
Turku Centre for Computer Science

TUCS Dissertations
No 162, September 2013

Maryam Kamali

Reusable Formal Architectures
for Networked Systems

Reusable Formal Architectures for
Networked Systems

Maryam Kamali

To be presented, with the permission of the Department of Information
Technologies at Åbo Akademi University, for public criticism in Auditorium

Gamma on September 13, 2013, at 12 noon.

Turku Centre for Computer Science
Åbo Akademi University

Department of Information Technologies
Joukahainengatan 3-5, 20520 Åbo, Finland

2013

Supervisors

Docent Luigia Petre
Department of Information Technologies
Åbo Akademi University
Joukahaisenkatu 3-5, 20520, Turku
Finland

Professor Kaisa Sere
Department of Information Technologies
Åbo Akademi University
Joukahaisenkatu 3-5 A, 20520, Turku
Finland

Reviewers

Professor Tiziana Margaria-Ste�en
Institute for Informatics
University of Potsdam
August Bebel Straÿe 89, 14482, Potsdam
Germany

Doctor Helen Treharne
Department of Computing
University of Surrey
Guildford, Surrey, GU2 7XH
UK

Opponent

Professor Tiziana Margaria-Ste�en
Institute for Informatics
University of Potsdam
August Bebel Straÿe 89, 14482, Potsdam
Germany

ISBN 978-952-12-2932-9
ISSN 1239-1883

To my mom and dad

تقدیم عب عپدر عو عماد ععیزم�

ii

Abstract

Today's networked systems are becoming increasingly complex and diverse.
The current simulation and runtime veri�cation techniques do not provide
support for developing such systems e�ciently; moreover, the reliability of
the simulated/veri�ed systems is not thoroughly ensured. To address these
challenges, the use of formal techniques to reason about network system de-
velopment is growing, while at the same time, the mathematical background
necessary for using formal techniques is a barrier for network designers to
e�ciently employ them. Thus, these techniques are not vastly used for de-
veloping networked systems.

The objective of this thesis is to propose formal approaches for the deve-
lopment of reliable networked systems, by taking e�ciency into account.
With respect to reliability, we propose the architectural development of
correct-by-construction networked system models. With respect to e�ciency,
we propose reusable network architectures as well as network development.
At the core of our development methodology, we employ the abstraction
and re�nement techniques for the development and analysis of networked
systems. We evaluate our proposal by employing the proposed architectu-
res to a pervasive class of dynamic networks, i.e., wireless sensor network
architectures as well as to a pervasive class of static networks, i.e., network-
on-chip architectures. The ultimate goal of our research is to put forward
the idea of building libraries of pre-proved rules for the e�cient modelling,
development, and analysis of networked systems. We take into account both
qualitative and quantitative analysis of networks via varied formal tool sup-
port, using a theorem prover � the Rodin platform � and a statistical model
checker � the SMC-Uppaal.

iii

iv

Sammanfattning

Nätverkssystem blir numera allt mer invecklade och olika varandra. De ex-
isterande teknikerna för simulering och körtidsveri�ering ger inget stöd för
e�ektiv utveckling av nätverkssystem, och utöver detta kan simulerade/ ve-
ri�erade systems pålitlighet inte fullständigt garanteras. För att möta dessa
utmaningar har användningen av formella metoder för att resonera kring ut-
veckling av nätverkssystem ökat, men den matematiska bakgrund som krävs
för att använda formella metoder hindrar samtidigt nätverksutvecklare från
att e�ektivt dra nytta av dessa metoder. För utveckling av nätverkssystem
används dessa metoder därför inte i någon större utsträckning.

Målsättningen med denna avhandling är att föreslå formella tillväga-
gångssätt för utveckling av pålitliga nätverkssystem där e�ektiviteten tas
i beaktande. Gällande pålitligheten föreslår vi modeller av nätverkssystem
vars arkitektur utvecklas korrekt genom konstruktionen. När det gäller e�ek-
tivitet föreslår vi nätverksarkitekturer och nätverksutveckling som kan åter-
användas. Kärnan i vår utvecklingsmetodologi är att använda abstraktion-
och preciseringstekniker för utveckling och analys av nätverkssystem. Vi ut-
värderar vårt förslag genom att använda de föreslagna arkitekturerna för en
genomgripande klass av dynamiska nätverk, det vill säga trådlösa sensornät-
verk, och likaså en genomgripande klass av statiska nätverk, det vill säga
arkitekturer för nätverk-på-chip. Det slutgiltiga målet med vår forskning är
att föra fram idén om att bygga bibliotek innehållande på förhand bevisa-
de regler för e�ektiv modellering, utveckling och analys av nätverkssystem.
Vi tar i beaktande såväl kvalitativ som kvantitativ analys av nätverk via
olika formella verktyg såsom Rodin-plattformen, för bevis av teorem, och
SMC-Uppaal, för statistisk modellkontroll.

v

vi

Acknowledgements

First of all, I would like to express profound thanks to my supervisors Docent
Luigia Petre and Prof. Kaisa Sere for their excellent advice and support, for
their continuous encouragement, for the countless scienti�c discussions we
have had, and for always being there to help, no matter the time or date.
Furthermore, I wish to thank Prof. Tiziana Margaria-Ste�en and Dr. Helen
Treharne for their valuable reviews of this dissertation and for providing
constructive comments that improved its quality. Particular thanks are due
to Prof. Tiziana Margaria-Ste�en for also agreeing to act as an opponent at
the public defence of the thesis.

I am grateful to all the members of the Department of Information Tech-
nologies at Åbo Akademi University, especially my colleagues at the Dis-
tributed Systems Laboratory and Turku Centre for Computer Science for
providing such a friendly atmosphere to work. In particular, I wish to thank
Docent Linas Laibinis for his advice and encouragement as well as Dr. An-
ton Tarasyuk, Dr. Mats Neovius and Petter Sandvik for their help with
practical matters and the Swedish version of the abstract. I would like to
acknowledge Prof. Ansgar Fehnker's kind help and supervision during my
stay at University of the South Paci�c, Fiji. I extend my sincere thanks to
Dr. Peter Höfner, Prof. Rob J. van Glabeek and Prof. Frank Cessar for
their supervision and friendship during my stay at NICTA, Australia. I am
very grateful to all my co-authors for the knowledge they shared with me.

I gratefully thank the Turku Centre for Computer Science and the De-
partment of Information Technologies at Åbo Akademi University for the
generous funding of my doctoral studies and travels. I would like to also
acknowledge the Nokia foundation and the Ulla Tuomienen Foundation for
granting me research scholarships that supported my work.

Finally, I would like to express my thankfulness to my family and my
friends for their cheeriness and support throughout these years. I am es-
pecially grateful to my brothers, Ehsan and Morteza, and my dear sister,
Mojgan, who continuously motivated me to keep the pace in my research.
I would like to express my deepest gratitude to my dearest parents, Nahid
and Ali, for their love and support during di�erent phases of my life. This
dissertation is dedicated to you.

Maryam Kamali
Åbo, August 2013

vii

viii

List of original publications

I Maryam Kamali, Linas Laibinis, Luigia Petre, and Kaisa Sere. Formal
Development of Wireless Sensor-Actor Networks, In Science of Com-
puter Programming (SCP) Journal. Elsevier, 2012. DOI: 10.1016/j.scico
.2012.03.002.

II Maryam Kamali, Linas Laibinis, Luigia Petre, and Kaisa Sere. A Dis-
tributed Implementation of a Network Recovery Algorithm, In Interna-
tional Journal of Critical Computer-Based Systems (IJCCBS), Vol. 4,
No. 1, pp. 45-68. Inderscience Publishers, 2013.

III Ansgar Fehnker, Peter Höfner, Maryam Kamali, and Vinay Mehta.
Topology-based Mobility Model for Wireless Networks, In K. Joshi et
al. (Eds.) Proceedings of the 10th International Conference on Quan-
titative Evaluation of Systems conference - QEST 13, Lecture Notes in
Computer Science Vol. 8054, pp. 389-404, Springer-Verlag, 2013.

IV Peter Höfner, and Maryam Kamali. Quantitative Analysis of AODV
and its Variants on Dynamic Topologies using Statistical Model Check-
ing, In V. Braberman and L. Fribourg (Eds.) Proceedings of the 11th
International Conference on Formal Modeling and Analysis of Timed
Systems - FORMATS 13, Lecture Notes in Computer Science Vol. 8053,
pp. 121-136, Springer-Verlag, 2013.

V Maryam Kamali, Luigia Petre, Kaisa Sere, and Masoud Daneshtalab.
Re�nement-Based Modeling of 3D NoCs, In F. Arbab and M. Sirjani
(Eds.) Proceedings of the 4th IPM International Conference on Funda-
mentals of Software Engineering - FSEN 11, Lecture Notes in Computer
Science Vol. 7141, pp. 236-252, Springer-Verlag, 2012.

VI Maryam Kamali, Luigia Petre, Kaisa Sere, and Masoud Daneshtalab.
Formal Modeling of Multicast Communication in 3D NoCs. In P. Kitsos
and S. Niar (Eds.) Proceedings of the 14th Euromicro Conference on
Digital System Design - DSD 2011, pp. 634-642. IEEE/Euromicro,
August 2011.

ix

VII Maryam Kamali, Luigia Petre, Kaisa Sere, and Masoud Daneshtalab.
CorreComm: A Formal Hierarchical Framework for Communication De-
signs, In Proceedings of the 2nd IEEE International Conference on Net-
worked Embedded Systems for Enterprise Applications - NESEA2011,
pp. 1-7. IEEE Computer Society, December, 2011.

VIII Maryam Kamali, Luigia Petre, and Kaisa Sere. NetCorre: A Hierarchi-
cal Framework and Theory for Network Design (Submitted to Science of
Computer Programming Journal), April, 2013.

x

Contents

Part I: Research Summary 1

1 Introduction 3

2 Networking Architectures 5

2.1 Dynamic Networks . 6
2.2 Static Networks . 8

3 Formal Methods 11

3.1 Event-B . 13
3.2 Statistical Model Checking in Uppaal 16

4 Reusable Formal Network Architectures 19

4.1 Reusable and correct-by-construction WSANs 19
4.2 Towards a reusable implementation of WSANs 20
4.3 A reusable mobility model for analysing ad-hoc networks . . . 20
4.4 Quantitative analysis of routing in ad-hoc networks 21
4.5 Reusable and correct-by-construction NoC architectures . . . 21
4.6 Reusable and correct-by-construction multicast routing in NoC

architectures . 22
4.7 A correct-by-construction framework for developing static net-

work architectures . 22
4.8 A reusable and correct-by-construction network theory 23

5 Related Approaches 25

5.1 Modelling and Analysing Dynamic Networks 25
5.2 Modelling and Analysing Static Networks 26
5.3 Architectural Development of Networked Systems 27
5.4 Correct-by-Construction System Development 29

6 Discussion 31

7 Bibliography 35

xi

Complete List of Publications 43

Pat II: Original Publications 45

xii

Part I

Research Summary

1

1. Introduction

In recent years, novel networked systems have increasingly emerged at both
large and small scale, such as wireless sensor networks, mobile ad-hoc net-
works, networks-on-chip, etc. These networked systems are uniquely de-
signed and implemented, according to their speci�c principles. For instance,
the design of wireless sensor networks is derived mostly by considering the
power consumption, the data-centric nature of the sensor network, the node
coordination techniques and the node failures. The design focus in mobile
ad-hoc networks is on mobility, spatial correlation, in-network data mining
and link failures. Networks-on-chip are designed to address on-chip commu-
nication issues and to provide for more e�cient embedded systems.

The proliferation of these and other novel network paradigms leads to re-
thinking how to develop them in an e�cient as well as reliable way. E�cient
development allows one to manage the complexity of networked systems and
shorten their development time. Producing reliable systems means that we
can trust the developed system to behave according to its speci�cation.

The overall goal of this thesis consists in contributing to the development
of networking architectures for e�ciency and reliability. This is a very large
and diverse area of research whose impact can be enormous, due to the
ubiquity of networked systems in our society. With respect to developing
e�cient network architectures, we focus on the reusability of our proposed
models. With respect to developing reliable network architectures, we study
the development of correct models from their speci�cations.

Our research method consists in applying formal methods toward achiev-
ing our research goal. Formal methods aim at increasing the rigour of the
design and of the development of systems by employing mathematical-based
techniques used for speci�cation, development and veri�cation of system
models. Ultimately, formal methods aim at establishing software and sys-
tem development as a discipline comparable to other engineering disciplines
such as car manufacturing, avionics, construction and architecture, etc.

Networks can be classi�ed with respect to several criteria, such as the
medium used for transporting data, the scale, the topology, etc. With re-
spect to the medium used for communication, we distinguish between wired
networks, where waves are transmitted along a physical medium such as a

3

twisted pair cable or an optical �ber and wireless networks, where microwave,
radio or infrared waves are propagated through air. With respect to scale,
we distinguish between local area networks (LAN), that connect devices over
a relatively short distance and wide area networks (WAN) that span a large
physical distance. Network topology can be de�ned as the physical layout
of the interconnections and the devices in a network. Such a topology can
be dynamic when the layout evolves. A topology can also be static when
the layout is �xed and unchangeable; in this case, we can distinguish be-
tween bus, star, ring and mesh topologies. In our research we focus on the
topology taxonomy of networked systems, studying both static and dynamic
networks. One reason for this choice is that it underlies both their functional
and non-functional properties.

Thus, we propose reusable formal architectures for networked systems
that can be applied to both dynamic and static networks. We evaluate our
proposal by employing the proposed architectures to a pervasive class of
dynamic networks, i.e., wireless sensor network architectures as well as to a
pervasive class of static networks, i.e., network-on-chip architectures.

A complementary aspect of our work consists in developing systematic
approaches for both qualitative and quantitative analysis of these networks.
We employ two main modelling and analysis frameworks: a theorem prover
and a statistical model checker. The study focus in qualitative analysis is
on designing correctly functioning networks, while in quantitative analysis
the study focus is on evaluating non-functional network properties such as
performance.

Our research is based on a collection of eight papers. We split this dis-
sertation in two parts. In Part I we present the context and overall view of
the work, while in Part II we reprint the research papers (with permission).
In Part I we proceed as follows. In Section 2, we describe our object of
study, namely, our approach to networking architectures. In Section 3, we
motivate and overview the research methods we employ. In Section 4, we
put everything together and explain how we apply the methods described
in Section 3 to the architectures described in Section 2; paper by paper, we
characterise our contribution to the reusability and correctness of the devel-
oped networked architectures, emphasizing the qualitative or quantitative
analysis that we perform. In Section 5, we discuss related approaches to this
dissertation and in Section 6 we summarise our work as well as emphasize
future research directions.

4

2. Networking Architectures

In this section we describe the design space of networked systems that is
covered in our study. We point out the main aspects of networks that are
taken into account in our architectural development.

A network consists of a set of interconnected devices that communicate
with each other via messages. Three central features are at the core of every
networked system: the network topology, the resource management and the
routing algorithm. In this dissertation we refer to a networking architecture
as a set of these three features.

The network topology determines the physical layout of the devices and
of their interconnections in the network. A network topology can be de�ned
as a graph G = (V,E). The set of vertices V = {v1, v2, ..., vn} models
the network devices, called nodes. The set of edges E = {e1, e2,, em}
models the interconnections, called links between the nodes; an edge ei,
i ∈ {1, ...,m} is expressed as a pair of vertices (vj , vk), where vj , vk ∈ V . The
resource management refers to the usage of the edges and vertices of G for
the functioning of the network. A central concept for network functioning
is that of a message. A message is a communication unit in a network
and is typically characterized by a source node, one or more destination
nodes, as well as some data. A routing algorithm determines the paths
(also called routes) through the network, that messages take to reach their
destinations. Routing algorithms can be classi�ed into several categories, for
instance adaptive or deterministic and unicast or multicast routing. In an
adaptive routing algorithm, a path from a particular source to a destination
is determined when it is required, by considering the network state. In a
deterministic routing algorithm, the routes of the messages to destinations
are determined at the initialization of the network; messages are always
routed on a �xed path between a particular source and destination. Adaptive
routing algorithms are preferable in networks with frequent topology changes
and non-uniform network tra�c: a better route might always be found in a
new con�guration. Deterministic routing algorithms are e�cient in networks
with relatively stable topologies and regular tra�c patterns: they can safely
reuse already established routes. A unicast or multicast routing algorithm
refers to the message delivery scheme in networked systems. In the unicast

5

category, a message is delivered to a single speci�c destination node, while
in the multicast category, the same message is sent to a set of destination
nodes.

In this dissertation, our goal is to model, develop, and analyse reliable
networking architectures for reusability. Our starting point consists of a very
abstract representation of a network topology - the graph G above -, that is
associated with abstract resource management and routing. Already in this
abstract view, two networking architectures can be derived: (i) a network
model with a varying set of nodes and interconnections and (ii) a network
model with a �xed set of nodes and interconnections. We refer to the models
(i) for networking architectures as dynamic networks and to the models (ii)
for networking architectures as static networks.

Modelling, developing and analysing networking architectures is highly
in�uenced by the network type. For this reason, in the following we put for-
ward the most important issues concerning topology, resource management,
and routing algorithms with respect to dynamic and static networks.

2.1 Dynamic Networks

The main concern in a dynamic network is to achieve its desired function-
ality while the network topology frequently changes. The network topology
changes due to node or link failures. The node failure can happen at any
time due to unpredictable changes in the network, such as malfunctioning,
shortage of power, etc. The link failures usually happen when nodes are
mobile and move out of the range of their neighbours.

Network topology According to the two types of failures, we study two
essential features in our dynamic network topologies: unpredictable changes
and mobility. The dynamic topology keeps changing with time and thus, we
can consider the network goes through a series of transition points ti, for
i > 0. A transition point ti corresponds to a particular moment when the
network topology changes from Gi = (Vi, Ei) to Gi+1 = (Vi+1, Ei+1).

We specify the behaviour of the network topology in the presence of
unpredictable changes in the network with the following three sets of changes
for a transition point ti:

add_edges(i) =

{
Vi+1 = Vi

Ei+1 = Ei ∪ {α}, α /∈ Ei

6

add_vertices(i) =

{
Vi+1 = Vi ∪ {m}, m /∈ Vi

Ei+1 = Ei

delete_vertices(i) =

{
Vi+1 = Vi \ {m}, m ∈ Vi

Ei+1 = Ei \ {γ}, γ = {(a, b) | a = m ∨ b = m}

These changes model the following situations. When a new link between two
neighbour nodes modelled by vertices m and k is discovered in the network,
the corresponding edge α = (m, k) is added to the set of edges and the
set of vertices does not change (add_edges(i)). Nodes can be added at any
time to a dynamic network, leading to a change in the set of vertices of
the network graph, as described by add_vertices(i). When a node (e.g.,
modelled by vertex m) fails, its corresponding vertex is deleted from the set
of vertices. As a result, all its edges γ are also deleted from the set of edges
(delete_vertices(i)).

We specify the behaviour of the network topology in the presence of
mobility with the following two sets of changes for a transition point ti:

add_edges(i) =

{
Vi+1 = Vi

Ei+1 = Ei ∪ {α}, α /∈ Ei

delete_edges(i) =

{
Vi+1 = Vi

Ei+1 = Ei \ {α}, α ∈ Ei

When a mobile node modelled by say, vertex m, enters the transmission
range of another node, modelled by say, vertex k, the edge α = (m, k)
corresponding to a link between vertices m and k is added to the set of edges
of the network graph; the set of vertices does not change (add_edges(i)).
When a mobile node modelled by say, vertex m, leaves the range of one of
its neighbours modelled by say, vertex k, the edge α = (m, k) is deleted from
the set of edges and the set of vertices does not change (delete_edges(i)).

Resource management In dynamic networks, nodes are untethered au-
tonomous devices with power limitations due to their device types. Various
device types result in correspondingly various resources with their speci�c
computation abilities and communication ranges. For instance, some more
powerful nodes may route messages from more limited nodes and some nodes
may act as gateways to long-range data communication networks. The de-
gree of heterogeneity in dynamic networked systems is an important factor
a�ecting the resource management.

7

To address resource management features in dynamic networks, we have
studied two di�erent types of nodes together with their relationships. Con-
sidering heterogeneity in a networked system design provides the means to
model and analyse connectivity at di�erent levels. We have speci�ed the
behaviour of the network at three di�erent levels, based on three connectiv-
ity graphs. Two of these graphs model the homogeneous interconnections,
between nodes of the same type. The third graph models the heterogeneous
interconnections, between nodes of di�erent types.

Routing algorithm In order to discover routes in dynamic networks, the
network should be connected, i.e., there should always be a path, possi-
bly over multiple hops, between any two nodes. However, due to topology
changes, the network may transform into a set of sub-networks disconnected
from each other; this set is called a network partition. In particular, this
means that there can be nodes in the network that have no connection and
messages cannot be transported between them. A recovery mechanism is
necessary in this case, to re-establish connections between the sub-networks.
The recovery should guarantee the establishment of connection between the
sub-networks. We address the connectivity issue in our dynamic network
architecture by discovering a sub-graph of the network topology graph de-
noting alternative links between separated sub-networks.

Apart from connectivity, route discovery and maintenance play a cru-
cial role in the reliability and the performance of dynamic networks. The
Ad Hoc On-Demand Distance Vector Routing protocol (AODV) [56] is an
e�cient routing algorithm with di�erent variants, aimed at improving the
performance of dynamic networks. To reason about AODV and its vari-
ants in dynamic networks, we use a dynamic topology model that considers
mobility.

2.2 Static Networks

Static networks have a �xed set of nodes and interconnections. The main
concern in a static network is to function predictably, i.e., according to a
given speci�cation. Hence, one important area of study is how to design and
reason about various given speci�cations for network functioning.

Network topology The main characteristic of a static network consists
in its predictability. With respect to the network topology, this means that
we can specify and reuse various topologies. In particular, we can develop
a hierarchy of static network topologies, where the most abstract one de-
�nes concepts common to all network topologies. Such abstract topology
is essentially made of the graph G = (V,E) with the vertices V and the

8

corresponding edges E between vertices not evolving in time. We then spe-
cialize this graph into a very common topology for static networks, namely
the mesh topology. The mesh topology is a regular graph structure that
makes analysis of static networks possible. In a mesh topology, nodes can be
laid out to form a 2-dimensional (2D) rectangular grid in which each node
is connected to its four neighbours except for the nodes of the boundary.
We specify the topology graph of a 2D mesh network for a �xed number of
nodes, say | V |= N . In such a mesh topology, we have a

√
N ×√N mesh

structure, and the number of edges is less or equal than 2N : | E |≤ 2N . The
connectivity degree du of a node u stores the number of pairs (v, u) ∈ E,
for any v ∈ V ; du is also an important factor in the topology of a static
network. For a 2D mesh network, we have that du ∈ [2, 4] for any u ∈ V .
We can of course specialize the abstract topology to a n-dimensional (nD)
mesh topology. For n = 3 (a 3-dimensional (3D) mesh topology) a �xed set
of nodes N (| V |= N), we have a

√
N × √N × √N mesh structure with

| E |≤ 3N and the connectivity degree du is so that du ∈ [3, 6] for any u ∈ V .

Resource management To analyse a systematic and e�ective architec-
ture for static networks, apart from the message resource, other resources
such as channels and bu�ers should be managed. A message, which is gen-
erated by a node, is further divided into packets and a packet can be further
split into a number of �its. A channel is a link that connects nodes together.
In fact, channels are instantiations of edges in the network topology, allowing
to model more network characteristics. A bu�er stores messages temporarily
in the start and end nodes of the channels. Moreover, in order to manage
allocating bu�ers and channels to messages, we need to de�ne the switching
mechanism that determines how the message moves along the network path.
Regarding the switching mechanism, bu�ers and channels can be allocated
to either messages, packets or �its. In message-based switching, channels
and bu�ers between a source and a destination across multiple hops are al-
located to the whole message. In packet-based switching, the allocation of
channels and bu�ers is handled independently for each packet. In �it-based
switching, also called wormhole, �its of a packet follow each other and the
same set of channels and bu�ers are allocated to each individual �it of a
packet, at di�erent moments.

We model and analyse the channel and bu�er structural elements of
a static network as well as messages, packets and �its in our architecture
for static networks. We also address switching techniques, to manage the
allocation of channels and bu�ers at the message, packet and �it level.

Routing algorithm In static networks the issues in designing routing al-
gorithms are to provide high throughput and low latency, and also to be

9

deadlock free. There are many routing algorithms that are proposed for
various topologies of static networks ranging from adaptive to deterministic
routing schemes, to provide e�ciency in the presence of di�erent conges-
tion conditions. In adaptive routing techniques in static networks, the route
decision is taken in each node, with respect to network tra�c. In deter-
ministic routing techniques, the minimal route is typically chosen. As the
network topology does not change, nodes always route messages on the same
path. Therefore, the behaviour of nodes is di�erent in a static network with
adaptive or deterministic routing algorithms. Moreover, in networks with
unicast routing technique, nodes only need to route a message to one out-
going channel. In networks with a multicast routing algorithm, nodes need
to take decisions about routing a message on one or more outgoing chan-
nels. In order to address di�erent characteristics of routing algorithms at
the architectural level, we model a hierarchy of fundamental architectural
components and analyse them at di�erent levels of abstraction.

10

3. Formal Methods

In this section we describe the formal tools that we employ throughout the
thesis. Formal methods can be seen nowadays as a contribution of computer
scientists to raise software and software-intensive system development to
an engineering level comparable to well established disciplines such as car
manufacturing, avionics, construction and architecture, etc.

One essential artefact common to these engineering disciplines is that
of blueprint or model. A model allows us to address the complexity of the
system under development by abstraction, i.e., illustrating only the features
of interest with respect to a particular model's purpose.

In model-driven development, �rst a high-level model of a system is devel-
oped (often via numerous steps) and then the model is developed into a spec-
i�cation closer to the implementation of the system. This development can
consist of adding details and functionalities and removing non-determinism
and is typically referred to as re�nement [20]. The concepts of abstraction
and re�nement are at the core of such a stepwise development. Abstraction
is an essential feature for reusability. The abstract speci�cation typically
describes what the system does, whereas the more concrete speci�cations
derived by re�nement describe how it is done. In fact, the architecture of
a system is introduced in a high-level speci�cation and the design decisions
are gradually introduced in low-level speci�cations.

Formal methods are broadly divided into state-based and event-based,
corresponding to the �rst class entities in the models. State-based methods
deal with specifying systems by variables and operations that modify these
variables. The values of the variables describe the state of the system. Action
Systems [16], the Z notation [63], the B-method [9], VDM [53] and Event-
B [10] are all examples of state-based formal methods. Event-based formal
methods focus on representing systems by a composition of processes that
communicate via channels. Well-known examples of event-based methods
are CSP [39], CCS [49] and π-calculus [50]. A combination of state-based
and event-based methods are also proposed as CSP||B [59] and CSP||Event-B
[60].

Nowadays, tool support is an essential instrument for the usability of a
formal method. One reason for this is that tools provide a platform to cope

11

with system modelling and analysis at the same time; this promotes the
e�cient use of formal methods. Another reason is that tools have features for
syntax checking and also, at some levels, they can automatically prove trivial
properties of a desired system. According to their type, tools associated to
formal methods can be theorem provers, model checkers and simulators. In
this dissertation, we employ the state-based formal method Event-B that
has an associated theorem prover tool, namely the Rodin platform [7, 12].
We also �nd instrumental the event-based formalism of timed-automata [13],
supported by tools such as the Uppaal [21] model checker and its statistical
extension called SMC-Uppaal [28].

Common to all formal methods is the concept of a precise (or formal)
model. This essentially means that we can associate a meaning to the model,
called semantics. Semantics can be de�ned as a mapping from a novel con-
cept to a concept that we already understand well. Capturing a system at
several levels of abstraction via formal models allows for two types of activ-
ities that are speci�c to formal methods: formal development and analysis
of various properties.

Event-B combines the idea of model-driven development and formal meth-
ods to construct a correct model of a system. In this framework, a formal
abstract model of a system with its desired properties is speci�ed and proved
correct with respect to its speci�cation. The high-level speci�cation is then
developed at several di�erent re�nement levels. The notion of re�nement is
mathematically de�ned in Event-B in a way that allows us to analyse the
relationship between formal speci�cations at di�erent levels of abstraction.
This corresponds to a qualitative analysis of the system.

In Event-B, in each re�nement step, certain design decisions are intro-
duced into the system speci�cation. There might be various design alterna-
tives that can provide the desired functionality with distinct consequences
for the non-functional properties of the system. In order to choose the opti-
mal design alternative, a quantitative analysis of non-functional properties,
(e.g., performance) should also be undertaken.

To assess system performance in a networked system, the probability
that a system correctly functions over a given period of time should be eval-
uated. To achieve quantitative assessment in networked systems, we use an
extension of timed-automata in Uppaal for system speci�cation, called price
timed-automata; this integrates the notion of time and probability into clas-
sical timed-automata and uses a statistical model to verify the quantitative
properties of networked systems.

In the following we brie�y overview the formal frameworks that are em-
ployed in this dissertation for both qualitative and quantitative analysis of
networked systems.

12

3.1 Event-B

Event-B [10] is a formal approach for the speci�cation and development of
highly dependable distributed systems. Event-B comes along with the asso-
ciated tool Rodin [12] which provides a platform for specifying and verifying
distributed systems based on a theorem prover.

Event-B allows us to formally model a system and to prove that the
model ful�ls certain desired properties. A system is simulated by construct-
ing models which will be analysed by doing proofs. To perform simulation
and proofs, a discrete transition system formalism is used. The system sim-
ulation is represented by means of a succession of states with transitions,
called events. The proof is performed by demonstrating that the transitions
preserve a number of desired global properties which must be guaranteed by
the states of the system components. These properties are called invariants.
A system state is de�ned by a set of variables and constants at a certain level
of abstraction and changes by taking a transition that can occur under cer-
tain circumstances. Transitions are made of a guard and an action. A guard
is the necessary condition under which an event can occur and is expressed
as a predicate on the state constants and variables. An action introduces
the way in which state variables are changed as a consequence of the event
occurrence. In order to be able to reason about a system model, we construct
closed models: the interaction between an environment and a corresponding
controller is clearly regulated and preserved. In fact, we need to model the
controller, an abstract environment within which the system behaves, as well
as their interaction. Therefore, the large number of states and transitions of
such systems are categorized into environment and controller. To master the
complexity of such real systems with large number of states and transitions,
Event-B employs the concept of re�nement, developing a system model by
a number of correctness preserving steps.

Re�nement The re�nement concept was �rst introduced by Dijkstra [33]
and Wirth [71] for developing correct programs. The logical foundation of
re�nement based on the weakest precondition approach [34] was later devel-
oped into the re�nement calculus framework by Back and Von Wright [32].
The re�nement concept provides for a top-down approach to constructing
systems following rules for gradually introducing details to an initial ab-
stract speci�cation. In stepwise re�nement development, an abstract, non-
deterministic speci�cation is transformed into a more concrete and determin-
istic one in such a way that the correctness is preserved during the transfor-
mation. In fact, the re�nement relation guarantees that each intermediate
re�ned speci�cation from R1 to RN as well as the Executable program
are correct re�nements of the initial abstract speci�cation (R0), as illus-
trated below. Therefore, the system developed by re�nement is correct-by-

13

construction:

R0 v R1 v ... RN v Executable program

There are two types of re�nement: horizontal re�nement and vertical
re�nement. In horizontal re�nement (superposition re�nement) [18], a large
system is modelled in successive steps so that the model becomes richer in
each step by �rst creating and then enriching states and transitions of the
model components. In vertical re�nement (data re�nement) [15, 19], the task
is to transform some states and transitions of the model to more concrete
states and transitions that are easier to implement.

In our networked system development in Event-B, re�nement is the cen-
tral method by which initially abstract models of networked system features
are developed through detailed design toward code. At the abstract level,
the architectural components of networked systems are introduced and the
global properties of such systems are analysed. This abstraction is bene�cial
for constructing correct reusable models. On one hand, abstraction allows us
to generalize the speci�cation of a set of systems with common behaviours.
On the other hand, it allows us to prove the global properties of such gen-
eral speci�cations. Then the successive steps of re�nement allow to unfold
components of the abstract model one-by-one while the global correctness of
our networked system is preserved. In addition, the re�ned model is reusable
in the development of di�erent types of networked systems. This approach
provides means to construct reusable generic models while preserving the
global correctness of the system.

Apart from re�nement, Event-B bene�ts from pattern-driven formal de-
velopment, decomposition (modularization) and theory extension features to
provide for correctness-by-construction and reusability in system develop-
ment.

Pattern-driven formal development This approach aims to identify
general model transformation solutions called re�nement patterns and then
repeatedly apply them to facilitate the re�nement process. Re�nement pat-
terns are used in pattern-driven formal development to provide a basis for
automation and reusability. Pattern-driven formal development can be rep-
resented as shown in Fig. 3.1. The initial model M1, the starting point
of the development, is created by instantiating a special template, called
speci�cation pattern; this is a parametrised speci�cation. During pattern in-
stantiation, the model parameters are substituted with concrete data struc-
tures, while the model variables and events can be renamed. The model
constraints given for these parameters become the theorems to be proved in
order to show that this pattern is applicable for the given concrete values.
If the instantiation succeeds, the model invariant properties (together with
their proofs) are obtained for free, i.e., without any proofs.

14

M1 M2 M3 Mn

Specif.
pattern

Refinement
pattern (1)

...

Refinement
pattern (2)

Refinement
pattern (3)

Refinement
pattern (k)

...

Instantiation Refinement

Figure 3.1: Pattern-driven model development

Decomposition The complexity of system models can be addressed by
stepwise re�nement development. However, after several re�nement steps,
the system state may drastically increase. The growing state size and num-
ber of transitions in a single model is a barrier for scalability. Therefore,
it is necessary to break a single model into several component models in a
systematic fashion, i.e., by decomposition. By decomposing a system into
a set of component models, the complexity management of the whole sys-
tem reduces to studying and re�ning each component model independently
of the others. Apart from mastering the model complexity, decomposition
facilitates scalability and reusability of component models [7].

Modularization in Event-B is a form of decomposition where modules,
components containing groups of callable operations, can be developed sep-
arately and then composed with the main system during its formal devel-
opment [43]. The modularization in Event-B is based on the idea of mono-
tonicity [17]. This means that, if a sub-component Mi of an abstract system
modelM is correctly re�ned byM ′i , then the modelM where the component
Mi is substituted by M ′i must be a correct re�nement of the abstract model
M . A module is built of a model interface and a model body. A module
interface de�nes module operations and the way in which the module ex-
ternal variables may change between operation calls. A module interface is
then implemented by a module body which provides a concrete behaviour
for interface operations [42].

Theory Extension Event-B also provides a feature for extending its stan-
dard mathematical language by supporting user-de�ned operators and pred-
icates [29, 11]. Moreover, it also allows us to de�ne new proof rules along

15

with these notations. Both additional notations and proof rules are de�ned
as a theory component that can be then used in future Event-B models. A
theory can consist in new algebraic types, new operators and new proof rules
and their validation is ensured by proving the generated proof obligations.
The theory feature enables the de�nition of reusable types, operators as well
as proof rules as a library of theories that can be employed in Event-B models
and development processes.

3.2 Statistical Model Checking in Uppaal

Numerical model checking accurately computes the probability that a system
satis�es a temporal logic property. However, the applicability of numerical
model checking is generally limited to systems with a small number of states.
The state-number restriction in model checking does not allow to verify large
models such as protocols in large networks or under di�erent conditions.
Therefore, for the veri�cation of quantitative properties of network protocols,
we need to employ other methods, such as statistical model checking (SMC).
SMC [73, 61] combines ideas of model checking and simulation with the aim
of supporting quantitative analysis as well as addressing the size barrier that
prevents useful analysis of large models.

Statistical model checking addresses the veri�cation problem of large sys-
tems by providing a statistical evidence for the satisfaction or violation of
the speci�cation [73, 61]. It computes the probability that a system model
satis�es a system property. For instance, in protocol veri�cation, it can com-
pute the probability of route discovery in the presence of mobile nodes in the
network. This problem cannot be solved by numerical model checking tech-
niques due to the state explosion problem. Thus, the idea of this approach
is to conduct some simulation of the system and to verify if this simulation
satis�es a given property.

SMC is based on a formal semantic of systems and uses Monte Carlo sam-
pling and hypothesis testing to reason on behavioural properties of systems.
In fact, a system is simulated for many runs. The number of simulation runs
needed in SMC-Uppaal is computed by using Cherno�-Hoe�ding bounds,
that are independent of the size of the system. Extracted samples are mon-
itored by testing techniques and a statistical evidence for the correctness of
the system with respect to the system properties is provided. The statistical
evidence is an accurate estimation, because it is computed on sample runs of
the system according the distribution de�ned by the system. Therefore the
probability measures follow the same distribution as de�ned by the system.

SMC-Uppaal supports the analysis of price timed-automata (PTAs). PT-
As are timed-automata in which clocks may have di�erent rates in di�er-
ent locations. PTAs are input-enabled, deterministic automata that com-

16

municate via broadcast channels and shared variables to build networks of
price timed-automata (NPTA). Properties of NPTAs are expressed in cost-
constraint temporal logic [31, 64] over runs of the form ψ = ♦x≤c ϕ, where ϕ
is a state-predicate, x is an observer clock which never resets and c ∈ R≥0 is
a bound. Each run is encoded as a Bernouli random variable that is true if
the run satis�es ϕ with x ≤ c and false otherwise. For an NPTA M , PM (ψ)
is the probability that a random run of M satis�es ϕ.

To answer the problem of checking PM (ψ) ≥ p (p ∈ [0, 1]), statistical
model checking algorithms are used. We can have two types of analysis:
qualitative and quantitative. In qualitative analysis, the goal is to answer if
the probability PM (♦x≤c ϕ) related to a given NPTA M is greater or equal
than a certain threshold θ:

PM (♦x≤c ϕ) ≥ θ

In quantitative analysis, the goal is to �nd the probability that a random run
of a given NPTAM satis�es ♦x≤c ϕ. The qualitative analysis issue in SMC-
Uppaal is addressed by the hypothesis testing approach. In this approach,
the hypothesis H : p = PM (♦x≤c ϕ) ≥ θ is tested against K : p < θ. The
quantitative analysis issue in SMC-Uppaal is addressed by the Monte Carlo
approach. Namely, the number of runs needed to produce an approximation
interval [p− ε, p+ ε], where p denotes the probability of ψ with a con�dence
1 − α is computed. Here, α stands for the probability of false negatives
and ε stands for the probabilistic uncertainty. These parameters are used to
specify the statistical con�dence on the result.

17

18

4. Reusable Formal Network Archi-

tectures

In this section we put forward the contribution of the original publications
that make up this dissertation. In particular, we discuss the approach taken
in each paper to address the reuse and correctness of networking architec-
tures. Moreover, we emphasize the quantitative and quantitative analysis
aspects put forward by each paper.

4.1 Reusable and correct-by-construction WSANs

In this paper, we model and analyse the functioning of a dynamic network
in Event-B. Based on this, we then derive design patterns for developing
reliable dynamic networks. With respect to the three components of a net-
working architecture (i.e., topology, resource management and routing), in
this paper we address the following. The network topology changes due to
unpredictable failures of nodes. The resource management feature is studied
by considering two types of nodes with their corresponding homogeneous
and heterogeneous connections. Routing is addressed by modelling the con-
nectivity aspects of a dynamic network upon the failure of a node. A formal
architecture for developing dynamic networks is thus proposed, including
three main features: unpredictable topology, heterogeneous nodes and con-
nectivity. These features are developed in several re�nement steps. The
stepwise methodology reduces the proofs of the system correctness at each
level, because in each re�nement step one feature is detailed. Dealing with
one feature at each step also provides for a compositional approach. The
developed dynamic network is analysed against its desirable mathematical
properties. The main property we verify is the satis�ability of reestablish-
ing connectivity in a dynamic network; this is a rather thorough example of
qualitative analysis. We put forward the reusability of our methodology via
formal design patterns. We present an abstract model of our architecture
together with possible re�nement patterns that can be reused to develop and
analyse a particular dynamic network. Our example of a dynamic network
is a wireless sensor-actor network (WSAN).

19

4.2 Towards a reusable implementation of WSANs

In this paper we start from the same model of a networking architecture as
in Paper I. Namely, we study a dynamic network whose topology changes
due to unpredictable failures and whose resource management is addressed
again via two types of nodes. However, in Paper II we take a di�erent view
on the development and reusability feature of our network. In particular, we
discuss the derivation of a dynamic network implementation from part of the
abstract speci�cation presented in Paper I. In the proposed architecture of
Paper I, the network features are compacted in an individual system model:
this makes it challenging to derive an implementation of a dynamic network
from the speci�cation. To tackle this and provide a more e�cient develop-
ment approach, we employ the decomposition technique in Event-B. More
precisely, we develop a model for a network infrastructure and a model for
the distributed nodes, using the modularization technique in Event-B. We
de�ne node modules which have their own state and invariant properties.
The correctness of the decomposed model follows from the proof obligations
that express the consistency between the abstract and the re�ned model;
again, we put forward a qualitative analysis for our proposed architecture.
By decomposing the model of a dynamic network, we provide means to reuse
the node modules and the network infrastructure to develop speci�c dynamic
network architectures, which can then be e�ciently implemented.

4.3 A reusable mobility model for analysing ad-hoc

networks

In this paper, we focus on modelling a dynamic network, whose topology
evolves due to node mobility. The resource management and the routing
features are considered as general as possible, and hence, have no explicit
de�nition in this paper. Our aim here is to e�ciently model node mobility, in
order to evaluate the performance of network protocols by simulations. We
propose an abstract, reusable, automata-based model that de�nes mobility
as probabilistic changes in the topology. The model is instantiated to two
speci�c mobility models, namely random walk and random waypoint, to
express reusability of the automata-based model. The proposed mobility
model provides a sound foundation for reasoning about the behaviour of
dynamic networks such as mobile ad-hoc networks. In other words, the model
is intended to be used in conjunction with protocols for e�cient performance
analysis of dynamic network protocols and thus provides the basis for a
quantitative analysis of the proposed architecture.

20

4.4 Quantitative analysis of routing in ad-hoc net-

works

In this paper, we focus on the quantitative analysis of the dynamic network
model proposed in Paper III. We analyse several variants of the AODV rout-
ing protocol and compare them, to determine optimal versions. We model a
dynamic network where the topology changes are due to node mobility. The
resource management feature is addressed by considering two types of nodes
in the network: static and mobile. The routing feature is studied by mod-
elling the AODV routing protocol and its variants. We develop a mobility
model as a price timed-automata. AODV and its variants are speci�ed using
also priced timed-automata. The probability of route discovery is analysed in
all AODV variants to determine which variant performs better with respect
to route discovery. The mobility model is an independent time automata
that can be reused for analysis of network protocols in networks where the
topology changes due to mobility. The mobility model is a parametrized tem-
plate which can be instantiated to provide di�erent patterns for the changing
topology.

4.5 Reusable and correct-by-construction NoC ar-

chitectures

In this paper, we propose a formal architecture for the e�cient development
of static networks. In particular, we develop a network-on-chip architecture
using Event-B. We address the modelling of a static topology and focus on
the 3D mesh topology. The resource management feature is modelled by
considering network resources such as packets, channels and bu�ers. By
considering the packet as a resource, we focus our development on packet-
based switching mechanisms. The routing feature is addressed by studying
unicast communication. These network features are developed in three re-
�nement steps. The initial abstract model includes a static topology that is
independent of the real physical layout, a set of messages and the unicast
communication functionality. In the �rst re�nement steps the mesh topol-
ogy and the concept of channels are added and in the second re�nement step
the concept of bu�er is added. Already in the �rst abstract model, the su�-
cient condition for constructing a correct network architecture is de�ned and
proved. The su�cient condition is that all injected messages are received by
their destinations. In the next re�nement steps the condition is developed to
take into account the speci�c features of these steps. In each re�nement step,
the proving process guides us to develop a correct architecture. The re�ne-
ment decisions are taken so that each of the three models can be reused to
develop and analyse speci�c network designs at di�erent abstraction levels.

21

We demonstrate the reuse of our development, by modelling and analysing
a particular routing algorithm, as a re�nement of our third model. Thus
in this paper we put forward a qualitative analysis of the proposed network
architecture.

4.6 Reusable and correct-by-construction multicast

routing in NoC architectures

In this paper, we propose a reusable architecture for static networks with
a multicast communication scheme. We start from the same topology and
resource management models of a networking architecture as in Paper V;
however, multicast communication is taken into account for modelling the
routing feature. The network development is performed in three re�nement
steps. In the initial model, structural components and su�cient conditions
for modelling and analysing multicast communication are proposed. In the
next two re�nement steps, the structures are re�ned to add the concept of
channel and bu�er. The su�cient condition is that all injected messages are
received by all their destinations; this condition is preserved by our devel-
opment. The generic models specify the primitive structures and su�cient
conditions for constructing a correct network, regardless of any speci�c net-
work architecture. The generic aspect of the proposed development is key
for reusability and provides another example of qualitative analysis of static
network architectures.

4.7 A correct-by-construction framework for devel-

oping static network architectures

In this paper, we propose a hierarchical framework for the development of
correct static network systems. We combine models of static networks pro-
posed in Paper V and Paper VI for developing network-on-chip systems, to
gain a more general model that can be reused for a wider class of static net-
works. The framework addresses the modelling of a static network regardless
of its physical layout. To study the resource management feature, we con-
sider packets, �its, channels and bu�ers. By considering both packets and
�its, our framework becomes suitable for modelling both packet-based and
�it-based switching mechanisms. The routing feature is addressed by consid-
ering both unicast and multicast communication. The framework provides
a clear separation between architectural and algorithmic aspects of network
development and, as a consequence, provides means for easier discovering
error resources in the development cycle. The framework is constructed in
Event-B and is an abstract and parametric description of static networks;

22

its correctness is satis�ed by proving the satisfaction of su�cient conditions.
The strength of our framework consists in reusability. The pre-proved frame-
work provides a reusable network infrastructure that allows designers to de-
velop speci�c network architectures correctly by proving all proof obligations
in their development. It also provides the means to construct a library of
veri�ed components to be employed for the development and qualitative
analysis of a speci�c network design.

4.8 A reusable and correct-by-construction network

theory

In this paper we strengthen the framework proposed in Paper VII by amend-
ing a set of basic formal theories for developing network architectures at an
abstract level. The purpose of this extension is to use lessons learned from
previous architectural developments to address our ultimate aim, i.e., pro-
viding a network theory that can be reused for the development of correct
networked systems. We address the modelling of a generic topology that
can represent both static and dynamic topologies. The resource manage-
ment feature is modelled by considering a message, as a general concept
that can be instantiated to packets and �its; we also consider channels and
bu�ers. The routing feature is addressed by studying general communication
schemes that can be seen as unicast and multicast or adaptive and deter-
ministic. For these features we de�ne and prove correct rules as theories in
Event-B. As theories are general, they are reusable for the development of
correct networked systems. In fact, we develop a library of pre-proved rules,
representing the functionality of network features in a hierarchical manner.
The pre-proved rules facilitate the design and veri�cation of networked sys-
tems throughout the network development cycle. The developed rules can
be reused as original constructors in Event-B that alleviate the di�culty of
using formal methods for network development. Another advantage of using
such rules is that the designer can freely develop networked systems for qual-
itative analysis of other features of networked systems without considering
re�nement decisions that have been taken in our previous works.

23

24

5. Related Approaches

In this chapter, we review existing literature that we �nd relevant to this dis-
sertation. First, we discuss formal approaches for modelling and analysing
dynamic networks. Second, we outline approaches for correctly develop-
ing static networks. Third, general approaches for speci�cation and veri-
�cation of network protocols without considering certain characteristics of
dynamic/static networks are discussed. Finally, we discuss correct-by con-
struction approaches for system development.

5.1 Modelling and Analysing Dynamic Networks

Formal modelling and analysis of dynamic networks has been widely ad-
dressed in the literature. Bernardeschi et al. [22] propose an approach based
on the PVS theorem prover [6] to analyse protocols for sensor networks in
dynamic scenarios with mobile nodes. They develop a formal speci�cation
for the reverse path forwarding (RPF) algorithm, which is a broadcast rout-
ing method. RPF exploits the information contained in the routing table to
deliver packets generated by a base station to all other nodes in a multi-hop
network. They use PVS to verify correctness properties of RPF. The simi-
larity of their approach to ours consists in using abstraction and re�nement
techniques in network development.

Bhargavan et al. [23] use the theorem prover HOL [4] and the model
checker SPIN [8] together to prove properties of routing protocols in ad-hoc
networks. They verify the AODV routing protocol using their method and
identify errors in the AODV speci�cation that can lead to a deadlock situa-
tion. Fehnker et al. [36] propose a process algebra for wireless networks to
verify properties of network protocols. They model AODV in this framework
and derive a Uppaal model of AODV from their process algebra model to
check desired properties of AODV against all topologies of up to 5 nodes
[35]. This exhaustive search allows to quantify in how many topologies a
particular error can occur. They also analyse the AODV model in a dy-
namic network when a link breaks. Continuing this line of research, Hoefner
and McIver [40] use the SMC extension of Uppaal to verify properties of the
AODV in larger networks, with up to 100 nodes. We extend this series of

25

studies on the AODV routing algorithm by adding a mobility model. We
capture a dynamic network topology and analyse properties of AODV.

Xiong et al. [72] propose a timed model to verify routing protocols for
wireless ad-hoc networks, based on the idea of topology approximation. This
approach describes aggregate behaviour of nodes when their long term av-
erage behaviours are of interest. They use Colored Petri Nets (CPN) [44]
to demonstrate the applicability of their approach by modelling and verify-
ing AODV. Yuan et al. [74] model the dynamic topology changes of ad-hoc
networks with Colored Petri Nets and verify a routing protocol for mobile
networks called Destination-Sequenced Distance Vector (DSDV) [57] to ex-
emplify their technique.

The purpose of the outlined studies consists in mostly specifying and ver-
ifying existing network protocols. Our approach focuses on the development
of correct network protocols by investigating the genericity and reusability
of proof-based models. We propose su�cient architectural conditions and
structural design patterns and methods to design correct network protocols
that satisfy the essential conditions of network architectures. Our approach
would ensure that properties established on the abstract models are satis�ed
by the actual implementation.

5.2 Modelling and Analysing Static Networks

The literature on modelling and analysing static networks has grown in the
recent years. Schmaltz and Borrione [58] propose a general model of on-chip
communication architectures, called GeNoC, in order to facilitate the de-
sign of correct network-on-chip systems. Their model is developed using the
ACL2 theorem prover [1]. Three independent groups of functions, namely
routing and topology, scheduling, and interfaces, form the foundation of the
model. Moreover, the su�cient constraints that these functions should sat-
isfy are introduced in order to prove the correctness of the model. This
separation of functions allows for a stepwise design and veri�cation, where
at each step only one group of functions is considered. We also adopt this
feature in our framework. The GeNoC model is used to prove properties
of communication functions for the routing algorithm of the HERMES NoC
[26, 68] and of the spidergon NoC [27]. The purpose of the above stud-
ies is to verify the overall correctness of these NoC systems. Verbeek and
Schmaltz [65, 66, 67] extend GeNoC to provide su�cient constraints that
ensure deadlock-free routing and liveness of the design.

The genericity and reusability proposed by GeNoC are similar to our
approach. However, we provide these features using the powerful technique
of re�nement, to manage the complexity of the development as well as of the
proofs. Moreover, we have the possibility to derive an implementation of a

26

certain NoC architecture from a developed model, using re�nement.
Andriamiarina et al. [14] have only recently proposed a formalism for

NoC architectures based on incremental design and proof theory. They de-
velop their speci�cation using the Event-B formalism to verify an adaptive
and fault-tolerant routing technique. They focus only on a particular type
of routing technique in their development, which reduces the generalisation
of the development.

Chen et al. [30] propose a formal modelling approach to verify routing
protocols for NoC architectures. They provide a guideline for constructing
formal models of NoC designs and propose a methodology for verifying NoC
properties such as deadlock freedom and tra�c congestion. For the formal
veri�cation task, a model checker called State Graph Manipulators (SGM)
[41] is used and they show the applicability of their approach by developing
and verifying a speci�c NoC, namely the Bidirectional Channel Network-on-
Chip (BiNoC) [48]. However, due to applying model checking in veri�cation,
this work su�ers from the state explosion problem. Therefore, the number
of nodes is a concern in this veri�cation while the number of nodes is not a
limitation for our work.

Palaniveloo et al. [55] propose a formal model of the Hermes NoC router
architecture and its communication scheme using their own Heterogeneous
Protocol Automata (HPA) formalism. The HPA language is developed in
this work to model the behaviour of communication modules as event-based
transition systems. They also map the automata model of NoC developed
in HPA to PROMELA speci�cation language of the SPIN model checker [8]
for veri�cation.

Böhm [24] proposes a formal framework for modelling and verifying on-
chip communication protocols in the Isabelle/HOL theorem prover [54, 5].
The proposed methodology is based on incremental modelling in which ab-
stract building blocks and composition rules are initially speci�ed. This
relates to our work of using an incremental approach that interleaves model
construction and veri�cation. Some other re�nement approaches to the de-
sign and veri�cation of on-chip communication architectures have also been
used in [25, 38].

5.3 Architectural Development of Networked Sys-

tems

The formal approaches discussed in Sections 5.1 and 5.2 entail the speci�ca-
tion and veri�cation of networks at a high and abstract level. The high-level
speci�cation should be transformed to an actual implementation while it
ensures the correctness of its properties. The correct transformation of a
high-level speci�cation to an implementation is a challenge. To tackle this

27

challenge, there are a series of studies on the use of formal analysis tech-
niques to reason about network protocol correctness throughout the network
development cycle [45, 37]. They mostly propose domain speci�c languages
in order to develop correct network protocols.

Karsten [45] axiomatically speci�es basic inter-networking concepts. This
is then employed to construct a theoretically sound framework, to express ar-
chitectural invariants and the deliverability of messages even in the presence
of network dynamism. A meta-language is proposed for the rapid imple-
mentation of di�erent packet forwarding schemes. The concepts and the
meta-language derived from them aim at clarifying the essential architecture
of the Internet. Moreover, they provide a bridge between formal proofs on
node reachability using a particular forwarding scheme and an implemen-
tation of that scheme. The purpose of this approach is to provide for an
e�cient development of networked systems, by accelerating the construction
of their essential aspects.

To address e�ciency in the modelling and analysis of network architec-
tures, Khoury et al. [46] present a design methodology based on the Alloy
language, which is based on relations and �rst-order predicate logic. The
concept of architectural style is at the core of this formalism in order to
de�ne a precise, common design vocabulary for a class of architectures. The
methodology is demonstrated by describing a model of a class of network ar-
chitectures called FARA [3]. FARA is an abstract high-level network model
in which the Internet architecture is modelled, to enable decoupling of end-
point names from network addressing.

Another approach that deals with e�cient network development is pro-
posed by Gri�n and Sobrinho [37]. They use a high-level and declarative
language to model routing and its correctness properties by proposing an
approach called Metarouting. The theoretical basis of Metarouting is the
Routing Algebra framework of Sobrinho [62]. These formal models use a
correct-by-construction approach in which the veri�cation of convergence is
accomplished once for the idealized algebra, and any routing protocol that
implements the algebra is correct.

Wang et al. [69, 70] propose a formally veri�able networking (FVN) ap-
proach for unifying the design, speci�cation, implementation and veri�cation
of networking protocols. The FVN framework uses a formal logical founda-
tion to specify the behaviour and the properties of network protocols and of
the abstract network meta-model. A theorem prover such as PVS [6] or Coq
[2] is used to verify the speci�ed formal properties of declarative network
protocols.

To bridge the high-level speci�cation with the implementation of net-
worked systems in these related works, their authors propose new languages
for which the theoretical bases are proved using formal methods. An impor-
tant advantage of our method for network development consists in reusing an

28

existing language to bridge high-level speci�cations with implementations,
namely Event-B; in our approach, we handle this bridging challenge with the
powerful re�nement technique.

5.4 Correct-by-Construction System Development

Correct-by-construction methods have been applied in several domains re-
lated to networked systems such as product line analysis, train systems, etc.
Lamprecht et al. [47] use the correct-by-construction approach to propose a
modelling framework for the analysis of product lines. They combine synthe-
sis technology with a constraint-oriented approach to guarantee the validity
of system properties. The validity of a variant of a product line is satis-
�ed if properties of the high-level model of the product line are preserved.
They present the applicability of their approach by illustrating it on a co�ee
machine example.

Moller et al. [51] verify railway systems through CSP||B modelling and
analysis. In [52], they propose a structured way of analysis for interlocking
railway systems by applying the correct-by-construction approach. They
propose model checking of the abstract model to ensure the safety properities
that hold in the concrete models as well.

29

30

6. Discussion

In this �nal section, we outline the main achievements put forward in this
dissertation as well as point out future research directions.

Summary In this dissertation, we have aimed at contributing to the de-
velopment of networked architectures for e�ciency and reliability, where by
e�ciency we refer to the possibility of reusing such architectures and by re-
liability we refer to developing correct models with respect to their speci�ca-
tions. In order to provide reusable architectures, we need to construct them
in certain ways; for verifying the correctness of the architectures, we need to
analyse them with respect to certain properties. Our research method con-
sists in applying formal methods in order to achieve our aims, in particular
the abstraction and re�nement techniques.

The Challenge A very interesting challenge in applying formal methods in
the domain of networked systems consists in determining a formal theory of
network architectures and, as a consequence, providing reusable, pre-proved
design rules. Determining a formal theory of networked architectures re-
quires generic models. These models consist of the essential components of
any networked system together with their relations. In addition, such models
need to preserve the global correctness of the network. Providing reusable,
pre-proved design rules needs considering individual components of a net-
worked system and their variations. If a correct model of a component and
its variants can be developed independently of other components, then it can
be reused in the development of a certain architecture.

What we have achieved Our goal has been to develop approaches for
the formal construction and analysis of networked systems that support:

(1) A reusable and correct-by-construction development of networked sys-
tems

(2) Precise and sound foundation for rigorous qualitative and quantitative
analysis

31

To achieve this goal, we have developed three artefacts:

(A) A formal generic architectural model for the correct development of
networked systems

(B) Methods for reusable networked system development

(C) A library of rules for developing and analysing networked systems

Artefact (A), a formal generic architectural model for the correct de-
velopment of networked systems, consists of high-level generic models for
specifying networked systems and their properties that are preserved under
re�nement. General high-level models represent the conceptual framework
of networked systems as a general architectural model of networks. The gen-
eral architectural model can be instantiated to a particular architecture by
re�nement, so that the functional correctness is preserved; this is an answer
to the correct development of networked systems. As network development
as we proposed it does not start from scratch, but from using the general
architectural model, this is also an answer to the reusable development of
networked systems. Artefact (A) is therefore an answer to goal (1).

Artefact (B), consisting of the methods for reusable networked system
development, de�nes processes in which models can be speci�ed and shown to
be reusable. The methods that are used to support reusability in this thesis
are: abstraction, re�nement, re�nement patterns, modularisation, theory
extension and automata-based templates. Artefact (B) is therefore an answer
to goal (1), as well.

Artefact (C), consisting of a library of rules for developing and analysing
networked systems, consists of a set of fundamental design rules which de�ne
the individual architectural components of networked systems that can be
separately reused in the development and analysis of certain architectures.
Artefact (C) is therefore an answer to goal (1) and (2).

Future Directions We can put forward several possible directions for fu-
ture work. We have proposed a network framework consisting of high-level
descriptions of networked systems, together with their functional properties.
An interesting research direction consists in further extending of the current
framework by including other features of networked systems. Such an exten-
sion could support, for instance, the analysis of real-time and non-functional
properties such as power consumption, delay and performance during devel-
opment. Moreover, the applicability of the framework could be examined by
using it in the development and analysis of various networks. One could in-
vestigate how �exible the framework is to analyse a wider class of networked
systems and to support di�erent views of development in our framework.

32

These investigations would suggest the possible lines of the framework ex-
tension. In fact, by applying the framework for the development and analysis
of di�erent networked systems, two points could be highlighted: the ful�l-
ment of the reusability feature and the clear modi�cations and extensions
which could improve the framework usefulness.

Another research direction consists in extending the library of design
rules, by adding new pre-proved network structures and techniques or re�n-
ing the existing rules. Extending the library of pre-proved rules promotes
the e�ciency of developing reliable networked systems.

A signi�cant challenge in our methodology for networked systems is that
the qualitative and quantitative analysis are not integrated. This means that
much e�ort is needed to model a network in such a way that either qualitative
or quantitative analysis can be performed. As a solution to this, we plan to
study how both qualitative and quantitative analysis of networked systems
can be uni�ed at the architectural level. Ideally, we should be able to de�ne
transformation rules that automatically transform a developed model used
for qualitative analysis into a model for quantitative analysis and vice versa.
Even more, the automatic transformation is conceivable at the architectural
level, where the design detail are excluded. Providing an integrated tool
support for developing and analysing both qualitatively and quantitatively
the network architectures is also very instrumental.

33

34

7. Bibliography

[1] ACL2, online at http://www.cs.utexas.edu/ moore/acl2/.

[2] The coq proof assistanct, online at http://coq.inria.fr/, accessed
20.07.2013.

[3] FARA, online at http://www.isi.edu/newarch/fara.html.

[4] HOL, online at http://www.cl.cam.ac.uk/research/hvg/hol.

[5] isabelle, online at http://isabelle.in.tum.de/.

[6] PVS speci�cation and veri�cation system, online at
http://pvs.csl.sri.com/, accessed 20.07.2013.

[7] Rodin - rigorous open development environment for complex, deliverable
d7, event-b language, online at http://rodin.cs.ncl.ac.uk.

[8] SPIN, online at http://spinroot.com/spin/whatispin.html.

[9] J.-R. Abrial. The B-book: assigning programs to meanings. Cambridge
University Press, New York, NY, USA, 1996.

[10] J.-R. Abrial. Modeling in Event-B: System and Software Engineering.
Cambridge University Press, New York, NY, USA, 1st edition, 2010.

[11] J.-R Abrial, M. Butler, S. Hallerstede, M. Leuschel, M. Schmalz, and
L. Voisin. Proposals for mathematical extensions for event-b. Technical
report, Deploy Project, 04 2010.

[12] J.-R. Abrial, M. J. Butler, S. Hallerstede, T. S. Hoang, F. Mehta,
and L. Voisin. Rodin: an open toolset for modelling and reasoning in
Event-B. STTT, 12(6):447�466, 2010. http://dx.doi.org/10.1007/

s10009-010-0145-y.

[13] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Com-
puter Science, 126:183�235, 1994.

35

[14] M. B. Andriamiarina, H. Daoud, M. Belarbi, D. Méry, and
C. Tanougast. Formal Veri�cation of Fault Tolerant NoC-based Archi-
tecture. In First International Workshop on Mathematics and Computer
Science (IWMCS2012), December 2012.

