body
of a transition. The execution of the program statements is based on the
assumption that the body of the transition can read or write the values of
the class variables.

Alloy: Moaz et al. [68], analyzed the consistency of class and object
diagrams by using Alloy. It is a fully automatic approach, in which the class
and object diagrams are first translated into a parameterized Alloy module,
and then the consistency analysis is done by analyzing the translated Alloy

26



module by using the Alloy Analyzer. Their approach does not yet support
statecharts and OCL constraints.

OCL: The state invariants are usually written by using the Object Con-
straint Language (OCL). It is the widely accepted language for writing con-
straints over UML diagrams. The reason why the existing research is not
focused on analyzing the satisfiability of state invariants is because, in gen-
eral, OCL is undecidable. However, the undecidability can be avoided, if we
limit our approach to known constructs of OCL. The use of a limited subset
of OCL to avoid undecidability is not new. For example OCL − Lite [82]
uses a limited subset of OCL to express constraints on UML class diagrams.
Similarly, in our approach, we use a limited subset of OCL to express state
invariants in statechart diagrams.

Bogumila et al. [45] analyzed the consistency of the statechart diagram
of a class by writing OCL rules manually, and then execute the OCL rules by
using an OCL compiler. This approach is limited to analyzing consistency
of statechart diagrams against the class description and not using state
invariants. In OCL, the model validation rules must be defined explicitly,
based on the syntax of the UML models. In our approach, model validation
is defined on the semantic interpretation of the OCL and UML models. The
difference is that while OCL must define a large number of well-formed
rules for different variations and combinations of model elements, a logic
approach requires a smaller number of axioms that are often simpler.

To the best of our knowledge, none of the above mentioned works pro-
posed an automatic translation and consistency checking approach for UML
models with state invariants.

In the next section, we discuss the most important related works for
the validation of a REST web service interface. The REST web service
interface comprises class diagrams and state machine diagrams with state
invariants. These diagrams depict the structural and behavioral abstrac-
tions of a REST web service. In this thesis, we also validate the REST web
service interface in order to show the application of our proposed approach.

3.3 Consistency of REST Web Service Interfaces

Consistency analysis and checking of design models has been studied by
a number of researchers in the past, but in the area of web services it
has not been researched very extensively, especially in the area of REST
web services, we were unable to find any consistency checking approaches.
However, in the area of consistency checking for web services, the following
works are noteworthy.

27



MTT: Yin et al. [105] used type theory to verify consistency of web
services behavior. Their work addresses web services choreography. It an-
alyzes the structure of service behavior and uses extended MTT, which is
a constructive type theory, to formally describe service behavior. The pro-
cedures of deductions are given that verify the suitability between services
along with discussion on type rules for subtype, duality and consistency of
web services behavior.

C & C: In [92] and [93], Tsai et al. presented a specification based
robust testing framework for web services. The approach first uses an
event driven modeling and specification language to specify web services
and then uses a completeness and consistency (C & C) approach to analyze
them. Based on these, positive and negative test cases are generated for
robustness testing. The approach assumes that web services are specified
in OWL-S. The approach aims towards testing of web services. However,
C&C analysis is performed on OWL-S specification, which was of interest
for us. The approach identifies missing conditions and events, whereas, our
approach checks the structure of web services and validates implementation
of the service requests.

Model Checking: Xiaoxia [27] verified the service oriented require-
ments using model checking. The service-oriented computer independent
model is used to structure the requirements and then automated model
checking is done to do completeness and consistency checking of require-
ments. It provides a formal definition of completeness checking as a check
that all the required services are included in a model. Moreover, it does not
gives any specific consistency checking constraint except the requirement
relation applied to an example.

Xlinkit Framework: Nentwich et al. [70] presented a static consis-
tency checking approach for distributed specifications. It describes xlinkit
framework that provides a distribution-transparent language for expressing
constraints between web service specifications. It provides semantics for
constraints that allow the generation of hyperlinks between inconsistent el-
ements. The implementation of xlinkit is done on light-weight web service
using XML.

CSP: Heckel et al. [42] presented a model-based consistency management
approach for web service architectures. They advocate the use of UML
class and activity diagrams for modeling web services. The consistency
problems are then identified in the UML based development process. For
each consistency problem, a partial formalization into a suitable semantic

28



domain is done and a consistency check is defined. The consistency prob-
lems identified include syntactic correctness and deadlock freedom. Based
on these, those activity diagrams are identified that are relevant to con-
sistency checks. These are partially translated to CSP which are then
assembled in a single file and handed over directly to model checker. The
paper outlined a good consistency management approach for web services
architecture that needs a concrete development.

3.4 Consistency of Class and Object Diagrams

Description Logics and OWL 2: The use of ontology languages and
description logic in the context of model validation has been proposed in
the past by different authors [94, 79, 65, 84, 102, 19, 11]. However, to
the best of our knowledge, none of them has addressed the reasoning of
composition, ordered properties and non-unique properties in detail, neither
the enforcement of the closed-world restrictions in OWL 2 DL. These works
focus on the problem of ontology modeling or on class diagram satisfiability,
i.e. if a class diagram can be instantiated or not.

OCL: The validation of UML models using OCL has been discussed by
several authors, including [54, 66]. In OCL, the model conformance rules
must be defined explicitly based on the syntax of the UML models. In our
approach, model conformance is defined on the semantic interpretation of
the models. The difference is that while OCL must define a large number
of well-formed rules for different variations and combinations of model ele-
ments whereas a logic approach requires a smaller number of axioms that
are often simpler.

MOVA: MOVA tool [30] provides the facility to draw and validate mod-
els against a subset of the UML metamodels. There are a number of limi-
tations in this tool, firstly, this tool produces MOVA specific XMI of UML
models, and due to this the models generated by using this tool are not
readable by any other modeling tools and vice versa. Secondly, this tool
only supports a limited subset of a UML metamodel and does not support
the object and class diagram concepts such as: ordered properties and or-
dered links, composition and non-unique associations and links. Lastly, this
tool admittedly does not support the full OCL syntax.

Alloy: Alloy [10] is a tool for the validation of a model against the
metamodel. In order to use this tool we need to give a model and its
metamodel as an input in the form of an Alloy script. There are some
plugins available for example UMLtoAlloy [89], which can transform a UML

29



model into the Alloy script, but the details about whether they can translate
UML concepts such as: composition, ordered properties and non-unique
associations is missing.

UML Analyzer: UML Analyzer [34], used a text based rulebase for the
analysis of UML models. Any missing translation rule of UML constraints
during translation may lead the whole validation result to become false
positive.

3.5 Consistency of Multiple UML Diagrams

The problem of model merging has been discussed by several authors in
the past. For instance, Lutz et al. [64] discussed the merging of models
by humans. In their approach, the common model elements in models
are calculated manually, and then models are merged using these common
model elements. Moreover, the approaches presented at [18, 7, 67] discuss
the difference and union of UML models. These approaches propose to take
the union of all models in order to perform model merge. We have also used
a similar approach while merging UML models by translating the union of
all model elements of all models into a single ontology. To the best of our
knowledge, none of the above mentioned works does this using OWL 2.
Moreover, they do not discuss the automatic discovery of inconsistencies,
which occur due to the merging of different versions of a UML model.

30



Chapter 4

Representation of UML
Class Diagrams in OWL 2

In this chapter, we firstly explain our understanding of UML class diagram
concepts using logic and show how to translate these concepts into OWL 2.
Secondly, we discuss different types of textual constraint languages that we
treat in our approach. We also show the equivalent OWL 2 translations of
a subset of these languages. This chapter is based on the works presented
in Articles I, III and V.

4.1 Introduction

The UML class diagrams are defined as a set of classes and their rela-
tionships in the form of generalizations and associations ([77],p.144). The
diagrams are used to express the static content or a structure of the sys-
tem under development. Unfortunately, the semantics of UML are mostly
specified semi-formally by means of a textual description [77]. The prob-
lem of the automatic validation of these diagrams necessitates the need of
a formalization that can be understood by a reasoner. Therefore, in this
chapter, we show the formalization and the corresponding OWL 2 trans-
lations of UML class diagram concepts that we address in our approach.
The basis for the UML metamodel approach is at the same time the core
set of constructs of the UML class diagrams [76]. Hence, the formaliza-
tions presented here can equally well be viewed as a core construction of
MOF/UML-based metamodels. In this chapter, we additionally show the
formalization and translation of constraints that can be applied on the UML
class diagrams, and also motivate our choice of features that are included
in the formalizations.

31



4.2 Basic Class Diagrams

4.2.1 Class

A class in a class diagram represents a collection of objects which share the
same features, constraints and definition. Each class in a class diagram is
treated as a class in OWL 2. A UML class C is translated in OWL 2 as:

Declaration(Class(C))

4.2.2 Class Specialization

C2

C1

Figure 4.1: Class Specialization

Class specialization is reduced to the set inclusion. We represent the
fact that a UML class C1 is a specialization of UML class C2 with the
condition:

C1 ⊆ C2.

In this case, we say that C2 is a superclass of C1. If two classes C1 and
C2 have a common superclass, or C2 is the superclass of C1 we say that
they are in a specialization relation. The specialization relation C1 ⊆ C2
is translated in OWL 2 as:

SubClassOf( C1 C2 )

4.2.3 Disjoint Classes

We assume that an object cannot belong to two classes, except when these
two classes are in a specialization relation. In our semantic interpretation
of a UML class diagram, it is equally important to denote the facts that two
classes are not in a specialization relation. This is due to the fact that in
object-oriented models an object cannot belong to two classes, except when
these two classes are in a specialization relation. We represent the fact that
UML class C1 and UML class C2 are not in a specialization relation with
the condition:

C1 ∩ C2 = ∅
With this condition, an object cannot belong to these two classes simulta-
neously. Due to the open-world assumption used in Description Logic, we
need to explicitly state this fact in OWL 2 as:

32



C

C1 C2

Figure 4.2: Disjoint Classes

DisjointClasses( C1 C2 )

It is necessary for all classes to either explicitly or implicitly declare that
they are disjoint to classes that they do not share model elements with.
However, given that these axioms need to take the entire class hierarchy
into account, how to efficiently generate this information is not immedi-
ately apparent. We have declared every class equivalent to the union of
its subclasses and direct instances — or if it has no subclasses, equivalent
to its direct instances. We have therefore provided enough information for
a reasoner to be able to deduce which direct instances any given class is
made up of. Correctly declaring the direct instances disjoint is consequently
enough information for a reasoner to infer if any given pair of classes are
disjoint.

A pair of classes are disjoint if neither is a superclass to or a subclass of
the other, and they do not share any subclasses. The direct instance class
never has any subclasses, so deciding whether it is disjoint to another class
merely requires that we verify that the class in question is not a superclass
of the direct instance. This make it necessary to only traverse part of the
class hierarchy. Furthermore, this approach limits the amount of generated
axioms to one per class. As classes inherit the properties of superclasses, it
is only necessary to include top level classes and its superclasses’ unshared
direct subclasses in the axiom.

4.2.4 Associations

The association is another fundamental concept of UML class diagrams
and it represents a basic relationship between the instances of two or more
classes. We represent a UML directed binary association A from class C1
to C2 as a relation:

A : C1xC2

Each association in a class diagram contains two properties, namelyDomain
and Range, that represent each end of the association. In our example, C1
is the domain and C2 is the range of the association A.

33



C2

C1

min..max
A

Figure 4.3: Association

A UML association A from UML class C1 to C2 is represented in OWL 2
as:

Declaration(ObjectProperty(A))

ObjectPropertyDomain( A C1 )

ObjectPropertyRange( A C2 )

4.2.5 Multiplicity

A UML association in a class diagram is annotated with a positive num-
ber; this number indicates the multiplicity of an association. Association
multiplicity describes the number of allowable objects of a range class to
link with the object of a domain class. The multiplicity of an association
defines additional conditions over this relation:

#{y|(x, y) ∈ A} ≥ min
#{y|(x, y) ∈ A} ≤ max

We map the multiplicity of a UML association into OWL 2, by defining
the domain class of an association as a subclass of a set of classes, which
relates with the same property and the given cardinality.

The UML association A from class C1 and C2 having a multiplicity
constraint of (min,max) is represented in OWL 2 as:

SubClassOf( C1 ObjectMinCardinality( min A ) )

SubClassOf( C1 ObjectMaxCardinality( max A ) )

4.2.6 Bidirectionality

C1 C2A1      A2

Figure 4.4: Association Bidirectionality

34



In UML, the associations that share opposite domain and range form
a bidirectional association. For example if A1 and A2 are UML associa-
tions and both associations share opposite domain and range, then both
associations are considered as bidirectional of each other, such that:

A1 = (x, y)|(y, x) ∈ A2

The UML bidirectionality between the associations A1 and A2 is expressed
in OWL 2 as:

InverseObjectProperty( A1 A2 )

4.2.7 Association Generalization

C1 C2

           A1

           A2

Figure 4.5: Association Generalization A1 ⊆ A2

An association can be generalized by another association. The associ-
ation generalization is also known as association subsetting. Association
subsetting allows the specialization of an existing association, with new
characteristics while retaining its existing features, such as: domain and
range. However, we can reassign a domain and a range of a subassocia-
tion, provided that the new domain and the range of a subassociation are
the subclasses of the domain and the range of a parent association. Each
instance of the specialized association is also an instance of the original
property. Therefore, elements that are a part of its slot should be a part
of the original association slot. The association subsetting between associ-
ation A1 and A2 is defined as:

A1 ⊆ A2

Where A1 is a subassociation of A2, and translated in OWL 2 as:

SubObjectPropertyOf( A1 A2 )

4.2.8 Class Attributes

The class attributes depicting variables of various datatypes such as string,
integer or boolean are also considered as relations. In this case, the range
of the relation A belongs to the set D representing the datatype as:

∀x, y : (x, y) ∈ A =⇒ y ∈ D

35



C
+Att1: Integer
+Att2: String
+Att3: Date
+Att4: Boolean
+Att4: Enum

Figure 4.6: Class Attributes

Attributes usually have a multiplicity restriction to one value. The at-
tributes of a UML class in a class diagram are translated in OWL 2 as a
DataProperty. In OWL 2, the data property uses datatype in its range.
The datatype can be xsd:boolean, xsd:string, xsd:int and other datatypes
(shown in [20],Table 3). We map attributes that use basic types by declaring
a data property with the attribute’s name. An attribute is a required com-
ponent of its class. Consequently, the data properties describing attributes
have an exact cardinality of one. The attribute Att of the UML class C
having any of the above mentioned DataType is translated in OWL 2 as:

Declaration(DataProperty( Att ))

SubClassOf(C DataExactCardinality(1 Att ))

DataPropertyDomain( Att C )

DataPropertyRange( Att DataType )

4.2.9 Data Enumeration

«enumeration»
Enum

literal_1
..
literal_n

Figure 4.7: Enumeration Datatype

Enumeration is a kind of datatype, whose instances are user-defined
enumeration literals ([77],p.67). The enumeration Enum is declared by
using a DatatypeDefinition axiom in OWL 2 DL. The class attribute Att
having a datatype Enum, means:

∀x, y : (x, y) ∈ Att =⇒ y ∈ Enum

Where Enum being a set of enumeration literals {(literal1), ..., (literaln)}
is represented in OWL 2 as:

DataPropertyRange(Att DataOneOf("literal1"^^datatype ..))

36



4.2.10 Composition

In composition, an object of a class is made up of parts that are the objects
of another class. To give a formal definition of composition, we use a single
predicate owns to keep track of the composition relationships. If C1 owns
C2 via a composition association P , and P is the property from C1 to C2,
then:

C1

C2

      
     P

Figure 4.8: Composition C1 owns C2

∀x, y : (x, y) ∈ P =⇒ x ∈ C1

∀x, y : (x, y) ∈ P =⇒ y ∈ C2

P ⊆ owns

Composition relationships are defined in UML by two constraints, exclusive
ownership and acyclicity. Exclusive ownership means that an object can
have only one owner:

∀x, y, z : (x, z) ∈ owns and (y, z) ∈ owns =⇒ x = y

Acyclicity means that an object cannot transitively become an owner
of itself. A situation where an object x owns y, y owns z and z owns x is
disallowed. A necessary and sufficient condition for acyclicity of owns is
that the transitive closure of the relation is irreflexive. We can define the
transitive closure of owns, in the following way:

∀x, y, z : (x, y) ∈ owns and (y, z) ∈ owns =⇒ (x, z) ∈ owns

Irreflexivity of the transitive closure is then simply expressed as:

∀x : x ∈ ∆i =⇒ (x, x) /∈ owns

In order to translate the composition association mentioned above into
OWL 2, we first define an object property named ”P” from class C1 to class
C2.

37



Declaration( ObjectProperty( P ) )

ObjectPropertyDomain( P C1 )

ObjectPropertyRange( P C2 )

Next, we consider the exclusive ownership constraint of the composition
on the owning end of a composite relationship. To implement the single
owner requirement of a composition relationship in OWL 2, we have firstly,
defined the global property owns as:

InverseFunctionalObjectProperty( owns )

The inverse functional property will restrict the individuals of containing
class to link with more than one individuals of owning class. Secondly, we
make the composite relationship ”P”, a subproperty of the global property
owns:

SubObjectPropertyOf( P owns )

Moreover, in order to capture the acyclic requirement of the composition,
we make owns transitive and irreflexive at the same time. Transitivity will
capture the self ownership and irreflexiveness will disallow the individual
becoming an owner of itself. This is equivalent to saying that the transitive
closure of the ownership property is irreflexive. However, it is not possi-
ble to combine a cardinality restriction with transitive properties [51]. In
OWL 2 DL, if we could do so, the logic system would no longer be decid-
able, and we would not be able to use a fully automatic reasoner to carry
out validation. To solve this problem, we translate transitivity in Semantic
Web Rule Language (SWRL) and irreflexivity in OWL 2. The transitivity
of the property owns is written in SWRL as:

owns(?x, ?y) ∧ owns(?y, ?z) =⇒ owns(?x, ?z)

and irreflexivity of owns is translated in OWL 2 as:

IrreflexiveObjectProperty( owns )

4.3 Class Diagrams with DPF Constraints

The Diagram Predicate Framework (DPF) [87] provides the category theory
and graph transformation based formal approach for designing metamodels
and models by using the DPF workbench [61]. The DPF workbench allows
us to draw metamodels and models based on UML notations. Also, it gives
the facility to draw textual symbols on UML models to express constraints
such as: [irr] for irreflexive, [comp] for association composition morphism,
[surj] for surjective and [inj] for injunctive associations. An example of a

38



Student TeacherCourse

PhD Student

    [inv] 0..* 
study

0..* 
 

teach

1..* 
teacher [surj]

 [irr]      
studyandteach'

0..* 
 

     student [surj]

0..* studyandteach
[comp]

    [inv]

Figure 4.9: The UML class diagram using DPF constraints depicting a
scenario that a PhD student cannot enroll in a course that he is teaching
by himself.

UML class diagram with DPF constraints is shown in Figure 4.9. In this
section, we show the formalization and OWL 2 translations of a subset of
textual constraints proposed by DPF. All OWL 2 translations we propose
in this section are based on the semantics of textual constraints provided
in [87]. The OWL 2 translations shown in this section are later passed to
an OWL 2 reasoner for the validation of UML models including textual
constraints.

4.3.1 Irreflexive

x:X

 
R       

X

 
   [irr]
  R      
       

Figure 4.10: Irreflexive Constraint

An irreflexive [irr] constraint on an association disallows an object of
a class to link with itself, i.e., if there exists a concept X which has a self
association R and it is irreflexive, then:

∀x ∈ X : x /∈ R(x)

39



The association R having an irreflexive constraint [irr] is translated in
OWL 2 as:

IrreflexiveObjectProperty( R )

4.3.2 Injective

x:X

x':X

y:Y

y':Y

y'':Y

f

fX f
[inj]

Y

Figure 4.11: Injective Constraint

The injective [inj] constraint of an association restricts an object of a
domain class to link to at most one object of a range class. The injective
constraint is also known as ”One-to-One”. If we have the association f with
the injective constraint from class X to class Y , then:

∀x, x′ ∈ X : f(x) = f(x′) =⇒ x = x′

The injective property is translated in OWL 2 by using axioms InverseFun−
ctionalObjectProperty and FunctionalObjectProperty. The inverse func-
tional object property disallows an object of a range class to link with more
than one object of a domain class, whereas, the functional object property
disallows an object of a domain class to link with more than one object of
a range class. The injective association f is translated in OWL 2 as:

InverseFunctionalObjectProperty(f)

FunctionalObjectProperty(f)

4.3.3 Jointly Injective

The jointly injective [ji] constraint is a collection of injective associations,
i.e., if we have three classes X,Y and Z and there exists two injective
associations f and g, where f is from X to Y , and g is from X to Z, and
both associations are jointly injective then:

∀x, x′ ∈ X : f(x) = f(x′) and g(x) = g(x′) =⇒ x = x′

40



x:X

x':X

y:Y

z:Z

z':Z

f

g
X

f Y

Z

 
g

   [ ji ]

Figure 4.12: Jointly Injective Constraint

In order to translate jointly injective associations in OWL 2, we first declare
an object property JInjective in OWL 2, and then, make both injective
associations a SubObjectPropertyOf of JInjective. Since, both injective
associations share the same domain, the domain of JInjective will be the
same as the domain of injective associations. However, to join both injective
associations, the range of JInjective is the union of the range classes of
both injective associations. The translation of jointly injective associations
mentioned above into OWL 2 is as follows:

Declaration(ObjectProperty(JInjective))

SubObjectPropertyOf(f JInjective)

SubObjectPropertyOf(g JInjective)

ObjectPropertyDomain(JInjective X)

ObjectPropertyRange(JInjective ObjectUnionOf(Y Z))

4.3.4 Surjective

x:X

x':X

y:Y

y':Y

y'':Y

f

f

f

X f
[surj]

Y

Figure 4.13: Surjective Constraint

The surjective constraint [surj] of an association allows an object of
a domain class to link to many objects of a range class. The surjective

41



constraint is also known as ”One-to-Many”. If an association f from class
X to class Y is surjective, then for every individual in Y , there is at least
one individual in X such that:

f(X) = Y

One-to-many is the by default feature of an object property in OWL 2. The
surjective constraint on the association f mentioned above is translated into
OWL 2 as:

Declaration(ObjectProperty(f))

ObjectPropertyDomain(f X)

ObjectPropertyRange(f Y)

4.3.5 Jointly Surjective

x:X

z:Z

y:Y

y':Y

z':Z

f

g

g

X
f

 
g

    [ js ]

Z

Y

Figure 4.14: Jointly Surjective Constraint

Jointly surjective [sj] is a collection of surjective associations, i.e., if we
have three classes X,Y and Z and there exists two surjective associations f
and g, where f is from X to Y , and g is from Z to Y , and both associations
are jointly surjective then:

f(X) ∪ g(Z) = Y

To translate the jointly surjective associations in OWL 2, we first declare
an object property JSurjective in OWL 2, and then, make both surjective
associations i.e., f and g, a SubObjectPropertyOf of JSurjective. To
join both surjective associations, the domain of JSurjective is the same
as the domain of the surjective associations, and the range is the union of
the range of both surjective associations. The OWL 2 translation of jointly
surjective associations is as follows:

Declaration(ObjectProperty(JSurjective))

SubObjectPropertyOf(f JSurjective)

42



SubObjectPropertyOf(g JSurjective)

ObjectPropertyDomain(JSurjective ObjectUnionOf(X Z))

ObjectPropertyRange(JSurjective Y)

4.3.6 Bijective

x:X

x':X

y:Y

y':Y

y'':Y

f

f

fx'':X

X f
[bij]

Y

Figure 4.15: Bijective Constraint

The bijective constraint [bij] of an association is a combination of both
surjective and injunctive constraint, i.e, if an association f from class X
to Y is bijective, then for every object in Y , there is exactly one object
in X. Since, the bijective constraint is a combination of both injective
and surjective constraint, the OWL 2 translation of a bijective association
contains the axioms discussed in the translation of both surjective and
injective associations. The bijective association f from class X to class Y
is translated in OWL 2 as:

InverseFunctionalObjectProperty(f)

FunctionalObjectProperty(f)

ObjectPropertyDomain(f X)

ObjectPropertyRange(f Y)

SubClassOf(X ObjectExactCardinality(1 f ))

4.3.7 Composition Morphism

The composition morphism [comp] allows two or more consecutive associa-
tions to connect with each other and form a chain. If we have three classes
X, Y and Z and similarly an association f between classes X and Y, and
there exists an association g between classes Y and Z, then:

∀x ∈ X : f ; g(x) = ∪{g(y)|y ∈ f(x)}

The composition morphism between associations f and g is translated in
OWL 2 as:

43



X Y

Z

f

   g  fg
[comp]          

Figure 4.16: Composition Morphism

Declaration(ObjectProperty(f))

Declaration(ObjectProperty(g))

Declaration(ObjectProperty(fg))

However, according to the restrictions on the axiom closure in OWL 2
DL ([22], Sec. 11.2), to prevent cyclic definitions involving object sub-
property axioms with property chains, it is not possible in OWL 2 DL
to use ObjectPropertyChain axiom with SubObjectPropertyOf . If we
could do so, the logic system would no longer be decidable, and we would
not be able to use a fully automatic reasoner to carry out validation. To
solve this problem, we have expressed the OWL 2 object chaining i.e.
SubObjectPropertyOf( ObjectPropertyChai-n( f g ) fg ) in Semantic
Web Rule Language (SWRL) [49]. The [comp] constraint mentioned above
is translated into SWRL as:

f(?x, ?y) ∧ g(?y, ?z) =⇒ fg(?x, ?z)

4.3.8 Example

The class diagram shown in Figure 4.9 is translated to OWL 2 as follows:

Declaration(Class(Student))

Declaration(Class(Course))

Declaration(ObjectProperty( study ))

ObjectPropertyDomain(study Student)

ObjectPropertyRange(study Course)

Declaration(ObjectProperty( hasStudent ))

ObjectPropertyDomain(hasStudent Course)

ObjectPropertyRange(hasStudent Student)

InverseObjectProperties( study student )

SubClassOf(Student ObjectMinCardinality(2 study))

SubClassOf(Student ObjectMaxCardinality(1 study))

44



Since the constraints proposed by DPF apply restrictions on objects,
the conformance of the objects against these constraints is discussed in
Chapter 8.