[15] R. J. R. Back. Re�nement calculus, part ii: Parallel and reactive pro-
grams. In REX Workshop, pages 67�93, 1989.

[16] R. J. R. Back and R. Kurki-Suonio. Distributed cooperation with action
systems. ACM Trans. Program. Lang. Syst., 10(4):513�554, October
1988.

[17] R. J. R. Back and K. Sere. From action systems to modular systems. In
Software - Concepts and Tools, volume 17, pages 1�25. Springer-Verlag,
1994.

[18] R. J. R. Back and K. Sere. Superposition re�nement of reactive systems.
Formal Aspects of Computing, 8(3):324�346, 1996.

[19] R. J. R. Back and J. von Wright. Trace re�nement of action systems.
In CONCUR, pages 367�384, 1994.

[20] R. J. R. Back and J. V. Wright. Re�nement calculus - a systematic
introduction. Undergraduate texts in computer science. Springer, 1999.

[21] G. Behrmann, A. David, and K. G. Larsen. A tutorial on uppaal. In
SFM, volume 3185 of Lecture Notes in Computer Science, pages 200�
236. Springer, 2004.

[22] C. Bernardeschi, P. Masci, and H. Pfeifer. Analysis of wireless sensor
network protocols in dynamic scenarios. In Proceedings of the 11th Inter-
national Symposium on Stabilization, Safety, and Security of Distributed
Systems, SSS '09, pages 105�119, Berlin, Heidelberg, 2009. Springer-
Verlag.

[23] K. Bhargavan, D. Obradovic, Carl, and A. Gunter. Formal veri�cation
of standards for distance vector routing protocols. Journal of the ACM,
49:538�576, 2002.

[24] P. Böhm. A framework for incremental modelling and veri�cation of on-
chip protocols. In Proceedings of the 2010 Conference on Formal Meth-
ods in Computer-Aided Design, FMCAD '10, pages 159�166, Austin,
TX, 2010. FMCAD Inc.

[25] P. Böhm and T. Melham. A re�nement approach to design and veri�-
cation of on-chip communication protocols. In Proceedings of the 2008

36

International Conference on Formal Methods in Computer-Aided De-
sign, FMCAD '08, pages 18:1�18:8, Piscataway, NJ, USA, 2008. IEEE
Press.

[26] D. Borrione, A. Helmy, L. Pierre, and J. Schmaltz. A generic model
for formally verifying noc communication architectures: A case study.
In Proceedings of the First International Symposium on Networks-on-
Chip, NOCS '07, pages 127�136, Washington, DC, USA, 2007. IEEE
Computer Society.

[27] D. Borrione, A. Helmy, L. Pierre, and J. Schmaltz. A formal approach
to the veri�cation of networks on chip. EURASIP J. Embedded Syst.,
2009:2:1�2:14, January 2009.

[28] P. Bulychev, A. David, K. G. Larsen, M. Mikucionis, P. Bogsted,
A. Legay, and Z. Wang. Uppaal-smc: Statistical model checking for
priced timed automata. In Herbert Wiklicky and Mieke Massink, ed-
itors, Proceedings 10th Workshop on Quantitative Aspects of Program-
ming Languages and Systems, Tallinn, Estonia, 31 March and 1 April
2012, volume 85 of Electronic Proceedings in Theoretical Computer Sci-
ence, pages 1�16. Open Publishing Association, 2012.

[29] M. Butler and I. Maamria. Mathematical extension in event-b through
the rodin theory component. Technical report, Deploy Project, 10 2010.

[30] Y.-R. Chen, W.-T. Su, P.-A. Hsiung, Y.-C. Lan, Y.-H. Hu, and S.-
J. Chen. Formal modeling and veri�cation for network-on-chip. In
Green Circuits and Systems (ICGCS), 2010 International Conference
on, pages 299�304, June.

[31] A. David, K. G. Larsen, A. Legay, M. Mikucionis, and Z. Wang. Time
for statistical model checking of real-time systems. In CAV, pages 349�
355, 2011.

[32] J. W. de Bakker, W. P. de Roever, and G. Rozenberg, editors. Stepwise
Re�nement of Distributed Systems, Models, Formalisms, Correctness,
REX Workshop, Mook, The Netherlands, May 29 - June 2, 1989, Pro-
ceedings, volume 430 of Lecture Notes in Computer Science. Springer,
1990.

[33] E. W. Dijkstra. A constructive approach to the problem of program
correctness. BIT Numerical Mathematics, 8(3):174�186, 1968.

[34] E. W. Dijkstra. A Discipline of Programming. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 1st edition, 1997.

37

[35] A. Fehnker, R.J. van Glabbeek, P. Höfner, A. McIver, M. Portmann,
and W.L. Tan. Automated analysis of aodv using uppaal. In Proceed-
ings of the 18th international conference on Tools and Algorithms for
the Construction and Analysis of Systems, TACAS'12, pages 173�187,
Berlin, Heidelberg, 2012. Springer-Verlag.

[36] A. Fehnker, R.J. van Glabbeek, P. Höfner, A. McIver, M. Portmann,
and W.L. Tan. A process algebra for wireless mesh networks. In H. Seidl,
editor, European Symposium on Programming (ESOP'12), volume 7211
of Lecture Notes in Computer Science, pages 295�315. Springer, 2012.

[37] T. G. Gri�n and J. L. Sobrinho. Metarouting. In Proceedings of the 2005
conference on Applications, technologies, architectures, and protocols for
computer communications, SIGCOMM '05, pages 1�12, New York, NY,
USA, 2005. ACM.

[38] R. Ameur-Boulifa H. Mokrani. A re�nement approach to design and
veri�cation of on-chip communication protocols. In Proceedings of the
SAFA workshop, 2011.

[39] C. A. R. Hoare. Communicating sequential processes. Commun. ACM,
21(8):666�677, August 1978.

[40] P. Höfner and A. McIver. Statistical model checking of wireless mesh
routing protocols. In NASA Formal Methods Symposium (NFM'13), vol-
ume unde�ned of Lecture Notes in Computer Science, page unde�ned.
Springer, 2013.

[41] P.-A. Hsiung and F. Wang. A state graph manipulator tool for real-time
system speci�cation and veri�cation. In Real-Time Computing Systems
and Applications, 1998. Proceedings. Fifth International Conference on,
pages 181�188, Oct.

[42] A. Iliasov, L. Laibinis, E. Troubitsyna, and A. Romanovsky. Formal
derivation of a distributed program in event b. In Proceedings of the 13th
international conference on Formal methods and software engineering,
ICFEM'11, pages 420�436, Berlin, Heidelberg, 2011. Springer-Verlag.

[43] A. Iliasov, E. Troubitsyna, L. Laibinis, A. Romanovsky, K. Varpaaniemi,
D. Ilic, and T. Latvala. Supporting reuse in event b development: mod-
ularisation approach. In Proceedings of the Second international con-
ference on Abstract State Machines, Alloy, B and Z, ABZ'10, pages
174�188, Berlin, Heidelberg, 2010. Springer-Verlag.

[44] K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and
Practical Use. Volume 1. Springer Publishing Company, Incorporated,
2010.

38

[45] M. Karsten, S. Keshav, S. Prasad, and M. Beg. An axiomatic basis for
communication. In Proceedings of the 2007 conference on Applications,
technologies, architectures, and protocols for computer communications,
SIGCOMM '07, pages 217�228, New York, NY, USA, 2007. ACM.

[46] J. Khoury, C. Abdallah, and G. Heileman. Towards formalizing net-
work architectural descriptions. In Marc Frappier, Uwe Glässer, Sarfraz
Khurshid, Régine Laleau, and Steve Reeves, editors, Abstract State Ma-
chines, Alloy, B and Z, volume 5977 of Lecture Notes in Computer
Science, pages 132�145. Springer Berlin Heidelberg, 2010.

[47] A.-L. Lamprecht, T. Margaria, I. Schaefer, and B. Ste�en. Synthesis-
based variability control: Correctness by construction. In FMCO, pages
69�88, 2011.

[48] Y.-C Lan, S.-H. Lo, Y.-C. Lin, Y.-H. Hu, and S.-J. Chen. Binoc: A
bidirectional noc architecture with dynamic self-recon�gurable channel.
In Proceedings of the 2009 3rd ACM/IEEE International Symposium on
Networks-on-Chip, NOCS '09, pages 266�275, Washington, DC, USA,
2009. IEEE Computer Society.

[49] R. Milner. A Calculus of Communicating Systems. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 1982.

[50] R. Milner. Communicating and mobile systems: the &pgr;-calculus.
Cambridge University Press, New York, NY, USA, 1999.

[51] F. Moller, H. N. Nguyen, M. Roggenbach, S. Schneider, and H. Tre-
harne. Csp||b modelling for railway veri�cation: The double junction
case study. In AVOCS'12, 2012.

[52] F. Moller, H. N. Nguyen, M. Roggenbach, S. Schneider, and H. Tre-
harne. De�ning and model checking abstractions of complex railway
models using csp||b. In HVC'2012, 2012.

[53] A. Müller. Vdm � the vienna development method, 2009.

[54] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL � A Proof
Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[55] V.A. Palaniveloo and A. Sowmya. Application of formal methods for
system-level veri�cation of network on chip. In VLSI (ISVLSI), 2011
IEEE Computer Society Annual Symposium on, pages 162�169, July.

[56] C. E. Perkins, E. M. Belding-Royer, and I. D. Chakeres. Ad hoc
on-demand distance vector (AODV) routing. Internet Draft, 2003.
At http://tools.ietf.org/id/draft-perkins-manet-aodvbis-00.

txt.

39

[57] C. E. Perkins and P. Bhagwat. Highly dynamic destination-sequenced
distance-vector routing (dsdv) for mobile computers. In Proceedings of
the conference on Communications architectures, protocols and appli-
cations, SIGCOMM '94, pages 234�244, New York, NY, USA, 1994.
ACM.

[58] J. Schmaltz and D. Borrione. A generic network on chip model. In
Proceedings of the 18th international conference on Theorem Proving in
Higher Order Logics, TPHOLs'05, pages 310�325, Berlin, Heidelberg,
2005. Springer-Verlag.

[59] S. Schneider and H. Treharne. Csp theorems for communicating b ma-
chines. Formal Aspects of Computing, 17(4):390�422, December 2005.

[60] S. Schneider, H. Treharne, and H. Wehrheim. A csp approach to con-
trol in event-b. In Proceedings of the 8th international conference on
Integrated formal methods, IFM'10, pages 260�274, Berlin, Heidelberg,
2010. Springer-Verlag.

[61] K. Sen, M. Viswanathan, and G. A. Agha. Vesta: A statistical model-
checker and analyzer for probabilistic systems. In Quantitative Evalu-
aiton of Systems (QEST'05), pages 251�252. IEEE, 2005.

[62] J. L. Sobrinho. Network routing with path vector protocols: theory and
applications. In Proceedings of the 2003 conference on Applications,
technologies, architectures, and protocols for computer communications,
SIGCOMM '03, pages 49�60, New York, NY, USA, 2003. ACM.

[63] J. M. Spivey. The Z notation: a reference manual. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1989.

[64] T. Teige, A. Eggers, and M. Fränzle. Constraint-based analysis of con-
current probabilistic hybrid systems: An application to networked au-
tomation systems. Nonlinear Analysis: Hybrid Systems, 5(2):343�366,
2011.

[65] F. Verbeek and J. Schmaltz. Formal speci�cation of networks-on-chips:
deadlock and evacuation. In Design, Automation Test in Europe Con-
ference Exhibition (DATE), 2010, pages 1701 �1706, march 2010.

[66] F. Verbeek and J. Schmaltz. Automatic veri�cation for deadlock
in networks-on-chips with adaptive routing and wormhole switching.
In Proceedings of the Fifth ACM/IEEE International Symposium on
Networks-on-Chip, NOCS '11, pages 25�32, New York, NY, USA, 2011.
ACM.

40

[67] F. Verbeek and J. Schmaltz. On necessary and su�cient conditions
for deadlock-free routing in wormhole networks. IEEE Transactions on
Parallel and Distributed Systems, 22(12):2022�2032, 2011.

[68] F. Verbeek and J. Schmaltz. Easy formal speci�cation and validation of
unbounded networks-on-chips architectures. ACM Trans. Des. Autom.
Electron. Syst., 17(1):1:1�1:28, January 2012.

[69] A. Wang, P. Basu, B. T. Loo, and O. Sokolsky. Declarative network
veri�cation. In Proceedings of the 11th International Symposium on
Practical Aspects of Declarative Languages, PADL '09, pages 61�75,
Berlin, Heidelberg, 2009. Springer-Verlag.

[70] A. Wang, L. Jia, C. Liu, B. T. Loo, O. Sokolsky, and P. Basu. Formally
veri�able networking. In Lakshminarayanan Subramanian, Will E. Le-
land, and Ratul Mahajan, editors, HotNets. ACM SIGCOMM, 2009.

[71] N. Wirth. Program development by stepwise re�nement. Communica-
tions of the ACM, 14(4):221�227, 1971.

[72] C. Xiong, T. Murata, and J. Tsai. Modeling and simulation of rout-
ing protocol for mobile ad hoc networks using colored petri nets. In
Proceedings of the conference on Application and theory of petri nets:
formal methods in software engineering and defence systems - Volume
12, CRPIT '02, pages 145�153, Darlinghurst, Australia, Australia, 2002.
Australian Computer Society, Inc.

[73] H. Younes. Veri�cation and Planning for Stochastic Processes with
Asynchronous Events. PhD thesis, Carnegie Mellon University, 2004.

[74] C. Yuan, J. Billington, and J. Freiheit. An abstract model of routing in
mobile ad hoc networks. In Sixth Workshop and Tutorial on Practical
Use of Coloured Petri Nets and the CPN Tools, pages 137�156, Aarhus,
Denmark, October 2005. DAIMI.

41

42

Complete List of Publications

1. Peter Höfner, and Maryam Kamali. Quantitative Analysis of AODV
and its Variants on Dynamic Topologies using Statistical Model Check-
ing, In V. Braberman and L. Fribourg (Eds.) Proceedings of the 11th
International Conference on Formal Modeling and Analysis of Timed
Systems - FORMATS 13, Lecture Notes in Computer Science Vol.
8053, pp. 121-136, Springer-Verlag, 2013.

2. Ansgar Fehnker, Peter Höfner, Maryam Kamali, and Vinay Mehta.
Topology-based Mobility Model for Wireless Networks, In K. Joshi
et al. (Eds.) Proceedings of the 10th International Conference on
Quantitative Evaluation of Systems conference - QEST 13, Lecture
Notes in Computer Science Vol. 8054, pp. 389-404, Springer-Verlag,
2013.

3. Maryam Kamali, Mats Neovius, Luigia Petre and Petter Sandvik.
Formal Development of System of Systems, Accepted to ISRN Soft-
ware Engineering Journal, Hindawi Publishing Corporation, 2013. (In
press)

4. Maryam Kamali, Linas Laibinis, Luigia Petre, and Kaisa Sere. A Dis-
tributed Implementation of a Network Recovery Algorithm, In Inter-
national Journal of Critical Computer-Based Systems (IJCCBS), Vol.
4, No. 1, pp. 45-68. Inderscience Publishers, 2013.

5. Maryam Kamali, Luigia Petre, and Kaisa Sere. NetCorre: A Hierarchi-
cal Framework and Theory for Network Design (Submitted to Science
of Computer Programming Journal), April, 2013.

6. Maryam Kamali, Linas Laibinis, Luigia Petre, and Kaisa Sere. Formal
Development of Wireless Sensor-Actor Networks, In Science of Com-
puter Programming (SCP) Journal. Elsevier, 2012. DOI: 10.1016/j.scic
o.2012.03.002.

7. Maryam Kamali, Luigia Petre, Kaisa Sere, and Masoud Daneshtalab.
Re�nement-Based Modeling of 3D NoCs, In F. Arbab and M. Sir-
jani (Eds.) Proceedings of the 4th IPM International Conference on

43

Fundamentals of Software Engineering - FSEN 11, Lecture Notes in
Computer Science Vol. 7141, pp. 236-252, Springer-Verlag, 2012.

8. Masoud Daneshtalab, Maryam Kamali, Masoumeh Ebrahimi, Saeed
Mohammadi, Ali Afzali-Kusha, Juha Plosila. Adaptive Input-Output
Selection Based On-Chip Router Architecture, In Journal of Low
Power Electronics, Volume 8, Number 1, pp. 11-29, February 2012.

9. Maryam Kamali, Luigia Petre, Kaisa Sere, and Masoud Daneshta-
lab. CorreComm: A Formal Hierarchical Framework for Communi-
cation Designs, In Proceedings of the 2nd IEEE International Confer-
ence on Networked Embedded Systems for Enterprise Applications -
NESEA2011, pp. 1-7. IEEE Computer Society, December, 2011.

10. Maryam Kamali, Luigia Petre, Kaisa Sere, and Masoud Daneshtalab.
Formal Modeling of Multicast Communication in 3D NoCs. In P. Kit-
sos and S. Niar (Eds.) Proceedings of the 14th Euromicro Conference
on Digital System Design - DSD 2011, pp. 634-642. IEEE/Euromicro,
August 2011.

11. Maryam Kamali, Luigia Petre, Kaisa Sere, Masoud Daneshtalab. A
Formalization of 3D NoCs, In M. Waldén, and L. Petre (Eds.) Proceed-
ings of the 22nd Nordic Workshop on Programming Theory - NWPT2010,
TUCS Technical Reports, No. 57, pp. 79-81, November 2010.

12. Maryam Kamali, Linas Laibinis, Luigia Petre and Kaisa Sere. Self-
Recovering Sensor-Actor Networks, In M. Mousavi and G. Salaün (Eds.)
Proceedings of the 9th International Conference on the Foundations of
Coordination Languages and Software Architectures - FOCLASA2010,
pp. 47-61. EPTCS, September, 2010.

13. Maryam Kamali, Linas Laibinis, Luigia Petre and Kaisa Sere. Recon-
structing Coordination Links in Sensor-Actor Networks, In C. Jensen
(Eds.) Proceedings of the 4th Nordic Workshop on Dependability and
Security - NODES 2010, pp. 1-10, June 2010.

14. Mohsen Shari�, Saeed Sedighian and Maryam Kamali. Recharging
Sensor Nodes Using Implicit Actor Coordination in Wireless Sensor
Actor Networks, In Scienti�c Research Journal of Wireless Sensor Net-
work, Vol 2, N. 2, pp. 123-131, February 2010.

15. Maryam Kamali, Mohsen Shari� and Saeed Sedighian. A Distributed
Recovery Mechanism for Actor-Actor Connectivity in Wireless Sensor
Actor Networks, In Proceedings of the 4nd IEEE International Con-
ference on Intelligent Sensors, Sensor Networks and Information Pro-
cessing - ISSNIP 2008, pp. 183-188, December 2008.

44

Part II

Original Publications

45

Paper I

Formal Development of Wireless Sensor-Actor

Networks

Maryam Kamali, Linas Laibinis, Luigia Petre and Kaisa Sere

Originally published in: Science of Computer Programming (SCP) Journal,
Elsevier, 2012. In press, DOI: 10.1016/j.scico.2012.03.002.

Based on the publication: Maryam Kamali, Linas Laibinis, Luigia Petre and
Kaisa Sere. Self-Recovering Sensor-Actor Networks, In Proceedings of the 9th
International Conference on the Foundations of Coordination Languages and
Software Architectures - FOCLASA2010, pp. 47-61. EPTCS, September,
2010.

47

Science of Computer Programming () –

Contents lists available at SciVerse ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

Formal development of wireless sensor–actor networks
Maryam Kamali a,b,∗, Linas Laibinis a, Luigia Petre a, Kaisa Sere a

a Department of Information Technologies, Åbo Akademi University, Turku, Finland
b Turku Centre for Computer Science (TUCS), Turku, Finland

a r t i c l e i n f o

Article history:
Received 22 January 2011
Received in revised form 30 January 2012
Accepted 5 March 2012
Available online xxxx

Keywords:
Wireless sensor–actor networks (WSANs)
Coordination links
Coordination recovery
Refinement
Pattern development
Event-B
RODIN tool

a b s t r a c t

Wireless sensor–actor networks are a recent development of wireless networks where
both ordinary sensor nodes and more sophisticated and powerful nodes, called actors, are
present. In this paper we introduce several, increasingly more detailed, formal models for
this type of wireless networks. These models formalise a recently introduced algorithm for
recovering actor–actor coordination links via the existing sensor infrastructure. We prove
via refinement that this recovery is correct and that it terminates in a finite number of
steps. In addition, we propose a generalisation of our formal development strategy, which
can be reused in the context of a wider class of networks. We elaborate our models within
the Event-B formalism, while our proofs are carried out using the RODIN platform — an
integrated development framework for Event-B.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The separation of computation and control stands at the basis of the software architecture discipline. The control of
the computing entities as well as the self-coordination of the controlling entities are well illustrated by Wireless Sensor–
Actor Networks (WSANs), a rather new generation of sensor networks [1]. WSAN nodes can be of two types: sensors
(the ‘computing’ entities) and actors (the controlling entities),with the density of sensor nodesmuchbigger than that of actor
nodes. The sensors detect the events that occur in the field, gather them and transmit the collected data to the actors. The
actors react to the events in the environment based on the received information. The sensor nodes are low-cost, low-power
devices equipped with limited communication capabilities, while the actor nodes are usually mobile, more sophisticated
and powerful devices compared to the sensor nodes.

A centralWSAN requirement is that of node coordination. As there is no centralised control in aWSAN, sensors and actors
need to coordinate with each other in order to collect information and take decisions on the following actions [1]. There are
three main types of WSAN coordination [2]: sensor–sensor, sensor–actor and actor–actor coordinations. The sensor–sensor
coordination in WSANs is similar to that of Wireless Sensor Networks, i.e., it defines how sensors route information, how
information aggregates among them and which sensors are responsible for which tasks. The sensor–actor coordination
prescribes which sensors should send certain data to which actors. Finally, the actor–actor coordination is concerned with
actor decisions and the division of tasks among different actors. In this paper, we focus on the latter type of coordination.

To achieve the actor–actor coordination in WSANs, actors need reliable connection links for communicating with each
other. These are established upon initialising aWSAN. However,WSANs are dynamic networkswhere the network topology
continuously changes. The changes occurwhennew links or nodes are addedorwhen the existing links or nodes are removed

∗ Corresponding author at: Department of Information Technologies, Åbo Akademi University, Turku, Finland.
E-mail address:mkamali@abo.fi (M. Kamali).

0167-6423/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2012.03.002

2 M. Kamali et al. / Science of Computer Programming () –

Fig. 1. Three partitions created by the failed actor A1 .

due to failures, typically caused by hardware crashes or malfunctions, the lack of energy, mobility, etc. Consequently, actor
nodes can fail during operation of a network. As a result, a WSAN may transform into several, disconnected WSAN sub-
networks, thus interrupting the actor–actor coordination. Such a separation is called a network partitioning and is illustrated
in Fig. 1, where the actor nodes A1–A15 are shown to produce a network partitioning if the actor node A1 fails.

Another central WSAN requirement focuses on embedding real-time aspects. In particular, depending on an application,
it might be essential to respond to sensor inputs within predefined time limits, e.g., in critical applications such as forest fire
detection. Due to the real-time requirements ofWSANs, a failure of an actor node should not affect the whole actor network
for too long. To re-establish connectivity of actor nodes, their physical movement towards each other has been proposed
in [3,4]. However, during thismovement, nodes in different network partitions created by an actor failure cannot coordinate.
To shorten the time of recovery, Kamali et al. [5] have proposed an algorithm for establishing new routes between non-failed
actors via sensor nodes. This algorithm allows for quick reconnection of the separated partitions, beforemoving actor nodes
as proposed in [3,4]. In this paper we focus on studying this recovery mechanism, which alleviates the problems caused by
actor coordination failures.

There are several properties that are desirable to verify for this algorithm. First, we need to show that there is always a
path via sensor nodes that can be established for the partitioned actor nodes. Second, it is important to guarantee that the
new path is the shortest one for the involved actor nodes. Assuming that the sensor network is sufficiently dense, this also
reduces the power consumption of the sensor nodes that are employed to re-establish connection. Third, to shorten the time
of recovery as much as possible, it is desirable to re-establish connection as soon as possible. In this paper we address the
first and the second property of the algorithm.

The contribution of our paper is threefold. First, we formalise the algorithm for self-recovering actor coordination [5]
using a theorem prover tool. This allows us to better understand the functioning of the algorithm and, more importantly,
to verify essential properties such as the functional correctness and termination of the recovery mechanism. An important
aspect of the recovery is that indirect links between actors are built in a distributed manner, thus ensuring self -recovering
of the network. Second, we prove that the recovery can be done at different levels, via different link types, such as direct
or indirect actor links, in the latter case also reusing the WSAN infrastructure of sensors. This contributes to modelling
fault-recovery in sensor–actor networks. Third, we explore a generalisation of the described approach to a wider class of
networks by using the notions of refinement patterns and pattern-driven formal development. This allows us to facilitate
the presented formal development process by identifying the development (design) steps typical for coordinating networks
as well as reusing both formal models and proofs.

To model the functional correctness of the recovery algorithm, we use the mathematical concepts of tree and forest.
In graph theory, a tree is a graph whose any two vertices are connected by a non-cyclic path, while a forest is a set of
disjoint trees. As special cases, an empty graph (with no nodes) and a discrete graph on a set of vertices (with no edges) are
examples of forests. We introduce a special data structure to model a forest and use it to prove correctness properties in
the following way. When a node fails, the set of all the neighbours of the failed node is considered as a set of disconnected
trees, i.e., a (node) forest. For instance, in Fig. 1 the nodes A2, A6, A7, A8 A9, and A12 are the neighbours of the failed node
A1. These nodes are considered as disconnected trees, with each tree initially formed of exactly one of the nodes. While
the recovery process either finds or re-establishes links, these trees gradually become connected to each other. When the
recovery process terminates, we show that all the trees of the forest are connected. This means that, by the end of the
recovery, all the neighbours of the failed node are re-connected.

In order to prove correctness of the recoverymechanism,we employ the Event-B formalism formodellingWSANs and the
proposed algorithm [5]. Event-B [6,7] is an extension of the B Method [8] for specifying distributed and reactive systems.
In Event-B, a system model is gradually specified at several levels of abstraction, always ensuring that a more concrete
model is a correct development of the previous, more abstract model. The language and proof theory of Event-B are based
on predicate logic and the set theory. Correctness of stepwise construction of formal models is ensured by discharging a

M. Kamali et al. / Science of Computer Programming () – 3

Machine M
Variables v
Invariants I
Events

Init
evt1
· · ·

evtN

Sees
−−→

Context C
Carrier Sets d
Constants c
Axioms A

Fig. 2. A machineM and a context C in Event-B.

set of proof obligations: if these obligations hold, then the undertaken development is mathematically shown to be correct.
Event-B comes with the associated tool RODIN [7,9,10,18], which automatically discharges a part of the proof obligations
and also provides the interactive prover to discharge the remaining proofs.

The paper is organised as follows. In Section 2we discuss the Event-B formalism and also describe the recovery algorithm.
In Section 3 we overview our formal development of the recovery mechanism. Sections 4–7 contain the description of our
formal models at four abstraction levels. Specifically, in Section 4 we model the direct actor link recovery mechanism.
In Section 5 the abstract model is enhanced by the indirect actor link recovery. In Section 6 we introduce the sensor
infrastructure and the indirect actor link recovery via the introduced sensors. In Section 7 we model physical distances
between nodes to ensure the shortest indirect links via sensors. We continue in Section 8 by discussing proving aspects
regarding our formal development. In Section 9we bring forward our approach to generalisation and reuse of the introduced
formal models. We survey related work in Section 10 and in Section 11 we present several concluding remarks.

2. Preliminaries

This section presents the background material for the paper. We start by overviewing the Event-B formalism. In the
second part of the section, we describe the recovery algorithm for WSANs, which will be formalised later.

2.1. Introduction to Event-B

The B Method [8] is a formal approach for the specification and rigorous development of highly dependable software.
The method has been successfully used in the development of several complex real-life applications [10,11]. Event-B [6] is a
formal framework derived from the BMethod tomodel and reason about parallel, distributed and reactive systems. Event-B
has the associated RODIN platform [7,9,10,18], which provides automated tool support for modelling and verification by
theorem proving.

Event-B Language. In Event-B, a system specification (model) is defined using the notion of a machine [10] operating on
an abstract state. Such a machine encapsulates the model state, represented as a collection of model variables, and defines
operations on this state. Thus, it describes the behaviour of the modelled system, also referred to as the dynamic part. A
machine may also have an accompanying component, called context, which contains the static part of the system. A context
can include user-defined carrier sets, constants and their properties, which are given as a list of model axioms. The general
form of an Event-B model is illustrated in Fig. 2. The relationship between a machine and its accompanying context is
expressed by the keyword Sees, denoting a structuring technique that allows the machine access to the contents of the
context.

A machine is uniquely identified by its nameM . The state variables, v, are declared in the Variables clause and initialised
by the Init event. The variables are strongly typed by the constraining predicates I given in the Invariants clause. The
invariant clause may also contain other predicates defining properties that should be preserved over the state of the model.

The dynamic behaviour of the system is defined by a set of atomic events specified in the Events clause. Generally, an
event can be defined as follows:

evt = any vlwhere g then S end,

where the variable list vl contains new local variables (parameters) of the event, the guard g is a conjunction of predicates
over the state variables v and vl, and the action S is an assignment to the state variables.

The occurrence of events represents the observable behaviour of the system. The event guard defines the conditions
under which the action can be executed, i.e., when the event is enabled. If several events are enabled at the same time, any
of them can be chosen for execution non-deterministically. If none of the events is enabled then the system deadlocks.

In general, the action of an event is a parallel composition of assignments. The assignments can be either deterministic
or non-deterministic. A deterministic assignment, x := E(x, y), has the standard syntax and meaning. A non-deterministic
assignment is denoted either as x :∈ Set , where Set is a set of values, or x :| P(x, y, x′), where P is a predicate relating initial
values of x, y to some final value x′. As a result of a non-deterministic assignment, x can get any value belonging to Set or
according to P .

4 M. Kamali et al. / Science of Computer Programming () –

Action (S) BA(S)
x := E(x, y) x′

= E(x, y) ∧ y′
= y

x :∈ Set x′
∈ Set ∧ y′

= y
x :| P(x, y, x′) P(x, y, x′) ∧ y′

= y

Fig. 3. Before–after predicates.

Event-B Semantics. The semantics of Event-B actions is defined using so-called before–after (BA) predicates [6,10]. A before–
after predicate describes a relationship between the system states before and after execution of an event, as shown in Fig. 3.
Here x and y are disjoint lists (partitions) of state variables, and x′, y′ represent their values in the after-state. A before–after
predicate for events is constructed as follows:

BA(evt) = ∃vl. g ∧ BA(S).

The semantics of a whole Event-B model is formulated as a number of proof obligations, expressed in the form of logical
sequents. Below we describe only the most important proof obligations that should be verified (proved) for the initial and
refined models. The full list of proof obligations can be found in [6].

Every Event-B model should satisfy the event consistency and invariant preservation properties. For each event of the
model, evti, its consistency means that, whenever the event is enabled, its before–after predicate (BA) is well-defined, i.e.,
there exists some reachable after-state:

A(d, c), I(d, c, v), gi(d, c, v) ⊢ ∃v′
· BAi(d, c, v, v′) (FIS)

where A stands for the conjunction of the model axioms, I is the conjunction of the model invariants, gi is the event guard, d
stands for the model sets, c are the model constants, and v, v′ are the variable values before and after the event execution.

Each event evti of the Event-B model should also preserve the given model invariant:

A(d, c), I(d, c, v), gi(d, c, v), BAi(d, c, v, v′) ⊢ I(d, c, v′) (INV)

Since the initialisation event has no initial state and guard, its proof obligation is simpler:

A(d, c), BAInit(d, c, v′) ⊢ I(d, c, v′) (INIT)

The formal semantics provides us with a foundation for establishing correctness of Event-B specifications. In particular,
to verify correctness of a specification, we need to prove that its initialisation and all the events preserve the given
invariant.

System development. Event-B employs a top-down refinement-based approach to formal system development.
Development starts from an abstract system specification that models some of the essential functional requirements. While
capturing more detailed requirements, each refinement step typically introduces new events and variables into an abstract
specification. These new events correspond to stuttering steps that are not visible in the abstract specification. We call such
model refinement as superposition refinement. Moreover, Event-B formal development supports data refinement, allowing
us to replace some abstract variables with their concrete counterparts. In that case, the invariant of a refinedmodel formally
defines the relationship between the abstract and concrete variables; this type of invariant is called a gluing invariant. Out
of these refinement approaches, in this paper we employ the superposition refinement.

When presenting events in a refinedmodel, we often use the shorthand notation ‘‘refined_event extends abstract_event ’’.
The meaning of this notation is that the refined event is created from the abstract one by simply adding new guards and/or
new actions. Only the added elements are shown in the extended event, while the old guards and actions are implicitly
present.

To verify correctness of a refinement step,we need to prove a number of proof obligations for a refinedmodel. For brevity,
here we show only a few essential ones.

Let us first introduce a shorthand H(d, c, v, w) to stand for the hypotheses A(d, c), I(d, c, v), I ′(d, c, v, w), where I, I ′
are respectively the abstract and refined invariants, and v, w are respectively the abstract and concrete variables. Then the
consistency refinement property for an event evti of a refined model can be presented as follows:

H(d, c, v, w), g ′

i (d, c, w) ⊢ ∃w′. BA′

i(d, c, w,w′) (REF_FIS)

where g ′

i is the refined guard and BA′

i is a before–after predicate of the refined event.
The event guards in a refined model can be only strengthened in a refinement step:

H(d, c, v, w), g ′

i (d, c, w) ⊢ gi(d, c, v) (REF_GRD)

where gi, g ′

i are respectively the abstract and concrete guards of the event evti.

M. Kamali et al. / Science of Computer Programming () – 5

0 // Detecting a failed actor; Failed_Actors and Active_Actors partition the set Actors
1 IF actor i, i ∈ Active_Actors receives no acknowledgement from actor j,
2 j ∈ Neighbours(i), for a period t
3 THEN Failed_Actors := Failed_Actors ∪ {j}

4 Active_Actors := Active_Actors \ {j}

5 FI
6 FailedNodeNeighbours := Neighbours(j)
7 IF ∀ k,l ∈ FailedNodeNeighbours
8 there is a path from k to l via actors distinct from j
9 THEN Neighbours(k) := Neighbours(k) \ {j}

10 Neighbours(l) := Neighbours(l) \ {j}

11 FailedNodeNeighbours := FailedNodeNeighbours \ {k}

12 ELSE recovery(FailedNodeNeighbours)
13 FI
14 // Selecting the shortest distance between neighbours and establishing it via sensors
15 PROCEDURE recovery(valres FailedNodeNeighbours)
16 FOR ∀ k ∈ FailedNodeNeighbours with
17 degree(k) = max{degree(i)|i ∈ FailedNodeNeighbours}

18 find an actor l ∈ FailedNodeNeighbours so that
19 dist(k,l) = min{dist(k,i)|i ∈ FailedNodeNeighbours \ {k}}

20 establish the new communication link between k and l through sensors
21 FailedNodeNeighbours := FailedNodeNeighbours \ {k}

22 END FOR
23 END PROCEDURE

Fig. 4. A general pseudo-code of the recovery algorithm.

Finally, the simulation proof obligation requires to show that the ‘‘execution’’ of a refined event is not contradictory to its
abstract version:

H(d, c, v, w), g ′

i (d, c, w), BA′

i(d, c, w,w′) ⊢ ∃v′.BAi(d, c, v, v′) ∧ I ′(d, c, v′, w′) (REF_SIM)

where BAi, BA′

i are respectively the abstract and concrete before–after predicates of the same event evti.
The Event-B refinement process allows us to gradually introduce implementation details, while preserving functional

correctness during stepwise model transformation. The model verification effort and, in particular, automatic generation
and proving of the required proof obligations, are significantly facilitated by the provided tool support — the RODIN
platform [7,9,10,18].

Let us note here the quintessential feature of Event-B and its associated RODIN platform. Modelling in Event-B is
semantically justified by proof obligations. Every update of a model generates a new set of proof obligations in the
background. It is this interplay between modelling and proving that sets Event-B apart from other formalisms. Without
proving the required obligations, we cannot be sure of correctness of a model. The proving effort thus encourages the
developer to structure formal model development in such a way that manageable proof obligations are generated at each
step. This leads to very abstract initial models so that we can gradually introduce into a system model various facets of the
system. Such a development method fits well when we have to describe complex algorithms.

2.2. The recovery mechanism

Our object of study is the recovery algorithm introduced in [5]. A rather general pseudo-code model of the algorithm is
shown in Fig. 4, while a more detailed model appears in [5].

In this algorithm, the detection of a failed actor leads to the communication links among non-failed actor nodes to be
re-established via sensor nodes. The mechanism has three parts: detecting a failed actor (lines 1–13), selecting the shortest
path via actors (lines 15–19), and establishing the selected path through sensor nodes (line 20).

Actors aremodelled in the pseudo-codewith the set Actors, which is further partitioned into the sets Active_Actors
and Failed_Actors. When actor neighbours of an actor node do not receive any acknowledgement from that actor node,
they detect it as failed andmove it from the Active_Actors set to the Failed_Actors set (lines 1–5). All the neighbours
of the failed node are collected in the set FailedNodeNeighbors (line 6). At this time, the neighbours of the failed node
have to investigate this set to determine whether the actor failure has produced separate partitions. No partitioning means
there is a path between any two actors in FailedNodeNeighbors, via the actors distinct from the failed actor.

If there is no partitioning (lines 7–8), then nothing is done except updating the neighbour lists of nodes (lines 9–11).
However, if separate partitions are detected, a new path is selected and established, which is modelled by the procedure
recovery (lines 15–23). This procedure takes (as a value-result parameter) the set FailedNodeNeighbors, which is first
analysed (lines 16–19) and then updated (line 21).

In this algorithm,modelling the actor–actor coordination is based on the assumption that each actor nodehas information
about its immediate neighbours (1-hop neighbours) and 2-hop neighbours (the neighbours of the neighbours) [5]. This is the
least costly coordinationmodel with respect to energy consumption, because it involves the least number of nodes required
to re-establish communication. Based on this information, the non-failed actors can recover their communication links upon
detecting a failed (intermediary) actor. These links are formed based on the node degree information (the number of

6 M. Kamali et al. / Science of Computer Programming () –

immediate neighbours) and on the relative distance dist between actor nodes. We formally detail this in Sections 4–7,
while in the next section we overview the overall formal development.

3. Skeleton of the development

Our initial goal in this paper is to prove that the recovery mechanism described in the previous section works. For this,
we have created a formal model of the algorithm in Event-B and proved that the algorithm indeed reconnects partitions in
a finite number of steps after an actor failure. The model is created in four increasingly more detailed refinement steps. In
this sectionwe overview the design decisions that wemade during the refinement process as well as describe themain data
structures and variables of our models. While developing the models, we have found that our development of the recovery
mechanism in a WSAN is more general than we initially thought. We explore this generality in more detail in Section 9.

The wireless sensor–actor networks that we model employ distributed recovery that is location-based and
hierarchical [12]. In order to better focus on the task at hand, we exclude from our model several WSAN features such as
energy-saving mechanisms and mobility of nodes. Our assumption for the recovery to succeed is that there are sufficiently
densely deployed sensors in the field. Another assumption is that only one actor can fail at one time. The recoverymechanism
takes place almost immediately and the recovery process is done in a negligible time, hence this assumption does not indeed
restrict our model. Moreover, we note that we do not model time to effectively measure duration of the recovery, nor do we
simulate our algorithm in this paper. Modelling time and thus demonstrating the third desirable property of the algorithm
as described in Section 1 is left for future research. A simulation of the original algorithm can be found in [5].

Wemodel a wireless sensor–actor network as a graph (NODE,Net), where NODE is a set of nodes modelling both sensors
and actors and Net is a set consisting of all direct communication links between nodes. We assume that communication
is symmetric, meaning that if a node can hear another node, then it can also be heard by it. The corresponding graph is
undirected. A wireless link exists between any two nodes only if these nodes are within wireless range of each other:

Net = {(u, v) ∈ NODE × NODE | dist(u, v) ≤ R}

Here, R is the communication range among any two nodes and dist(u, v) denotes the Euclidean distance between the nodes
u and v. Namely, if ux and uy are the horizontal and vertical Cartesian coordinates of the node u, respectively, and vx and vy

are the horizontal and vertical Cartesian coordinates of the node v, respectively, then dist(u, v) =

(ux − vx)2 + (uy − vy)2.
The Net relation models the links between all the nodes in NODE, without considering their sensor/actor type.

In our modelled recovery mechanism, we distinguish among three types of network link: sensor–sensor, sensor–actor,
and actor–actor. To model them, we partition the network nodes into two different types of node, i.e., sensors and actors:
NODE = sensors ∪ actors. Based on this partition, we then also partition the direct network links into three types:

Net = SNet ∪ ANet ∪ SANet,

where SNet denotes direct links between sensors, ANet denotes direct links between actors, and SANet denotes direct links
between sensors and actors. The network graph (NODE,Net) is therefore partitioned as follows:

(NODE,Net) = (sensors, SNet) ∪ (actors, ANet) ∪ (sensors ∪ actors, SANet)
SNet = {(u, v) ∈ sensors × sensors | dist(u, v) ≤ Rs}

ANet = {(u, v) ∈ actors × actors | dist(u, v) ≤ Ra}

SANet = {(u, v) ∈ (sensors ∪ actors) × (sensors ∪ actors) | dist(u, v) ≤ Rs}

Here, Ra is the actor communication range and Rs is the sensor communication range. Here we assume that Rs ≤ Ra and
require that every direct link between a sensor and an actor to respect the range Rs. We also assume that Rs ≤ Ra ≤ R.

In order to prove the correctness of the algorithm, we do not model it in all detail from the beginning. Instead, we
start with a rather abstract model, which is still sufficient to prove various important properties for the algorithm. Then
we gradually add the required details to that initial model. Such an abstraction strategy proves to be essential to our
development.

The main purpose of the recovery algorithm is to re-establish connections among the partitions that are formed by an
actor failure. Initially, we specify an abstract recoverymodel that re-establishes new connection routes after an actor failure.
In fact, the abstract model does not include a specific recovery algorithm. The initial model is kept general, as a model of
fault tolerance that has the potential to be refined to a particular recovery mechanism. We observe that, by keeping the
initial model very abstract, we can derive a pattern from it and reuse this pattern for modelling and verifying other models
of fault tolerance.

Due to these reasons, in our first model we only describe the actor network, without any knowledge about sensor nodes
and their links. With this partial knowledge about the network, we model the recovery mechanism non-deterministically
and in a centralised manner. Namely, we assume that global knowledge about 1-hop and 2-hop links (direct and indirect)
between actors is available. This global knowledge is modelled by the relation ANet for the 1-hop links and by the relation
ANet; ANet for the 2-hop links (here ANet; ANet models the forward composition of relation ANet with itself). Furthermore,
addition of new actor links in the initial model is also kept abstract, considering neither their communication range nor their
location coordinates.

M. Kamali et al. / Science of Computer Programming () – 7

Fig. 5. Overview of model development.

In the second model we focus on the distributed nature of the recovery mechanism. For this, we restrict the global
knowledge about the network topology to the information about 1-hop and 2-hop neighbours. Specifically, the recovery
mechanism is based on the knowledge stored in a variable l_net of the type (actors × actors) ↔ NODE. Assuming that
(n,m), (m, k) ∈ ANet , then a tuple (n,m,m) ∈ l_net stores the direct, 1-hop link (n,m) and a tuple (n, k,m) ∈ l_net stores
the indirect, 2-hop link (n,m); (m, k). We prove that our recovery mechanism works distributively, i.e., it is based only on
the localised knowledge stored in the l_net variable.

In the third model, we add the earlier described SNet and SANet relations that model all the links between sensors and
between sensors and actors.Moreover, the recoverymechanism is refined tomodel the re-establishing of actor links through
sensors.

Finally, in the fourth model, the actor and sensor communication ranges are introduced and the location coordinates of
nodes are specified. Links among nodes are established only if the nodes are within the communication ranges. In addition,
we employ the Euclidean distance for selecting the shortest path among two actors that are neighbours of a failed node.
Once this path is found, the recovery between the actors is performed as described in the third step, i.e., via sensors.

Let us observe that our fourth model contains all the details of the recovery algorithm described in the previous section.
However, the order of introducing these details is different from the order in which the algorithm proceeds in Section 2.2.
For instance, the algorithm is composed of three sequential parts, such as detecting a failed actor, selecting the shortest path
via actors, and establishing the selected path through sensor nodes. We detect a failed actor in the first model and then use
the detection throughout the other threemodels, while we establish the path through sensors in the thirdmodel, and finally
select the shortest path via actors in the fourth model.

This particular order of introducing details into a model is chosen because it produces logical and manageable proof
obligations. In addition, each refinement step is a small increment of the previous step, as this tends to help us manage
the proofs better with the tool rather when many details are introduced in a step. For instance, we could have introduced
the location coordinates already in the first model and selected the shortest path already in the same model. However, the
prover would then have generated many obligations that were not necessary at that stage. Similarly, adding wireless links
according to communication ranges can occur earlier in the model development, but we chose to introduce it when all the
network links were modelled, in order to simplify and reuse the proofs as much as possible.

The graphical overview of our gradual model construction is shown in Fig. 5. The boxes contain data structure names,
variable names, and event names. We will describe all these entities in detail in the following sections.

4. The initial model: recovery via direct actor links

Westart a description of our formal developmentwith the initial, abstract networkmodel representing essential network
functionality as well as a simple recovery mechanism via direct actor links. First we introduce necessary concepts in the
model context component.

4.1. Model context

The context of our initial model contains definitions of constants and sets as well as ourmodel assumptions as axioms on
the introduced sets and constants. We note here that the RODIN tool does not include support for verifying the consistency
of the model axioms. It is therefore a responsibility of the modeller to ensure this.

8 M. Kamali et al. / Science of Computer Programming () –

The set of all the network nodes is modelled as a finite (@axm1), non-empty (@axm2), generic set NODE. These nodes
can be either sensor nodes or actor nodes, hence we partition the set NODE into two subsets, sensors and actors, as described
by@axm3-6. Also we introduce an abstract set PARTITION to distinguish between partitions in the network.

We also define another generic set STATUS = {ok, fail}, where the constant fail models the failed status of a node and
the constant ok models the active status of a node (@axm7). In addition, we introduce a constant closure that models the
transitive closure of a binary relation on the set NODE (@axm8-11).

CONSTANTS closure connected ok fail sensors actors initial_node_status
SETS NODE PARTITION STATUS
AXIOMS
@axm1 finite(NODE)
@axm2 NODE ≠ ∅
@axm3 sensors ⊆ NODE
@axm4 actors ⊆ NODE
@axm5 sensors ∩ actors = ∅
@axm6 sensors ∪ actors = NODE
@axm7 partition(STATUS, {ok}, {fail})
@axm8 closure ∈ (NODE ↔ NODE) → (NODE ↔ NODE)
@axm9 ∀r · r ⊆ closure(r)
@axm10 ∀r · closure(r); r ⊆ closure(r)
@axm11 ∀r, s · r ⊆ s ∧ s; r ⊆ s ⇒ closure(r) ⊆ s

The constant closure is employed to dynamically construct all the indirect sensor links in the current network.Moreover, it
allows us to express the property of network nodes being connected. Specifically, a function (predicate) connected is defined
(@axm12-13) for this purpose. The function takes a set of nodes and a set of network links and returns a Boolean value
indicating whether all the given nodes are connected via the given links. The main definition of connected (@axm13) relies
on the existence of a link path between arbitrary nodes n and m from the given set, i.e., the pair n → m belongs to the
transitive closure on the given links.

The essential properties of connected are listed as the axioms @axm14-18. The consistency of these properties has been
proven in the interactive theoremprover HOL [19]. Themost important property for proving the correctness of the proposed
recovery mechanism is@axm14, which states that two disconnected networks become connected by adding links between
two arbitrary nodes belonging to these separate networks. We note that the other axioms of our model (@axm1-13) either
denote standard mathematical properties or constraints of our model.

Finally, the initial status of the network nodes is given as an abstract constant initial_node_status (@axm19). It can be
considered as a parameter of our formal development.

AXIOMS
@axm12 connected ∈ P(NODE) × (NODE ↔ NODE) → BOOL
@axm13 ∀S, L·(connected(S →L)=TRUE)⇔(∀n,m·n∈S∧m∈S⇒(n →m∈closure(L)))
@axm14 ∀S1, S2, L1, L2, n,m· n ∈ S1 ∧ m ∈ S2 ∧ connected(S1 → L1) = TRUE

∧ connected(S2 →L2)=TRUE ⇒connected((S1∪S2) →(L1 ∪L2∪ {n →m,m →n}))=TRUE
@axm15 ∀L·connected(∅ → L) = TRUE
@axm16 ∀L, n·n ∈ dom(L) ⇒ connected({n} → L) = TRUE
@axm17 ∀S, L1, L2·L1 ⊆ L2 ∧ connected(S → L1) = TRUE ⇒ connected(S → L2) = TRUE
@axm18 ∀S1, S2, L·S1 ⊆ S2 ∧ connected(S2 → L) = TRUE ⇒ connected(S1 → L) = TRUE
@axm19 initial_node_status ∈ NODE → STATUS

4.2. Model variables and invariants

In the machine part of our initial model we introduce seven variables as follows. Their invariant properties are listed
below (in three separate boxes).

VARIABLES
Status, ANet, recovered_ANet, rec_set, FailedNodeNeigh, rec_links, rec_forest

INVARIANTS
@inv1 Status ∈ NODE → STATUS
@inv2 ANet ∈ actors ↔ actors
@inv3 ∀n,m · n → m ∈ ANet ⇒ Status(n) = ok ∧ Status(m) = ok
@inv4 actors ▹ id ∩ ANet = ∅
@inv5 ANet = ANet−1

@inv6 recovered_ANet ∈ actors ↔ actors
@inv7 ∀n,m · n → m ∈ recovered_ANet ⇒ Status(n) = ok ∧ Status(m) = ok
@inv8 actors ▹ id ∩ recovered_ANet = ∅
@inv9 recovered_ANet = recovered_ANet−1

@inv10 ANet ∩ recovered_ANet = ∅
@inv11 FailedNodeNeigh ⊆ actors
@inv12 FailedNodeNeigh ⊆ (Status−1

[{ok}])

M. Kamali et al. / Science of Computer Programming () – 9

The dynamic status of each node (active or failed) is modelled with a function Status, which maps each node in NODE to
ok or fail (@inv1). A relation ANet denotes bidirectional, non-failed actor links (@inv2 and@inv3). This relation is required
to be irreflexive (@inv4) and symmetric (@inv5). This means that an ANet link from an actor to itself is prohibited and, if an
actor a has a link with an actor b, the actor b also has a link with the actor a. Let us note that the relation ANet stores only
direct links between actors.

For our development purposes, we define a relation recovered_ANet to store the indirect links that are established by
the recovery mechanism after a failure of an actor node. As ANet , recovered_ANet is irreflexive and symmetric. Moreover,
recovered_ANet links only active nodes, and ANet and recovered_ANet are disjoint (@inv6-10).

The recovery process is triggered by a detection of a failed actor node. The active nodes directly affected by a failure
are stored in a set variable FailedNodeNeigh. Specifically, FailedNodeNeigh contains active actor neighbours of a failed actor
(@inv11-12). The set is repeatedly updated during the recovery process, as also illustrated by the pseudo-code in Fig. 4.

...
@inv13 rec_set ⊆ actors
@inv14 rec_set ⊆ (Status−1

[{ok}])
@inv15 FailedNodeNeigh ⊆ rec_set
@inv16 rec_links ∈ rec_set ↔ rec_set
@inv17 rec_links = rec_links−1

@inv18 ∀n,m·n →m∈ rec_links∧n≠m⇒n →m∈(ANet∪ recovered_ANet∪(ANet;ANet))
@inv19 rec_forest ∈ PARTITION ↔ rec_set
@inv20 rec_forest−1

∈ rec_set → PARTITION

Tomodel and verify the recovery algorithm, which re-establishes connection among the neighbours of a failed node after
its failure, we define three extra variables rec_set , rec_links and rec_forest . These variables will be later directly involved in
defining desired properties of the recovery algorithm as model invariants.

The subset rec_set models all the active neighbours of a failed actor (@inv13-15). This set is equal to FailedNodeNeigh
when the recovery starts. However, unlike FailedNodeNeigh, it remains constant throughout the recovery process. The
relation rec_links denotes all the links between the neighbours of the failed node that can be established via ANet , ANet; ANet
or recovered_ANet (@inv16-18). Finally, the relation rec_forest models the separated network partitions caused by a node
failure as a node forest. The variable rec_forest is repeatedly updated during the recovery process when nodes gradually
discover alternative routes and thus reduce the network partitioning (@inv19-20).

...
@inv21 ∀p1·p1 ∈ dom(rec_forest) ⇒ connected(rec_forest[{p1}] → rec_links) = TRUE
@inv22 FailedNodeNeigh ≠ ∅ ⇒ card(dom(rec_forest)) = card(FailedNodeNeigh)
@inv23 card(FailedNodeNeigh) = 0 ∧ card(rec_set) ≠ 0 ⇒ card(dom(rec_forest)) = 1

The last three invariants (@inv21-23) express the desired correctness properties of the recovery algorithm. The invariant
@inv21 states that, for each element of a node forest modelled as the relation rec_forest , all its nodes are connected to each
other by the existing links in rec_links. In other words, rec_forest indeed represents a forest consisting of node trees. This
property is preserved during the recovery process when new links are added and, as a result, the forest elements aremerged
together.

The set FailedNodeNeighmodels the active neighbours of a failed node, which have not yet discovered or re-established a
link between each other. In each step of the recovery process, a node from FailedNodeNeigh is selected, the links associated
with this node andother disconnectedneighbours are re-established, and, finally, the node is removed from FailedNodeNeigh.
As a result, each recovery step decreases the number of forest elements by one. In fact, during the recovery process the
number of forest elements is always equal to that of FailedNodeNeigh, as formulated in the invariant@inv22.

When the recovery terminates, FailedNodeNeigh becomes empty. The invariant (@inv23) states that this happens only
when rec_forest represents a single node tree. In other words, all the nodes in rec_set have now a route to each other via
rec_links. This essentially gives us a proof of correctness of the modelled recovery algorithm since it relates the end of the
recovery with the reconnection of all the actor nodes whose neighbour has previously failed.

4.3. Model events

The initial model contains six events (in addition to the obligatory initialisation event).

INITIALISATION
BEGIN
@act1 Status := initial_node_status
@act2 ANet := ∅
@act3 recovered_ANet := ∅
@act4 rec_links := ∅
@act5 rec_forest := ∅
@act6 FailedNodeNeigh := ∅
@act7 rec_set := ∅

END

ActivateNode
ANY nWHERE
@grd1 n ∈ actors
@grd2 Status(n) = fail
@grd3 FailedNodeNeigh = ∅

THEN
@act1 Status(n) := ok

END

10 M. Kamali et al. / Science of Computer Programming () –

The INITIALISATION event sets the status of all the nodes based on the given constant initial_node_status and, as a result,
builds the initial configuration of the network. The relations ANet , recovered_ANet , rec_links and rec_forest are all initialised
to be empty. The sets FailedNodeNeigh and rec_set are initialised to empty sets as well.

The other events in the initial model activate actor nodes from failed to active (ActivateNode), add actor links (AddLink),
deactivate actor nodes and remove their corresponding links (DeactivateNode), and abstractly recover connections when
an actor fails (Recovery1, Recovery2 and Recovery3). Thus, starting from the initial setting (given as initial_node_status)
consisting of failed and active actors that have no links between each other, we can randomly activate actors, add links
between active actors, as well as deactivate actors and remove their corresponding links.

The DeactivateNode event models actor failures and thus enables our recovery mechanism. Until the recovery is
complete, the first three events (ActivateNode, AddLink, and DeactivateNode) are not enabled anymore. Consequently,
we have the normal operation phase of the network, when the ActivateNode, AddLink, and DeactivateNode events are
non-deterministically executed, and the recovery phase of the network, when only Recovery1, Recovery2 and Recovery3
events are executed. The phase separation is modelled using the variable FailedNodeNeigh. While FailedNodeNeigh is empty,
the network is in its operational phase. Otherwise, the network is in its recovery phase.

In the ActivateNode event shown above, the status of a failed actor (see the event guards@grd1 and@grd2) is changed
to active (the action@act1). The event is enabled if FailedNodeNeigh is empty (@grd3), thus this is an event of the operational
phase.

AddLink
ANY n mWHERE
@grd1 n ∈ actors ∧ m ∈ actors
@grd2 Status(n) = ok ∧ Status(m) = ok
@grd3 n ≠ m
@grd4 n → m /∈ ANet
@grd5 FailedNodeNeigh = ∅

THEN
@act1 ANet := ANet ∪ {n → m,m → n}
@act2 recovered_ANet := recovered_ANet \ {n → m,m → n}

END

In the AddLink event, we add a link between two distinct, active actors (@grd1-3) that are not connected (@grd4). To
respect the invariants @inv5 and @inv10, we also add the links in both directions in ANet (@act1) and remove them from
the relation recovered_ANet (@act2). This corresponds to cancelling the temporary links proposed by the recovery algorithm.
When twonodes can be connected directly, an indirect link consumingmore power is not needed. Therefore, the constructed
indirect links are removed from recovered_ANet . The event is enabled only if FailedNodeNeigh is empty (@grd5), thus this is
again an event of the operational phase. In later refinement models we restrict adding communication links based on the
communication range of the actors.

DeactivateNode
ANY n i WHERE
@grd1 n ∈ actors
@grd2 Status(n) = ok
@grd3 FailedNodeNeigh = ∅
@grd4 i ∈ ANet[{n}] � PARTITION
@grd5 i−1

∈ PARTITION � ANet[{n}]
THEN
@act1 Status(n) := fail
@act2 ANet := {n} ▹− ANet ◃− {n}
@act3 recovered_ANet := {n} ▹− recovered_ANet ◃− {n}
@act4 FailedNodeNeigh := ANet[{n}]
@act5 rec_forest := i−1

@act6 rec_set := ANet[{n}]
@act7 rec_links := (ANet[{n}] ▹ id)

END

The event DeactivateNode changes the status of an active actor (@grd1-2) to that of a failed one (@act1). Also, all the
links of the actor are removed from both ANet and recovered_ANet , which is expressed by using correspondingly the domain
subtraction operator ▹− and the range subtraction operator ◃− in the event actions @act2-3. By removing these links, we
preserve the invariant property @inv3. In addition, the neighbours of the actor are included into the set FailedNodeNeigh
(@act4).

In order to verify correctness of the recovery algorithm, we construct a node forest, all elements of which consists of
individual nodes (the neighbours of the failed node), as required by @grd4-5. As a result, the number of the failed node’s
neighbours is the number of forest elements at the start of the recovery process. The constructed forest becomes a new
value of the relation rec_forest (@act5). At the same time, the variable rec_set is assigned the set consisting of all the
failed node’s neighbours (@act6). Finally, the variable rec_links is re-initialised for recovery by linking all the neighbour
nodes to themselves (@act7). Consequently, the event DeactivateNode acts as an initialisation event for the recovery
process.

M. Kamali et al. / Science of Computer Programming () – 11

DeactivateNode is an event of the operational phase, enabled only when FailedNodeNeigh is empty (@grd3). If the failed
actor has neighbours in ANet , FailedNodeNeigh becomes not empty after@act4 is executed. At this point, the network enters
into the recovery phase. As mentioned in Section 3, we only model the situations where one actor fails at a time, therefore
DeactivateNode cannot become enabled again until the recovery for this failed node is finished.

Recovery1
ANY n kWHERE
@grd1 n ∈ FailedNodeNeigh ∧ k ∈ FailedNodeNeigh ∧ n ≠ k
@grd2 n → k /∈ ANet ∧ n → k /∈ ANet; ANet

THEN
@act1 recovered_ANet := recovered_ANet ∪ {n → k, k → n}
@act2 FailedNodeNeigh := FailedNodeNeigh \ {n}
@act3 rec_links := rec_links ∪ {n → k, k → n}
@act4 rec_forest := ({rec_forest−1(n)} ▹− rec_forest)

∪({rec_forest−1(k)} × rec_forest[{rec_forest−1(n)}])
END

Deactivating an actor triggers the recovery process. The event Recovery1 is enabled when two neighbours of the failed
actor (@grd1) have no connection through other neighbours (@grd2) (there is no path fromone actor to another considering
atmost 2-hop distance).We note that this check does not imply that deactivation of an actor necessarily leads to partitioning
of the actor network, although in some cases it may.

A full check for the actor network partitioning would require the guard@grd2 to be of the form n → k /∈ closure(ANet).
However, this is a very strong condition for an actor node, since no actor can have such global knowledge on the entire actor
network. Hence, we enable our recovery phase if there are no short (maximum 2-hop) paths among the neighbours of the
deactivated actor.

When the event Recovery1 is executed, a direct actor–actor link is established and stored separately in the relation
recovered_ANet (@act1). This separation is essential becauseANet models only the direct links betweennodes. The recovered
links modelled by recovered_ANet are ‘magically’ re-established direct links. In other words, the linked nodes are not within
the communication range of each other and thus they need, in fact, to communicate through some intermediate nodes,
which are not yet modelled at this level of abstraction.

When a link is established between two nodes belonging to the set FailedNodeNeigh, this link is also added to the relation
rec_links (@act3).Moreover, the two separated elements of the node forest, denoted by n and k are nowmerged to a joint one
(@act4), so that their corresponding node trees are now connected through the added links. At the same time, a neighbour
node is removed from the set FailedNodeNeigh (@act2).

Recovery2
ANY n kWHERE
@grd1 n ∈ FailedNodeNeigh ∧ k ∈ FailedNodeNeigh
@grd2 n → k ∈ ANet ∨ n → k ∈ (ANet; ANet) \ (actors ▹ id)

THEN
@act1 FailedNodeNeigh := FailedNodeNeigh \ {n}
@act2 rec_links := rec_links ∪ {n → k, k → n}
@act3 rec_forest := ({rec_forest−1(n)} ▹− rec_forest)

∪({rec_forest−1(k)} × rec_forest[{rec_forest−1(n)}])
END

The event Recovery2 deals with the situation when a failure is detected but an alternative path through 1-hop or 2-hop
neighbours already exists between the neighbours of the deactivated actor, i.e.,

n → k ∈ ANet ∨ n → k ∈ ANet; ANet \ (actors ▹ id).

In this case, FailedNodeNeigh is simply updated by removing the corresponding node. Adding links to rec_links and merging
elements of a node forest in rec_forest are similar to Recovery1.

Recovery3
WHERE
@grd1 card(FailedNodeNeigh) = 1

THEN
@act1 FailedNodeNeigh := ∅

END

The event Recovery3 concludes the recovery process by removing the last remaining node from FailedNodeNeigh.
According to the invariant@inv23, all the forest elements are now merged into a single node tree.

12 M. Kamali et al. / Science of Computer Programming () –

Table 1
Mapping between elements of the original algorithm and the initial
model.
Elements of algorithm Elements of initial model

FailedNodeNeighbours FailedNodeNeigh
Actors actors
Failed_Actors Status−1

[{fail}]
Active_Actors Status−1

[{ok}]
lines 1–2 FailedNodeNeigh ≠ ∅
lines 3–4 @act1 in the event DeactivateNode
line 6 @act4 in the event DeactivateNode
lines 7–8 @grd1-2 in the event Recovery2
lines 9–10 @act2 in the event DeactivateNode
line 11 @act1 in the event Recovery2
line 12 @grd1-2 in the event Recovery1
line 21 @act2 in the event Recovery1

4.4. Model properties

theorem @THM1(∃n · n ∈ actors ∧ Status(n) = fail ∧ FailedNodeNeigh = ∅)
∨ (∃ n,m · n ∈ actors ∧ m ∈ actors ∧ Status(n) = ok ∧ Status(m) = ok ∧ n ≠ m

∧ n → m /∈ ANet ∧ FailedNodeNeigh = ∅)
∨ (∃ n · n ∈ actors ∧ Status(n) = ok ∧ FailedNodeNeigh = ∅)
∨ (∃ n, k · n ∈ FailedNodeNeigh ∧ k ∈ FailedNodeNeigh ∧ n ≠ k ∧ n → k /∈ ANet

∧n → k /∈ (ANet; ANet))
∨ (∃ n, k · n ∈ FailedNodeNeigh ∧ k ∈ FailedNodeNeigh ∧ (n → k ∈ ANet

∨ n → k ∈ (ANet; ANet) \ (actors ▹ id)))
∨ (card(FailedNodeNeigh) = 1)

Besides the correctness property discussed above, we show that the overall model presented in this section is deadlock-
free, i.e., at any moment at least one event is enabled. We state this property as theorem @THM1, which is proved once for
the wholemodel (unlikemodel invariants proven separately for each event). The theorem simply states that the disjunction
of the guards of all the events is always true. In fact, we prove this type of theorem once for each refined model, i.e., also for
the models in Sections 5–7.

Let us note that each recovery event removes a node from the set FailedNodeNeigh. Since FailedNodeNeigh is a finite
set (@axm1, @axm4, @inv11), the recovery events can be enabled only a finite number of times. This means that the
recovery phase, triggered by a node failure, always terminates. Technically, we show this by proving that the natural number
expression card(FailedNodeNeigh) is decreased by each execution of Recovery1, Recovery2, and Recovery3.

4.5. The original algorithm and our initial model

The mapping between elements of the algorithm pseudo-code, given in Fig. 4, and the initial model is presented in
Table 1. There are several elements from Fig. 4 that are missing in our initial model. The reason for that is that the presented
model is still quite abstract, yet containing all the necessary elements to enable us to later introduce various facets of the
original algorithm. Thus, lines 16–20 from the pseudo-code have no correspondence in the initial model, but will have
correspondence in the subsequent models.

Overall, the initial model presented in this section describes non-deterministic activation and deactivation of actor
nodes as well as adding and removing of actor links in a dynamic (wireless sensor–actor) network. In such a network,
communication problems between the actor nodes are detected and recovered from via ‘magically’ re-established direct
actor links. The recovery process assumes some global network knowledge, specifically, accessing data for calculating
ANet; ANet . Recovery finishes by non-deterministically establishing direct links among the active actor neighbours of the
failed actor. Such a recovery mechanism can be used in practice only for strategic actors, i.e., the actor nodes whose range
is sufficiently large to check the contents of ANet and ANet; ANet and re-establish direct actor links. The following models
consider more localised assumptions as well as indirect recovery paths.

Let us observe that, after the initialisation of our actor network, we have an arbitrary distribution of failed and active
nodes. The active nodes can be later connected via arbitrary links using the AddLink event. We do not aim our recovery at
the initially failed nodes, since there is nothing to recover there: those nodes have no previous links that no longer function
due to somenode failure. Instead, our recovery is concerned onlywith deactivation (failure) of actor nodes that occurs during
functioning of the network.

M. Kamali et al. / Science of Computer Programming () – 13

5. First refinement: recovery via indirect actor links

In the previous sectionwe have presented a formalmodel of the actor network recovery based on some global knowledge
about thenetwork links. In this sectionwe showhowwecan refine thepresented abstractmodel so that each actor has access
only to information of its 1-hop neighbours and 2-hop neighbours, i.e, by modelling the actor–actor coordination recovery
using local information.

The goal of this refinement step is to supplement the global knowledge about the network used in the initial model with
the localised information for every actor. We achieve this by introducing a new variable, the relation l_net , that for each
actor keeps track of the 1-hop and 2-hop neighbours and the recovered links between them that are stored in the abstract
model by recovered_ANet .

@inv24 l_net ∈ (actors × actors) ↔ NODE
@inv25 actors ▹ id ∩ dom(l_net) = ∅
@inv26 ∀n,m.n →m ∈ ANet ↔ n →m →m∈ l_net
@inv27 ∀n,m, k.n≠m ∧ m≠k ∧ n →k →m∈ l_net ⇒

(n →k∈ recovered_ANet ∪ ((recovered_ANet ∪ ANet); (recovered_ANet ∪ ANet)))
@inv28 recovered_ANet ⊆ dom(l_net)

The relation l_net is irreflexive (@inv25) and it relates a pair of actor nodes via some other (not necessarily actor) node
(@inv24). Themeaning of this relation is that any 1-hop neighbourm of an actor node n is denoted by n → m → m ∈ l_net ,
while a 2-hop neighbour m of an actor n is denoted by n → m → k ∈ l_net . In the first case, m is locally related to n via
itself (by a direct link). In the second case,m is locally related to n via k (m is a 2-hop neighbour of n, while k is either a 1-hop
neighbour of n or an intermediate node discovered by the recovery mechanism). In such a way, the relation l_net describes
all the localised links between nodes.

All links in ANet form 1-hop links of l_net: @inv26 is thus a gluing invariant. The connection between 2-hop links in
l_net and the global structures ANet and recovered_ANet is more intricate and expressed by the gluing invariant@inv27. As
a result, we use l_net in all the places where global information about the network is needed.

AddLink
extends AddLink
THEN
@act3 l_net := (l_net \ (({n} × {m} × Status−1

[{ok}] \ ANet[{n}]) ∪

({m} × {n} × Status−1
[{ok}] \ ANet[{m}]))) ∪ {n → m → m,m → n → n}

END

When a new link is added between two actors, the relation l_net also needs to be updated. Therefore, the event AddLink
is extended to add links to l_net . For every two actors n and m that have a direct link, n → m → m and m → n → n are
added into l_net (@act3), which means that m is a 1-hop neighbour of n and vice versa. If there exist any recovered links,
they are removed from the l_net relation. The expression (used in the action@act3)

{m} × {n} × Status−1
[{ok}] \ ANet[{m}]

results in all the links betweenm and n that are not 1-hop or 2-hop neighbours ofm, i.e., they belong to the recovered links
in l_net .

Addl_net2hopLink
ANY n m k WHERE
@grd1 Status(n) = ok ∧ Status(m) = ok ∧ Status(k) = ok
@grd2 m → k → k ∈ l_net ∧ m → n → n ∈ l_net ∧

n → k → m /∈ l_net ∧ k → n → m /∈ l_net
@grd3 m ≠ n ∧ n ≠ k
@grd4 FailedNodeNeigh = ∅

THEN
@act1 l_net := l_net \ (({k} × {n} × (Status−1

[{ok}] \ ANet[{k}])) ∪

({n} × {k} × (Status−1
[{ok}] \ ANet[{n}]))) ∪ {n → k → m, k → n → m}

END

The event Addl_net2hopLink is a newly introduced event that handles the addition of 2-hop neighbour links for actor
nodes. If an actor has a direct link with two other actors, these actors become 2-hop neighbours of each other. The actors
involved in this event have to be active (@grd1) and distinct (@grd3). Moreover, the pairs (m, k) and (m, n) have a direct
(1-hop) link, but a 2-hop link between n and k does not yet belong to l_net (@grd2). As a result of the event, if there are
any 2-hop links between n andm re-established through the recovery, these links are removed from l_net , while the newly
detected 2-hop links are added to l_net (@act1).

DeactivateNode
extends DeactivateNode
THEN
@act8 l_net := l_net \ (({n} × dom(ANet) × Status−1

[{ok}])
∪(dom(ANet) × {n} × Status−1

[{ok}] \ ANet[{n}]))
END

14 M. Kamali et al. / Science of Computer Programming () –

When deactivating an actor node, all its links are also removed from l_net . Therefore, the event DeactivateNode is
extended by a new action @act8 removing the links to and from the failed actor from the relation l_net . The expression
(used in the added action)

{n} × dom(ANet) × Status−1
[{ok}]

describes all the links from n, either direct (1-hop neighbours) or indirect (2-hop neighbours), as well as the recovered links.
The expression

dom(ANet) × {n} × Status−1
[{ok}] \ ANet[{n}]

describes all the links to n that are either direct connections (1-hop neighbours) or recovered ones.
In the followingwemodel detection of failed actors and recovery of node links based on the introduced local information

instead of the global actor–actor coordination data described by ANet; ANet . As a result, the l_net information is used in
addition to ANet for detecting an actor failure (@grd3) and recovering links in the event Recovery1 presented below.

Recovery1
extends Recovery1
ANY n m k WHERE
@grd3 n → k → m ∈ l_net ∧ n → m → m /∈ l_net ∧ k → n → m ∈ l_net ∧ k → m → m /∈ l_net
@grd4 n → k → k /∈ l_net ∧ k → n → n /∈ l_net

THEN
@act5 l_net :| l_net ′ ⊆ (l_net \ {n → k → m, k → n → m}) ∪

({n} × {k} × Status−1
[{ok}] \ ANet[{n}]) ∪ ({k} × {n} × Status−1

[{ok}] \ ANet[{k}]) ∪

indir(k, n) ∪ indir ~(n, k) ∪ indir(n, k) ∪ indir ~(k, n)
END

When an actorm is detected as failed, the neighbours ofm (say, n and k) that are connected to each other viam (n → k → m
and k → n → m belong to l_net) need to find an alternative route for communication. If there is no other route in ANet
(n → k /∈ ANet∧n → k /∈ ANet; ANet) (asmodelled by@grd2 of Recovery1 in the abstractmodel), l_net should be updated
by both removing invalid links and adding new ones. Since the node m is marked as failed, the links between n and k via m
are not valid anymore. As a result, both n → k → m and k → n → m are removed from l_net .

The relation l_net should be also updated by adding new links to connect n and k. In the refined model, we define that an
actor n can establish a link with an actor k through any active node which is not a neighbour of n, i.e., the new link belongs
to {n} × {k} × Status−1

[{ok}] \ ANet[{n}]. Similarly, for the actor k to establish a new link with the actor n, this new link
should belong to {k} × {n} × Status−1

[{ok}] \ ANet[{k}].
In addition, we have to update l_net with 2-hop links involving the neighbours of n and k. For the sake of illustration, we

will use the following short definitions throughout the paper:

indir(k, n) = ANet[{k}] × {n} × {k}

and

indir ~(n, k) = {n} × ANet[{k}] × {k}

Here indir(k, n) and indir ~(n, k) describe the 2-hop links involving the neighbours of k.
When the node n establishes a link with k, the neighbours of n also need to add node k to their 2-hop neighbours

list (expressed as indir(n, k) and indir ~(k, n) respectively). Moreover, the neighbours of k need to add n to their 2-hop
neighbours list (expressed as indir(k, n) and indir ~(n, k) respectively). The whole required update of l_net is described by
@act5 in the event Recovery1.

Recovery2-1
extends Recovery2
ANY n m k WHERE
@grd3 (n → k ∈ dom(l_net \ {n → k → m}) ∧ n → m → m /∈ l_net

∧ k → n ∈ dom(l_net \ {k → n → m}) ∧ k → m → m /∈ l_net)
∨(n → k → k ∈ l_net ∧ k → n → n ∈ l_net)

THEN
@act4 l_net := l_net \ ({n → k → m, k → n → m} ∪ indir(n,m) ∪ indir(k,m))

END

Recovery2-2
extends Recovery2
ANY n m k WHERE
@grd3 n → k /∈ dom(l_net \ {n → k → m}) ∧ n → m → m /∈ l_net

∧ k → n /∈ dom(l_net \ {k → n → m}) ∧ k → m → m /∈ l_net
∧ n → k → k /∈ l_net ∧ k → n → n /∈ l_net

THEN
@act4 l_net :| l_net ′ ⊆ (l_net \ {n → k → m, k → n → m})

∪({k} × {n} × Status−1
[{ok}] \ ANet[{n}]) ∪ ({n} × {k} × Status−1

[{ok}] \ ANet[{n}])
∪ indir(k, n) ∪ indir ~(n, k) ∪ indir(n, k) ∪ indir ~(k, n)

END

M. Kamali et al. / Science of Computer Programming () – 15

The eventRecovery2 is refined by two events to consider two different cases involving l_net when there is a link between
two neighbours either through ANet or ANet; ANet . The first case describes the situation when there is a 2-hop link between
two FailedNodeNeigh nodes which is already included in l_net , while the second case covers the situation when there is a
2-hop link between them which is not yet included in l_net . In the former case, we update l_net by removing all the links
with the failed actor or via it. In the latter case, we remove invalid links and add new routes into l_net . Refining Recovery2
in such a way allows us to re-establish a new link via l_net without using recovered_ANet .

The relation l_net is an elegant data structure relating two actor nodes in its domain via a third node in its range. The
model described in this section is a refinement of the (more abstract) model presented in the previous section. This means
that the old invariants still hold for the extended model, in addition to the five new ones. Moreover, the link recovery
mechanism terminates in a finite number of steps. Indirect links between actors are now established non-deterministically
based on the localised information. These types of links can be further refined to a more deterministic form, as we show in
the next section.

The pseudo-code in Fig. 4 has no counterpart in the model in this section, because we have not shown any information
about 1-hop and 2-hop neighbours in Fig. 4. These details appear only in a more detailed version of the pseudo-code in [5].

The refined model is a specific distributed actor–actor coordination model using the l_net data structure. The actor–
actor coordination recovery mechanism is based on this local coordination model. It is also shown that when 2-hop
node neighbours, i.e., indirect links in l_net , are not updated, additional new links can be established. However, adding
more recovered links through intermediate nodes requires extra power consumption in the whole network. Since power
consumption is one of the main constraints in WSANs, this can be considered as a weakness of the recovery algorithm.

6. Second refinement: sensor-based recovery

In the previous model, we have defined l_net as a special relational structure for actor nodes. After detection of an actor
failure, l_net had to be updated non-deterministically, due to the lack of knowledge about sensor nodes. In this refined
model, we add sensor nodes and specify concretely how replacement links through sensors are added after detecting an
actor failure. For this, we introduce two new relations onNODE, SNet (@inv29) and SANet (@inv30), the former representing
the links between sensor nodes and the latter modelling the links between sensor and actor nodes.

INVARIANTS
@inv29 SNet ∈ sensors ↔ sensors
@inv30 SANet ∈ NODE ↔ NODE
@inv31 SNet ∩ ANet = ∅
@inv32 ANet ∩ SANet = ∅
@inv33 SNet ∩ SANet = ∅
@inv34 SNet = SNet−1

@inv35 SANet = SANet−1

@inv36 sensors ▹ id ∩ SNet = ∅
@inv37 NODE ▹ id ∩ SANet = ∅
@inv38 ∀n,m · n → m ∈ SANet ⇒

(n ∈ actors ∧ m ∈ sensors) ∨ (m ∈ actors ∧ n ∈ sensors)
@inv39 ∀n,m · n → m ∈ SNet ⇒ Status(n) = ok ∧ Status(m) = ok
@inv40 ∀n,m · n → m ∈ SANet ⇒ Status(n) = ok ∧ Status(m) = ok
@inv41 ∀n, k, x, y · n → k → x ∈ l_net ∧ k → n → y ∈ l_net ∧ x ∈ sensors ∧ y ∈ sensors ⇒

x ∈ SANet[{n}] ∧ y ∈ SANet[{k}] ∧ x → y ∈ closure(SNet)
@inv42 ∀n,m · n →m∈ recovered_ANet⇒(∃k · k∈ sensors ∧ n →m →k ∈ l_net)

These relations describe links between nodes at a different level, hence they are disjoint from the actor linksmodelled by
ANet (@inv31 and @inv32). SNet and SANet are also disjoint sets (@inv33). Moreover, they are symmetric and irreflexive
sets (@inv34-37). We also require that, for each link n → m in SANet , one of these nodes should be a sensor node and the
other one should be an actor node (@inv38).

The next two invariants (@inv39 and @inv40) express the property that every node involved in either SNet or SANet
should be active. The invariant @inv41 states that the actor–actor recovered links of l_net can be reconstructed by actor–
sensor and sensor–sensor links contained correspondingly in SANET and SNET . Finally, the invariant @inv42 is a gluing
invariant showing how the global structure recovered_ANet can be replaced by the local information l_net and the available
sensor nodes.

We add two new events for adding links between sensor nodes into SNet and links between sensor and actor nodes into
SANet: AddSLink and AddSALink.

AddSLink
ANY n m WHERE
@grd1 n ∈ sensors ∧ m ∈ sensors
@grd2 Status(n) = ok ∧ Status(m) = ok
@grd3 n → m /∈ SNet
@grd4 n ≠ m
@grd5 FailedNodeNeigh = ∅

THEN
@act1 SNet := SNet ∪ {n → m,m → n}

END

AddSALink
ANY n mWHERE
@grd1 n∈actors∧m∈ sensors
@grd2 Status(n) = ok ∧ Status(m) = ok
@grd3 n → m /∈ SANet
@grd5 FailedNodeNeigh = ∅

THEN
@act1 SANet := SANet ∪ {n → m,m → n}

END

16 M. Kamali et al. / Science of Computer Programming () –

The AddSLink event is similar to AddLink except for a different guard, which that models that, for every link n → m added
in AddSLink, n and m should be sensor nodes. The event AddSALink models adding of links between sensors and actors in
a similar way.

The events AddSLink and AddSALink belong to the operational phase of the network, hence they also have the condition
FailedNodeNeigh = ∅ as one of their guards (@grd5 in both events).

DeactivateNode
refines DeactivateNode
THEN
@act8 l_net := l_net \ (({n} × dom(ANet) × Status−1

[{ok}]) ∪

(dom(ANet) × {n} × {n}) ∪ (dom(ANet) × {n} × dom(SNet)))
@act9 SANet := {n} ▹− SANet ◃− {n}

END

In the previous models, removing an actor and all its connections was modelled by the event DeactivateNode. In this
model we refine DeactivateNode because all the connections through actor and sensor nodes to and from a failed actor
should be removed from l_net (@act8). The expressions dom(ANet) × {n} × {n} and dom(ANet) × {n} × dom(SNet)
describe respectively all the direct and recovered links to n. These links belong to the relational expression dom(ANet) ×

{n} × Status−1
[{ok}] that was used in the previous models. Therefore, action refinement is proven for DeactivateNode

(the simulation proof obligation (REF_SIM)). Finally, we add a new action for updating SANet after removing an actor node
(@act9).

A similar action refinement is done in the event Addl_net2hoplink. The action@act1 in Addl_net2hoplink is refined by
updating l_net with

l_net \ (({k} × {n} × sensors) ∪ ({n} × {k} × sensors)) ∪ {n → k → m, k → n → m}.

This assignment actually restricts removing the recovered links through sensors from l_net when there is an alternative
path through actors.

Recovery1
extends Recovery1
ANY n m k x yWHERE
@grd5 x ∈ SANet[{n}] ∧ y ∈ SANet[{k}]
@grd6 x → y ∈ closure(SNet)

THEN
@act5 l_net := (l_net \ ({n → k → m, k → n → m} ∪ indir(n,m) ∪ indir(k,m)))

∪ indir(k, n) ∪ indir ~(n, k) ∪ indir(n, k) ∪ indir ~(k, n)
∪ {n → k → x, k → n → y}

END

The event Recovery1, which models the recovery after an actor failure, is refined based on the information present in
SNet and SANet . Compared to the previous version of the event, there are two additional parameters x and y representing
the sensor nodes connected with the respective actor nodes n and k (@grd5). Also, x and y have either a direct or indirect
link between each other, via closure(SNet) (@grd6).

The action @act5 in Recovery1 was described non-deterministically in the previous model. We now refine this
assignment to a deterministic one. Specifically, we replace {k} × {n} × Status−1

[{ok}] \ ANet[{n}] with k → n → y and,
similarly, {n} × {k} × Status−1

[{ok}] \ ANet[{n}] with n → k → x. The similar action @act4 in Recovery2-2 is refined
accordingly. These actions correspond to line 20 of the recovery algorithm pseudo-code shown in Fig. 4.

To show the correctness of the modifications made in Recovery1, the simulation proof obligation (REF_SIM) is again
discharged. This ensures that the execution of the concrete version of Recovery1 is not contradictory to that of the abstract
one. The obligation is proved by showing that the abstract event models a more general case than the concrete one.

In this refined model, we uncover the sensor infrastructure and employ it for the actor recovery. This model is a
refinement of the previous models, respecting all the introduced invariants. The third model illustrates the usage of sensors
as a fault tolerance mechanism for the actor coordination. This refinement step includes a large number of proof obligations
because, firstly, we add a new type of nodes and their corresponding networks and, secondly, all the non-deterministic
actions in the previous model are substituted with deterministic ones. The latter leads to the simulation proof obligations
that are generated to prove the consistency between the abstract and concrete models.

7. Third refinement: sensor-based recovery via the shortest actor path

Our previous systemmodel re-establishes connections through sensor nodes between pairs of actor nodes that are direct
neighbours of a failed actor node. However, this is not an optimal mechanism since the actor nodes can be far from each
other and may need to involve numerous sensor nodes to re-establish the connection, while there might be a shorter path
for this.

INVARIANTS
@inv43 locX ∈ NODE → 0..X
@inv44 locY ∈ NODE → 0..Y
...

M. Kamali et al. / Science of Computer Programming () – 17

To determine the shortest path between actor nodes, we need information about the physical location of the nodes. For
this purpose, in this model we introduce new variables locX and locY to store the (x, y) coordinates for actor nodes (@inv43,
@inv44).

CONSTANTS X Y init_locX init_locY r_s r_a dist
AXIOMS
@axm20 X ∈ N1
@axm21 Y ∈ N1
@axm22 init_locX ∈ NODE → 0..X
@axm23 init_locY ∈ NODE → 0..Y
@axm24 dist ∈ NODE × NODE → N1
@axm25 r_a ∈ N1
@axm26 r_s ∈ N1

A number of new constants are also added into the model context component. Namely, constants X (@axm20) and Y
(@axm21) represent the height and width of the field where the WSAN has been deployed. The locations of all nodes are
initialised with constants init_locX (@axm22) and init_locY (@axm23). We also define a new constant dist (@axm24) as a
function on node pairs in such a way that the distance dist(i, j) stands for

(locX(i) − locX(j)) ∗ (locX(i) − locX(j)) + (locY (i) − locY (j)) ∗ (locY (i) − locY (j))

As explained in Section 3, a link between nodes can be added only when they are within the communication range of each
other. To model that, we introduce the actor communication range r_a (@axm25) and the sensor communication range r_s
(@axm26) as abstract constants in the model context.

INVARIANTS
...
@inv45 ∀n,m·n → m → m ∈ l_net ⇒ dist(n → m) ≤ r_a
@inv46 ∀n,m·n → m ∈ SNet ⇒ dist(n → m) ≤ r_s
@inv47 ∀n,m·n → m ∈ SANet ⇒ dist(n → m) ≤ r_s
@inv48 ∀n,m, k·n → m → k ∈ l_net ∧ k ∈ actors ⇒ dist(n → k) ≤ r_a ∧ dist(m → k) ≤ r_a
@inv50 ∀n,m·n ∈ FailedNodeNeigh ∧ m ∈ FailedNodeNeigh ⇒ dist(n → m) ≤ (r_a + r_a)
...

Having defined the communication range and the distance function, we can now formulate the network requirements
for adding links by @inv45-50. These invariants state that a link between two nodes in ANet , l_net , SNet and SANet can be
added only if the nodes are within the pre-defined range from each other.

In the refined model, the guards of the event AddLink are strengthened to permit adding links only when the nodes are
within the range. Specifically, the event is enabled when the physical distance between nodes is less than or equal to the
communication range of actor nodes (dist (n → m) ≤ r_a). Similarly, the guards of the events AddSLink and AddSALink
are strengthened to add links between sensors and sensors–actors in SNet and SANet only if the distance between them is
less than or equal to r_s (dist(n → m) ≤ r_s).

The network recovery modelled so far proceeds by choosing one of the neighbours of a failed node and re-establishing
its connection to another neighbour. The choice of a pair of the neighbour nodes is completely arbitrary. To optimise the
recovery process, we introduce some node priorities when selecting a (first) node for recovery. Such a node priority stands
for the number of direct (1-hop) neighbours of the node and can also be referred to as the node degree.

Once the first actor node is selected according to its degree, the choice of the second one depends on the physical location
information of the network nodes introduced in this refinement step. More specifically, the closest actor node (according to
the function dist defined above) is chosen to re-establish connection with.

As explained in Section 2.2, a direct neighbour of the failed node with the highest degree calculates its distance from
other direct neighbours of the failed node and chooses to connect (via sensors) to the closest actor. Next, an actor node with
the second highest degree calculates its distance to the other neighbours of the failed actor. This process continues until all
the neighbours of the failed actor have a new route via sensors.

INVARIANTS
...
@inv51 degree ∈ rec_set → 0..card(NODE)
@inv52 Neigh_temp ⊆ FailedNodeNeigh
@inv53 Neigh_temp ∩ dom(degree) = ∅
@inv54 Neigh_temp = ∅ ⇒ FailedNodeNeigh = dom(degree)

The function variable degree is introduced to store the current degree of each neighbour of the failed actor (@inv51). The
degree of all the neighbours of the failed node has to be recalculated every time the recovery starts. The neighbour nodes
that still require to recalculate their degree are stored in a set variable Neigh_temp (@inv52-54). Essentially, this variable
controls the loop of degree calculation, while the natural number expression card(Neigh_temp) also serves as a loop variant
guaranteeing its termination.

The invariant @inv53 states that, when the calculation of the degree is finished, the calculated degree is assigned to all
the neighbours of the failed node. When Neigh_temp becomes empty, the computation of degree is completed, establishing
the invariants@inv52 and @inv54.

18 M. Kamali et al. / Science of Computer Programming () –

DeactivateNode
extends DeactivateNode
THEN
@act7Neigh_temp :=dom(l_net−1

[{n}])
END

Degree
ANY nWHERE
@grd1 FailedNodeNeigh ≠ ∅
@grd2 n ∈ Neigh_temp

THEN
@act1 degree :=

degree ∪ {n →card(dom(l_net−1
[{n}]))}

@act2 Neigh_temp := Neigh_temp \ {n}
END

The event DeactivateNode needs to be extended to assign a new value to the variable Neigh_temp (@act7). When n is
the deactivated (failed) node, then l_net−1

[{n}] denotes all its 1-hop neighbours.
In this refinement step we also add a new event Degree to model the degree calculation loop, i.e., to calculate the degree

of all the actors in Neigh_temp. The event belongs to the recovery phase of the network, i.e., FailedNodeNeigh is not empty
(@grd1). Degree recalculates the degree for one element of the set variable Neigh_temp and then removes it from the set.
As mentioned above, the decreasing cardinality of Neigh_temp guarantees termination of the looping events modelling the
recovery process.

To guarantee non-interference from the other events of the recovery phase, we block their execution until the degree
calculation is completed. Blocking is done by adding the guard Neigh_temp = ∅.

Recovery1
extends Recovery1
WHERE
@grd7 Neigh_temp = ∅
@grd8 degree(n) = max(dom(degree−1))
@grd9 ∀i · i ∈ dom(degree) \ {n, k} ⇒ dist(n → k) ≤ dist(n → i)

THEN
@act6 degree := {n} ▹− degree

END

The recovery events Recovery1, Recovery2-1 and Recovery2-1 are also refined to constrain node selection for recovery.
The presented event Recovery1 contains three additional guards. The guard@grd7 blocks the event during the node degree
calculation. The guard @grd8 requires the neighbour node n to be one with the highest degree. Finally, the guard @grd9
constrains selection of the node k to be the closest neighbour of n. The additional action @act6 removes the node n from
degree once the node is re-connected. The same guards and action are added to Recovery2-1 and Recovery2-2.

The added new guards constrain the random choice of nodes from FailedNodeNeigh in the same way as in the original
proposed recovery algorithm in [5]. In particular,@grd8 corresponds to lines 16–17 in Fig. 4 and@grd9 corresponds to lines
18–19 in Fig. 4.

8. Proving and refinement

Our aim throughout the development has been to make refinement steps in such a way that the proofs are manageable
by the RODIN platform — our modelling and proving environment. Our initial model is sufficiently abstract to be refined
for modelling some other recovery algorithms as well. To faithfully model and verify our target algorithm [5], we had to
gradually introduce several features into our formal development, starting from the initial model:

1. the sensor network, the actor network, and the sensor–actor network;
2. the localised node knowledge;
3. the optimal nature of the recovery path.

In this paper we have chosen to add these features to the initial model in the order 2.,1.,3., in three refinement steps. This
order of modelling the features produced a rather balanced automated-versus-interactive proving ratio in each refinement
step. However, we did not try to introduce these features in any other order, so it remains as an informative future exercise
to study a different order strategy.

We illustrate the proof statistics of our development in Table 2. These figures show the number of proof obligations
generated by the RODIN platform as well as the number of obligations automatically discharged by the platform and those
interactively proved. We notice that, in each refinement step, we have about the same percentage of automatically versus
interactively proved, namely on average 55% automated proving and 45% interactive proving.

A high number of interactive proofs came from reasoning about set comprehension and unions. The interactive proving
has also often involved manually suggesting values to discharge various properties containing logical disjunctions or
existential quantifiers.

In order to prove the functional correctness properties given in the initialmodel, we have defined the predicate connected
to express the existence of a path between a subset of nodes in a network. A number of useful properties of connectedwere
postulated as model axioms, whose consistency has been proven within the external theorem prover HOL. This is because,
at the moment, the provers of the RODIN platform are better suited for proving properties of particular model elements
(e.g., invariant preservation or refinement of a specific event) than for proving general properties of recursive data structures.

M. Kamali et al. / Science of Computer Programming () – 19

Table 2
Proof statistics.

Model Number of proof Automatically Interactively
Obligations Discharged (%) Discharged (%)

Context1 19 68 32
Context2 4 100 0
Initial Model 104 72 28
1st Refinement 40 55 45
2nd Refinement 57 52 48
3rd Refinement 69 58 42

Total 293 63 37

Fig. 6. Before and after tree structure of Recovery1 in the initial model.

We note that there are plans to bridge the RODIN platform with external provers such as Isabelle or HOL, exactly for the
reason of proving the consistency of various model axioms using such external provers.

The most essential property for proving correctness of the recovery mechanism is the axiom@axm14. It states that each
step of recovery reduces a number of disconnected partitions among the neighbours of a failed node. Specifically, adding
links between two elements of a node forest allows one to merge those elements into one node tree and thus reduces the
number of disconnected node partitions:

@axm14 ∀S1, S2, L1, L2, n,m·n ∈ S1 ∧ m ∈ S2 ∧ connected(S1 → L1) = TRUE ∧

connected(S2 →L2)=TRUE ⇒ connected((S1∪S2) →(L1 ∪L2∪{n →m,m →n}))=TRUE

For each recovery event, we have proved that two separated partitions become connected and create a new tree by us-
ing the accordingly specialised @axm14 as an hypothesis for the proof. For instance, to prove preservation of the invariant
@inv21 for the event Recovery of the initial model, we have split the generated proof obligation into two simple ones:

(1)∀ p1 · p1 ∈ dom(rec_forest) ⇒ connected(({pk} × rec_forest[{pn}])[{p1}] → rec_links) = TRUE

(2)∀ p1 · p1 ∈ dom(rec_forest) ⇒ connected(({pn} ▹− rec_forest)[{p1}] → rec_links) = TRUE

To prove these proof obligations, we have specialised the universally quantified variables S1, S2, L1, L2, n,m in the axiom
@axm14 by the values ({pk} × rec_forest[{pn}])[{p1}], ({pn} ▹− rec_forest)[{p1}], rec_links, rec_links, n and k, respectively.
As a result, we have proved that after merging two separated partitions pn and pk (illustrated in Fig. 6), we have only one
connected partition consisting of pn and pk.

9. Discussion: pattern-driven formal development

In this section we discuss how we can generalise and reuse the formal development of self-recovering sensor–actor
networks presented so far. To achieve this,we rely on the idea of formal patterns, whichmaybe identified and then repeatedly
applied to facilitate the refinement process.

We call such formal patterns refinement patterns. These patterns generalise certain typical model transformations
reoccurring in a particular development method. They can be thought of as refinement rules in large.

20 M. Kamali et al. / Science of Computer Programming () –

Fig. 7. Pattern-driven model development.

The application of refinement patterns is compositional. Hence, some large model transformation steps can be
represented by a certain combination of refinement patterns, and therefore can also be seen as refinement patterns per
se. Moreover, reducing the execution of a refinement step to a number of syntactic manipulations over a model provides a
basis for automation. Finally, such an approach can potentially support reuse of not only models but also proofs. Indeed, by
proving that an application of a generic pattern produces a valid refinement of a generic model, we at the same time verify
correctness of such a transformation for any of its instances.

Graphically, pattern-driven formal development can be represented as shown in Fig. 7. The initial modelM1, the starting
point of the development, is created by instantiating a special template, called a specification pattern. Essentially, it is a
parametrised specification (e.g., an Event-B model). During pattern instantiation, the model parameters are substituted
with concrete data structures, while the model variables and events can be renamed. The model constraints (e.g., Event-B
axioms) given for these parameters become the theorems to be proved to show that this pattern is applicable for the given
concrete values. If the instantiation succeeds, the model invariant properties (together with their proofs) are obtained for
free, i.e., without any proofs. For more details about formal pattern-driven development in the Event-B framework, see [13].

The development presented in Sections 4–7 formalises the specific recovery algorithm that can be used to restore
communication links in sensor–actor networks. It would be desirable, if possible, to generalise this approach to a wider
class of networks, identifying at the same time typical design steps that can be then formalised as refinement patterns. In
this section we put forward the initial steps towards achieving this goal.

We start by presenting a specification pattern that provides us with a suitable abstract model, which will be the starting
point of a formal development by refinement. We define basic data structures and operations for any network containing
communicating nodes. Specifically, we construct a node graph G(NodeType1, Net1) by defining NodeType1 as a subset of
all nodes NODE and Net1 as the set of all the direct communication links between NodeType1 nodes. The sets NODE and
NodeType1 are defined in the model context, while Net1 is a model variable. The node status reflecting whether it is active
or failed is stored in a function variable Status. The initial status of the network is given by a constant Initial_status.

The context for our specification pattern is as follows.

CONTEXT Data
CONSTANTS active failed Init_status
SETS NODE NodeType1 NODE_STATUS
AXIOMS

@axm1 finite(NODE)
@axm2 NodeType1 ⊆ NODE
@axm3 NODE ≠ ∅
@axm4 partition(NODE_STATUS, {active}, {failed})
@axm5 Init_status ∈ NODE → NODE_STATUS

END

The sets and constants defined here are the specification pattern parameters, which can be instantiated during pattern
application. Many concrete details, such as the type of nodes, the communication ranges for different node types, specific
details of communication recovery and so on are missing in this model and will be later introduced in dedicated refinement
steps (refinement patterns).

In the machine part of our initial model we have six invariants as shown below. The dynamic status of each node (active
or failed) is modelled by a function Status (@inv1). A relation Net1 denotes the bidirectional, non-failed node links (@inv2
and @inv3). This relation is irreflexive (@inv4) and symmetric (@inv5). In addition, the recovered links are modelled by a
relation Coord_Net1 (@inv6) that denotes those links which are not included in the relation Net1. These invariants express
the expected network properties that should be preserved.

M. Kamali et al. / Science of Computer Programming () – 21

INVARIANTS
@inv1 Status ∈ NODE → NODE_STATUS
@inv2 Net1 ∈ NodeType1 ↔ NodeType1
@inv3 ∀n,m · n → m ∈ Net1 ⇒ Status(n) = active ∧ Status(m) = active
@inv4 NodeType1 ▹ id ∩ Net1 = ∅
@inv5 Net1 = Net1−1

@inv5 Coord_Net1 ∈ NodeType1 ↔ NodeType1

The initialisation event sets the status of all the nodes according to the given parameter Init_status, while the Net1 and
Coord_Net1 relations are initially empty.

The model contains four event operations, which are abstracted versions of these events presented in Section 4. In the
AddNode event, a new node is added by updating the function Status.

initialisation
BEGIN
@act1 Status := Init_status
@act2 Net1 := ∅
@act3 Coord_Net1 := ∅

END

AddNode
ANY nWHERE
@grd1 n ∈ NodeType1
@grd2 Status(n) = failed

THEN
@act1 Status(n) := active

END

In the AddLink event we non-deterministically add a link in both directions. In later refinement steps we are going to
restrict adding communication links based on the node communication range.

The RemoveNode event changes the status of a node from active to failed. Also, all the links of that node (in both
directions) are removed from Net1 and Coord_Net1. Again, this is needed to preserve the@inv3 proof obligation.

AddLink
ANY n m WHERE
@grd1 n ∈ NodeType1 ∧ m ∈ NodeType1
@grd2 Status(n) = active

∧Status(m) = active
@grd3 n ≠ m
@grd4 n → m /∈ Net1

THEN
@act1 Net1 := Net1 ∪ {n → m,m → n}

END

RemoveNode
ANY nWHERE
@grd1 n ∈ NodeType1
@grd2 Status(n) = active

THEN
@act1 Status(n) := failed
@act2 Net1 := {n} ▹− Net1 ◃− {n}
@act3 Coord_Net1 := {n} ▹− Coord_Net1 ◃− {n}

END

Finally, the Recovery event adds a link in both directions, after a link is removed from the network which leads to its
partitioning.

Recovery
ANY n m WHERE

@grd1 n ∈ NodeType1 ∧ m ∈ NodeType1
@grd2 Status(n) = active ∧ Status(m) = active
@grd3 n ≠ m
@grd4 n → m /∈ Net1

THEN
@act1 Coord_Net1 :∈ Coord_Net1 ∪ {n → m,m → n}

END

By instantiating this specification pattern, we can obtain an abstract network model that can serve as the starting point
of formal development. For instance, if we instantiate NODE_STATUS with the concrete type STATUS, Init_status with the
concrete constant initial_node_status, active and failed with the concrete constants ok and fail, and rename the variables
Net1 by ANet and Coord_Net1 by recovered_ANet , we obtain the initial abstract model for our formal development described
in Sections 4–7. The network model presented in Section 4 then becomes a refinement of this instantiated model. The
refinement is easily proved since both context and machine shown in Section 4 are essentially extensions, only adding
new data structures and variables as well as a couple of new events for modelling communication recovery defined on these
new variables.

Below we discuss some typical transformation (refinement) steps for formal network models such as the one described
above:

Ĺ Introduction of specific types of network nodes (e.g., sensors and actors) and their interdependencies. Here we
should distinguish between two different development strategies resulting in distinct refinement patterns. We can
gradually introduce different types of nodes (different sub-networks) by adding newdata structures, variables and events
(so called superposition refinement) and tying them together by new axioms and invariants. That approach is taken in
this paper. Alternatively, we can start with a complete network consisting of abstract nodes and then introduce a node
classification into different types. The events of the abstract model modelling abstract network functionality (like adding
new nodes or links between them) would be then refined by several more concrete versions taking into account what
types of nodes are involved. In both approaches, the applicability conditions of the corresponding patterns would reflect
which development strategy is chosen. In Fig. 8 we show the application of a refinement pattern to transform the initial
model to a more concrete one;

22 M. Kamali et al. / Science of Computer Programming () –

Fig. 8. Application of the refinement pattern to transform M1 to M2.

Ĺ Refinement of the communication recovery mechanisms affecting a particular (localised) part of the network.
Essentially, such patterns would be parametrised by data structures defining the network area and the types of nodes
involved in recovery. For a refinement pattern to be applied, the input model would need to already have the event(s)
modelling recovery in an abstract way. These events will be directly affected by pattern application. Moreover, new
variables and events to model intermediate or temporary results of recovery would be also added;

Ĺ Introduction of physical attributes or characteristics (for instance, communication distance) for different types
of nodes. This information is used to restrict different network operations (e.g. adding communication links between
nodes) by checking that the involved network elements satisfy the given constraints. The corresponding event guards
are added, while some events may be split to account for different cases. Care should be taken to ensure that the pattern
application does not introduce deadlocks in the resulting model or, e.g., prevent network recovery mechanisms from
achieving their goals.

Some of these refinement steps can be merged or applied in a different order. Moreover, it would be unrealistic to
expect to express all of these steps by single refinement patterns. Different network typesmay, and probably will, require to
create separate patterns to account for specific differences between them. To investigate different cases of communicating
networks and, as a result, build an extensive collection of such patterns will be a part of our future work.

10. Related work

In this sectionwe consider related contributionswith respect to three topics: firstly,wemotivate our choice of formalism;
secondly, we discuss other formal approaches to modelling various aspects of wireless networks; and thirdly, we consider
contributions related to the pattern-based idea of reuse that we explore in our paper.

Choice of formalism. Choosing amodelling formalism is an essential step for formalisation of any system. Themain reason for
choosing Event-B in ourwork is due to a globalmodelling and reasoning approach that Event-Bprovides. Event-Bhas evolved
from the B-Method [8] and the Action Systems [14] formalisms. The latter formalism was introduced in 1983 for modelling
parallel and distributed algorithms from a global perspective. Process algebra formalisms such as CSP [15] or CCS [16] focus
on the particular (sequential) computation that each process specifies, possibly also synchronising with other processes. In
contrast, Action Systems and, later on, Event-B promote the so-called system approach [17]. Following the system approach,
we can reason about global properties of the system, without having to consider the properties of sequential process
computations and their communications. Moreover, we can add details at the global level, thus developing the system in
a clean top-down approach. Because we focus on the global view of the system to be modelled, we initially specify a very
abstract model, on top of which we identify details to add in subsequent refinement steps.

Another feature that we strongly appreciate about Event-B is its tool support provided by the RODIN platform [7,9,10,18].
While we can prove theorems in various theorem provers such as HOL [19], PVS [20], or Isabelle [21], RODIN comes with an
integrated approach for modelling and proving in an interleaving manner, as we have discussed in Section 2.1. While other
state-based approaches such as Z [22] and Abstract State Machines [23] propose refinement methodologies, in the RODIN
platform we construct a complete system model and then the platform generates and partially or completely discharges
the required proof obligations. The system approach is also supported and highly emphasised in the RODIN platform.
For instance, if one needs to specify several components communicating with each other, one starts from a global view
containing all the components in one model and then decomposes this model into components [6,24,25].

M. Kamali et al. / Science of Computer Programming () – 23

Other formal approaches. In this paper we have employed Event-B in order to formalise a recovery algorithm for wireless
sensor–actor networks. There are many other formalisms used for modelling aspects of WSANs. A recent experiment [26]
shows that several formalisms are well-suited for modelling and analysing various aspects of sensor networks. The authors
of [26] conclude that a new formalism can be defined that combines the advantages of at least three other formalisms,
including Ambient Calculus [27] and a timed extension of the Object-Z [28]. In [29], the authors show that combining
model checking and refinement proofs is advantageous for verifying performance and correctness of protocols for wireless
networks. Model checking is also used in [30], to model and verify a wireless sensor network protocol, while in [31] the
authors employ Petri Nets [32] to verify the design and structural properties of wireless sensor and actuator networks.
Wireless sensor and actuator networks are networks containing a control systemwhose sensors and actuators communicate
with each other via a wireless network.We note in this context that wemodel actors instead of actuators: a sensor–actuator
pair is typically related to a control loop, while a sensor–actor pair is a coordination pair. Our actors are in control of the
entire WSAN and form a subnetwork of their own, whose recovery we address.

Some contributions in the domain of refinement-driven development focus on modelling and analysing network
protocols in a static environment, i.e., without considering activation and deactivation of nodes. In [33,34], a formal
development of a distributed leader election protocol on a connected network graph is presented, considering several safety
properties. In [6], the development of a routing algorithm for mobile agents is modelled. While all the nodes and links are
predefined and fixed, the networks operate in a decentralised manner, similarly to the distributed nature of recovery in our
model.

In [35], the authors present a discovery algorithm for developing the network topology. The topology discovery is an
issue relevant to most routing algorithms. All the nodes in a network need to discover and maintain information on the
network topology, so that they have to cooperate to establish connections. The development guarantees that at the end of
the discovery algorithm, all the nodes in the network have the same information about the network topology. However, the
access to this type of information about the whole network is not possible in a dynamic network where nodes are randomly
added and removed. Another correct-by-construction distributed development is shown in [36], where the authors present
a formal development of a distributed reference counting algorithm. Both works focus on preservation of the consistency
properties of the relevant protocols.

In [37,38], a modelling and analysing approach for dynamic decentralised systems is proposed. The author applies a
stepwise and event-based approach to specify dynamic behaviours of a system that has no dedicated network infrastructure.
As an application of the method, a mobile ad-hoc network (MANET) is modelled as an abstract model. In the next model,
by considering the management of the IP addresses of nodes and exchange messages, the routing algorithm is refined. The
initial model is composed of two main parts: the structure of the MANET and the routing protocol. The similarity of our
approach to this paper is that we both choose the same strategy of separating the modelling of the network structure from
the algorithms that employ these structures.

Refinement and reuse. The refinement pattern of our work was inspired by several contributions on automation of the
refinement process. The Refinement Calculator tool [39] has been developed to support program development using the
Refinement Calculus theory [40] The theory has been formalised in the HOL theorem prover [19], while specific refinement
rules were proved as HOL theorems. A similar framework consisting of refinement rules (called tactics) and the tool support
for their application has been developed by Oliveira, Cavalcanti, and Woodcock [41]. The framework (called ArcAngel)
provides support for another version of the Refinement Calculus [42]. The obvious disadvantage of both these frameworks
is that the refinement rules that can be applied usually describe quite small, localised transformations.

In [43,44] a design pattern within the framework of Event-B is proposed as a template on how to solve a problem
which can be used in many different situations. The idea is to have a number of pre-defined solutions that cooperate in
a development with some modifications or instantiations. The authors focus on instantiating generic models (specification
patterns) to gradually develop a systemmodel. On the other hand, our approach relies on the notion of refinement patterns
as automatic parametrised model transformations, where the resulting model is a refinement of the input model. Another
experiment on employing the idea of refinement patterns appears in [45,46], where it is applied for formal development of
Network-on-Chip routing algorithms.

11. Conclusions

In this paper, we have formalised a distributed recovery algorithm that was introduced and simulated in [5]. The
algorithm addresses the network partitioning problem in WSANs generated by actor failures. We have modelled the
algorithm and the corresponding WSANs in Event-B. One part of our contribution here consists in proving correctness and
successful termination of the recovery algorithm. More importantly, we set up a formal model of arbitrary WSANs that can
evolve dynamically by adding nodes and their corresponding links as well as by removing nodes and their links. We have
specified the network structure and the recovery mechanism at four increasing levels of abstraction that refine each other.
We have formally proved the refinement steps using the theorem prover tool RODIN [7,9,10,18].

One of themost interesting aspects put forward is formalmodelling and development of actor coordination links that can
be seen in three forms: a direct actor–actor link, an indirect, not further specified path, or an indirect path through sensor
nodes. We have gradually developed these cases by refinement, specifically, by replacing the first form with the second

24 M. Kamali et al. / Science of Computer Programming () –

form, and then by the third one. However, the proved refinement relation between them shows that all three forms can be
present in a network and thus provide various coordination alternatives for actors. In this respect, one can define different
coordination classes, e.g., for delegating themost security-sensitive coordination to the direct actor–actor coordination links,
the least real-time constrained coordination to indirect links, and the safety-critical coordination to both direct actor links
and indirect sensor paths between actors. This contributes to modelling fault-recovery in wireless networks.

Specifically, we have formalised the direct actor–actor recovery that relies on the global network information, which can
be formally represented as the relation ANet; ANet . Moreover, we have successfully proved correctness and termination of
this formalised coordination recovery. In the next two refinement steps, we have specified indirect actor–actor recovery via
arbitrary nodes or via sensors. In these two cases, we do not need the global network information to perform the recovery
but rely instead on the information stored locally by the l_net relation. Since these two forms of indirect recovery are correct
refinements of the direct actor–actor recovery, we can deduce that the distributed recovery is also correct and successfully
terminating. Finally, the last refinement step optimises the recovery process by taking into account the physical location
information of the network.

Using the sensor infrastructure as a temporary backup for actor coordination also aligns with the growing sustainability
research of using resources without depleting them. Upon detecting a direct actor–actor coordination link between two
actor nodes, all the sensor nodes contributing to a communication link between these actor nodes are released of their
backup task, as illustrated in the events adding links between nodes in our models.

As a result, our formal development achieves a complete formalisation of the original algorithm presented in [5]. Our
model presented in this paper also demonstrates the power and applicability of a formal refinement approach. The original
algorithm in [5] consists only of the fourth recovery form, with actors, sensors, the l_net relation as well as the physical
distance information. While this form is quite complex to model and verify, we have shown how to start from a more
abstract version and prove its functional correctness, termination and other properties. Stepwise refinement of this initial
model has allowed us to gradually handle the rising complexity while keeping the desired correctness properties preserved.

A more general message suggested by the achieved results of this paper is that they can be applied to any network with
two coordinating categories of node, some more powerful than the others. The algorithm we have modelled is essentially a
general one that can be reused as the basis formore complex networks. Indeed, in Section 9we have provided a specification
pattern that can be reused in similar situations. We have also discussed there possible refinement patterns for modelling
dynamic networks with heterogeneous nodes.

Acknowledgements

M. Kamali’s work is partially supported by Nokia. This work is supported by IST FP7 DEPLOY project. We would like to
kindly thank the reviewers for their detailed and pertinent comments on our paper.

References

[1] I.F. Akyildiz, I.H. Kasimoglu, Wireless sensor and actor networks: research challenges, Ad Hoc Networks Journal 2 (4) (2004) 351–367.
[2] T. Melodia, D. Pompili, V.C. Gungor, I.F. Akyildiz, Communication and coordination in wireless sensor and actor networks, Proceedings of IEEE

Transactions on Mobile Computing 6 (10) (2007) 1116–1129.
[3] K. Akkaya, M. Younis, Coverage and latency aware actor placement mechanisms in WSANs, International Journal of Sensor Networks 3 (3) (2008)

152–164.
[4] A. Abbasi, K. Akkaya, M. Younis, A distributed connectivity restoration algorithm in wireless sensor and actor networks, in: Proceedings of 32nd IEEE

Conference on Local Computer Networks, LCN’07, IEEE, 2007, pp. 496–503.
[5] M. Kamali, S. Sedighian, M. Sharifi, A distributed recovery mechanism for actor–actor connectivity in wireless sensor actor networks, in: Proceedings

of IEEE International Conference on Intelligent Sensors, Sensor Networks and Information Processing, ISSNIP’08, IEEE, 2008, pp. 183–188.
[6] J.-R. Abrial, Modelling in Event-B: System and Software Design, Cambridge University Press, 2010.
[7] J.-R. Abrial, A system development process with Event-B and the RODIN platform, in: Proceedings of International Conference on Formal Engineering

Methods, ICFEM’07, in: Lecture Notes in Computer Science, vol. 4789, Springer-Verlag, 2007, pp. 1–3.
[8] J.-R. Abrial, The B-Book: Assigning Programs to Meanings, Cambridge University Press, 1996.
[9] RODIN tool platform, http://www.event-b.org/platform.html.

[10] Rigorous Open Development Environment for Complex Systems (RODIN), IST FP6 STREP project, online at http://rodin.cs.ncl.ac.uk/.
[11] D. Craigen, S. Gerhart, T. Ralson, Case study: Paris Metro signaling system, in: Proceedings of IEEE Software, IEEE, 1994, pp. 32–35.
[12] J.N. Al-Karaki, A.E. Kamal, Routing techniques in wireless sensor networks: a survey, IEEE Wireless Communications Journal 11 (2004) 6–28.
[13] A. Iliasov, E. Troubitsyna, L. Laibinis, A. Romanovsky, Patterns for refinement automation, in: Post-proceedings of FMCO 2009, Symposium on Formal

Methods for Components and Objects 2009, in: Lecture Notes for Computer Science, Springer-Verlag, 2010, pp. 70–88.
[14] R.J. Back, R. Kurki-Suonio, Decentralization of process nets with centralized control, in: Proceedings of the 2nd ACM SIGACT-SIGOPS Symposium on

43 Principles of Distributed Computing, ACM, 1983, pp. 131–142.
[15] C.A.R. Hoare, Communicating sequential processes, Communications of the ACM Journal 21 (8) (1978) 666–677.
[16] R. Milner, A calculus of communicating systems, in: Lecture Notes in Computer Science, vol. 92, Springer-Verlag, 1980.
[17] M. Butler, E. Sekerinski, K. Sere, An action system approach to the steam boiler problem, in: Formal Methods for Industrial Applications: Specifying

and Programming the Steam Boiler Control, in: Lecture Notes in Computer Science, vol. 1165, Springer-Verlag, 1996, pp. 129–148.
[18] J.-R. Abrial, M. Butler, S. Hallerstede, T.S. Hoang, F. Mehta, L. Voisin, Rodin: an open toolset for modelling and reasoning in Event-B, International

Journal on Software Tools for Technology Transfer (STTT) (6) (2010) 447–466.
[19] HOL proof assistant, http://hol.sourceforge.net/.
[20] PVS specification and verification system, http://pvs.csl.sri.com/.
[21] Isabelle proof assistant, http://www.cl.cam.ac.uk/research/hvg/Isabelle/.
[22] M. Spivey, The Z Notation: A Reference Manual, second ed., in: Prentice Hall International Series in Computer Science, 1992.
[23] E. Borger, R. Stark, Abstract State Machines: A Method for High-Level System Design and Analysis, Springer, 2003.

M. Kamali et al. / Science of Computer Programming () – 25

[24] M. Butler, Decomposition structures for Event-B, in: Proceedings of Integrated Formal Methods, IFM’09, in: Lecture Notes in Computer Science,
vol. 5423, Springer-Verlag, 2009, pp. 20–38.

[25] A. Iliasov, E. Troubitsyna, L. Laibinis, A. Romanovsky, K. Varpaaniemi, D. Ilic, T. Latvala, Supporting reuse in Event B development: modularisation
approach, in: Proceedings of Abstract State Machines, Alloy, B, and Z (ABZ 2010), in: Lecture Notes in Computer Science, vol. 5977, Springer-Verlag,
2010, pp. 174–188.

[26] J.S. Dong, K. Taguchi, X. Zhang, Specifying and verifying sensor networks: an experiment of formal methods, in: Proceedings of the 10th International
Conference on Formal Engineering Methods, ICFEM 2008, in: Lecture Notes in Computer Science, vol. 5256, Springer, 2008, pp. 318–337.

[27] L. Cardelli, Abstractions formobile computation, in: J. Vitek, C. Jensen (Eds.), Secure Internet Programming: Security Issues forMobile and Distributed
Objects, in: Lecture Notes in Computer Science, vol. 1603, Springer-Verlag, 1999, pp. 51–94.

[28] G. Smith, The Object-Z Specification Language, Kluwer Academic Publishers, 2000.
[29] A. McIver, A. Fehnker, Formal techniques for the analysis of wireless networks, in: Proceedings of the 2nd International Symposium on Leveraging

Applications of Formal Methods, Verification and Validation, ISoLA’06, IEEE Computer Society, 2006, pp. 263–270.
[30] A. Fehnker, L.V. Hoesel, A. Mader, Modelling and verification of the LMAC protocol for wireless sensor networks, in: Proceedings of the Integrated

Formal Methods Conference, IFM’07, in: Lecture Notes in Computer Science, vol. 4591, Springer-Verlag, 2007, pp. 253–272.
[31] D. Martinez, A. Gonzalez, F. Blanes, R Aquino, J. Simo, A. Crespo, Formal specification and design techniques for wireless sensor and actuator networks,

in: Sensors’11, vol. 11, MDPI Open Access, 2011, pp. 1059–1077.
[32] http://www.petrinets.info/.
[33] J.-R. Abrial, D. Cansell, D. Méry, Amechanically proved and incremental development of IEEE 1394 tree identify protocol, Formal Aspects of Computing

Journal 14 (3) (2003) 215–227.
[34] J. Rehm, Proved development of the real-time properties of the IEEE 1394 root contention protocol with the Event-B method, International Journal

on Software Tools for Technology Transfer 12 (2010) 39–51.
[35] T.S. Hoang, H. Kuruma, D. Basin, J.-R. Abrial, Developing topology discovery in Event-B, Science of Computer Programming Journal 74 (2009) 879–899.
[36] D. Méry, D. Cansell, Formal and incremental construction of distributed algorithms: on the distributed reference counting algorithm, Theoretical

Computer Science Journal 364 (2006) 318–337.
[37] C. Attiogbé, Modelling and analysing dynamic decentralised systems, in: Proceedings of the 15th IEEE Pacific Rim International Symposium on

Dependable Computing, PRDC’09, IEEE, 2009.
[38] C. Attiogbé, Event-based approach to modelling dynamic architecture: application to mobile ad-hoc network, in: Proceedings of the 3rd International

Symposium On Leveraging Applications of Formal Methods, Verification and Validation, ISoLA’08, in: Communications in Computer and Information
14 Science, vol. 17, Springer, 2008, pp. 769–781.

[39] M. Butler, J. Grundy, T. Løangbacka, R. Ruksenas, J.V. Wright, The refinement calculator: proof support for program refinement, in: Proceedings of
Formal Methods Pacific, Springer-Verlag, 1997, pp. 40–61.

[40] R. Back, J.V. Wright, Refinement Calculus: A Systematic Introduction, Springer, 1998.
[41] M. Oliveira, A. Cavalcanti, J. Woodcock, Arcangel: a tactic language for refinement, Formal Aspects of Computing Journal (2003) 28–47.
[42] Carroll Morgan, Programming from Specifications, second ed., Prentice Hall, 1998.
[43] T.S. Hoang, A. Fürst, J.-R. Abrial, Event-B patterns and their tool support, in: Proceedings of the 7th IEEE International Conference on Software

Engineering and Formal Methods, SEFM’09, IEEE, 2009, pp. 210–219.
[44] J.-R. Abrial, T.S. Hoang, Using design patterns in formal methods: an Event-B approach, in: Proceedings of the 5th International Colloquium, ICTAC’08,

in: Lecture Notes in Computer Science, vol. 5160, Springer-Verlag, 2008, pp. 1–2.
[45] M. Kamali, L. Petre, K. Sere, M. Daneshtalab, Refinement-based modelling of 3D NoCs, in: Proceedings of the 4th International Conference on

Fundamentals of Software Engineering, FSEN’11, in: Lecture Notes in Computer Science, vol. 7141, Springer-Verlag, 2012, pp. 236–252.
[46] M. Kamali, L. Petre, K. Sere, M. Daneshtalab, Formal modelling of multicast communication in 3D NoCs, in: Proceedings of the 14th IEEE Euromicro

Conference on Digital System Design, DSD’11, IEEE, 2011, pp. 634–642.

Paper II

A Distributed Implementation of a Network

Recovery Algorithm

Maryam Kamali, Linas Laibinis, Luigia Petre and Kaisa Sere

Originally published in: International Journal of Critical Computer-Based
Systems (IJCCBS), Vol. 4, No. 1, pp. 45-68. Inderscience Publishers, 2013.

75

 Int. J. Critical Computer-Based Systems, Vol. 4, No. 1, 2013 45

 Copyright © 2013 Inderscience Enterprises Ltd.

A distributed design of a network recovery algorithm

Maryam Kamali*, Linas Laibinis, Luigia Petre
and Kaisa Sere

Department of Information Technologies,
Åbo Akademi University,
Joukahainenkatu 3–5 A, 20520 Turku, Finland
E-mail: maryam.kamali@abo.fi
E-mail: linas.laibinis@abo.fi
E-mail: luigia.petre@abo.fi
E-mail: kaisa.sere@abo.fi
*Corresponding author

Abstract: The increase in design complexity emphasises the relevance of
formal verification techniques for both software and hardware. Formal methods
with their mathematical-based modelling can provide proofs of various
properties for the designs, thus ensuring a certain degree of complexity control
and enhancing the system confidence. There are numerous formal modelling
and verification techniques employed in designing complex systems. Typically,
they either prove or disprove the correctness of the particular specifications of a
system’s algorithms with respect to certain initial requirements. The Event-B
formal method has been recently extended to address the gap between
specification and implementation, via the so-called modularisation extension.
In this paper, we present a modularisation-based derivation of a distributed
design for a network recovery algorithm, based on the refinement technique of
Event-B. We thus contribute to enhancing the reliability and availability of
network designs.

Keywords: wireless sensor-actor networks; WSANs; network recovery
algorithm; distributed design; object-orientation; formal method; Event-B;
refinement; modularisation; Rodin-tool.

Reference to this paper should be made as follows: Kamali, M., Laibinis, L.,
Petre, L. and Sere, K. (2013) ‘A distributed design of a network recovery
algorithm’, Int. J. Critical Computer-Based Systems, Vol. 4, No. 1, pp.45–68.

Biographical notes: Maryam Kamali received her MSc in Information
Technologies from the Iran University of Science and Technology since
2008. From 2009, she has been working in the Distributed Systems
Laboratory of the Turku Centre for Computer Science (TUCS) Graduate
School where she is a PhD student, enrolled at Åbo Akademi University. Her
research interests include applying formal methods for modelling and
verification of communication designs in wireless sensor network and
network-on-chip.

Linas Laibinis is a Senior Researcher at Åbo Akademi University and holds a
docent degree in Computer Science since 2011. He received his PhD in
Computer Science in 2000 on mechanised formal reasoning about computer
programmes. His research interests include interactive environments for proof

 46 M. Kamali et al.

and program construction, as well as application of formal methods to
modelling and development of fault tolerant and/or communicating software
systems. He has published about 60 refereed articles.

Luigia Petre is a Senior Lecturer at Åbo Akademi University and holds a
docent degree (the equivalent of Habilitation) in Computer Science since 2012.
She received her PhD in Computer Science in 2005 on modelling techniques in
formal methods. Her research interests include formal methods and their
integration, energy-aware computation, network availability, network-on-chip
architectures, wireless sensor-actor networks, multi-core systems, time and
space dependent computing and meta-modelling. She has about 40
publications.