4.4 Class Diagrams Including OCL Constraints

Context Person inv SelfParent
     self.hasParent->excludes(self.hasParent)

Person hasParent

Figure 4.17: A UML class diagram with OCL constraints.

The UML specification proposes the use of Object Constraint Language
(OCL) [74] to define constraints on UML models, such as the restrictions on
the values of object attributes and the restrictions on the existence of ob-
jects by using a multiplicity constraint of an association. These constraints
are combined using boolean operators.

The OCL constraints may also have inconsistencies. According to Wilke
and Demuth [103], 48.5% of the OCL constraints used for expressing the
well-formedness of UML in OMG documents are erroneous. The erroneous
OCL constraints may cause a context class in a class diagram to become
unsatisfiable. In order to identify the inconsistencies in OCL constraints, we
need to do the reasoning of these constraints. But unfortunately, in general,
OCL is not decidable. However, we can avoid undecidability by restricting
our approach to a reduced fragment of the full OCL. Therefore, in order to
use the reasoners for checking the inconsistencies in OCL constraints, we use
a reduced subset of OCL which is limited to the constructs of multiplicity,
attributes value and boolean operators. In this section, we discuss and
translate the different types of OCL constructs supported in our approach.
The grammar of OCL supported in our approach is shown in Figure 4.18.

4.4.1 Linking OCL Constraints with Classes in OWL 2

Each OCL constraint of a class diagram comprises a number of elements
such as context, name and the invariant. These elements hold the name of
a constrained class, the name of an invariant and the constraint in OCL,
respectively. The OCL constraints are used to apply restrictions on object
memberships, i.e. an object can only belong to a particular class if it fulfills
the conditions applied by the OCL constraint of that class, such that:

45



〈OCL-expression〉 ::= 〈cond-expr〉 (〈logic-op〉〈cond-expr〉)∗
〈logic-op〉 ::= and | or
〈cond-expr〉 ::= 〈ref〉 →size()〈relational-operator〉〈integer-literal〉

| 〈ref〉〈relational-operator〉〈primitive-literal〉
| 〈ref〉 →isEmpty() | 〈ref〉 → notEmpty()
| 〈ref〉 →excludes(〈ref〉)

〈ref〉 ::= self.〈identifier〉
〈identifier〉 ::= ′{〈characters〉} | 0..9 {0..9}′

〈relational-operator〉 ::= < | <= | > | >= | <> | =
〈primitive-literal〉 ::= 〈boolean-literal〉 | 〈integer-literal〉

| 〈string-literal〉 | null
〈boolean-literal〉 ::= true | false
〈integer-literal〉 ::= 0..9 {0..9}
〈string-literal〉 ::= ′{〈characters〉}′

Figure 4.18: The grammar of the supported OCL fragment.

Context ≡ Invariant

4.4.2 Attribute Constraints

The value of the attribute is accessed in OCL by using a keyword self or
by using a class reference ([74],p.15), the value constraint of the attribute
Att is written in OCL as self.Att=Value, meaning:

{x|(x, V alue) ∈ Att}

where V alue represents the attribute value. The restriction on the value
of the attribute is translated in OWL 2 by using the axiom DataHasValue.
The OCL attribute value constraint self.Att=Value is translated to OWL 2
as:

DataHasValue(Att "Value"^^datatype )

In this translation, Att is the name of the attribute, V alue is the value of
the attribute, and datatype is the datatype of the attribute V alue.

4.4.3 Multiplicity Constraints

The multiplicity of an association is accessed by using the size() operation
in OCL ([74],p.144). The multiplicity constraint on the association A in
OCL is written as self.A->size()=Value, where V alue is a positive in-
teger and represents the number of allowable instances of the range class of

46



the association A. We can use a number of value restriction infix operators
with the size() operation, such as =, >=, <=, < and >. The multiplicity
constraint on an association A is defined as:

{x|#{y|(x, y) ∈ A}OP V alue}

Where OP is the infix operator and V alue is a positive integer. The trans-
lation of the size() operation in OWL 2 is based on the infix operator used
with the size() operation, such as:

� ”size() >=”or ”size() >”translated using the ObjectMinCardinality
axiom.

� ”size() <=”or ”size() <”translated using the ObjectMaxCardinality
axiom.

� ”size() =” translated in OWL 2 using the ObjectExactCardinality

axiom.

For example, the OCL constraint self.A->size()=Value, in which A is
the name of an association and V alue is a positive integer, is translated to
OWL 2 as:

ObjectExactCardinality(Value A)

Furthermore, the constructs isEmpty and notEmpty represent size() = 0
and size() > 0 respectively. The invariant self.A->isEmpty() is trans-
lated in OWL 2 as:

ObjectExactCardinality(0 A)

and similarly the invariant self.A->notEmpty() is translated in OWL 2
as:

ObjectMinCardinality(1 A)

The OCL constraints over the multiplicity of an association is further
extended by using construct excludes. This construct is used to apply
restriction on the objects of a domain class of an association to not to link
with some specific objects of a range class. For example, if we consider an
example that an object of a class cannot link with itself by using a link
of an association A, such that self.A->excludes(self.A), the construct
excludes in this specific case in translated in OWL 2 as:

IrreflexiveObjectProperty( A )

In OWL 2, an association that is declared Irreflexive disallows an object
of its domain or range class to link with itself.

47



4.4.4 Boolean Operators

The constraints in a state invariant are written in the form of a boolean
expression, and joined by using the boolean operators, such as “and” and
“or”([74],p.144).

The binary “and” operator evaluates to true when both boolean expres-
sions Ex1 and Ex2 are true. In our translation, this is represented by the
intersection of the sets that represent both expressions, i.e.:

Ex1 ∩ Ex2

This is represented in OWL 2 as:

ObjectIntersectionOf(Ex1 Ex2)

The binary “or” operator evaluates to true when at least one of the boolean
expression Ex1 or Ex2 is true. In our translation, this is represented by
the union of the sets that represent both expressions, such as:

Ex1 ∪ Ex2

This is represented in OWL 2 as:

ObjectUnionOf(Ex1 Ex2)

4.4.5 Example

The OCL invariant self.hasParent− > excludes(self.hasParent) has the
context class Person shown in Figure 4.17 representing a condition that a
person cannot become a parent of itself. The class diagram with the OCL
constraint is translated in OWL 2 as:

Declaration(Class(Person))

Declaration(ObjectProperty( hasParent ))

ObjectPropertyDomain(hasParent Person)

ObjectPropertyRange(hasParent Person)

IrreflexiveObjectProperty(hasParent)

The details about how the inconsistent OCL constraint makes a UML
model inconsistent and how to detect the inconsistencies in OCL constraints
using OWL 2 reasoners is discussed in Chapter 6. Furthermore, the con-
formance of the objects against the OCL constraints specified with a class
diagram is discussed in Chapter 8.

48



4.5 Conclusion

In this chapter, we presented the translations of UML class diagrams with
or without constraints into OWL 2. These translations allow us to vali-
date UML class diagrams with or without constraints using reasoners. In
the next chapter, we will show how to validate the metamodels or class
diagrams using the translations proposed in this chapter. Also, we discuss
the implementation of translations in the form of a translation tool. The
translation tool will allow us to automatically translate UML diagrams to
OWL 2. The output of the translation tool is later on passed to a reasoner
for the reasoning of translated diagrams.

49



50



Chapter 5

Application: Metamodel
Validation

In this chapter, we present an application of the UML class diagram trans-
lations proposed in Chapter 4 and discuss how to validate the UML class
diagrama or metamodels using OWL 2 reasoners. Also, we exemplify the
proposed approach by validating more than 300 metamodels comprising of
up to thousands of model elements available in an online repository called
the Atlantic Metamodel Zoo [1]. This chapter is based on the work pre-
sented in Article II.

5.1 Introduction

Each software model created during a software development process is de-
scribed using a particular modeling language such as the UML or a domain-
specific language. The definition of a modeling language is given in the form
of a metamodel by using a metamodeling language or a language to define
modeling language.

A metamodel represents constraints on how concepts in a model can be
related to each other, such as multiplicity, domain and range, composition
and subset constraints. A metamodel, like any other software artifact,
may contain errors. As an example, let us assume that we are creating a
metamodel for a statechart language that includes concepts such as simple
states and composite states that can contain other states and transitions
between states. A fragment of such a metamodel is shown in the first half of
Figure 5.1. This metamodel contains a rather obvious contradiction: there
is a property called outgoing with its minimum multiplicity larger than its
maximum multiplicity. Such contradictions mean that there are no valid
models that can make use of this property.

Another example of a metamodel containing a contradiction is shown

51



1 source 2..1outgoing

Transition

CompositeState

0..*substates

1container      

State 1 source 0..*outgoing

1 target 0..*incoming

Transition

1 target 0..*incoming

State

Figure 5.1: Examples of invalid metamodels. Top: Invalid due to the
multiplicity error. Bottom: Invalid due to the composition error.

in the second half of Figure 5.1. Here, the multiplicity restriction on the
container property leads to each instance of CompositeState having to be
in a composite relationship with another instance of CompositeState. This
violates one of the composition constraints — elements having only one
owner and there being no cycles in the composition, given a finite set of
instances of CompositeState. Since models are finite, any conforming model
will contain a violation of the composition constraints, as exemplified by
the model in Figure 5.2 where the element cs violates the constraint on
cycles by owning itself.

t:Transitions:State

cs:CompositeState

source outgoing

container     

substates        
target incoming

    container

substates                  

Figure 5.2: An erroneous model conforming to the bad metamodel in the
bottom of Figure 5.1.

As shown in the examples, metamodels can contain errors or contra-
dictions. We consider it necessary to validate a metamodel to ensure that
there are no such problems before they are used. This requires a formal
definition of a metamodeling language and an approach to reason about
the formalized metamodels.

52



5.1.1 Validation Approach

To show the application of the translations proposed in the previous chap-
ter, in this chapter we present an approach and a tool to validate meta-
models by formalizing the semantics of metamodels in terms of Description
Logic (DL) [13] and represent the DL in terms of an ontology language, in
our case the OWL 2 Web Ontology Language [21].

By creating a mapping between a metamodeling language (UML) and
a DL, we obtain important benefits:

� We provide a formal and unambiguous definition of the metamodeling
concepts that is independent of a specific model repository. This may
help ensure interoperability between metamodeling tools.

� Use the same language to represent the constraints that apply to
metamodels and the constraints that metamodels impose on models.

� We can use existing reasoning tools to analyze and validate meta-
models and detect problems.

The translation from a UML metamodel to an OWL 2 ontology is done
automatically using a model transformation. Once the ontology of a meta-
model has been generated by using our transformation, we use a reasoner
to check the ontology consistency and satisfiability.

5.1.2 Consistency Analysis of Metamodels

In our work, the consistency of metamodels is defined with the assumption
that there is a nonempty set ∆I called the object domain containing all
the possible objects in our domain. We propose that a UML metamodel
depicting a class diagram is interpreted as a number of subsets of ∆I rep-
resenting each class in the metamodel and as a number of conditions that
need to be satisfied by these sets. A metamodel is consistent if each class
in a metamodel can be instantiated i.e., if C is a class in the metamodel
and C ⊆ ∆I , then C 6≡⊥I must hold.

5.2 Implementation

We have implemented an automatic transformation from UML metamod-
els to OWL 2. The transformation is implemented using the model-to-text
transformation tool in the Eclipse Modeling Framework (EMF) by using
MOFScript [5, 8]. EMF is an open source software and provides an open
development platform comprised of extensible frameworks, tools and run-
times for building, deploying and managing software across the lifecycle.

MOFScript is an Eclipse plugin for the model to text transformation,
for example, to generate code or documentation from models. It provides
a framework that allows generating text or code from models based on any

53



kind of metamodel and its instances. Also, the MOFScript language is
currently a candidate in the OMG RFP process on MOF Model to Test
Transformation. MOFScript transformations define a set of rules as to how
metamodel elements should be translated through print statements. The
metamodel input format in our implementation is UML XMI 2.1 parsed
according to UML 2 3.0.0.

We used the MOFScript subproject for code generation of the UML
class and object diagrams. This subproject is built for the generation of
MOF-based models, and has the ability to generate text from any MOF-
based model, for example, UML models or any kind of domain model, such
as, metamodels expressing the specification of domain specific languages.
This subproject also has the ability to specify basic control mechanism,
such as, loops and conditional statements. It also provides the facility for
string manipulation and generates the output of expressions referencing
a model to a specified output file. In our case, the output files are in
both OWL 2 functional syntax and in Manchester Syntax that carries the
OWL 2 translation of UML models, whereas, the SWRL rules are written in
a sperate .OWL file wherever it is required, for example, SWRL is required
for the translation of composition transitivity.

5.3 Validation of Metamodels at Atlantic Zoo

To evaluate our approach, we conducted a number of experiments where
we translated the metamodels from the Atlantic Metamodel Zoo to OWL 2
ontologies and then validated them by using OWL 2 reasoners.

5.3.1 Selection of Evaluation Data

The Atlantic Metamodel Zoo is a library consisting of 303 metamodels
at the time of writing, maintained by the AtlanMod team. The AtlanMod
team does not state the criteria for the inclusion of a metamodel in the zoo,
but most of the metamodels seem to have been entered by modeling and
computer science researchers. The metamodels are available in different
languages, including UML 2, OWL, KM3, among others.

The choice of the Atlantic Metamodel Zoo as evaluation suite has both
advantages and disadvantages. One disadvantage is that the repository
is not completely recent; many of the published metamodels date back
to 2005 or 2006. Another disadvantage is that many of the metamodels
presumably have not been used in practice. The high rate of metamodels
containing errors, nearly half of the repository, is an indication of this, since
the erroneous metamodels would most likely have been weeded out if the
metamodels had been used in practical work.

54



A related disadvantage is that a part of the errors found seem not to
be conceptual errors introduced by humans, but rather artifacts of conver-
sion processes from other formats. This is for example the case with the
matemodels listed in table A.5, which are presumably originally written in
OWL and subsequently converted to UML.

However, the use of the Atlantic Metamodel Zoo also has advantages
that we consider outweigh the disadvantages. The main advantage of At-
lantic Zoo is that it is publicly available on the Internet. While it would be
optimal to test our approach on live, production use metamodels, it would
be quite difficult to obtain a sufficient amount of such metamodels. This is
due to the fact that businesses understandably often consider their meta-
models part of business sensitive intellectual property, and as such they are
reluctant to release them to researchers.

While it would have been better to use production metamodels for eval-
uation, the high rate of errors in the Atlantic Metamodel Zoo can from a
testing perspective be seen as an advantage rather than a disadvantage.
If we instead had reported 300 flawless production metamodels, we would
not have been as convinced of the ability of our approach to actually catch
errors. The high error rate of the Atlantic Metamodel Zoo is unfortunate
from a metamodeling perspective, but from the perspective of developing
a diagnostic tool it is helpful. The same can be said for the errors caused
by conversion artifacts in the Atlantic Metamodel Zoo. Instead of being a
nuisance, they rather show that our approach can catch both automatically
introduced errors and those introduced by humans.

5.3.2 Method

We ran our OWL 2 translator through all the examples in the Atlantic
Metamodel Zoo and used the reasoners Pellet and HermiT to validate the
generated ontologies. Given a source metamodel, the process consists of
three steps:

1. Run the source metamodel through the translator.

2. Check the satisfiability of the generated ontology. If the ontology is
inconsistent, it will also be reported in this step.

3. If the reasoner reports a problem, an explanation is generated by
the reasoner in the form of a list of violated axioms. It is necessary
to manually inspect the generated explanation and usually also a
diagram of the metamodel in question since the cause of the problem
in many cases is not obvious from the explanation.

In our experiment, we ran HermiT 1.2.1 from the command line and
used the options -k and -U to check the consistency and concept satisfia-

55



bility, respectively. In the case of Pellet, we used version 2.0.1 and later
versions from the command line and used the options consistency and
unsat to check the consistency and concept satisfiability, respectively.

5.3.3 Validation Results

Out of the 303 metamodels, 149 were found to be invalid. The errors are
reported in Appendices A.2–A.4. For each metamodel, one or more classes
that are involved in the constraint violation is listed. The class list is not
exhaustive. The metamodels may be listed in more than one category.

As can be seen from the Appendixes, the most common error by far is
a violation of the one ownership constraint of composition (Appendix A.4).
An example of such violation is shown in Figure 5.3.

Figure 5.3: (As in [53, 1]) The metamodel fragment describes an Archi-
tectural Description, containing an unsatisfiable class ModelElement. This
metamodel is unsatisfiable due to the violation of the single owner restric-
tion of composition.

There is also a fair number of metamodels violating the acyclic compo-
sition constraints. An example of such a violation is shown in Figure 5.4
and the list of all violations of acyclic composition constraints found by
using our approach is shown in Appendices A.1 and A.3.

56



C
lo

c
k

S
e

n
d

 C
o

n
m

u
n

ic
a

ti
o

n
R

e
c
e

iv
e

 C
o

m
m

u
n

ic
a

ti
o

n

U
M

L
::

N
a

m
e

S
p

a
c
e

 (
a

b
s
tr

a
c
t)

U
M

L
::

M
o

d
e

lE
le

m
e

n
t 

(a
b

s
tr

a
c
t)

M
u

lt
i 
T

a
s
k

O
u

tp
u

t 
S

e
t

O
u

tp
u

t

0
..

*
0

..
*

c
o

n
ta

in
s

S
im

p
le

 T
a

s
k
 (

a
b

s
tr

a
c
t)

D
e

c
is

io
n

B
u

s
in

e
s
s
 P

ro
c
e

s
s

In
p

u
t 

S
e

t
In

p
u

t
0

..
*

0
..

*

c
o

n
ta

in
s

A
p

p
li
c
a

ti
o

n
 T

a
s
k

D
a

ta
 F

lo
w

F
lo

w
 (

a
b

s
tr

a
c
t)

D
a

ta
 E

le
m

e
n

t 
(a

b
s
tr

a
c
t)

1

0
..

*

1

0
..

*

s
in

k

1

0
..

*

1

0
..

*

s
o

u
rc

e

C
o

m
p

o
u

n
d

 T
a

s
k

0
..
*

0
..
*

c
o

n
ta

in
s

re
a

li
s
e

s

In
v
o

k
e

r 
T

a
s
k

s
y
n

c
h

ro
n

o
u

s
 :

 B
o

o
le

a
n

T
e

rm
in

a
to

r 
T

a
s
k

s
ty

le
 :

 S
tr

in
g

C
o

n
tr

o
l 
F

lo
w

D
a

ta
S

e
t 

(a
b

s
tr

a
c
t)

0
..

*
0

..
*

c
o

n
ta

in
s

1

0
..

*

1

0
..

*
s
o

u
rc

e

T
a

s
k
 (

a
b

s
tr

a
c
t)

fu
n

c
ti
o

n
 :

 S
tr

in
g

e
x
c
e

p
ti
o

n
_

h
a

n
d

le
r 

: 
B

o
o

le
a

n
3

..
*

3
..

*

c
o

n
ta

in
s

0
..

*
0

..
*

c
o

n
ta

in
s

0
..

*

1

0
..

*

1

in
v
o

k
e

s

1
..

*

0
..

*

1
..

*

0
..

*

te
rm

in
a

te
s

C
o

n
tr

o
l 
P

o
in

t

1

0
..

*

1

0
..

*

s
in

k

1

0
..

*

1

0
..

*

tr
ig

g
e

rs

0
..

*
0

..
*

c
o

n
ta

in
s

U
M

L
::

P
a

ra
m

e
te

r

E
x
c
e

p
ti
o

n

Figure 5.4: (As in [17, 1]) The metamodel fragment describes a Business
Process Model with unsatisfiable classes Task and CompoundTask due to
the composition cycle error.

57



A number of metamodels erroneously declare the same class name sev-
eral times, which will generate conflicting restrictions on the class (Ap-
pendix A.5). These metamodels all seem to originally have been written as
OWL ontologies, where this would not have been an error.

The metamodels that were not found to have problems are not guar-
anteed to be free of errors, they are just free from inconsistencies that our
approach can detect.

A very useful future improvement would be to enhance the way problems
in ontologies are reported. As it is now, the reasoner can give a list of
violated OWL 2 axioms. However, the relationship between UML concepts
and OWL 2 axioms is not so obvious that it is possible to immediately point
out the cause of the problem based on these violations without manual
inspection of the problematic metamodel. It would greatly add to the
usefulness of the method to have some sort of automated discovery of the
cause of violations.

5.4 Performance Test for Reasoners

We ran our OWL 2 translator through all the examples in the Atlantic
Metamodel Zoo [1] and used the reasoners Pellet and HermiT to validate the
generated ontologies. In our experiments, we ran HermiT version 1.2.5.929
and Pellet version 2.2.0. We evaluated the reasoners in terms of maturity,
performance, expressiveness, and their problem reporting mechanism.

5.4.1 Expressiveness

The expressiveness is evaluated in two aspects: the concepts contained in
the metamodels and the Description Logic which the reasoners are based
on.

On one hand, the metamodels in the Atlantic Zoo are simple in the
sense that they do not cover all the concepts that are within the ability of
the UML metamodeling language. For example, there are no metamodels
that contain any ordered properties, ordered composition or ordered subset
properties. The constraints of these concepts are expressed in SWRL rules.

On the other hand, we noticed problems with UML composition: trans-
lating composition to OWL 2 requires the transitivity axiom and irreflexive
axiom, whereas the OWL 2 specification forbids the two axioms used on
the same object property. This can be solved by expressing them in SWRL,
although SWRL rules are only applied on individuals rather than classes.

58



5.4.2 Maturity of Reasoners

Both HermiT and Pellet can process all the ontologies generated from the
Atlantic Zoo without generating any runtime error or getting into an infinite
loop. Furthermore, both reasoners always produce the same report for all
the metamodels. This is a significant observation because they have been
implemented independently by two different development groups. Based on
this, we claim that the current implementation of both HermiT and Pellet
are mature enough for the task of validating metamodels.

During our experiment, we found that Pellet 2.0.1 supports OWL 1.1
functional syntax [24] which is different from OWL 2 in terms of prefix
declaration and datatype maps. HermiT supports strict OWL 2 functional
syntax. The ontologies to be processed by HermiT and Pellet are slightly
different syntactically, accordingly, the MOFScript transformation for each
syntax should be different too.

5.4.3 Performance

We ran our performance experiments using a desktop computer with an In-
tel Core 2 6400 processor running at 2.13GHz, 2GB of RAM, Linux Fedora
Core 10 and Java 1.6.0 10 rc2. We processed each metamodel three times
and reported the average execution time.

The time taken to translate the metamodels grows exponentially with its
size. 83% of the metamodels took under 10 seconds, but large metamodels
can take a few minutes, with the largest taking 4.5 minutes to translate.
Generally, the increase in time follows an exponential curve, however, the
graph shown in Figure 5.5 is a linear graph, because we validate class
diagrams/metamodels without instances. The time taken for the reasoners
is generally below 10 seconds; 286 of the 303 ontologies were processed
by HermiT in under 10 seconds compared to 282 for Pellet. The results
are shown in Figure 5.6. However, it should be noted that there are several
outliers. HermiT, while generally slightly faster than Pellet has five outliers
that take more than 300 seconds to process, while Pellet only has one. The
longest processing time for HermiT was 131 minutes, while the longest for
pellet was 56 minutes.

Figure 5.6 also shows the comparison of the times taken to process
each metamodel by both reasoners. The x-axis represents the number of
axioms in a generated ontology. The y-axis represents the total time in sec-
onds necessary to load an ontology representing a metamodel, and check
it for consistency and satisfiability. As for the counting of number of ax-
ioms, though, certain expressions are a combination of OWL 2 axioms. For
instance, the minimum cardinality in Figure 5.1 is expressed as follows,

59



+
+

++
+

+ ++ ++
++
+

++++++ +++

+

+

+++++ +++++++
+++

+
+++

+
+

+

+++++++

+

++++++ +++ +++++++++++++ +++

+

+

+

+

++

++++++++++++++++++++ ++++ +
+

+

++

+

++ +
+

++

+

++
+

+

+

++

+

++++

+

+++++++

+

+
++++++++ ++ ++++
+ +

++
+ +

+ +
++++

++++++ +++++

+

+ +

+

++++

+

+++++++++++ ++ +

+

++++++++ ++

+ +

++++++ +++

+

+

+
+

+

+

++++

+

++++++
+

+++ + ++ ++++++++ ++++++
+

+

+ +
+ +

+

+++++++++++

+

+++++++++++

+

+ + +
+++++

0 2000 4000 6000 8000 10000 12000

0
50

10
0

15
0

20
0

25
0

Size (number of axioms)

T
im

e 
(S

ec
on

ds
)

Transformation performance

Figure 5.5: MOFScript transformation performance.

which is a combination of axiom SubClassOf and ObjectMinCardinality,
we count this as one axiom.

SubClassOf(State ObjectMinCardinality(2 State_outgoing ))

As we can observe from Figure 5.6, HermiT is consistently faster than
Pellet, but both tools can process each metamodel in less than 10 seconds.

Based on this, we consider that the efficiency of the two reasoners is
satisfactory for the given problem and an average desktop computer.

5.4.4 Complexity

We used OWL 2 DL for the representation of UML concepts wherever it
is possible, and used a decidable fragment of SWRL only for the represen-
tation of a model composition constraint. OWL 2 DL is the standardized
formalism of DL which is equivalent to SHOIN (D+). The complexity of
OWL 2 DL with regard to the reasoning problems of ontology consistency
and instance checking is NEXPTIME complete [50], whereas the complex-
ity of SWRL is undecidable [49, 106]. The combination of OWL 2 DL and
SWRL becomes undecidable [49]. However, if all atoms that exist in the
SWRL rule use OWL 2 class and property names are restricted to known

60



0 2000 4000 6000 8000 10000 12000

0
50

10
0

15
0

20
0

25
0

30
0

Size (number of axioms)

T
im

e 
(S

ec
on

ds
)

+ +++ ++ ++ ++ ++ +++++++ +++ + +
+++++ +++++++ +++ ++++ + + +

++++++++
+

+++++ +++ +++++++++++++ +++

+

+

+

+ ++++++++++++++++++++++ ++++ ++

+

++

+

++ + +++ +++ + ++++ +++++

+

+++++++

+

+
++++++++ ++ +++++ ++++ ++ +++++ ++++++ +++++

+

+ +

+

++++

+

+++++++++++ ++ + +++++++++ +++ +++++++ +++

+

+ ++
+

++++

+

++++++ ++++ +
+

+ ++++++++ ++++++ +
+

+
+

+ +++++++++++++ ++++++++++++
+

+ + ++++++x xxx xx xx xx xx xxxxxxx xxx x xxxxxx xxxxxxx xxx xxx x x xxxxxxxxx xxxxxx xxx xxxxxxxxxxxxx xxx xx
x

x
xx

xxxxxxxxxxxxxxxxxxxx xxxx xx
x

xxxx x xxx xxx x xxxx xxxxx

x

xxxxxxx x
x

x

x x
x

xxxx xx xxxxx xxxx xx xxxxx xxxxxx xxxxx
x

x x
x

xxxx

x

x xxxxxxxxxx xx x xxxxxxxxx xxx xxxxxxx xxx x xx

x

xxxx

x

xx xxxx xxxx xx xxxxxxxx xxxxxx x
x

x

x

x xxxxxxxxxxxxx xx xxxxxxxxxx
x

x x xxxx xx

+
x

Pellet
HermiT

Satisfiability Checking

Figure 5.6: Reasoner satisfiability checking performance.

individuals, then the SWRL rule is considered DL-Safe rule and becomes
decidable [106, 44]. The data complexity of query answering in the decid-
able fragment of SWRL is deterministic exponential time [106].

The ontology generated by the translation tool is written by using both
OWL 2 DL and the decidable fragment of SWRL. In the light of above
discussion, we conclude that the ontology generated by the translation tool
is decidable, and the complexity with regard to the reasoning problems such
as ontology consistency and instance checking is deterministic NEXPTIME
complete.

5.4.5 Problem Reporting

Pellet produces an error message if a given input contains a syntax error or
the wrong file header. Such input cannot be further checked for consistency
and unsatisfiability. When checking consistency, Pellet simply shows if
the input ontology is consistent or not. When checking unsatisfiability,
given a consistent ontology, Pellet reports the number of elements checked,
time used and number of unsatisfiable elements. If there are unsatisfiable
elements, the specific class names are shown.

61



Pellet provides an option to print verbose information while reasoning.
The printed information indicates input size, specific number of classes,
properties and individuals, expressivity, used time summary, among others.
Once an element that leads to an inconsistency is found, Pellet stops further
processing and points out a possible reason, but the actual reason still needs
be verified by users.

HermiT also provides verbose information printing, such as the file un-
der processing, and timing for parsing, among others. In contrast to Pellet,
when an input is inconsistent, HermiT shows no possible reasons. As far
as processing procedure is concerned, HermiT differs from Pellet in that it
allows checking unsatisfiability of an inconsistent metamodel.

Regardless of how the two reasoners report the results, the information
they give can be difficult to interpret when a metamodel is inconsistent or
has unsatisfiable concepts. In the best case, they show the name of the
unsatisfiable concepts but no further explanations. More information on
what makes a concept unsatisfiable would be extremely helpful.

5.5 Conclusion

In this chapter, we proposed an approach to validate UML and MOF-like
metamodels by providing a mapping from UML-like metamodel concepts to
OWL 2, to allow automatic validation of metamodels using reasoners. We
have used our approach to validate 303 published metamodels. Out of the
metamodels in this public repository, 49% are not well-formed. This shows
that the problem of metamodel validation is indeed an issue of practical
concern. It also demonstrates the value of our approach.

62



Chapter 6

Consistency of Class
Diagrams and Statechart
Diagrams

In this chapter we discuss how to check the consistency of class diagrams
and statechart diagrams with state invariants. This chapter is based on the
work presented in Articles I and V.

6.1 Introduction

UML is a widely used modeling notation for documenting the design of
software intensive systems [77]. A UML model usually comprises a number
of diagrams providing different views of a system. These diagrams allow us
to decompose the design of a large system into smaller and more manageable
views. However, representing a system as a collection of diagrams raises
the issue of possible design inconsistencies. In this chapter we address the
problem of the consistency of UML class and statechart diagrams with state
invariants.

A class diagram describes the structure of a system in the form of classes,
their associations with each other, the attributes of each class and opera-
tions that can be invoked on them. On the other hand, a statechart diagram
provides the behavioral interface of a class. It defines all possible sequences
of method invocations, the conditions under which methods can be invoked
and their expected results.

Each state in a statechart diagram represents a certain condition that is
true when the state is active. The condition can be implicit in the design,
or defined explicitly in the form of a state invariant. A state invariant
is a boolean expression that is true when a given state is active and false
otherwise. State invariants are defined using the attributes and associations

63



described in the class diagram and expressed using the Object Constraint
Language (OCL) [74].

Given a number of UML class and statechart diagrams, it is possible to
specify unsatisfiable state invariants which describe states that can never
be active or operations that cannot be implemented according to the well-
formedness rules specified in the UML superstructure specification [77]. An
unsatisfiable state invariant is considered inconsistent with respect to a class
diagram since there are no object instances that can make an unsatisfiable
invariant evaluate to true.

The inconsistent state invariants are design errors and, in order to re-
duce development cost and time, they must be detected and corrected as
early in the software development process as possible. The approach we
propose to detect such inconsistencies is based on the use of the automatic
reasoning tools developed initially in the context of the semantic web. We
first translate the class and statechart diagrams with state invariants in a
UML model to the Web Ontology Language version 2 for Description Logic
(OWL 2 DL) [20], and then use an OWL 2 DL reasoning tool [90, 83] to
determine the consistency of the UML design.

The approach presented here is limited to a fragment of the OCL lan-
guage, but on the other hand is decidable and fully automatic. The designer
does not need to know the details of the translation or the reasoning per-
formed by the underlying tools. In addition, the current reasoning tools
and desktop computers can process relatively large UML models in few
seconds. Therefore we consider that this approach has the potential to be
integrated with existing and future UML tools and provides consistency
analysis service that goes beyond what is being offered in the current tools
which only use basic syntactic analysis and well-formed rules.

6.2 Consistency of Class Diagrams and Statechart
Diagrams

In this section we present an overview of our approach that we demonstrate
with a running example. Our example system is a Content Management
System (CMS). In this system, authors post new articles to be published
after being reviewed by a reviewer. A reviewer can accept, reject or advise
a revision of the article. Only an accepted article can be published. An
article can be withdrawn if it is under review. However, a published article
cannot be withdrawn. The structure of this system is described as a UML
class diagram (Figure 6.1), while its behavior is described using a UML
statechart diagram (Figure 6.2).

64



Figure 6.1: The static view of Content Management System.

6.2.1 Class Diagram Representing Structure of CMS

The class diagram provides the main classes involved in the system un-
der development and their associations with each other. It exposes the
attributes of each class and operations that can be invoked on them.

The class diagram shown in Figure 6.1 shows the syntactic view of CMS.
It consists of 5 classes, namely, Article, Review, Withdraw, Publication-
Record and an enumeration class DecisionType. An article is associated to
Review, Withdraw and PublicationRecord classes via associations review,
withdraw and publicationRecord, respectively. Review class is further as-
sociated to an enumeration class DecisionType with literals accept, reject
and revise. An instance of the article class can be submitted, withdrawn,
published or revisioned via Submit, Withdraw, Publish and Revisioned op-
erations, respectively. An accept, reject and revise operation can be called
on an instance of Review class.

6.2.2 Statechart Diagram Representing Behavior of CMS

A statechart diagram defines behavior of a class in terms of states that an
instance of a class takes during its lifecycle and the transitions between
them. Each transition from a source to a target state is triggered by a
function call.

The statechart diagram shown in Figure 6.2 defines the behavioral view
of the class Article of the class diagram shown in Figure 6.1 in terms of
states. It consists of one composite state ArticleReview and two simple
states Publish and ArticleWithdraw. The ArticleReview composite state
consists of four simple states namely, WaitingforReview, Revisioning, Arti-
cleRejected and Accept. When the submit() method is called on an object

65



Figure 6.2: The behavioral view of the class Article of the class diagram
shown in Figure 6.1.

of the class Article, the statechart diagram is initiated and the object en-
ters into the state WaitingforReview, a substate of ArticleReview. The
method calls accept(), reject() and revise() take the object to the Accept,
ArticleRejected and Revisioning states respectively. When the author of
the article is revisioning the article, the object of the class Article is in
the Revisioning state. When the author revises the article, he invokes the
Revisioned() method of the Article class and the object again comes into
the WaitingforReview state. The publish() method can be invoked from
the Accept state and the object switches to the Publish state. An article
can be withdrawn by invoking the method withdraw() whenever the state
ArticleReview is active, but the withdraw() method cannot be invoked if
the object of the class Article is in the Publish state.

6.2.3 State Invariants

Each state in a statechart is annotated with a state invariant. The state
invariant is a boolean expression that links classes of a class diagram to
the states of a statechart diagram. We say that an object of a class is in a
certain state if the state invariant of that state is true. We express the state
invariant of each state by using OCL and annotate the behavioral diagram
of our example with state invariants in Figure 6.2. The details about the
OCL constructs used in our approach will be discussed in Section 6.6.

66



6.2.4 Invalid State Invariant

We consider the state invariants which let the statechart diagram behave
against the UML superstructure specifications for statechart diagrams [77]
as inconsistent state invariants, and they may cause the whole system to
become unsatisfiable or inconsistent. The examples of inconsistent state
invariants are as follows:

Inconsistent State Invariant Example 1: According to the UML
superstructure specification, invariants of non-orthogonal states must be
mutually exclusive ([77], p.564), for example in the statechart diagram
shown in Figure 6.2, the article cannot be in the state ArticleRejected
if at the same time this article is in the state Accept. If we introduce
an error by changing the invariant value of the state ArticleRejected to
self.review->size()=1 and self.review.Decision=accept, this means
that an article can be rejected and accepted at the same time. The intro-
duced error allows an object of the class Article to belong to two non-
orthogonal states i.e. Accept and ArticleRejected, which is the violation
of the UML superstructure specification of the statechart diagram, and as
a consequence the invariants of states ActicleRejected and Accept become
inconsistent.

Inconsistent State Invariant Example 2: According to the UML su-
perstructure specification, whenever a state is active, all its superstates
are active ([77], p.565). This means that all the invariants of an active
state and its superstates directly or transitively are true. For example,
in a statechart diagram, see Figure 6.2, if the state Accept is active then
its superstate ArticleReview should be also active. If we introduce an er-
ror by adding the condition self.withdraw->size()=1 in the invariant of
the state Accept, this means that a withdrawn article can also be accepted.
The introduced error causes the contradiction between the invariants of the
state Accept and its superstate ArticleReview, and violates the UML su-
perstructure specification of the statechart diagram. Consequently it makes
the invariant of the states Accept, ArticleReview and ArticleWithdrawn
inconsistent.

In the next section we discuss how we can carry out the analysis of these
kind of models using OWL 2 reasoning tools.

6.3 Consistency Analysis

In this section we define the problem of determining the consistency of UML
models containing class and statechart diagrams as follows. Our view of
model consistency is inspired by the work of Broy et al. [25]. This work

67



considers the semantics of a UML diagram as their denotation in terms of
a so-called system model and defines a set of diagrams as consistent when
the intersection of their semantic interpretation is nonempty.

In our work, we assume that there is a nonempty set ∆ called the object
domain containing all the possible objects in our domain. We propose
that a UML model depicting a number of class and statechart diagrams is
interpreted as a number of subsets of ∆ representing each class and each
state in the model and as a number of conditions that need to be satisfied
by these sets.

A UML class is represented by a set C, such that C ⊆ ∆. An object
o belongs to a UML class C iff o ∈ C. We also represent each state S in
a statechart as a subset of our domain S ⊆ ∆. In this interpretation, the
state set S represents all the objects in the domain that have such state
active, i.e., object o is in UML state S iff o ∈ S.

Other elements that can appear in a UML model such as generalization
of classes, association of classes, state hierarchy and state invariants are
interpreted as additional conditions over the sets representing classes and
states. For example class specialization is interpreted as a condition stating
that the set representing a subclass is a subset of the set representing its
superclass. These conditions are described in detail in the next section.

In this interpretation, the problem of a UML model consistency is then
reduced to the problem of satisfiability of the conjunction of all the condi-
tions derived from the model. If such conditions cannot be satisfied, then
a UML model will describe one or more UML classes that cannot be in-
stantiated into objects or objects that cannot ever enter a UML state in
a statechart. This can be considered a design error, except in the rare
occasion that a designer is purposely describing a system that cannot be
realized. To analyze the UML models and discover possible inconsistencies
we will use the services of an OWL 2 reasoning tool, as described in the
rest of this section.

6.3.1 Reasoning

In order to determine the satisfiability of the concepts represented in a UML
model, we propose to represent the UML model using a Description Logic,
and analyze the satisfiability of the concepts using automated reasoning
tools. We have chosen OWL 2 DL to represent our UML models since
we consider it well supported and adapted, and there exist several OWL 2
reasoners [90, 83] for analyzing concept satisfiability. A number of UML
class diagrams, statechart diagrams and state invariants are taken as an
input. All the inputs are translated to OWL 2 DL, and then analyzed by
a reasoner. The reasoner provides a report of unsatisfiable and satisfiable

68



concepts. Unsatisfiable concepts will reveal UML classes that cannot be
instantiated or UML states that cannot be entered.

In the next section, we discuss and translate the structure of UML
models with state invariants, and the UML superstructure specification
conditions over the sets representing classes and states into OWL 2 DL.

6.4 From Statechart Diagrams to OWL 2 DL

A statechart diagram provides the behavioral interface of a class and defines
the sequence of method invocations, the conditions under which they can be
invoked and their expected results. In order to analyze the satisfiability of
state invariants in a statechart diagram, we need to translate the states and
their invariants into OWL 2 DL. The translation of the state and the state
invariant includes the reference of the class and its attributes. Therefore,
we translate a statechart diagram in the same ontology that contains the
OWL 2 translation of a class diagram.

6.4.1 State and State Hierarchy

We represent a UML state as a concept representing the objects that have
such state active. A concept representing a state will be included in the
concept representing all object instances of the class associated to the stat-
echart diagram, since all objects that can have the state active belong to
the given class. That is, if the state S belongs to a statechart diagram
describing the behavior of the class C, then:

S v C

We represent this in OWL 2 as follows:

Declaration(Class(S))

SubClassOf( S C )

S

sub

Figure 6.3: State and State Hierarchy

State hierarchy is also represented using the concept inclusion. Whenever
a substate is active, its containing state is also active. This implies that the

69



concept representing a substate will be included in the concept representing
its parent state, such as:

sub v S

This is represented in OWL 2 as:

SubClassOf( sub S )

6.4.2 Non-Orthogonal States are Exclusive

S

S1 S2

Figure 6.4: Non-Orthogonal States are Exclusive

The UML Superstructure specification requires that if a composite state
is active and not orthogonal, at most one of its substates is active ([77],
p.564). This means that an object cannot be at the same time in the
two concepts representing two exclusive states, i.e., if S1 and S2 represent
substates of an active and not orthogonal composite state then:

S1 u S2 =⊥

When representing a statechart diagram in OWL 2, the non-orthogonal
exclusive states are declared as disjoint, so that they may not able to share
any object.

DisjointClasses( S1..Sn )

6.4.3 Orthogonal States are Non-Exclusive

S

R1             R2

S2S1

Figure 6.5: Orthogonal States are Non-Exclusive

The UML Superstructure specification requires that if a composite state
is active and orthogonal, all of its regions are active ([77], p.564). That is

70



if R1 and R2 are concepts representing the two regions of an orthogonal
composite state represented by the concept S, then:

R1 tR2 = S

We should note that if S1 and S2 represent two substates where,

S1 v R1

S2 v R2

then they are not exclusive and

S1 u S2 6=⊥

Due to the open-world assumption of DL, concepts may represent common
individuals unless they are explicitly declared as disjoint.

6.5 State invariant into OWL 2 DL

The UML specification defines a state in a UML diagram as the repre-
sentation of a specific condition “A state models a situation during which
some (usually implicit) invariant condition holds” ([77], p.559-560). We un-
derstand from this definition that the invariant condition characterizes the
state: if the invariant condition holds the state is active, otherwise if the
invariant condition does not hold the state is not active. In our approach

S

      Invariant

Figure 6.6: OCL State invariant

we represent an invariant as an OWL 2 concept representing objects that
make that invariant evaluate to true. Since the invariant holds iff the asso-
ciated state is active, the concept representing a state will be the same as
the concept representing an invariant. This is represented in OWL 2 as an
equivalent class relation between the state and its invariant:

EquivalentClasses (S Invariant)

Due to the equivalent relationship between the state and its invariant, all
objects that fulfill the condition of its state invariant will also be in that
specific state.

71



6.5.1 State Constraints

The UML also allows us to define additional constraints to a state, and
names these constraints also as state invariants. However, the semantics
of a state constraint are more relaxed since it “specifies conditions that
are always true when this state is the current state” ([77], p.562). In this
sense, the state constraints define necessary conditions for a state to be
active, but not sufficient. This means that, the actual state invariant may
remain implicit. However, we consider a state invariant as a predicate
characterizing a state. That is, a state will be active if and only if its state
invariant holds.

6.5.2 A State Invariant Characterizes a State

The UML superstructure specification requires that whenever a state is ac-
tive its state invariant evaluates to true ([77], p.562). A consequence of this
is that state invariants should be satisfiable. That is, every state invari-
ant in a statechart diagram must hold in at least one object configuration.
Otherwise there cannot be objects that have such state active. Since in-
variants should be satisfiable, the concept S representing a state should be
satisfiable, i.e.

S 6=⊥

6.6 OCL to OWL 2 DL

A state invariant is a runtime constraint on a state in a statechart ([77],
p.514). The UML specification proposes the use of OCL to define con-
straints in UML models, including state invariants. OCL is well supported
by many modeling tools [2, 38]. Unfortunately, in general OCL is not de-
cidable. However, we can avoid undecidability by restricting our approach
to a reduced fragment of the full OCL [81]. The use of a limited fragment
of OCL to avoid undecidability has been proposed in the past also by other
authors [81, 82].

In this thesis, we consider OCL constructs using mainly multiplicity,
attributes value and boolean operators. The detail translation of OCL to
OWL 2 has been already discussed in Section 4.4. The only difference is
the context of OCL constraint. In case of class diagrams the context of an
OCL constraint is a Class, whereas in case of statecharts the context of
OCL constraint is a State, for example:

In case of AttributeConstraints: The restriction on the value of the
attribute is translated in OWL 2 by using the axiom DataHasValue. The

72



State

     {self.Att=Value}

Figure 6.7: OCL State invariant - Attribute Constraint

OCL attribute value constraint self.Att=Value is translated in OWL 2
as:

EquivalentClasses (State DataHasValue(Att "Value"^^datatype ))

In the above translation, State is the context of the OCL constraint, Att
is the name of the attribute, V alue is the value of the attribute and it is
always written in OWL 2 in double quotes, and datatype is the datatype
of the attribute V alue.

State

{self.A-->size()=Value}

Figure 6.8: OCL State invariant - Multiplicity Constraints

In case of MultiplicityConstraints: The OCL constraint self.A->siz-
e()=Value, in which A is the name of an association, ”>” is an infix oper-
ator and V alue is a positive integer, is translated in OWL 2 as:

EquivalentClasses (State ObjectExactCardinality(Value A))

State

{self.Att=Value and 
self.A->size()=Value}

Figure 6.9: OCL State invariant - Boolean Operators

In case of BooleanOperators: The OCL constraint self.Att=Value

and self.A->size()=Value is translated in OWL 2 as:

73



EquivalentClasses (State

ObjectIntersectionOf(

DataHasValue(Att "Value"^^datatype )

ObjectExactCardinality(Value A) ))

6.7 Consistency Analysis using an OWL 2 Rea-
soning Tool

We have defined earlier the satisfiability of UML models in Section 7.3. The
consistency analysis of UML models is reduced to the satisfiability of the
conjunction of all conditions derived from a model. In order to determine
the satisfiability of the conditions represented in UML models, we first
translate the UML models into an OWL 2 ontology, then use an OWL 2
reasoner to analyze the satisfiability of translated concepts.

// Class Diagram into OWL 2 DL

Declaration(Class(Article))

Declaration(Class(Review))

Declaration(Class(Withdraw))

Declaration(Class(PublicationRecord))

...

DisjointClasses( Article Review ...)

Declaration(ObjectProperty(review))

ObjectPropertyDomain( review Article)

ObjectPropertyRange( review Review )

...