Kaisa Sere is a Professor in Computer Science and Engineering at Åbo
Akademi University since 1997. She received her PhD in 1990 on the
formal design of parallel algorithms. She is the founder and leader of
the Distributed Systems Laboratory at the Department of Information
Technologies at the same university. Her current research interests are within
the design of distributed systems, especially refinement-based approaches to
the construction of systems ranging from pure software to hardware and
digital circuits. She was the leader of the Åbo Akademi University work in the
EU IST projects Matisse, Rodin and Deploy. She has supervised 17 PhD theses
and currently (co-)supervising seven PhD students. She has published more
than 100 refereed articles. She was the General Chair of the international
conference Formal Methods 2008, the flagship conference in the field of formal
methods.

This paper is a revised and expanded version of a paper entitled
‘Reconstructing coordination links in sensor-actor networks’ presented at
Nodic Workshop on Dependability and Security (NODES), Copenhagen,
Denmark, 22–23 April 2010.

1 Introduction

Our society relies on software-intensive systems or, differently formulated in Booch
(2007) “software lives in the interstitial spaces of our society”. Networked systems are
one example of the software omnipresence in the everyday life. The financial systems,
including banking and stock exchanges, the travelling systems, including booking flights
and hotels, the electric grids administration, the nuclear plants processes, etc., are all
examples of essential components of the society being gradually adapted to functioning
on-line, via the internet or other networking configurations.

Given the widespread and relevance of software-intensive systems, it is imperative to
be able to rely on software, i.e., to be certain of its various features and properties.
Formal methods, with their mathematical proving core, are an important instrument in
ensuring the integrity of software-intensive systems. Traditionally characterised as hard

A distributed design of a network recovery algorithm 47

to use, due to the requested mathematical background and the lack of automatic tools,
nowadays formal methods have matured, to the point where they are considered in
industry when developing software-intensive systems (Woodcock et al., 2009). Examples
of the industrial undertaking of formal methods are increasing. The famous line 14
of the driver-less Parisian metro (Gerhart et al., 1994), developed in 1998 using
the B-method (Abrial, 1996), is the first notable example of a formal method-based
development, reviewed in Lecomte (2009). The method used by Siemens for developing
the software controlling the line 14 train ensured its correctness in a mathematical
manner that effectively eliminated the unit testing from the software life-cycle. Few
human resources are now needed to operate the trains and in addition, the trains are
faster, hence fewer are needed in total.

More recent examples of the Event-B (Abrial, 2010) formal method usage in
industry can be seen for instance with space systems (Fathabadi et al., 2011) and
SAP (Jeremy and Wei, 2010). In Event-B, the development of a model is carried out step
by step from an abstract to more concrete specifications. Using the refinement approach,
a system can be described at different levels of abstraction, and the consistency in and
between levels can be proved mathematically. An ideal scenario of formal methods
supporting the development of reliable software-intensive systems consists in getting a
formal proof that the final software is a correct implementation of the specification.
For Event-B, this means in practice that there is a series of intermediate formal models
between the specification and implementation, all proved correct together with their
derivation from each other. We are now moving one step closer in Event-B towards
the ideal scenario, in that we can verify that our derived design is correctly distributed.
Consider the example of a network recovery algorithm, where some feature requires
the addition of a link among two nodes. We typically specify this feature in Event-B
and model its correctness and properties in a centralised manner, for the network as
a whole. However, at the implementation phase, this feature has to involve the two
network nodes that synchronise, so that each adds the required reference to the other.
We need a methodology for transforming our centralised modelled feature of adding a
link into a distributed addition of a link among the two nodes. Such a methodology has
been recently proposed and is referred to as the modularisation extension (Iliasov et al.,
2010) of Event-B.

In this paper, we start from a previously developed (Kamali et al., 2008) and
verified (Kamali et al., 2010) recovery algorithm for wireless sensor-actor networks
(WSANs) and present the formal derivation of a distributed design for this algorithm.
This derivation is highly significant as a contribution to provide reliable and distributed
software specifications. Our derived distributed design for the network recovery
algorithm has a visible object-orientation style, thus bringing along two more features.
First, it supports modifiability and reusability and second, it facilitates an easier
translation to object-oriented code. Our work also addresses the availability research,
because we formalise the distribution of a fault removal algorithm for network recovery.

Event-B (Abrial, 2001, 2007, 2010) is an extension of the B formalism (Abrial,
1996) for specifying distributed and reactive systems. A system model is gradually
specified on several levels of abstraction, always ensuring that a more concrete model
is a correct implementation of an abstract model. The language and proof theory of
Event-B are based on logic and set theory. The correctness of the stepwise construction
of formal models is ensured by discharging a set of proof obligations: if these
obligations hold, then the development is mathematically shown to be correct. Event-B

48 M. Kamali et al.

comes with the associated tool Rodin (Abrial, 2007; Rodin Tool Platform, 2006), which
automatically discharges part of the proof obligations and also provides the means for
the user to discharge interactively the remaining proofs.

We proceed as follows. In Section 2 we shortly overview Event-B, the
modularisation extension and the network recovery algorithm. In Section 3 we describe
the development of the verified algorithm to the extent needed in this paper. In Section 4
we introduce and discuss our distributed design. We bring forward the impact of our
modelling and its advantages in Section 5 and conclude in Section 6, also reviewing
related work.

2 Preliminaries

In this section, we briefly overview Event-B, the modularisation extension, and the
network recovery algorithm to distribute.

2.1 Event-B

A typical Event-B model consists of two components, called context and machine.
The context describes the static part of the model, i.e., it introduces carrier sets s and
constants c. The properties of these are described as a list of axioms. The machine
describes the dynamic part of the model, consisting of a list of variables v and a list of
events E. The set of values of the variables forms the state of the model. The properties
that should be preserved during the execution are formulated as a list of invariant
predicates over the state of the model.

An event, modelling state changes, is formed of a guard G and a substitution S;
the latter describes the next-state relation between the variables values v, before the
occurrence of the event and the variables values v′, after the occurrence of the event.
Additionally, it may contain new local variables (parameters) vl. We illustrate the format
of an event below:

E = ANY vl WHERE G(c, s, vl, v) THEN S(c, s, vl, v, v′) END

Event parameters and guards may be sometimes absent, in which case we respectively
write ‘WHEN’ instead of ‘ANY vl WHERE’ and ‘BEGIN’ instead of ‘ANY vl WHERE
G(c, s, vl, v) THEN’.

The guard G is the necessary condition under which an event might occur; if the
guard holds, we call the event enabled. The substitution S is expressed as either a
deterministic or a non-deterministic assignment to the variables. S is often referred to as
the action part of the event. The action determines the way in which the state variables
change when the event occurs. For initialising the system, a sequence of actions is
defined. When the guards of several events hold at the same time, then only one event is
non-deterministically chosen for execution. If some events have no variables in common
and are enabled at the same time, then they can be considered to be executed in parallel
since their sequential execution in any order gives the same result.

A model is developed by a number of correctness preserving steps called
refinements. One form of model refinement can add new data and new behaviour
events on top of the already existing data and behaviour but in such a way that the

A distributed design of a network recovery algorithm 49

introduced behaviour does not contradict or take over the abstract machine behaviour. In
this superposition refinement (Katz, 1993; Back and Sere, 1996), we present events in
a refined model by using the shorthand notation “refined event extends abstract event”.
The meaning of this notation is that the refined event is created from the abstract one by
simply adding new guards and/or new actions. Only the added elements are shown in the
extended event, while the old guards and actions are implicitly present. In addition to the
superposition refinement we may also use other refinement forms, such as algorithmic
refinement (Back and Sere, 1989). In this case, an event of an abstract machine can be
refined by several corresponding events in a refined machine. This will model different
branches of execution, that can, for instance, take place in parallel and thus improve the
algorithmic efficiency.

2.2 The modularisation extension

Recently, the Event-B language and tool support have been extended with a
possibility to define modules (Iliasov et al., 2010, 2011; Rodin Modularisation Plug-in,
2011) – i.e., components containing groups of callable atomic operations. Modules
can have their own (external and internal) state and invariant properties. An important
characteristic of modules is that they can be developed (refined) separately and, when
needed, composed with the main system.

A module description consists of two parts – a module interface and a module body.
Let M be a module. A module interface MI is a separate Event-B component. It allows
the user of the module M to invoke its operations and observe the external variables
without having to inspect the module implementation details. MI consists of external
module variables w, constants c, sets s, the external module invariant M Inv(c, s, w),
and a collection of module operations; the latter can have their own local variables p
and are characterised by their pre- and postconditions, as shown in Figure 1.

Figure 1 Interface component

Interface MI
Sees MI Context
Variables w
Invariants M Inv(c, s, w)
Initialisation · · ·
Process

PEi = ANY vl WHERE g(c, s, vl, w) THEN S(c, s, vl, w, w′) END
· · ·

Operations
Oi = ANY p PRE PRE(c, s, vl, w, p) POST POST (c, s, vl, w, w′, p) END
· · ·

In addition, a module interface description may contain a group of standard Event-B
events under the Process clause. These events model the autonomous thread of control
of the module, expressed in terms of their effect on the external module variables. In
other words, the module process describes how the module’s external variables may
change between operation calls.

50 M. Kamali et al.

A formal module development starts with the design of an interface. Once an
interface is defined, it cannot be altered afterwards. This ensures that a module body
may be constructed independently from a model relying on the module interface. A
module body is an Event-B machine. It implements the interface by providing a concrete
behaviour for each of the interface operations. A set of additional proof obligations are
generated to guarantee that each interface operation has a suitable implementation.

When the module M is imported into another Event-B machine (specified by a
special clause USES), the importing machine can invoke the operations of M and read
the external variables of M . To make a module specification generic, in MI Context
we can define some constants and sets (types) as parameters. The properties over these
sets and constants define the constraints to be verified when the module is instantiated.
The concrete values or constraints needed for module instantiation are supplied in the
USES clause of the importing machine.

Module instantiation allows us to create several instances of the same module
which are distinctive namely using the clause prefix. Different instances of a module
operate on disjoint state spaces. Via different instantiations of generic parameters the
designers can easily accommodate the required variations when developing components
with similar functionality. Hence module instantiation provides us with a powerful
mechanism for reuse.

The latest developments of the modularisation extension also allows the developer
to import a module with a given concrete set as its parameter. This parameter becomes
the index set of module instances. In other words, for each value from the given set,
the corresponding module instance is created. Since each module instance operates on a
disjoint state space, parallel calls to operations of distinct instances are possible in the
same event.

A general strategy of a distributed system development in Event-B is to start from
an abstract centralised specification and incrementally augment it with design-specific
details. When a suitable level of details is achieved, certain events of the specification
are replaced by the calls of interface operations and variables are distributed across
modules. As a result, a monolithic specification is decomposed into separate modules.
Since decomposition is a special kind of refinement, such a model transformation is
also correctness-preserving. Therefore, refinement allows us to efficiently cope with the
complexity of distributed systems verification and gradually derive an implementation
with the desired properties and behaviour.

2.3 The recovery algorithm in WSANs

WSANs are a rather new generation of sensor networks (Akyildiz and Kasimoglu,
2004), made of two kinds of nodes: sensors and actors. In a WSAN, sensors detect the
events that occur in the field, gather them and transmit the collected data to actors. The
actors react to the events in the environment based on the received information. The
sensor nodes are low-cost, low-power devices equipped with limited communication
capabilities, while the actor nodes are usually mobile, more sophisticated and powerful
devices compared to the sensor nodes. In addition, the density of sensor nodes in
WSANs is much bigger than that of actor nodes. WSANs are dynamic networks where
the network topology continuously changes because some new links or nodes are added,
or are removed due to hardware crashes, lack of energy, malfunctions, etc.

A distributed design of a network recovery algorithm 51

WSANs have been applied in a variety of commercial, industrial and military
applications to react to the situations sensed in the environment. For example, WSANs
are installed in forests to prevent and/or resolve forest fires; the firefighter-actors
are expected to stop the spread of the fire immediately. Therefore, in real-time
applications of WSANs, a fast and effective response is a key concern that can
only be provided with a reliable actor-actor coordination. The actor-actor coordination
mechanisms provide means for actors to share information and take decisions on
the proper reactions. In order to have real-time actor-actor coordination in WSANs,
a self-reconfigurable, reliable and real-time communication approach is necessary.
Different real-time communication protocols and a number of self-reconfigurable
recovery mechanisms have been proposed in the literature (Imran et al., 2012; Gungor
et al., 2008; Ngai et al., 2006). However, in most of the cases, the reliability of the
developed recovery mechanisms is justified based on simulation results, that cannot
guarantee the correctness of these mechanisms.

In this paper we describe a model of the basic functioning of a WSAN, focusing
on the actors and their communication links with each others. Besides modelling basic
network functioning, we model an abstract recovery algorithm for failed communication
links, generated when an actor fails. The neighbours of a failed actor are able to
reestablish communication links among themselves based only on localised knowledge
of 1-hop (direct) neighbours and 2-hop neighbours (neighbours of neighbours). In the
simulated algorithm (Kamali et al., 2008) as well as in the detailed formal model of
the algorithm (Kamali et al., 2010), the reestablished links among the neighbours of a
failed node are based on the underlying sensor network. However, in this paper we are
focusing on the distributed nature of the recovery and do not go into the full details of
the algorithm.

The formalisation of the algorithm for self-recovering actor coordination is proposed
in Kamali et al. (2012) using Event-B and the associated Rodin platform. The
formalism is used to verify essential properties such as the functional correctness and
the termination of the recovery mechanism. An important aspect of the algorithm is
that indirect links between actors are built in a distributed manner, thus ensuring the
self -recovering of the network. To model the functional correctness of the recovery
algorithm, authors use the mathematical concepts of tree and forest. In graph theory,
a tree is a graph whose any two vertices are connected by a non-cyclic path, while a
forest is a set of disjoint trees. A special data structure is introduced in Kamali et al.
(2012) to model a forest and prove the correctness properties.

3 Formal specification of the network recovery algorithm

In this section, we present a model of the recovery algorithm in two abstraction steps.

3.1 The initial model

In the context of our initial model we define the finite and non-empty set NODE of
all the network nodes. These nodes can be either sensor nodes or actor nodes, hence
we partition the set NODE into the subsets sensors and actors. We also define the
generic set STATUS = {ok, fail}, where the constant fail denotes the failed status of

52 M. Kamali et al.

a node and the constant ok denotes the non-failed status of a node. The initial status of
the nodes is defined with the constant function initial status ∈ NODE → STATUS.

In the machine of our initial model we define four variables. The status of each node
(non-failed or failed) is modelled with the function Status ∈ NODE → STATUS.
The relation ANET ∈ actors ↔ actors denotes the bidirectional, non-failed actor
links. This relation is irreflexive and symmetric. The ANET relation stores only
the direct links between actors. For our development purposes, we define the
variable recovered ANET ∈ actors ↔ actors to store the direct links in ANET
together with the indirect links that are established by the recovery mechanism.
The relation recovered ANET is irreflexive and symmetric as well. The set
FailedNodeNeigh ⊆ actors models non-failed actors, more precisely the actor
neighbours of a failed actor. This set is updated when an actor is detected as failed,
as shown shortly. We use the annotation @acti and @grdj to be able to refer to the
different actions i and guard conditions j of an event.

The INITIALISATION event sets the status of all the nodes based on the
initial status constant function. The ANET and recovered ANET relations are set
to be empty. The set FailedNodeNeigh is set to ∅.

INITIALISATION
BEGIN

@act1 Status := initial status
@act2 ANET := ∅
@act3 recovered ANET := ∅
@act4 FailedNodeNeigh := ∅

END

Except the initialisation, the events in the initial model activate actor nodes from failed
to non-failed (ActivateNode), add actor links (AddLink), deactivate actor nodes and
remove their corresponding links (DeactivateNode), and abstractly recover connections
when an actor fails (Recovery1 and Recovery2). Thus, starting from an arbitrary,
non-deterministic set of failed and non-failed actors that have no links with each other,
as established by the INITIALISATION event, we can randomly activate actors, add
links between non-failed actors, and deactivate actors and remove their corresponding
links. The latter event models actor failures and enables our recovery mechanism.
Until the recovery is complete, the first three events (ActivateNode, AddLink, and
DeactivateNode) are not enabled anymore. We thus have a normal operation phase
of the algorithm, when the ActivateNode, AddLink, and DeactivateNode events are
non-deterministically executed and a recovery phase of the algorithm, when only
Recovery1 and Recovery2 events are executed. The phase separation is modelled using
the FailedNodeNeigh variable. While FailedNodeNeigh = ∅, the algorithm is in
its operational phase. While FailedNodeNeigh ̸= ∅, the algorithm is in its recovery
phase. A separate event Recovery3 is defined to complete the recovery phase.

In the ActivateNode event, the status of a failed (@grd2) actor (@grd1) is changed
to non-failed (@act1). The event is enabled if FailedNodeNeigh = ∅ (@grd3), as this
is an operational event.

A distributed design of a network recovery algorithm 53

ActivateNode
ANY n WHERE

@grd1 n ∈ actors
@grd2 Status(n) = fail
@grd3 FailedNodeNeigh = ∅

THEN
@act1 Status(n) := ok

END

In the AddLink event we add a link between two distinct, non-failed actors (@grd1-3)
that are not connected (@grd4) and are within communication range of each other
(@grd5). Here, r a is the communication range among two actors and dist(u 7→
v) denotes the Euclidean distance between the actors u and v. Namely, if ux and
uy are the horizontal and vertical Cartesian coordinates of the node u, respectively,
and vx and vy are the horizontal and vertical Cartesian coordinates of the node v,
respectively, then dist(u, v) =

√
(ux − vx)2 + (uy − vy)2. As ANET is symmetric,

we add the link in both directions in ANET (@act1) and remove it (in both directions)
from recovered ANET . This corresponds to cancelling the (potential) temporary links
proposed by the recovery algorithm. When two nodes can be connected directly,
an indirect link consuming more power is not needed. Therefore, the constructed
indirect links are removed from recovered ANET . The event is enabled only if
FailedNodeNeigh = ∅ (@grd6), as this is an operational event.

AddLink
ANY n m WHERE

@grd1 n ∈ actors ∧m ∈ actors
@grd2 Status(n) = ok ∧ Status(m) = ok
@grd3 n ̸= m
@grd4 n 7→ m /∈ ANET
@grd5 dist(n 7→ m) < r a
@grd6 FailedNodeNeigh = ∅

THEN
@act1 ANET := ANET ∪ {n 7→ m, m 7→ n}
@act2 recovered ANET := recovered ANET \ {n 7→ m, m 7→ n}

END

The DeactivateNode event changes the status of a non-failed actor (@grd1-2) to that of
a failed one (@act1); also, all the links of that actor are removed from both ANET
and recovered ANET , expressed with the domain subtraction operator �− and the
range subtraction operator �− (@act2-3). The domain and range subtraction operators on
ANET and recovered ANET relations denote only those pairs whose first and second
element is not n. In addition, the neighbours of the failed actor become members of the
FailedNodeNeigh set (@act4).

The DeactivateNode event is an operational one, enabled only when
FailedNodeNeigh = ∅ (@grd3). If the failing actor had neighbours in ANET , then
FailedNodeNeigh ̸= ∅ after @act4 is executed. At this point, the algorithm has
entered into the recovery phase. In our algorithm, we model the situation where more
than one actor can fail at a time only if these actors have no neighbours in ANET . If
a node with neighbours fails, then no othr node can fail again until we have recovered
the communication between the neighbours of the failed node. This is modelled by

54 M. Kamali et al.

the DeactivateNode event not being enabled again until FailedNodeNeigh becomes
empty again (@grd3).

DeactivateNode
ANY n WHERE

@grd1 n ∈ actors
@grd2 Status(n) = ok
@grd3 FailedNodeNeigh = ∅

THEN
@act1 Status(n) := fail
@act2 ANET := {n}�−ANET �− {n}
@act3 recovered ANET := {n}�− recovered ANET �− {n}
@act4 FailedNodeNeigh := ANET [{n}]

END

When an actor with neighbours has been deactivated, we need to check whether
a recovery is needed. The event Recovery1 is enabled when two neighbours of a
deactivated actor (@grd1) have no short connection through other neighbours (@grd2)
(i.e., there is no path from one actor to the other at most 2-hop long). We notice that this
check does not imply that the deactivation of an actor has led to partitioning the actor
network, although in some cases, it may have led. If Recovery1 is enabled, then a direct
actor-actor link is established and stored separately from ANET , in recovered ANET
(@act1). This separation is essential because ANET models only the real direct links
among nodes. The recovered links modelled by recovered ANET are not direct links,
i.e., nodes are not within communication range of each other; they can typically only
communicate through some intermediate nodes which are not modelled at this abstract
level. As FailedNodeNeigh is a subset of the finite set NODE, we observe that the
Recovery1 event can be enabled only a finite number of times, hence the recovery phase
terminates. Technically, this is true because card(FailedNodeNeigh) decreases at each
execution of Recovery1 and eventually the guard of Recovery1 will hold no longer.
We observe that node n cannot be equal to node k due to @grd2 (ANET ;ANET is
reflexive). ANET ; ANET denotes the forward relational composition of ANET by
itself.

Recovery1
ANY n k WHERE

@grd1 n ∈ FailedNodeNeigh ∧ k ∈ FailedNodeNeigh ∧ n ̸= k
@grd2 n 7→ k /∈ ANET ∧ n 7→ k /∈ ANET ; ANET

THEN
@act1 recovered ANET := recovered ANET ∪ {n 7→ k, k 7→ n}
@act2 FailedNodeNeigh := FailedNodeNeigh \ {n}

END

Recovery2
ANY n k WHERE

@grd1 n ∈ FailedNodeNeigh ∧ k ∈ FailedNodeNeigh
@grd2 n 7→ k ∈ ANET ∨ n 7→ k ∈ (ANET ; ANET) \ (actors ▹ id)

THEN
@act1 FailedNodeNeigh := FailedNodeNeigh \ {n}

END

A distributed design of a network recovery algorithm 55

Recovery3
WHERE

@grd1 card(FailedNodeNeigh) = 1
THEN

@act1 FailedNodeNeigh := ∅
END

The Recovery2 event treats the situation when a failure is detected but an alternative
path through 1-hop or 2-hop neighbours already exists between the neighbours of
the deactivated actor (n 7→ k ∈ ANET ∨ n 7→ k ∈ ANET ; ANET). In this case,
FailedNodeNeigh is simply updated. In Recovery2 we are also sure that n and k
cannot be equal (@grd2). The last element of FailedNodeNeigh is removed via the
Recovery3 event.

Overall, in this model we have described the non-deterministic activation and
deactivation of actor nodes and the adding and removing of actor links in a
dynamic (wireless sensor-actor) network for whom a communication problem among
the actors can be detected and recovered from via direct actor links. The recovery
algorithm assumes some global network knowledge for the recovery, expressed by
ANET ;ANET . Also, the recovery mechanism establishes direct links among the
non-failed actor neighbours of the failed actor. We observe that both the recovery
assumption and the recovery mechanism can be used in practice only for strategic
actors, i.e., actors whose range is sufficiently large to check the contents of
ANET ;ANET and establish direct actor links. The following model considers more
localised assumptions as well as indirect recovery paths.

3.2 The refined model

In the initial model we have defined the actor network recovery based on global
knowledge about the whole network (ANET ;ANET). In this model we assume
that each actor has access only to information about its 1-hop neighbours and 2-hop
neighbours, i.e, we restrict the actor-actor communication recovery to take place via
local information. This model is a refinement of the initial model. The goal of this
refinement step is to supplement the global knowledge of the network in the initial
model (ANET ; ANET) with localised knowledge for every actor. We achieve this
by introducing a new variable, the irreflexive relation l net ∈ (actors× actors) ↔
NODE that, for each actor, keeps track of the 1-hop and 2-hop neighbours and the
recovered links modelled by recovered ANET in the initial model. The relation l net
shows a specific distributed actor-actor communication model. The meaning of this
relation is that a 1-hop neighbour m of an actor n is denoted by n 7→ m 7→ m ∈ l net
and a 2-hop neighbour m of an actor n is denoted by n 7→ m 7→ k ∈ l net. In the first
example, m is locally related to n via m (itself, i.e., via a direct link) and in the second
example m is locally related to n via k (i.e., m is a 2-hop neighbour of n, while k is
a 1-hop neighbour of n). The relation l net describes all these localised links between
nodes. Those 2-hop links that are reestablished via nodes other than actors denote the
recovered ANET links of the initial model.

When a new link is added between two actors, the l net relation also needs to be
updated. Therefore, the AddLink event is extended to also add links to l net. For every
two actors n and m that have a direct link, n 7→ m 7→ m and m 7→ n 7→ n are added in

56 M. Kamali et al.

l net (@act3), meaning that n has a link with m through m (m is a 1-hop neighbour n)
and m has a link with n through n (n is a 1-hop neighbour of m). Moreover, the indirect
links between n and m through sensors (denoted by expression such as {m} × {n} ×
(Status−1[{ok}] \ actors) are removed from l net because there is now a direct link
with less power consumption. This is similar to @act2 of this event in the initial model.

AddLink
extends AddLink
THEN

@act3 l net := l net ∪ {n 7→ m 7→ m, m 7→ n 7→ n}\
(({n} × {m} × Status−1[{ok}] \ actors) ∪
({m} × {n} × Status−1[{ok}] \ actors))

END

Addl net2hopLink
ANY n m k WHERE

@grd1 Status(n) = ok ∧ Status(m) = ok ∧ Status(k) = ok
@grd2 m 7→ k 7→ k ∈ l net ∧ n 7→ m 7→ m ∈ l net ∧

n 7→ k 7→ m /∈ l net ∧ k 7→ n 7→ m /∈ l net
@grd3 m ̸= n ∧ n ̸= k
@grd4 FailedNodeNeigh = ∅

THEN
@act1 l net := l net ∪ {n 7→ k 7→ m, k 7→ n 7→ m}\

(({n} × {k} × Status−1[{ok}] \ actors) ∪
({k} × {n} × Status−1[{ok}] \ actors))

END

The Addl net2hopLink event is a newly introduced event that handles the addition of
2-hop neighbour links for actors. If an actor has a direct link with two other actors,
then these actors will be 2-hop neighbours of each other. The actors involved in this
event have to be non-failed (@grd1), have a direct (1-hop) link but not yet a 2-hop link
through actors in l net (@grd2) and be distinct (@grd3). Also, this new event belongs
to the operational phase of the algorithm, hence, FailedNodeNeigh = ∅ is part of its
guard (@grd4). If these conditions are satisfied, then any 2-hop links between n and
k reestablished through sensors are removed from l net and the detected 2-hop links
through actors are added in l net in both directions (@act1).

When deactivating an actor node, all its links are also removed. Thus, in the
DeactivateNode event the new action @act4 removes all the links to and from the failed
actor in the l net relation. The expression {n} × dom(ANET)× Status−1[{ok}]
describes all the links from n, either direct connections (1-hop neighbours) or
indirect connections (2-hop neighbours) and the expression dom(ANET)× {n} × {n}
describes all the direct connections (1-hop neighbours) links to n.

DeactivateNode
extends DeactivateNode
THEN

@act4 l net := l net \ (({n} × dom(ANET)× Status−1[{ok}]) ∪
(dom(ANET)× {n} × {n}))

END

A distributed design of a network recovery algorithm 57

We now need to model the detection of failed actors and the recovery of links based
on local information instead of being based on the global actor-actor coordination as
described by ANET ; ANET . We now use l net information in addition to ANET for
detecting an actor failure (@grd3) and recovering links in the Recovery1 event.

Recovery1
extends Recovery1
ANY n m k WHERE

@grd3 n 7→ k 7→ m ∈ l net ∧ k 7→ n 7→ m ∈ l net ∧ n 7→ m 7→ m /∈ l net ∧
k 7→ m 7→ m /∈ l net ∧ n 7→ k 7→ k /∈ l net ∧ k 7→ n 7→ n /∈ l net

THEN
@act3 l net :| l net′ ⊆ (l net \ {n 7→ k 7→ m, k 7→ n 7→ m})∪

({k} × {n} × Status−1[{ok}]) ∪ ({n} × {k} × Status−1[{ok}])
∪ indir(k, n) ∪ indir~(n, k) ∪ indir(n, k) ∪ indir~(k, n)

END

Recovery2
extends Recovery2
ANY n m k WHERE

@grd3 (n 7→ k 7→ m ∈ l net ∧ n 7→ m 7→ m /∈ l net ∧ k 7→ n 7→ m ∈ l net
∧k 7→ m 7→ m /∈ l net) ∨ (n 7→ k 7→ k ∈ l net ∧ k 7→ n 7→ n ∈ l net)

THEN
@act2 l net := l net \ ({n 7→ k 7→ m, k 7→ n 7→ m} ∪ indir(n, m) ∪ indir(k, m)

END

When actor m is detected as failed, neighbours of m (n and k) that have a connection
with each other through m (n 7→ k 7→ m, k 7→ n 7→ m ∈ l net) need to find an
alternative path towards each other. If there is no other route in n 7→ m 7→ m, k 7→ m 7→
m,n 7→ k 7→ k and k 7→ n 7→ n /∈ l net, then l net should be updated by removing
invalid links and adding new routes.

Since m is failed, links between n and k through m are not anymore valid, so
n 7→ k 7→ m and k 7→ n 7→ m are removed from l net. Then we need to add new links
to connect n and k. In this refinement, we model that actor n can establish a link
with actor k through any non-failed node: {n} × {k} × Status−1[{ok}] and similarly
for actor k to establish a new link with actor n: {k} × {n} × Status−1[{ok}]. For
clarity, we use the following short definitions: indir(k, n) = ANET [k]× n× k and
indir~(n, k) = n×ANET [k]× k. When node n establishes a link with k, neighbours
of n also need to add node k to their 2-hop neighbours list (indir(n, k) and
indir~(k, n)). Moreover, neighbours of k need to add n to their 2-hop neighbours list
(indir(k, n) and indir~(n, k)). The updating process of l net is described by @act3 in
the Recovery1 event.

We also add a new action to the event Recovery2 that updates l net by removing
all the links to the failed actor or through it.

The relation l net is an elegant and very abstract data structure relating two actor
nodes in its domain via a third node in its range. Indirect links between actors are now
established non-deterministically based on localised information. The graphical overview
of our model refinement is shown in Figure 2, where ‘Initial Model’ denotes the model
described in Section 3.1 and ‘refined model’ denotes the model described in the current
Section 3.2.

58 M. Kamali et al.

Figure 2 Overview of our model refinement

4 Distributing the recovery algorithm

In this section we put forward the decomposition of our centralised WSAN model
into a model for a WSAN infrastructure and a model for the distributed actor node(s).
The correctness of this decomposition step is addressed as a special kind of model
refinement.

4.1 A distributed model of the actor network

In the initial model we capture the recovery algorithm in a centralised way. This
centralisation is achieved by allowing the actor nodes to access global network links,
modelled by ANET . However, in the following refinement step, the variable l net is
introduced to limit the actor access to the local network links rather than the global
ones. Such a refinement step allows us to express the distributed nature of the recovery
algorithm in WSANs. Specifically, the refined model represents the communicating
infrastructure together with actions of separate actors, so that everything is modelled
in a single machine. On one hand, the modelling and the verification of properties in
the network is simpler but, on the other hand, it causes difficulties for its distributed
implementation. Therefore, in order to implement a distributed actor network, we need
to separate the WSAN infrastructure and the individual actor operations.

The overall scheme of the decomposition refinement is shown in Figure 3. The
model presented in Section 3.2 (‘refined model’ in Figure 3) is now split into two
parts: an interface model, named ‘Actor Interface’ and a machine model, named ‘WSAN
Middleware’. The interface specifies the external state and the behaviour model of
actor nodes, while the machine models the WSAN infrastructure that enables the nodes
to communicate with each other. The actor interface is imported into the machine
as a module, which is indexed by the set of actor nodes. This machine acts as the
communication middleware providing access to module instances via the given interface.

A distributed design of a network recovery algorithm 59

Figure 3 The structure of the decomposition refinement

4.2 Actor interface

The actor interface defines several external variables that can be accessed for reading
by the middleware. These variables model the visible state of an actor node. Each actor
interface has four variables: actor state, one hop, two hop and n n. The actor state
variable represents the state of a node, which can be either ok or fail. This
variable refines the corresponding variable Status of the abstract model. The one hop

60 M. Kamali et al.

and two hop variables store the direct and indirect neighbours of each node, thus
corresponding to ANET and l net. The n n variable is a control variable that informs
the WSAN middleware about recent state changes in an actor. If the value of n n is
TRUE, this means that the node has recently became active and thus the link discovery
should be started. Otherwise, the node is either inactive or the link discovery process
has already been done.

actor state ∈ STATUS
one hop ⊆ actors
two hop ∈ actors ↔ actors
n n ∈ BOOL

PROCESS
actor active
WHEN
actor state = fail

THEN
actor state := ok
n n := TRUE

END

PROCESS
actor inactive
WHEN

actor state = ok
THEN

actor state := fail
n n := FALSE

END

OPERATION
Add ActorLink
ANY
new node

PRE
actor state = ok
new node /∈ one hop

RETURN
r

POST
one hop′ = one hop ∪ {new node}
two hop′ = two hop \ {new node}

×(NODE \ actors)
r′ = one hop

END

OPERATION
Add2hopLink
ANY

neigh
PRE

actor state = ok
neigh ∈ actor ↔ actor

POST
two hop′ = two hop ∪ neigh

END

Each actor can have its own autonomous process which is not dependent on the rest of
the network. The events describing such a process are given in the PROCESS part of the
actor interface. In our model, we have two events, actor active and actor deactive,
that change the state of a node from inactive to active and from active to inactive,
respectively. In addition, the control variable is set to inform the communication
middleware about the recent change in the node state.

In the operation part of the actor interface, the operations that can be called by
the middleware are defined. The middleware calls these operations in its events to
add direct and indirect links between nodes as well as recover from disconnectivity.
In our interface, we have six operations where can be called by the communication
middleware. However, only the three operations referring to the distributed aspect of
the network recovery algorithm are discussed in this paper, for simplicity. We mention
some of the other operations briefly when called in the events of the middleware. The

A distributed design of a network recovery algorithm 61

Add ActorLink adds a new link to a given node into the variable one hop. The node is
passed as a parameter of the operation call. Moreover, the call removes all the indirect
links via sensors for the given node from the variable two hop. This is because a direct
actor link removes the need for indirect ones.

The Add2hopLink operation updates the two hop variable by adding a new
link, passed as the operation parameter and returns the void value to the middleware.

OPERATION
Recovery
ANY

m fn
PRE

actor state = ok ∧ m ∈ one hop
POST

one hop′ = one hop \ {m}
(fn /∈ one hop ∧ fn /∈ dom(two hop ◃ {m}) ⇒

two hop′ ⊆ (two hop ◃ {m}) ∪ {fn} × (NODE \ actor))
(fn ∈ one hop ∨ fn ∈ dom(two hop ◃ {m}) ⇒ two hop′ = two hop ◃ {m})

END

The Recovery operation removes invalid links and adds a new indirect link, if
needed. The failed node m which is passed as an argument to the Recovery
operation is removed from the one hop list. Moreover, a neighbour fn (a node in the
FailedNodeNeigh set in the previous models) of the failed node m is passed to the
Recovery operation in order to reestablish a link through sensors, between the actor
and fn. In the Recovery operation we then check the one hop and two hop lists and
if there is a link between the actor and fn, two hop list is just updated by removing
all indirect links through the failed node. If there is a link neither in one hop list nor
two hop list, two hop list is updated by removing all indirect links through the failed
node m and adding an indirect link to fn through sensor nodes.

4.3 WSAN middleware

In this section, we show how the defined interface can be used in the
refined machine. Moreover, we discuss how the refined machine can act as a WSAN
middleware.

USES
actor interface with prefix actor
PROCESS LINK
actor active : ActivateNode
actor inactive : DeactivateNode

In the machine part of the refined model, we import the actor interface indexed by
the actor set. As explained in Section 2.2, in this way we introduce a number of
module instances, each for a particular actor node in the network. In order to refine the
abstract events of the model before decomposition, in some cases we need to link these
events to the events that are now distributed among the module instances. Specifically,

62 M. Kamali et al.

ActivateNode and DeactivateNode are the abstract events that are linked to the
corresponding events in the process part of the actor interface.

One of the goals of the decomposition refinement step is data refinement of the data
structures modelling the actor coordination and recovery mechanism in WSANs by the
ones representing the coordination model of individual actors. Therefore, we need to
show that the one hop and two hop variables of the actor module instances are correct
replacements (i.e., data refinements) of the l net variable from the abstract model. In
addition, the abstract Status variable is now data refined by actor state residing in
module instances. The gluing invariants between abstract and concrete variables are as
follows:

l net = (id ▹ (one hop× one hop)) ∪ two hop
status = actor state

The remaining events of the refined machine can be split into two groups. The first
group consists of a single (new) event describing how the middleware monitors the actor
nodes, specifically looking for new activated nodes or previously active and currently
failed nodes. The second group consists of several events specifying the middleware
reactions in response to the detected changes. The corresponding reactions are specified
using operation calls to the affected node instances. These events are refinements of the
abstract events for adding new links and initiating the recovery mechanism.

EVENTS
ReadHeartBeat
ANY

n new fail
WHERE

n ∈ actors
(n n(n) = TRUE ∧ new node = ∅ ∧ new = n) ∨ (new = ∅)
(actor state(n) = fail ∧ one hop(n) ̸= ∅ ∧ inactive node = ∅ ∧ fail = n)
∨(fail = ∅)

THEN
new node := new
inactive node := fail
FailedNodeNeigh := DeactivateUpdate(fail)

END

The new monitoring event is called ReadHeartBeat. As node activation and
deactivation independently happens in a node and the network is not immediately aware
of these changes, this event alarms the communication middleware for any changes in
the network topology. The detected changes are stored into two new variables new node
and inactive node, which represent the indexes of, respectively, a node that was
recently activated in the network and a node that recently failed (i.e., became inactive).
In its guard, the ReadHeartBeat event checks the state of actor node instances. If the
n n value of the actor node is TRUE then new node is updated to the actor index.
Moreover, if the actor state value of the actor is fail and one hop is not empty, i.e., the
actor node has recently failed and recovery should be started, then the inactive node
variable is also updated by the actor index. Finally, the DeactivateUpdate operation
of the failed node is called to set the list of one− hop and two− hop with ∅ and
return the neighbours of the node to update FailedNodeNeigh. When one− hop list

A distributed design of a network recovery algorithm 63

of a failed node is set to ∅ denotes that the node failure has been considered and the
recovery links had been reestablished after detection of the failed node. Guards of the
ReadHeartBeat event corresponds to conditions that if a node has recently added or
removed from the network which are modelled by evaluating the value of n n and
one hop in each node, repectively.

The second group of events consists of the events AddLink, Add2hopLink,
and Recovery. The AddLink event is enabled when a new node joins the network
and an active actor is in its communication range. By calling the Actor AddLink
operations of these two neighbours, the corresponding internal lists of 1-hop neighbours
of these nodes are updated, while the lists of 2-hop neighbours are returned to the
AddLink event. The returned lists are saved into two variables m neigh and n neigh
to be used in the Add2hopLink event to update the lists of 2-hop neighbours.
Note the syntax of operation calls including two pairs of parentheses: in the first
parentheses, the index of a called node instance is given, while, within the second
parentheses, the concrete arguments of the procedure call are passed to the given module
instance.

In the Add2hopLink event, the Add2hopLink operation is called for different
module instances and their results are returned to the event. Since the return value of the
Add2hopLink operation is void, we have to assign it to the corresponding variables of
the type V OID. However, for the sake of clarity, we introduce a shorthand notation for
such calls: instead of void var := Operation(index) (parameters) we simply write
Operation (index) (parameters). Please also note that the module instance index
values used within operation calls in this event are actually not single values but sets
of indexes. In such a way, we can specify a multiple (broadcasting) call, when the
same operations of a number of affected module instances are called simultaneously.
Besides, the n nModify operation updates the value of n n from TRUE to FALSE
and is called for new node. The n n variable of new node is updated to denote that
the one hop and two hop lists of new node and its neighbours are updated. Updating
of n n variable in a node causes the communication middleware to not consider the
node as a new node anymore.

EVENTS
AddLink

ANY
n m

WHERE
n ∈ new node

m ∈ actors ∧ n ̸= m

dist(n 7→ m) < r a

THEN
m neigh :=(Actor AddLink(m)(n))×{m}
n neigh :=(Actor AddLink(n)(m))×{n}
new link := {n, m}
END

EVENTS
Add2hopLink

ANY
n m

WHERE
n ∈ new node ∧m ∈ new link ∧ n ̸= m

THEN
Add2hopLink(dom(n neigh))({m 7→ n})
Add2hopLink(dom(m neigh))({n 7→ m})
Add2hopLink(dom(n))(m neigh)

Add2hopLink(dom(m))(n neigh)

new link := ∅
new node := ∅
n nModify(new node)

END

64 M. Kamali et al.

Finally, the Recovery event is enabled when a node failure is detected by the
ReadHeartBeat event. Since the recovery mechanism is now distributed among the
actor nodes, in the refined machine we only call the recovery operation of neighbours
of a failed node. Therefore, we merge the Recovery1 and Recovery2 events of the
abstract machine into the Recovery event of the refined model.

EVENTS
Recovery
refines

Recovery1 Recovery2
ANY

n k
WHERE

n ∈ FailedNodeNeigh
k ∈ FailedNodeNeigh

THEN
Recovery(n)(inactiveNode 7→ k)
Recovery(k)(inactiveNode 7→ m)
FailedNodeNeigh := FailedNodeNeigh \ {n}

END

5 Contribution

In this paper we have employed Event-B to uncover a distributed software design
for a network recovery algorithm. This algorithm has been formalised before in
Event-B (Kamali et al., 2010) and its correctness and termination properties proved
based on the Rodin platform (Kamali et al., 2012). The algorithm deals with recovering
communication links between actors when intermediary actors fail. The nature of
WSANs imposes that every useful recovery algorithm be distributed, so that it is taken
care of by individual actors, based on some given infrastructure. In the previous works
on this algorithm (Kamali et al., 2010, 2012), the actor actions and the infrastructure are
all integrated in one specification. This obviously simplifies the understanding of the
involved mechanisms as well as the formulation and proofs of the properties. However,
it is problematic to implement such a specification. We address this difficulty in this
paper and propose a distributed design for the network recovery algorithm. As we
carry out our derivation still in Event-B, we can keep all the enumerated advantages
of simplicity and proving. In addition, we get a distributed design, much easier to
implement.

Our approach for distribution follows the object-oriented paradigm. Since there is a
number of entities of the same kind in the network, i.e., network nodes, a class (indexed
module) of nodes can be developed separately by modelling their local variables and
behaviours. Specifically, following our modelling methodology, we introduce a module
interface that models the state and the behaviour of individual nodes. In such a way, we
map the notion of a class in object-oriented programming to the notion of of an indexed
module in Event-B. Similarly to creating new objects of a class in object-oriented
programming, in our model we import an interface with an index set as its parameter.
Such an approach lets us distribute models of individual nodes in the network so
that they can be more transparently transformed into a part of distributed network

A distributed design of a network recovery algorithm 65

implementation. The decomposed model provides enough intuition towards creating
object-oriented code out of it.

Another interesting aspect of our derived distributed design refers to the failing
actors. Actors can fail and be activated non-deterministically both in the integrated
specification and in the distributed one. In the integrated specification however, only
one node could fail at a time and the algorithm takes care of recovering its neighbours
communication. Only after that can the normal operation of the actor, including other
possible actor failures, occur. In the distributed design, any number of actors can
fail simultaneously or sequentially. The distributed recovery algorithm takes care of
recovering the communication of each failed actor’s neighbours, in a non-deterministic
order and (still) one at a time. This is a significant reduction of the previous constraints
and constitutes an important contribution to modelling a reliable and more realistic
distributed recovery.

6 Related work and conclusions

Several formal developments of complex systems have used the Event-B formal method,
for instance network protocols (Abrial et al., 2003; Rehm, 2010), network-on-chip
modelling (Kamali et al., 2011a, 2011b) and sensor networks (Kamali et al.,
2010). Cansell and Méry (2006) model a development of a distributed reference
counting algorithm by using the refinement technique. Hoang et al. (2009) develop a
topology discovery algorithm in Event-B, to prove safety and liveness properties. The
major contribution in these formal models consists in developing correct-by-construction
models with the help of the refinement technique. Our contribution goes one step further,
to decompose a verified development towards a distributed implementation.

Ball and Butler (2006) present a practical approach to the formal development of
multi-agent systems in Event-B by using abstraction and decomposition techniques. The
main purpose of using the decomposition method for the development is to cope with
the complexity of the system. When the model is refined, it becomes more concrete
and complex. Therefore, decomposition is ideal for simplifying the complexity of the
model. In comparison, our aim is to apply the decomposition technique to approach an
implementation of a distributed system.

Iliasov et al. (2011) decompose an integrated correct-by-construction specification of
a distributed system to gain its distributed program. The paper addresses a state-based
formal approach to correct-by-construction development of distributed programs. The
authors present their approach by developing of a distributed leader election protocol
as a case study. Decomposition refinement in the case study is accomplished by two
instances of the module interface while in this paper we use indexed instances and
approach an object-oriented implementation.

Ray and Cleaveland (2004) present a formal modelling of middleware-based
distributed systems. They extend architectural integration diagrams (AIDs) (Ray and
Cleaveland, 2003) by providing an operational semantics that supports formal analysis
of distributed system designs. AID provides a mechanism that supports a wide variety
of interprocess communication and frees the designers from manually modelling the
different interprocess communications. Another middleware-based systems formalism is
presented in Dan and Danning (2010). They work on semi-formal UML-based analysis
using UML profiles and a notion of behavioural semantics. The main purpose of these

66 M. Kamali et al.

studies is the proposal of an operational semantics for modelling middleware-based
distributed systems to analyse different designs. In this paper, we understand the
middleware as a network infrastructure stepwise derived to achieve distribution.

The derivation of a distributed design from an integrated algorithm is very similar
in nature to well-established research in formal methods, for instance in Back and Sere
(1996). The derivation of a distributed broadcast algorithm from a centralised one is
employed there as a case study and the formal development is carried out in action
systems (Back and Kurki-Suonio, 1983) instead of Event-B. It is worth mentioning that
actions systems are in fact a precursor of Event-B. However, Event-B has the associated
Rodin platform, which makes proving an automated matter and thus brings a significant
advantage to the establishment of reliable practices in software development.

References
Abrial, J-R., Cansell, D. and Méry, D. (2003) ‘A mechanically proved and incremental

development of IEEE 1394 tree identify protocol’, Formal Aspects of Computing,
Vol. 14, No. 3, pp.215–227.

Abrial, J-R. (1996) The B-book: Assigning Programs to Meanings, Cambridge University Press,
New York, NY, USA.

Abrial, J-R. (2001) ‘Event driven distributed program construction’, MATISSE project.
Abrial, J-R. (2007) ‘A system development process with Event-B and the Rodin platform’,

in Butler, Michael, Hinchey, Michael, G. and Larrondo-Petrie, María, M. (Eds): Formal
Methods and Software Engineering, Vol. 4789, pp.1–3, Springer Berlin Heidelberg.

Abrial, J-R. (2010) Modeling in Event-B – System and Software Engineering, Cambridge
University Press, New York, NY.

Akyildiz, I. and Kasimoglu, I. (2004) ‘Wireless sensor and actor networks: research challenges’,
Ad Hoc Networks, Vol. 2, No. 4, pp.351–367.

Back, R. and Kurki-Suonio, R. (1983) ‘Decentralization of process nets with centralized control’,
in Proceedings of the 2nd ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing, pp.131–142.

Back, R-J. and Sere, K. (1989) ‘Stepwise refinement of action systems’, in
J.L.A. van de Snepscheut (Ed.): Mathematics of Program Construction, 375th Anniversary
of the Groningen University, International Conference, Groningen, The Netherlands, June
26–30, Vol. 375 of Lecture Notes in Computer Science, Springer, pp.115–138.

Back, R.J.R. and Sere, K. (1996) ‘Superposition refinement of reactive systems’, Formal Aspects
of Computing, Vol. 8, No. 3, pp.324–346.

Ball, E. and Butler, M. (2006) ‘Using decomposition to model multi-agent interaction protocols
in Event-B’, in FM ‘06 Doctoral Symposium, Springer.

Booch, G. (2007) ‘Speaking truth to power’, IEEE Software, Vol. 24, No. 2, pp.12–13.
Cansell, D. and Méry, D. (2006) ‘Formal and incremental construction of distributed algorithms:

on the distributed reference counting algorithm’, Theoretical Computer Science, Vol. 364,
No. 3, pp.318–337.

Dan, L. and Danning, L. (2010) ‘Towards a formal behavioral semantics for UML interactions’,
in Information Science and Engineering (ISISE), 2010 International Symposium on,
pp.213–218.

Fathabadi, M., Salehi, A., Rezazadeh, A. and Butler, M. (2011) ‘Applying atomicity and
model decomposition to a space craft system in Event-B’, in M.G. Bobaru, K. Havelund,
G.J. Holzmann and R. Joshi (Eds.): NASA Formal Methods, Vol. 6617 of Lecture Notes in
Computer Science, pp.328–342, Springer.

A distributed design of a network recovery algorithm 67

Gerhart, S., Craigen, D. and Ralston, T. (1994) ‘Case study: Paris Metro signaling system’,
Software, IEEE, Vol. 11, No. 1, pp.32–35.

Gungor, V.C., Akan, O.B. and Akyildiz, I.F. (2008) ‘A real-time and reliable transport (rt) 2
protocol for wireless sensor and actor networks’, IEEE/ACM Trans. Netw., Vol. 16, No. 2,
pp.359–370 [online] http://dx.doi.org/10.1109/TNET.2007.900413.

Hoang, T., Kuruma, H., Basin, D.A. and Abrial, J-R. (2009) ‘Developing topology discovery in
Event-B’, in IFM, pp.1–19.

Iliasov, A., Troubitsyna, E., Laibinis, L., Romanovsky, A., Varpaaniemi, K., Ilic, D. and
Latvala, T. (2010) ‘ Supporting reuse in event-b development: modularisation approach’,
in ASM ‘10, pp.174–188.

Iliasov, A., Troubitsyna, E., Laibinis, L. and Romanovsky, A. (2011) ‘Formal derivation of a
distributed program in Event-B’, in ICFEM ‘11, LNCS, pp.420–436.

Imran, M., Younis, M., Said, A.M. and Hasbullah, H. (2012) ‘Localized motion-based
connectivity restoration algorithms for wireless sensor and actor networks’,
Journal of Network and Computer Applications, Vol. 35, No. 2, pp.844–856 [online]
http://www.sciencedirect.com/science/article/pii/S1084804511002347
(accessed 22 January 2013).

Jeremy, B. and Wei, W. (2010) ‘Formal analysis of BPMN models using Event-B’,
in S. Kowalewski and M. Roveri (Eds.): Formal Methods for Industrial Critical
Systems – 15th International Workshop, FMICS 2010, Vol. 6371 of Lecture Notes in
Computer Science, pp.33–49, Antwerp, Belgium, September 20–21, Springer.

Kamali, M., Sedighian, S. and Sharifi, M. (2008) ‘A distributed recovery mechanism
for actor-actor connectivity in wireless sensor actor networks’, in Intelligent Sensors,
Sensor Networks and Information Processing, ISSNIP 2008, International Conference on,
pp.183–188.

Kamali, M., Laibinis, L., Petre, L. and Sere, K. (2010) ‘Self-recovering sensor-actor networks’,
in FOCLASA, pp.47–61.

Kamali, M., Petre, L., Sere, K. and Daneshtalab, M. (2011a) ‘Formal modeling of multicast
communication in 3D NoCs’, in Digital System Design (DSD), 2011 14th Euromicro
Conference on, pp.634 –642.

Kamali, M., Petre, L., Sere, K. and Daneshtalab, M. (2011b) ‘Refinement-based modeling of
3D NoCs’, in Fundamental of Software Engineering (FSEN), 2011 4th IPM International
Conference on.

Kamali, M., Laibinis, L., Petre, L. and Sere, K. (2012) ‘Formal development of
wireless sensor-actor networks’, Science of Computer Programming [online]
http://www.sciencedirect.com/science/article/pii/S0167642312000470?v=s5
(accessed 22 January 2013).

Katz, S. (1993) ‘A superimposition control construct for distributed systems’, ACM Trans.
Program. Lang. Syst., Vol. 15, No. 2, pp.337–356.

Lecomte, T. (2009) ‘Applying a formal method in industry: a 15-year trajectory’, in Proceedings
of the 14th International Workshop on Formal Methods for Industrial Critical Systems,
FMICS ‘09, Springer-Verlag, Berlin, Heidelberg, pp.26–34.

Ngai, E.C.H., Lyu, M.R. and Liu, J. (2006) ‘A real-time communication framework for wireless
sensor-actuator networks’, in Proc. of the IEEE Aerospace Conference, Big Sky.

Ray, A. and Cleaveland, R. (2003) ‘Architectural interaction diagrams: AIDs for system
modeling’, in Software Engineering, Proceedings. 25th International Conference on,
pp.396–406.

68 M. Kamali et al.

Ray, A. and Cleaveland, R. (2004) ‘Formal modeling of middleware-based distributed
systems’, Electron. Notes Theor. Comput. Sci., Vol. 108, No. 1, pp.21–37 [online]
http://dx.doi.org/10.1016/j.entcs.2004.01.010 (accessed 22 January 2013).

Rehm, J. (2010) ‘Proved development of the real-time properties of the IEEE 1394 root
contention protocol with the Event-B method’, International Journal on Software Tools for
Technology Transfer, Vol. 12, No. 1, pp.39–51.

Rodin Modularisation Plug-in (2011) [online]
http://wiki.event-b.org/index.php/Modularisation Plug-in/ (accessed 26 October 2011).

Rodin Tool Platform (2006) [online] http://www.event-b.org/platform.html/
(accessed 26 October 2011).

Woodcock, J., Larsen, P., Bicarregui, J. and Fitzgerald, J. (2009) ‘Formal methods: practice and
experience’, ACM Comput. Surv., Vol. 41, No. 4, pp.1–36.

Paper III

Topology-based Mobility Model for Wireless

Networks

Ansgar Fehnker, Peter Höfner, Maryam Kamali and

Vinay Mehta

Originally published in: K. Joshi et al. (Eds.), Proceedings of the 10th In-
ternational Conference on Quantitative Evaluation of Systems conference -
QEST 13, Lecture Notes in Computer Science Vol. 8054, pp. 389-404,
Springer-Verlag, 2013.

101

Topology-Based Mobility Models

for Wireless Networks

Ansgar Fehnker1, Peter Höfner2,3, Maryam Kamali4,5, and Vinay Mehta1

1 University of the South Pacific, Fiji
2 NICTA�, Australia

3 University of New South Wales, Australia
4 Turku Centre for Computer Science (TUCS), Finland

5 Åbo Akademi University, Finland

Abstract. The performance and reliability of wireless network proto-
cols heavily depend on the network and its environment. In wireless
networks node mobility can affect the overall performance up to a point
where, e.g. route discovery and route establishment fail. As a consequence
any formal technique for performance analysis of wireless network proto-
cols should take node mobility into account. In this paper we propose a
topology-based mobility model, that abstracts from physical behaviour,
and models mobility as probabilistic changes in the topology. We demon-
strate how this model can be instantiated to cover the main aspects of
the random walk and the random waypoint mobility model. The model
is not a stand-alone model, but intended to be used in combination with
protocol models. We illustrate this by two application examples: first we
show a brief analysis of the Ad-hoc On demand Distance Vector (AODV)
routing protocol, and second we combine the mobility model with the
Lightweight Medium Access Control (LMAC).

1 Introduction

The performance and reliability of network protocols heavily depend on the
network and its environment. In wireless networks node mobility can affect the
overall performance up to a point where e.g. route discovery and route establish-
ment fail. As a consequence any formal technique for analysis of wireless network
protocols should take node mobility into account.

Traditional network simulators and test-bed approaches usually use a detailed
description of the physical behaviour of a node: models include e.g. the location,
the velocity and the direction of the mobile nodes. In particular changes in
one of these variables are mimicked by the mobility model. It is common for
network simulators to use synthetic models for protocol analysis [15]. In this
class of models, a mobile node randomly chooses a direction and speed to travel
from its current location to a new location. As soon as the node reaches the
� NICTA is funded by the Australian Government as represented by the Department of

Broadband, Communications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.

K. Joshi et al. (Eds.): QEST 2013, LNCS 8054, pp. 389–404, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

390 A. Fehnker et al.

new location, it randomly chooses the next direction. Although these models
abstract from certain characteristics such as acceleration, they still cover most
of the physical attributes of the mobile node. Two well-known synthetic mobility
models are the random walk (e.g. [1]) and the random waypoint model (e.g. [2]).

However, a physical mobility model is often incompatible with models of pro-
tocols, in particular protocols in the data link and network layers, due to lim-
itations of the used modeling language and analysis tools. Even if it could be
included, it would add a high complexity and make automatic analysis infeasible.
From the point of view of the protocol it is often sufficient to model changes on
the topology (connectivity matrix) rather than all physical behaviour.

In this paper we propose a topology-based mobility model that abstracts
from physical behaviour, and models mobility as probabilistic changes in the
topology. The main idea is to identify the position of a node with its current set
of neighbours and determine changes in the connectivity matrix by adding or
deleting nodes probabilistically to this set. The probabilities are distilled from
the random walk or the random waypoint model. The resulting model is not
meant to be a stand-alone model, but to be used in combination with protocol
models. For this, we provide an Uppaal template for our model, which can easily
be added to existing protocol models. The paper illustrates the flexibility of our
model by two application examples: the first analyses quantitative aspects of
the Ad hoc On-Demand Distance Vector (AODV) protocol [14], a widely used
routing protocol, particularly tailored for wireless networks; the second example
presents an analysis of the Lightweight Media Access Control (LMAC) [12], a
protocol designed for sensor networks to schedule communication, and targeted
for distributed self-configuration, collision avoidance and energy efficiency.

The rest of the paper is organised as follows: after a short overview of re-
lated work (Sect. 2), we develop the topology-based mobility model in Sect. 3.
In Sect. 4 we present a simulator that is used to compute the transition prob-
abilities for two common mobility models. In Sect. 5, we combine the distilled
probabilities with our topology-based model to create an Uppaal model. Before
concluding in Sect. 7, we illustrate how the model can be used in conjunction
with protocol models. More precisely we present a short analysis of AODV and
LMAC.

2 Related Work

Mobility models are part of most network simulators such as ns-2. In contrast to
this, formal models used for verification or performance analysis usually assume
a static topology, or consider a few scenarios with changing topology only. For
the purpose of this section, we distinguish two research areas: mobility models
for network simulators and models for formal verification methods.

Mobility models for network simulators either replay traces obtained from real
world, or they use synthetic models, which abstract from some details and gen-
erate mobility scenarios. There are roughly two dozen different synthetic models
(see [15,4] for an overview), starting from well-known models such as the random

Topology-Based Mobility Models for Wireless Networks 391

walk model (e.g. [1]) and the random way point model (e.g. [2]), via (partially)
deterministic models and Manhattan models to Gauss-Markov and gravity mo-
bility models. All these models are based on the physical behaviour of mobile
nodes, i.e. each node has a physical location (in 2D or 3D1), a current speed
and a direction it is heading to. As these models cover most of the physical be-
haviour, they are most often very complex (e.g. [13,10]) and include for example
mathematics for Brownian motion. Due to this complexity these models cannot
be incorporated directly into formal models for model-checking. This paper de-
scribes how two of these models, the random waypoint, and the random walk
model, can be used to distill transition probabilities for a mobility model, which
can easily be combined with formal protocol models.

Including mobility into a model for formal verification is not as common as
it is for network simulators. If they are included, then typically in the protocol
specification and therefore can rarely be reused for the analysis of different pro-
tocols. Moreover, formal verification often abstracts entirely from the underlying
mobility model and allows arbitrary topology changes [9,5,8]. Other approaches
allow only random, but very limited changes in the topology, often in the form of
a scenario that involves deletion or creation of links [6,18,17]. Song and Godske-
sen propose in [16] a framework for modelling mobility; it models connectivity
by distributions and propose a probabilistic mobility function to model mobility,
without any specifics. This paper takes a similar approach, but adjacency matri-
ces to model connectivity, and works out and analyses the transition probabilities
obtained for two mobility models.

Our contribution is the following: we take the idea that the position of a
mobile node can be characterised by a set of neighbours, which determines the
topology, and we then define mobility as transitions between these sets. We then
analyse the geometry of mobile nodes in a grid and determine which parameters
actually influence the transition probabilities. In fact we found that some pa-
rameters, such as the step size of the random walk model have no influence on
the transition probabilities. Based on this observation we build a topology-based
mobility model which can easily be combined with protocol models.

3 Topology-Based Mobility Model

Our model takes up the position of the protocol: for a protocol it only matters
whether data packets can be sent to a node, i.e. whether the node is within
transmission range. The speed, the direction and other physical attributes are
unimportant and irrelevant for the protocol. Hence the topology-based mobility
model we introduce abstracts from all physical description of a node, and also
largely abstracts from time. It models the node as a set of one-hop neighbours,
i.e. nodes that are within transmission range of the node. Movement is modelled
as a transition from one set of neighbours to another.

We assume that the node to be modelled moves within a quadratic N ×N -
grid of stationary nodes. For simplicity we assume that nodes in the grid have a
1 3D is required when nodes model aerospace vehicles, such as UAVs.

392 A. Fehnker et al.

R=
1

R=
1.1
2

R=
1.1
8

R=
1.2
5

R=
1.4
1

Fig. 1. Transmission ranges 1,
√

5
2

≈ 1.12, 5
6

√
2≈ 1.18, 1.25 and

√
2≈ 1.41

distance of 1, and that both the stationary and the mobile node have the same
transmission range R. Obviously, the model depends on the grid size and the
transmission range. We further assume that the transition range R is larger than
1 and strictly smaller than

√
2. If it were smaller than 1 nodes in the grid would

be outside of the range of all neighbours, if it were larger than
√

2 nodes could
communicate diagonally in the grid.

The network topology of all nodes, including the mobile node, can be repre-
sented by an adjacency or connectivity matrix A with

Ai,j =
{

1 if D(i, j) ≤ R
0 otherwise ,

where D(i, j) is the distance between the nodes i and j using some kind of
metric, such as the Euclidean distance. While the connectivity matrix has theo-
retically 2N2

possible configurations, with N the number of nodes, a network
with one mobile node will only reach a small fraction of those. First, the matrix
is symmetric. Second, all nodes, except for one, are assumed static, and the
connectivity Ai,j between two static nodes i and j will be constant. Third, due
to the geometry of the plane, even the mobile node can only have a limited
number of configurations. For example, neither a completely connected node,
nor a completely disconnected node is possible given the transmission range.