SubClassOf( Article

ObjectMaxCardinality( 1 review ))

....

Declaration(

DataProperty( WaitingforRevision))

SubClassOf(Article

DataExactCardinality(1

WaitingforRevision))

...

DataPropertyDomain(

WaitingforRevision Article )

..

DataPropertyRange(

WaitingforRevision xsd:boolean )

//Statechart diagram into OWL 2 DL

Declaration(Class(ArticleReview))

Declaration(Class(ArticleWithdraw))

Declaration(Class(Publish))

SubClassOf( ArticleReview Article )

SubClassOf( ArticleWithdraw Article )

SubClassOf( Publish Article ))

...

DisjointClasses( ArticleReview

ArticleWithdraw Publish )

Declaration(Class(WaitingforReview))

SubClassOf( WaitingforReview ArticleReview )

...

//Invariant of state Publish Start

EquivalentClasses (Publish

ObjectIntersectionOf(

ObjectIntersectionOf(

ObjectExactCardinality(1 review)

DataHasValue(Decision "accept"^^xsd:string ))

ObjectIntersectionOf ( ObjectExactCardinality

(0 withdraw) ObjectExactCardinality

(1 publicationRecord)) ) )

//Invariant of state Publish End

Figure 6.10: Excerpt of the output ontology generated by the translation
tool.

To translate UML models into OWL 2 ontology, we have implemented
the translations of class diagrams, statechart diagrams and state invariants
discussed in previous sections, in an automatic model to text translation
tool. The implemented translation tool allows us to automatically translate
class diagrams, statechart diagrams and state invariants into OWL 2 DL.

74



Found 4 unsatisfiable concept(s):

a:Accept

a:ArticleRejected

a:ArticleReview

a:ArticleWithdrawn

Figure 6.11: The satisfiability report of the ontology shown in Figure 8.8
generated by the OWL 2 reasoner Pellet.

The translator reads class diagrams, statechart diagrams and OCL state
invariants from an input model serialized using the XMI format. The XMI
is generated by using a modeling tool. We used Magicdraw to create the
example designs used in this chapter. The output of the translation tool is
an ontology file ready to be processed by an OWL 2 reasoner.

As an example, we have translated the class diagram, statechart dia-
gram and OCL state invariants shown in Figure 6.1 and Figure 6.2, into
OWL 2 DL ontology using the implemented translation tool. An excerpt of
the output ontology generated by the translation tool is shown in Figure 8.8.

6.7.1 Reasoning

After translating the class diagram, statechart diagram and state invariants
into an OWL 2 ontology by using the implemented translation tool, we
process the ontology by using an OWL 2 reasoner. The OWL 2 reasoner
combines all the facts presented as axioms in the ontology and infers logical
consequences from them. When we give the generated ontology to the
reasoner, it generates a satisfiability report indicating which concepts are
satisfiable and which not. If the ontology has one or more unsatisfiable
concept, this means that the instance of any unsatisfiable concept will make
the whole ontology inconsistent. Consequently, an instance of the class
describing an unsatisfiable concept in a class diagram will not exist, or
objects will not enter into a state describing an unsatisfiable condition,
otherwise vice versa.

In order to analyze the satisfiability of the inconsistent invariants listed
in Section 6.2.4, the ontology of an example model with inconsistent in-
variants is validated by using an OWL 2 reasoner name Pellet [90]. The
satisfiability report of the ontology of UML models with inconsistent state
invariants is shown in Figure 6.11. As explained in Section 6.5, a state
invariant characterizes the state ([77], p.559-560). Therefore, the presence
of unsatisfiable states in the satisfiability report indicates the existence of
inconsistent state invariants in identified states.

75



6.7.2 Performance Analysis

In order to determine the performance of the translation and reasoning
tools, we conducted an experiment using UML class and statechart dia-
grams consisting of 10 to 2000 model elements. We use a desktop computer
with an Intel Core 2 Duo E8500 processor running at 3.16GHz with 2GB
of RAM. The performance tests are conducted for both consistent and mu-
tated models containing inconsistencies introduced by us. For each test, we
measure the time required to translate a model from UML to OWL 2 and
the time required by the OWL 2 reasoners Pellet [90] and HermiT [83] to
analyze the models. The results are shown in Table 6.1, and in Figure 6.12.

Table 6.1: Time taken by the translation tool and reasoning engines to
process UML models.

Model El-
ements

10 100 500 1000 1500 2000

Translation
Time

0.08s 0.11s 0.19s 0.30s 0.44s 0.53s

Pellet

Valid 2.2s 2.3s 2.6s 3.2s 3.6s 3.8s

Mutated 2.2s 2.4s 2.7s 3.2s 3.6s 3.9s

HermiT

Valid 0.6s 0.7s 1.2s 1.7s 2.2s 2.6s

Mutated 0.7s 0.7s 1.3s 1.8s 2.3s 2.6s

Figure 6.12: The graph of the total time (Translation time + Reasoning
time) to process valid and mutated models.

76



The time complexity of OWL 2 DL with respect to the reasoning prob-
lems of the ontology consistency and instance analyzing is NEXPTIME
complete [50]. However, the graph (Figure 6.12) of the performance test
shows that the time required to reason about models only grows linearly.
This is due to the fact that in our approach we analyze the consistency of
class and statechart diagrams without individuals.

6.8 Conclusion

In this chapter we have presented an approach to analyze the consistency of
UML class diagrams and UML statechart diagrams with state invariants.
The approach is fully automated thanks to the translation tool and the
existing OWL 2 reasoners. Since the translation tool accepts standard
UML models serialized using the XMI standard, the approach can be easily
integrated with existing UML modeling tools.

Our approach is decidable because we restrict ourselves to an admittedly
small fragment of OCL. This strategy has been already used for expressing
constraints over class diagrams [26, 82]. We believe that the use of limited
subsets of OCL does not reduce the merits of this and similar approaches
even if they cannot be used to process all possible OCL constraints. An
analysis tool could in fact integrate different analysis approaches and use
the right one depending on the fragment of OCL used in the models.

The performance experiments show that the proposed approach can pro-
cess relatively large UML models in few seconds by using current reasoning
tools on desktop computers. Therefore, we consider that this approach has
the potential to be incorporated with existing and future UML modeling
tools and offer consistency analysis services that go ahead of what is being
offered in current modeling tools.

77



78



Chapter 7

Application: Design of
Behavioral REST Web
Service Interfaces

In this chapter we present an application of the work discussed in Chapter 6
by using a scenario of a REST web service interface, and it is based on the
work presented in Articles V and VI.

7.1 Introduction

The design phase of a software development lifecycle is crucial in the de-
velopment of a reliable software, since the design models developed in this
phase are carried forward to all the other phases. It is therefore important
that these design models are constructed correctly. The design models are
created from different viewpoints to capture different features of the sys-
tem under development, since all the features are difficult to capture in a
single model and can make a single model complex. Capturing the sys-
tem under development in different models from different viewpoints gives
a better and simpler understanding of the system, but raises the issue of
models inconsistency. Models can become inconsistent, if they define the
same system but have contradicting specifications in different models or
have specifications that cannot be satisfied and resulting in undesirable re-
sults in its implementation. This raises the need for consistency analysis of
design models. The need for consistency analysis of models can rise even
if the models themselves have no errors. Designers may specify certain re-
quirements in different models that contradict each other and thus, cannot
exist together leading to inconsistent diagrams. These mistakes can lead
to implementations that do not provide correct functionality as expected
from them.

79



As the software shifts from software as a product to software as a service,
the need for consistency analysis of design models rises even further since
the service users have no control over the software and completely rely on
advertised service specifications. Also, since web services are offered from
remote locations that consumers use via Internet using standard internet
protocols, they can be expensive in terms of bandwidth and other costs.
Thus, it is important to deliver services that are reliable and do not contain
unintended design mistakes to avoid undesired results.

In this chapter, we discuss a consistency checking approach for the de-
sign models of behavioral REST web service interfaces. REST [36] is an
architectural style to design scalable web services which play well with the
existing infrastructure of web. They usually offer simple interfaces that can
create, retrieve, update and delete information from a database. However,
it is possible to create REST web service interfaces that do more than sim-
ple CRUD operations. Such beyond CRUD REST interfaces offer different
service states that need to be preserved as the consumer goes through trails
of resources.

In [80], we present a design approach that creates behavioral REST
web service interfaces by construction. Designing and publishing a REST
web service interface with stateful behavior may involve many resources
and different service states that are dependent on these resources. This can
result in inconsistencies leading to service implementations with unintended
behavior. In this chapter we present a consistency checking approach that
analyzes the REST design models to detect inconsistent behavior and as
such advises the developer to correct the detected design mistakes and
create consistent behavioral REST web service interfaces. A behavioral
interface is said to be consistent if it does not contain any contradicting
specifications and there exists a service that can satisfy it.

7.2 REST Designs and their Inconsistencies

REST is a resource-centric architecture and a REST interface exposes re-
sources that can be manipulated using standard HTTP methods. It offers
features of connectivity, addressability, statelessness and uniform interface.
Connectivity requires that there is no isolated resource and every resource
is reachable. Addressability feature requires that every resource can be
reached independently with a URI (path). The statelessness feature re-
quires that no hidden session or state information is passed in the method
calls and the uniform interface feature requires that the same set of methods
(standard HTTP methods) is used to manipulate all resources. A behav-
ioral REST interface should exhibit all these features of a REST interface
and also provide information on how to use a service, e.g. the sequence of
method invocations and the effects of service requests on that service.

80



7.2.1 Modeling REST Behavioral Interfaces

We represent a behavioral REST interface with resource and behavioral
models using UML class and protocol state machine diagrams from UML [77],
respectively, with some additional constraints to make them RESTful. For
example, Figure 7.1 and Figure 7.2 shown in Section 4 depicts a resource
model and a behavioral model for a hotel booking REST web service inter-
face that takes payment from the customer and books a room in the hotel.
The web service reserves a room for the customer and uses a third party
payment service for confirmation. The service can be canceled when it is
not processing payment and can be deleted only if it is canceled.The ex-
ample is simple to understand and helps in demonstrating complex service
states.

A resource is a piece of information that is exposed via a URI and that
can be manipulated with standard HTTP methods. A resource can be ei-
ther a collection resource or a normal resource. Collection resource does
not have any attributes of its own and contains a list of other resources,
whereas, a normal resource has its own attributes and represents a piece
of information. In our resource model, we represent resource definitions
as classes, such that instance of these resource definitions are termed as
resources, analogous to the relationship between class and its objects in
object oriented paradigm. A collection resource definition is represented by
a class with no attributes and a normal resource definition has one or more
attributes. Each association has a name and minimum and maximum car-
dinalities. These cardinalities define the minimum and maximum number
of resources that can be a part of the association. We also define a root
resource definition in the resource model that represents the service. Root
resource definition is connected to every other resource definition in the
behavioral model. In Figure 7.1, Booking is the root resource definition.

The behavioral specifications of a REST interface are represented as
a behavioral model that represents different states of a service during its
lifecycle, the methods that can be invoked on these resources and a sequence
of these methods invocations. A state in a behavioral model represents the
resource configuration of the service at a particular instance of time. A
transition (from source state to target state) with a trigger method indicates
the change of service state when an HTTP method with a side effect is
invoked. The only allowed methods in our behavioral model are HTTP
GET, PUT, POST and DELETE methods leading to a uniform interface.
Of these methods, GET is idempotent and does not change the state of a
service whereas PUT, POST and DELETE have side-effects and can change
the state of a service.

81



7.2.2 Inconsistency Problems

Each service state has a state invariant. We define invariants of states as
predicates over resources defined in the resource model having either a true
or a false value. For a state to be active, its state invariant should be true,
otherwise it should be false. When the client makes a service request, it is
mapped to a transition in the behavioral model that has that method as
a trigger. The transition is fired from a source state to a target state. If
the state invariant of the source state is inconsistent, a service can never
exist in this state and it would be impossible for the implementation of the
interface to decide which transition to take as a result of a service request.
For example in Figure 7.2, the state invariant of state processingPayment is
self.payment− > size() = 1 and payment.waiting = True. If we change
its invariant to have payment.waiting = False, then it could conflict with
the state invariant of unpaidBooking, i.e. both the states can be true at
the same time. In this case, if PUT is invoked on payment resource, the im-
plementation would not know which transition to take. Such inconsistency
problems can lead to service implementations with undesirable behavior.

7.3 Consistency Analysis

In this section we define the problem of determining the consistency of our
REST web service design models. In our work, we assume that there is a
nonempty set ∆I called the domain containing all the possible resources
and resource configurations in our domain. We propose that a design model
depicting a number of resource and behavioral diagrams is interpreted as
a number of subsets of ∆I representing each resource definition and each
state in the model and as a number of conditions that need to be satisfied
by these sets.

A resource definition is represented by a set R, such that R ⊆ ∆I . A
resource r belongs to a resource definition R iff r ∈ R. We also represent
each state S in a statechart as a subset of our domain S ⊆ ∆I . In this
interpretation, the state set S represents all the resources in the domain
that have such state active, i.e., resource r is in state S iff r ∈ S.

Since resource and behavioral models are represented with class and
state machine diagrams respectively, other elements that can appear in a
UML model such as generalization of classes, association of classes, state
hierarchy and state invariants are interpreted as additional conditions over
the sets representing resources and states. For example specialization is
interpreted as a condition stating that the set representing a subresource
is a subset of the set representing its superresource. These conditions are
described in detail in the next section.

82



In this interpretation, the problem of design model consistency is then
reduced to the problem of satisfiability of the conjunction of all the condi-
tions derived from the model. If such conditions cannot be satisfied, then a
design model will describe one or more resource definitions that cannot be
instantiated into resources or resources that cannot ever enter a behavioral
state in a statechart. This can be considered a design error, except in the
rare occasion that a designer is purposely describing a system that cannot
be realized.

7.3.1 Reasoning Tool Chain

In order to determine the satisfiability of the concepts represented in our
design model, we propose to represent the resource and behavioral models
using a Description Logic, and analyze the satisfiability of the concepts
using an automated reasoning tool. We have chosen OWL 2 DL to represent
our UML models since we consider that it is well supported and adapted,
and there exist several OWL 2 reasoners for checking concept satisfiability.

A number of resource models, behavioral models and state invariants
are taken as an input. All the inputs are translated to OWL 2 DL, a web
ontology language [20]. The OWL 2 translation of design models are passed
to a reasoner. The reasoner provides report of unsatisfiable and satisfiable
concepts. Unsatisfiable concepts will reveal resource definitions that cannot
be instantiated or behavioral states that cannot be entered.

We have also implemented tool that generates a) skeleton of REST web
services from design models, b) OWL 2 DL from design models. The gener-
ation of REST web service skeleton is implemented using python in Django
web framework [47]. We translate resource and behavioral models into
models.py, urls.py and views.py that are basic files of Django. The skeleton
for each resource contains information on its representation and its relative
URI, the allowed methods, and the preconditions and postconditions for
methods that have side-effects. The developer can inspect the generated
code and fill in the desired logic for methods in the generated REST web
service skeletons. The tool that generates OWL 2 DL from design models
is discussed later in Section 7.6.

In order to translate the design models into OWL 2 ontology, we need
to first formally define the structure of our design models.

7.4 Structure of Behavioral RESTful Interfaces

In this section, we formally define the resource and behavioral models of be-
havioral REST interfaces and define the constraints that make them REST-
ful.

83



Figure 7.1: Resource Model for RESTful Web Service with Invariants

7.4.1 Structure of Resource Model

The structure of a REST interface is represented with a class diagram from
UML [77] with some additional constraints. Figure 7.1 shows the resource
model of Hotel Booking REST web service interface. It has six resources
with two collection resources: bookings and rooms, and four normal re-
sources: Booking, Room, Cancellation and Payment. There is no isolated
resource definition and every resource definition is connected via associa-
tion. Each association has a name and multiplicity constraint.

Definition 1 A resource model RM is defined as a tuple:

RM = 〈R def, root, Att, A, l, issubresource,min,max〉

where R def is a set of resource definitions, root is the root resource defi-
nition and Att is a set of attributes. Also:

� A is a set of associations where each association connects two resource
definitions. We define association as a relation between two resource
definitions, i.e. a : R def ×R def .

� l(a) gives name of the association. l is defined as an injective function
from set of associations A to L, the set of labels, i.e. l : A→ L. The
injective function implies that every association has a unique name.

� min(a) and max(a) give the minimum and maximum cardinalities
on association a. They are both defined as a function from a set of

84



associations to natural numbers, i.e.,min : A → N and max : A →
N , such that min(a) ≤ max(a).

� issubresource(r1, r) evaluates to true if r1 is a subresource of r. Re-
source model can have resource hierarchy in which subresources of a
resource inherit the properties and attributes of its parent resource.

R def represents resource definition that defines a resource in resource
model. The instances of these resource definitions are resources. The re-
lation between resource definition and its resources is the same as the re-
lationship between class and its objects in object oriented paradigm where
class represents all the entities that share the same set of properties and its
object represents its instance.

The set of resource definitions R def in RM is the union of a collection
resource Rc and a normal resource Rn definitions, i.e. R def = Rc def ∪
Rn def and Rc def ∩Rn def = ∅

� Rc def is a set of collection resource definitions. A collection re-
source does not contain any attribute of its own, i.e. Rc def = {rc ∈
Rc def : ∀rc ∈ RC ∧ ∀att ∈ Att : att /∈ rc}, where rc is an instance of
collection resource Rc.

� Rn def is a set of normal resource definitions. We call a resource
normal (not collection) if a resource has at least one attribute, i.e.,
Rn def = {rn ∈ Rn def : ∃att ∈ Att : att ∈ rn}

We take a root as a resource definition that represents the service. All
other resource definitions are linked to root and are navigated through it. In
Figure 7.1, we take Booking resource definition as Root. This root resource
definition is accessed with its specific booking Id, i.e., the starting naviga-
tion path for all the resource definitions in resource model is /{bookingId}/.

In order to exhibit features of connectivity and addressability, we con-
strain our resource model with the following design decisions.

Connectivity

All resource definitions should be connected via associations and every re-
source definition is reachable from the root resource definition such that
there is no isolated resource definition or sub-graph. For example, the re-
source model in Figure 7.1 is connected because there is a path from root
resource definition Booking to every other resource definition.

Addressability

The addressability feature of REST interface requires that every resource
should have a URI address. We can retrieve the relative navigation path
to a resource definition from a resource model by concatenating the asso-
ciation names of associations that make a path to the resource definition.

85



Figure 7.2: Behavioral Model of REST Web Service Interface

For example, the payment resource definition in Figure 7.1 can be reached
via /{bookingId}/payment. We ensure the addressability feature by con-
straining each association to have a unique association name and direction.
This is implied by the injective l function defined above. These association
names and directions give the addressable path to the resource definitions
and navigation directions.

7.4.2 Structure of Behavioral Model

The behavior of a REST interface is represented as a protocol state machine
from UML [77] with some additional constraints. Figure 7.2 shows the be-
havioral model of Hotel Booking REST web service interface. A Booking
resource is created when POST is called on bookings collection resource. A
Booking is active and unpaid when it is created. When user of the service
invokes a PUT on payment resource, the web service goes to processingPay-
ment state. If the payment is confirmed to be true, it goes to confirm state,
otherwise it goes back to the unpaidBooking state. The booking cannot be
cancelled if it is processing the payment. When DELETE is invoked on
Booking resource from the state cancel, it is deleted from the system.

Definition 2 A behavioral model of REST web service is given as a tuple:

BM = 〈S, ι, F, T, σ, g, pc, inv, issubstate, trigger, region〉
where S is a set of states, ι is the initial state such that ι ∈ S, F is the

set of final states such that F ⊆ S, T is a set of transitions and σ gives
the resource configuration of the web service in a particular state such that
σ ∈

∑
where

∑
is the set of all possible resource configurations. Also,

86



� g(σ, t) evaluates the guard and pc(σ, t) evaluates the postcondition of
transition t in state σ . They evaluate to true in case they are not
mentioned.

� inv(s, σ) evaluates the invariant of state s of a service in state σ.
The invariant of state s for a RESTful web service is retrieved by
invoking a GET method on all resources that are a part of resource
configuration in σ in state s.

� issubstate(s, s1) evaluates to true if s is a substate of s1.
� trigger(t) gives the trigger method for transition t and is defined as

a function, trigger : T → Trigger, where Trigger = {PUT, POST,
DELETE}

� region(s1, s2) is a predicate that returns true if state s1 and s2 belong
to the same region.

We make the following main design decisions in the construction of our
behavioral interface for REST web service to address features of REST
interface.

Uniform Interface

We only allow HTTP methods GET, PUT, POST and DELETE in our
behavioral model. The GET method is idempotent and has no side-effects.
GET method is used to retrieve the state of resources that constitute state
invariants. The only allowed methods that can trigger a state change in
our state machine are PUT, POST and DELETE.

Statelessness

When a method is invoked, it makes a transition from one service state to
another. The statelessness feature requires that no hidden state or session
information should be passed as a part of the method call such that each
HTTP request is treated as an independent request. This features leads to
scalability of web services. For this feature we require that all the informa-
tion passed with the method call is either a part of URL or is in request
parameters.

Also, in order to define statelessness of REST interface, we define states
of a service as predicates over resources. A state is active when the resource
configuration defined in its state invariant is true otherwise false. We,
thus, define service states of a REST web service without violating the
statelessness feature of REST interface.

In the next section, we discuss and translate the structure of a resource
and behavioral model with state invariants over the sets representing re-
source definitions and states into OWL 2 DL.

87



7.5 From Resource and Behavioral Diagrams to
OWL 2 DL

In order to check the satisfiability of resource definitions in a resource model,
we need to first translate all resource definitions and their associations
into OWL 2 ontology, and then validate the OWL 2 ontology using an
OWL 2 reasoner. In this section we only present the translation of those
concepts of a resource model which are required for the validation of the
behavioral model such as: resource definitions, associations, multiplicity
and attributes.

7.5.1 Resource Model in OWL 2

Each resource in a conceptual model is shown as a class in an ontology and
an association as an object property. A class in OWL 2 is a set of indi-
viduals and ObjectProperty connects a pair of individuals[20]. According
to the definition of a resource model given in Definition 1, we need to map
these concepts in OWL 2 DL: resource definitions and their specializations,
attributes, associations and association multiplicities.

Resource Specification and Hierarchy

A resource definition in a resource model represents a collection of resources
which share the same features, constraints and definition. For each resource
definition R def in RM, we define an OWL 2 axiom:

Declaration(Class(R_def))

issubresource(r1, r) is true if r1 is a subresource of resource r. We explic-
itly define the hierarchy of resources in OWL 2 between resources. The
specialization of resources represented as classes is reduced to the set inclu-
sion. We represent the fact that a resource definition R1 is a specialization
of resource definition R2 with the condition R1 ⊆ R2. In this case we say
that R2 is a super resource of R1, analogous to the superclass in a UML
class diagram. If two resource definitions, R1 and R2, have a common su-
per resource, or R2 is the super resource of R1 we say that they are in a
specialization relation. The specialization relation R1 ⊆ R2 is translated in
OWL 2 as:

SubClassOf( R1 R2 )

Each resource definition at the same hierarchical level in a resource
model represent a different piece of information. We assume that a resource
cannot belong to two resource definitions, except when these two resource
definitions are in a specialization relation. In our semantic interpretation

88



of a resource diagram, it is equally important to denote the facts that two
resource definitions are not in a specialization relation. We represent the
fact that two resources R1 and R2 are not in a specialization relation with
the condition R1 ∩R2 = ∅. With this condition, a resource cannot belong
to these two resource definitions simultaneously. Due to the open-world
assumption used in Description Logic, we need to explicitly state this fact
in OWL 2, i.e. for resource definitions R1...Rn at the same hierarchical
level, we define disjointness in OWL 2 as:

DisjointClasses( R1..Rn )

Attributes

In our resource model, a collection resource does not have any attribute and
a normal resource should have at least one attribute. So we define attribute
att of a normal resource r of type D as DataProperty(att) with domain
as r and range as D. We do not need to give any attribute definition for
collection resources because OWL 2 has an open world assumption and that
which is not mentioned is not considered. So by simply not mentioning
collection resources with any attributes is sufficient. However, for every
normal resource, each of its attributes is defined in OWL 2. Attributes
usually have a multiplicity restriction to one value. Hence, the attribute
definition att in OWL 2 is given as:

Declaration(DataProperty( att ))

SubClassOf(C DataExactCardinality(1 att ))

DataPropertyDomain( att r )

DataPropertyRange( att D )

Association

An association is a relation between two resource definitions, r1 and r2 and
the name of the association is its label l. For each association a in A, we
define ObjectProperty axiom with label l and r1 as its domain and r2 as
its range, i.e., for a(r1, r2) with l(a), we give OWL 2 definition as:

� l maps to the OWL 2 axiom Declaration(ObjectProperty(l))

� r1 maps to the OWL 2 axiom ObjectPropertyDomain(l r1)
� r2 maps to the OWL 2 axiom ObjectPropertyRange(l r2)

min(a) and max(a) give minimum and maximum cardinality of asso-
ciation a. It defines the number of allowed resources that can be part of
the association. We represent a directed binary association A from resource
definition R1 to R2 as a relation A : R1xR2. The multiplicity of the associa-
tion defines additional conditions over this relation #{y|(x, y) ∈ A} ≥ min,
#{y|(x, y) ∈ A} ≤ max. If an association a has minimum cardinality min
and maximum cardinality max for resource r, we define it in OWL 2 as:

89



SubClassOf( r ObjectMinCardinality( min a ) )

SubClassOf( r ObjectMaxCardinality( max a ) )

7.5.2 Behavioral Model in OWL 2

A behavioral model provides the behavioral interface of a web service and
defines the sequence of method invocations, the conditions under which
they can be invoked and their expected results. To check the satisfiability
of state invariants in a behavioral model, we need to translate the states
and their invariants into OWL 2. The translation of the state and the
state invariant includes the reference of resources and their attributes so
we translate a behavioral model in the same ontology that contains the
OWL 2 translation of a resource model.

We need to cover following concepts of our behavioral model in OWL 2:
state, state hierarchy, state disjointness and state invariant. The behaviour
model is translated into OWL 2 by following the translation method dis-
cussed in the previous chapter.

7.6 Validation of RESTful Interfaces

We have defined earlier the satisfiability of our design models in Section 7.3.
The consistency analysis of resource and behavioral models is reduced to the
satisfiability of the conjunction of all the conditions derived from the model.
In order to determine the satisfiability of the conditions represented in the
design models, we first translate the resource and behavioral models into an
OWL 2 ontology, then use an OWL 2 reasoner to analyze the satisfiability
of translated concepts.

To translate the resource and behavioral models into OWL 2 ontology,
we have implemented the translations of resource and behavioral diagrams
in OWL 2, discussed in Section 7.5 in the form of a translation tool. We
have used Python programming language for the implementation of the
prototype of the translation tool. The implemented translation tool al-
lows us to automatically transform a resource and behavioral model into
OWL 2 DL. The translator takes these models and OCL state invariant as
an input in the form of XMI. The XMI is generated by using a modeling
tool, Magicdraw. The XMI generated by the modeling tool contains the
source code of both resource and behavioral model in the form of XML.
While modeling in a modeling tool we have used OCL to express the state
invariants in a behavioral model. The state invariant written in OCL is
also a part of a XMI generated by the modeling tool. Moreover, the output
of an implemented translation tool is an ontology file, which contain the
transformed resource model, behavioral model and state invariants in the
from of OWL 2 functional syntax.

90



After translating the design models and state invariants into OWL 2
ontology by using the implemented translation tool, we will validate the
output ontology by using an OWL 2 reasoner. The OWL 2 reasoner ana-
lyzes different facts presented as axioms in the ontology and infers logical
consequences from them. When we give our ontology to the reasoner, it
generates satisfiability report indicating which concepts are satisfiable and
which not. If the ontology has one or more unsatisfiable concepts, this
means that the instance of any unsatisfiable concept will make the whole
ontology inconsistent, consequently, an instance of the resource definition
describing an unsatisfiable concept in a resource diagram will not exist, or
resources will not enter in a state describing an unsatisfiable condition, and
vice versa. However, the ontology generated by the translation tool is in
OWL 2 functional syntax, therefore, the satisfiability of the translated con-
cepts can be checked by using any OWL 2 reasoner which supports OWL 2
functional syntax.

7.7 Conclusion

A REST interface can do more than simply creating, retrieving, updating
and deleting data from a database. Designing behavioral interface for such
web services that provide different states of the service and offer REST in-
terface features is an interesting design challenge since it can involve many
resources and resource configurations that define different states of the ser-
vice. In this chapter, we address how to analyze the consistency of design
models that create behavioral REST interfaces. We check the consistency of
resource and behavioral diagrams with state invariants using OWL 2 reason-
ers. The structure of both the diagrams is formally defined and translated
to OWL 2 ontology. The ontology is given to an ontology reasoner that
checks the ontology for any unsatisfiable concepts. The unsatisfiable con-
cepts indicate the design errors that can cause undesirable behavior in the
implementation of the service. The approach is automated as we provide
prototype tools that generate web service skeletons and OWL 2 ontology
from the design models. Also, thanks to the existing OWL 2 reasoners the
generation of satisfiability report for our OWL 2 ontology is also automated
that is analyzed to check the consistency of design models.

In our future work, we plan to take into account guards on transitions
in the consistency analysis of our design models.

91



92



Chapter 8

Consistency of Class and
Object Diagrams

In this chapter we discuss the translations of UML object diagram concepts
into OWL 2, and also discuss how to validate these concepts using OWL 2
reasoners. This chapter is based on the work presented in Articles I, III
and IV.

8.1 Introduction

In MDE, each software model is described using a particular modeling lan-
guage, such as the UML or DSLs, and this raises the question if each model
conforms to its metamodel or not. In our context, conformance means that
in a given UML class diagram containing classes and associations, and a
UML object diagram containing objects and links, we want to know, first,
if each object is a proper instance of a class and each link is an instance
of an association depicted in the class diagram. Second, objects and links
must preserve the uniqueness, multiplicity, source, target and composition
constraints of their classes and associations. An example of a valid and an
invalid object diagram and a class diagram is shown in Figure 8.1.

8.1.1 Overview of the Approach

In order to mechanically reason about model conformance we need to have a
formal definition of UML. In this chapter we have chosen the Web Ontology
Language version 2 for Description Logic (OWL 2 DL) [98] to formalize
the UML class and object diagraming concepts. There are a number of
reasons behind the selection of OWL 2 DL. Firstly, OWL 2 DL is the
subset of OWL 2 that is decidable. Secondly, by using OWL 2 DL we will
be able to use existing OWL 2 reasoners for model conformance. Finally,

93



C1

C3 C4

x:C2

z:C4
P2

1 0..n
P1

C2

n..m
P2 {non-unique}

 
y:C3

P1

P2

(a) UML Class Model

(b) Valid UML Object Model

y1:C1

y2:C1

x:C2

P1

P1

(c) Invalid UML Object Model

Figure 8.1: (a): A UML class diagram depicting a class hierarchy, a compo-
sition and a non-unique association. (b): A consistent UML object diagram
conforms to the UML class diagram, and (c): An inconsistent object dia-
gram due to the shared owner.

Translator

Validation 
using Reasoner

                                Validation Report

      UML Class and
      Object Models

        Ontology

Figure 8.2: Automatic object and class diagram conformance process.

OWL 2 DL already provides constructs to represent many UML concepts
such as classes, associations, objects, and links in a straightforward way.

Still, a translation of UML models to OWL 2 presents several challenges.
Unfortunately, OWL 2 DL does not provide any constructs to represent
UML concepts such as composition, ordering and non-unique associations.
Also, OWL 2 uses open-world assumption, whereas UML operates under
the closed-world assumption [59], where complete knowledge of the domain
is assumed to be provided in a model. We assume that all existing classes
and objects are known and depicted explicitly in the models.

The details about representing composition, ordering and non-unique
associations and the closed-world environment in OWL 2 DL are the main
contributions of this chapter and will be discussed later. To tackle the
problem of model conformance, we propose a tool to translate UML models
into OWL 2 DL, and then mechanically check the translated models for

94



consistency using an OWL 2 reasoner. An overview of the process is given
in Figure 8.2. The translator takes a UML class diagram and an object
diagram as an input in the form of XMI [73] and produces ontology in
OWL 2 format as an output. The translator contains the translations of
UML concepts into OWL 2 axioms in the form of MOFScript [5]. The detail
about the translation of a UML class and object diagraming concepts into
OWL 2 will be discussed in Section 8.2, and the detail about the translation
process will be discussed in Section 8.3.

Furthermore, the ontology generated by the translator contains the
translation of the object diagram and the class diagram in the form of
OWL 2 DL. The generated ontology will further be validated by using an
OWL 2 reasoner.

� If a generated ontology is consistent, it means that the object diagram
conforms to all constraints of the class diagram interpreted according
to the semantics that we have given in our translation.

� If a generated ontology is inconsistent, it means that the object dia-
gram does not conform to the constraints given in the class diagram.

8.2 UML Object Diagrams

In this section we give a formal definition of the UML class and object
diagraming concepts that we treat in our approach. The definition is given
in terms of predicate logic. In this section we also give the translation of
UML Object diagraming concepts to OWL 2 and motivate our choice of
features that are included in the definition.

8.2.1 UML Classes and Objects

A UML class represents a set of objects that have the same characteris-
tics [77]. A UML class C is defined as a unary predicate C in predicate
logic.

An instance of a class is called an object. In UML, every object in an
object diagram must belong to a specific class in a class diagram. An object
x in an object diagram belongs to a class C in a class diagram is defined in
predicate logic as:

C(x)

A UML Class C in the class diagram is translated to OWL 2 as:

Declaration( Class( C ) )

Furthermore, every object that exists in an object diagram must belong to
a specific class in a class diagram. In OWL 2 the UML object is represented
as a class assertion and is called an individual. A UML object x of the class
C is translated in OWL 2 as:

95



ClassAssertion( C x )

Furthermore, every object in a UML object diagram is by default different
from another. Whereas, in OWL 2 due to the open-world assumption, we
need to explicitly mention that all individuals are different from each other.
For example: for objects x1, .., xn in an object diagram, we use the OWL 2
axiom:

DifferentIndividuals(x1..xn)

8.2.2 Class Memberships

The UML and MOF semantics for instantiation follow closely the object-
oriented paradigm i.e. the closed world assumptions [59]. In this context,
when declaring that a model element m is of type C, it is required that the
following holds:

1. m is a direct instance of the class C.

2. m is an indirect instance of all the superclasses of C.

3. m is not an instance of any other class.

However, OWL 2 follows the open world assumption. Therefore, declaring
that an element m is of type C in OWL 2 asserts that:

1. m is a direct or indirect instance of the class C.

2. m is an indirect instance of all the superclasses of C.

3. m is not an instance of any classes explicitly declared disjoint to C.

Furthermore, these semantic differences require that we introduce addi-
tional axioms in our ontology to restrict object membership to the intended
class hierarchies.

8.2.3 Class Memberships Within Inheritance Hierarchies

According to UML semantics of class membership, whenever we assert that
a model element is an instance of a class, we also assert that it is not an
instance of its subclasses. But in OWL 2 this is not the case. In order to
overcome this semantic gap between OWL 2 and UML, we translate UML
class into OWL 2 as a union of two disjoint concepts.

EquivalentClasses( C ObjectUnionOf( C_Direct C1..Cn ) )

DisjointClasses( C_Direct ObjectUnionOf( C1..Cn ) )

First concept C Direct, represents the collection of all the objects which are
direct instances of a class. And, the second concept represents all objects
that belong to its subclasses C1, .., Cn.

96



8.2.4 UML Association and Links

A UML binary association defines a relationship between two classes [77].
A UML link is an instance of an association. A link l of an association P
connecting objects x and y is represented in predicate logic as:

P (x, y, l)

We often do not need to differentiate what link is used to connect two
objects. Therefore it is convenient for us to define the following:

∀x, y, l.P (x, y, l)→ P (x, y)

A UML association is represented in OWL 2 as an object property. An
association P from a class C1 to a class C2 is represented in OWL 2 as:

Declaration( ObjectProperty( P ) )

ObjectPropertyDomain( P C1 )

ObjectPropertyRange( P C2 )

A link in OWL 2 is represented as a property assertion. The link of
an association P between the objects x1 and x2 in an object diagram is
represented in OWL 2 as:

ObjectPropertyAssertion( P x1 x2 )

Moreover, due to the open-world assumptions of OWL 2, for a reasoner
to be able to detect a violation of a minimum multiplicity constraint, we
need to provide a definitive knowledge about the links, connecting or not
connecting the individuals of a domain class and a range class of an associ-
ation. Therefore, if there is no link between the objects of a domain class
and a range class of a UML association, we need to explicitly declare that
there is no connection between the individuals. The knowledge about the
non-existence of a link between individuals is called a negative assertion.
The negative assertion of an association P between the objects x1 and x2
in OWL 2 is written as:

NegativeObjectPropertyAssertion( P x1 x2 )

A negative assertion is required when there exists an association between
the classes but their specific individuals are not connected with a link.

8.2.5 Unique and Non-Unique Associations

A UML association multiplicity can be unique or non-unique. A unique
association does not allow two objects to be linked with each other more
than one time, as shown in Figure 8.3c.

97



C2C1

a:C1
b:C2

 n..m
P (a) Class Model

c:C2

a:C1 b:C2
(b) Object Model
valid for both
P {unique} and
P {non-unique}

(c) Invalid if 
P {unique} and
(d) Valid if
P {non-unique}

P
P

P

P

Figure 8.3: (a): A class diagram depicting an association P connecting two
classes, (b): A consistent object diagram for both unique and non-unique
P, (c): An inconsistent object diagram if P is unique, and (d): A consistent
object diagram if P is non-unique.

The restriction of unique association P is written in predicate logic as:

∀x, y, l1, l2.P (x, y, l1) ∧ P (x, y, l2)→ l1 = l2

In the case of non-unique associations this restriction does not apply.
In OWL 2 the UML unique association is treated as a normal object

property, and the translation of a multiplicity constraint of a unique asso-
ciation is done by using OWL 2 axioms: ObjectMinCardinality and Object-
MaxCardinality. However, in case of a non-unique association, there can be
multiple links between the objects of a domain class and a range class, as
shown in Figure 8.3d. The OWL 2 reasoner considers all links which have
a common source and target as one link, and to make the reasoner able
to consider all those links as different links, we have introduced an inter-
mediate class in between a domain class and a range class of a non-unique
association. As a consequence, every non-unique association P is translated
in OWL 2 as a combination of two object properties P I and I P . Where
P I connects a domain class to an intermediate class, and I P connects an
intermediate class to a range class of a non-unique association. The object
property P I is written in OWL 2 as:

InverseFunctionalObjectProperty( P_I )

An inverse functional object property restricts an individual of a domain
class connecting with more than one individuals of an intermediate class.
Furthermore, we put a cardinality restriction of n..m on P I by using
OWL 2 axioms: ObjectMinCardinality and ObjectMaxCardinality. Moreover,
the object property I P is written in OWL 2 as a normal object property.
In order to ensure that the individuals of an intermediate class C I connect
one to one with the individuals of a range class, we have to put the exact
cardinality of one on the property I P as:

98



SubClassOf( C_I ObjectExactCardinality( 1 I_P ) )

Furthermore, a link of a non-unique association P from object a to b in an
object diagram is translated as the assertions of the object properties P I
and I P as:

ObjectPropertyAssertion( P_I a C_I_# )

ObjectPropertyAssertion( I_P C_I_# b )

Where C I # is an individual of an intermediate class C I, and # is an
auto generated unique number which is responsible to create a distinction
between the identical links of a non-unique association. For example, the
translation of identical links of the object diagram shown in Figure 8.3d is:

\\Link 1

ObjectPropertyAssertion( P_I a C_I_1 )

ObjectPropertyAssertion( I_P C_I_1 b )

\\Link 2

ObjectPropertyAssertion( P_I a C_I_2 )

ObjectPropertyAssertion( I_P C_I_2 b )

8.2.6 Ordered Properties

In UML ordering, the links of an ordered property are labeled with a unique
numbered index, and it is required that the indexes are in order. An order-
ing would be used for example to preserve a sequence of a parameter in a
function. A link of an ordered property P connecting object x of the source
class and object y of the target class of the ordered property P having a
label i is represented in predicate logic as:

P (x, y, i)

Furthermore, all links of an ordered property having identical index i are
required to have an identical source and target, in predicate logic it is
represented as:

∀i ∈ N ∀x, y, a, b.P (x, a, i) ∧ P (y, b, i)→ (x = y) ∧ (a = b)

Where, x, y are the objects of a domain class and a, b are the objects of a
range class of an ordered property P .

The UML ordered property is translated in OWL 2 as a normal ob-
jectproperty. The translation of basic constraints like domain, range and
multiplicity is also the same as mentioned in Section 8.2.4. For example
the translation of an ordered property P depicted on top of Figure 8.4 is
as follows.

99



C1 C2
n..m

{ ordered }
P

y1:C2
1

y2:C2

2
x1:C1

Class Model
Object Model

Figure 8.4: Top: A UML class diagram depicting ordered property. Bot-
tom: A UML object diagram depicting ordered links

Declaration( ObjectProperty( P ) )

ObjectPropertyDomain( P C1 )

ObjectPropertyRange( P C2 )

SubClassOf( C1 ObjectMinCardinality( n P ) )

SubClassOf( C1 ObjectMaxCardinality( m P ) )

Moreover, in a UML object diagram, a link of an ordered property is labeled
with an index, and requires that the index is unique and in order. In OWL 2
there is no specific axiom for the representation of a UML ordered property
link or any link with a label. Due to this fact, we translate a UML ordered
property link into OWL 2 in four steps. First, declare an index property
for each ordered property link that exist in an object diagram. The index
property is declared in OWL 2 as:

Declaration( ObjectProperty( index_P_# ) )

To make every ordered property link reachable while parsing a translated
object diagram in OWL 2, the name of an index property comprises three
parts. First, index refers that the link of this object property will represent
an ordered property link. Second, P refers the name of an ordered property
in a class diagram. Third, # is representing an index or a label on a link of
an ordered property. The data type of an index can be ”xsd:integer” [97] or
”xsd:string” [97]. For example, for each labeled link 1 and 2 of the ordered
property P shown at the bottom of Figure 8.4, we will declare an index
property in OWL 2 as:

Declaration(ObjectProperty( index_P_1 ))

Declaration(ObjectProperty( index_P_2 ))

Second, a domain and a range of each index property in OWL 2 is the same
as the domain and the range of an ordered property. Therefore, each index
property in OWL 2 will be a subproperty of an ordered property P :

SubObjectPropertyOf( index_P_# P )

100



Third, all links of an index property must have an identical source and tar-
get. In OWL 2 all links having an identical source and target are considered
as one link. Therefore, we have also made the index property:

1. FunctionalObjectProperty so that one link of an index property may
not lead to two individuals.

FunctionalObjectProperty( index_P_# )

2. InverseFunctionalObjectProperty so that two links of an index prop-
erty may not lead to one individual.

InverseFunctionalObjectProperty( index_P_# )

Last, each index property in OWL 2 is instantiated among the respective
individuals of a domain and a range class of an ordered property. For
example the UML ordered property links P (x1, y1, 1) and P (x1, y2, 2) as
shown at the bottom of Figure 8.4, is represented in OWL 2 as:

ObjectPropertyAssertion( index_P_1 x1 y1)

ObjectPropertyAssertion( index_P_2 x1 y2)

8.3 Implementation of a Model Conformance Tool

8.3.1 Translator

We have implemented the translations of UML class and object modeling
concepts as discussed in Section 8.2 into a translator by using the model-
to-text translation tool MOFScript [5]. The implemented translator in
MOFScript allows us to automatically transform the UML class and object
diagrams into OWL 2. The translator takes a UML class diagram and an
object diagram as an input in the form of UML XMI 2.1 [73], which is
parsed according to UML 2. The output of the translator is an ontology,
which contains a transformed object diagram and its class diagram in the
from of OWL 2 functional syntax. The translator script can be downloaded
from [4].

We have translated the class diagram and its inconsistent object dia-
gram as shown in Figure 8.5, into an OWL 2 DL ontology, by using the
implemented translator, the output ontology generated by the translator is
as follows:

Declaration(Class(Operation))

SubClassOf( Operation_Direct Operation )

EquivalentClasses( Operation Operation_Direct )

101



Valid
Object Model

ATMCardNumber:Parameter

ATMPinCode:Parameter

1

1
ATMLogin:Operation

Class Model

ATMLogin:Operation
2

ATMPinCode:Parameter

1
ATMCardNumber:Parameter

Invalid
Object Model

*

{ ordered }
hasParameter

ParameterOperation

Figure 8.5: Top: UML class diagram depicting Automated Teller Machine
(ATM) login operation by using ordered property, Middle: Consistent UML
object diagram, Bottom: Inconsistent UML object diagram due to the non-
unique index link.

DisjointClasses( Operation_Direct Parameter )

Declaration(Class(Parameter))

SubClassOf( Parameter_Direct Parameter )

EquivalentClasses( Parameter Parameter_Direct )

DisjointClasses( Parameter_Direct Operation )

Declaration(ObjectProperty( hasParameter ))

ObjectPropertyDomain(has_Parameter Operation)

ObjectPropertyRange(has_Parameter Parameter)

SubClassOf( ObjectOneOf( ATMLogin ) Operation_Direct )

SubClassOf( ObjectOneOf( ATMCardNumber ) Parameter_Direct )

SubClassOf( ObjectOneOf( ATMPinCode ) Parameter_Direct )

ObjectPropertyAssertion( hasParameter ATMLogin ATMCardNumber)

ObjectPropertyAssertion( hasParameter ATMLogin ATMPinCode)

SubObjectPropertyOf( index_hasParameter_1 hasParameter )

FunctionalObjectProperty( index_hasParameter_1 )

InverseFunctionalObjectProperty( index_hasParameter_1 )

ObjectPropertyAssertion( index_hasParameter_1 ATMLogin ATMCardNumber)

SubObjectPropertyOf( index_hasParameter_1 hasParameter )

FunctionalObjectProperty( index_hasParameter_1 )

InverseFunctionalObjectProperty( index_hasParameter_1 )

ObjectPropertyAssertion( index_hasParameter_1 ATMLogin ATMPinCode)

DifferentIndividuals( ATMLogin ATMCardNumber ATMPinCode )

102



8.3.2 Reasoning Engine

The conformance of an object diagram against a class diagram is done
by validating an output ontology using an OWL 2 reasoner. The output
ontology contains the transformed object diagram and its class diagram in
the form of OWL 2. Since the translation tool produces an output ontology
in OWL 2 functional syntax, validation of the output ontology can be done
by using any ontology reasoner which supports OWL 2 functional syntax.

8.3.3 Conformance Report

A conformance report is an output of an OWL 2 reasoner. After the valida-
tion of a transformed object diagram against its class diagram, a reasoner
will produce a conformance report. This report contains the details about
the inconsistencies present in a transformed object diagram against its class
diagram. The output of a translation tool which contains the transformed
object diagram and its class diagram is then validated by a reasoner. The
conformance report of the output ontology produced by a reasoner is as
follows:

Consistent: No

Reason: Individual ATMLogin has more than one value

for the functional property index_hasParameter_1

The above conformance report is generated by using the Pellet OWL 2
reasoner version 2.3.0 [90]. The conformance report clearly indicates the
inconsistency that exists in the object diagram that there exists more than
one link of an ordered property hasParameter with an index label 1.

8.3.4 Tool Validation

In order to evaluate the proposed validation approach, the proposed model
translation tool has been validated by a suite of test cases that covers all
class and object modeling concepts discussed in Section 8.2. Each test case
includes a class diagram, a valid object diagram, and an invalid object
diagram. Each test case is transformed into OWL 2 using the proposed
translation tool and validated by using an OWL 2 reasoner. The details
of test cases and the summary of the conformance report is expressed in
Figure 8.6.