The possible topologies depend on the transmission range: the larger the range
the larger the number of possible nodes that can be connected to the mobile node.
Within the right-open interval [1,

√
2), the set of possible topologies changes at

values
√

5
2 , 5

6

√
2 and 1.25. These values can be computed with basic trigonometry.

Fig. 1 illustrates which topologies become possible at those transmission ranges.
By considering the transmission range of the stationary nodes, one can par-

tition the plane into regions in which mobile nodes will have the same set of
neighbours. The boundaries of these regions are defined by circles with radius R
around the stationary nodes. Fig. 2 depicts three possible regions and a trans-
mission range R = 1.25; stationary nodes that are connected to the mobile node
(located somewhere in the coloured area) are highlighted. As convention we will
number nodes from the top left corner, starting with node 0. This partitioning
abstracts from the exact location of the mobile node. Mobility can now be ex-
pressed as a change from one region to the next. The topology-based model will
capture the changing topology as a Markovian transition function, that assigns
to a pair of topologies a transition probability.

Topology-Based Mobility Models for Wireless Networks 393

(a)

121110

765

210

(b)

121110

765

210

(c)

121110

765

210

Fig. 2. Three regions and the corresponding set of neighbours for range R = 1.25

The number of possible transitions is also limited by the partition, as every
region is bounded by a small number of arcs. If a mobile node transits an arc, a
static node has to be added to or deleted from its set of neighbours. Consider,
for example, the region that corresponds to set {1, 2, 6, 7, 12} in Fig. 2(a). If the
mobile node crosses the arc to the bottom left, node 11 will be added (Fig. 2(b)).
The other two arcs of {1, 2, 6, 7, 12} define the only two other transitions that
are possible from this set.

We call a mobility model locally defined if congruent regions yield the same
transition probabilities. Regions are congruent if they can be transformed into
each other by rotation, reflection and translation. By extension we call transitions
that correspond to congruent arcs in such regions also congruent. The movement
of a node in a locally defined mobility model is independent from its exact
position in the grid. The changes that can occur depend only on the topology
of the current neighbours. For example, the congruent sets {1, 2, 6, 7, 12} and
{0, 1, 5, 6, 7} in Fig. 2(a) and (c), would have the same transition probabilities.

In some cases this principle will uniquely determine the transition probability:
the set {1, 2, 6, 7, 11, 12} in Fig. 2(b) is bounded by 4 identical arcs. This means
that all of them should correspond to a probability of 1

4 . For other regions the
partition implies a relation/equation between some probabilities, but does not
determine them completely. Considering only transitions in a single cell of the
grid yields just a few and very symmetric transitions between possible topologies.
Fig. 3 depicts the transitions as transitions between topologies.

One way to assign probabilities is to require that they are proportional to the
length of the arc. Alternatively, probabilities may be estimated by simulations
of a moving node in the plane. Note, that the resulting probabilistic transition
system will be memoryless, i.e. the probability of the next transition depends
only on the current region (set of neighbours). In the next section, we will see
that the common random waypoint model is not locally defined, i.e. the local
topology is not sufficient to determine the transition probabilities.

4 Simulations of Two Mobility Models

In the previous section we proposed a topology-based mobility model, based
on transition probabilities; the exact values for the probabilities, however, were

394 A. Fehnker et al.

Fig. 3. Possible transitions within a single grid cell for R =1.25

not specified. In this section we use a simulator to compute it for two common
mobility models, a random walk model, and a random waypoint model.

4.1 Simulator

The simulator considers a single mobile node in an N ×N grid of stationary
nodes. As before, we assume a distance of 1 between the nodes on the grid. The
initial position (x0, y0) of the mobile node is determined by a uniform distribution
over [0, N − 1]×[0, N − 1], i.e. x0∼U([0, N − 1]) and y0∼U([0, N − 1]). Depending
on the mobility model chosen, the simulator then selects a finite number of
waypoints (x1, y1), . . . , (xn, yn), and moves along a straight line from waypoint
(xi, yi) to the next (xi+1, yi+1).

The random waypoint model uses a uniform distribution over the grid to
select the next way point, i.e. for all xi, we have yi, xi ∼ U([0, N − 1]) and
yi ∼ U([0, N − 1]). The choice of the next waypoint is independent of the pre-
vious waypoint. This model is the most common model of mobility for network
simulators, even if its merits have been debated [19]. A consequence of the way-
point selection is that the direction of movement is not uniformly distributed;
nodes tend to move more towards the centre of the square interval.

As an alternative we are using a simple random walk model. Given way point
(xi, yi) the next way point is computed by (xi, yi) + (xΔ, yΔ) where both xΔ

and xΔ are drawn from a normal distribution N (0, σ). This also means that the
Euclidean distance between waypoints ||(xΔ, yΔ)|| has an expected value of σ,
which defines the average step size in the random walk model. By this definition,
the model is unbounded, i.e. the next waypoint may lie outside the grid. If this
happens the simulator computes the intersection of the line segment with the
grid’s boundary and reflects the waypoint at that boundary. In this model the
mobile node moves from the first waypoint to the boundary, and from there to
the reflected waypoint. For the purposes of this paper the intersections with the
boundary do not count as waypoints.

Since the topology-based mobility model introduced in Sect. 3 abstracts from
acceleration and speed, these aspects are not included in the simulation ei-
ther. The simulator checks algebraically for every line segment from (xi, yi) to

Topology-Based Mobility Models for Wireless Networks 395

(a)
0

100000
200000
300000
400000
500000
600000

Fr
eq

0 1 2 3 4 5 6 7 8 9 10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P

0 1 2 3 4 5 6 7 8 9 10

Sigma

Set: 0, 1,5,6,7, Radius 1.2

Adds 11
Adds 2
Deletes 7
Deletes 0

(b)

4.0

4.5

5.0

5.5

6.0

6.5

7.0

T
ra
ns
iti
on

s/
(w

ay
po

in
t*
ra
ng

e)

1.0 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

Range

Transitions vs transmission range

Random waypoint
Random walk

Fig. 4. (a) Transition probabilities and occurrences of set {0, 1, 5, 6, 7}. (b) The relation
between number of transitions, the number of waypoints, and the transmission range.

(xi+1, yi+1) if it intersects with a node’s transmission range R (given by a circle
with radius R and the node in its centre). The simulator sorts all the events of
nodes entering and leaving the transmission range and computes a sequence of
sets of neighbours. This sequence is then used to count occurrences of transitions
between these sets that are used to compute relative transition probabilities.

4.2 Simulation Results

The simulator is implemented in C++, and used to generate transition probabil-
ities for the topology-based mobility model of Section 3. The simulator allows
also a more detailed analysis of these two mobility models, in particular how the
choice of parameters (grid size, transmission range, and standard deviation of
the normal distribution σ) affects the transition probabilities. In this section we
discuss some results for scenarios with a single mobile node on a 5 × 5 grid.

The simulation of the random walk model demonstrates a few important
invariants. One observation is that the transition probabilities do not depend on
the size of σ. This fact is illustrated by Fig. 4(a). The top part of this figure
shows the probabilities that certain nodes are added or deleted from the set
{0, 1, 5, 6, 7}. While σ ranges from 1

8 to 8 the probabilities remain constant. The
bottom part of the figure depicts the frequency with which the set occurs. Here
there is a linear relation between σ and the total number of times that the set
is visited. This is explained by the fact that σ is also the average step size, and
doubling it means that twice as many transitions should be taken along the path.

Another linear relation exists between the total number of transitions along a
path and the transmission range (cf. Fig. 4(b)). This relation is explained by the
fact that the length of the boundary of each transmission area is linear to the
range. For σ =1, and R = 1, approximately 5 transitions will occur between any
two waypoints. The ratio transition/range is constant for an increasing range.
Note, that this number is independent of the grid size, and grows linearly with σ.

396 A. Fehnker et al.

Random Walk Random Waypoint

0
5000

10000
15000
20000
25000
30000
35000

Fr
eq

1.0 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

Radius

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P

1.0 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

Radius

Set: 1,2,6,7,11,12,

Adds 5
Adds 8
Deletes 2
Deletes 11
Deletes 12
Deletes 1

(a)
0

10000
20000
30000
40000
50000
60000
70000
80000
90000

Fr
eq

1.0 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

Radius

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P

1.0 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

Radius

Set: 1,2,6,7,11,12,

Adds 5
Adds 8
Deletes 2
Deletes 11
Deletes 12
Deletes 1

(b)

0

5000

10000

15000

20000

25000

Fr
eq

1.0 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

Radius

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P

1.0 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

Radius

Set: 2,6,7,12,

Adds 8
Adds 11
Adds 1
Deletes 2
Deletes 12

(c)
0

10000

20000

30000

40000

50000

60000

Fr
eq

1.0 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

Radius

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P

1.0 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

Radius

Set: 2,6,7,12,

Adds 8
Adds 11
Adds 1
Deletes 2
Deletes 12

(d)

0

5000

10000

15000

20000

25000

Fr
eq

1.0 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

Radius

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P

1.0 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

Radius

Set: 1,5,6,7,

Adds 2
Adds 11
Adds 0
Deletes 5
Deletes 7

(e)
0

5000
10000
15000
20000
25000
30000
35000
40000

Fr
eq

1.0 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

Radius

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P

1.0 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

Radius

Set: 1,5,6,7,

Adds 2
Adds 11
Adds 0
Deletes 5
Deletes 7

(f)

Fig. 5. Selected simulation results of the random walk and the random waypoint model

Topology-Based Mobility Models for Wireless Networks 397

These invariants do not hold for the random waypoint model. The ratio of
transitions to range is not constant, as illustrated in Fig. 4(b). This is because
transitions are not evenly distributed but cluster towards the center of the grid.
The ratio is also dependent on the size of the grid. In a larger grid the distance
between waypoints will be larger, and more transitions occur per waypoint.

For the random walk model we found that the step size σ has no effect on
the actual transition probabilities. The effect of the transmission range on the
transition probabilities is less trivial. Fig. 5 shows a few illustrative examples.
Similar result were obtained for all possible sets of neighbours.

Fig. 5(a) depicts the results for {1, 2, 6, 7, 11, 12}, a set of six nodes that form
a rectangle. This set cannot occur if the transmission ranges are smaller than

√
5

2
(cf. Sect. 3). For transmission ranges R ∈ [

√
5

2 , 1.25] the only possible transitions
are to delete one of the four vertices located at the corners of the rectangle. In
the random walk model the probability for these four transitions is 1

4 . Fig. 5(a)
also illustrates that for transmission ranges R≥ 1.25, it is possible to add one
additional node (either 5 or 8), reaching a set with 7 one-hop neighbours. As the
range increases, the probability of this happening increases. At the same time
the probability of deleting a vertex decreases.

Fig. 5(b) consider the same set of neighbours as Fig. 5(a), but under the
random waypoint model. It demonstrates that this model is not locally defined,
as congruent transitions, e.g. deleting vertices, do not have the same probability.
The probability also depends of the distance of a node to the centre of the grid.

Fig. 5(c–f) show the transition probabilities for sets of neighbours that occur
only if R∈[1, 1.25]: if R < 1, the transmission range is too small to cover the
sets {2, 6, 7, 12} and {1, 5, 6, 7}, resp.; if R > 1.25 the transmission range of the
mobile will always contain more than four nodes. The observation is that as the
transmission range increases, the probability of deleting a node decreases, while
the probability of adding nodes increases. The sets {2, 6, 7, 12} and {1, 5, 6, 7}
have the same basic “�” shape; one is congruent to the other. Hence, for the
random walk model both sets have essentially the same transition probability;
but also the frequency with which the sets occur is the same. This confirms that
the position or orientation in the grid does not matter.

For the random waypoint model this no longer holds. The transition proba-
bilities of similarly shaped neighbourhoods are not similar, but also determined
by the position relative to the centre: the closer the set is to the centre the often
it occurs in paths. Note, Fig. 1(d) and (f) use different scales for the frequency.

To conclude this section, we summarise our findings:

Random walk model:

– The transition probabilities are independent of σ and the grid size;
– The number of transitions per waypoint path grows linear with the range;
– The transition probabilities of congruent transitions are the same;
– The probabilities depend only locally on the set of nodes within range.

Random waypoint model: None of the above observations hold.

398 A. Fehnker et al.

Table 1. Number of possible topologies, in relation to the range and the grid size2

Transmission range
[1, 1] (1, 1.12) (1.12, 1.18) (1.18, 1.25) [1.25, 1.25] (1.25, 1.41)

G
ri

d
si

z
e

2 × 2 9 9 5 5 5 5
3 × 3 32 41 49 49 37 41
4 × 4 69 97 133 133 101 117
5 × 5 120 177 257 257 197 233
6 × 6 185 281 421 421 325 389
7 × 7 264 409 625 625 485 585
8 × 8 357 561 869 869 677 821
9 × 9 464 737 1153 1153 901 1097

10 × 10 585 937 1477 1477 1157 1413

5 Uppaal Model

This section describes an Uppaal model that implements the topology-based
mobility model described in Sect. 3, and uses the transition probabilities ob-
tained in Sect. 4. The model is not meant to be stand-alone, but meant to
be used within other protocol models. It assumes that an adjacency matrix
bool topoloy[N][N] is used. The constant N is the size of the grid plus the mo-
bile node. Depending on whether the random walk or random waypoint model
is used, the model includes parameters for grid size and transmission range.

The template provides a list of all possible sets of neighbours. Table 1 shows
the numbers of possible sets depending on the size of the grid and the transmis-
sion range. The results show that even for relatively large grids the number of
possible sets of neighbors of the mobile node is limited. They will increase the
potential state space only by three order of magnitude. The reachable space may
increase by more when a template for mobility is added, because the protocol
might reach more states than it did for static topologies.

The Uppaal template of Fig. 6 implements a lookup table of transition proba-
bilities. After initialisation the template loops through a transition that changes
the topology probabilistically. It contains a clock t, a guard t>=minframe and an
invariant t<=maxframe to ensure that the change happens once in the interval
[minframe,maxframe]. The values of minframe and maxframe determine the
frequency of topology changes, and hence simulate the speed of a node.

The lookup is implemented by functions updatemapindex, changeprob and
changenode. After every topology change, the function updatemapindex main-
tains the index (mapindex); this index into the list of possible sets is used to look
up transition probabilities for a smaller set of representative sets of neighbours.
Every set of neighbours is congruent to one of these representative sets. This
information is used by changeprob to look up for a given node i the probability
that it will be added or deleted from the current set of neighbours. Function
changenode implements that change.

2 Results for the point intervals containing
√

5
2

and 5
6

√
2 are omitted.

Topology-Based Mobility Models for Wireless Networks 399

t<=maxframe t>=minframe
&& mapindex>=0
&& numnodes<=MAXLENGTH

intitialiseN(),
updatemapindex()

changenode(i),
updatemapindex()

changeprob(i)
i: int[0,NODES-2]

t=0

Fig. 6. Uppaal template for the mobility model

6 Application Examples

In this section we illustrate how the topology-based model can be used in com-
bination with protocol models: first we briefly present an analysis of the Ad-hoc
On demand Distance Vector (AODV) routing protocol, and second we combine
the mobility model with the Lightweight Medium Control (LMAC). A detailed
study of these protocols is out of the scope of the paper; we only show the
applicability and power of the introduced mobility model.

Since we are interested in quantitative properties of the protocols, we are
not using “classical” Uppaal, but SMC-Uppaal, the statistical extension of Up-
paal [3]. Statistical Model Checking (SMC) [20] combines ideas of model checking
and simulation with the aim of supporting quantitative analysis as well as ad-
dressing the size barrier that currently prevents useful analysis of large models.
SMC trades certainty for approximation, using Monte Carlo style sampling, and
hypothesis testing to interpret the results. Parameters setting thresholds on the
probability of false negatives and on probabilistic uncertainty can be used to
specify the statistical confidence on the result. For this paper, we choose a con-
fidence level of 95%.

6.1 The Ad-Hoc on Demand Distance Vector (AODV) Protocol

AODV is a reactive routing protocol, which means that routes are only estab-
lished on demand. If a node S needs to send a data packet to node D, but cur-
rently does not know a route, it buffers the packet and initiates a route discovery
process by broadcasting a route request message in the network. An intermediate
node A that receives this message stores a route to S, and re-broadcasts the re-
quest. This is repeated until the message reaches D, or alternatively a node with
a route to D. In both cases, the node replies to the route request by unicasting
a route reply back to the source S, via the previously established route.

An Uppaal model of AODV is proposed in [6]. The analysis performed on this
model was done for static topologies and for topologies with very few changes.
This limits the scope of the performance analysis. Here, the mobility automaton
is added to the model of AODV. Since the mobility automaton is an almost
independent component, it can be easily integrated into any Uppaal model that
model topologies by adjacency matrices.

400 A. Fehnker et al.

0.0

0.1

0.2

0.3

0.4

0.5

0.6
pr
ob

ab
ili
ty

380 400 420 440 460 480 500 520

runtime

Random Walk

R=1.1 P [0.84,0.94]
R=1.2 P [0.59,0.69]
R=1.3 P [0.62,0.72]
Not mobile P [0.95,1]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

pr
ob

ab
ili
ty

380 400 420 440 460 480 500 520

runtime

Random Waypoint

R=1.1 P [0.80,0.90]
R=1.2 P [0.38,0.48]
R=1.3 P [0.41,0.51]
Not mobile P [0.95,1]

Fig. 7. AODV: probability of packet delivery within a certain time

Our experiments consider scenarios with a single mobile node moving within
a 4× 4 grid. A data packet destined for a randomly chosen stationary node is
injected at a different stationary node. During route discovery the mobile node
will receive and forward route requests and replies, as any other node will do.

The experiment determines the probability that the originator of the route
request learns a route to the destination within 2000 time units. This time bound
is chosen as a conservative upper bound to ensure that the analyser explores
paths to a depth where the protocol is guaranteed to have terminated. In (SMC-)
Uppaal syntax this property can be expressed as

Pr[<=2000](<> node(OIP).rt[DIP].nhop!=0) . (1)

The variable node(OIP).rt denotes the routing table of the originator OIP, and
the field node(OIP).rt[DIP].nhop represents the next hop on the stored route
to the destination DIP. In case it is not 0, a route to DIP was successfully estab-
lished. The property was analysed for the random walk and the random waypoint
model with three different transmission ranges R: 1.1, 1.2, and 1.3. SMC-Uppaal
returns a probability interval for the property (1), as well as a histogram of the
probabilities of the runtime needed until the property is satisfied.

The results are presented in Fig. 7. The legend contains, besides the name of
the model, the probability interval. For example, the random walk model with
R = 1.1 satisfies property (1) with a probability P ∈ [0.84, 0.94]. In contrast to
that the probability of route establishment in a scenario without a mobile node
is [0.95, 1], which indicates that the property is always satisfied. The probability
intervals show that all scenarios with a mobile node have a lower probability for
route discovery, some dramatically so. The random waypoint model with R = 1.2
has a probability interval of [0.38, 0.48], which means that more than half of all
route discovery processes fail. It is also notable that the random walk models
have better results than the corresponding random waypoint models. Finally, the
mobility models with R =1.1 have a significantly higher probability to succeed
than the other four models with R =1.2 and R =1.3.

Topology-Based Mobility Models for Wireless Networks 401

The histograms show another interesting finding. The time it takes for a route
reply to be delivered, if it is delivered, can be shorter for the models with the
mobile node. Apparently, the mobile node can function as a messenger between
originator and destination; not just by forwarding messages, but also by physi-
cally creating shortcuts.

6.2 The Lightweight Medium Access Control (LMAC) Protocol

LMAC [11] is a lightweight time division medium access protocol designed for
sensor networks to schedule communication, and targeted for distributed self-
configuration, collision avoidance and energy efficiency. It assumes that time is
divided into frames with a fixed number of time slots. The purpose of LMAC is to
assign to every node a time slot different from its one- and two-hop neighbours.
If it fails to do so, collisions may occur, i.e. a node receives messages from
two neighbours at the same time. However, LMAC contains a mechanism to
detect collisions and report them to the nodes involved, such that they choose
(probabilistically) a new time slot.

A (non-probabilistic) Uppaal model for LMAC was developed in [7], where
it was also used to study static topologies. Based on this model a probabilistic
model was developed [11]. This model was then used to study the performance
of LMAC for heuristically generated topologies with 10 nodes [3]. The model we
use for this paper differs in one aspect from [3]: it uses a smaller frame, with
only six time slots, rather than 20. The purpose of LMAC is to assign time slots
such that collisions are avoided or resolved, even if the number of time slots is
restricted. For a 3× 3 grid, it is possible to find a suitable assignment with only
five time slots; six time slots should therefore be sufficient to cover a network
with 10 nodes (one mobile node), although it might be challenging.

We check the following two properties:
Pr[<=2000](<> forall (i: int[0,9]) slot no[i]>=0) (2)
Pr[collisions<=2000](<> time>=2000) . (3)

The first property holds if, at some time point (before time 2000), all nodes are
able to select a time slot. While this does not guarantee the absence of collisions,
it does guarantee that all nodes have been able to participate in the protocol.
The second property checks whether it is possible to reach 2000 time units, with
less than 2000 collisions. This property is true for all runs. It is used merely to
obtain a histogram of the number of collisions.

The results are illustrated in the histogram of Fig. 8: for all models with a
mobile node, the property (2) is satisfied (the probability interval is [0.95, 1],
by a confidence level of 95%). The detailed results show that all runs reach a
state in which all nodes have chosen a time slot. For the model without a mobile
node, the probability interval is [0.80, 0.90]. This means that in at least 10% of
all cases LMAC is not able to assign a time slot to all nodes; the histogram
shows runs with 80–90, 160–170, and 240–250 collisions. These are runs in which
one, or more nodes are engaged in a perpetual collision. Interestingly, this type
of perpetual collisions do not occur in models with a mobile node. The mobile

402 A. Fehnker et al.

0.0

0.1

0.2

0.3

0.4

0.5
pr
ob

ab
ili
ty

0 50 100 150 200 250 300

collisions

Random Walk

Not mobile
R=1.1
R=1.2
R=1.3

0.0

0.1

0.2

0.3

0.4

0.5

pr
ob

ab
ili
ty

0 50 100 150 200 250 300

collisions

Random Waypoint

Not mobile
R=1.1
R=1.2
R=1.3

Fig. 8. LMAC: number of collisions within 2000 time units

node functions as an arbiter, which, as it moves around, detects and reports
collisions that static nodes could not resolve.

The histograms reveal a few other interesting findings. In the model without
mobility about 40% of the runs have no collisions. For both mobility models
with transmission range R =1.1 this drops to about 30%. For larger transmission
ranges this drops even further to close to 0%, which means that almost all runs
have at least some collisions. The differences between range R = 1.1, R =1.2 and
R = 1.3 is explained by the fact that the mobile node for R =1.1 will have at most
5 neighbours, while for R =1.3 it may be 7 neighbours. A larger neighbourhood
makes choosing a good time slot more difficult. This is confirmed by another
observation, namely that for R =1.1 only a few runs have more than 20 collisions
(approx. 12% of the runs, both random walk and random waypoint), while for
a range of 1.2 and 1.3 it is in the range from 25% to 45%.

Both application examples show that introducing mobility can change the
behaviour of network protocols significantly. As mentioned above, the purpose
of these application examples was not to analyse these protocols in detail, but
to show that the topology-based mobility models can be used to improve the
scope of performance analyses of such protocols.

Topology-Based Mobility Models for Wireless Networks 403

7 Conclusion

In this paper we have proposed an abstract, reusable, topology-based mobility
model for wireless networks. The model abstracts from all physical aspects of a
node as well as from time, and hence results in a simple probabilistic model. To
choose a right level of abstraction, we have studied possible transitions and con-
figurations of network topologies. To determine realistic transition probabilities
regarding existing mobility models, we have performed simulation-based exper-
iments. In particular, we have distilled probabilities for the random walk and
the random waypoint model (using different transition ranges). We have then
combined the topology-based model with the distilled probabilities and have cre-
ated a (SMC-)Uppaal model3. The generated model is small and can easily be
combined with other Uppaal models specifying arbitrary protocols. To illustrate
this claim we have combined our model with a model of AODV and LMAC,
resp. By this we were able to demonstrate that topology-based mobility models
can be used to improve the scope of performance analysis of such protocols.

There are several possible directions for future work. First, we hope that our
model is combined with a variety of protocols. Anybody who has some experience
with the model checker Uppaal should be able to integrate our model easily.
Second, we want to extend our mobility model to more than one mobile node.
Having many mobile nodes will most likely increase the state space significantly,
but statistical model checking should overcome this drawback. Last, but not
least, we plan to use the mobility model to perform a thorough and detailed
analysis of AODV and LMAC. In this paper we have only scratched the surface
of the analysis; we expect to find unexpected behaviour in both protocols.

References

1. Basu, P., Redi, J., Shurbanov, V.: Coordinated flocking of UAVs for improved
connectivity of mobile ground nodes. In: MILCOM 2004, pp. 1628–1634. IEEE
(2004)

2. Bettstetter, C., Hartenstein, H., Pérez-Costa, X.: Stochastic properties of the ran-
dom waypoint mobility model. Wireless Networks 10(5), 555–567 (2004)

3. Bulychev, P., David, A., Larsen, K., Mikučionis, M., Poulsen, D.B., Legay, A.,
Wang, Z.: UPPAAL-SMC: Statistical model checking for priced timed automata.
In: Wiklicky, H., Massink, M. (eds.) Quantitative Aspects of Programming Lan-
guages and Systems. EPTCS, vol. 85, pp. 1–16. Open Publishing Association (2012)

4. Camp, T., Boleng, J., Davies, V.: A survey of mobility models for ad hoc network
research. In: Wireless Communications & Mobile Computing (WCMC 2002), pp.
483–502 (2002)

5. Fehnker, A., van Glabbeek, R., Höfner, P., McIver, A., Portmann, M., Tan, W.L.:
A process algebra for wireless mesh networks. In: Seidl, H. (ed.) ESOP 2012. LNCS,
vol. 7211, pp. 295–315. Springer, Heidelberg (2012)

6. Fehnker, A., van Glabbeek, R., Höfner, P., McIver, A., Portmann, M., Tan, W.L.:
Automated analysis of AODV using UPPAAL. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 173–187. Springer, Heidelberg (2012)

3 The models are available at http://repository.usp.ac.fj/5880

404 A. Fehnker et al.

7. Fehnker, A., van Hoesel, L., Mader, A.: Modelling and verification of the LMAC
protocol for wireless sensor networks. In: Davies, J., Gibbons, J. (eds.) IFM 2007.
LNCS, vol. 4591, pp. 253–272. Springer, Heidelberg (2007)

8. Ghassemi, F., Ahmadi, S., Fokkink, W., Movaghar, A.: Model checking mANETs
with arbitrary mobility. In: Arbab, F., Sirjani, M. (eds.) FSEN 2013. LNCS,
vol. 8161. Springer, Heidelberg (2013)

9. Godskesen, J.C.: A calculus for mobile ad hoc networks. In: Murphy, A.L., Vitek, J.
(eds.) COORDINATION 2007. LNCS, vol. 4467, pp. 132–150. Springer, Heidelberg
(2007)

10. Groenevelt, R., Altman, E., Nain, P.: Relaying in mobile ad hoc networks: the
Brownian motion mobility model. Wireless Networks 12(5), 561–571 (2006)

11. van Hoesel, L., Havinga, P.: A lightweight medium access protocol (LMAC) for
wireless sensor networks: Reducing preamble transmissions and transceiver state
switches. In: Networked Sensing Systems, INSS 2004, pp. 205–208. Society of In-
strument and Control Engineers (SICE) (2004)

12. van Hoesel, L.: Sensors on speaking terms: schedule-based medium access control
protocols for wireless sensor networks. Ph.D. thesis, University of Twente (2007)

13. McGuire, M.: Stationary distributions of random walk mobility models for wireless
ad hoc networks. In: Mobile Ad Hoc Networking and Computing (MobiHoc 2005),
pp. 90–98. ACM (2005)

14. Perkins, C., Royer, E.: Ad-hoc On-Demand Distance Vector Routing. In: 2nd IEEE
Workshop on Mobile Computing Systems and Applications, pp. 90–100 (1999)

15. Roy, R.R.: Handbook of Mobile Ad Hoc Networks for Mobility Models. Springer
(2011)

16. Song, L., Godskesen, J.C.: Probabilistic mobility models for mobile and wireless
networks. In: Calude, C.S., Sassone, V. (eds.) TCS 2010. IFIP AICT, vol. 323, pp.
86–100. Springer, Heidelberg (2010)

17. Tschirner, S., Xuedong, L., Yi, W.: Model-based validation of qos properties of
biomedical sensor networks. In: Embedded Software (EMSOFT 2008), pp. 69–78.
ACM (2008)

18. Wibling, O., Parrow, J., Pears, A.N.: Automatized verification of ad hoc routing
protocols. In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004. LNCS, vol. 3235,
pp. 343–358. Springer, Heidelberg (2004)

19. Yoon, J., Liu, M., Noble, B.: Random waypoint considered harmful. In: Joint Con-
ference of the IEEE Computer and Communications (INFOCOM 2003). IEEE
(2003)

20. Younes, H.: Verification and Planning for Stochastic Processes with Asynchronous
Events. Ph.D. thesis, Carnegie Mellon University (2004)

Paper IV

Quantitative Analysis of AODV and its Variants

on Dynamic Topologies using Statistical Model

Checking

Peter Höfner and Maryam Kamali

Originally published in: V. Braberman and L. Fribourg (Eds.), Proceedings
of the 11th International Conference on Formal Modeling and Analysis of
Timed Systems - FORMATS 13, Lecture Notes in Computer Science Vol.
8053, pp. 121-136, Springer-Verlag, 2013.

119

Quantitative Analysis of AODV

and Its Variants on Dynamic Topologies
Using Statistical Model Checking

Peter Höfner1,4 and Maryam Kamali2,3

1 NICTA, Australia
2 Turku Centre for Computer Science (TUCS), Finland

3 Åbo Akademi University, Finland
4 University of New South Wales, Australia

Abstract. Wireless Mesh Networks (WMNs) are self-organising ad-hoc
networks that support broadband communication. Due to changes in
the topology, route discovery and maintenance play a crucial role in
the reliability and the performance of such networks. Formal analysis of
WMNs using exhaustive model checking techniques is often not feasible:
network size (up to hundreds of nodes) and topology changes yield state-
space explosion. Statistical Model Checking, however, can overcome this
problem and allows a quantitative analysis.

In this paper we illustrate this by a careful analysis of the Ad hoc On-
demand Distance Vector (AODV) protocol. We show that some optional
features of AODV are not useful, and that AODV shows unexpected
behaviour—yielding a high probability of route discovery failure.

1 Introduction

Route finding and route maintenance are critical for the performance of networks.
Efficient routing algorithms become even more important when mobility of net-
work nodes lead to highly dynamic and unpredictable environments. The Ad hoc
On-Demand Distance Vector (AODV) routing protocol [15] is such an algorithm.
It is widely used and particularly designed for Wireless Mesh Networks (WMNs),
self-organising ad-hoc networks that support broadband communication.

Formal analysis of routing protocols is one way to systematically analyse
protocols for flaws and to present counterexamples to diagnose them. It has
been used in locating problems in automatic route-finding protocols, e.g. [1,4].
These analyses are performed on tiny static networks (up to 5 nodes). However,
formal validation of protocols for WMNs remains a challenging task: network size
(usually dozens, sometimes even hundreds of nodes) and topology changes yield
an explosion in the state space, which makes exhaustive model checking (MC)
techniques infeasible. Another limitation of MC is that a quantitative analysis
is often not possible: finding a shortcoming in a protocol is great but does not
show how often the shortcoming actually occurs.

V. Braberman and L. Fribourg (Eds.): FORMATS 2013, LNCS 8053, pp. 121–136, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

122 P. Höfner and M. Kamali

Statistical model checking (SMC) [19,18] is a complementary approach that
can overcome these problems. It combines ideas of model checking and simula-
tion with the aim of supporting quantitative analysis as well as addressing the
size barrier. SMC trades certainty for approximation, using Monte Carlo style
sampling, and hypothesis testing to interpret the results.

In this paper we demonstrate that SMC can be used for formal reasoning of
routing protocols in WMNs. We perform a careful analysis of different versions
of the AODV protocol. In particular, we analyse how dynamic topologies can
affect the protocol behaviour. In other words, we analyse the performance of
the protocol while the network topology evolves. We show that some optional
features provided by AODV should be avoided since they affect the performance
of the protocol. Moreover, we show that in some scenarios the behaviour of
AODV is not as intended yielding a high probability of route discovery failure.
When possible we suggest improvements of the protocol.

The paper is organised as follows: in Sect. 2 we give an overview of AODV,
present optional features such as the resending of route requests, and sketch
the encoding of AODV in SMC-Uppaal, the statistical extension of Uppaal. In
Sect. 3 we describe the mobility model, which is used for our analysis of AODV.
Sect. 4 discusses the experiments performed, the main contribution of this paper:
(i) We show that a single mobile node can have a massive impact on the success
of route discovery. Moreover we show that some options of AODV should not
be used in combination, unless the protocol specification is adapted (changed).
(ii) A second category of experiments reveals a surprising observation: adding
“noise” (for example an additional data packet) to a network can increase the
success of route discovery. (iii) The third category discusses the consequences of
different speeds of mobile nodes. The paper closes with a discussion of related
work in Sect. 5 and a short outlook in Sect. 6.

2 AODV, Its Variants and Their Uppaal Models

2.1 The Basic Model

The AODV routing protocol [17] is a widely used routing protocol, particularly
tailored for WMNs. It is currently standardised by the IETF MANET working
group and forms the basis of new WMN routing protocols, including HWMP in
the upcoming IEEE 802.11s wireless mesh network standard [12].

AODV is a reactive protocol, meaning that a route discovery process is only
initiated when a node S in the network has to send data to a destination D for
which it does not have a valid entry in its own routing table. The route discov-
ery process starts with node S broadcasting a route request (RREQ) message,
which is received by all nodes within S’s transmission range. If a node, which
is different to the destination, receives a RREQ message and does not have a
valid entry for the destination in its routing table, the request is forwarded by
re-broadcasting the RREQ message. During this forwarding process, the inter-
mediate node updates its routing table and adds a “reverse route” entry with
destination S into its routing table, indicating via which next hop the node S can

Quantitative Analysis of AODV Using Statistical Model Checking 123

be reached, and the distance in number of hops. To avoid unnecessary message
sending each RREQ has a unique identifier which allows nodes to ignore RREQ
messages that they have handled before.

As soon as the RREQ is received by the destination itself or by a node that
knows a valid route to the destination, a route reply (RREP) is generated. In
contrast to RREQ messages, a RREP message is unicast, i.e., it is only sent to
a single node, not to all nodes within transmission range. The RREP message
travels from its generator (either D or an intermediate node knowing a route
to D) back along the established route towards S, the originator of the RREQ
message. All intermediate nodes on the selected route will process the RREP
message and, in most cases, forward it towards S. However, there are scenarios
where RREP message are discarded (see below). By passing a RREP message
towards S, a node adds a “forward route” entry to its routing table.

The route discovery process is completed when the RREP reaches node S; an
end-to-end route from S to D has been established, and data packets can start to
flow. If any link breaks down (e.g. by a node moving out of transmission range),
the node that detects the break broadcasts a route error (RERR) message.1 All
notified nodes invalidate their routing table entries that use the broken link and
forward the RERR message if necessary.

Full details can be found in RFC 3561 [15], the de facto standard of AODV.

2.2 Variants of AODV

The specification of AODV [15] offers optional features, which yield different
variants of the routing protocol. One aim of this paper is to compare versions of
AODV with different features turned on.

Destination Only (D) Flag. Each RREQ message contains a field called
destination only flag. If the value of this Boolean flag is true, it indicates that
only the destination node is allowed to respond to this RREQ. That means that
the RREQ travels through the entire network until it reaches the destination.
Only then a reply is sent back. By this a bi-directional link between the source
and the destination is (usually) established.

Resending a Route Request. The basic version of AODV, as presented in the
previous section, suffers the problem that some routes, although they do exist,
are not discovered. Reasons for route discovery failure can be message transmis-
sion failures (the receiver of a unicast message has moved out of transmission
range) or the dropping of RREP messages, that should be forwarded. With re-
spect to the latter, the problem is that a node only forwards a RREP message if
it is not the originator node, and it has created or updated a routing table entry
to the destination node described in the RREP message. [15]

1 Following the RFC, a node uses precursor lists to store those nodes that are interested
in some particular routes—when sending an RERR message only those neighbours
are informed. However, precursor lists do not contain all neighbours that are inter-
ested in a particular route (e.g. [8]); that is why we model an improved version of
AODV where RERR messages are broadcast.

124 P. Höfner and M. Kamali

D

T

S

A

(a) Initial topology

D

T

S

A

RREQS�D RREQS�D

RREQT�D
RREQT�D

(b) Two RREQ messages destined to D

D

T

S

A

RREPS�D RREPS�D

(c) 1st RREP message reaches source

D

T

S

A
RREPT�D

(d) 2nd RREP message is dropped by A

Fig. 1. Route Discovery Failure

An example for route discovery failure, taken from [10], is sketched in Fig. 1.2

On the 4-node topology depicted in Part (a) nodes S and T , resp., initiate a route
discovery process to search for a route to D. The messages travel through the
network and reach the destination D (Part (b)). We assume that RREQS�D, the
request stemming from S, reaches nodeD first. In Part (c),D handles RREQS�D,
creates an entry for S in its routing table3 and unicasts a RREP message to A.
Node A updates its routing table (creates an entry for D) and forwards the
message to the source S. In Part (d), D handles RREQT�D, creates an entry
for T in its routing table and unicasts a RREP message to A. Since RREPT�D

does not contain new information for A (a route to D is already known), node
A does not update its routing table and, according to the specification, will not
forward the RREP message to the source T . This leads to an unsuccessful route
discovery process for node T .

The solution proposed by the RFC is to initiate a new route discovery process,
if no route has been established 2 seconds after the first request was sent; the
number of retries is flexible, but the specification recommends one retry only. In
the example node T would initiate another route request; node A, which receives
the RREQ message, will immediately unicast a RREP message back to T .

Local Repair. In case of a link break, the node upstream of that break can
choose to repair the link locally if the destination was no farther away than a
predefined number of hops (the number is specified by the user and often depends
on the network size). When a node receives a RREP message or a data packet
destined for a node for which it does not have a valid route, the node buffers
the message and initiates a new route discovery process. As soon as a route has
been re-established, the buffered message is sent.

2.3 Modelling AODV and Its Variants in Uppaal

Table 1 lists all variants of AODV that are modelled, analysed and compared in
this paper. The analysis is performed by SMC-Uppaal, the statistical extension
2 A similar example has been published at the IETF mailing list in 2004;
http://www.ietf.org/mail-archive/web/manet/current/msg05702.html .

3 Routing tables are not presented in the figure.

Quantitative Analysis of AODV Using Statistical Model Checking 125

Table 1. Different Variants of AODV

name optional features remark

basic none follows description of Sect. 2.1

resend resending RREQ “standard” configuration of AODV

dflag D-flag the flag is set for all route discovery processes

dflag res D-flag and resending this configuration has a flaw (see below)

dflag res’ D-flag and resending not following the RFC literally, but flaw fixed

repair local repair use local repair

of Uppaal [3]. The modelling language for SMC-Uppaal is the same as for “stan-
dard” Uppaal, namely networks of guarded, timed and probabilistic automata.

Our 6 models of (all variants of) AODV are based on a single untimed Up-
paal model that was used to analyse some basic qualitative properties [7].4 Since
we are interested in a quantitative analysis of the protocol, the model had to
be equipped with time and probability. The latter is needed to model dynamic
topologies and mobile nodes. Hence, the (untimed) model was significantly re-
designed and extended to include timing constraints on sending messages be-
tween nodes. Both the untimed and the timed model were systematically derived
from an unambiguous process-algebraic model that models the intention of the
RFC and does not contain contradictions. Communication between nodes had
to be modelled so that the unicast behaviour of AODV was correctly rendered
using SMC-Uppaal’s (only) broadcast mechanism.

Each node of a network is modelled by two timed automata: the first models
a message queue that buffers received messages, the other models the AODV
routine. This main routine consists of ∼ 20 locations, 1 clock measuring the
sending time, and a complicated data structure with approx. 10 variables. The
latter includes an array rt of length N modelling the routing table, where N is
the number of nodes in the network. The overall structure of the main automaton
is depicted in Fig. 2(a), it consists of 7 regions. If the automaton is in the region
Idle, which consists of one location only, then AODV does not perform any
action in the moment and the automaton is ready to receive messages. This
happens in Rec if there is at least one message buffered. The regions Rreq,
Rrep, Rerr and Pkt perform actions depending on the type of the received
message. Rreq for example handles route request messages. Init initiates the
transmission of data injected by the user as soon as the route is established.

Message handling often contains actions for updating the internal data (such
as routing tables) and sending of a message. Fig. 2(b) gives an impression of such
an update by showing a snippet of the automaton modelling the forwarding of
a RREQ message.

Message sending is the only action that takes time: according to the spec-
ification of AODV [15], the most time consuming activity is the communica-
tion between nodes, which takes on average 40 milliseconds; all other times are
marginal and assumed to be 0.

4 Our models can be found at http://www.hoefner-online.de/formats2013/ .

126 P. Höfner and M. Kamali

IDLE

Rreq
Rrep

Pkt

Rerr

Rec

Init

(a) Structure

�	
������������� ����������

$����� ���	���	����! ���	���	�������!�
������	���	����$����
���%$� ���	���	����!�#	���
--����	���	������ ���	���	����!�����
--�� ���	���	����!���
��"(

� ���	���	����!������%� ���	���	����!&����	���	����&�*&*&����	���	�'���+*&����	���	����(&
����� ���	���	����! ���	���	�������!�*&
����	�3�	���������%���	���	�'���+*&���	���	�������&���	���	����&
�%���	���	������ ���	���	����!����(4���	���	������ ���	���	����!����&����	���	���
&
�����	���	����&���	���	����&��(&
��	�����%(&
��	� ��!�*

���� ��!$

�	
,������������+����������

(b) Detail: updating data and forwarding a message

Fig. 2. Overall structure of the SMC-Uppaal model of AODV

Our models cover all core components of AODV. However, we encoded one
main assumption: whenever a message is sent and the receiver of the message
is within transmission range, the message will be received. In reality message
loss during transmission happens regularly, for example due to communication
failures or packet collisions. This loss could easily be modelled using Uppaal’s
broadcast mechanism in combination with probabilistic automata. However, this
abstraction enables us to interpret a failure of guaranteed message delivery as an
imperfection in the protocol, rather than as a result of a chosen formalism not
allowing guaranteed delivery. Due to lack of space we cannot give more details
about the modelling; more details about the model basic can be found in [11].

Next to the automata modelling the behaviour of the node, two additional
automata are needed: the first is a scenario generator initiating the route discov-
ery process, i.e., it forces one of the nodes to generate and broadcast a RREQ
message. The second automaton models the mobility within the network.

3 Modelling Dynamic Topologies

To analyse quantitative properties of AODV and to compare different variants
in a dynamic network, we use a topology-based mobility model [9]. It reflects the
impact of mobility on the network topology and distinguishes static and mobile
nodes; only connections to and from mobile nodes can change. Each movement
is characterised either by adding a new link to or by removing an existing link
from the connectivity graph. Whenever a mobile node M enters the transmission
range of a node A, a new link is established between M and A. If M leaves the
transmission range, the link between these two nodes is removed.

To decrease the number of possible topology changes due to a large number
of mobile nodes, we set up the topology as follows: the network consists of 16
static and one mobile node.5 The static nodes form a 2-dimensional rectangular
grid with grid size 1, i.e. the smallest distance between two nodes is 1 unit
(cf. Fig. 3(a)); the transmission range is set to 1.25. In reality, 1 unit might
correspond to 100 metres, the transmission range to 125m, a realistic value.
5 We also performed experiments with more than one mobile node; but these experi-

ments do not show new (odd) results.

Quantitative Analysis of AODV Using Statistical Model Checking 127

1

1.25

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

(a) grid with 16 nodes (static topology)

M

(b) node moving between zones
(transmission ranges are indicated)

Fig. 3. Topology-based mobility model

The transmission ranges of the nodes Aij (1 ≤ i, j ≤ 4) split the grid into 102
different zones. The different zones are shown in Fig. 3(a). When a mobile node
M moves within a zone, the exact position of the node does not matter, since
it does not enter or leave the transmission range of any node—the connectivity
graph stays the same. For example any node that is within the central zone is
connected to nodes A22, A23, A32 and A33 (cf. Fig. 3(b)) When M transits the
border of a zone, it triggers a network topology change. Only the change of the
connectivity graph is considered, other details such as the exact direction and
angle of transmitting are not needed for characterising the dynamic network. In
the example given in Fig. 3(b), M moves to the left and enters the transmission
range of A21. Next, in fainter colours, the node enters transmission range of A31

and leaves the range of A23.
The topology-based model captures the topology changes as a Markovian

transition function prob(T1, T2), that assigns to two topologies T1 and T2 a
transition probability. The probability of moving from one zone to a neighbouring
zone is based on the ratio of the length the two zones share compared to the
overall border length of the zone in which the node is in. For instance, the
probability of transiting from the central segment of the grid to any adjacent
zone is 1

8 , due to equal segment lengths.
Our model sets the speed of the mobile node in such a way that the node has

to change zones every 35–45 time units, where the probability to leave the zone
at time t is equally distributed in the interval.

The zones can be grouped by their shapes; each shape forms an equivalence
class. The Uppaal model reflects this observation. Each mobile node is modelled
by a separate timed and probabilistic automaton; each location of the automaton
characterises exactly one equivalence class. (See [9] for details.)

4 Experiments

Our experiments analyse the impact of mobile nodes and dynamic topologies on
AODV; they are grouped into several categories: the first category analyses the

128 P. Höfner and M. Kamali

probability of route establishment for a single route discovery process, i.e., an
originator node oip is searching for a route to dip; the second category analyses
the likelihood of route establishment between oip and dip when additional route
discovery processes occur; the last category changes the speed of the mobile node.

Before discussing the experiments, we briefly describe some foundations of
statistical model checking. SMC [19,18] combines ideas of model checking and
simulation with the aim of supporting quantitative analysis as well as addressing
the size barrier that prevents useful analysis of large models. By trading certainty
for approximation, it uses Monte Carlo style sampling, and hypothesis testing to
interpret the results. The sampling follows the probability distribution defined by
the non-deterministic and probabilistic automata. Parameters setting thresholds
on the probability of false negatives (α) and on probabilistic uncertainty (ε)
can be used to specify the statistical confidence on the result. SMC-Uppaal
computes the number of simulation runs needed by using Chernoff-Hoeffding
bounds, which is independent of the size of the model; it generates an interval
[p− ε, p+ ε] for estimating p, the probability of CTL-property ψ holding w.r.t.
the underlying probability distribution.

For most of our experiments we use “only” a confidence level of 95% and allow
a large probabilistic interval of 10%—this is the default setting of SMC-Uppaal
and means that both α and ε are set to 5%. When using this set up, SMC-Uppaal
simulates 738 runs to determine the probability of a property.

Experiments with α= ε=1% (26492 runs) are also feasible with a standard
desktop machine, but require much more time. While an experiment using a
confidence level of 95% takes only a couple of minutes; an experiment using a
level of 99% takes more than 3 hours. We illustrate this by our first experiment.

4.1 Single Route Discovery Process

Our first experiment is based on 17 nodes; 16 forming a grid (Fig. 3(a)) and one
mobile node M which is located in the middle of the grid at the beginning of
the experiment. After a delay between 140 and 160 time units (the time that
the mobile node needs to perform four movements) the first RREQ message is
broadcast. By this delay, the location of M is random at the point the route
discovery process is initiated.

In the experiment A11 searches for a route to A44, that means it initiates
a route discovery process. We are interested whether (and at which time) A11

establishes a route to A44. In Uppaal syntax this reachability property is

Pr[<=2000](<>A11.rt[A44].nhop!=0) . (1)
Checking this query determines the probability (Pr) satisfying the CTL-path
expression <>(A11.rt[A44].nhop!=0) with a time bound of 2000 time units;
we choose this bound as a conservative upper bound to ensure that the analyser
explores paths to a depth where the protocol is guaranteed to have terminated.
The term ip.rt[dip] refers to a route to dip stored inside the routing table of
node ip. Whenever the next hop nhop is set (�=0), a route has been established.

The results are summarised in Table 2. From an experimental point of view,
the table shows that a confidence level of 99% does not yield much better results

Quantitative Analysis of AODV Using Statistical Model Checking 129

Table 2. Single Route Discovery Ratio (confidence level 95% and 99%)6

probability time Uppaal
model conf. level route discovery route discovery running time

1. basic 95% [55.4336,65.4336] 595.67 4m 18s
2. basic 99% [59.7806,61.7806] 597.52 157m 44s
3. resend 95% [95.00,100.00] 847.04 6m 03s
4. resend 99% [98.9623,100.00] 836.87 209m 43s
5. dflag 95% [54.4851,64.4851] 597.50 4m 52s
6. dflag 99% [59.5655,61.5655] 597.63 164m 21s
7. dflag res 95% [64.5122,74.5122] 698.70 7m 47s
8. dflag res 99% [68.2133,70.2133] 688.79 249m 12s
9. dflag res’ 95% [81.3144,91.3144] 822.89 7m 08s

10. dflag res’ 99% [83.4104,85.4104] 807.43 230m 57s
11. repair 95% [59.7696,69.7696] 607.86 7m 31s
12. repair 99% [63.5742,65.5742] 606.53 165m 11s

than a confidence level of 95%; but the running times of Uppaal (last column)
are much higher (in average by a factor of 33.6).

Next to the running times of Uppaal the table lists the model (first column),
the probability of a successful route discovery (third column) and the average
time needed to establish a route between A11 and A44 (fourth column). It is no
surprise that the models basic and dflag yield the same results—in this setting
they behave identically. Furthermore, it is obvious that the probability for suc-
cessful route discovery increases when using the resend option, while at the same
time the discovery time increases as well. However, the experiments reveal three
surprising and unexpected observations concerning AODV.

Observation 1. A single mobile node can already have a massive impact on
the success of route discovery. In our setting the probability of route discovery
can decrease by about 40%.

A32 A33 A34

A44

M

Fig. 4. Mobile node shortens
distance

Using the same setting without mobility (e.g.,
the mobile node does not exist or keeps sit-
ting in the centre of the grid), the probability
of route discovery success is 100%. The success
rate in our experiment using AODV basic, is
only 60.78±1% (Row 2 of Table 2). The setting
of the experiment guarantees that the RREQ
reaches the destination A44 and that A44 will
6 We use a standard computer equipped with a 3.1 GHz Intel Pentium 5 CPU, 16GB

memory, running a Mac OS operating system. As SMC-tool, we use SMC-Uppaal,
the Statistical extension of Uppaal (release 4.1.11) [3], which supports both timed
and probabilistic systems. Timing aspects are heavily needed to model AODV (cf.
Sect. 2); the topology-based mobility model relies on probabilistic choices to deter-
mine the movement of the node.

130 P. Höfner and M. Kamali

generate a route reply. It means that the route reply, which is unicast back via
a previously established path gets lost. Since the experiment consists of a single
request only, RREP messages are not dropped and situations as the one sketched
in Fig. 1 cannot occur. As a consequence, failure in route discovery means that
a RREP message could not be unicast, which means that the established route
from A44 to A11 uses the mobile node.

At first glance it seems to be impossible that 40% of all established routes
use the mobile node as intermediate hop. But a closer analysis on time interval
when a route for A11 is discovered shows that this is in fact the case since a route
via a mobile node can shorten the distance between originator and destination.
In general, AODV prefers shorter routes, hence it would choose the route via
the mobile node M . Fig. 4 illustrates how a mobile node decreases the distance
between A32 and A44 from 3 hops to 2. The lesson learned is that static nodes
should be set up in a way that it is unlikely for a mobile node to shorten the
distance, or static and mobile nodes should be distinguished and routes via static
nodes only should be preferred, even if they are longer.

Observation 2. The model dflag res does not yield much improvement w.r.t.
route discovery compared to basic and is much worse than using resend alone.

The chance that a route is established by the first route discovery process is
around 60% (cf. basic). In case no route is established (chance ∼ 40%), a new re-
quest is issued; the chance that this second request yields a route establishment
between A11 and A44 is again 60%. Putting these numbers together the success
rate for dflag res should be 0.6 + 0.4 · 0.6≈ 0.84 =84%. Surprisingly, the prob-
ability determined by our experiments is only around 70% in case of dflag res
(Row 7 and 8 of Table 2). That means that many RREP messages are lost (using
the same reasoning as before, no RREQ message is lost). The explanation lies
in the RREP-forwarding mechanism of AODV. As explained in Sect. 2, RREP
messages are not forwarded if they do not contain new information. Let us now
assume that the first RREQ reaches the destination A44, which unicasts a RREP
message to the next hop on the route back to A11, say to node A34. This reply
gets lost afterwards. Since the resend-option is set, the originator issues another
request, which also reaches A44. In case the route to A11 is not changed in A44’s
routing table, A44 sends another RREP message to A34. This message does not
contain new information and is dropped by the intermediate node.

To repair this flaw, we change the RREP-generation procedure. Whenever a
RREP message is generated, a counter (the sequence number), which indicates
the freshness of the message is incremented.7 This change is implemented in
dflag res’ ; the evaluation results for this model are now as expected.

Observation 3. AODV’s option of intermediate route reply should be used.

Let us have a look at the models resend and dflag res’. The difference between the
two models is that in the former model intermediate nodes are allowed to reply.
7 In fact AODVv2 and LOADng, the successor protocols of AODV (still under devel-

opment), implement exactly this variant.

Quantitative Analysis of AODV Using Statistical Model Checking 131

Looking at the results, we notice a dramatic difference in the likelihood of route
discovery. In the model resend the second request is followed by the generation
of more than one RREP message. In fact, each node that established a route to
A44 during the first RREQ-RREP-cycle (before the reply was lost), will generate
a RREP message. Due to this, route establishment is guaranteed. In contrast,
there is only one RREP message for each and every request in dflag res’. This
observation clearly indicates that intermediate route reply is a useful feature.
Interestingly, there seems to be the tendency of preferring protocols without
this feature: the two successors of AODV, AODVv2 [16] and LOADng [6] follow
this philosophy and set the D-flag as default—if at all, they allow intermediate
route reply as an optional feature.

Other Originator Nodes ● ●

●

●

●

●

1 2 3 4 5 6
50

60

70

80

90

100

distance between originator and destination

ro
u
te

 e
s
ta

b
lis

h
m

e
n
t
(%

)

● classic/dflag
resend
dflag_res
dflag_res'
repair

Fig. 5. Probability of route-establishment

The first set of experiments con-
sidered a route discovery from
A11 to A44, the largest distance
a packet can travel in our set
up. We expected to see the clear-
est results by using this distance.
However, we also performed ex-
periments with all other pairs of
nodes. Fig. 5 summarises some
results. It illustrates the proba-
bility of route-discovery (y-axis)
depending on the distance be-
tween originator and destination
(x-axis). Of course, the larger
the distance between originator
and destination, the smaller the
chance of route establishment. Interestingly, there is a clear drop down at a dis-
tance of four nodes. It seems that from this point on resending guarantees the
success. Moreover, the graph illustrates that exhaustive MC cannot help: MC is
usually limited to topologies of up to 6 nodes, distances of 5 hops and more are
not possible if one considers a non-linear topology.

4.2 Two Independent Route Discovery Processes

In order to evaluate the performance of variants of AODV under different net-
work (traffic) load, we check the probability of route discovery when two route
discovery processes are performed in parallel. For this second set of experiments,
we are again interested in a route from A11 to A44. However, shortly (35-45 mil-
liseconds) after the packet is handed over to A11, a second data packet is injected
at another node, destined for some destination; in fact we did experiments for
all destinations, but present only two observations—due to lack of space.

Observation 4. RREP messages are dropped more often than expected.

132 P. Höfner and M. Kamali

Table 3. Two route discovery processes looking for the same destination A44

distance orginator class probability
between orig. of 2nd request (avg.)

1 {A12, A21} nodes at border 43.36%

2 {A13, A31} nodes at border 17, 75%
{A22} inner node 13.28%

3 {A14, A41} nodes at border 43, 10%
{A23, A32} inner nodes 29.74%

4 {A24, A42} nodes at border 71, 61%
{A33} inner node 47.29%

5 {A34, A43} nodes at border 80.42%

We consider the scenario where the second request is sent from A22 to A44.
Since some nodes drop RREP messages (cf. Sect. 2.2), the probability of route
establishment between A11 and A44 should decrease (compared to the 60% of
Table 2). However, SMC-Uppaal shows that the probability of A11 finding a route
to A44 is in the probability interval [8.27913, 18.2791], i.e., a route discovery is
unlikely. More results for the basic model are summarised in Table 3, grouped
by the distance between the two originators. The table lists only the originator
of the second route request; both the originator (A11) of the first request and
the destination (A44) of both requests are fixed.

There is a correspondence between the success of route discovery and the
distance between the two originators; moreover inner nodes have more influence
on route discovery than nodes lying on the border of the network. This shows that
the example of Fig. 1 occurs regularly. However, if the second originator oip2 is
far away from the first originator A11 no RREP message is dropped, since a route
between oip2 and A44 is established before the RREQ from A11 reaches oip2. In
the case of oip2 ∈ {A24, A42, A34, A43}, the probability even increases. This is in
line with Observation 3: when intermediate route reply is enabled, more RREP
message are generated and the probability of route discovery success grows.

Observation 5. “Busy” mobile nodes increase the chance of route discovery.

One could rephrase this observation to “adding noise sometimes increases per-
formance”. At first glance it seems that adding additional network traffic—here
a second route discovery processes—should not increase performance. But, let
us look the scenario where the first data packet needs to be send from A11 to
A44 (as before); the second packet is sent from A31 to the mobile node M . While
handling the second RREQ most of the nodes will not learn about A44 and A11.
However it turns out that in the basic model, the probability of route discovery
increases from around 60% to 72%. One reason is that the mobile node handles
the request and generates a RREP message. While doing this it cannot handle
the first RREQ; in case the first RREQ is sent to M and it is handling a different
messages (is busy), the message is buffered. If the message is buffered for a while,
the chance that the RREQ from A11 reaches A44 via a path without M as an

Quantitative Analysis of AODV Using Statistical Model Checking 133

Table 4. different mobile node speed and impact on AODV variants

model probabilityfast probabilitymoderate probabilityslow

basic [48.5230,58.5230] [55.4336,65.4336] [61.9377,71.9377]

resend [94.8645,100.00] [95.00,100.00] [94.3225,100.00]

dflag [50.0136,60.0136] [54.4851,64.4851] [63.2927,73.2927]

dflag res [60.1762,70.1762] [64.5122,74.5122] [70.6098,80.6098]

dflag res’ [75.8943,85.8943] [81.3144,91.3144] [85.5149,95.5149]

repair [54.0786,64.0786] [57.6016,67.6016] [65.5962,75.5962]

intermediate hop, increases. Hence not the shortest, but the “fastest” route is
established from A44 to A11; this route is then used to send the RREP, since it
does not use the mobile node as intermediate hop, the RREP is not lost.

4.3 Influence of Speed of Mobile Nodes

In our experiments the topology changes within a time frame of 35 to 45 mil-
liseconds; This also determines the speed of the mobile node. One might argue
that the speed of the mobile node affects our analysis and that other speeds
could yield different behaviour. As shown in Table 4, this is not the case—the
probabilities slightly change, but stay in the same ball park. Moreover the re-
lationship between the different variants stays the same; a variant that is more
reliable with a fast mobile node, is also more reliable with a slower node. For
this category of experiments we enforce a topology change within the interval
[25, 35] (fast), [35, 45] (moderate), and [95, 105] (slow), respectively.

5 Related Work

Model checking has been used to analyse routing protocols in general and AODV
in particular. For example, Bhargavan et al. [1] were amongst the first to use
model checking—they used the SPIN model checker—on a draft of AODV,
demonstrating the feasibility and value of automated verification of routing pro-
tocols. Musuvathi et al. [14] introduced the CMC model checker primarily to
search for coding errors in implementations of protocols written in C. They used
AODV as an example and, as well as discovering a number of errors, they also
found a problem with the specification itself, which has since been corrected.
Chiyangwa and Kwiatkowska [4] used the timing features of UPPAAL to study
the relationship between the timing parameters and the performance of route
discovery. None of these studies performed a quantitative analysis of AODV.

Statistical model checking techniques [19,18] are rather new. So far they have
been used in a couple of case studies. Bulychey et al. [2] for example apply
the SMC-Uppaal to an analysis of an instance of the Lightweight Media access

134 P. Höfner and M. Kamali

Control (LMAC) protocol; by this they are able to analyse ring topologies of
up to 10 nodes.8 Applications of SMC within biological systems are discussed
in [5,13]. To the best of our knowledge, SMC was not used for the analysis of
routing protocols so far—except in [11], where SMC-Uppaal is used to compare
AODV and DYMO and to illustrate that even large topologies (up to 100 nodes)
can be analysed by SMC. Our experiments are in line with this. However, it is
unique in the sense that we carefully study variants of AODV.

6 Conclusion and Future Work

The aim of this paper has been a careful (quantitative) analysis of AODV and
its variants using statistical model checking techniques. By this, we have made
surprising observations on the behaviour of AODV. We have shown for exam-
ple that some optional features (D-flag) should not be combined with others
(resending). Another result shows that a well-known shortcoming occurs more
often than expected and has a tremendous effect on the success of route estab-
lishment. One challenge we faced while performing our experiments has been the
interpreting the data.

The results were often surprising and hard to interpret, particularly when
they indicate odd behaviour. Unfortunately SMC-Uppaal does not store traces
during analysis, thus it is difficult to recover counterexamples to explain the
observations. At the moment counter examples are constructed “by hand” by
formulating more probing queries beyond looking at overall performance. This
suggests that more powerful statistical analysis such as “rare event simulation”
in combination with multiple queries could be used to compile better evidence.

Next to this careful analysis, we also showed that SMC is a suitable tool for
analysing WMNs. In this setting classical MC was limited to topologies with up
to 6 nodes and therefore having a realistic mobility model was not possible.

Future work will be a continuation of our case study. In particular we want
to look at topologies of up to 100 nodes—it has been shown that an analysis
of such networks is possible [11]. However, choosing the right scenario is crucial
here: Since one cannot analyse all scenarios, one has to pick the right topologies
and the right mobility model(s); but in some sense finding the correct setting
becomes a “stab in the dark”. We hope that our previous experience helps to
set the experiments right.

Acknowledgement. We thank Ansgar Fehnker, Rob van Glabbeek and Franck
Cassez for fruitful discussions and their help.

NICTA is funded by the Australian Government as represented by the De-
partment of Broadband, Communications and the Digital Economy and the
Australian Research Council through the ICT Centre of Excellence program.

8 Other case studies include firewire, bluetooth, and a train gate
(see http://people.cs.aau.dk/~adavid/smc/cases.html for an overview).