103



C
la

ss
1

2
R

C
1:

 C
la

ss
1

C
3:

 C
la

ss
2

C
2:

 C
la

ss
2

   
 R

C
la

ss
2

R
C

1:
 C

la
ss

1
C

2:
 C

la
ss

2

C
1:

 C
la

ss
1

   
 R

   
 R

C
3:

 C
la

ss
2

C
2:

 C
la

ss
2

C
4:

 C
la

ss
2

   
 R

C
la

ss
1

R
C

la
ss

2

C
la

ss
3

C
1:

 C
la

ss
1

R
C

2:
 C

la
ss

2
C

2:
 C

la
ss

3
R

C
1:

 C
la

ss
1

0.
.2

R
 {

un
iq

ue
}

C
la

ss
1

C
la

ss
2

C
1:

 C
la

ss
1

R
C

2:
 C

la
ss

2
C

1:
 C

la
ss

1
C

2:
 C

la
ss

2
R R

C
1:

 C
la

ss
1

C
3:

 C
la

ss
1

C
2:

 C
la

ss
1

R
C

1:
 C

la
ss

1

R R
C

3:
 C

la
ss

1

C
2:

 C
la

ss
1

C
2:

 C
la

ss
2

C
3:

 C
la

ss
2

  R

a
 b

c
d 

C
1:

 C
la

ss
3

C
3:

 C
la

ss
2

C
2:

 C
la

ss
2

a
 b

C
1:

 C
la

ss
3

C
2:

 C
la

ss
2

C
3:

 C
la

ss
2

C
la

ss
 M

o
d

el
V

al
id

 O
b

je
ct

 M
o

d
el

In
va

lid
 O

b
je

ct
 M

o
d

el

M
u

lt
ip

lic
it

y

D
o

m
ai

n
 a

n
d

 R
an

g
e

U
n

iq
u

e 
an

d
 

n
o

n
-U

n
iq

u
e

C
o

m
p

o
si

ti
o

n
E

xc
lu

si
ve

an
d

 A
cy

cl
ic

S
u

b
P

ro
p

er
ty

U
M

L
C

o
n

ce
p

ts

V
io

la
tio

n 
of

ex
cl

us
iv

e 
ow

ne
r

V
io

la
tio

n 
of

m
ax

im
um

m
ul

tip
lic

ity

V
io

la
tio

n 
of

m
in

im
um

 
m

ul
tip

lic
ity

V
io

la
tio

n
of

 a
cy

cl
ic

In
va

lid
 r

an
ge

 
of

 R

In
va

lid
 

ex
is

te
nc

e 
of

 
no

n-
un

iq
ue

 li
nk

M
is

si
ng

 li
nk

 o
f 

su
pe

rp
ro

pe
rt

y 
b/

w
 C

1 
an

d 
C

3

C
o

n
fo

rm
an

ce
 

R
ep

o
rt

   
 R

c
d 

a
 b

   
   

   
R

C
1:

 C
la

ss
1

1

   
   

  0
..4

   
  R

C
la

ss
1

C
la

ss
2

1
a

0.
.6

 b
C

la
ss

1

1
c

1 

d 
{s

ub
se

ts
 b

}
C

la
ss

3

R

R

Figure 8.6: List of test cases and the conformance report summary of invalid
object diagrams. 104



Student TeacherCourse

PhD Student

         [inv] 0..* 
study

0..* 
 

teach

1..* 
teacher [surj]

 [irr]      
studyandteach'

0..* 
 

     student [surj]

0..* studyandteach
[comp]

         [inv]

X:PhD Student

studyandteach'                           

X:PhD Student
  studyandteach'    

Y:PhD Student

(b) Invalid Object Diagram (c) Valid Object Diagram

(a) Class Diagram

Figure 8.7: (a) The UML metamodel depicting a condition that a PhD
student cannot enroll in a course that he is teaching by himself. (b) Invalid
object diagram, (c) Valid object diagram.

8.4 Evaluation

8.4.1 Conformance of Objects against DPF Constraints

In order to check the conformance of an object diagram against a class
diagram with DPF constraints(described in chapter 4), we first translate
these diagrams and constraints into OWL 2, then by using OWL 2 reasoners
we check whether the object diagrams conform to its class diagram and
DPF constraints or not. For example, let us consider a university scenario
in which PhD students are not allowed to enroll in a course which they are
teaching themselves. The UML class diagram of this scenario representing
classes, associations and constraints is shown in Figure 8.7(a) and the object
diagram shown in Figure 8.7(b) depicts an object X that is linked with itself
by using an instance of an irreflexive association studyandteach′, which
violates the irreflexive constraint [irr] and makes the object diagram invalid,
whereas, the object diagram shown in Figure 8.7(c) is valid because it is
not violating any constraints provided in the class diagram.

DPF Models to OWL 2

The OWL 2 translation of an object diagram(Figure 8.7(a)) and a class
diagram(Figure 8.7(b)) is given in Figure 8.8 and Figure 8.9.

105



//Class Diagram

Declaration(Class(Student))

Declaration(Class(Course))

Declaration(Class(Teacher))

Declaration(Class(PhDStudent))

Declaration(ObjectProperty( study ))

ObjectPropertyDomain(study Student)

ObjectPropertyRange(study Course)

Declaration(ObjectProperty( student ))

ObjectPropertyDomain(student Course)

ObjectPropertyRange(student Student)

InverseObjectProperties( study student )

Declaration(ObjectProperty( teach ))

ObjectPropertyDomain(teach Teacher)

ObjectPropertyRange(teach Course)

Declaration(ObjectProperty( teacher ))

ObjectPropertyDomain(teacher Course)

ObjectPropertyRange(teacher Teacher)

InverseObjectProperties( teach teacher )

Declaration(ObjectProperty( studyandteach ))

ObjectPropertyDomain(studyandteach Teacher)

ObjectPropertyRange(studyandteach Student)

SubClassOf( PhDStudent

ObjectUnionOf( Student Teacher ) )

Declaration(ObjectProperty( studyandteach’ ))

ObjectPropertyDomain(studyandteach’ PhdStudent)

ObjectPropertyRange(studyandteach’ PhdStudent)

SubObjectPropertyOf(studyandteach’ studyandteach )

IrreflexiveObjectProperty(studyandteach’)

//Object Diagram

SubClassOf( ObjectOneOf( X ) PhDStudent )

ObjectPropertyAssertion( studyandteach’ X X)

Figure 8.8: The OWL 2 translation of models shown in Figure 8.7(a) and
Figure 8.7(b).

106



<swrl:Variable rdf:ID="x"/>

<swrl:Variable rdf:ID="y"/>

<swrl:Variable rdf:ID="z"/>

<owl:ObjectProperty rdf:ID="teach"/>

<owl:ObjectProperty rdf:ID="student"/>

<owl:ObjectProperty rdf:ID="studyandteach"/>

<swrl:Imp>

<swrl:body rdf:parseType="Collection">

<swrl:IndividualPropertyAtom>

<swrl:propertyPredicate rdf:resource="#teach"/>

<swrl:argument1 rdf:resource="#x"/>

<swrl:argument2 rdf:resource="#y"/>

</swrl:IndividualPropertyAtom>

<swrl:IndividualPropertyAtom>

<swrl:propertyPredicate rdf:resource="#student"/>

<swrl:argument1 rdf:resource="#y"/>

<swrl:argument2 rdf:resource="#z"/>

</swrl:IndividualPropertyAtom>

</swrl:body>

<swrl:head rdf:parseType="Collection">

<swrl:IndividualPropertyAtom>

<swrl:propertyPredicate rdf:resource="#studyandteach"/>

<swrl:argument1 rdf:resource="#x"/>

<swrl:argument2 rdf:resource="#z"/>

</swrl:IndividualPropertyAtom>

</swrl:head>

</swrl:Imp>

Figure 8.9: The SWRL rule for the [comp] constraint of the association
studyandteach shown in Figure 8.7(a).

107



D:\pellet-2.3.0>pellet consistency -l OWLAPI D:\example.OWL2FS

Consistent: No

Reason: Irreflexive property nullstudyandteachPrime

Figure 8.10: The validation report of the OWL 2 ontology of the class and
object diagram shown in Figure 8.8 and Figure 8.9.

Person Context Person inv SelfParent
     self.hasParent->excludes(self.hasParent)

X:Person hasParent

hasParent

Figure 8.11: Top: A UML class diagram with OCL constraints. Bottom:
The object diagram of a class diagram depicted on top.

Reasoning

We validate the OWL 2 translations of DPF UML diagrams by using an
OWL 2 reasoner. Since, the translations are in OWL 2 functional syntax
(OWL2fs), we can use any OWL 2 reasoner for the purpose of validation
which supports OWL2fs.

After the validation of the translated UML diagrams, the reasoner pro-
duces a validation report. The validation report contains detailed analysis
of the inconsistencies in the translated diagrams. The validation report of
the OWL 2 ontology of the class and object diagram shown in Figure 8.8
and Figure 8.9 is given in Figure 8.10.

The validation report shown in Figure 8.10 clearly indicates the viola-
tion of an irreflexive constraint of association studyandteach′, and results
the whole ontology as inconsistent.

8.4.2 Conformance of Objects against OCL Constraints

In order to check the conformance of an object diagram against a class
diagram with OCL constraints, we need to first translate these diagrams
and OCL constraints into OWL 2 by following the translations discussed
in previous chapters. The next step is to validate the OWL 2 translations
by using an OWL 2 reasoner. As an example we have a class diagram
shown in Figure 8.11 consisting of a class name Person, and the association
name hasParent. Along with the class diagram there is an OCL constraint

108



//Class Diagram

Declaration(Class(Person))

Declaration(ObjectProperty( hasParent ))

ObjectPropertyDomain(hasParent Person)

ObjectPropertyRange(hasParent Person)

//OCL Constraint

IrreflexiveObjectProperty(hasParent)

//Object Diagram

SubClassOf( ObjectOneOf( X ) Person )

ObjectPropertyAssertion( hasParent X X)

Figure 8.12: The OWL 2 translation of models shown in Figure 8.11.

name SelfParent which has a context class Person. This OCL constraint is
applying a restriction on the objects of a class person that they cannot link
to them selves by using an instance/link of an association hasParent. At
the bottom of Figure 8.11 we have an object diagram depicting an object
X of the class Person. This object is linked with itself by using a link of
the association hasParent. In order to determine that the object diagram
confirms to the class diagram, we first translate these diagrams and OCL
constraint into OWL 2.

OCL to OWL 2

The translation of a class diagram and an object diagram along with OCL
constraints (Figure 8.11) into OWL 2 is shown in Figure 8.12.

Reasoning

After translating the class and object diagram with OCL constraint we
pass the OWL 2 ontology to the OWL 2 reasoner. The reasoner parses the
ontology and creates the validation report. The validation report of the
ontology of the diagrams and constraint shown in Figure 8.11 is as follows:

D:\pellet-2.3.0>pellet consistency -l OWLAPI D:\OCL.OWL2FS

Consistent: No

Reason: Irreflexive property nullhasParent

The above validation report clearly shows the violation of the OCL con-
straint that an object cannot link with its own self by using a link of the

109



association hasParent i.e. Irreflexive(hasParent). Due to the violation
of the OCL constraint the reasoner finds the ontology inconsistent.

8.5 Conclusion

In this chapter, we have presented an approach to reasoning about the con-
formance of a UML object model against its class model using an OWL 2
reasoner. Furthermore, we have discussed the implementation of the trans-
lations as an automatic model translation tool.

The approach is fully automated thanks to the translation tool and
the existing OWL 2 reasoners. Since the translation tools accept standard
UML models serialized using the XMI standard, the approach can be easily
integrated with existing UML modeling tools. Unfortunately, the valida-
tion report generated by OWL 2 reasoners is not always self-explanatory,
because the relationship between UML concepts and OWL 2 axioms is not
always obvious. As a consequence, it is not always possible to immediately
point out the cause of the problem based on these violations without man-
ual inspection of the validation report and the problematic object models.
It would greatly add to the usefulness of the method to have some sort of
automated discovery of the cause of violations.

110



Chapter 9

Consistency of Multiple
UML Diagrams using
OWL 2

In this chapter we discuss a method for the validation of multiple UML
diagrams of the same metamodel using OWL 2 reasoners. This chapter is
based on the Articles I, III, IV and V.

9.1 Introduction

UML is a language for modeling that is widely used during software devel-
opment [77]. Each software development project involves the creation of
many models. These models may represent different versions of the same
software component, often designed in parallel by a number of designers.
These different versions of a model may create contradictions when com-
bined. This raises a need of a mechanism to semantically merge different
versions of a UML model together and find out the possible contradictions
and inconsistencies arise between model elements when they are viewed
together.

The issue of merging UML models has been studied in the research
literature previously [18, 7, 67, 64]. However, these approaches do not pro-
vide the mechanism to check the consistency of merged models. In this
chapter, we propose an approach to study how different models of the same
metamodel are merged, and how to validate the merged models. In the
validation of merged models, we want to identify the possible inconsisten-
cies that arise when the different models of the same metamodel are viewed
together/merged. In this approach we use a decidable fragment of Web On-
tology Language (OWL 2 DL) [20] to represent and merge UML models,
and then use OWL 2 reasoning tools [90, 83] to determine the inconsisten-

111



A

B

C

D

A
P

C
P

A C

D

P

B

U =

M1 M2 M = M1 U M2

Figure 9.1: The merge or union of two versions of a Model.

cies in the merged model. We select OWL 2 DL to represent the UML
models because we consider it well supported and adapted, and there exist
several OWL 2 reasoners [90, 83] for checking concept satisfiability. The
details about the translation of UML models into OWL 2 and the valida-
tion of UML models using OWL 2 reasoners has been discussed in chapters
4, 6 and 8.

9.2 Model Merging using OWL 2

In this section we show how to perform model merging. The merging of
given models is performed by putting the union of all model elements of
all models in to a single model, i.e. the merged model, such as, if M1 and
M2 are given models then the merged model M represents the union of
all model elements of all given models, i.e., M = M1 ∪M2. For example,
in Figure 9.1 the merged model M is a union (M1 ∪M2) of given models
M1 = {A,C,B} and M2 = {A,C,D}.

In order to merge the UML models representing different versions of
a UML model, we propose to use Description Logic [48]. Furthermore to
detect the inconsistencies originating from the merging of different versions
of a model, we propose to use the automated reasoning tools [90, 83]. A
number of UML models representing different versions of a UML model are
taken as an input. All the inputs are translated to OWL 2 DL and then
merged into a single ontology. Next, the OWL 2 ontology of UML models is
passed to a reasoner. Finally, the reasoner processes the ontology and pro-
duces a validation report. The validation report reveals the inconsistencies
in the ontology representing a merged UML model.

In order to demonstrate the merging of different versions of a UML
model, we first translate all UML models into OWL 2 DL by using the
method discussed in previous chapters and merge the OWL 2 translations
of all UML models into a single ontology. Since we translate all model ele-
ments of all UML models into a single ontology, the common elements of all
models (i.e. M1∩M2 in our example Figure 9.1) will overlap. Additionally,

112



//M1

Declaration(Class(A))

Declaration(Class(C))

Declaration(Class(B))

SubClassOf( B A )

Declaration(ObjectProperty( P ))

ObjectPropertyDomain(P A)

ObjectPropertyRange(P C)

//M2

Declaration(Class(A))

Declaration(Class(C))

Declaration(Class(D))

SubClassOf( D C )

Declaration(ObjectProperty( P ))

ObjectPropertyDomain(P A)

ObjectPropertyRange(P C)

Figure 9.2: The OWL 2 ontology of models M1 and M2 shown in Fig-
ure 9.1.

due to the open-world assumptions [59] of OWL 2, where model elements
are recognized by their names, all model elements having the same name
are considered as a one model element or concept. Consequently, due to
this assumption all models will merge or connect with each other by us-
ing common model elements. In Figure 9.2 we provide an example of the
OWL 2 translation of models M1 and M2 given earlier in Figure 9.1.

The given models M1 and M2 represent six classes in total i.e., M1 =
{A,C,B} and M2 = {A,C,D}. We translate all six classes of M1 and
M2 into a single ontology. Due to the unique name assumption of OWL 2,
the reasoner recognises distinct classes, and counts all six classes, i.e, M1 =
{A,C,B} andM2 = {A,C,D} as four classes, i.e., M1∪M2 = {A,C,B,D}.

The unique name assumption of OWL 2 is also applied on the relation-
ships such as associations, generalization and on association constraints
such as multiplicity, composition, domain and range constraints. For ex-
ample, both models M1 and M2 represent four relationships in total, in
which there are two associations and two generalization relationships. Both
models depict association P from the class A to the class C, therefore, due
to the unique name assumption of OWL 2, the reasoner recognises the dis-
tinct associations and count three relations instead of four. Within these
relations there are two generalization relationships and one association.

In order to determine the number of elements in an ontology, the rea-

113



D:\pellet-2.3.0>pellet classify -l OWLAPI D:\Merging.owl2fs

Classifiying 7 elements

Classifiying: 100% complete in 00:00

Classifiying finished in 00:00

owl:Thing

merging.owl2fs:A

merging.owl2fs:B

merging.owl2fs:C

merging.owl2fs:D

Figure 9.3: The classification report of the OWL 2 ontology shown in Fig-
ure 9.2 generated by Pellet.

soner produces a classification report of an ontology. The classification
report of the ontology shown in Figure 9.2 is given in Figure 9.3. The
classification report clearly shows that the reasoner recognises the distinct
model elements of all models, i.e., M1 ∪M2 = {A,C,B,D}. It also shows
the total number of seven model elements found in the ontology, which
includes four classes {A,C,B,D}, two subclass relationships, and one as-
sociation.

9.3 Consistency Analysis of Merged Models

To explain the consistency of a merged model, we assume that there is
a nonempty set ∆I called the object domain containing all the possible
objects in our domain. We propose that a merged model depicting a class
diagram is interpreted as a number of subsets of ∆I representing each class
in the merged model and as a number of conditions that need to be satisfied
by these sets. The merged model is consistent, if each class in a merged
model can be instantiated i.e, if C is a class in a merged model and C ⊆ ∆I

then C 6≡⊥I must hold.

Moreover, in order to check the model conformance (that an object
diagram conforms to the class diagram), we want to know, if each object o
in an object diagram is a proper instance of a class C in a class diagram
i.e, o ∈ C. Moreover, we want to investigate that each link in an object
diagram is an instance of an association depicted in a class diagram. Also,
objects and links must preserve the constraints applied in a class diagram
such as: uniqueness, multiplicity, source, target, ordering and composition
constraints of their classes and associations.

9.3.1 Validation of Merged Models

The consistent UML models representing different versions of a UML model
may have inconsistencies when merged. For example UML models M1 and

114



A

B

Class Diagram

 M2

a2:Aa1:A

b:B

 M1 U M2

=

 M1

b:B

a1:A

U

Object Diagrams

b:B

a2:A

  M

Figure 9.4: The invalid merge of two valid UML models.

M2 shown in Figure 9.4 are valid and consistent models, but when they are
merged, the merged model M1∪M2 is inconsistent, because it is violating
the exclusive ownership constraint of composition. Exclusive ownership
means that an object can have only one owner.

In order to detect the inconsistencies occurred by the merging of models,
we first translate the models into the OWL 2 ontology, and then use an
OWL 2 reasoner to detect the inconsistencies in the translated ontology.
To demonstrate our validation approach we have translated the models M ,
M1 and M2 shown in Figure 9.4 into an ontology. The generated ontology
is shown in Figure 9.5.

9.3.2 Reasoner

In order to detect the inconsistencies in an ontology(Fiure 9.5) of a merged
model(Figure 9.4), the OWL 2 ontology of the merged model is passed to
the OWL 2 reasoner. Since the ontology is in OWL2fs format, we can use
any reasoner which supports this format. In our example we have used
Pellet [90] version 2.3.0. The reasoner processes the ontology and reveals
the inconsistencies in the ontology in the form of a validation report.

9.3.3 Validation Report

The validation report indicates the contradictions and inconsistencies in the
ontology caused by the model merge. The validation report of the ontology
(shown in Figure 9.5) of models (Figure 9.4) is as follows:

D:\pellet-2.3.0>pellet consistency -l OWLAPI D:\METest.owl2fs

Consistent: No

Reason: Individual file:D:/METest.owl2fs#b has more than one

value for the functional property inv(file:D:/METest.owl2fs#owns)

115



//These are the global properties enforcing composition restrictions

IrreflexiveObjectProperty(rules:contains )

SubObjectPropertyOf( owns rules:contains )

InverseFunctionalObjectProperty( owns )

//Class Diagram M

Declaration(Class(A))

Declaration(Class(B))

Declaration(ObjectProperty( association_A_B ))

ObjectPropertyDomain(association_A_B A)

ObjectPropertyRange(association_A_B B)

SubObjectPropertyOf(association_A_B owns )

//Object diagram M1

SubClassOf( ObjectOneOf( A ) a1 )

SubClassOf( ObjectOneOf( B ) b )

ObjectPropertyAssertion( association_A_B a1 b)

//Object diagram M2

SubClassOf( ObjectOneOf( A ) a2 )

SubClassOf( ObjectOneOf( B ) b )

ObjectPropertyAssertion( association_A_B a2 b)

DifferentIndividuals( a1 a2 b )

// The SWRL rule for capturing transitivity for acyclic constraint of composition.

<rdf:RDF>

<owl:Ontology rdf:about="compoRule"/>

<swrl:Variable rdf:ID="x"/>

<swrl:Variable rdf:ID="y"/>

<swrl:Variable rdf:ID="z"/>

<swrl:Variable rdf:ID="a"/>

<swrl:Variable rdf:ID="b"/>

<owl:ObjectProperty rdf:ID="contains"/>

<owl:ObjectProperty rdf:ID="owns"/>

<swrl:Imp>

<swrl:body rdf:parseType="Collection">

<swrl:IndividualPropertyAtom>

<swrl:propertyPredicate rdf:resource="contains"/>

<swrl:argument1 rdf:resource="#x"/>

<swrl:argument2 rdf:resource="#y"/>

</swrl:IndividualPropertyAtom>

<swrl:IndividualPropertyAtom>

<swrl:propertyPredicate rdf:resource="contains"/>

<swrl:argument1 rdf:resource="#y"/>

<swrl:argument2 rdf:resource="#z"/>

</swrl:IndividualPropertyAtom>

</swrl:body>

<swrl:head rdf:parseType="Collection">

<swrl:IndividualPropertyAtom>

<swrl:propertyPredicate rdf:resource="contains"/>

<swrl:argument1 rdf:resource="#x"/>

<swrl:argument2 rdf:resource="#z"/>

</swrl:IndividualPropertyAtom>

</swrl:head>

</swrl:Imp>

</rdf:RDF>

Figure 9.5: The OWL 2 ontology of the models M , M1 and M2 (Fig-
ure 9.4).

116



The validation report clearly indicates the violation of the mutually ex-
clusive ownership constraint of composition is that the object b has more
than one value for the inverse functional property owns. In our OWL 2
translations of a composition the inverse-functional object-property owns
represents the exclusive ownership constraint of the composition. The de-
tails about the translation of composition constraints have already been
discussed in Chapter 4.

9.4 Conclusion

In this chapter we have presented an approach to semantically merge UML
models depicting different versions of a UML model. We have also dis-
cussed a mechanism to validate the merged models. Moreover, we have
demonstrated our work using example models. The automatic discovery of
inconsistencies in a merged model by the reasoner clearly shows the useful-
ness of the proposed merging and the validation approach.

This approach is purely based on the lessons learned from the work
presented in the previous chapters. Therefore, on the basis of the results
of the viability tests that we have shown in the previous chapters, we can
claim that this approach is also viable, because it is using the same set of
OWL 2 translations used in the previous approaches.

117



118



Chapter 10

Conclusions
This chapter discusses the conclusions of this thesis. The conclusions that
we discuss here are categorized according to the research problems that are
addressed in different chapters of this thesis.

Consistency of class diagrams: We addressed the problem of check-
ing the consistency of class diagrams by translating class diagrams into
OWL 2 ontology, and then use an OWL 2 reasoner for the reasoning of
translated OWL 2 ontology. Also, we successfully demonstrated the viabil-
ity of the proposed approach by validating more than 300 metamodels/class
diagrams available at the Atlantic Metamodel Zoo, which comprises thou-
sands of model elements. Out of these metamodels 49% has errors. This
shows the significance of the problem of the validation of metamodels. Fur-
thermore, these results affirm the valuable contribution of our approach in
this validation area.

Consistency of diagrams expressed in different languages: The
problem of checking the consistency of diagrams expressed using different
language is addressed by using a specific type of interaction, i.e., the in-
teraction of static and dynamic diagrams of a system. In this interaction
a class diagram explaining the static content of a system interacts with a
statechart diagram depicting a behavior of one of the class existing in the
class diagram. In this case the interaction is done by using state invariants
expressed using OCL. This whole system represented by a class diagram
and a statechart diagram with state invariants is automatically translated
into OWL 2 and then validated by using an OWL 2 reasoner. We have
validated this approach using two different scenarios: the content manage-
ment system and the REST web service interface. These scenarios have
been validated by using both valid and mutated models, and the detection
of mutants during the validation process clearly indicated the usefulness of
the proposed approach.

119



Validation of OCL constraints: In general OCL is undecidable, and
due to this it is not possible to do the reasoning of OCL constraints. How-
ever, previous research shows that if we restrict our approach to a lim-
ited known set of OCL constructs, then the undecidability can be avoided.
Therefore, in our approach we restrict ourselves to the limited set of OCL
constructs that comprise value, multiplicity and boolean constructs. These
constructs are the basic OCL constructs, and are used to express the con-
ditions in the states of a statechart diagram. We have validated the OCL
constraints by translating them into OWL 2 and then used OWL 2 rea-
soners for the reasoning about the translated constraints. We have also
shown the validation of the proposed approach using both valid and mu-
tated OCL constraints. The detection of the mutated OCL constraints by
the proposed approach is an evidence of the correctness of this approach.
The performance of this approach was also tested by using both valid and
mutated models consisting of 10 to 2000 model elements. The translation
and the reasoning time on all models was less than 4.5 seconds in all cases.
This shows once again that the proposed approach can process relatively
large UML models in a few seconds.

Conformance of a model against its metamodel: We address the
issue of the model conformance by expanding the approach that is used
for the metamodel validation. The expansion consists of the translations
of those model elements that are inadequately or not at all addressed in a
related research. These include the OWL 2 translations of modeling con-
cepts such as non-unique association, ordered property, open-closed world
issues and composition (including unshearedness and acyclicity). Since the
main approach has already been tested on a large scale by validating the
metamodels of the Atlantic Metamodel Zoo, this time we have only tested
this approach by using a set of test cases containing both valid and mutated
models. The detection of the inconsistencies during the validation of test
cases is the evidence of the viability of this approach.

Validation of multiple models: The validation of multiple models of
the same metamodel is based on the approach of translating all models into
a single ontology, and then use the OWL 2 reasoner for the reasoning. This
approach is utilizing one of the open-world assumptions of OWL 2 that
two concepts having the same name are considered as a single concept.
The base of this approach is the same as the approach mentioned in the
metamodel or model validation chapters. Therefore on the basis of the
lessons learned from the viability test of the work of metamodel or model
validation. We claim that this approach is also viable because it is using
the same set of OWL 2 translations that are used in the work of metamodel
or model validation.

120



Integration of our approach in existing tools: There are numerous
tools available for the modeling of UML models. In these tools, each UML
model is generally specified in two forms, one is a graphical form, and
other is a syntactical form. The standard for the graphical form of UML
models followed by the well known modeling tools is more or less the same.
Unfortunately, the syntax of the XML version of UML models generated by
different modeling tools are usually not the same. In our implementation
we have followed the syntactic standard of UML 2 version 3.0.0. This allows
us to integrate our approach with any standard compliant UML modeling
tool that follows this UML standard. In order to show the integration of
our approach with the existing standard UML modeling tools, we have used
EMF plugin Topcased and Magicdraw for the modeling of the UML models
that are presented in this thesis.

The approach we proposed in this thesis is fully automated thanks to
the implemented translation tool and the existing OWL 2 reasoners. A
very constructive potential improvement in the current work would be to
enhance the way problems in ontologies are reported. In few cases, the
relationship between UML concepts and OWL 2 axioms is not so obvious
that it is possible to immediately point out the cause of the problem based
on these violations without a manual inspection of the validation report
and the problematic models. It would greatly add to the usefulness of the
method to have some sort of automated discovery of the cause of violations.
However, the metamodels or models that were not found to have problems
are not guaranteed to be free of errors, they are just free from inconsistencies
that our approach can detect.

Nonetheless, we consider that the use of languages and tools envisioned
for the semantic web as a foundation for software modeling languages and
tools is a promising proposition. The existing consistency issues of meta-
models and models faced by current modeling tools could be addressed by
reusing results from the semantic web community. However, the successful
detection of the errors in the models present in the online model repository,
and the results of the performance test of the proposed approach, is the
evidence that the proposed approach is viable, and can be practised in the
industry.

121



122



Appendices

123





Appendix A

Validation Results of the
Metamodel at the Atlantic
Zoo

A.1 Composition cycle errors between several classes

Metamodel Classes involved

Agate Site, GenericSite, ReusableObject
BusinessProcessModel Task, CompoundTask
ChocoModel Expression, Constraint
classDiagram Class, Classifier, Interface
DotNET SystemReflection Type, MemberInfo
EclipseLaunchConfiguration MapEntry, Attribute, LaunchConfigura-

tion
HierarchicalSignalFlow Base, Compound
QoS Statement QoSStatement, CompoundQoSStatement
RDFS Graph, Resource
SignalFlow CompoundComponent, BaseComponent
UML withReuseContracts ReuserClause, CompositeReuser
UnixFS Directory, File
XUL-Interactorl Container, Interactor

125



A.2 Unsatisfiable class due to multiplicity con-
straints

Metamodel Classes involved

OCL Expressions VariableInitialization

A.3 Composition cycle errors involving a single
class

Metamodel Classes involved

Agate Package
AntScripts TaskElement
BusinessProcessModel CompoundTask
CADM MaterielItem
CPR Plan, Action, Actor
deployment Node
DoDAF Performer
FiniteStateMachine RootFolder
GeoTrans GeoTransfo
KlaperPropCheck Behavior, Step
MavenProject Project
PDG ExpressionNode
ProMarte Step
SecureUML Role
SimulinkStateFlow System
UMLDI-Collaborations Instance
UMLDI-UseCasesPropCheck Instance

126



A.4 Classes forced to have multiple owners

Metamodel Classes involved
ACG Expression
ACME System
Agate ReusableObject
Amble Action
Ant Includes, InExcludes, Pat-

ternSet, FileSet
AnyLogic Parameter, Point
Architectural Description ModelElement
AsmL Main
ASM Argument
ATL Statement
ATOM Generator
Bossa SeqStmt
CADM SoftwareItem
ChocoModel Expression
ClassicModels Date
Collaborations Interactions UML AssociationEndRole
CPR Action
CSM Step
CWMRelationalData QueryExpression
deployment Node
DoDAF Performer
DoDAF-OV5 OperationalRole
DoDAF-SV4 OperationalRolePA
DoDAF-SV5 SystemCapability
DOT Compartment
DotNET SystemReflection Type
DSLModel ModelElement
ebXML Transaction
EclipseLaunchConfiguration MapEntry
EclipsePlugIn ExtensionPoint
EXPRESSb ScopedId
EXPRESS Express metamodel::Core::Expression
GeoTrans GeoTransfo
GraphML Graph
GUI Item, Row, Composant, Group
HAL ReferenceBiblioType
HierarchicalStateMachine CompoundState
HTML TD, TR, BODY
ifc2x3 IfcMeasureWithUnit
IRL expression
J2SE5 BodyDeclaration
JAVA3 Method
JavaAbstractSyntax Type
JavaProject Type

127



Jess Expression
KDM CodeItem
KM3 StructuralFeature, Class, Mod-

elElement, Package
LaTeX Label
M Expression, WhereExpression,

DerivedType
Mantis Issue
Marte Constraint
Matlab Block, BlockDefaults
MavenMaven ContentsGoal
METAH Port
MoDAF-AV Property
MonitorProgram Expression
MSOfficeExcel SpreadsheetMLBasicDef ValueType
MSOfficeExcel SpreadsheetMLPrintingSetup ValueType
MSOfficeExcel SpreadsheetMLStyles ValueType
MSOfficeExcel SpreadsheetMLWorkbookProp ValueType
MSOfficeExcel SpreadsheetMLWorksheetOpt ValueType
MSOfficeExcel SpreadsheetMLBasicDef ValueType
MSOfficeWord WordprocessingMLSimplified BlockLevelElt
MSOfficeWord WordprocessingMLStyles BlockLevelElt
MSOfficeWord WordprocessingMLTableElts StringType
MSVisio DatadiagramMLBasicDef PageSheet
MSVisio DatadiagramMLSimplified ShapesCollection
MSVisio DatadiagramMLTextFormat ShapesCollection
MSVisio DatadiagramMLXForm ShapesCollection
MTRANS Expression
News Date
µOCCAM Process
OCCAM Constructor
OCL Expressions VariableInitialisation
ODP-CV TerminationSignature, Interac-

tionSignature
ODP-NV Stub, EngineeringObject
OpenQVT RootRule
OWL PlainLiteral
Pascal Parameter, Procedure
PDG ExpressionNode
Perceptory Characteristic
PluginEclipse Version
PNML basic URI
PNML modular URI
PNML simplified URI
PNML structured URI
Program Expression
ProMarte Step
PRR OclExpression

128



PtolemyII ComponentEntity, Attribute
QoS Parameter
QVT Ocl Expression
R2ML Vocabulary
RSS-2.0 Category
SBVRvoc PrimaryRepresentation
SCADE NamedType
Scilab Link
SEE Design Expression
Sharengo BusinessRule
SignalFlow CompoundComponent
SimulinkStateFlow System
SPL Place
SQLDDL Value
SQLDML Expression
SysML FlowProperty
TextualPathExp Path
UIML-3.0 Event
UML2 OutputPin
UMLDI TaggedValue
UMLDI-ActivityGraphs Action
UMLDI-StateMachines Action
USECASE1 Parameter
vb expression
WebApplications ConceptualModel LogicElement
WorkDefinitions Phase, WorkDefinition
WSDL BindingOperation
XHTML LinkTypes
XPDL-1.14 Activity
XQuery XPath, BooleanExp
XSchema AbstractContent
XUL-Interactorl Interactor
yUML Note, Model, ClassReference

129



A.5 Multiple occurrences of a class name in a
package

Metamodel Classes involved

Conference.owl Abstract
confious.owl Abstract
confOf.owl Abstract
crs dr.owl Abstract
edas.owl Abstract
ekaw.owl Research Topic
iasted.owl Research Topic
MICRO.owl Research Topic
OpenConf.owl Research Topic
paperdyne.owl Research Topic
PCS.owl Research Topic
sigkdd.owl Research Topic

130



Bibliography

[1] AtlanMod metamodel zoo, available at http://www.emn.fr/

z-info/atlanmod/index.php/Zoos.

[2] Dresden OCL Toolkit, available at http://www.dresden-ocl.org.

[3] Formal Modeling Using Logic Programming and Analysis, available
at http://research.microsoft.com/en-us/projects/formula/

[4] Model Validation MOFScript, available at http://users.abo.fi/

akhan/model_validation.m2t.

[5] MOFScript Homepage, available at http://www.eclipse.org/gmt/

mofscript/.

[6] Semantic Web and Model Driven Development, available at http:

//code.google.com/p/twouse/

[7] UML 2003 - The Unified Modeling Language, Modeling Languages
and Applications, 6th International Conference, San Francisco, CA,
USA, October 20-24, 2003, Proceedings. In: Stevens, P., Whittle, J.,
Booch, G. (eds.) UML. Lecture Notes in Computer Science, vol. 2863.
Springer (2003)

[8] MOFScript User Guide (2009), document Available at http://www.
eclipse.org/gmt/mofscript/doc/MOFScript-User-Guide-0.8.

pdf.

[9] Alanen, M., Porres, I.: A Metamodeling Language Supporting Subset
and Union Properties. Springer International Journal on Software and
Systems Modeling 7(1), 103–124 (2007), available at http://www.

springerlink.com/content/8k67436222447147/.

[10] Anastasakis, K., Bordbar, B., Küster, J.M.: Analysis of Model Trans-
formations via Alloy. In: Proceedings of MoDeVVa 2007. pp. 47–56
(2007)

131



[11] Artale, A., Calvanese, D., Ibáñez Garćıa, A.: Full satisfiability of
UML class diagrams. In: Proceedings of the 29th international confer-
ence on Conceptual modeling. pp. 317–331. ER’10, Springer-Verlag,
Berlin, Heidelberg (2010), http://portal.acm.org/citation.cfm?
id=1929757.1929788

[12] Audi, R.: The Cambridge Dictionary of Philosophy. Paw Prints
(2008)

[13] Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-
Schneider, P.F. (eds.): The description logic handbook: theory, im-
plementation, and applications. Cambridge University Press, New
York, NY, USA (2003)

[14] Babenyshev, S., Rybakov, V.: Reasoning and Inference Rules in
Basic Linear Temporal Logic BLTL. In: Setchi, R., Jordanov, I.,
Howlett, R., Jain, L. (eds.) Knowledge-Based and Intelligent Infor-
mation and Engineering Systems, Lecture Notes in Computer Sci-
ence, vol. 6277, pp. 224–233. Springer Berlin Heidelberg (2010),
http://dx.doi.org/10.1007/978-3-642-15390-7_23

[15] Balaban, M., Maraee, A.: Consistency of UML Class Diagrams
with Hierarchy Constraints. In: Etzion, O., Kuflik, T., Motro, A.
(eds.) Next Generation Information Technologies and Systems, Lec-
ture Notes in Computer Science, vol. 4032, pp. 71–82. Springer Berlin
Heidelberg (2006), http://dx.doi.org/10.1007/11780991_7

[16] Balaban, M., Maraee, A.: A UML-based method for deciding finite
satisfiability in description logics. In: Description Logics (2008)

[17] Barros, A., Duddy, K., Lawley, M., Milosevic, Z., Raymond, K.,
Wood, A.: Processes, Roles, and Events: UML Concepts for En-
terprise Architecture. In: Evans, A., Kent, S., Selic, B. (eds.) UML
2000 - The Unified Modeling Language, Lecture Notes in Computer
Science, vol. 1939, pp. 62–77. Springer Berlin Heidelberg (2000),
http://dx.doi.org/10.1007/3-540-40011-7_5

[18] Bendix, L., Emanuelsson, P.: Diff and merge support for model based
development. In: Proceedings of the 2008 international workshop on
Comparison and versioning of software models. pp. 31–34. CVSM,
ACM (2008)

[19] Berardi, D., Calvanese, D., Giacomo, G.D.: Reasoning on UML class
diagrams. Artif. Intell. 168(1-2), 70–118 (2005)

132



[20] Bock, C., Fokoue, A., Haase, P., Hoekstra, R., Horrocks, I.,
Ruttenberg, A., Sattler, U., Smith, M.: OWL 2 Web Ontol-
ogy Language Structural Specification and Functional-Style Syn-
tax. W3 Recommendation (2009), http://www.w3.org/TR/2009/

REC-owl2-syntax-20091027/

[21] Bock, C., Fokoue, A., Haase, P., Hoekstra, R., Horrocks, I.,
Ruttenberg, A., Sattler, U., Smith, M.: OWL 2 Web Ontol-
ogy Language Structural Specification and Functional-Style Syntax,
w3 Recommendation Available at http://www.w3.org/TR/2009/

REC-owl2-syntax-20091027/

[22] Boris, M., et al.: OWL 2 web ontology language structural spec-
ification and functional-style syntax. W3 Recommendation http:

//www.w3.org/TR/owl2-syntax/

[23] Boris, M., Peter F, P.S., Bernardo, C.G.: OWL 2 Web
Ontology Language Direct Semantics, http://www.w3.org/TR/

owl2-direct-semantics/

[24] Boris Motic, Peter F. Patel-Scheneider, Ian Horrocks: OWL 1.1
Web Ontology Language Structural Specification and Functional-
Sytle Syntax (May 2007), available at http://www.webont.org/owl/
1.1/owl\_specification.html.

[25] Broy, M., Cengarle, M.V., Granniger, H., Rumpe, B.: Considerations
and Rationale for a UML System Model, pp. 43–60. John Wiley and
Sons, Inc. (2009)

[26] Cabot, J., Clariso, R., Riera, D.: Verification of UML OCL class
diagrams using constraint programming. IEEE International Con-
ference on Software Testing Verification and Validation Workshop
(ICSTW’08) pp. 73–80 (2008)

[27] Cao, X., Miao, H., Xu, Q.: Verifying service-oriented requirements
using model checking. In: Proceedings of the 2008 IEEE International
Conference on e-Business Engineering. pp. 643–648. ICEBE ’08, IEEE
Computer Society, Washington, DC, USA (2008)

[28] Chen, W.: Tactic-based theorem proving and knowledge-based for-
ward chaining: An experiment with Nuprl and Ontic. In: Kapur,
D. (ed.) Automated Deduction CADE, Lecture Notes in Computer
Science, vol. 607, pp. 552–566. Springer Berlin Heidelberg (1992),
http://dx.doi.org/10.1007/3-540-55602-8_191

133



[29] Clark, T., Evans, A., Kent, S.: The Metamodelling Language Calcu-
lus: Foundation Semantics for UML. In: Proceedings of the Funda-
mental Aspects of Software Engineering (FASE). pp. 17–31 (2001)

[30] Clavel, M., Egea, M., da Silva, V.T.: The MOVA Tool: A Rewriting-
Based UML Modeling, Measuring and Validation Tool. In: JISBD.
pp. 393–394 (2007)

[31] David H. Akehurst and Stuart Kent and Octavian Patrascoiu: A
relational approach to defining and implementing transformations
between metamodels. Software and System Modeling 2(4), 215–239
(2003)

[32] Dobing, B., Parsons, J.: Current Practices in the Use of UML. In:
Akoka, J., Liddle, S., Song, I.Y., Bertolotto, M., Comyn-Wattiau,
I., Heuvel, W.J., Kolp, M., Trujillo, J., Kop, C., Mayr, H. (eds.)
Perspectives in Conceptual Modeling, Lecture Notes in Computer
Science, vol. 3770, pp. 2–11. Springer Berlin Heidelberg (2005), http:
//dx.doi.org/10.1007/11568346_2

[33] Ebbinghaus, H., Flum, J., Thomas, W.: Mathematical Logic. Under-
graduate Texts in Mathematics, Springer (1994)

[34] Egyed, A.: UML Analyzer: A Tool for the Instant Consistency Check-
ing of UML Models. In: Proceedings of ICSE 2007. pp. 793 –796 (may
2007)

[35] Epstein, R.: Predicate logic: the semantic foundations of logic.
Wadsworth Thomson Learning (2001)

[36] Fielding, R.T.: Architectural Styles and the Design of Network-based
Software Architectures. Ph.D. thesis, Citeseer (2000), http://www.
ics.uci.edu/~fielding/pubs/dissertation/top.htm

[37] Fowler, M.: Domain-Specific Languages. Addison-Wesley Signature
Series, Pearson Education (2010)

[38] Garcia, M., Shidqie, A.J.: OCL Compiler for EMF. In: Eclipse Mod-
eling Symposium at Eclipse Summit Europe 2007, Stuttgart, Ger-
many (2007)

[39] Gašević, D., Djurić, D., Devedžić, V.: MDA-based Automatic OWL
Ontology Development. Int. J. Softw. Tools Technol. Transf. 9(2),
103–117 (2007)

[40] Gogolla, M., BÃijttner, F., Richters, M.: USE: A UML-based
specification environment for validating UML and OCL. Science

134



of Computer Programming 69(1-3), 27 – 34 (2007), http://www.

sciencedirect.com/science/article/pii/S0167642307001608,
special issue on Experimental Software and Toolkits

[41] Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A the-
orem proving environment for higher order logic. Cambridge Uni-
versity Press (1993), http://www.cs.ox.ac.uk/tom.melham/pub/

Gordon-1993-ITH.html

[42] Heckel, R., Voigt, H., Kuster, J., Thone, S.: Towards Consistency
of Web Service Architectures. In the Proceedings of the 7th World
Multiconference on Systemics, Cybernetics, and Informatics (2003)

[43] Henderson-Sellers, B.: On the Mathematics of Modelling, Metamod-
elling, Ontologies and Modelling Languages. Springer Briefs in Com-
puter Science, Springer (2012)

[44] Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web
Technologies. Chapman & Hall/CRC (2009)

[45] Hnatkowska B., Huzar Z., M.J.: Consistency Checking in UML Mod-
els. In: ISM’01 (2001)

[46] Hoglund, S., Khan, A.H., Liu, Y., Porres, I.: Representing and Val-
idating Metamodels using OWL 2 and SWRL. In: JCKBSE’10. pp.
133–144. Kaunas University of Technology (2010)

[47] Holovaty, A., Kaplan-Moss, J.: The Definitive Guide to Django: Web
Development Done Right. Apress (2007)

[48] Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible
SROIQ. In: Proc. of the 10th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR 2006). pp. 57–67. AAAI Press
(2006), download/2006/HoKS06a.pdf

[49] Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B.,
Dean, M.: SWRL: A semantic web rule language combining OWL and
RuleML (2004), availible at http://www.w3.org/Submission/SWRL/

[50] Horrocks, I., Patel-Schneider, P.F., Harmelen, F.V.: From SHIQ and
RDF to OWL: The Making of a Web Ontology Language. Journal of
Web Semantics 1, 2003 (2003)

[51] Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for expres-
sive description logics. In: Proceedings of LPAR 1999. pp. 161–180.
Springer-Verlag, London, UK (1999)

135



[52] Jouault, F., Bézivin, J.: KM3: a DSL for Metamodel Specifica-
tion. In: Proceedings of 8th IFIP International Conference on Formal
Methods for Open Object-Based Distributed Systems. Bologna, Italy
(2006)

[53] Kandé, M.M., Strohmeier, A.: Towards a UML profile for software ar-
chitecture descriptions. In: Proceedings of the 3rd international con-
ference on The unified modeling language: advancing the standard.
pp. 513–527. UML’00, Springer-Verlag, Berlin, Heidelberg (2000),
http://dl.acm.org/citation.cfm?id=1765175.1765230

[54] Kaneiwa, K., Satoh, K.: Consistency Checking Algorithms for
Restricted UML Class Diagrams. In: Proceedings of FoIKS2006,
Springer. Springer (2006)

[55] Kent, S.: Model Driven Engineering. In: Proc. of IFM International
Formal Methods 2002. LNCS, vol. 2335. Springer-Verlag (2002)

[56] Khan, A.H., Rauf, I., Porres, I.: Consistency of UML
Class and Statechart Diagrams with State Invariants. In: Fil-
ipe, J., Neves, R.C.d. (eds.) First International Conference on
Model-Driven Engineering and Software Development, MODEL-
SWARD 2013. vol. 1, pp. 1–11. SciTePress Digital Library
(http://www.scitepress.org/DigitalLibrary/). SciTePress is member
of CrossRef (http://www.crossref.org/). (2013)

[57] Khan, A.H., Suenson, E., Porres, I.: Class and Object Model Confor-
mance using OWL2 Reasoners. In: Penjam, J. (ed.) SPLST’11. pp.
126–137. TUT Press (2011)

[58] Khan, A.H., Suenson, E., Porres, I.: Representation and Confor-
mance of UML Models Containing Ordered Properties Using OWL2.
In: OrdRing’11. CEUR-WS Proceedings., vol. 2011. ISWC 2011
(2011)

[59] Knorr, M., Alferes, J.J., Hitzler, P.: Local closed world reasoning
with description logics under the well-founded semantics. Artificial
Intelligence 175(9-10), 1528 – 1554 (2011)

[60] Krogstie, J.: Model-Based Development and Evolution of Information
Systems - A Quality Approach. Springer (2012)

[61] Lamo, Y., Wang, X., Mantz, F., MacCaull, W., Rutle, A.: DPF
Workbench: A Diagrammatic Multi-Layer Domain Specific (Meta-
)Modelling Environment. In: Computer and Information Science
2012, vol. 429, pp. 37–52. Springer (2012)

136



[62] Liu, L., Özsu, M.T. (eds.): Encyclopedia of Database Systems.
Springer US (2009)

[63] Liu, Y., Höglund, S., Khan, A.H., Porres, I.: A Feasibility Study on
the Validation of Domain Specific Languages Using OWL 2 Reason-
ers. In: Proceedings of TWOMDE 2010. CEUR Workshop Preceed-
ings, CEUR (2010)

[64] Lutz, R., Wurfel, D., Diehl, S.: How Humans Merge UML-Models.
pp. 177–186. ESEM ’11, IEEE (2011)

[65] Machines, I.B., Group, O.M., Software, S.: Ontology definition
metamodel (ODM), OMG Document ad/2003-02-23. Available at
http://www.omg.org/.