Quantitative Analysis of AODV Using Statistical Model Checking 135

References

1. Bhargavan, K., Obradovic, D., Gunter, C.A.: Formal verification of standards for
distance vector routing protocols. J. ACM 49(4), 538–576 (2002)

2. Bulychev, P., David, A., Guldstrand Larsen, K., Legay, A., Mikučionis, M., Bøgsted
Poulsen, D.: Checking and distributing statistical model checking. In: Goodloe,
A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 449–463. Springer, Hei-
delberg (2012)

3. Bulychev, P., David, A., Larsen, K., Mikučionis, M., Bøgsted Poulson, D., Legay,
A., Wang, Z.: UPPAAL-SMC: Statistical model checking for priced timed au-
tomata. In: Wiklicky, H., Massink, M. (eds.) Quantitative Aspects of Programming
Languages. EPTCS, vol. 85, pp. 1–16. Open Publishing Association (2012)

4. Chiyangwa, S., Kwiatkowska, M.: A timing analysis of AODV. In: Steffen, M.,
Zavattaro, G. (eds.) FMOODS 2005. LNCS, vol. 3535, pp. 306–321. Springer, Hei-
delberg (2005)

5. Clarke, E.M., Faeder, J.R., Langmead, C.J., Harris, L.A., Jha, S.K., Legay, A.:
Statistical Model Checking in BioLab: Applications to the automated analysis of
T-cell receptor signaling pathway. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB
2008. LNCS (LNBI), vol. 5307, pp. 231–250. Springer, Heidelberg (2008)

6. Clausen, T., Colin de Verdiére, A., Yi, J., Niktash, A., Igarashi, Y., Satoh, H., Her-
berg, U., Lavenu, C., Lys, T., Perkins, C., Dean, J.: The lightweight on-demand ad
hoc distance-vector routing protocol - next generation (LOADng). Internet Draft
(Standards Track) (2013),
http://tools.ietf.org/html/draft-clausen-lln-loadng-08

7. Fehnker, A., van Glabbeek, R., Höfner, P., McIver, A., Portmann, M., Tan, W.L.:
Automated analysis of AODV using UPPAAL. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 173–187. Springer, Heidelberg (2012)

8. Fehnker, A., van Glabbeek, R.J., Höfner, P., McIver, A., Portmann, M., Tan, W.L.:
A process algebra for wireless mesh networks used for modelling, verifying and
analysing AODV. Tech. Rep. 5513, NICTA (2013),
http://www.nicta.com.au/pub?id=5513

9. Fehnker, A., Höfner, P., Kamali, M., Mehta, V.: Topology-based mobility models
for wireless networks. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.)
QEST 2013. LNCS, vol. 8054, pp. 389–404. Springer, Heidelberg (2013)

10. Höfner, P., van Glabbeek, R., Tan, W., Portmann, M., McIver, A., Fehnker, A.: A
rigorous analysis of AODV and its variants. In: Modeling, Analysis and Simulation
of Wireless and Mobile Systems, MSWIM 2012, pp. 203–212. ACM (2012)

11. Höfner, P., McIver, A.: Statistical model checking of wireless mesh routing proto-
cols. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp.
322–336. Springer, Heidelberg (2013)

12. IEEE P802.11s: IEEE draft standard for information technology—
telecommunications and information exchange between systems—local and
metropolitan area networks—specific requirements—part 11: Wireless LAN
Medium Access Control (MAC) and physical layer (PHY) specifications-
amendment 10: Mesh networking (July 2010)

13. Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.: A
bayesian approach to model checking biological systems. In: Degano, P., Gorrieri,
R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 218–234. Springer, Heidelberg (2009)

14. Musuvathi, M., Park, D.Y.W., Chou, A., Engler, D.R., Dill, D.L.: CMC: a prag-
matic approach to model checking real code. In: Operating Systems Design and
Implementation, OSDI 2002 (2002)

136 P. Höfner and M. Kamali

15. Perkins, C., Belding-Royer, E., Das, S.: Ad hoc on-demand distance vector (AODV)
routing. RFC 3561 (Experimental) (2003), http://www.ietf.org/rfc/rfc3561

16. Perkins, C., Chakeres, I.: Dynamic MANET on-demand (AODVv2) routing. Inter-
net Draft (Standards Track) (2013),
http://tools.ietf.org/html/draft-ietf-manet-dymo-25

17. Perkins, C., Royer, E.: Ad-hoc On-Demand Distance Vector Routing. In: 2nd IEEE
Workshop on Mobile Computing Systems and Applications, pp. 90–100 (1999)

18. Sen, K., Viswanathan, M., Agha, G.A.: Vesta: A statistical model-checker and
analyzer for probabilistic systems. In: Quantitative Evaluaiton of Systems, QEST
2005, pp. 251–252. IEEE (2005)

19. Younes, H.: Verification and Planning for Stochastic Processes with Asynchronous
Events. Ph.D. thesis, Carnegie Mellon University (2004)

Paper V

Re�nement-Based Modeling of 3D NoCs

Maryam Kamali, Luigia Petre, Kaisa Sere

and Masoud Daneshtalab

Originally published in: F. Arbab and M. Sirjani (Eds.), Proceedings of the
4th IPM International Conference on Fundamentals of Software Engineering
- FSEN 11, Lecture Notes in Computer Science Vol. 7141, pp. 236-252,
Springer-Verlag, 2012.

137

Refinement-Based Modeling of 3D NoCs

Maryam Kamali1,2, Luigia Petre1, Kaisa Sere1, and Masoud Daneshtalab3

1 Åbo Akademi University, Finland
2 Turku Centre for Computer Science (TUCS), Finland

3 University of Turku, Finland

Abstract. Three-dimensional Networks-on-Chip (3D NoC) have recently
emerged essentially via the stacking of multiple layers of two-dimensional
NoCs. The resulting structures can support a very high level of paral-
lelism for both communication and computation as well as higher speeds,
at the cost of increased complexity. To address the potential problems
due to the highly complex NoCs, we study them with formal methods. In
particular, we base our study on the refinement relation between mod-
els of the same system. We propose three abstract models of 3D NoCs,
M0, M1, and M2 so that M0 � M1 � M2, where ‘�’ denotes the re-
finement relation. Each of these models provides templates for commu-
nication constraints and guarantees the communication correctness. We
then show how to employ one of these models for reasoning about the
communication correctness of the XYZ-routing algorithm.

1 Introduction

The Network-on-Chip (NoC) architecture paradigm, based on a modular packet-
switching mechanism, can address many of the on-chip communication design
issues such as performance limitations of long interconnects and the integration
of high numbers of Intellectual Property (IP) cores on a chip. However, the
2D-chip fabrication technology faces many challenges in the deep submicron
regime even when employing NoC architectures, e.g, the design of the clock-tree
network for large chips, limited floor-planning choices, the increase of both the
wire delay and power consumption, the integration of various components that
are digital, analog, MEMS and RF, etc. Three Dimensional Integrated Circuits
(3D ICs) have been emerging as a viable candidate to achieve better performance
and package density as compared to traditional Two Dimensional (2D) ICs.
In addition, combining the benefits of 3D ICs and NoC schemes provides a
significant performance gain for 3D architectures [13,27,22].

Three dimensional Networks-on-Chip (3D NoCs) [13] provide more reliable
interconnections due to the increased number of links between components. Due
to their promise of parallelism and efficiency, 3D NoCs have a critical role in
leading towards reliable computing platforms. However, the majority of their
evaluation approaches are simulation-based tools, such as XMulator [25], Noxim
[26], etc. Simulation-based approaches are usually applied in the late stages of
design and are limited, e.g., by the length of time that a system is simulated.

F. Arbab and M. Sirjani (Eds.): FSEN 2011, LNCS 7141, pp. 236–252, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Refinement-Based Modeling of 3D NoCs 237

This means that exhaustive checking of all the system states is impossible in
practice for complex 3D NoCs and thus, simulation is not suitable for verifying
the correctness of a NoC design.

Another approach to address this problem is via formal methods. Formal
methods refer to the application of mathematical techniques to the design and
implementation of computer hardware and software. Prominent examples of ap-
plying formal methods are provided by, e.g., Intel [16,19] and IBM [21] for
formally verifying hardware or systems-on-chip (SoC) [15]. By using rigorous
mathematical techniques, it is possible to deliver provably correct systems. For-
mal methods are based on the capture of system requirements in a specific, pre-
cise format. Importantly, such a format can be analyzed for various properties
and, if the formal method permits, also stepwise developed until an implemen-
tation is formed. By following such a formal development, we are sure that the
final result correctly implements the requirements of the system.

Much of the research concerning the 3D NoC design is concentrated on var-
ious bottom-up approaches, such as the study of routing algorithms [6,20] or
the design of dedicated 3D NoC architectures [29] where parameters such as
hop count or power consumption are improved. Here we are concerned with a
reverse, top-down approach where we start from simple models and add com-
plexity later. There are already research results regarding the detection of faults
as well as debugging in the early stages of NoC design. A generic model for spec-
ifying and verifying NoC systems is presented in [10] where the formal verifica-
tion is addressed with the ACL2 theorem prover, a mechanized proof tool. This
tool produces a set of proof obligations that should be discharged for particular
NoC instances. This generic model has been used for verification of functionality
features in 2D-NoC systems. Another formal approach to the development of
the NoC systems employing the B-action systems formalism has been described
in [28], where the focus is on the formal specification of communication routers. A
framework for modeling 2D-NoC systems by composing more advanced routing
components out of simpler ones, is proposed there.

In this paper, we go one step further and propose a top-down formalization
of the early 3D NoC design. The formal method we employ is Event-B [2] which
comes with the associated tool Rodin [1,30]. One of the main features of Event-
B is that the system development is done in a stepwise manner that eventually
leads to a system implementation. The stepwise development is captured by the
refinement [4,5] relation between models of the same system, so that a high-level
model of a system is transformed by a sequence of correctness-preserving steps
into a more detailed and efficient model that satisfies the original specification.
We specify here the general structure of a 3D NoC at a high level of abstraction in
Event-B. The specification formulates the main constraints of the communication
model, needed to prove its correctness. Our definition for correctness at this
abstract level of modeling is to show that a package injected in the network
is eventually received at the destination. We propose three different abstract
models M0, M1, and M2 for a 3D NoC so that M0 � M1 � M2, where ‘�’
denotes the refinement relation. Furthermore, each of these models can be refined

238 M. Kamali et al.

into more concrete models to define specific 3D NoC designs in the early stages
of the system development. When the concrete models preserve the correctness
properties of the abstract models, we guarantee the correctness of the concrete
3D NoC designs. As an application of the general 3D NoC designs, we model the
XYZ routing algorithm by refining the M2 abstract model. To verify the XYZ
routing algorithm, we generate the proof obligations using the Rodin tool and
discharge them automatically or interactively.

We proceed as follows. In Section 2 we overview the Event-B formal method
to the extent needed in this paper. In Section 3 we propose three increasingly
more detailed formal models for a 3D NoC together with the constraints for
proving correctness. In Section 4 we illustrate the formal modeling of the XYZ
routing algorithm as a case study. In Section 5 we discuss the proof obligations
while in Section 6 we present concluding remarks and future work.

2 Preliminaries

Event-B [2,1] is an extension of the B formalism [3,28] for specifying distributed
and reactive systems. A system model is gradually specified on increasing levels
of abstraction, always ensuring that a more concrete model is a correct imple-
mentation of an abstract model. The language and proof theory of Event-B
are based on logic and set theory. The correctness of the stepwise construction
of formal models is ensured by discharging a set of proof obligations: if these
obligations hold, then the development is mathematically shown to be correct.
Event-B comes with the associated tool Rodin [1,30], which automatically dis-
charges part of the proof obligations and also provides the means for the user to
discharge interactively the remaining proofs.

Each Event-B model consists of two components called context and machine.
A context describes the static part of the model, i.e., it introduces new types
and constants. The properties of these types and constants are gathered as a list
of axioms. A machine represents the dynamic part of the model, consisting of
variables that define the state of the model and operations called events. The
system properties that should be preserved during the execution are formulated
as a list of invariant predicates over the state of the model.

An event, modeling state changes, is composed of a guard and an action. The
guard is the necessary condition under which an event might occur; if the guard
holds, we call the event enabled. The action determines the way in which the state
variables change when the event occurs. For initializing the system, a sequence
of actions is defined. When the guards of several events hold at the same time,
then only one event is non-deterministically chosen for execution. If some events
have no variables in common and are enabled at the same time, then they can
be considered to be executed in parallel since their sequential execution in any
order gives the same result. For all practical purposes, this execution model is
parallel and can be implemented as such when the model is refined to code.
Events can be declared as anticipated, meaning that in the future refinements
we need to set out a natural number expression called variant and prove that it

Refinement-Based Modeling of 3D NoCs 239

is decreased by this event. Events can also be convergent, meaning that in the
current machine there is a variant that decreases when this event is chosen for
execution. Thus, an anticipated event is not convergent in the current machine
but should become so in a future refinement of that machine.

A model can be developed by a number of correctness preserving steps called
refinements [4,5]. One form of model refinement can add new data and new
events on top of the already existing data and behavior but in such a way that
the introduced behavior does not contradict or take over the abstract machine
behavior. This form of stepwise construction is referred to as superposition re-
finement [18,9]. We may also use other refinement forms, e.g., algorithmic refine-
ment [8]. In this case, an event of an abstract machine can be refined by several
corresponding events in a refined machine. This will model different branches of
execution, that can, for instance, take place in parallel and thus can improve the
algorithmic efficiency. In this paper, we use only superposition refinement.

3 Three Abstract Models for the 3D NoC: M0, M1, M2

In this section we formally develop three high-level models M0, M1, and M2

for the 3D NoC. Our models are at three increasing levels of detail so that
each model is a refinement of the previous one: M0 � M1 � M2. In the initial
model, we specify a network of nodes and define the correctness properties of
this network based on a specific data structure called pool, as suggested by [2].
In the second model, we add new data and events to model the 3D mesh-based
NoC architecture; besides, we specify the channels between nodes. In the third
model, we model buffers for nodes and refine the communication model.

By starting from an initial model that is rather abstract, i.e., without detailing
the communication topology, we obtain a rather general starting point that can
later be refined to various topologies. Moreover, adding channels and ports only
in the second model leads to a clean modelling of the basic communication
mechanism (via routing and switching) in the initial model; the required detail
(of channels and ports) are not needed for understanding the communication
mechanism. Adding buffers in the third model illustrates an extra level of detail.
Networks where the nodes have no buffers for communication will, therefore,
employ the second model as their abstraction and not the third.

3.1 The Initial Model M0

The first model M0 that we construct is rather abstract: we do not consider
the numerous parts of the network such as channels or buffers; they will be
introduced in subsequent refinements. M0 will thus allow us to reason about the
system very abstractly [2]. The model M0 is formed of the static part and the
dynamic part, as follows.

The Static Part. The static part of our model is described in Fig. 1 and
contains the sets MESSAGES, ROUTER, DATA and the constants data, des,
src and Neigh. The message identifiers are modeled by the non-empty and finite

240 M. Kamali et al.

MESSAGES set. We use the following modeling idea for messages. A message id
in the MESSAGES set relates to a triple (data, source, destination) where data
is an element of the DATA set, source models the source node where a message
is injected, and destination models the destination node where a message should
be received. A message should not be destined to its source node. The set of
network nodes and data are modeled by the sets ROUTER (finite and non-
empty) and DATA (finite and non-empty), respectively. The relation Neigh (non-
empty, symmetric, and non-reflexive) models the neighbor structure i.e., which
node can communicate with which node.

SETS MESSAGES ROUTER DATA
CONSTANTS data des src Neigh
AXIOMS

MESSAGES �= ∅ ∧ finite(MESSAGES)
ROUTER �= ∅ ∧ finite(ROUTER)
DATA �= ∅ ∧ finite(DATA)
data ∈ MESSAGES →DATA
src ∈ MESSAGES →ROUTER ∧ des ∈ MESSAGES → ROUTER
∀m, sp, dp ·m ∈ MESSAGES ∧ sp ∈ ROUTER ∧ dp ∈ ROUTER

∧m �→ sp ∈ src ∧m �→ dp ∈ des ⇒ sp �= dp
Neigh ∈ ROUTER↔ROUTER
Neigh �= ∅ ∧ Neigh = Neigh−1 ∧ dom(Neigh) � id ∩ Neigh = ∅

Fig. 1. M0: the static part

To define structure types such as records in Event-B, we use functions to
represent attributes. Therefore, our modeling idea translates to the functions
data, src and des with ranges DATA, ROUTER, and ROUTER, respectively.

The Dynamic Part. In our network model we use the following condition for
modeling the communication correctness: the messages in the network will even-
tually reach their destinations. For this, we define two message subsets and one
partial message-to-node map as machine variables: sent pool ⊆MESSAGES,
received pool⊆MESSAGES and moving pool∈sent pool �→ROUTER.

The sent pool subset denotes the list of messages injected into the network.
The sent pool subset is updated whenever a new message is injected into the net-
work, while the moving pool subset denotes the current position of traveling mes-
sages. All the messages injected into the network are added to the moving pool
and whenever a message is routed from a node to another one, the current po-
sition of that message is updated in the moving pool. The received pool subset
denotes the list of messages received from the network by destination nodes.
Whenever a message is received at its destination, it will be added to received pool
and removed from moving pool. The behavior of message pools is illustrated in
Fig. 2.

To model the communication and the message pool functions, we define three
events as explained below. The sent message event described in Fig. 3(a) han-
dles the injection of a new message into the network. Whenever a message is
injected into the network both sent pool as well as moving pool are updated.

Refinement-Based Modeling of 3D NoCs 241

Fig. 2. Message Pools

Event sent message =̂
any
current msg

where
current msg ∈ MESSAGES
current msg /∈ sent pool

then
sent pool :=sent pool∪{current msg}
moving pool := moving pool
∪{current msg �→src(current msg)}

end

(a) Message Injection

Event routing =̂
begin
skip

end
Event switching =̂
Statusanticipated

any
current msg new position

where
current msg ∈ dom(moving pool)
des(current msg) �=
moving pool(current msg)

new position �→moving pool(current msg)
∈Neigh

new position �= src(current msg)
then
moving pool(current msg):=new position

end

(b) Routing and Switching

Fig. 3. M0 Events

A message in moving pool should be routed toward its destination. This is
composed of two actions, one for deciding which node would be the next one
(routing) and the other for transferring the message to that node (switching).
These two actions are available for all the nodes, including the source, the des-
tination as well as all the intermediate nodes and are modeled respectively by
the routing and switching events shown in Fig. 3(b). In this abstract model we
do not have any routing decisions, hence, the routing event is modeled by skip.
The switching event in the M0 model only transfers a message from the current
node to one of its neighbors nondeterministically and updates the moving pool
by changing the current position of a message. To avoid cycling, we do not al-
low a message to return to its source. The reason for not considering a specific
routing algorithm is that it makes our initial model more general and reusable
for a wide variety of routing algorithms implementations. The switching event
has the status anticipated.

Event received message =̂
Status convergent

any
current msg

where
current msg ∈ dom(moving pool)
des(current msg) = moving pool(current msg)

then
moving pool := {current msg}�−moving pool
received pool := received pool ∪ {current msg}

end

Fig. 4. M0: Received message Event

242 M. Kamali et al.

The received message event shown in Fig. 4 adds a message received at its
destination to received pool and removes the message from moving pool. This
event is convergent: if new messages are not injected to the network for a certain
time, all the messages will be received at their destinations. This is proved by
means of the (sent pool \ received pool) variant denoting the difference between
the sets sent pool and received pool.

In order to prove the communication correctness, we need to prove that the
sent pool subset eventually becomes equal with the received pool subset and
the moving pool subset is empty when all the messages are received at their
destinations. These properties are formulated in Fig. 5 as invariants.

INVARIANTS
dom(moving pool) ⊆ sent pool
received pool ∩ dom(moving pool) = ∅
sent pool = received pool ⇔moving pool = ∅
∀msg ·msg /∈ sent pool ⇒msg /∈ received pool
sent pool \ dom(moving pool) = received pool
sent pool \ received pool = dom(moving pool)

Fig. 5. M0: Invariants (Pool Modeling)

M0 is a general specification of a general network and will be refined to model
3D NoC communication designs in the following. Moreover, the model provides
the necessary properties that should be preserved by refinement. These proper-
ties, that guarantee the overall communication correctness, are defined as the
list of invariants.

3.2 The Second Model M1

Transferring a message from a node to its neighbor in the model M0 is achieved
simply by copying the message from a node to another. In this section we refine
the initial model M0 to also specify channels specific to the 3D NoCs. To specify
channels, we need a 3D NoC architecture. There are a number of 3D NoC archi-
tectures, e.g., mesh-based [13], tree-based [14]. We consider here NoCs with 3D
mesh topologies. The 3D mesh-based NoC (Fig. 6(a)) consists of N = m ∗ n ∗ k
nodes; each node has an associated integer coordinate triple (x, y, z), 0 < x ≤ m,
0 < y ≤ n, 0 < z ≤ k.

Fig. 6. (a) 3D Mesh-based NoC architecture (b) Router channels

Refinement-Based Modeling of 3D NoCs 243

Our 3D NoC architecture employs seven-port routers: one port to the IP
block, one port to above and below routers, and one in each cardinal direction
(North, South, East and West), as shown in Fig. 6(b).

The Static Part. We extend the static part of the initial model M0 in three
ways: we map routers to coordinate triples, we add new properties for the neigh
relation based on the coordinate triples, and we model ports and channels for
the 3D NoC. In order to map routers to the coordinate triples, we define four
constants: coordX , coordY , coordZ and mk position as shown in Fig. 7. The
coordX , coordY and coordZ constants represent coordinate triples (x, y, z) and
the mk position constant is a map associating each router to a position in space
given by the coordinates. The crossbarX , crossbarY and crossbarZ constants
model the number of nodes in X, Y and Z coordinate in the network, respectively.

Two nodes with coordinates (xi, yi, zi) and (xj , yj , zj) are connected by a
communication channel if and only if |xi−xj |+ |yi−yj |+ |zi−zj| = 1. To model
this neighbor structure, the Neigh relation in the initial model M0 is restricted
in this model by adding the axiom in Fig. 8.

SETS CHANNEL PORTS
CONSTANTS coordX coordY coordZ mk position

crossbarX crossbarY crossbarZ mk channel
AXIOMS

crossbarX ∈ N1 ∧ crossbarY ∈ N1 ∧ crossbarZ ∈ N1

mk position ∈ (1 .. crossbarX)× (1 .. crossbarY)× (1 .. crossbarZ) �� ROUTER
coordX ∈ ROUTER � (1 .. crossbarX)
coordY ∈ ROUTER � (1 .. crossbarY)
coordZ ∈ ROUTER � (1 .. crossbarZ)
∀xx , yy, zz ·xx ∈ 1 .. crossbarX ∧ yy ∈ 1 .. crossbarY ∧ zz ∈ 1 .. crossbarZ

⇒coordX (mk position(xx �→ yy �→ zz)) = xx
∧coordY (mk position(xx �→ yy �→ zz)) = yy
∧coordZ (mk position(xx �→ yy �→ zz)) = zz

∀pos1 ,pos2 ·pos1 ∈ ROUTER ∧ pos2 ∈ ROUTER ∧ pos1 �= pos2
⇒coordX (pos1) �= coordX (pos2)∨ coordY (pos1) �= coordY (pos2)∨

coordZ (pos1) �= coordZ (pos2)

Fig. 7. M1: Static Part 1

We define the CHANNEL set to model the communication channels between
routers and we define the PORTS set to define the input and output ports of nodes
in the static part of the second model. To show how two neighbors are connected
to each other through channels, we define the def channel and mk channel rela-
tions with the help of axioms, as shown in Fig. 8. The def channel relation models
the relation of a port of a node to the corresponding port of its neighbor and the
mk channel relation maps the port relations to channels.

AXIOMS
∀r1 , r2 ·r1 �→ r2 ∈ Neigh ⇔ abs(coordX (r1)− coordX (r2)) + abs(coordY (r1)

−coordY (r2)) + abs(coordZ (r1)− coordZ (r2)) = 1
def channel ∈ (ROUTER × PORTS)→ (ROUTER × PORTS)
partition(PORTS , {Ein}, {Eout}, {Win}, {Wout}, {Nin}, {Nout}, {Sin}

, {Sout}, {Uin}, {Uout}, {Din}, {Dout}, {Lin}, {Lout})
mk channel ∈ def channel �� CHANNELS

Fig. 8. M1: Static Part 2

244 M. Kamali et al.

East and west ports of neighbor nodes with different X coordinate are related
to each other through a channel. For instance, as shown in Fig. 9, Ein and Eout
ports of node (1, 1, 1) are connected to Wout and Win ports of node (2, 1, 1)
through a channel ((1, 1, 1) �→ Eout) �→ ((2, 1, 1) �→ Win) and ((2, 1, 1) �→
Wout) �→ ((1, 1, 1) �→ Ein) relations in def channel. This connection of the
ports of the neighboring nodes on the X coordinate is modeled by the axiom
shown in Fig. 10. The port relation between neighbors on other coordinates is
defined by similar axioms which are not shown here due to lack of space.

Fig. 9. Channels in 3D Mesh-Based NoCs

The Dynamic Part. In the static part of the model M1, we define the 3D
mesh NoC architecture with the triple coordinate of nodes and their channels.
In the dynamic part of the model M1, we refine the dynamic part of the model
M0 to specify the transferring of data through the communication channels, so
that the overall correctness of communication holds.

The communication channels between routers are considered asynchronous
channels, transferring data upon request. Each channel propagates data as well
as control values. In our case, a control value models the fact that a channel is
occupied by a message. When a message is injected to a channel, the control
value of that channel is set to busy and when the message is received at the
other side of channel, the control value of that channel is set to free.

AXIOMS
∀n, m, i, j ·(n �→ i) �→ (m �→ j) ∈ def channel ∧ i = Wout ∧ j = Ein
⇔coordX (n)− coordX (m) = 1 ∧ coordY (n) = coordY (m) ∧ coordZ (n) = coordZ (m)
∀n, m, i, j ·(n �→ i) �→ (m �→ j) ∈ def channel ∧ i = Eout ∧ j = Win
⇔coordX (n)− coordX (m) = −1 ∧ coordY (n) = coordY (m) ∧ coordZ (n) = coordZ (m)

Fig. 10. M1: Static Part 3

In order to model the transferring of messages through the communication
channels, the variables channel state and channel content are defined in the
second model to represent the control and the data value on each channel. Each
channel can have the busy or free state. When the channel receives data, its state
switches from free to busy and the message is added to the channel content.
When the channel transfers data to the end, channel state changes to free
and the channel is released by removing the message from channel content. The
invariants of M1 model that, when a channel is released, then its content is empty
and can thus receive the next message; when a channel is busy, the message is
in the channel. We illustrate these invariants in Fig.11.

Refinement-Based Modeling of 3D NoCs 245

VARIABLES
channel content channel state

INVARIANTS
channel content ∈ CHANNELS �� MESSAGES
dom(channel content) = channel state−1 [{busy}]
channel state ∈ CHANNELS → state
dom(channel state) = ran(mk channel)
ran(channel content) ⊆ dom(moving pool)
∀msg ·msg ∈ dom(moving pool) ∧ des(msg) = moving pool(msg)

⇒msg /∈ ran(channel content)

Fig. 11. M1: Invariants (channels)

The switching event is now refined to transfer a message to the next router
through channels. In order to model this, we add a new event out to channel as
shown in Fig.15 (Appendix) to model pushing a message in the channel. This
event is enabled when there is a message for transferring in a node and the
channel between the node and the next node is free. In addition, we refine the
switching event as shown in Fig.16 (Appendix) to model releasing the channel
by receiving the message at the end of the channel. This event is enabled when
a message is in the channel.

3.3 The Third Model M2

In this model, we define buffers for the ports of the nodes and refine the second
model to model the communication in 3D NoCs by considering these buffers.

The Static Part. The context of the third model contains a single constant
buffer size ∈ N1, which is a strict natural number denoting the maximum
number of messages allowed in a buffer.

The Dynamic Part. Each node has fourteen buffers, each assigned to node
ports; those assigned to output ports are called output buffers and those assigned
to input ports are called input buffers. When there is a message in an output
buffer of a node, the node can transfer it to the channel provided that the channel
is free. If in the other side of the channel the input buffer has an empty place,
the message is transferred to the input buffer of the next node and the channel
is released; otherwise, the channel will be busy until an empty place appears
in the input buffer. To model the buffer structure in the third model we add
a new machine variable buffer content that models the current content of all
buffers. Indeed, adding and removing messages in/from buffers is modeled by
the buffer content variable.

In order to guarantee the correctness of the buffer modeling, we need the
invariants shown Fig.12. They model that the content of a buffer never becomes
more than its size. In addition, while a message is in the moving pool, i.e., it
has not reached to its destination, it must be either in a channel or in a buffer.

246 M. Kamali et al.

VARIABLES
buffer content

INVARIANTS
buffer content ∈ MESSAGES �→ (ROUTER × PORTS)
dom(buffer content) ∪ ran(channel content) = dom(moving pool)
dom(buffer content) ∩ ran(channel content) = ∅
∀b ·b ∈ ran(buffer content)⇒ card(buffer content � {b}) ∈ 1 .. buffer size

Fig. 12. M2: Invariants (buffer)

The switching event, as shown in Fig.17 (Appendix), is refined to be enabled
when there is an input buffer with at least one empty place at the end of the
channel. Then, besides releasing the channel, the message in the channel is trans-
fered to the input buffer. The status of the switching event is still anticipated
since we do not store. The out to channel event, as shown in Fig.17, is refined to
be enabled when there is a message in an output buffer meaning that the mes-
sage is removed from buffer. The sent message and received message events
are refined so that they update the buffer content variable as shown in Fig. 18
(Appendix).

Event routing =̂
extends routing

any
msg router in p out p

where
in p ∈ {Win, Ein, Sin, Nin, Uin, Din, Lin}
out p ∈ {Wout, Eout, Sout, Nout, Uout, Dout, Lout}
(in p = Win ∧ out p �= Wout) ∨ (in p = Ein ∧ out p �= Eout)
∨(in p = Sin ∧ out p �= Sout) ∨ (in p = Nin ∧ out p �= Nout)
∨(in p = Uin ∧ out p �= Uout) ∨ (in p = Din ∧ out p �= Dout)
∨(in p = Lin ∧ out p �= Lout)

msg �→ (router �→ in p) ∈ buffer content
card(buffer content � {router �→ out p}) < buffer size

then
buffer content(msg) := router �→ out p

end

Fig. 13. M2: Routing Event

At this level of abstraction, we refine the routing event (modeled as skip in the
previous models) as shown in Fig.13. A routing algorithm decides on choosing
an output channel for a message in an input channel. As we present a general
model, we do not consider any specific routing algorithm and we model routing
decision nondeterministically. That is, when there is a message in an input buffer
of a node, it can be routed to any output buffer of the node except the output
buffer in the same direction with the input buffer e.g., a message in the northern
input buffer cannot be routed to the northern output buffer. We also check that
there is enough space in the chosen buffer. We have this constraint to prevent
a cycling problem in the communication that would lead to deadlock in the
interconnection network.

We do not change the status of the switching event in this refinement step. Thus,
its status is still anticipated. In order to have it convergent, we need to define a
variant based on some ordering relation of the message identifiers. This can be
achieved by modeling a channel dependency graph but is not part of this paper.

Refinement-Based Modeling of 3D NoCs 247

A more concrete 3D NoC design can be modeled by refining one or more of
these three general models and by verifying whether the design can guarantee the
overall communication correctness. In the following, we model the XYZ routing
algorithm by refining the third model M2 and verifying whether it guarantees
the overall communication correctness.

4 Case Study: The XYZ Routing Algorithm

In this section, we formally develop a dimension-order routing (DOR) algorithm
which is a deterministic routing scheme widely used for NoCs [24]. To make the
best use of the regularity of the topology, the dimension-order routing transfers
packets along minimal paths in the traversing of the low dimension first until no
further move is needed in this dimension. Then, they go along the next dimension
and so forth until they reach their destination. For example, the dimension-
order routing in the 3D NoC called the XYZ routing algorithm uses Z dimension
channels after using Y and X dimension channels. Packets travel along the X
dimension, then along the Y dimension and finally along the Z dimension. Thus,
if current node = (cx, cy, cz) is a node containing a message addressed to node
destination = (dx, dy, dz), then the XYZ routing function Rxyz(,) is defined as
follows:

Rxyz((cx, cy, cz), (dx, dy, dz)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(cx−1, cy, cz) iff cx > dx

(cx+1, cy, cz) iff cx < dx

(cx, cy−1, cz) iff cx = dx ∧ cy > dy

(cx, cy+1, cz) iff cx = dx ∧ cy < dy

(cx, cy, cz−1) iff cx = dx ∧ cy = dy ∧ cz > dz

(cx, cy, cz+1) iff cx = dx ∧ cy = dy ∧ cz < dz

In order to model the XYZ routing algorithm based on the third general model,
we have to refine the routing event which is nondeterministically defined. As
shown in the above formula, a message can be transfered to six different di-
rections based on its current position and destination. Therefore, we refine the
routing event in the previous model to six routing events so that their guards
are based on the routing formula. As an example of the routing event, we show
in Fig.14 the situation where cx is greater than dx. All the correctness properties
defined for the abstract models are proved. Hence, the XYZ routing algorithm
guarantees the overall communication correctness.

Event routing X dec =̂
extends routing

where
coordX (router) > coordX (des(msg))∧ out p = Wout

then
buffer content(msg) := router �→ out p

end

Fig. 14. The XYZ Model: Routing Event (cx > dx)

248 M. Kamali et al.

5 Verification of the Models

In order to prove that the models satisfy their correctness properties we have to
check that they respect their invariants, i.e., the pool properties for our models.
To prove this, we have generated the proof obligations for all the models using
the Rodin tool: part of the proof obligations were automatically discharged and
the rest of could be proved interactively. The proof statistics for our models are
shown in Table 1. These figures express the number of proof obligations gener-
ated by the Rodin platform as well as the number of obligations automatically
discharged by the platform and those interactively proved. A high number of in-
teractive proofs were due to reasoning about set comprehension and unions, not
currently supported automatically in Rodin. In addition, the interactive proving
often involved manually suggesting values to discharging various properties con-
taining logical disjunctions or existential quantifiers. Extra proving was due to
the fact that currently, we cannot create proof scripts and reuse them whenever
needed in RODIN. Thus, in some cases we had to manually repeat very similar
or almost identical proofs.

Table 1. Proof Statistics

Model Number of Proof Automatically Interactively

Obligations Discharged Discharged

Context 21 6(28%) 15(72%)

M0 Model 38 34(89%) 4(11%)

M1 Model 33 11(33%) 22(67%)

M2 Model 33 7(21%) 26(79%)

XYZ Model 13 0(0%) 13(100%)

Total 144 64(45%) 80(55%)

6 Conclusions

In this paper, we have proposed the abstract models M0, M1, and M2 at three
increasing levels of detail for 3D NoCs. These can be used for modeling and
verifying 3D NoC-designs in the early stages of the system development. We
have also shown how to apply such an abstract model to verify a concrete 3D
NoC routing algorithm. Most importantly, the overall correctness of the com-
munication models (expressed using a special data structure called pool [2]) is
guaranteed for the 3D NoCs. We have achieved this by modeling the correct-
ness condition via invariants; as each model added detail to the previous model,
the invariant needed to reflect these added details in a consistent manner. In
order for the invariant to be satisfied by a model, a number of proof obliga-
tions needs to be discharged. Moreover, in order for the models to respect the
refinement relation M0 � M1 � M2, i.e., to develop each other in a provably

Refinement-Based Modeling of 3D NoCs 249

correct manner, some other proof obligations need to be generated. As we have
employed the RODIN platform to specify our 3D NoC modeling, many of these
proof obligations have been automatically discharged, while for the rest it was
possible to discharge them interactively. We note an interesting property of our
communication correctness condition, that essentially reduces to the fact that all
the messages will eventually reach their destinations. This is a typical liveness
property that we model here as an invariant, also based on the variant expression
ensuring that our models will eventually terminate. The liveness property can
also be verified via a model checker, for instance Pro-B [31], that is associated
to the RODIN platform.

The NoC communication can be either unicast or multicast [23]. In the unicast
communication a message is sent from a source node to a single destination node,
while in the multicast communication a message is sent from a source node to an
arbitrary set of destination nodes. We have considered here sending a message
from a source to a single destination, hence modeled unicast communication. One
of our future plans is to extend the abstract models M0, M1, and M2 to also
specify multicast communication and as a case study we target a novel routing
protocol for multicast traffic called HAMUM [12], based on the extended 3D
NoC model. HAMUM, Hamiltonian Adaptive path for both the Multicast and
Unicast Model, is a new adaptive routing model based on Hamiltonian path for
both the multicast and unicast traffic. An interesting property that we expect
out of the multicast modeling is to have the case study reusing the M2 model
via an algorithmic refinement instead of a superposition one like we now have.
This is because we can have several messages that could be routed in parallel
using different events via several channels. Our XYZ routing employs already
several events for the routing instead of the abstract routing event of the model
M2, but only one of them is enabled at all moments.

By strengthening the invariants we can verify more diverse properties of the
3D NoC designs, for instance we could prove deadlock-freedom for routing al-
gorithms - currently, one of the most challenging properties for the 3D NoCs.
For this, we envision an extension of the abstract 3D NoC models with an ex-
tra channel dependency graph to reason about deadlock-freedom; the HAMUM
algorithm can then be shown as deadlock-free.

References

1. Abrial, J.R.: A System Development Process with Event-B and the Rodin Platform.
In: Butler, M., Hinchey, M.G., Larrondo-Petrie, M.M. (eds.) ICFEM 2007. LNCS,
vol. 4789, pp. 1–3. Springer, Heidelberg (2007)

2. Abrial, J.R.: Modeling in Event-B: System and Software Design. Cambridge Uni-
versity Press (2010)

3. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press (1996)

4. Abrial, J.R., Cansell, D., Mery, D.: Refinement and Reachability in Even-B. In:
4th International Conference of B and Z Users, pp. 129–148 (2005)

250 M. Kamali et al.

5. Abrial, J.R., Hallerstede, S.: Refinement, Decomposition and Instantiation of Dis-
crete Models: Application to Event-B. In: Fundamenta Informaticae, pp. 1–28
(2007)

6. Andreasson, D., Kumar, S.: Slack-Time Aware-Routing in NoC Systems. In: IEEE
International Symposium on Circuits and Systems, pp. 2353–2356. IEEE (2005)

7. Arditi, L., Berry, G., Kishinevsky, M.: Late Design Changes (ECOs) for Sequen-
tially Optimized Esterel Designs. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004.
LNCS, vol. 3312, pp. 128–143. Springer, Heidelberg (2004)

8. Back, R.J., Sere, K.: Stepwise Refinement of Action Systems. In: van de Snepscheut,
J.L.A. (ed.) MPC 1989. LNCS, vol. 375, pp. 115–138. Springer, Heidelberg (1989)

9. Back, R.J., Sere, K.: Superposition Refinement of Reactive Systems. Formal As-
pects of Computing 8(3), 324–346 (1996)

10. Borrione, D., Helmy, A., Pierre, L., Schmaltz, J.: A Formal Approach to the Ver-
ification of Networks on Chip. EURASIP Journal on Embedded Systems 2009(1),
1–14 (2009)

11. Duan, X., Zhang, D., Sun, X.: A Condition of Deadlock-free Routing in Mesh Net-
work. In: Second International Conference on Intelligent Networks and Intelligent
Systems, pp. 242–245 (2009)

12. Ebrahimi, M., Daneshtalab, M., Liljeberg, P., Tenhunen, H.: HAMUM A Novel
Routing Protocol for Unicast and Multicast Traffic in MPSoCs. In: The 18th Eu-
romicro Conference on Parallel, Distributed and Network-Based Computing (2010)

13. Feero, B.S., Pande, P.: Networks-on-Chip in a Three-Dimensional Environment: A
Performance Evaluation. IEEE Transactions on Computers, 32–45 (2009)

14. Grecu, C., et al.: A Scalable Communication-Centric SoC Interconnect Architec-
ture. In: 5th International Symposiom Quality Electronic Design (ISQED 2004),
pp. 343–348 (2004)

15. Gupta, R., Guernic, P.L., Skuhla, S.K.: Formal methods and models for system
design: a system level perspective. Kluwer Academic Publishers (2004)

16. Harrison, J.: Formal Verification at Intel. In: Symposium on Logic in Computer
Science (2003)

17. Jerger, N.E., Peh, L.S., Lipasti, M.H.: Virtual Circuit Tree Multicasting: A Case
for On-Chip Hardware Multicast Support. In: International Conference Computer
Architecture, China, pp. 229–240 (2008)

18. Katz, S.: A Superimposition Control Construct for Distributed Systems. ACM
Transactions on Programming Languages and Systems, 337–356 (1993)

19. Kaivola, R., Ghughal, R., Narasimhan, N., Telfer, A., Whittemore, J., Pandav,
S., Slobodová, A., Taylor, C., Frolov, V., Reeber, E., Naik, A.: Replacing Testing
with Formal Verification in Intel� CoreTM i7 Processor Execution Engine Valida-
tion. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 414–429.
Springer, Heidelberg (2009)

20. Kim, Y.B., Kim, Y.-B.: Fault-Tolerant Source Routing for Networks-on-Chip. In:
22nd IEEE International Symposium on Defect and Fault Tolerance in VLSI Sys-
tems, pp. 12–20. IEEE Computer Society (2007)

21. Liao, W., Hsiung, P.: Creating a Formal Verification Platform for IBM
CoreConnect-based SoC. In: The 1st International Workshop on Automasted Tech-
nology for Verificatin and Analysis (ATVA 2003), pp. 7–18 (2003)

22. Loi, I., Benini, L.: An Efficient Distributed Memory Interface for Many-Core Plat-
form with 3D Stacked DRAM. In: Proc. of the DATE Conference, Germany,
pp. 99–104 (2010)

Refinement-Based Modeling of 3D NoCs 251

23. Lu, Z., Yin, B., Jantsch, A.: Connection-Oriented Multicasting in Wormhole-
Switched Networks on Chip. In: Emerging VLSI Technologies and Architectures,
pp. 205–211 (2006)

24. Montaana, J.M., Koibuchi, M., Matsutani, H., Amano, H.: Balanced Dimension-
Order Routing for k-ary n-cubes. In: International Conference on Parallel Process-
ing (2009)

25. Nayebi, A., Meraji, S., Shamaei, A., Sarbazi-azad, H.: XMulator: A listener-Based
Integrated Simulation Platform for Interconnection Networks. In: Asia Interna-
tional Conference on Modeling and Simulation, pp. 128–132 (2007)

26. Palesi, M., Holsmark, R., Kumar, S., Catania, V.: Application Specific Routing
Algorithms for Networks on Chip. IEEE Transactions on Parallel and Distributed
Systems, 316–330 (2009)

27. Park, D., et al.: Mira, A Multi-Layered On-Chip Interconnect Router Architecture.
In: ISCA 2008, pp. 251–261 (2008)

28. Tsiopoulos, L., Walden, M.: Formal Development of NoC Systems in B. Nordic
Journal of Computing, 127–145 (2006)

29. Yan, S., Lin, B.: Design of Application-Specific 3D Networks-on-Chip Architec-
tures. In: IEEE International Conference on Computer Design (ICCD 2008),
pp. 142–149 (2008)

30. RODIN Tool Platform, http://www.event-b.org/platform.html
31. ProB Model Checker, http://www.stups.uni-duesseldorf.de/ProB/overview.php

252 M. Kamali et al.

Appendix

Event out to channel =̂
any new position current msg out p in p
where

current msg ∈ dom(moving pool) ∧ new position ∈ POSITION
moving pool(current msg) �→ new position ∈ Neigh
out p ∈ {Nout, Sout, Wout, Eout, Uout, Dout} ∧ in p ∈ {Nin, Sin, Win, Ein, Uin, Din}
(moving pool(current msg) �→ out p) �→ (new position �→ in p) ∈ dom(mk channel)
channel state(mk channel((moving pool(current msg)�→out p)�→(new position �→in p)))= free
moving pool(current msg) �= des(current msg) ∧ current msg /∈ ran(channel content)

then
channel state(mk channel((moving pool(current msg)�→out p)�→(new position �→in p))):=busy
channel content(mk channel((moving pool(current msg) �→out p) �→ (new position �→ in p)))

:= current msg
end

Fig. 15. M1: Out to Channel Event

Event switching =̂
Status anticipated
extends switching
any current msg new position p1 p2
where

p1 ∈ {Nout, Sout, Wout, Eout, Uout, Dout} ∧ p2 ∈ {Nin, Sin, Win, Ein, Uin, Din}
(moving pool(current msg) �→ p1) �→ (new position �→ p2) ∈ dom(mk channel)
channel state(mk channel((moving pool(current msg)�→p1)�→(new position �→p2)))=busy
current msg =
channel content(mk channel((moving pool(current msg) �→p1) �→ (new position �→p2)))

then
moving pool(current msg) := new position
channel state(mk channel((moving pool(current msg)�→p1)�→(new position �→p2))) := free
channel content := channel content �− {current msg}

end

Fig. 16. M1: Switching Event

Event switching =̂
Status anticipated
extends switching

where
card(buffer content � {new position �→ p2}) < buffer size

then
buffer content := buffer content ∪ {current msg �→ (new position �→ p2)}

end
Event out to channel =̂
extends out to channel

where
card(buffer content � {new position �→ in p}) > 0

then
buffer content :=buffer content\{current msg �→ (moving pool(current msg) �→out p)}

end

Fig. 17. M2: Switching and Out to Channel Events

Event sent message =̂
extends sent message

where
current msg /∈ dom(buffer content)

then
buffer content := buffer content ∪ {current msg �→ (src(current msg) �→ Lin)}

end
Event received message =̂
extends received message

where
current msg �→ (des(current msg) �→ Lout) ∈ buffer content

then
buffer content := buffer content \ {current msg �→ (des(current msg) �→ Lout)}

end

Fig. 18. M2: Sent message and Received message Events

Paper VI

Formal Modeling of Multicast Communication in

3D NoCs

Maryam Kamali, Luigia Petre, Kaisa Sere

and Masoud Daneshtalab

Originally published in: P. Kitsos and S. Niar (Eds.), Proceedings of the 14th
Euromicro Conference on Digital System Design - DSD 2011, pp. 634-642.
IEEE/Euromicro, August 2011.

157

Formal Modeling of Multicast Communication in
3D NoCs

Maryam Kamali∗†, Luigia Petre∗, Kaisa Sere∗ and Masoud Daneshtalab‡
∗Åbo Akademi University, Finland

Email: {maryam.kamali,luigia.petre,kaisa.sere}@abo.fi
†Turku Centre for Computer Science (TUCS), Finland

‡University of Turku, Finland
Email: masdan@utu.fi

Abstract—A reliable approach to designing systems is by
applying formal methods, based on logics and set theory. In
formal methods refinement based, we develop the system models
stepwise, from an abstract level to a concrete one by gradually
adding details. Each detail-adding level is proved to still validate
the properties of the more abstract level. Due to the high
complexity and the high reliability requirements of 3D NoCs,
formal methods provide promising solutions for modeling and
verifying their communication schemes. In this paper, we present
a general model for specifying the 3D NoC multicast communi-
cation scheme. We then refine our model to two communication
schemes,: unicast and multicast, via the XYZ routing algorithm
in order to put forward the correct-by-construction concrete
models.

Index Terms—Formal methods; Event-B; refinement; 3D NoC;
multicast communication

I. INTRODUCTION

The Network-on-Chip (NoC) architecture paradigm, based
on a modular packet-switching mechanism, can address many
of the on-chip communication design issues such as per-
formance limitations of long interconnects and the integra-
tion of high numbers of Intellectual Property (IP) cores on
a chip. However, the 2D-chip fabrication technology faces
many challenges in the deep submicron regime even when
employing NoC architectures. Examples of these problems are
the design of the clock-tree network for large chips, limited
floor-planning choices, the increase of both the wire delay and
power consumption, the integration of various components that
are digital, analog, MEMS and RF, etc. Three Dimensional In-
tegrated Circuits (3D ICs) have been emerging as an attractive
candidate, for the reduction of interconnection length and the
added interconnect scalability in the third dimension offer an
opportunity to further improve the performance of NoC [13],
[15], [14].

Three dimensional Networks-on-Chips (3D NoCs) [13]
provide more reliable interconnections due to the increased
number of links between components. Due to their promise
of parallelism and efficiency, 3D NoCs have a critical role in
leading towards reliable computing platforms. However, the
majority of their evaluation approaches are simulation-based
tools, such as XMulator [16], Noxim [17], etc. Simulation-
based approaches are usually applied in the late stages of
design and are limited, e.g., by the length of time that a

system is simulated. This means that exhaustive checking of
all the system states is impossible in practice for complex 3D
NoCs and thus, simulation is not suitable for verifying the
correctness of a NoC design.

Another approach to address this problem is via formal
methods. Formal methods refer to the application of mathe-
matical techniques to the design and implementation of com-
puter hardware and software. Prominent examples of applying
formal methods are provided by, e.g., Intel [19], [18] and
IBM [21] for formally verifying hardware or systems-on-chip
(SoC) [20]. By using rigorous mathematical techniques, it is
possible to deliver provably correct systems. Formal methods
are based on the capture of system requirements in a specific,
precise format. Importantly, such a format can be analyzed
for various properties and, if the formal method permits, also
stepwise developed until an implementation is formed. By
following such a formal development, we are sure that the final
result correctly implements the requirements of the system.

A general formal model of 3D NoCs was recently intro-
duced in [12], to verify the design of unicast communication
approaches. Unicast communication refers to sending a mes-
sage from a single source node to a single destination node. In
this paper we extend the proposed model to a general formal
model of 3D NoCs for specifying and verifying the design
of multicast communication. We show that the unicast model
in [12] is an instance of our general model in this paper.

Communication in network-based multicore architectures
can be either unicast (one-to-one) or multicast (one-to-
many) [22]. While in the former approach a message is
sent from a source node to a single destination node, in
the latter approach a message is sent from a source node
to an arbitrary set of destinations. Multicast communication
is employed in many multicore applications, e.g., replication,
barrier synchronization, cache coherency in distributed shared-
memory architectures, and clock synchronization [22], [23].
Multicast routing algorithms can be classified as unicast-
based, tree-based, and path-based [25]. The first alternative
produces much unnecessary traffic, also increasing the latency
and congestion of the network [25]. The path-based method
forces packets to follow longer routes than what is proposed
in the tree-based method, hence the tree-based method seems
the most efficient of the three [26].

2011 14th Euromicro Conference on Digital System Design

978-0-7695-4494-6/11 $26.00 © 2011 IEEE

DOI 10.1109/DSD.2011.86

634

2011 14th Euromicro Conference on Digital System Design

978-0-7695-4494-6/11 $26.00 © 2011 IEEE

DOI 10.1109/DSD.2011.86

634

Fig. 1. Example of tree-based multicast routing in (a) 2D-mesh and (b)
3D-mesh

The contribution of our paper consists in proposing a gen-
eral formal model for 3D NoC multicast communication. This
model can be employed to develop various provably correct
communication schemes in 3D NoCs. More importantly, this
general model can be used for analysis purposes, as a common
basis for comparing different communication schemes. For
instance, we could employ our modeling to prove that the
tree-based multicast algorithm is more efficient than the path-
based algorithm.

We proceed as follows. In Section II we briefly present the
tree-based multicast routing idea as well as describe our formal
method of choice, namely Event-B, to the extend needed in
this paper. In Section III we describe our three, stepwise-
constructed formal models for multicast communication. We
apply the most concrete model to two communication schemes
in Section IV. In Section V we shortly discuss the proving
methodology and in Section VI we conclude.

II. PRELIMINARIES

A. Tree-based Multicast Communication

In tree-based routing, the destination set is partitioned at the
source and separate copies of the message are sent through one
or more outgoing channels. A message may be replicated at
intermediate nodes and forwarded toward disjoint subsets of
destinations in the tree through multiple output channels. As
shown in Fig. 1(a), the source node 17 is selected as the root
and a spanning tree is formed with respect to the root; when
messages enter routers at branch points (nodes 16 and 18),
they are duplicated and forwarded to multiple output channels.
Similarly, the branch nodes of the 3D-mesh in Fig. 1(b) are
nodes 5 and 12.

B. Event-B

Event-B [2], [1] is a formal framework derived from the B
Method [4], [3] to model and reason about parallel, distributed
and reactive systems. Event-B has the associated Rodin plat-
form [6] which provides automated tool support for modelling
and verification by theorem proving. The Rodin platform [1],
[6] generates a set of proof obligations in order to show the
correctness of formal models. Then it automatically discharges
part of the proof obligations and also provides the means for
the user to discharge interactively the remaining proofs. In
Event-B, a system model is gradually specified on increasing
levels of abstraction, always ensuring that a more concrete
model is a correct implementation of an abstract model.

In Event-B, a system specification (model) is defined using
the notion of an abstract state machine [5]. An abstract
state machine encapsulates the model state, represented as
a collection of model variables, and defines operations on
this state, called events. Thus, it describes the behaviour of
the modelled system, also referred to as the dynamic part.
The system properties that should be preserved during the
execution are formulated as a list of invariant predicates
over the state of the model. A machine may also have an
accompanying component, called context, which contains the
static part of the system. A context can include user-defined
carrier sets, constants and their properties, given as a list of
model axioms.

An event, modeling state changes, is composed of a guard
and an action. The guard is the necessary condition under
which an event might occur, i.e., when the event is enabled.
If several events are enabled at the same time, any of them
can be chosen for execution nondeterministically. The action
determines the way in which the state variables change when
the event occurs. For initializing the system, a sequence of
actions is defined. If some events have no variables in common
and are enabled at the same time, then they can be considered
to be executed in parallel since their sequential execution in
any order gives the same result. For all practical purposes, this
execution model is parallel and can be implemented as such
when the model is refined to code. Events can be declared as
anticipated, meaning that in the future refinements we need
to set out a natural number expression called variant and
prove that it is decreased by this event. Events can also be
convergent, meaning that in the current machine there is a
variant that decreases when this event is chosen for execution.
Thus, an anticipated event is not convergent in the current
machine but should become so in a future refinement of that
machine.

A model can be developed by a number of correctness
preserving steps called refinements [7], [8]. One form of model
refinement can add new data and new events on top of the
already existing data and behavior but in such a way that the
introduced behavior does not contradict or take over the ab-
stract machine behavior. This form of stepwise construction is
referred to as superposition refinement [10], [11]. We may also
use other refinement forms, e.g., algorithmic refinement [9].
In this case, an event of an abstract machine can be refined by
several corresponding events in a refined machine. This will
model different branches of execution, that can, for instance,
take place in parallel and thus can improve the algorithmic
efficiency.

The 3D NoC designs are quite complex in the state size,
given by the number of variables, as well as in the number of
transitions. Thus, it is very complicated to describe the whole
system as one model. One feasible methodology to address
this modeling problem is given by the refinement techniques,
by modeling at different abstraction levels. This methodology
is valuable for at least two reasons. First, the idea of stepwise
construction provides the gradual development of the designs,
ensuring their correctness at every development step. Second,

635635

Fig. 2. Model development for multicast communication

the abstract models can contain non-determinism, which al-
lows that in the subsequent models we simply fix the choice to
one specific execution. Obviously, in this case, we can develop
alternative models corresponding to different (fixed) choices,
all refining the same abstract model.

III. THREE ABSTRACT MODELS FOR MULTICAST
COMMUNICATION

In this section we formally develop three high-level models
M0, M1, and M2 for the 3D NoC. Our models are at three
increasing levels of detail so that each model is a refinement
of the previous one: M0 �M1 � M2 as shown in Fig. 2. We
start by building a model that is far more abstract than the
final network we want to construct. The idea is to take into
account initially only very few constraints. This is because we
want to be able to reason about this system in a simple way,
considering in turn each element of the network. Therefore, in
the initial model, we specify a network of nodes as a context
and define the correctness properties of this network based on
a specific data structure called pool, as suggested by [2]. In
the second model, we refine the initial model by adding new
data and events to model the 3D mesh-based NoC architecture;
besides, we specify the channels between nodes. In the third
model, we model buffers for nodes and refine the commu-
nication model by considering the correctness properties of
the network. This design strategy lets us add complexity to
the model based on the correctness properties of the network,
defined abstractly already in the initial model.

A. The initial model M0

The first model M0 that we construct is rather abstract:
we do not consider the numerous parts of the network such
as channels or buffers; they will be introduced in subsequent
refinements. M0 will thus allow us to reason about the system
very abstractly [2]. The model M0 is formed of the static part
(ctx1) and the dynamic part (M0), as follows.

The static part of our model describes the network structure
in terms of neighbors and the messages to travel through the
network. We model the network structure with a relation Neigh
on the finite and non-empty ROUTER set; this relation denotes
the communication links among nodes, expressed with the
many to many mapping relation operator ↔. We model the
messages to travel through the network with a finite, non-
empty set MESSAGES. A message is modeled as a triple

Fig. 3. Multicast Message Pools

(data, source, destinations), where data is an element of the
finite and non-empty DATA set (modeling the information to
transmit), source is an element of the set ROUTER where a
message is injected, and destinations is a subset of the set
ROUTER where a message should be received. We define
two functions, named src and des that return source and
destinations, respectively. The detailed properties of these
structures are formally introduced in [12], where they only
had a different type of destination. The modification we need
for modeling multicast refers to defining the MESSAGES
set, expressed with the total function operator →, as follows:

MESSAGES∈ DATA→ROUTER→P(ROUTER)
Neigh ∈ ROUTER↔ROUTER
src∈MESSAGES→ROUTER
des∈ MESSAGES→P(ROUTER)
In our network model we use the following condition

for modeling the communication correctness: the messages
in the network will eventually reach their destinations. To
implement this condition in our multicast communication
scheme, we define two message subsets, one message-to-
node relation and one node-to-message relation as machine
variables: sent pool ⊆ MESSAGES, received pool ⊆
MESSAGES, moving pool∈sent pool↔ROUTER and
received node∈ROUTER↔sent pool.

The map moving pool models the current position of
messages which are routed in the network. In [12], there is
only one instance of a message in the network; therefore,
moving pool is defined as a (partial) function. However, in
this paper, we model moving pool as a relation of messages-
to-nodes to show the existence of a number of instances of a
message in different nodes. In order to show that a message
is received to all its destinations, we define a new relation
received node∈ROUTER ↔ MESSAGES which mod-
els instances of messages having reached destinations. When a
message is received to one of its destinations, a corresponding
map is added to the received node relation. In order to
have a message in received pool, which denotes the list of
received messages, a destination-to-message map for all of the
destinations of that message should be in received node. The
new message pool structure is illustrated in Fig. 3.

One of the working steps of multicast communication is
to replicate a message in intermediate or destination nodes.
When a message is received to a node the message can be
consumed and forwarded to one or several immediate neigh-
bors or consumed and removed from the network. Therefore,
we can produce multiple instances of a message in a node
and switch these instances to different neighbors. In order to

636636

Event sent message
any current msg
where

current msg ∈ MESSAGES
current msg /∈ sent pool

then
sent pool := sent pool ∪ {current msg}
moving pool :=moving pool∪{current msg �→src(current msg)}
replicate msg num(current msg �→ src(current msg)) := 0
replicate flag(current msg �→ src(current msg)) := FALSE

end

Fig. 4. M0: sent message Event

model the message replication in nodes, we define two new
variables: replicate flag ∈ moving pool → BOOL and
replicate msg num ∈ moving pool → 0..n − 1 (where n
is the maximum number of node neighbors; we assume this is
a constant of the model). When replicate flag returns false
for a pair of (node, message), this means that the message
is received to a node but it is not replicated yet. When
replicate flag returns true for a pair of (node, message),
this models that the message which is received to the node is
replicated. In this case, the number of message replicas in the
node is expressed with replicate msg num.

To model the communication and the message pool func-
tions, we add five more events to the unicast model than
previously developed in [12]. In the following, we summarize
the already defined events with the changes as well as the new
events. The sent message event handles the injection of a
new message into the network. As shown in Fig. 4, whenever a
message is injected into the network, both sent pool as well as
moving pool are updated. Moreover, the pair of (source node,
message) with the value false is added to the replicate flag
to show the existence of a message in the source node with
no replication yet.

A message in moving pool should be routed toward its
destination. This is composed of three actions, one for deciding
which node would be the next one (routing), the other for
replicating a message to a number of instances of the message
(replicating), and the last for transferring the message to
that node (switching). These three actions are available for
all the nodes, including the source, the destination as well
as all the intermediate nodes and are modeled respectively
by the routing, replicating, and four switching events.
The routing event consists of skip at this abstract level as
routing decisions are modeled only when a particular routing
algorithm is needed to be verified; we then add the routing as
a refinement to this abstract model.

The replicating event shown in Fig. 5 handles the repli-
cation of a message in a node. When a message arrives to a
node, the replicating event becomes enabled for that node
and the message and a random number between 0 and n-1 is
assigned to the pair (node, message) in replicate msg num.
The assigned number is nondeterministically chosen, because
it makes our initial model general and reusable for a vari-
ety of communication design schemes. The number will be
assigned deterministically when the model is refined to a
particular communication design. We illustrate this in Section

Event replicating
any current msg pos num
where

current msg �→ pos ∈ moving pool
replicate flag(current msg �→ pos) = FALSE
received node−1[{current msg}] ∪ {pos} ⊂ des(current msg)
num ∈ 0 .. 6

then
replicate flag(current msg �→ pos) := TRUE
replicate msg num(current msg �→ pos) := num

end

Fig. 5. M0: replicating Event

Event switching
any current msg pos new position
where

current msg �→ pos ∈ moving pool
pos /∈ des(current msg)
new position �→ pos ∈ Neigh
new position �= src(current msg)
replicate flag(current msg �→ pos) = TRUE
replicate msg num(current msg �→ pos) > 0
current msg �→ new position /∈ moving pool
current msg /∈ received node[{new position}]

then
moving pool := moving pool ∪ {current msg �→ new position}
replicate flag := replicate flag∪

{current msg �→ new position �→ FALSE}
replicate msg num :=({current msg �→pos}�−replicate msg num)

∪{current msg �→ pos �→ (replicate msg num
(current msg �→pos)−1), current msg �→ new position �→ 0}

end

Fig. 6. M0: switching Event

IV with the XYZ routing case study. When the number of
replication for a message in a node is selected, the instances
of the message should be transfered from the current node
to its neighbors nondeterministically and the moving pool,
received node, replicate msg num and replicate flag
for the message instances should be updated.

Because different states are possible for switching, the
switching function is splitted in four switching events:
Switching, switching removing, switching garbage and
switching removing garbage.

Two possible states of switching occur when the transferring
message is not the last replicated instance and when the
transferring message is the last one. When it is not the last
instance, the switching event as illustrated in Fig. 6 transfers
the message to the next node by adding the pair (next node,
message) to the moving pool and decreasing the number of
replicated instances in the current node. The replicate flag
of the message and the new position are updated to false.
The false value of replicate flag for a message and a node
expresses the receipt of a new message. When a message
is the last replicated instance of a message in a node, the
switching removing event illustrated in Fig. 7 transfers the
message to the next node by adding (next node, message)
and removing the previous (node, message) pairs to/from
moving pool. In addition, the previous (node, message) pair
is removed from replicate flag and replicate msg num,
expressed with the domain subtraction operator �−.

If the next node has already received a message from
its other neighbors but the same message is switch-

637637

Event Switching removing
any current msg new position pos
where

current msg �→ pos ∈ moving pool
pos /∈ des(current msg)
new position �→ pos ∈ Neigh
new position �= src(current msg)
replicate flag(current msg �→ pos) = TRUE
replicate msg num(current msg �→ pos) = 0
current msg �→ new position /∈ moving pool
current msg /∈ received node[{new position}]

then
moving pool := (moving pool \ {current msg �→ pos})

∪{current msg �→ new position}
replicate flag := ({current msg �→ pos}�− replicate flag)

∪{current msg �→ new position �→ FALSE}
replicate msg num := ({current msg �→ pos}�−

replicate msg num)∪{current msg �→ new position �→ 0}
end

Fig. 7. M0: switching removing Event

Event switching garbage
any current msg pos new position
where

current msg �→ pos ∈ moving pool
pos /∈ des(current msg)
new position �→ pos ∈ Neigh
new position �= src(current msg)
replicate flag(current msg �→ pos) = TRUE
replicate msg num(current msg �→ pos) > 0
current msg �→ new position ∈ moving pool∨

current msg ∈ received node[{new position}]
then

replicate msg num :=({current msg �→pos}�−replicate msg num)
∪{current msg �→ pos �→ (replicate msg num
(current msg �→pos)−1), current msg �→ new position �→ 0}

end

Fig. 8. M0: switching garbage Event

ing in the next node, then the message from the pre-
vious node is removed from the network since it rep-
resent duplication. The switching garbage (Fig.8) and
switching removing garbage (Fig. 9) events handle the
same situations as switching and switching removing
events with the difference that the received message to a next
node is not added to the moving pool because the message
is an extra instance of a message.

The received message event in the unicast model adds
a message received at its destination to received pool and
removes the message from moving pool. This event is splitted

Event switching removing garbage
any current msg pos new position
where

current msg �→ pos ∈ moving pool
pos /∈ des(current msg)
new position �→ pos ∈ Neigh
new position �= src(current msg)
replicate flag(current msg �→ pos) = TRUE
replicate msg num(current msg �→ pos) = 0
current msg �→ new position ∈ moving pool∨

current msg ∈ received node[{new position}]
then

moving pool := (moving pool \ {current msg �→ pos})
replicate flag := ({current msg �→ pos}�− replicate flag)
replicate msg num :=({current msg �→pos}�−replicat msg num)

end

Fig. 9. M0: switching removing garbage Event

Event received message
any current msg pos
where

received node−1[{current msg}] ∪ {pos} ⊂ des(current msg)
current msg �→ pos ∈ moving pool
replicate flag(current msg �→ pos) = TRUE
replicate msg num(current msg �→ pos) > 0
pos �→ current msg /∈ received node

then
received node := received node ∪ {pos �→ current msg}

end

Fig. 10. M0: received message Event

Event complete received message
any current msg pos
where

current msg �→ pos ∈ moving pool
pos ∈ des(current msg)
received node−1[{current msg}] ∪ {pos} = des(current msg)

then
received node := received node ∪ {pos �→ current msg}
moving pool := {current msg}�−moving pool
received pool := received pool ∪ {current msg}
replicate msg num :=({current msg}� moving pool)�−

replicate msg num
replicate flag := ({current msg}�moving pool)�−replicate flag

end

Fig. 11. M0: Complete Received message Event

into two receiving events in the multicast model: one event
models the case when a message is received to all its desti-
nations and one events models the case when a message is
received to one of its destinations and it still has destinations
to reach. The received message complete event handles the
former case and the received message event handles the
latter case.

The received message event illustrated in Fig. 10 adds a
message received at one of its destinations to received node
when at least one of the message destinations is not received
yet. The received message complete event, illustrated in
Fig. 11 adds a message received at all its destinations to
received pool and removes the message from moving pool.
A message is received to all its destinations when the same
number of destinations is in received node. This event is
convergent: if new messages are not injected to the network
for a certain time, all the messages will be received at their
destinations. This is proved by means of the (sent pool \
received pool) variant denoting the difference between the
sets sent pool and received pool.

In order to prove the communication correctness, we need to
prove that received pool subset contains only messages which
are received to all of their destinations. In addition, we have
to prove that the sent pool subset eventually becomes equal
with the received pool subset and the moving pool subset is
empty when all the messages are received at their destinations.
These properties are illustrated in Fig. 12 as invariants.

M0 is a general specification of a general network and
will be refined to model 3D NoC multicast communication
designs in the following. Moreover, the model provides the
necessary properties that should be preserved by refinement.
These properties, that guarantee the overall communication

638638

Invariants
received pool ∩ dom(moving pool) = ∅
received pool ∪ dom(moving pool) = sent pool
∀msg·msg ∈ dom(moving pool)⇒

(∃d·d ∈ des(msg) ∧ d �→ msg /∈ received node)
∀msg·msg ∈ received pool⇒

(∀d·d ∈ des(msg)⇒ d �→ msg ∈ received node)
∀msg·msg ∈ sent pool ∧ des(msg) \ received node−1[{msg}] �=∅
⇒msg ∈ dom(moving pool)

Fig. 12. M0: Invariants (Pool Modeling)

Fig. 13. Router in 3D Mesh-Based NoCs

correctness, are defined as the list of invariants.

B. The Second Model M1

In the unicast model of communication presented in [12],
the 3D NoC mesh-based architecture is specified by restricting
the neighbor relation so that two nodes with coordinates
(xi, yi, zi) and (xj , yj , zj) are neighbors if and only if |xi −
xj |+ |yi − yj |+ |zi − zj | = 1. Based on this architecture and
the seven-port routers, the communication channels between
routers are defined by specifying a relation between output
and input ports of neighbors as illustrated in Fig. 13.

To show how two neighbors are connected to each
other through channels, the def channel ∈ (ROUTER ×
PORTS)→ (ROUTER×PORTS) relation is defined. The
def channel relation models the relation of a port of a node
to the corresponding port of its neighbor. As an illustration,
east and west ports of neighbor nodes with different X coor-
dinates are related to each other through a channel. As shown
in Fig. 14, the Ein and Eout ports of node (1, 1, 1) are con-
nected to the Wout and Win ports of node (2, 1, 1) through
a channel, via relations ((1, 1, 1) �→ Eout) �→ ((2, 1, 1) �→
Win) and ((2, 1, 1) �→ Wout) �→ ((1, 1, 1) �→ Ein) in
def channel.

Based on these channel and neighbor structures given in
the unicast model, we refine the initial model to specify the
transfering of messages through the communication channels,
so that the overall correctness of communication holds.

In order to show the data transfer through the chan-
nels, we specify two new variables in the second
model: channel state ∈ CHANNELS → state and
channel content ∈ CHANNELS �� MESSAGES. The
channel state variable models the fact that a channel is either

Fig. 14. Channels in 3D Mesh-Based NoCs

Invariants
dom(channel content) = channel state−1[{busy}]
ran(channel content) ⊆ dom(moving pool)
∀msg·msg ∈ dom(moving pool) ∧ des(msg) = moving pool(msg)
⇒msg /∈ ran(channel content)

Fig. 15. M1: Invariants (channels)

occupied by a message or free to transport a message; the
variable channel content indicates which message is cur-
rently transferred via the channel. When a message is injected
into a channel, its associated channel state variable is set
to busy and the message is added to the channel content
variable. We model the receipt of the message at the other
end of channel by channel state being set to free and by
removing the message from the channel content variable.

In order to construct a correct model in this refinement step,
the model should satisfy the properties illustrated in Fig. 15
as well as the invariants defined the initial model. The new
invariants model that, when a channel is released, its content is
empty and can thus receive the next message; when a channel
is busy, the message is in the channel.

In the initial model, transfering a message from a node to a
neighbor node is modeled in one step while in this model it is
refined to show it in two steps through channels: first, pushing
a message in the channel is modeled by a newly introduced
event out to channel and second, releasing the channel by
receiving the message at the end of the channel is modeled by
extending the four switching events.

The guards of these events are strengthened with new condi-
tions. Namely, these conditions check whether a channel start-
ing from a node is busy, then the channel is released and the
corresponding message is removed from the channel content
and transfered to the other end of the channel, if the same
message has not already been received there.

C. The Third Model M2

In the third model, we define node buffers by attach-
ing a buffer to each port of a router. A new variable
buffer content ∈ MESSAGES ↔ (ROUTER ×
PORTS) is defined to show the content of each buffer in
a node. In the multicast model, several instances of a message
can appear in several nodes, while in the unicast model only
one instance of a message can appear in one node. Therefore,
buffer content in unicast model is defined by a partial
function while in this model we define it with a binary relation.

At this level of abstraction, we refine the routing event
(modeled as skip in the previous models) as shown in Fig. 16,
to route a number of instances of a message in a node.
A message from an input buffer is routed to a number of
output buffers. The number of output buffers is equal to the
number of instances for the pair (router, message) in the
replicate msg num relation. As we present a general model,
we do not consider any specific routing algorithm and we
model routing decisions nondeterministically. That is, when
there is a message in an input buffer of a node, it can be routed
to several output buffers of the node except the output buffer

639639

Event routing
any msg router in p out p
where

in p ∈ {Win, Ein, Sin, Nin, Uin, Din, Lin}
out p ⊆ {Wout, Eout, Sout, Nout, Uout, Dout, Lout}
(in p = Win ∧Wout /∈ out p) ∨ (in p = Ein ∧ Eout /∈ out p)∨

(in p = Sin ∧ Sout /∈ out p) ∨ (in p = Nin ∧Nout /∈ out p)∨
(in p = Uin ∧ Uout /∈ out p) ∨ (in p = Din ∧Dout /∈ out p)∨
(in p = Lin ∧ Lout /∈ out p)

msg �→ (router �→ in p) ∈ buffer content
∀port·port ∈ out p⇒ card(buffer content � {router �→ port})

< buffer size
replicate flag(msg �→ router) = TRUE

then
buffer content := buffer content∪ ({msg}×({router}×out p))

end

Fig. 16. M2: Routing Event

in the same direction with the input buffer e.g., a message
in the northern input buffer cannot be routed to the northern
output buffer. We also check that there is enough space in the
chosen buffer. We have this constraint to prevent a cycling
problem in the communication that would lead to deadlock in
the interconnection network.

The general functions of multicast communication in 3D
NoC are specified in these three models. However, in order to
present a general multicast communication model, a specific
algorithm is not considered for replication. This allows us
to model any multicast routing algorithms by refining these
general models. To show that the unicast model is an instance
of our model, in the following we refine the third model to
model the unicast XYZ routing algorithm which is given as
a case study in the unicast model [12]. Moreover, we also
model the multicast XYZ routing algorithm by refining the
third model, to show how these general models can be refined
to a concrete multicast 3D NoC design.

IV. CASE STUDY: THE UNICAST AND MULTICAST XYZ
ROUTING ALGORITHMS

As one of the contributions in this paper we show that our
model is a generalization of the unicast model introduced
in [12]. In the following, we formally develop the same
deterministic routing algorithm as a case study, by refining our
multicast model. Therefore, the unicast XYZ routing algorithm
which is a dimension order routing in the 3D NoC is modeled.
The XYZ routing algorithm uses Z dimension channels after
using Y and X dimension channels. Packets travel along the
X dimension, then along the Y dimension and finally along
the Z dimension.

In order to model the unicast XYZ routing algorithm, we
formally develop the routing function as a context part of our
model and refine the routing event in the third model so that
the nondeterministic assignment to an output port becomes
a deterministic assignment. This assignment is based on the
XYZ routing function. A routing function as shown in Fig. 17
models the output port pair. This shows that unicast com-
munication designs can be verified by our multicast model;
moreover, we can also prove the correctness properties defined
for the abstract models.

routing ∈ POSITION × POSITION→
{Nout, Sout, Eout, Wout, Uout, Dout, Lout}

∀cur, dest·cur ∈ POSITION ∧ dest ∈ POSITION∧
coordX(dest) > coordX(cur)⇒ routing(cur �→ dest) = Eout

∀cur, dest·cur ∈ POSITION ∧ dest ∈ POSITION∧
coordX(dest) < coordX(cur)⇒ routing(cur �→ dest) = Wout

∀cur, dest·cur ∈ POSITION ∧ dest ∈ POSITION∧
coordX(dest) = coordX(cur) ∧ coordY (dest) > coordY (cur)
⇒routing(cur �→ dest) = Nout

∀cur, dest·cur ∈ POSITION ∧ dest ∈ POSITION∧
coordX(dest) = coordX(cur) ∧ coordY (dest) < coordY (cur)
⇒routing(cur �→ dest) = Sout

∀cur, dest·cur ∈ POSITION ∧ dest ∈ POSITION∧
coordX(dest) = coordX(cur) ∧ coordY (dest) = coordY (cur)
∧coordZ(dest) > coordZ(cur)⇒ routing(cur �→ dest) = Uout

∀cur, dest·cur ∈ POSITION ∧ dest ∈ POSITION∧
coordX(dest) = coordX(cur) ∧ coordY (dest) = coordY (cur)∧
coordZ(dest) < coordZ(cur)⇒ routing(cur �→ dest) = Dout

∀cur, dest·cur ∈ POSITION ∧ dest ∈ POSITION∧
coordX(dest) = coordX(cur) ∧ coordY (dest) = coordY (cur)∧
coordZ(dest) = coordZ(cur)⇒ routing(cur �→ dest) = Lout

Fig. 17. The Unicast XYZ Routing Function

new des∈POSITION×POSITION×P(POSITION)→P(POSITION)
∀source, cur, dest·source ∈ POSITION ∧ cur ∈ POSITION∧
dest ⊆ POSITION ∧ coordX(source) < coordX(cur)⇒
(∀d·d ∈ dest ∧ coordX(d) ≥ coordX(cur)⇒
d ∈ new des(source �→ cur �→ dest))

Fig. 18. The D+x,±y,±z Subset of Destinations

In order to show a case study in multicast communication
designs, we extend the XYZ routing algorithm to a tree-based
multicast algorithm in which the message is delivered to each
destination in XYZ fashion. The multicast routing algorithm
presented here is based on the concept of network partitioning.
A multicast operation is implemented as several submulticasts,
each destined for a subset of the destinations and each routed
in a different subnetwork. In fact, the submulticasting recur-
sively employs the concept of network partitioning so that, in
each step of replicating and routing, the subnetwork and the
subset of the destinations are partitioned again.

For a given set of destinations D, this is divided into at most
six subsets in each node, D+x,±y,±z , D−x,±y,±z , Dx,−y,±z ,
Dx,+y,±z , Dx,y,+z , Dx,y,−z , according to the current position,
the destinations and the source positions. The set D+x,±y,±z

contains the destination nodes to the east of the current
position when the current position is in the east of the source
node; Dx,−y,±z contains the destination nodes to the south of
the current position when the current position is in the same
X coordinate as the source and in the south of source node;
and so on. Formally, the subsets are described by defining a
new des function in Event-B as a constant in the static part of
our multicast XYZ routing algorithm model, as partially shown
in Fig. 18. For a triple (source, current position, destinations),
the output of the function is mapped to at most one of these
subsets of destinations.

Based on the subsets of destinations (D), each node takes
decisions about the number and direction of replicas of
a message by constructing subnetworks. The new subsets
of destinations partitions the network N to subnetworks
of Nx,y,+z , Nx,y,−z , N+x,±y,±z , N−x,±y,±z , Nx,−y,±z ,

640640

replicate ∈ POSITION × P(POSITION)→
P({Nout, Sout, Eout, Wout, Uout, Dout})
∀cur, dest·cur ∈ POSITION ∧ dest ⊆ POSITION ∧ (∃d·d ∈ dest∧
coordX(d) > coordX(cur))⇒ Eout ∈ replicate(cur �→ dest)

Fig. 19. The east Replication Function

Nx,+y,±z . For instance, the subnetwork Nx,y,+z contains the
node (i, j, k) which i = currentx, j = currenty, k >
currentz and the subset Dx,+y,±z can be implemented in
Nx,+y,±z, Nx,y,−z, Nx,y,+z; and so on. Thus in each branch
node, the message is replicated to at most six subnetworks.

As shown in Fig. 19, the replicate function implemented
in each node gives the directions to replicate a message, for
a pair of current position and the subset of destinations. The
replicate function checks the existence of a destination in
subnetworks to select the directions on which the message
should be routed. If the destination is in a subnetwork, the
direction towards that subnetwork added to the list of replica-
tion. For instance, for the subset of destinations Dx,y,±z that
can be implemented in subnetwork Nx,y,−z and/or Nx,y,+z ,
the result of the replicate function can be North and/or South,
respectively.

As an illustration, we explain the subnetworking and repli-
cation functions by the example of Fig. 1. If we consider the
node 4 as the current position, we construct the corresponding
subsets of destinations based on the new des function. The
set of destinations is divided to D+x,±y,±z = {5, 8, 14, 26},
D−x,±y,±z = {9, 15}, Dx,+y,+z = {24}. These 3 subsets
express the number of replication in the node 5. In order
to find the direction of replication, we partition the network
based on these subsets of destinations as follows N+x,±y,±z ,
N−x,±y,±z and Nx,+y,±z . These subnetworks produce the
direction of replications which are east, west and north in our
example.

Based on the result of the replicate function for each pair
of (current position, subdestinations), the replicating event
in the third model as shown in Fig. 20 is refined. Therefore,
the nondeterministic assignment for the number of replication
becomes equal to the cardinality of the replicate function for
the pair. Moreover, we refine the routing event as given in
Fig. 21 to a deterministic routing by selecting the output ports
in the node based on the output of replicate function.

V. VERIFICATION OF THE MODELS

Event-B employs a top-down refinement-based approach
to system development. Development starts from an abstract
system specification that models the most essential functional
requirements. While capturing more detailed requirements,
each refinement step typically introduces new events and
variables into the abstract specification. These new events
correspond to stuttering steps that are not visible at the abstract
level.

The semantics of Event-B actions is defined using the so
called before-after (BA) predicates [2], [5]. A before-after

Event replicating refines replicating
any current msg pos
where

current msg �→ pos ∈ moving pool
replicate flag(current msg �→ pos) = FALSE
received node−1[{current msg}] ∪ {pos} ⊂ des(current msg)

Witnesses
num : num = card(replicate[{pos �→ new des(src(current msg)
�→ pos �→ des(current msg))}])

then
replicate flag(current msg �→ pos) := TRUE
replicate msg num(current msg �→ pos) := card(replicate[{pos
�→ new des(src(current msg) �→ pos �→ des(current msg))}])

end

Fig. 20. M3 : MultiCast: Replicating Event

Event routing refines routing
where

out p=replicate(router �→new des(src(msg) �→router �→des(msg)))
then

buffer content := buffer content∪ ({msg}×({router}×out p))
end

Fig. 21. M3 : MultiCast: Routing Event

predicate describes a relationship between the system states
before and after execution of an event. The semantics of a
whole Event-B model is formulated as a number of proof
obligations, expressed in the form of logical sequents. Below
we present only most important proof obligations that should
be verified (proved) for the initial and refined models. The full
list of proof obligations can be found in [2].

The formal semantics provides us with a foundation for
establishing the correctness of the Event-B specifications. In
particular, to verify the correctness of a specification, we
need to prove that its initialisation and all events preserve the
invariant.

To verify the correctness of a refinement step, we need to
prove a number of proof obligations for the refined model. For
brevity, here we mention a few essential ones.

The initial Event-B model should satisfy the event feasibility
and invariant preservation properties. For each event of the
model, evti, its feasibility means that, whenever the event
is enabled, its before-after predicate (BA) is well-defined,
i.e., there exists some reachable after-state. Each event evti
of the initial Event-B model should also preserve the given
model invariant. The event guards in the refined model can be
only strengthened in a refinement step. The simulation proof
obligation requires to show that the ”execution” of the refined
event is not contradictory with its abstract version.

The Event-B refinement process allows us to gradually
introduce implementation details, while preserving functional
correctness during stepwise model transformation. The model
verification effort, in particular, automatic generation and prov-
ing of the required proof obligations, is significantly facilitated
by the provided tool support – the Event-B platform.

The proof statistics for our models are shown in Table
1. These figures express the number of proof obligations
generated by the Rodin platform as well as the number of
obligations automatically discharged by the platform and those
interactively proved. A high number of interactive proofs

641641

were due to reasoning about set comprehension and unions,
not currently supported automatically in Rodin. In addition,
the interactive proving often involved manually suggesting
values to discharging various properties containing logical
disjunctions or existential quantifiers. Extra proving was due
to the fact that currently, we cannot create proof scripts and
reuse them whenever needed in RODIN. Thus, in some cases
we had to manually repeat very similar or almost identical
proofs.

TABLE I
PROOF STATISTICS

Model Number of Proof Automatically Interactively
Obligations Discharged Discharged

Context 21 6(28%) 15(72%)
Multicast XYZ Context 14 7(50%) 7(50%)
M0 Model 121 77(64%) 44(36%)
M1 Model 36 14(39%) 22(61%)
M2 Model 34 8(24%) 26(76%)
Unicast XYZ Model 2 2(100%) 0(0%)
Multicast XYZ Model 5 2(40%) 3(60%)

Total 233 116(50%) 117(50%)

We note here two proof-related aspects. First, the interactive
proofs are in a significant proportion rather easy to discharge.
Second, the RODIN platform is continuously developing and
thus, the number of interactive proofs is very likely to diminish
in the near future. This will obviously increase the proof
discharging process.

VI. CONCLUSION

In this paper we have proposed a general model for the
multicast communication in 3D NoCs. Our model is a gener-
alization of a recently proposed model for unicast communi-
cation [12]; we show that the communication model in [12] is
a special case or our more general model here. We apply the
multicast communication model to develop two variants of the
XYZ routing algorithm, one based on the unicast routing and
the other on the tree-based routing. Both algorithms are thus
provably correct.

Our general model for multicast communication can be
further employed for analysis. For instance, we plan to com-
pare different communication schemes in terms of efficiency
and developing effort. Thus, we have a general platform for
specifying, developing, and analyzing communication, based
on provably correct modeling.

A side effect of modeling multicast communication is that
we can employ it for modelling broadcast communication as
well, by setting the destination set of a message to include
all the network nodes in the ROUTER set. It remains to be
seen if other broadcast methods, for instance flooding, can be
generated directly from our general model or not.

REFERENCES
[1] J. R. Abrial, A system development process with Event-B and the Rodin

platform, ICFEM2007. LNCS, vol. 4789, pp. 1-3. Springer, 2007.
[2] J. R. Abrial, Modeling in Event-B: System and Software Design, Cam-

bridge University Press, 2010.
[3] L.Tsiopoulos, M. Walden, Formal Development of NoC Systems in B,

In Nordic Journal of Computing, pp. 127-145, 2006.

[4] J. R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge
University Press, 1996.

[5] Rigorous Open Development Environment for Complex Systems
(RODIN). Deliverable D7, Event-B Language, online at
http://rodin.cs.ncl.ac.uk/.

[6] RODIN Tool Platform, http://www.event-b.org/platform.html.
[7] J. R. Abrial, D. Cansell, D. Mery, Refinement and Reachability in Even-

B. In 4th International Conference of B and Z Users, pp. 129-148, 2005.

[8] J. R. Abrial, S. Hallerstede, Refinement, Decomposition and Instantiation
of Discrete Models: Application to Event-B, In Fundamenta Informaticae,
pp. 1-28, 2007.

[9] R. J. Back and K. Sere. Stepwise Refinement of Action Systems. In J.
L. A. van de Snepscheut (ed), Proceedings of MPC’89 – Mathematics of
Program Construction, pp. 115-138, 1989.

[10] S. Katz, A Superimposition Control Construct for Distributed Systems.
In ACM Transactions on Programming Languages and Systems, pp. 337-
356, 1993.

[11] R. J. Back and K. Sere. Superposition Refinement of Reactive Systems.
In Formal Aspects of Computing, Vol. 8, No. 3, pp. 324-346, Springer-
Verlag, 1996.

[12] M. Kamali, L. Petre, K. Sere and M. Daneshtalab, Refinement-Based
Modeling of 3D NoCs, In 4th IPM International Conferenece on Funda-
mentals of Software Engineering (FSEN11), to apear 2011.

[13] B. S. Feero and P. Pande, Networks-on-Chip in a Three-Dimensional
Environment: A Performance Evaluation. In IEEE Transactions on Com-
puters, pp. 32-45, 2009.

[14] I. Loi and L. Benini, An Efficient Distributed Memory Interface for
Many-Core Platform with 3D Stacked DRAM. In Proc. of the DATE
Conference, Germany, pp. 99-104, 2010.

[15] D. Park et al., Mira, A Multi-Layered On-Chip Interconnect Router
Architecture, In ISCA 2008, pp. 251-261, 2008.

[16] A. Nayebi , S. Meraji , A. Shamaei , H. Sarbazi-azad, XMulator: A
listener-Based Integrated Simulation Platform for Interconnection Net-
works, In Asia International Conference on Modeling and Simulation,
pp. 128-132, 2007.

[17] M. Palesi, R. Holsmark, S. Kumar, V. Catania, Application Specific
Routing Algorithms for Networks on Chip, In IEEE transactions on
Parallel and Distributed Systems, pp. 316-330, 2009.

[18] R. Kaivola, R. Ghughal, N. Narasimhan, A. Telfer, J. Whittemore, et
al, Replacing Testing with Formal Verification in Intel control sequence
CoreTM i7 Processor Execution Engine Validation, In Computer Aided
Verification, pp.414-429, 2009.

[19] J. Harrison, Formal Verification at Intel, In Symposium on Logic in
Computer Science, 2003.

[20] R. Gupta, P. L. Guernic, S. K. Skuhla. Formal methods and models for
system design: a system level perspective. Kluwer Academic Publishers,
2004.

[21] W. Liao , P. Hsiung, Creating a Formal Verification Platform for
IBM CoreConnect-based SoC, In the 1st International Workshop on
Automasted Technology for Verificatin and Analysis (ATVA2003), pp. 7-
18, 2003.

[22] E. A. Carara, F. G. Moraes, Deadlock-Free Multicast Routing Algorithm
for Wormhole-Switched Mesh Networks-on-Chip, in Prof. of ISVLSI,
pp.341-346, 2008

[23] M. Daneshtalab, M. Ebrahimi, S. Mohammadi, A. Afzali-Kusha, Low
distance path-based multicast algorithm in NOCs, in IET Computers and
Digital Techniques, Special issue on NoC, Vol. 3, Issue 5, pp. 430-442,
Sep 2009.

[24] P. Mohapatra, V. Varavithya, A hardware multicast routing algorithm for
two-dimensional meshes, in proc. Int. Conf. SPDP, New Orleans, 1996,
pp. 198205.

[25] R. V. Boppana, S. C, C.S R, Resource deadlock and performance of
wormhole multicast routing algorithms, IEEE Transactions on Parallel
and Distributed Systems, pp. 535-549, 1998.

[26] P. Abad, V. Puente and J. . Gregorio, MRR: Enabling Fully Adaptive
Multicast Routing for CMP Interconnection Networks, High Performance
Computer Architecture (HPCA), 2009.

642642

Paper VII

CorreComm: A Formal Hierarchical Framework

for Communication Designs

Maryam Kamali, Luigia Petre, Kaisa Sere

and Masoud Daneshtalab

Originally published in: Proceedings of the 2nd IEEE International Con-
ference on Networked Embedded Systems for Enterprise Applications - NE-
SEA2011, pp. 1-7. IEEE Computer Society, December, 2011.

169

CorreComm: A Formal Hierarchical Framework for
Communication Designs

Maryam Kamali∗†, Luigia Petre∗, Kaisa Sere∗ and Masoud Daneshtalab‡
∗Åbo Akademi University, Finland

Email: {maryam.kamali,luigia.petre,kaisa.sere}@abo.fi
†Turku Centre for Computer Science (TUCS), Finland

‡University of Turku, Finland
Email: masdan@utu.fi

Abstract—The number of communicating components has
tremendously increased, both at the chip-level communication
as well as in general networks. This leads to an increased
complexity in the design of communication infrastructures. In
order to rely on such complex communication designs, we need
a correspondingly increased verification effort. In this paper we
propose a structured framework named CorreComm to alleviate
the modeling and verifying of communication designs. We de-
scribe the correct-by-construction structure of our framework
and demonstrate its applicability as a communication design
pattern, by instantiating it to two specific communication models.

Index Terms—Communication designs; Communication pat-
terns; Formal methods; Event-B; Refinement

I. INTRODUCTION

Networks and communication are present nowadays in the
everyday life, in an extremely pervasive manner. The financial
systems, including banking and stock exchanges, the traveling
systems, including booking flights and hotels, the electric
grids administration, the nuclear plants processes, etc - are all
examples of essential components of the society being grad-
ually adapted to functioning online, via the internet or other
networking configurations. At the chip level, the Network-on-
Chip (NoC) communication paradigm [1], based on a modular
packet-switching mechanism, can address many of the on-chip
communication design issues such as performance limitations
of long interconnects and the integration of high numbers of
Intellectual Property (IP) cores on a chip. Multicore chips are
embedded in a multitude of systems and appliances, effectively
transforming the way we use our phones and TVs, the way
we pay for our shopping, the way we travel, and the way
our health is supported, to only name a few applications.
The communication designs for this variety of systems has
gradually become more and more complex and more and more
essential for us.

Given the widespread and relevance of communication, it
is imperiously necessary to be able to rely on the communi-
cation designs, i.e., to be certain of their various properties.
Formal methods, with their mathematic proving core, are an
important instrument in ensuring the integrity of software-
intensive systems. Traditionally characterized as hard to use,
due to the requested mathematical background and the lack of
automatic tools, nowadays formal methods have matured, to

the point where they are considered in industry when develop-
ing software-intensive systems [2]. Examples of the industrial
undertaking of formal methods are increasing. The famous
line 14 of the driverless Parisian metro [3], developed in 1998
using the B-method [4], is the first notable example of a formal
method-based development, reviewed in [5]. The method used
by Siemens for developing the software controlling the line
14 train ensured its correctness in a mathematical manner
that effectively eliminated the unit testing from the software
lifecycle. No human resources are now needed to operate the
trains and in addition, the trains are faster, hence fewer are
needed in total.

More recent examples of the Event-B [6] formal method us-
age in industry can be seen for instance with Space Systems [7]
and SAP [8]. In Event-B, the development of a model is
carried out step by step from an abstract specification to more
concrete implementations. Using the refinement approach, a
system can be described at different levels of abstraction,
and the consistency in and between levels can be proved
mathematically.

In this paper we propose a hierarchical framework named
CorreComm for modeling communication designs as well as
for verifying their correct construction. Modeling and verify-
ing full communication designs is very complex and time-
consuming. In our methodology we propose to model and
verify different components of the communication designs in a
stepwise and hierarchical manner. We ensure the correctness
of these components by developing them via refinement in
Event-B. Moreover, these components can be further refined in
order to model various specific communication design choices.
Hence, the contribution of our paper can be summarized as
follows:

• we propose CorreComm, a framework for facilitating the
design exploration of possible communication infrastruc-
tures

• we introduce a methodology for alleviating the verifica-
tion effort for communication designs

• we demonstrate the applicability of the methodology
by deriving two specific communication models, namely
the first-in, first-out (FIFO) buffer and the wormhole
switching technique

978-1-4673-0498-6/11/$26.00 ©2011 IEEE

We proceed as follows. In Section II we describe Event-B
to the extent needed in this paper. In Section III we describe
the main components of CorreComm and in Section IV we
detail the stepwise construction of CorreComm in Event-B.
In Section V we discuss the applicability of CorreComm as
a communication design pattern and in Section VI we bring
forward the verification techniques employed in this paper.
Related work is briefly surveyed in Section VII. We conclude
the paper in Section VIII.

II. THE EVENT-B MODELING METHOD

Event-B [6] is a formal method for modeling and reasoning
about distributed systems. The semantics of Event-B is based
on transition systems and before-after predicates. Modeling in
Event-B is based on set theory and first order logic, while
the key feature of Event-B consists in promoting the correct-
by-construction approach based on the refinement concept [9],
[10], [11]. This means that a system can be modeled in various
degrees of detail at different abstraction levels; the model
consistency of each level can be verified, together with the
consistency of the models in between levels. The refinement
approach promotes the development of a model gradually, by
making it more precise and detailed in each step. This leads to
the control of complexity as system development is based on
a model chain, with each model a refinement of the previous
models in the chain.

Event-B models are composed of contexts and machines.
A context describes the static part of a model, made of
carrier sets and constants, together with axioms describing
the properties of these. A machine describes the dynamic
part of a model. Machines can contain variables, invariants
and events. The values of the variables v define the state
of a machine. Variables are constrained by invariants I(v)
which should be preserved by any changes in the value of
the variables. The state changes are specified by a number of
events. Each event is formed of a guard and an action. The
guard G(t, v), where t are the local parameters of the event, is
the necessary condition under which the event may occur. The
action S(v, t) models how the state variables change when the
event executes. An event may be executed only when its guard
holds. The semantics of Event-B actions is defined using the
so called before-after (BA) predicates [6], [12]. A before-after
predicate describes the relationship between the system states,
before and after the execution of an event.

A refined model RM usually has more variables than its
abstraction AM . The state of AM is related to the state of the
RM by a gluing invariant J(v, w), where v are the variables
of AM and w are the variables of AM . There are several
types of refinement, out of which we employ in this paper
superposition refinement and data refinement. Superposition
refinement [13], [14] corresponds to adding new data and new
events on top of the already existing data and events, but in
such a way that the introduced behavior does not contradict or
take over the abstract machine behavior. Data refinement [15]
refers to replacing some (more abstract) variables with some
other (more concrete) variables in a manner controlled by the

gluing invariant. Correspondingly, the events dealing with the
old variables are replaced by several corresponding events in
the refined machine.

In this paper we describe all the Event-B modeling in the
form of simplified explanations and diagrams, due to lack of
space. However, the discussed models are fully developed and
proved in Event-B and will appear as online material in due
time.

III. THE STRUCTURE OF CORRECOMM

In this section we introduce the structure of the CorreComm
framework and outline the purpose of each component of the
framework.

With CorreComm we propose that a communication de-
sign consists of three main components: Communication
Architecture, Communication Primitives, and
Communication Properties, as illustrated in Fig. 1.

The Communication Architecture component de-
scribes the communicating elements, their relationship to each
other, and various other constructs needed for communi-
cation. It consists of two sub-components as illustrated in
Fig. 1: a Structural Elements sub-component and a
Relationships sub-component. Further on, there are three
main types of structural elements involved in communication
designs, namely Node, Channel and Buffer. A node
denotes any type of communicating unit. A channel connects
nodes together. A buffer stores data temporarily in the start and
end points of the channels. The behavior of each individual el-
ement can be varied from a communication design to another.
In other words, the basic functionality of each element can be
extended or refined to a specific design scheme. However, this
foundation is common to all the communication architectures.
The relationships between the elements in the network shows
the topology of the architecture.

The communication architecture shows how different el-
ements are connected to each other in order to transfer
messages. The message transfer methods are described in the
Communication Primitives component of our frame-
work. There are four main communication primitives, namely
Injecting, Switching, Routing and Receiving, as
illustrated in Fig. 1. Injecting refers to introducing a new
message in the network. Routing refers to deciding the route
that a message should follow. Switching determines when the
routing decisions are made, the setting/resetting of the switches
inside the nodes, and how the messages are transferred inside
the nodes. Receiving is the function that deletes the messages
having reached their destination from the network.

The Communication Properties component is in-
tended for the modeling and verification of the communication
design properties, based on the given architecture and primi-
tives. The main purpose of formal modeling a communication
design is to verify the correctness of communication. A typical
property for the functional correctness of communication is
that all the injected messages are received by all their des-
tinations. However, other properties can be modeled as well,
for instance non-functional properties such as the performance

978-1-4673-0498-6/11/$26.00 ©2011 IEEE

Fig. 1. Communication Scheme

or energy consumption of a given communication design.
In this paper we only refer to the functional correctness of
communication.

IV. THE STEPWISE CONSTRUCTION OF CORRECOMM IN
EVENT-B

In this section, we describe the modeling of the proposed
structure of communication designs in Event-B and discuss
its correctness. The communication architecture describes the
static part of a communication network, so all its elements are
specified in the context part of the model as sets, constants,
and axioms. The communication primitives define the dynamic
behavior of the communication network, therefore are modeled
in the machine part of the Event-B model as variables and
events. The communication properties are modeled as a list
of invariants in the machine part of the model and verified
by a list of proof obligations. In the following we outline this
development.

We model the communication design elements in a stepwise
manner, employing the abstraction and refinement concepts put
forward in Section II. For every abstraction level we have a
corresponding context, machine, list of invariants, and list of
proof obligations to discharge. The initial model consists of
the least number of structural elements so that the correctness
property is formulated. In the subsequent levels, we gradually
add the other structural elements in such a way that they do
not contradict with the previous models. As we hierarchically
refine the architecture, the communication primitives compo-
nent is also hierarchically refined. In each abstraction level
we verify the communication properties, expressed in terms
of the (hierarchically-)corresponding architectural elements
and primitives. The stepwise development continues until all
the elements of the communication design are modeled. The
resulted model can then be employed to specify more precise
structural elements as well as specific communication designs.

In Level 1 of abstraction, we consider just a small number
of structural and primitive elements, essentially as few as
possible for expressing relevant invariants. This means that
some elements are abstracted away from this initial model.
More precisely, in Level 1 we model the structural element
Node by defining a set Node that models the elements of
the communication network. Technically, the set of nodes is
a parameter of our model. The relationships between these

nodes, defining the network topology, are modeled with a
constant named Neigh. This constant effectively records the
pairs of related nodes. In order to model the functional
correctness of the communication, we need to specify that all
the injected messages are received by all their destinations.
For this, we model another set, Msg, as a parameter of our
modeling. A message in the network has a source node and a
set of destination nodes, hence any element of Msg is a triple
(msgID, src, {des}).

We model the corresponding communication primitives in
Level 1 with variables and events. Thus, in the initial model
we have four abstract variables: snt pl,mv pl, rcv nd and
rcv pl. These variables are enough for modeling (and veri-
fying) the functional correctness of the communication. The
snt pl variable denotes the list of messages which are injected
by a source node to the network. The mv pl variable denotes
the current position of messages still traveling in the network.
The rcv nd variable models the instances of messages having
reached destinations. When a message is received to one of
its destinations, a corresponding map is added to the rcv nd
relation. The rcv pl denotes the list of messages which are
removed from the network by all their destinations, i.e., a
message-to-destination map for all of the destinations of that
message should be in rcv nd.

The four communication primitives are abstractly modeled
in Level 1 by three events: inject msg, travel msg, and
receive msg. The inject msg event handles the injecting
primitive by adding a new message to the snt pl set and the
mv pl set. The reason for adding the message to mv pl is
to launch the message transferring process. The travel msg
event handles both switching and routing primitives in Level
1, by modeling the transferring of a message from a node to
another. We thus postpone the modeling of specific routing
and switching primitives for the subsequent refinement steps.
The receive msg event handles the receiving primitive of the
communication model in two different situations. Either the
message is received by all its destinations or, there are still
some destinations that did not receive the message. In the
former case, the message is added to the rcv pl and removed
from the mv pl. In the latter, the corresponding message-to-
destination map is added to rcv nd and the message is not
added to rcv pl because there are still destinations waiting for
the message.

We model the functional correctness of the communication,
i.e., that all the injected messages are received by all their
destinations, with the following invariant:

mv pl = ø ⇔ snt pl = rcv pl

This predicate models the equivalence between no traveling
message (i.e., all the traveling messages have reached their
destinations) and the receiving pool of messages containing
all the injected messages.

The initial model forms the first hierarchical level, Level
1, of our development. Level 1 is a foundation model for the
subsequent refinement steps, where we refine the context part

978-1-4673-0498-6/11/$26.00 ©2011 IEEE

Fig. 2. Communication Scheme in Event-B

of the model to extend the communication architecture and
refine the machine part of the model to refine the communi-
cation primitives. The mapping between the communication
design to Event-B is summarized in Fig. 2.

In Level 2, we extend the initial context to model the
Channel structural element. We specify the set Channel
that (physically) connects neighbor nodes to each other. In
other words, for any pair in the Neigh relation, we model
a channel that connects the pair by modeling two rela-
tions: start ch nd : Node ↔ Channel and end ch nd :
Channel ↔ Node. The composition of these two relations is
equal to Neigh relation. Now, we refine the communication
primitive component to specify the transferring of messages
through the channels. In this level of hierarchy, we use the data
refinement technique. In the initial model, the mv pl relation
denotes the current position of messages in the network. In
order to represent the existence of messages in both nodes and
channels, in the second model we replace the mv pl variable
with two variables: mv nd and mv ch. The mv nd variable
denotes the current position of those messages that are in nodes
and the mv ch variable denotes the current position of those
messages that are in channels. In fact, the union of messages
in these two relations is equal to those messages in mv pl.

mv pl = mv nd ∪ (mv ch; start ch nd)

As a consequence of this substitution, the events that
represent the communication primitive component are up-
dated, so that all the connections to mv pl are substituted

either by mv nd or by mv ch. In addition, we refine the
travel msg event by splitting it into two events: travel to ch
and travel to nd. The travel to ch event models the trans-
ferring of a message from a node to a channel and the
travel to nd models the transferring of a message from a
channel to a node at the end of the channel. This data refine-
ment comes with a list of proof obligations that express the
correctness of the replacement. These obligations guarantee
that the second model preserves the communication properties
component.

In the third model (Level 3) we add the Buffer structural
element by modeling a parameter set Buf and a constant
Buf size. We refine accordingly the dynamic part of the
model. Intuitively, at the start and at the end points of any
channel, we now model a buffer of size Buf size that stores
the messages. Each node consists of a number of input and
output buffers depending on its input and output channels.
Any message in a node settles in either an input buffer of the
node or an output buffer of the node. Therefore, the mv nd
variable is replaced by the buf in and buf out variables, via
data refinement. The buf in variable denotes the content of
the input buffers of nodes and the buf out variable denotes
the content of the output buffers for nodes.

At this level of abstraction, we refine the travel to nd
event in the second model to the travel ch ibuf event. The
travel ch ibuf event models the receipt of a message from a
channel, provided that the buffer at the end of the channel has
space to add a new message. This event releases the channel
and adds the message to the input buffer of the node corre-
sponding to the end of the channel. The travel to ch event
that models transferring of a message from a node to some
neighbors is refined to the travel obuf ch event. When there
is a message in an output buffer and the channel corresponding
to the buffer is free, the travel obuf ch removes the message
from the output buffer and adds it to the channel. The newly
introduced travel ibuf obuf event models the transfer of
a message from an input buffer of a node to a number of
output buffers of the node in a nondeterministic manner. This
nondeterminism can be refined to specific routing techniques
in subsequent refinements.

In this refinement step we establish the connection between
abstract variables and the more concrete variables by the
following gluing invariant:

∀msg, n.msg �→ n ∈ mv nd ⇔
(∃ch.(ch ∈ start ch nd˜([{ch}]) ∧msg ∈ buf in(ch))
∨(ch ∈ end ch nd˜([{ch}]) ∧msg ∈ buf out(ch)))

This invariant guarantees that all the mappings in the
mv nd relation in the abstract model are in either buf in
or buf out. When we prove that the invariant preserve by all
the events in the machine, we guarantee the communication
correctness.

The third level of hierarchy presents the foundation frame-
work of the communication design. The way which is devel-
oped shows how we can use the framework and the refinement
method to model and verify a specific communication designs.

978-1-4673-0498-6/11/$26.00 ©2011 IEEE

Fig. 3. FIFO Buffer Model

As it is shown, in each hierarchical level we gradually add
more detail to the abstract one until to acheive a complete
model of the system. This method let us understand the
problem entirely and also focus to a part of the system at
each level.

As a case study, we refine the buffer structural element to
a FIFO-buffer and we refine the communication function to
model the wormhole switching technique.

V. INSTANTIATING CORRECOMM

To demonstrate that CorreComm can be used as a communi-
cation design pattern, we have employed it for modeling a first-
in, first-out (FIFO) buffer as well as the wormhole switching
technique. In the following we summarize our modeling.

A. The FIFO buffer

A FIFO buffer is simply a buffer with specific rules for
element addition and removal. In order to model a FIFO buffer
we extend the static part of CorreComm, where the communi-
cation structural elements are defined. We introduce a queue
data structure with two functions, enqueue and dequeue, in
the context part of the model. This data structure models a
FIFO buffer. In the machine part of the model we substitute
the buf in and buf out variables with two new concrete
variables buf fifo in and buf fifo out. Correspondingly,
we refine all the events for replacing the previous buffer
specification with the new one as illustrated in Fig. 3. We
also prove that the new buffer structure is a refinement of the
basic buffer specification given in the Level 3 of CorreComm.

We observe that any buffer structure can be modeled in
this refinement step, by suitably defining the enqueue and
dequeue functions. It is sufficient to model different buffer
structures in different contexts and use any of them in the
machine part of the model. Thus, our modeling methodology
provides a framework for producing a list of libraries for
specifying communication architectures.

B. The wormhole switching technique

In Levels 1-3, we do not take the order of the traveling mes-
sages into consideration, but only prove that all the messages
are received to their destinations. This means that messages
belonging to a packet can be received to their destinations
in any order. In the wormhole switching technique, messages

Fig. 4. Wormhole Model

belong to a packet travel and are received to their destinations
in a certain order. Every packet is divided into parts called flits.
Flits are categorized into three types: head, body and tail. A
head flit models the head of a worm traveling in the network.
The body flits follow the header flit and the tail flit follows
the body flits, denoting the end of the worm.

To model the wormhole switching, we refine the previous
context model to assign flit types to messages of a packet as
illustrated in Fig. 4. For this we model a total function from
Msg to a set of flit types {Head, Body, Tail} (Flit : Msg →
{Head, Body, Tail}). In addition, the relation between mes-
sages and their packets is modeled as a total surjective relation
from Msg to their packets (packet : Pck ↔↔ Msg). This
relation models that each message can be part of only one
packet and a packet is formed by a unique subset of messages.
We assume that each packet consists of a head, a tail and at
least one body flit.

Based on the static part of the model, we extend the dynamic
part to describe the traveling and receiving of packets and
messages by considering the wormhole switching technique.
We define three new variables: snt pct pl, rcv pct pl and
rcv pct nd. The snt pct pl variable denotes the list of
packets injected by a source node to the network. When all
flits of a packet are added to the network, the packet is also
added to the snt pct pl. When a tail flit of a packet is added
to the network it means that all the flits of the packet have
been already added to the network. We model this property as
an invariant. The rcv pct nd variable models the instances of
packets having reached destinations as a set of maps. When
a tail flit of a packet is received to a destination, it means
that all the flits of the packet have been already received.
The rcv pct pl variable denotes the list of packets which
are removed from the network by all their destinations. These
properties are modeled as the following invariants.

∀p, m.m ∈ snt pl ∧m ∈ packet[{p}] ∧ Flit(m) = Tail
⇔ p ∈ snt pct pl

∀p, m.m ∈ rcv pl ∧m ∈ packet[{p}] ∧ Flit(m) = Tail
⇔ p ∈ rcv pct pl

In addition, we refine the events to modify the values of the

978-1-4673-0498-6/11/$26.00 ©2011 IEEE

Fig. 5. Formal Development in Event-B

new variables. Thus, we refine the inject msg event to add a
packet to snt pct pl if the current injected message is a tail.
We also add new constraints in the guard of the event to model
the order of the injected messages to the network. The guards
and actions of other events are similarly extended to model the
traveling and receiving of packets based on the flow control
defined by the wormhole switching technique. More precisely,
the head of a packet is always traveling in the network with
the following subsequent flits and there are no flits from other
packets between them. These properties are given as a list
of invariants in the model to guarantee the correctness of the
model.

VI. ON THE VERIFICATION OF CORRECOMM

The main purpose of formal modeling consists in reasoning
about and finding out the design problems. In the Event-B
framework reasoning is supported by formal proof. With each
formal model we generate a number of proof obligations that
establish the properties of our model. The proof obligations,
described in the form of logical sequents, express the seman-
tics of a whole Event-B model.

In this paper, we rely on the Rodin Platform [16], [12]
tool where proof obligations are generated automatically and
proven either automatically or interactively. The Rodin plat-
form [12], which is based on Eclipse, facilitates modeling in
the Event-B language. In addition to providing a user interface
for editing Event-B models, it generates proof obligations
regarding the model on the fly, updating these every time the
model is saved, discharges some of these proof obligations
automatically and allows the user to interactively discharge
the rest.

By discharging the proof obligations we guarantee the
correctness of our model. However, when we fail to discharge
some proof obligations, we modify the model and again try
to discharge the proof obligations of the modified model.
The modification process continues until all proof obligations
are discharged. In the Event-B formalism, discharging proof
obligations thus provides a means to deeply understand and
reason about our designs. Constructing a correct model of a
system in Event-B is a cycle of modeling and proving proof
obligations in different level of abstractions as shown in Fig. 5.

To exemplify the cycle of modeling and proving, we con-
sider one of the behavioral properties of Event-B models,
namely invariant preservation. This means that we need to

verify if invariants hold whenever variables change their
values via execution of events. While modeling CorreComm,
we observed that invariant preservation properties for the
receive msg in the initial model (Level 1) were not automati-
cally discharged. By interactive discharging we found a failure
in the guard of the event. In the receive msg event, when a
message is received to all its destinations, it is removed from
the mv pl variable and added to the rcv pl variable; however,
when it is not received to all its destinations, no update is done
for the mv pl and rcv pl variables. In the faulty event, we had
considered both possible actions while only one of the above
conditions had been included in the guard. Upon modifying
the guard of event, we finally could discharge the invariant
preservation property for the receive msg event.

The summary of discharged proof obligations in the final
version of CorreComm is displayed in Table 1.

TABLE I
PROOF STATISTICS

Model Number of Proof Automatically Interactively
Obligations Discharged Discharged

Level1 Context 2 2(100%) 0(0%)
Level2 Context 1 1(100%) 0(0%)
Level3 Context 0 0(0%) 0(0%)
FIFO Context 15 15(100%) 0(0%)
Wormhole Context 2 2(100%) 0(0%)
Level1 Machine 39 32(82%) 7(18%)
Level2 Machine 67 47(70%) 20(30%)
Level3 Machine 120 80(67%) 40(33%)
FIFO Machine 52 42(81%) 10(19%)
Wormhole Machine 138 95(69%) 43(31%)

Total 436 316(72%) 120(28%)

VII. RELATED WORK

Formal methods have been used before for modeling and
verifying communication designs at different levels of ab-
straction and in different application domains. For instance,
in [17], [18] specific communication protocols at the network
layer are modeled and verified independently of the underlying
infrastructure. In [19], the authors specify and verify the
communication correctness of the network infrastructure in a
system-level model.

In [20], a framework for designing the communication
network is proposed. Authors present a model for communi-
cation synthesis. The model consists of quantities to measure
the performance of a communication component, composition
rules to handle how to build composite components, and
communication structures to capture the behavior of composite
components. In addition, in [21], a modeling framework for
communication architectures is proposed. The authors present
an application-driven platform for object-oriented modeling
of the communication architectures. They introduce a specific
hierarchical class library that is used to develop new commu-
nication architectures. However, neither [20] nor [21] propose
any verification methods for their communication designs.

Summarizing, there are a number of informal platforms
for the modeling and evaluation of communication designs.

978-1-4673-0498-6/11/$26.00 ©2011 IEEE

Besides, there are mature formal techniques that could be
employed for modeling, verifying, and reasoning about the
communication designs. However, the formal techniques have
not been applied in the platform level and instead, the majority
of existing formal approaches focus on particular networking
and communication aspects. Our main contribution in this
paper is to introduce CorreComm as a formal hierarchical
framework for modeling and verifying communication designs
in order to bridge this gap. For instance, in [22], [23], [24],
formal models are introduced to study unicast and multicast
communication at the chip level as well as to study recovery
mechanisms in wireless sensor-actor networks, respectively.
With CorreCom, we establish a base communication design,
out of which the formal models mentioned above could be
derived via refinement in a correct-by-construction manner.

VIII. CONCLUSIONS

In this paper we propose CorreComm, a formal hierarchical
framework for modeling and verifying communication de-
signs. CorreComm is developed stepwise based on the Event-
B formal method, so that we are sure of its consistency.
We have also demonstrated the value of CorreComm as
a communication design pattern, in that in can be reused,
extended, and refined whenever a communication design needs
to be elaborated. With CorreComm we thus avoid errors in
the early stages of elaborating communication designs. Also,
when extending CorreComm, one can detect errors in the early
stages of construction, due to the interactive style of modeling
and proving in Event-B via the Rodin platform.

CorreComm can be used to construct a library of verified
components to be employed for the verification of specific
communication designs. We plan to expand the library of veri-
fied components by continuing to model various switching and
routing techniques. In addition, we plan to focus on modeling
power consumption issues as communication properties and,
in general, to explore the quantitative analysis of the com-
munication designs within our formal hierarchical framework.
This can easily be seen as extending the Communication
Properties component of CorreComm. This would allow
us to evaluate different parameters of the communication
designs and, as a consequence, come up with optimal solutions
for them.

REFERENCES

[1] M. Daneshtalab, M. Ebrahimi, P. Liljeberg, Juha Plosila, and H. Ten-
hunen, A Low-Latency and Memory-Efficient On-chip Network, In
proceedings of 4th IEEE/ACM International Symposium on Network-
on-Chip (NOCS), pp. 99-106, May 2010.

[2] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald. Formal
Methods: Practice and Experience. In ACM Computing Surveys, Vol. 41,
Issue 4, pp. 1-36, 2009.

[3] D. Craigen, S. Gerhart and T.Ralson, Case Study: Paris Metro Signaling
System, In the Proceedings of IEEE Software, pp. 32-35, 1994.

[4] J. R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge
University Press, 1996.

[5] T. Lecomte. Applying a Formal Method in Industry: A 15-Year Trajectory.
In M. Alpuente, B. Cook and C. Joubert (Eds), Proceedings of the Formal
Methods for Industrial Critical Systems, FMICS 2009. Lecture Notes in
Computer Science, Vol. 5825, pp. 26-34, Springer-Verlag, 2009.

[6] J. R. Abrial, Modeling in Event-B: System and Software Design, Cam-
bridge University Press, 2010.

[7] A. S. Fathabadi, A. Rezazadeh, and M. Butler. Applying Atomicity
and Model Decomposition to a Space Craft System in Event-B. In:
Proceedings of the THIRD NASA FORMAL METHODS SYMPOSIUM,
Lecture Notes in Computer Science, Vol. 6671, pp. 328-342, 2011.

[8] J. Bryans and W. Wei. Formal Analysis of BPMN Models Using Event-
B. In the S. Kowalewski and M. Roveri (Eds.), Proceedings of the
15th International Workshop on Formal Methods for Industrial Critical
Systems, FMICS 2010. Lecture Notes in Computer Science, Vol. 6371,
pp. 33-49, Springer-Verlag, 2010.

[9] R. J. Back and J von Wright. Refinement Calculus: A Systematic Intro-
duction. Springer-Verlag, 1998.

[10] J. R. Abrial, D. Cansell, D. Mery, Refinement and Reachability in Even-
B. In 4th International Conference of B and Z Users, pp. 129-148, 2005.

[11] J. R. Abrial, S. Hallerstede, Refinement, Decomposition and Instantiation
of Discrete Models: Application to Event-B, In Fundamenta Informaticae,
pp. 1-28, 2007.

[12] Rigorous Open Development Environment for Complex
Systems (RODIN). Deliverable D7, Event-B Language, online at
http://rodin.cs.ncl.ac.uk/.

[13] S. Katz, A Superimposition Control Construct for Distributed Systems.
In ACM Transactions on Programming Languages and Systems, pp. 337-
356, 1993.

[14] R. J. Back and K. Sere. Superposition Refinement of Reactive Systems.
In Formal Aspects of Computing, Vol. 8, No. 3, pp. 324-346, Springer-
Verlag, 1996.

[15] R. J. Back and K. Sere. Stepwise Refinement of Action Systems. In J.
L. A. van de Snepscheut (ed), Proceedings of MPC’89 – Mathematics of
Program Construction, pp. 115-138, 1989.

[16] RODIN Tool Platform, http://www.event-b.org/platform.html.
[17] D. Borrione, A. Helmy, L. Pierre, and 1. Schmaltz. A Formal Approach

to the Verification of Networks on Chip. EURASIP Journal on Embedded
Systems, 2009(548324):1-14, February 2009.

[18] G. Salaun, W. Serwe, Y. Thonnart, and P. Vivet. Formal Verification
of CHP Specifications with CADP Illustration on an Asynchronous
Network-on-Chip. In Proceedings of International Symposium on Asyn-
chronous Circuits and Systems, pages 73-82. IEEE Computer Society
Press, March 2007.

[19] Y. Chen, W. SU, P. Hsiung, Y. Lan, Y. Hu, and S. Chen, Formal Model-
ing and Verification for Network-on-Chip, In Proceeding of International
Conference on Green Circuits and Systems (ICGCS), pp. 299-304, 2010.

[20] A. Pinto, A. Sangiovanni-Vincentelli and L. P. Carloni, COSI: A
Framework for the Design of Interconnection Networks, Design and Test
of Computers, IEEE, Vol. 25 Issue:5, pp. 402-415, 2008.

[21] X. Zhu and Sharad Malik, A hierarchical modeling framework for
on-chip communication architectures of multiprocessing SoCs, ACM
Transactions on Design Automation of Electronic Systems (TODAES),
Vol. 12 Issue 1, 2007.

[22] M. Kamali, L. Petre, K. Sere and M. Daneshtalab, Refinement-Based
Modeling of 3D NoCs, In 4th IPM International Conferenece on Funda-
mentals of Software Engineering (FSEN11), to apear 2011.

[23] M. Kamali, L. Petre, K. Sere, M. Daneshtalab, Formal Modeling
of Multicast Communication in 3D NoCs, In the 14th EUROMICRO
Conference on Digital System Design (DSD), appear 2011.

[24] M. Kamali, L. Laibinis, L. Petre, K. Sere, Self-Recovering Sensor-
Actor Networks, In proceedings of 9th International Workshop on the
Foundations of Coordination Languages and Software Architectures,
FOCLASA2010, Sep 2010.

978-1-4673-0498-6/11/$26.00 ©2011 IEEE

Paper VIII

NetCorre: A Hierarchical Framework and Theory

for Network Design

Maryam Kamali, Luigia Petre and Kaisa Sere

Submitted to Science of Computer Programming

179

NetCorre: A Hierarchical Framework and Theory for

Network Design

Maryam Kamalia,b, Luigia Petrea, Kaisa Serea

aDepartment of Information Technologies, Åbo Akademi University, Turku, Finland
bTurku Centre for Computer Science (TUCS), Turku, Finland

Abstract

Design decisions made at the algorithm level affect the implementation sig-
nificantly. In this paper, we introduce a formal framework for high-level
analysis of network design in which both design aspects of algorithm and
architecture are integrated. We hierarchically develop the framework model
relying on the formal design technique of refinement. In addition, we ex-
tract the common features of networks as a library of design rules that are
reusable and extendable for modelling and analysing different network de-
signs. We elaborate our framework model within the Event-B formalism,
using the Rodin platform - an integrated development framework for Event-
B; in particular, for modelling the library of design rules, we employ the
novel theory extension mechanism of Event-B and the corresponding plug-in
of the Rodin platform.

Keywords: Algorithm-architecture network design; Formal hierarchical
framework; Refinement; Event-B; RODIN Tool

1. Introduction

Design decisions made at the algorithm level affect the implementation
significantly. Sometimes it is not even possible to apply some algorithms
to some network architectures, and even when this is possible, many time-
consuming optimization techniques might still be needed. It is thus impor-
tant to be able to analyse the trade-offs of various algorithm-architecture
alternatives at higher levels, before investing time and effort in exploring
them at lower levels. For this, both design aspects of algorithm and archi-
tecture need to be integrated in a framework for high-level analysis, to allow
for a detailed assessment of implementation parameters.

Preprint submitted to Science of Computer Programming April 18, 2013

Some integrated design frameworks have already proven successful. A
design exploration methodology is developed in [17] for wireless communi-
cations. The author adapts a top-down approach to design optimization
with a bottom-up module-based approach for implementation estimates. A
design platform for algorithm-architecture design exploration for efficient im-
plementation of multimedia algorithms is proposed in [16]: a pure software
specification is gradually transformed into a mixed software and hardware
implementation.

However, even if the algorithm and the architecture are integrated in these
methodologies, a significant number of errors as well as undesirable behaviour
have been identified. This strongly motivates the need for checking the in-
tegrity of the proposed network designs. An increasingly viable approach
for facilitating the design of correct systems is provided by formal methods.
Formal methods are dedicated to the problem of system validation, being
able affect the entire lifecycle of system development from specification to
implementation. System validation ensures that a system satisfies its design
specification and can be performed via testing, simulation, and verification.
Verification consists of logical reasoning on the system specification and thus
can detect and avoid possible design errors before system implementation.
Validation performed via testing and simulation is limited to the test cases,
while verification allows the consideration of all system behaviours.

Therefore, it is clear that formal specification and verification of network
designs would increase their reliability and lower their implementation cost.
This is mainly due to error detection in the early stages of design. However,
using formalisms has some challenges, such as unambiguously formulating
properties of algorithms and architectures as well as proving them. Con-
siderable amounts of expressiveness as well as experience typically help in
deriving models and their desired properties.

In this context, we aim at proposing a high-level formal framework that
integrates the algorithm and architecture analysis for network design. More-
over, our proposed framework addresses the challenge of applying formal
methods in the early stages of design. In this paper, with network design we
refer to the integrated algorithm-architecture approach to networking and
with modelling the framework we refer to the formal specification and verifi-
cation of this integrated framework. The two central features of our proposed
framework are that (1) it is intended for reuse in designing verified networks
and (2) it is hierarchical; the latter feature is instrumental both in developing
the framework and in its intended reuse.