[66] Malgouyres, H., Motet, G.: A UML model consistency verification
approach based on meta-modeling formalization. In: Proceedings of
SAC2006. pp. 1804–1809. SAC ’06, ACM, New York, NY, USA (2006)

[67] Maoz, S., Jan Oliver, R., Bernhard, R.: Summarizing semantic model
differences. In: Proceedings of The International Workshop on Models
and Evolution. ME (2011)

[68] Maoz, S., Ringert, J.O., Rumpe, B.: Semantically configurable con-
sistency analysis for class and object diagrams. In: MoDELS. pp.
153–167 (2011)

[69] Mendelson, E.: Introduction to mathematical logic; (3rd ed.).
Wadsworth and Brooks/Cole Advanced Books & Software, Monterey,
CA, USA (1987)

[70] Nentwich, C., Emmerich, W., Finkelstein, A.: Static Consistency
Checking for Distributed Specifications. In the Proceedings of the
16th IEEE international conference on Automated software engineer-
ing (2001)

[71] OMG: Meta Object Facility, version 1.4 (April 2002), document
formal/2002-04-03. Available at http://www.omg.org/.

[72] OMG: Unified Language Specification (March 2003), version 1.5, Doc-
ument formal/03-03-01, available at http://www.omg.org/.

[73] OMG: XML Metadata Interchange (XMI) Specification, version 2.1
(September 2005), document formal/05-09-01, available at http://

www.omg.org/.

[74] OMG: OCL Specification, Version 2.0 (2006), http://www.omg.org/
spec/OCL/2.0/

137



[75] OMG: ODM Ontology Definition Metamodel (2009), http://www.

omg.org/spec/ODM/1.0

[76] OMG: UML 2.2 Infrastructure Specification (February 2009), avail-
able at http://www.omg.org/.

[77] OMG: UML, Superstructure Specification, Version 2.4.1. Tech. rep.
(2011), http://www.omg.org/spec/UML/2.4.1/Superstructure/

PDF/

[78] Parreiras, F.S.: Marrying model-driven engineering and ontology
technologies: The TwoUse approach. Ph.D. thesis (2011)

[79] Parreiras, F.S., Staab, S., Winter, A.: On marrying ontological and
metamodeling technical spaces. In: ESEC-FSE ’07: Proceedings. pp.
439–448. ACM, New York, NY, USA (2007)

[80] Porres, I., Rauf, I.: Modeling Behavioral RESTful Web Service Inter-
faces in UML. Accepted in 26th Annual ACM Symposium on Applied
Computing Track on Service Oriented Architectures and Program-
ming(SAC 2011) (2011)

[81] Queralt, A., Artale, A., Calvanese, D., Teniente, E.: OCL-Lite: A
decidable (yet expressive) fragment of OCL. In: Proc. of the 25th
Int. Workshop on Description Logics (DL 2012). CEUR Electronic
Workshop Proceedings, http://ceur-ws.org/, vol. 846, pp. 312–322
(2012)

[82] Queralt, A., Artale, A., Calvanese, D., Teniente, E.: OCL-Lite: Finite
Reasoning on UML/OCL Conceptual Schemas. Data and Knowledge
Engineering 73, 1–22 (2012)

[83] R, S., B, M., I, H.: HermiT: A highly-efficient OWL reasoner. Pro-
ceedings of the 5th International Workshop on OWL: Experiences
and Directions (OWLED 2008) (2008)

[84] Rahmani, Oberle, Dahms: An Adjustable Transformation from OWL
to Ecore. In: MODELS 2010, Oslo, Norway, October 3-8, 2010. Pro-
ceedings. LNCS, Springer (2010)

[85] Rasch, H., Wehrheim, H.: Checking Consistency in UML Diagrams:
Classes and State Machines. In: Formal Methods for Open Object-
Based Distributed Systems, LNCS, vol. 2884, pp. 229–243 (2003)

[86] Rauf, I., Khan, A.H., Porres, I.: Analyzing Consistency of Behav-
ioral REST Web Service Interfaces. In: Silva, J., Tiezzi, F. (eds.) The

138



8th International Workshop on Automated Specification and Verifica-
tion of Web Systems. pp. 1–15. Electronic Proceedings in Theoretical
Computer Science (EPTCS). (2012)

[87] Rutle, A., Rossini, A., Lamo, Y., Wolter, U.: A formal approach
to the specification and transformation of constraints in MDE. In:
Journal of Logic and Algebraic Programming. vol. 81, pp. 422 – 457.
ELSEVIER (2012)

[88] Sekerinski, E.: Verifying statecharts with state invariants. In:
ICECCS. pp. 7–14 (2008)

[89] Shah, S.M.A., Anastasakis, K., Bordbar, B.: From UML to Alloy
and back again. In: Proceedings of MoDeVVa 2009. pp. 4:1–4:10.
MoDeVVa ’09, ACM, New York, NY, USA (2009)

[90] Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A
practical OWL-DL reasoner. Web Semantics: Science, Services and
Agents on the World Wide Web 5, 51–53 (2007)

[91] Tarski, A., Helmer-Hirschberg, O.: Introduction to Logic and the
Methodology of Deductive Sciences. Oxford (1946)

[92] Tsai, W.T., Wei, X., Chen, Y., Paul, R.: A robust testing framework
for verifying web services by completeness and consistency analysis.
In: Proceedings of the IEEE International Workshop. pp. 159–166.
SOSE ’05, IEEE Computer Society, Washington, DC, USA (2005)

[93] Tsai, W., Wei, X., Chen, Y., Xiao, B., Paul, R., Huang, H.: Devel-
oping and assuring trustworthy Web services. In the Proceedings of
Autonomous Decentralized Systems (2005)

[94] Van Der Straeten, R.: Inconsistency Management in Model-driven
Engineering. An Approach using Description Logics. Ph.D. thesis,
Vrije Universiteit Brussel, Brussels, Belgium (September 2005)

[95] Varró, D., Pataricza, A.: VPM: A visual, precise and multilevel meta-
modeling framework for describing mathematical domains and UML.
Journal of Software and Systems Modeling 2(3), 187–210 (October
2003), http://www.inf.mit.bme.hu/FTSRG/Publications/varro/

2003/sosym2003_vp.pdf

[96] Vitus S. W. Lam, J.A.P.: Consistency checking of statechart diagrams
of a class hierarchy. In: ECOOP. pp. 412–427 (2005)

[97] Vlist, E.V.D. (ed.): RELAX NG: A Simpler Schema Language for
XML. O’Reilly, California, CA, USA (2003)

139



[98] W3: OWL 2 Document Overview (October 2009), available at http:
//www.w3.org/TR/owl2-overview.

[99] W3C: Extendable Markup Language XML Version 1.0 (September
2005), available at http://www.w3.org/TR/xml-id/.

[100] Walter, T., Parreiras, F., Staab, S.: An ontology-based frame-
work for domain-specific modeling. Software and Systems Mod-
eling pp. 1–26, http://dx.doi.org/10.1007/s10270-012-0249-9,
10.1007/s10270-012-0249-9

[101] Walter, T., Parreiras, F.S., Staab, S.: OntoDSL: An ontology-based
framework for domain-specific languages. In: Schürr, A., Selic, B.
(eds.) MoDELS. Lecture Notes in Computer Science, vol. 5795, pp.
408–422. Springer (2009)

[102] Wang, S., Jin, L., Jin, C.: Ontology Definition Metamodel based
Consistency Checking of UML Models. pp. 1 –5 (may 2006)

[103] Wilke, C., Demuth, B.: UML is still inconsistent! How to im-
prove OCL Constraints in the UML 2.3 Superstructure. ECEASST
44 (2011)

[104] Yeung, W.L.: Checking Consistency between UML Class and State
Models Based on CSP and B. J. UCS 10(11), 1540–1559 (2004)

[105] Yin, Y., Yin, J., Li, Y., Deng, S.: Verifying consistency of web ser-
vices behavior using type theory. In: Asia-Pacific Services Computing
Conference, 2008. APSCC ’08. IEEE. pp. 1560–1567 (dec 2008)

[106] Zhao, Y., Pan, J.Z., Jekjantuk, N., Henriksson, J., Groner, G., Ren,
Y.: Most project - definition of language hierarchy (2008), availi-
ble at https://www.most-project.eu/admin/xinha/plugins/

ExtendedFileManager/images/Deliverables/MOST_Deliverable_

D3.1.pdf

140



 
Turku Centre for Computer Science 

TUCS Dissertations 
 
 
1. Marjo Lipponen, On Primitive Solutions of the Post Correspondence Problem 
2. Timo Käkölä, Dual Information Systems in Hyperknowledge Organizations 
3. Ville Leppänen, Studies on the Realization of PRAM 
4. Cunsheng Ding, Cryptographic Counter Generators 
5. Sami Viitanen, Some New Global Optimization Algorithms 
6. Tapio Salakoski, Representative Classification of Protein Structures 
7. Thomas Långbacka, An Interactive Environment Supporting the Development of 

Formally Correct Programs 
8. Thomas Finne, A Decision Support System for Improving Information Security 
9. Valeria Mihalache, Cooperation, Communication, Control. Investigations on 

Grammar Systems. 
10. Marina Waldén, Formal Reasoning About Distributed Algorithms 
11. Tero Laihonen, Estimates on the Covering Radius When the Dual Distance is 

Known 
12. Lucian Ilie, Decision Problems on Orders of Words 
13. Jukkapekka Hekanaho, An Evolutionary Approach to Concept Learning 
14. Jouni Järvinen, Knowledge Representation and Rough Sets 
15. Tomi Pasanen, In-Place Algorithms for Sorting Problems 
16. Mika Johnsson, Operational and Tactical Level Optimization in Printed Circuit 

Board Assembly 
17. Mats Aspnäs, Multiprocessor Architecture and Programming: The Hathi-2 System 
18. Anna Mikhajlova, Ensuring Correctness of Object and Component Systems 
19. Vesa Torvinen, Construction and Evaluation of the Labour Game Method 
20. Jorma Boberg, Cluster Analysis. A Mathematical Approach with Applications to 

Protein Structures 
21. Leonid Mikhajlov, Software Reuse Mechanisms and Techniques: Safety Versus 

Flexibility 
22. Timo Kaukoranta, Iterative and Hierarchical Methods for Codebook Generation in 

Vector Quantization 
23. Gábor Magyar, On Solution Approaches for Some Industrially Motivated 

Combinatorial Optimization Problems 
24. Linas Laibinis, Mechanised Formal Reasoning About Modular Programs 
25. Shuhua Liu, Improving Executive Support in Strategic Scanning with Software 

Agent Systems 
26. Jaakko Järvi, New Techniques in Generic Programming – C++ is more Intentional 

than Intended 
27. Jan-Christian Lehtinen, Reproducing Kernel Splines in the Analysis of Medical 

Data 
28. Martin Büchi, Safe Language Mechanisms for Modularization and Concurrency 
29. Elena Troubitsyna, Stepwise Development of Dependable Systems 
30. Janne Näppi, Computer-Assisted Diagnosis of Breast Calcifications 
31. Jianming Liang, Dynamic Chest Images Analysis 
32. Tiberiu Seceleanu, Systematic Design of Synchronous Digital Circuits 
33. Tero Aittokallio, Characterization and Modelling of the Cardiorespiratory System 

in Sleep-Disordered Breathing 
34. Ivan Porres, Modeling and Analyzing Software Behavior in UML 
35. Mauno Rönkkö, Stepwise Development of Hybrid Systems 
36. Jouni Smed, Production Planning in Printed Circuit Board Assembly 
37. Vesa Halava, The Post Correspondence Problem for Market Morphisms 
38. Ion Petre, Commutation Problems on Sets of Words and Formal Power Series 
39. Vladimir Kvassov, Information Technology and the Productivity of Managerial 

Work 
40. Frank Tétard, Managers, Fragmentation of Working Time, and Information 

Systems 



41. Jan Manuch, Defect Theorems and Infinite Words 
42. Kalle Ranto, Z4-Goethals Codes, Decoding and Designs 
43. Arto Lepistö, On Relations Between Local and Global Periodicity 
44. Mika Hirvensalo, Studies on Boolean Functions Related to Quantum Computing 
45. Pentti Virtanen, Measuring and Improving Component-Based Software 

Development 
46. Adekunle Okunoye, Knowledge Management and Global Diversity – A Framework 

to Support Organisations in Developing Countries 
47. Antonina Kloptchenko, Text Mining Based on the Prototype Matching Method 
48. Juha Kivijärvi, Optimization Methods for Clustering 
49. Rimvydas Rukšėnas, Formal Development of Concurrent Components 
50. Dirk Nowotka, Periodicity and Unbordered Factors of Words 
51. Attila Gyenesei, Discovering Frequent Fuzzy Patterns in Relations of Quantitative 

Attributes 
52. Petteri Kaitovaara, Packaging of IT Services – Conceptual and Empirical Studies 
53. Petri Rosendahl, Niho Type Cross-Correlation Functions and Related Equations 
54. Péter Majlender, A Normative Approach to Possibility Theory and Soft Decision 

Support 
55. Seppo Virtanen, A Framework for Rapid Design and Evaluation of Protocol 

Processors 
56. Tomas Eklund, The Self-Organizing Map in Financial Benchmarking 
57. Mikael Collan, Giga-Investments: Modelling the Valuation of Very Large Industrial 

Real Investments 
58. Dag Björklund, A Kernel Language for Unified Code Synthesis 
59. Shengnan Han, Understanding User Adoption of Mobile Technology: Focusing on 

Physicians in Finland 
60. Irina Georgescu, Rational Choice and Revealed Preference: A Fuzzy Approach 
61. Ping Yan, Limit Cycles for Generalized Liénard-Type and Lotka-Volterra Systems 
62. Joonas Lehtinen, Coding of Wavelet-Transformed Images 
63. Tommi Meskanen, On the NTRU Cryptosystem 
64. Saeed Salehi, Varieties of Tree Languages 
65. Jukka Arvo, Efficient Algorithms for Hardware-Accelerated Shadow Computation 
66. Mika Hirvikorpi, On the Tactical Level Production Planning in Flexible 

Manufacturing Systems 
67. Adrian Costea, Computational Intelligence Methods for Quantitative Data Mining 
68. Cristina Seceleanu, A Methodology for Constructing Correct Reactive Systems 
69. Luigia Petre, Modeling with Action Systems 
70. Lu Yan, Systematic Design of Ubiquitous Systems 
71. Mehran Gomari, On the Generalization Ability of Bayesian Neural Networks 
72. Ville Harkke, Knowledge Freedom for Medical Professionals – An Evaluation Study 

of a Mobile Information System for Physicians in Finland 
73. Marius Cosmin Codrea, Pattern Analysis of Chlorophyll Fluorescence Signals 
74. Aiying Rong, Cogeneration Planning Under the Deregulated Power Market and 

Emissions Trading Scheme 
75. Chihab BenMoussa, Supporting the Sales Force through Mobile Information and 

Communication Technologies: Focusing on the Pharmaceutical Sales Force 
76. Jussi Salmi, Improving Data Analysis in Proteomics 
77. Orieta Celiku, Mechanized Reasoning for Dually-Nondeterministic and 

Probabilistic Programs 
78. Kaj-Mikael Björk, Supply Chain Efficiency with Some Forest Industry 

Improvements 
79. Viorel Preoteasa, Program Variables – The Core of Mechanical Reasoning about 

Imperative Programs 
80. Jonne Poikonen, Absolute Value Extraction and Order Statistic Filtering for a 

Mixed-Mode Array Image Processor 
81. Luka Milovanov, Agile Software Development in an Academic Environment 
82. Francisco Augusto Alcaraz Garcia, Real Options, Default Risk and Soft 

Applications 
83. Kai K. Kimppa, Problems with the Justification of Intellectual Property Rights in 

Relation to Software and Other Digitally Distributable Media 
84. Dragoş Truşcan, Model Driven Development of Programmable Architectures 
85. Eugen Czeizler, The Inverse Neighborhood Problem and Applications of Welch 

Sets in Automata Theory 



86. Sanna Ranto, Identifying and Locating-Dominating Codes in Binary Hamming 
Spaces 

87. Tuomas Hakkarainen, On the Computation of the Class Numbers of Real Abelian 
Fields 

88. Elena Czeizler, Intricacies of Word Equations 
89. Marcus Alanen, A Metamodeling Framework for Software Engineering 
90. Filip Ginter, Towards Information Extraction in the Biomedical Domain: Methods 

and Resources 
91.  Jarkko Paavola, Signature Ensembles and Receiver Structures for Oversaturated 

Synchronous DS-CDMA Systems 
92. Arho Virkki, The Human Respiratory System: Modelling, Analysis and Control 
93. Olli Luoma, Efficient Methods for Storing and Querying XML Data with Relational 

Databases 
94. Dubravka Ilić, Formal Reasoning about Dependability in Model-Driven 

Development 
95. Kim Solin, Abstract Algebra of Program Refinement 
96. Tomi Westerlund, Time Aware Modelling and Analysis of Systems-on-Chip 
97. Kalle Saari, On the Frequency and Periodicity of Infinite Words 
98. Tomi Kärki, Similarity Relations on Words: Relational Codes and Periods 
99. Markus M. Mäkelä, Essays on Software Product Development: A Strategic 

Management Viewpoint 
100. Roope Vehkalahti, Class Field Theoretic Methods in the Design of Lattice Signal 

Constellations 
101. Anne-Maria Ernvall-Hytönen, On Short Exponential Sums Involving Fourier 

Coefficients of Holomorphic Cusp Forms 
102. Chang Li, Parallelism and Complexity in Gene Assembly 
103. Tapio Pahikkala, New Kernel Functions and Learning Methods for Text and Data 

Mining 
104. Denis Shestakov, Search Interfaces on the Web: Querying and Characterizing 
105. Sampo Pyysalo, A Dependency Parsing Approach to Biomedical Text Mining 
106. Anna Sell, Mobile Digital Calendars in Knowledge Work 
107. Dorina Marghescu, Evaluating Multidimensional Visualization Techniques in Data 

Mining Tasks 
108. Tero Säntti, A Co-Processor Approach for Efficient Java Execution in Embedded 

Systems 
109. Kari Salonen, Setup Optimization in High-Mix Surface Mount PCB Assembly 
110. Pontus Boström, Formal Design and Verification of Systems Using Domain-

Specific Languages 
111. Camilla J. Hollanti, Order-Theoretic Mehtods for Space-Time Coding: Symmetric 

and Asymmetric Designs 
112. Heidi Himmanen, On Transmission System Design for Wireless Broadcasting 
113. Sébastien Lafond, Simulation of Embedded Systems for Energy Consumption 

Estimation 
114. Evgeni Tsivtsivadze, Learning Preferences with Kernel-Based Methods 
115. Petri Salmela, On Commutation and Conjugacy of Rational Languages and the 

Fixed Point Method 
116. Siamak Taati, Conservation Laws in Cellular Automata 
117. Vladimir Rogojin, Gene Assembly in Stichotrichous Ciliates: Elementary 

Operations, Parallelism and Computation 
118. Alexey Dudkov, Chip and Signature Interleaving in DS CDMA Systems 
119. Janne Savela, Role of Selected Spectral Attributes in the Perception of Synthetic 

Vowels 
120. Kristian Nybom, Low-Density Parity-Check Codes for Wireless Datacast Networks 
121. Johanna Tuominen, Formal Power Analysis of Systems-on-Chip 
122. Teijo Lehtonen, On Fault Tolerance Methods for Networks-on-Chip 
123. Eeva Suvitie, On Inner Products Involving Holomorphic Cusp Forms and Maass 

Forms 
124. Linda Mannila, Teaching Mathematics and Programming – New Approaches with 

Empirical Evaluation 
125. Hanna Suominen, Machine Learning and Clinical Text: Supporting Health 

Information Flow 
126. Tuomo Saarni, Segmental Durations of Speech 
127. Johannes Eriksson, Tool-Supported Invariant-Based Programming 



128. Tero Jokela, Design and Analysis of Forward Error Control Coding and Signaling 
for Guaranteeing QoS in Wireless Broadcast Systems 

129. Ville Lukkarila, On Undecidable Dynamical Properties of Reversible One-
Dimensional Cellular Automata 

130. Qaisar Ahmad Malik, Combining Model-Based Testing and Stepwise Formal 
Development 

131. Mikko-Jussi Laakso, Promoting Programming Learning: Engagement, Automatic 
Assessment with Immediate Feedback in Visualizations 

132. Riikka Vuokko, A Practice Perspective on Organizational Implementation of 
Information Technology 

133. Jeanette Heidenberg, Towards Increased Productivity and Quality in Software 
Development Using Agile, Lean and Collaborative Approaches 

134. Yong Liu, Solving the Puzzle of Mobile Learning Adoption 
135. Stina Ojala, Towards an Integrative Information Society: Studies on Individuality 

in Speech and Sign 
136. Matteo Brunelli, Some Advances in Mathematical Models for Preference Relations 
137. Ville Junnila, On Identifying and Locating-Dominating Codes 
138. Andrzej Mizera, Methods for Construction and Analysis of Computational Models 

in Systems Biology. Applications to the Modelling of the Heat Shock Response and 
the Self-Assembly of Intermediate Filaments. 

139. Csaba Ráduly-Baka, Algorithmic Solutions for Combinatorial Problems in 
Resource Management of Manufacturing Environments 

140. Jari Kyngäs, Solving Challenging Real-World Scheduling Problems 
141. Arho Suominen, Notes on Emerging Technologies 
142. József Mezei, A Quantitative View on Fuzzy Numbers 
143. Marta Olszewska, On the Impact of Rigorous Approaches on the Quality of 

Development 
144. Antti Airola, Kernel-Based Ranking: Methods for Learning and Performace 

Estimation 
145. Aleksi Saarela, Word Equations and Related Topics: Independence, Decidability 

and Characterizations 
146. Lasse Bergroth, Kahden merkkijonon pisimmän yhteisen alijonon ongelma ja sen 

ratkaiseminen 
147. Thomas Canhao Xu, Hardware/Software Co-Design for Multicore Architectures 
148. Tuomas Mäkilä, Software Development Process Modeling – Developers 

Perspective to Contemporary Modeling Techniques 
149. Shahrokh Nikou, Opening the Black-Box of IT Artifacts: Looking into Mobile 

Service Characteristics and Individual Perception 
150. Alessandro Buoni, Fraud Detection in the Banking Sector: A Multi-Agent 

Approach 
151. Mats Neovius, Trustworthy Context Dependency in Ubiquitous Systems 
152. Fredrik Degerlund, Scheduling of Guarded Command Based Models 
153. Amir-Mohammad Rahmani-Sane, Exploration and Design of Power-Efficient 

Networked Many-Core Systems 
154. Ville Rantala, On Dynamic Monitoring Methods for Networks-on-Chip 
155. Mikko Pelto, On Identifying and Locating-Dominating Codes in the Infinite King 

Grid 
156. Anton Tarasyuk, Formal Development and Quantitative Verification of 

Dependable Systems 
157. Muhammad Mohsin Saleemi, Towards Combining Interactive Mobile TV and 

Smart Spaces: Architectures, Tools and Application Development 
158. Tommi J. M. Lehtinen, Numbers and Languages 
159. Peter Sarlin, Mapping Financial Stability 
160. Alexander Wei Yin, On Energy Efficient Computing Platforms 
161. Mikołaj Olszewski, Scaling Up Stepwise Feature Introduction to Construction of 

Large Software Systems 
162. Maryam Kamali, Reusable Formal Architectures for Networked Systems 
163. Zhiyuan Yao, Visual Customer Segmentation and Behavior Analysis – A SOM-

Based Approach 
164. Timo Jolivet, Combinatorics of Pisot Substitutions 
165. Rajeev Kumar Kanth, Analysis and Life Cycle Assessment of Printed Antennas for 

Sustainable Wireless Systems  
166. Khalid Latif, Design Space Exploration for MPSoC Architectures 



167. Bo Yang, Towards Optimal Application Mapping for Energy-Efficient Many-Core 
Platforms 

168. Ali Hanzala Khan, Consistency of UML Based Designs Using Ontology Reasoners 
 



Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www. tucs.fi

Turku
Centre for
Computer
Science

University of Turku
Faculty of Mathematics and Natural Sciences
      • Department of Information Technology
      • Department of Mathematics and Statistics
Turku School of Economics
      • Institute of Information Systems Science

Åbo Akademi University
Division for Natural Sciences and Technology
      • Department of Information Technologies

ISBN 978-952-12-2985-5
ISSN 1239-1883



A
li H

anzala K
han

C
onsistency of U

M
L B

ased D
esigns U

sing O
ntology Reasoners