2

The contribution of this paper is twofold. First, we introduce a reusable,
hierarchical formal model of this framework that is verified. Second, from
the hierarchical model we extract a reusable network theory, also pre-proven.
The formal model and the theory are together referred to as NetCorre, for
correct networking. We base our work on the Event-B formal method [3, 1]
for system modelling and analysis. The refinement technique of Event-B is
fundamental in our approach because it allows to represent a system at dif-
ferent abstraction levels and to prove the consistency between these. Event-B
comes with an associated toolset Rodin, a theorem prover-based environment
where proofs about the models are generated automatically and discharged
either automatically or interactively. Importantly, the Rodin platform has
extension capabilities: one can define new theories consisting of new data
types, operators on them, etc. These new theories can be proven in Rodin
and then reused as original Event-B constructs. Our proposed network the-
ory falls exactly within this reuse pattern. Hence, upon defining a reusable,
hierarchical formal model for network design, we extract the fundamental
components to be reused and define the NetCorre network theory. In a nut-
shell, our contribution in this paper can be summarized as correct network
reuse.

We proceed as follows. In Section 2 we review related approaches of
informal and formal network design. In Section 3, we introduce the Event-
B formal method that we use, together with its extension mechanisms. In
Section 4 we outline the hierarchical framework of algorithm-architecture
network design. In Section 5, we detail the development of the framework,
based on the refinement technique. In Section 6, we put forward our network
theory proposal and then we wrap up in Section 7.

2. Related Work

An algorithm-architecture design methodology for wireless communica-
tions is proposed in [17]. Algorithms are evaluated at an early stage based
on extracting critical characteristics. Their mappings to various architec-
tures are then identified in order to improve implementation efficiency. The
purpose of the proposed methodology in [17] is to optimize the high-level
design by analysing design trade-offs.

Another approach for exploring an integrated algorithm and architecture
design is presented in [16]. A platform is proposed to evaluate the efficiency
of multimedia algorithms in hardware implementations. In contrast to these

3

two design approaches where the focus is on the analysis of design efficiency,
our goal in this article is to introduce an integrated algorithm-architecture
design framework that guarantees the correctness of the integrated design in
the early stages of the lifecycle.

A hierarchical modelling framework for communication architectures of
multiprocessing SoCs is proposed in [22]. A hierarchical class library is used
to develop communication architectures with incremental effort by adapting
object-oriented analysis and design methods. The hierarchical approach of
evaluating communication architectures in the proposed framework of [22]
is similar to ours. However, it concentrates only on design exploration of
network architectures, without considering network algorithms.

There is a large number of successful approaches that apply the refine-
ment technique in producing a correct model of a system under development.
Action Systems [8] - a design methodology based on refinement- is used in [19]
to propose a formal framework for the design of asynchronous pipelined mi-
croprocessors. Another design methodology is proposed in [10] to integrate
the Event-B formal method into the SoC design. The role of refinement in
SoC development is demonstrated by specifying the system requirements and
developing models of the system gradually, while the consistency of the vari-
ous models is preserved. Using the refinement technique to produce a correct
high-level design of a system in [10, 19] is similar to our design methodology.

The Event-B formal method has been widely employed for formal develop-
ment and analysis of different network protocols. An algorithm for network
topology discovery [11] is modelled and verified in Event-B. Stepwise and
event-based approaches for modelling and analysing dynamic network pro-
tocols are proposed in [7, 6, 12]. A correct-by-construction development of a
NoC model is proposed in [15, 14]. In this paper we employ the same formal
method (i.e., Event-B) in order to develop system models. However, while in
the above articles the focus is on modelling and analysing particular network
algorithms, hence we introduce a framework for modelling network designs,
with an approach integrating algorithm and architecture analysis.

3. Event-B

In this section we shortly introduce Event-B as well as an extension mech-
anism in Event-B that we employ in this paper. Event-B [3] is a formal
method devised for modelling and reasoning about parallel, distributed and
reactive systems. Event-B comes with tool support in the form of the Rodin

4

Machine M
Variables v
Invariants I
Events
Init
evt1
· · ·
evtN

Sees−−−→
Context C
Carrier Sets d
Constants c
Axioms A

Figure 1: A machine M and a context C in Event-B

platform [2, 21, 20, 4], which provides automated support for modelling and
verification by theorem proving.

3.1. Event-B Syntax and Semantics

Event-B Syntax.. In Event-B, the notion of a machine [20] operating on
an abstract state is used to specify a system. The state models the problem
domain of the system via a collection of variables and is modified by defined
operations on this state. Thus, it describes the behaviour of the specified
system, also refereed to as the dynamic part. A system model may also have
an accompanying component, called context, which contains the static part
of the system. Within a context, user-defined sets and constants are declared
and their properties and relationships are defined in a list of model axioms.
The general structure of an Event-B model is illustrated in Fig. 1. The
relationship between a machine and its accompanying context is expressed by
the keyword Sees, denoting a structuring technique that allows the machine
access to the contents of the context.

A machine with the unique name M has a list of state variables v, de-
clared in the Variables clause and initialized by the Init event. The variable
types are declared by the constraining predicates I given in the Invariants
clause. Moreover, the invariant clause may contain other predicates defining
properties that should be preserved over the state of the model. The oper-
ations on the variables are given as a set of atomic events specified in the
Events clause. Generally, an event is defined in the following form:

evt =̂ any vl where g then S end,

where the variable list vl contains local variables visible within the event and

5

the guard g represents a state predicate over the state variables v and vl. The
action S is a statement describing how the event affects the system state and
is given in the form of deterministic or non-deterministic assignment over the
system variable. A deterministic assignment, x := E(x, y), has the standard
syntax and semantics. A non-deterministic assignment is denoted either as
x :∈ Set, where Set is a set of values, or as x :| P (x, y, x′), where P is a
predicate relating initial values of x, y to some final value x′. As a result
of a non-deterministic assignment, x can get any value belonging to Set or
according to P .

The occurrence of events represents the observable behaviour of the sys-
tem. The event guard defines the conditions under which the action can be
executed, i.e., when the event is enabled. If several events are enabled at the
same time, any of them can be chosen for execution non-deterministically. If
none of the events is enabled then the system deadlocks.

The modelling of a large system in Event-B is based on refinement,
i.e., verified modelling in a stepwise manner. Modelling starts from an
abstract system specification that models some of the essential functional
requirements. While capturing more detailed requirements, the model be-
comes richer by developing the abstract states and state changes, i.e., intro-
ducing new variables and events. This type of model refinement is called
superposition refinement. The superposition refinement steps are complete
when all the requirements of the system have been taken into account in the
model. Another kind of refinement is called data refinement and in this
case abstract variables and events can be replaced with their more concrete
counterparts. In a data refinement step, we can remove some variables and
add new ones. Therefore, the invariant of a refined model should define the
relationship between the abstract and concrete variables; this type of invari-
ants are called gluing invariants. In other words, the state of an abstract
machine is related to the state of a concrete machine by a gluing invariant.
In this article we employ both the superposition and data refinement.

The event structure in a refined machine may contain the abstract event
clauses and two other clauses as shown in the following form:

ref evt =̂ refines abs evt any vl where g with w then S end,

where the list of the abstract events, abs evt, that this event refines are enu-
merated in the refines clause. The with clause contains the witness of the

6

corresponding abstract event. The witness w is declared in a refining event
for each disappearing parameter of the abstract event. The witness for pa-
rameter a is a predicate P (a). A witness predicate can be either deterministic
or non-deterministic. A deterministic witness P (a) is of the form a = E.

Event-B Semantics.. Each construct in Event-B has a well-defined seman-
tics. Additionally, machines must satisfy a set of constraints so that ensure
that the specification is internally consistent and also ensure that the be-
haviour of a refined machine is consistent with the behaviour of the machines
it refines.

There are three principal constructions, called substitutions, to change
the state of a machine. The semantics of substitution in Event-B is defined
using before-after (BA) predicates. Before-after predicates contain primed
and unprimed variables where the primed variables represent the after value
of a variable and the unprimed variables the before value. In general, the
substitution into a predicate for each of the three constructions takes the
form illustrated in Fig. 2

Substitution [Substitution]R
v := E [v := E]R
v :| P ∀v′ · P ⇒ [v := v′]R
v :∈ S ∀v′ · v′ ∈ S ⇒ [v := v′]R

Figure 2: Substitution

where v is a list of variables and E a list of expressions; P is a predicate
containing both v and v′; v′ represents the value of v after the action.

In an Event-B event, guard is a predicate that identifies a set of pre-state
and action identifies a set of post-states. A before-after predicate relates
these pre-states and post-states for each event as follows:

BA(evt) = ∃vl. g ∧ BA(S).

The semantics of a whole Event-B model is formulated as a number of
proof obligations, expressed in the form of logical sequent. Below we describe
only the most important proof obligations that should be verified (proved)
for the initial and refined models. The full list of proof obligations can be
found in [3].

7

Every Event-B model should satisfy the event feasibility and invariant
preservation properties. For each event of the model, evti, its feasibility
means that, whenever the event is enabled, its before-after predicate (BA) is
well-defined, i.e., there exists some reachable after-state:

A(d, c), I(d, c, v), gi(d, c, v) ` ∃v′ ·BAi(d, c, v, v′) (FIS)

where A stands for the conjunction of the model axioms, I is the conjunction
of the model invariants, gi is the event guard, d stands for the model sets,
c are the model constants, and v, v′ are the variable values before and after
event execution.

Each event evti of the Event-B model should also preserve the given model
invariant:

A(d, c), I(d, c, v), gi(d, c, v), BAi(d, c, v, v
′) ` I(d, c, v′) (INV)

The invariant preservation proof obligation verifies that each concrete
invariant is preserved by each pair of concrete and abstract events. Since
the initialisation event has no initial state and guard, its proof obligation is
simpler:

A(d, c), BAInit(d, c, v
′) ` I(d, c, v′) (INIT)

The formal semantics provides us with a foundation for establishing cor-
rectness of Event-B specifications. In particular, to verify correctness of a
specification, we need to prove that its initialisation and all events preserve
the given invariant.

Besides, to verify correctness of a refinement step, we need to prove a
number of proof obligations for a refined model. We need to verify that
the behaviour of a refined machine is consistent with the behaviour of the
machine it refines. For brevity, here we show only a few essential ones.

Let us first introduce a shorthand H(d, c, v, w) to stand for the hypothe-
ses A(d, c), I(d, c, v), I ′(d, c, v, w), where I, I ′ are respectively the abstract
and refined invariants, and v, w are respectively the abstract and concrete
variables. Then the feasibility refinement property for an event evti of a
refined model can be presented as follows:

H(d, c, v, w), g′i(d, c, w) ` ∃w′. BA′i(d, c, w, w′) (REF FIS)

where g′i is the refined guard and BA′i is a before-after predicate of the refined
event.

8

The event guards in a refined model can be only strengthened in a refine-
ment step:

H(d, c, v, w), g′i(d, c, w) ` gi(d, c, v) (REF GRD)

where gi, g
′
i are respectively the abstract and concrete guards of the event

evti. The purpose of the guard strengthening proof obligation is to ensure
that the concrete guards in the refining event are stronger than the abstract
ones.

Finally, the simulation proof obligation (REF SIM) requires to show that
the ”execution” of a refined event is not contradictory with its abstract ver-
sion:

H(d, c, v, w), g′i(d, c, w), BA′i(d, c, w, w
′) ` ∃v′.BAi(d, c, v, v′) ∧ I ′(d, c, v′, w′)

(REF SIM)
where BAi, BA

′
i are respectively the abstract and concrete before-after pred-

icates of the same event evti. The simulation proof obligation ensures that
each action in a concrete event simulates the corresponding abstract action.

The model verification effort and, in particular, automatic generation and
proving of the required proof obligations, are significantly facilitated by the
provided tool support – the Rodin platform [1, 21, 20, 4].

Let us note here the quintessential feature of Event-B and its associated
Rodin platform. Modelling in Event-B is semantically justified by proof
obligations. Every update of a model generates a new set of proof obligations
in the background. It is this interplay between modelling and proving that
sets Event-B apart from other formalisms. Without proving the required
obligations, we cannot be sure of correctness of a model. The proving effort
thus encourages the developer to structure formal model development in such
a way that manageable proof obligations are generated at each step. This
leads to very abstract initial models so that we can gradually introduce into
a system model various facets of the system. Such a development method
fits well when we have to describe complex algorithms.

The interplay between modelling and proving characteristic of Event-B
provides suitable formal means to reason about and finding out the design
problems. The perspective of Event-B to modelling matches to our pur-
pose of developing a formal framework for network designs because it allows
to construct a correct framework, in each abstract level, by modelling and
proving correctness of the model in a cyclic way, as shown in Fig. 3.

9

Figure 3: Formal Development in Event-B

3.2. Event-B Mathematical Extension

Extension Syntax.. We first outline the syntax of the proposed extension
mechanism [5, 9] in Event-B, already implemented in Rodin. In particular
we emphasize the theory component, based on a rule-based prover plug-in;
this component allows the declaration of user-defined new predicates, new
operators, new inductive data types and new rewrite rules.

A theory component has a name, a list of global type parameters, and an
arbitrary number of definitions and rules for modelling predicates, operators,
and inductive data types. The general structure of a theory component is
shown in Fig. 4. In the following, we briefly overview the general structure
of defining predicates and operators.

theory name
type parameters T1, ..., Tn

{ 〈Predicate Definition〉
| 〈Operator Definition〉
| 〈DataType Definition〉
| 〈Rewrite Rule〉
| 〈Inference Rule〉 }

Figure 4: Theory Component

A predicate has a name and can be declared as either infix or prefix with
a number of arguments. The condition clause specifies a well-definedness
condition and the argument types are also inferred from the condition. The
definition of the new predicate is provided by the definition clause. The
structure of a predicate definition is shown in Fig. 5.

An operator returns an expression based on a number of expressions.
It can be declared as either infix or prefix with a number of arguments.

10

predicate Identifier
(prefix or infix)
args x1, ..., xn

condition P (x1, ..., xn)
definition Q(x1, ..., xn)

Figure 5: Predicate Definition

The condition clause specifies a well-definedness condition and the argument
types are also inferred from the condition. The definition clause defines the
expression E (x1, ..., xn). The structure of an operator definition is shown in
Fig. 6.

operator Identifier
(prefix or infix)
args x1, ..., xn

condition P (x1, ..., xn)
definition E(x1, ..., xn)

Figure 6: Operator Definition

Extension Semantics.. The mathematical extension mechanism of Event-
B supports three types of user-defined extensions of the mathematical lan-
guage and theory. One type is set-theoretic expressions or predicates exten-
sions, the second is the rule library for predicates and operators extensions,
and the last is extensions of the set theory itself through the definition of
algebraic types by using new set constructors. Out of these three extensions,
we discuss below the rule library for predicates and expressions which are
used in this article to introduce the theory of our framework.

In Event-B, predicates and expressions are introduced as distinct syn-
tactic categories. Predicates are defined in terms of basic predicates (>, ⊥,
A = B, etc), predicate combinators (¬, ∧, ∨, etc) and quantifiers (∀, ∃).
Expressions are defined in terms of constants (0, ø, etc), variables (x, y, etc)
and operators (+, ∪, etc). To ensure that mathematical formulas made of
predicates and expressions are meaningful, they come with type checking.
Each expression in a formula is associated with a type which denotes the set
of values that the expression can take and it can be in one of the following
forms:

11

� a basic set, that is a predefined set (Z or BOOL) or a carrier set provided
by the user;

� a power set of another type α, P(α);

� a cartesian product of two types α and β, α× β

Upon associating a type to each expression the formula is checked by some
type checking rules to prove that it is well-typed. Checking rules enforce
that the operators used can be meaningful. As the type checking is a static
check, we cannot always prove that a formula is meaningful. Therefore, for
some operators, some additional dynamic constraints (specified in the well-
definedness dynamic checks) are verified. Detecting a meaningless formula
is done by disproving some well-definedness lemma. Well-definedness (WD)
lemmas are produced by a WD operator that takes a formula as argument.
The complete list of the WD operators for basic predicates and expressions
of the Event-B kernel can be found in [18].

In the following, we outline how new predicates and expressions are spec-
ified and how their corresponding rules are formed. The corresponding rules
are typing rules and well-definedness rules, as discussed above. A predicate
pred is defined in terms of existing predicates and rules for typing the pred-
icate arguments x1, . . . , xn as shown in the following table:

Predicate Type rule Definition
pred(x1, . . . , xn) type(x1) = α1 . . . type(xn) = αn P (x1, . . . , xn)

In predicate definition P (x1, . . . , xn), we cannot refer to the newly introduced
predicate pred.

A new operator is defined in terms of an expression along with typing and
well-definedness rules. An operator has a name op and a list of expression
arguments x1, . . . , xn as shown in following table:

Expression Operator Definition
op(x1, . . . , xn) op(x1, . . . , xn) = E(x1, . . . , xn)

In the operator definition, the expression E should not refer to the newly
defined operator op.

The typing rule for the operator op is used by a type checker for expres-
sions involving op. The type α for a new operator op is introduced as follows:

12

Expression Operator Type rule

op(x1, . . . , xn) type(x1)=α1 ... type(xn)=αn

type(op(x1,...,xn))=α

An operator well-definedness WD(op) depends on the well-definedness
of its arguments and possible additional conditions P (x1, . . . , xn). However,
some operators have no additional condition and their well-definedness de-
pends on the well-definedness of their arguments. The well-definedness rule
for a new operator is as follows:

Expression Operator Well-definedness
WD(op(x1, . . . , xn)) WD(x1), . . . ,WD(xn), P (x1, . . . , xn)

New predicates and operators extend the core mathematical language
to facilitate specification and verification of systems. Moreover, having the
new introduced predicates and operators, we can specify and prove theorems
that can be used in verifying properties of systems. In this article, we use the
Event-B extension mechanism to introduce a basic theory of networks. The
foundation of the network designs is extracted from a hierarchical framework,
introduced in the following sections.

4. The Structure of the Hierarchical Framework NetCorre

In this section we introduce our approach to integrating the algorithm
development and architecture design. Our central interest is in devising
correct network designs and so we put forward the verification of each of
these two components of modelling as well as their integration. Therefore,
a formal methodology model of network design, proposed as a framework is
discussed in this chapter. The skeleton of the framework is in fact composed
of three basic components: Network Architecture, Network Primitives,
and Network Properties. This is illustrated in Fig. 7.

The Network Architecture component describes the network elements,
their relationship to each other, and various other constructs needed for com-
munication. It consists of two sub-components as illustrated in Fig. 7: a Stru

ctural Elements sub-component and a Relationships sub-component. Fur-
ther on, we identify three main types of structural elements involved in net-
work designs, namely Node, Channel and Buffer. A node denotes any type
of communicating unit. A channel connects nodes together. A buffer stores
data temporarily in the start and end points of the channels. Different func-
tionality can be mapped to each of these structural elements but any of them
shares certain common characteristics, commonly inherited from the higher

13

abstract elements. In this article, the higher abstract structural elements pro-
posed in the framework can be reused to develop more concrete elements. In
other words, the common characteristics are introduced and the differences
are encapsulated as block boxes in structural elements. The relationships
between the structural elements in the network shows the topology of the
architecture.

The Network architecture shows how different elements are connected
to each other in order to transfer messages. The message transfer meth-
ods are described in the Network Primitives component of our framework.
We identify four main network primitives, namely Injecting, Switching,
Routing and Receiving, as illustrated in Fig. 7. Injecting refers to intro-
ducing a new message in the network. Routing refers to deciding the route
that a message should follow. Switching determines when the routing deci-
sions are made, the setting/resetting of the switches inside the nodes, and
how the messages are transferred inside the nodes. Receiving is the function
that deletes the messages having reached their destination from the network.
The Network Primitives subcomponents proposed in the framework share
certain common features for algorithm development. In other words, these
are reusable modules that are inherited and refined in the development of a
network algorithm.

The Network Properties component is intended for the modelling and
verification of the network design properties, based on the given architecture
and primitives. The aim of this component is to demonstrate that all compo-
nents of the framework meet their specifications. Moreover, the interaction
and integration satisfies the general correctness properties. A typical prop-
erty for the functional correctness of communication is that all the injected
messages are received by all their destinations. However, other properties can
be modelled as well, for instance non-functional properties such as the net-
work performance or energy consumption of a given network design. In this
article we only refer to the functional correctness of communication. To verify
the general correctness of the integration in the framework we must analyse
the possible interactions of the elements of the Network Architecture and
the Network Primitives to see whether the combined design satisfies the
specification.

Hence, in the proposed framework we concentrate on developing the fun-
damental components of a network which are common between all network
designs. Therefore, we verify the interactions of these components and we
construct the framework in such a a way that the correctness of the frame-

14

Figure 7: Network Scheme

work is guaranteed. The components of the framework can be refined by
designers to construct different network models. However, the designer does
not need to prove all the properties from the beginning; all the proved prop-
erties in the framework can be reused and only the newly added states must
be verified. We note that using pre-proved components of the framework al-
leviates the difficulties of verification and also decreas the design lifecycle. In
this paper, we additionally provide a library of rules for using the pre-proven
fundamental components in order to develop network designs.

5. The stepwise construction of NetCorre in Event-B

In this section, we describe the modelling of the proposed structure of
network designs in Event-B and discuss its correctness. The network ar-
chitecture describes the static part of a network, so all its elements and
properties are specified in the context part of the model as sets, constants,
and axioms. The network primitives define the dynamic behaviour of the
communication network, therefore are modelled in the machine part of the
Event-B model as variables and events. The network properties are modelled
as a list of invariants in the machine part of the model and verified via proof
obligations. In the following we outline this development.

We model the network design elements in a stepwise manner, employing
the abstraction and refinement concepts put forward in Section 3. For every
abstraction level we have a corresponding context, machine, list of invari-
ants, and proof obligations to discharge. The initial model consists of the

15

least number of structural elements so that the correctness property can be
formulated. In the subsequent levels, we gradually add the other structural
elements so that they refine the concepts in the previous models. As we hi-
erarchically refine the architecture, the network primitives component is also
hierarchically refined. In each abstraction level we verify the network prop-
erties, expressed in terms of the (hierarchically-)corresponding architectural
elements and primitives. The stepwise development continues until all the
elements of the network design are modelled. The resulting model can then
be employed to specify other structural elements as well as specific network
designs.

5.1. Specification of the NetCorre: Level 1

At Level 1 of abstraction, we consider just a small number of structural
and primitive elements, essentially as few as possible for expressing rele-
vant invariants. This means that some elements are abstracted away from
this initial model. More precisely, in Level 1 we model the structural el-
ement Node by defining a finite (@axm1) and non-empty (@axm2) set
NODE that models the network elements. The relationships between these
nodes, defining the network topology, are modelled with a constant named
Neigh. This constant effectively records the pairs of related nodes as shown by
@axm3 in Fig. 8. The relation Neigh denotes a set of non-empty (@axm4)
and bidirectional node links that are symmetric (@axm5) and irreflexive
(@axm6). In order to model the functional correctness of the network, we
need to specify that all the injected messages are received by all their destina-
tions. For this, we model another finite (@axm7) and non-empty (@axm8)
set, MESSAGE. A message in the network has a source node and a set
of destination nodes, hence any element of MESSAGE is conceptually a
triple (msgID, src, {des}). Here we model this conceptual triple via the
MESSAGE set together with two functios for the source and destinations
of messages. The functions are defined by @axm9-10. To specify a generic
model, we consider having several destinations for any message. It lets us
model both uni-casting and multi-casting in a network.

We model the corresponding network primitives in Level 1 with variables
and events as illustrated in Fig. 9. Thus, in the initial model we have four
abstract variables: snt pl,mv pl, rcv nd and rcv pl. These variables are suf-
ficient for modelling and verifying the functional correctness of the network.
The snt pl variable (abbreviation for ’sent pool’) denotes the list of mes-
sages which are injected by a source node to the network (@inv1). The

16

SET NODE MESSAGE
CONSTANTS Neigh src des
AXIOMS

@axm1 finite(NODE)
@axm2 NODE 6= ∅
@axm3 Neigh ∈ NODE↔NODE
@axm4 Neigh 6= ∅
@axm5 Neigh = Neigh−1

@axm6 dom(Neigh)C id ∩ Neigh = ∅
@axm7 finite(MESSAGE)
@axm8 MESSAGE 6= ∅
@axm9 src ∈MESSAGE → NODE
@axm10 des ∈MESSAGE → P(NODE)

Figure 8: The Constext Part (Level 1): ctx1

mv pl variable (abbreviation for ’moving pool’) denotes the current position
of messages still travelling in the network (@inv2). The rcv nd variable
(abbreviation for ’receive node’) models the instances of messages having
reached destinations (@inv6-7). When a message is received to one of its
destinations, a corresponding map is added to the rcv nd relation. The
rcv pl variable (abbreviation for ’receive pool’) denotes the list of messages
which are received by all their destinations and consequently removed from
the network (@inv3); this means that a message-to-destination map for all
the destinations of that message should be in rcv nd.

The four network primitives are abstractly modelled in Level 1 by three
events: inject msg, travel msg, and receive msg. The inject msg event
handles the injecting primitive by adding a new message (@grd1-2) to the
snt pl set (@act1) and the mv pl set (@act2). The reason for adding the
message to mv pl is to launch the message transferring process.

The travel msg event handles both the switching and the routing prim-
itives in Level 1, by modelling the transferring of a message from a node
to other nodes. As the framework covers both unicast and multicast com-
munication, we need to model the transferring of a message from a node to
several nodes. Hence, in the travel msg event, we define a local variable r n
that models an arbitrary subset of the neighbours of a node (@grd2). As
we define a subset of neighbours (@grd2), it could be possible that r n is
emptyset which then causes the message to disapear from the network. In
order to avoid this, we add a new guard (@grd3) to restrict the r n vari-
able. Namely, when a message is not received by its destination, it should be

17

invariants
@inv1 snt pl ⊆MESSAGE
@inv2 mv pl ∈ snt pl↔NODE
@inv3 rcv pl ⊆MESSAGE
@inv4 rcv pl ∩ dom(mv pl) = ∅
@inv5 dom(mv pl) ∪ rcv pl = snt pl
@inv6 rcv nd ∈ NODE↔MESSAGE
@inv7 ∀msg, d·d 7→ msg ∈ rcv nd⇒ d ∈ des(msg)
@inv8 ∀msg ·msg ∈ dom(mv pl)⇒ (∃d·d ∈ des(msg) ∧ d 7→ msg /∈ rcv nd)
@inv9 ∀msg ·msg ∈ rcv pl⇔ (∀d·d ∈ des(msg)⇒ d 7→ msg ∈ rcv nd)
@inv10 ran(rcv nd) ⊆ snt pl
@inv11 ∀msg ·msg ∈ snt pl ∧ des(msg) \ rcv nd−1[{msg}] 6= ∅ ⇒ msg ∈

dom(mv pl)
@inv12 mv pl = ∅⇒ ran(rcv nd) = snt pl

inject msg
any msg
where

@grd1 msg ∈MESSAGE
@grd2 msg /∈ snt pl

then
@act1 snt pl := snt pl ∪ {msg}
@act2 mv pl := mv pl ∪ {msg 7→ src(msg)}

end

travel msg
any msg n r n
where

@grd1 msg 7→ n ∈ mv pl
@grd2 r n ⊆ Neigh[{n}]
@grd3 (n /∈ des(msg) ∧ r n 6= ∅) ∨ (n 7→ msg ∈ rcv nd ∧ (∃m·msg 7→ m ∈ mv pl
∧n 6= m)) ∨ (n 7→ msg ∈ rcv nd ∧ (∀m·msg 7→ m ∈ mv pl⇒ n = m) ∧ r n 6= ∅)

then
@act1 mv pl := (mv pl \ {msg 7→ n}) ∪ ({msg} × r n)

end

received msg
any msg n rcv
where

@grd1 msg 7→ n ∈ mv pl
@grd2 n ∈ des(msg)
@grd3 rcv ⊆MESSAGE
@grd4 ((∃d·d ∈ des(msg) ∧ d 7→ msg /∈ rcv nd ∪ {n 7→ msg}) ∧ rcv = ∅)
∨((∀d·d ∈ des(msg)⇒ d 7→ msg ∈ rcv nd ∪ {n 7→ msg}) ∧ rcv = {msg})

then
@act1 rcv nd := rcv nd ∪ {n 7→ msg}
@act2 rcv pl := rcv pl ∪ rcv
@act3 mv pl := rcv C−mv pl

end

Figure 9: The Machine Part (Level 1): M1

18

routed next and should not be removed from the network. This condition is
modelled by the first or (∨) part of the @grd3. The second or part of the
@grd3 models the state when the current position of the message is one of
its destinations and there are other instances of the message in the network.
In this case r n can be either an emptyset or a subset of neighbours. The
last or part of the @grd3 restricts the r n to a non-emptyset when the cur-
rent position is one of its destinations and the last instance of the message
is in this position. Without the last condition of @grd3, we could remove
the message from the network when the message is not yet received by all
its destinations. We note that we postpone the modelling of specific routing
and switching primitives for the subsequent refinement steps; however, we
add the necessary conditions so that any switching and routing primitives
can be derived out of the travel msg event.

The receive msg event handles the receiving primitive of the network
model in two different situations. Either the message is received by all its
destinations or, there are still some destinations that did not receive the
message. To specify two different situations in one event, we define a local
variable rcv, which is a subset of messages (@grd3). When there are still
some destinations that did not received the message, the rcv variable is set
to empty, as shown by the first or part of @grd4. When the message is
received by all its destinations, the rcv variable is set to the message, shown
by the second or part of @grd4. When there are still some destinations that
did not received the message, the corresponding message-to-destination map
is added to rcv nd (@act1) and the message is not added to rcv pl because
there are still destinations waiting for it. When the message is received by
all its destinations, the message is also added to the rcv pl (@act2) and
removed from the mv pl (@act2).

To guarantee the functional correctness of our modelling, we specify the
properties of the network as a list of invariants shown in Fig. 9. The first three
invariants (@inv1-3) and @inv6 are for variable definitions and the remain-
ing invariants illustrate the correctness properties of network that should be
preserved by all the events. While messages are travelling in the network,
they are not received by all their destinations (@inv8, 11) and when a mes-
sage is received at all its destinations, then there should not be any instance
of that message in the network, shown by @inv4; moreover, it should be in
the received state, shown by @inv9. As we model a network without message
loss, we should guarantee that an injected message is either in the travelling
state or received state and this property is shown by @inv5. The rcv nd

19

models messages which are received at destination: the rcv nd relation can
only consist of node−msg pairs where node is one of the destinations of msg
(shown by @inv7). When no messages is in the travelling state it means that
all the injected messages are received by all their destinations, as formulated
by @inv12.

The correctness verification of the initial model in which only the Node

subcomponent of the Structural Elements is specified is performed by
proving the satisfiability of invariants by events and the well-definedness
of the events’ guards. The number of proof obligations that are generated
and the number of proof obligations that either automatically or manually
discharged are shown in Table. 1.

Table 1: Proof Statistics Level 1
Model Number of Proof Automatically Interactively

Obligations Discharged Discharged

Level1 Context 2 2(100%) 0(0%)

Level1 Machine 39 32(82%) 7(18%)

The initial model forms the first hierarchical level, Level 1, of our devel-
opment. Level 1 is a foundation model for the subsequent refinement steps,
where we refine the context part of the model to extend the network architec-
ture and refine the machine part of the model to refine the network primitives.
The relation between our refinement levels is illustrated in Fig. 10.

5.2. Specification of the NetCorre: Level 2

In Level 2, we extend the initial context to model the Channel struc-
tural element. We specify the set CHANNEL that (physically) connects
neighbour nodes to each other. In other words, for any pair in the Neigh
relation, we model a channel that connects the pair by modelling two func-
tions: start ch nd (abbreviation for ’start channel from node’) (@axm11)
and end ch nd (abbreviation for ’end channel to node’) (@axm12). In order
to show the new channel relations correspond to the neighbour relations, we
specify that the bidirectional links between two neighbours corresponded to
these new relations (@axm13). Moreover, we model that the composition of
these two relations is equal to Neigh relation (@axm14) as shown in Fig. 11.

At this level we refine the network primitive component to specify the
transferring of messages through the channels. In this level of the hierarchy,
we use the data refinement technique. In the initial model, the mv pl re-
lation denotes the current position of messages in the network. In order to

20

Figure 10: Network Scheme in Event-B

SETS CHANNEL
CONSTANTS start ch nd end ch nd
AXIOMS

@axm11 start ch nd ∈ CHANNEL→ NODE
@axm12 end ch nd ∈ CHANNEL→ NODE
@axm13 ∀n, ch·ch 7→ n ∈ start ch nd ⇒ (∃ch2·ch2 7→ end ch nd(ch) ∈

start ch nd
∧ch2 7→ n ∈ end ch nd)

@axm14 Neigh ∪ (dom(Neigh)C id) = start ch nd−1; end ch nd

Figure 11: The Context Part (Level 2): ctx2

21

invariants
@inv13 mv nd ∈ snt pl↔NODE
@inv14 mv ch ∈ snt pl↔ CHANNEL
@inv15 mv ch−1 ∈ CHANNEL 7→ snt pl
@inv16 (mv ch; start ch nd) ∪ mv nd = mv pl
@inv17 ∀ch,msg ·msg 7→ ch ∈ mv ch⇒ ((start ch nd(ch) /∈ des(msg))
∨(start ch nd(ch) 7→ msg ∈ rcv nd ∧msg /∈ rcv pl))

Figure 12: The Machine Part (Level 2): Invariants

represent the existence of messages in both nodes and channels, in the second
model we replace the mv pl variable with two variables: mv nd (abbreviat-
ing for ’moving node pool’) and mv ch (abbreviating for ’moving channel
pool’), shown in Fig. 12. The mv nd variable denotes the current position
of those messages that are in nodes (@inv13) and the mv ch variable de-
notes the current position of those messages that are in channels (@inv14).
At any moment, any channel can be either free or busy with only one mes-
sage, described by invariant (@inv15). Moreover, the union of messages in
the (mv ch; start ch nd) and mv nd relations is equal to those messages in
mv pl, described by the gluing invariant @inv16 in Fig. 12. A message is
transferred from a node to a channel if the node is not one of the message
destinations or the node is a message destination but the message is not
received by all its destinations, formulated by @inv17.

As a consequence of this data refinement, the events that model the
network primitive component are updated, so that all the connections to
mv pl are substituted either by mv nd or by mv ch. In addition, we re-
fine the travel msg event by splitting it into two events: travel to ch and
travel to nd, shown in Fig. 13. The travel to ch event models the transfer-
ring of a message from a node to a channel at the beginning of the channel.
When there is a message at a node (travel to ch: @grd1), a subsets of out-
put channels of the node (@grd2, correponding to @grd2 in travel msg in
Level 1) which are free (@grd4) are chosen for transferring. The channel
selection is restricted by considering three different situations corresponding
to @grd3 in travel msg in Level 1. First, when the current node is not a
destination of the message the subset of channels cannot be empty because
the message should travel through another node, as described by the first
or part of @grd3. Second, when the current node is one of the message
destinations and another instance of a message in other nodes exists in the

22

network, then in this state, any arbitrary set of the output channels can be
selected, as described by the second or part of @grd3. Last, when the cur-
rent node is one of the message destinations and no instance of the message
exists in the network, then the subset of channels cannot be empty because
the message might still have some destinations to reach. This is described
by the last or part of @grd3. As it is described, @grd3 of the travel to ch
event is the refinement of the @grd3 of the travel msg event in Level 1.
In the with part of the travel to ch event, the witness is specified for the
abstract parameter r n of the abstract event travel msg and its feasibility is
given by axiom @axm14. This axiom is ’gluing’ the constant Neigh from
Level 1 to constants start ch nd and end ch nd from Level 2.

When the travel to ch event is executed the instance of the message in the
current node is either removed from the mv nd or remains in mv nd, depend-
ing on whether the message is routed to all the selected channels according to
a routing algorithm. In a state when all routes are not free the transferring
the message should wait in the current node until the desired channels be-
come free. This assignment (shown by @act1) is non-deterministic so that
the event covers all possible situations of data transferring in a node. Finally,
the transferring of a message from a node to the selected subset of channels
is modelled by @act2.

The travel to nd event models the transferring of a message from a chan-
nel to a node at the end of the channel. The travel to nd event is enabled
when there is a message in a channel (@grd1). This event removes the
message from the channel (@act1) and adds it to the node at the end of
the channel (@act2). As the abstract parameters n and r n are removed
in this refined event, we define witnesses for them based on the new in-
troduced parameter ch to be sure about the correctness of the refinement.
The n parameter is equal to the node at the start point of the channel and
r n, which models neighbours of node n, is equal to the node at the end of
the channel, described in the with part of the travel to nd event. The use
of witnesses adds clarity to a refined model and determining the required
witnesses is often straightforward. The witnesses are also used to generate
simpler invariant preservation proof obligations by decomposing proof obli-
gations which, otherwise, would contain the existentailly quantified formula
in their hypothesis.

This data refinement comes with a list of proof obligations that express
its correctness. These obligations guarantee that the second model preserves
the network properties component and its statistics are shown in Table 2.

23

travel to ch
refines travel
any msg n ch
where

@grd1 msg 7→ n ∈ mv nd
@grd2 ch ⊆ start ch nd−1[{n}]
@grd3 (n /∈ des(msg) ∧ ch 6= ∅) ∨ (n 7→ msg ∈ rcv nd
∧(∃m·msg 7→ m ∈ (mv ch; start ch nd) ∪ mv nd ∧ n 6= m))
∨(n 7→ msg ∈ rcv nd∧ (∀m·msg 7→ m ∈ (mv ch; start ch nd) ∪mv nd⇒ n = m)
∧ ch 6= ∅)
@grd4 ran(mv ch) ∩ ch = ∅

with r n : r n ⊆ (start ch nd−1; end ch nd)[{n}]
then

@act1 mv nd : | mv nd′ = mv nd \ {msg 7→ n} ∨mv nd′ = mv nd
@act2 mv ch := mv ch ∪ ({msg} × ch)

end

travel to nd
refines travel
any msg ch
where

@grd1 msg 7→ ch ∈ mv ch
with
n : n = start ch nd(ch)
r n : r n = end ch nd(ch)

then
@act1 mv ch := mv ch \ {msg 7→ ch}
@act2 mv nd := mv nd ∪ {msg 7→ end ch nd(ch)}

end

Figure 13: The Machine Part (Level 2): Events

An Extra Refinement Step.. To avoid adding too much complexity to
the specification, @act1 in travel to ch is modelled as a non-deterministic
assignment in Level 2. A message in a node can be sent to a number of output
channels depending on the routing decisions. If a message is transferred to
all the selected channels, the message is removed from mv nd. Otherwise,
the mv nd remains unchanged. Here we add a new variable waiting msg
which models the list of output channels of any node that waits for messages
to be transferred, as shown by @inv18 in Fig. 14.

When a node makes a decision about routing a message to different output
channels, the node sends the message to all the selected channels provided
that the selected channels are free; in this case the instance of the message is
removed from the node. Otherwise, the message is sent to the free selected
channels and waits for the other selected channels to become free. Once the
message is sent to all the selected channels, the instance of the message is re-

24

Table 2: Proof Statistics Level 2
Model Number of Proof Automatically Interactively

Obligations Discharged Discharged

Level2 Context 1 1(100%) 0(0%)

Level2 Machine 67 47(70%) 20(30%)

invariants
@inv18 waiting msg ∈ mv nd↔ CHANNEL
@inv19 ∀msg, ch ·msg 7→ ch ∈ mv ch ⇒ msg 7→ start ch nd(ch) 7→ ch /∈

waiting msg
@inv20 ∀msg, n, ch ·msg 7→ n 7→ ch ∈ waiting msg⇒ start ch nd(ch) = n

Figure 14: The Extra Refinement Step Machine Part: Invariants

moved from the node. The waiting msg variable denotes the messages which
are not transferred to the selected channels. Once a message is transferred
to a selected channel, the message, which was waiting for that channel, is re-
moved from the waiting msg, illustrated by @inv19. In addition, we need
to guarantee that when a message is about to be sent to output channels
of a node, this means that the node is at the start point of these selected
channels, shown by @inv20.

At this level, we split (via refinement) the travel to ch event to three
travel to ch ncmpl, travel to ch cmp and waiting list events to remove the
non-deterministic assignment in the abstract event as shown in Fig. 15. We
use the group refinement technique in this level to indicate the required
event ordering, as provided by the group refinement technique. In our group
refinement, the waiting list event is the first event in the trace and the
travel to ch cmp is the last event in the trace.

In the waiting list event, when there is a message at a node (@grd1)
and the routing decision has not been taken for the message in the node
(@grd3), an arbitrary number of output channels of the node are selected
(@grd2). The @grd4 in waiting list event expresses the same condition as
the @grd4 in the abstract travel to ch event. The waiting msg is updated
by adding the triple of message, node and the selected output channels, shown
by @act1.

After the waiting list event, either travel to ch cmp or travel to ch ncmp
are enabled depending on the availability of the selected output channels.
As removing a pair of message and node from mv nd means transferring the

25

message to all the selected output channels, we distinguish between trans-
ferring of the message to a number of selected output channels (modelled by
the travel to ch ncmp event) and transferring of the message to all selected
output channels (modelled by the travel to ch cmp event).

When all the output channels of a node, where a message is waiting
for transferring, are free (@grd2 of travel to ch cmp event), the message is
removed from the node (@act1), switched to the corresponding output chan-
nels (@act2) and removed from the waiting msg list of the node (@act3).
The witness of the travel to ch cmp expresses that the ch parameter is sub-
stituted by waiting msg[{msg 7→ n}].

Finally, the travel to ch ncmp event is enabled when at least one of the
selected output channels of a node is busy (@grd2 of travel to ch ncmp
event). In this state, the message is switched to the free channels (@act1)
and only corresponding messages for those free channels are removed from
the waiting msg (@act2).

5.3. Specification of the NetCorre: Level 3

In the third model (Level 3) we add in our framework the concept of
the Buffer structural element by modelling a constant bf size and refine
accordingly the dynamic part of the model. Intuitively, at the start and at the
end points of any channel, we now model a buffer of size bf size that stores
the messages. Each node consists of a number of input and output buffers
depending on its input and output channels. Any message in a node settles in
either an input buffer of the node or an output buffer of the node. Therefore,
the mv nd variable is replaced by the buf in and buf out variables, via data
refinement. The buf in variable denotes the content of the input buffers
of nodes (@inv21) with their capacities limited to the buffer size bf size
(@inv22). The buf out variable denotes the content of the output buffers
for nodes (@inv23) with their capacities similarly limited to the buffer size
bf size (@inv24), shown in Fig. 16. To complete this data refinement step,
we establish the connection between abstract variables and the more concrete
variables by the @inv25 gluing invariant. This invariant guarantees that all
the mappings in the mv nd relation in the abstract model are in either buf in
or buf out. When we prove that the invariant is preserved by all the events
in the machine, we guarantee the network correctness.

We perform another data refinement at this level in order to relate the
waiting messages in waiting msg to a corresponding buffer.We refine the
waiting msg variable by newly introduced waiting inout buf variable. The

26

waiting list [first] refines travel to ch
any n ch msg
where

@grd1 msg 7→ n ∈ mv nd
@grd2 ch ⊆ start ch nd−1[{n}]
@grd3 msg 7→ n /∈ dom(waiting msg)
@grd4 n /∈ des(msg) ∨ (n 7→ msg ∈ rcv nd ∧ (∃m·msg 7→ m ∈ (mv ch; start ch nd) ∪

mv nd
∧n 6= m))∨ (n 7→ msg ∈ rcv nd∧ (∀m·msg 7→ m ∈ (mv ch; start ch nd) ∪mv nd⇒ n =

m))
then

@act1 waiting msg := waiting msg ∪ ({msg} × {n} × ch)
end

travel to ch cmp refines travel to ch
any n msg
where

@grd1 msg 7→ n ∈ mv nd
@grd2 ∀ch·ch ∈ waiting msg[{msg 7→ n}]⇒ ch /∈ ran(mv ch)

With
ch : ch = waiting msg[{msg 7→ n}]

then
@act1 mv nd := mv nd \ {msg 7→ n}
@act2 mv ch := mv ch ∪ ({msg} × waiting msg[{msg 7→ n}])
@act3 waiting msg := {msg 7→ n}C− waiting msg

end

travel to ch ncmp refines travel to ch
any n msg
where

@grd1 msg 7→ n ∈ mv nd
@grd2 ∃ch·ch ∈ waiting msg[{msg 7→ n}] ∧ ch ∈ ran(mv ch)

With
ch : ch = waiting msg[{msg 7→ n}] \ ran(mv ch)

then
@act1 mv ch := mv ch ∪ ({msg} × (waiting msg[{msg 7→ n}] \ ran(mv ch)))
@act2 waiting msg := waiting msg \ ({msg} × {n} × (waiting msg[{msg 7→

n}] \ ran(mv ch)))
end

Figure 15: The Machine Part (The Extra Refinement Step): Events

27

invariants
@inv21 buf in ∈ CHANNEL→ P(MESSAGE)
@inv22 buf in = {c 7→ i|c 7→ i ∈ buf in ∧ card(i) ≤ bf size}
@inv23 buf out ∈ CHANNEL→ P(MESSAGE)
@inv24 buf out = {c 7→ i|c 7→ i ∈ buf in ∧ card(i) ≤ bf size}
@inv25 ∀msg, n·msg 7→ n ∈ mv nd⇒(∃ch·(ch ∈ start ch nd−1[{n}]∧msg ∈ buf out(ch))
∨(ch ∈ end ch nd−1[{n}] ∧msg ∈ buf in(ch)))

@inv26 waiting inout buf = {msg 7→ ch|ch ∈ CHANNEL ∧msg ∈ buf in(ch)}
@inv27 ∀msg, ch ·msg 7→ ch ∈ waiting inout buf
⇔ msg 7→ starts ch nd(ch) ∈ waiting msg

@inv28 ∀msg, ch·msg 7→ ch ∈ waiting inout buf ⇒msg /∈ buf out(ch)
@inv29 ∀msg, ch·msg ∈ buf out(ch)⇒msg 7→ ch /∈ waiting inout buf
@inv30 ∀msg, ch·msg 7→ ch ∈ waiting inout buf
⇒(∃c·c ∈ end nd ch−1[{start ch nd(ch)}] ∧msg ∈ buf in(c))

Figure 16: The Machine Part (Level 3): Invariants

waiting inout buf variable is defined by a message to channel relation (@inv26)
that expresses the output channels of a node where a message should be
transferred. To ensure the correct refinement of waiting msg in the refined
model, the @inv27 gluing invariant is defined to formulate the relation be-
tween waiting msg and waiting inout buf . This invariant guarantees that
all the mappings in the waiting msg relation are in waiting inout buf .

Once a message is transferred from input buffers to output buffers in
a node, it is removed from waiting inout buf , i.e., messages which are in
output buffers of nodes do not exist in the waiting list for transferring from
input buffers to output buffers (@inv28, 29). Another important property
of this refinement step is that all the messages which are waiting in a node
to be transferred from input buffers to output buffers were received by one
of the input buffers of the node (@inv30).

At this level of abstraction, we refine the travel to nd event in the model
to the travel ch ibuf event as shown in Fig. 17. The travel ch ibuf event
models the receipt of a message from a channel (@grd1), provided that the
buffer at the end of the channel has space to add a new message (@grd2).
This event releases the channel (@act1) and adds the message to the input
buffer of the node corresponding to the end of the channel (@act2).

In the previous abstract model, we cannot see how messages are trans-
ferred inside a node, but only that messages exist in either a node or a chan-
nel. We have already modelled the transferring of a message from a node to
multiple channels by travel to ch cmp and travel to ch ncmp events. How-

28

travel ch ibuf
refines travel to nd
any ch msg
where

@grd1 msg 7→ ch ∈ mv ch
@grd2 card(buf in(ch)) < bf size

then
@act1 mv ch := mv ch \ {msg 7→ ch}
@act2 buf in(ch) := buf in(ch) ∪ {msg}

end

Figure 17: The Machine Part 1 (Level 3): Events

ever, in this refinement level, we detail on transferring messages inside the
nodes. We consider moving messages from input buffers to output buffers
and then from output buffers to channels. This view of the system gives
the idea of splitting each of the travel to ch cmp and travel to ch ncmp
events to two events. Therefore, we refine the travel to ch ncmp abstract
event to the travel to out buf ncmp and travel from buf to ch ncmp con-
crete events as shown in Fig. 18. The travel to out buf ncmp event handles
transferring of a waiting message from an input buffer to output buffer and
the travel from buf to ch ncmp event deals with transferring of a waiting
message from an output buffer to a channel. The same split is performed for
travel to ch cmp.

To transfer a message from an input buffer of a node to the selected
output buffers, we define a local variable avb buf in travel to out buf ncmp
event. The avb buf variable contains the list of output buffers selected for
transferring and with enough space to accept new messages (@grd2). We
define the avb buf local variable in the travel to out buf ncmp event because
we need to exclude the selected output channels which are full and cannot
receive any messages (@grd1) from all the selected output channels.

In @act1 of travel to out buf ncmp, the message is added to the buffers
listed in avb buf . Moreover, the message waiting to be transferred to the
output buffers, in avb buf , is removed from the waiting list (@act2). We
note that the message is not removed from the input buffer because there
are instances of the message in the waiting list which are not transferred
to output buffers. Removing the message from an input buffer of a node is
done when the message is transferred to all the selected output buffers, in
waiting inout buf and is modelled by the travel to out buf cmp event.

29

travel to out buf ncmp
refines travel to ch ncmp
any n msg avb buf
where

@grd1 ∃ch·ch ∈ start ch nd−1[{n}] ∧ ch ∈ waiting inout buf [{msg}]
∧card(buf out(ch)) ≥ bf size

@grd2 ∀c·c ∈ start ch nd−1[{n}] ∧ c ∈ waiting inout buf [{msg}]
∧card(buf out(c)) < bf size⇒ c ∈ avb buf

@grd3 avb buf ⊆ waiting inout buf [{msg}] ∧ avb buf ⊆ start ch nd−1[{n}]
then

@act1 buf out := buf outC− {c 7→ i ∪ {msg}|c ∈ avb buf ∧ i = buf out(c)}
@act2 waiting inout buf := waiting inout buf \ ({msg} × avb buf)

end

travel from buf to ch ncmp
refines travel to ch ncmp
any n msg free ch
where

@grd1 ∃ch·msg ∈ buf out(ch) ∧ ch ∈ ran(mv ch)
@grd2 ∀ch·ch ∈ ch nd−1[{n}]∧msg ∈ buf out(ch)∧ch /∈ ran(mv ch)⇒ch ∈ free ch

then
@act1 mv ch := mv ch ∪ ({msg} × free ch)
@act2 buf out := buf outC− {c 7→ i \ {msg}|c 7→ i ∈ buf out ∧ c ∈ free ch}

end

Figure 18: The Machine Part 2 (Level 3): Events

Finally, the travel from buf to ch ncmp event models the message trans-
ferring from output buffers of a node to the channels. This event is enabled
when there is a message in the output buffers of a node and the channels
connected to the output buffers are free (@grd2). The message is removed
from the output buffers (@act2) and added to the corresponding channels
(@act1).

The statistics of proof obligations at this level of the framework’s hierar-
chy are shown in Table 3.

Table 3: Proof Statistics Level 3
Model Number of Proof Automatically Interactively

Obligations Discharged Discharged

Level3 Context 0 0(0%) 0(0%)

Level3 Machine 120 80(67%) 40(33%)

The third level of the hierarchy presents the foundation framework of the
network design. The development strategy of our framework put forwards
the refinement method to be used for modelling and verifying specific net-

30

work designs. As demonstrated, in each hierarchical level we gradually add
more elements and primitives together their corresponding properties to the
abstract level until we achieve a more detailed model of the system. This
method allows us to understand the problem from various facets, while we
focus on the various parts of the system at each level.

We also note the integration aspect of our framwork. For instance, in
Level 2 we add the Channel structural element to the network architecture
model and at the same time, we need to develop the network primitives in
terms of this element. The correctness of the algorithm-architecture integra-
tion is expressed by the model invariants that are proved correct for all the
network primitives (i.e., algorithm) and elements (i.e., architecture).

6. A Theory Basis for the NetCorre framework

Based on the developed NetCorre framework put forward in the previous
section, we now extract a network theory to be reused in concrete network
modelling. NetCorre is independent of any design details and its components
can be easily refined to concrete models until, e.g. a concrete routing algo-
rithm is derived [13]. Each component (architectural or primitives) can be
refined to different instances and the same instance of a component can be
used in different network developments, e.g. to develop a FIFO-buffer [13].
Hence, it is imperative to raise the reusability of our framework to a more
prominent level. For this, we build a library of pre-defined and pre-proved
reusable units of the framework to be employed in various network design.
This approach dramatically improves the lifecycle modelling and proving net-
work designs. To produce a library of reusable units, we adapt the idea of
object-oriented inheritance in which a root class is defined and then extended
to other classes. Therefore, in this section the fundamental components of
network design are defined as root classes by defining and proving theorems
for these components. The introduced theorems are the design rules of our
methodology; they can be extended to particular component developments
and then used in refined models of the network.

In the rest of this section, we extend the mathematical language and
theory of Event-B to specify the most relevant characteristics of network
design in a network extension. This network extension encompasses def-
initions and properties from NetCorre that we deem fundamental for any
network design. In other words, the proposed network extension consists of
the NetCorre components that can be reused to specify and verify different

31

network designs. We introduce new predicate definitions, new operator defi-
nitions and theorems dedicated to network designs. The purpose of the new
network extension is to avoid remodelling and especially reproving model
properties every time we need a formal network design. Instead, we provide
a pre-defined and pre-proved library containing fundamental characteristics
of networked systems. We develop the network extension by using the theory
plug-in. The proposed network extension provides a means for designers to
develop various network models when the developments do not contradict
the network theory.

We develop three theory levels, N1-N3, following the development order
of NetCorre. Hence, the Event-B theory corresponding to the hierarchical
framework is developed in a hierarchical manner as well. The overview of
hierarchical development is shown in Fig. 19.

Figure 19: Network Theory of the Framework

32

6.1. Theory N1 of the framework

The first fundamental characteristic of any network is given by the con-
nectivity of nodes, i.e., the topology of the network. This corresponds to the
Relationship component of the framework. We define a topology opera-
tor where the interconnection of nodes in a network is shown. The topology
operator takes a set N and yields all the topologies whose pairs are in N
× N and all the given nodes are connected via these pairs. The operator
is a root class which can be instantiated to different types of topologies in
the next levels. As shown in the following, topology is declared to be a pre-
fix operator with a single argument represented by N. The well-definedness
condition declares N to be a subset of a global type parameter NODE. The
topology is polymorphic on type NODE because NODE is a type parameter.
The final clause defines the expression topology(NODE) in terms of the ex-
isting expression language and a new expression connected, explained shortly.

operator topology

prefix

args N

condition N ⊆ NODE
definition {Neigh · Neigh ∈ N ↔ N ∧ Neigh = Neigh−1 ∧ dom(Neigh) C
id ∩Neigh = ø

∧finite(Neigh) ∧Neigh 6= ø ∧ connected(N,Neigh) | Neigh}

The connected predicate is declared as prefix with two arguments N and
net as shown below. The condition specifies a well-definedness condition that
N should be a subset of NODE and net should be a set of pairs of nodes.
The final clause provides the boolean value TRUE indicating all the given
nodes i.e., N, are connected via the given links, i.e, net. The main definition
of connected relies on the existence of a link path between arbitrary nodes
n and m from the given set N, i.e, the pair n 7→ m belongs to the transitive
closure on the given links net. The clause defines the predicate connected in
terms of a new expression closure, explained shortly.

33

predicate connected

prefix

args N net

condition N ⊆ NODE ∧ net ⊆ NODE ↔ NODE

definition ∃c·c ∈ closure(net)∧(∀n,m·n ∈ N∧m ∈ N ⇒ n 7→ m ∈ c)

The closure operator is declared as prefix with an argument net. The
condition specifies a well-definedness condition that net should be a set of
pairs of nodes. The final clause provides the transitive closure of a binary
relation on the set of pairs.

operator closure

prefix

args net

condition net ⊆ NODE ↔ NODE

definition {cl · cl ∈ NODE ↔ NODE ∧ net ⊆ cl ∧ cl;net ⊆ cl
∧(∀s · net ⊆ s ∧ s;net ⊆ s⇒ cl ⊆ s) | cl}

Having introduced those new predicates and operators, we specify and
prove theorems about them. The aim is to develop a library of rules derived
from the introduced operators and to provide the possibility to prove any
newly introduced theorem. The introduced theorems can then be used in
the rule form in proofs.

The following theorems show the properties which should be preserved
regarding the connected operator. The first theorem shows that an empty
set of nodes is connected in any networks and the second one denotes that
any subset of nodes connected in a sub-network are also connected on larger
networks that include the sub-network. The last theorem denotes that when
a set of nodes is connected in a network, any subsets of the set is also con-
nected in the network. We note that any instances of the topology operator
inherits all its proved theorems regarding connectivity.

34

thm emptyset ∀L · L ∈ NODE ↔ NODE ⇒ connected(∅, L)

thm subnetCon ∀S,L, L2 · L ∈ NODE ↔ NODE ∧ L2 ∈ NODE ↔ NODE

∧L ⊆ L2 ∧ connected(S,L)⇒ connected(S,L2)

thm subnodeCon ∀S1, S2, L · L ∈ NODE ↔ NODE ∧ S1 ∈ P (NODE)

∧S2 ∈ P (NODE) ∧ S1 ⊆ S2 ∧ connected(S2, L)⇒ connected(S1, L)

The abstract architecture component of the framework can be developed
by applying these operators in the system development phase. The abstract
Network primitives component of the framework consists of Injecting,
Routing and Receiving; abstract operator for each of them is put forward
in this section. The injection operator models the abstract behaviour of
injecting sub-component of NetCorre by getting a list of messages and a
network topology. The operator maps the list of messages to a number of
nodes of a network. We note that we do not model details of messages such
as source and destinations and these details can be defined later in a network
model.

operator injection

prefix

args msg net

condition net ∈ topology(NODE) ∧msg ⊆MSG

definition {in · in ∈ msg → dom(net) | in}

The routing operator models the behaviour of the routing component
in the framework by getting a list of messages with their location in the
network and a network topology. For each message in the list, the operator
either keeps the message to its current position or transmits it to neighbour
nodes according to the topology given as an argument to the operator.

operator routing

prefix

args cur msg net

condition net ∈ topology(NODE) ∧ cur msg ∈MSG↔ dom(net)

definition {next ·next ∈ dom(cur msg)↔ dom(net)∧ dom(next) = dom(cur msg)

∧ next ⊆ cur msg;net ∧ next 6= cur msg | next}

35

The routing operator is a reusable unit which acts as a root class in our
development to instantiate different routing algorithms. The instantiated
routing algorithms inherit all the proved properties of the routing operator
and then they can be used in the development of particular networks.

The received operator is declared to be a prefix operator with two argu-
ments: msg and net. The well-definedness conditions declare msg to be a
subset of a global type parameter MSG and net to be a relation, containing
NODE ↔ NODE pairs. The final clause defines the expression received in
terms of the newly introduced network expression language.

operator received

prefix

args msg net

condition net ∈ topology(NODE) ∧msg ⊆MSG

definition {out · out ∈ msg ↔ dom(net) ∧ dom(out) = msg

∧ (∃in.in ∈ injection(msg, net)) | out}

Having introduced the operators for the network primitives, we spec-
ify and prove theorems about their inter-relations. We develop a library of
rules derived from the introduced operators to provide a means for users to
verify the correctness of a network design by using these theorems in proofs.
The first theorem denotes that no messages are lost during routing and the
second one shows that for any set of messages injected to the network, there
is the set of messages which are received by the nodes of the network.

thm NoMsgLoss in Routing ∀net, next,m, in m · net ∈ topology(NODE)

∧ in m ∈ injection(MSG,net) ∧m ∈ dom(in m) 7→ dom(net)

∧ next ∈ routing(net,m)⇒ dom(next) = dom(m)

thm InjectionReceivedEquality ∀net, rcv, in m · net ∈ topology(NODE)

∧ in m ∈ injection(MSG,net) ∧ rcv ∈ received(dom(in m), net)

⇒ dom(rcv) = dom(in m)

6.2. Theory N2 of the framework

The development of the theory follows the hierarchical development of
the framework because the proposed hierarchy suits the construction of a

36

well-structured theory of the network. Therefore, to extend Level 1 of the
hierarchical framework and model the Channel structural element, we create
a new theory component N2 where N1 theory component is imported. The
N2 theory component has a CH global type parameter used in operator def-
initions. To express channels as a data transferring media, the global type
parameter CHANNEL should be connected to the topology concept defined
by the topology operator. Channels connect neighbour nodes to each other,
i.e., all pairs of nodes in any topology should be represented via channels.
Therefore, two new operators input ch and output ch are introduced in N2.
The input ch operator is defined in the following way:

operator input ch

prefix

args c net

condition c ⊆ CHANNEL ∧ net ∈ topology(NODE)

definition{sc · sc ∈ c� net | (sc; (net C prj1))−1}

The input ch operator is declared as prefix with two arguments c and net.
The condition specifies a well-definedness condition that c must be a subset
of CHANNEL and net must be of type topology(NODE). The final clause
provides the definition of the expression input ch(CH, NODE ↔ NODE) in
terms of the N1 expression language. The definition declares mapping of
channels to nodes that are connected to other nodes as shown in the topology
definition.

For defining the output ch operator we have three arguments c, net and
sc. The condition specifies that c must be a subset of CHANNEL, net must
be of type topology(NODE) and sc must be of type input ch(c, net). The
operator definition means that for any set of channels mapped to nodes by
input ch operator, a corresponding node to channel mapping is constructed
in such a way that the composition of these two mapping is equal to the
given topology.

37

operator output ch

prefix

args c net sc

condition c ⊆ CHANNEL ∧ net ∈ topology(NODE) ∧ sc ∈ input ch(c, net)

definition{ch nd, ec ·ch nd ∈ c� net∧ec = ch nd; (net C prj1)∧sc; ec = net | ec−1}

Besides, we specify theorems about channel structural elements and ex-
tend the proposed library of rules for network modelling. The first theorem
shows that any channel is mapped to only one pair of nodes. In other words,
the reverse of a derived relation from output ch operator is a function. The
second theorem denotes that given a network topology and a set of channels,
the input ch and output ch operators can construct exactly the same topol-
ogy plus more information about channels. This means that without consid-
ering channels in derived relations from input ch and output ch, we achieve
the given topology. We note that both input ch and output ch are extensions
of the topology operator in the N1 theory of the hierarchical framework. In
other words, these two newly introduced operators are an implementation of
the topology operator in the N1 theory.

thm Rev ch fun ∀n, c, net, sc, ec ·n ⊆ NODE ∧ c ⊆ CHANNEL∧net ∈ topology(n)

∧ sc ∈ input ch(c, net) ∧ ec ∈ output ch(c, net, sc)⇒ ec ∈ n↔ c ∧ ec−1 ∈ c→ n

thm chNet eq to ch ∀n, c, net, sc, ec · n ⊆ NODE ∧ c ⊆ CHANNEL ∧ net ∈
topology(n)

∧ sc ∈ input ch(c, net) ∧ ec ∈ output ch(c, net, sc)⇒ sc; ec−1 = net

6.3. Theory N3 of the framework

The third level of the hierarchical framework NetCorre introduces the
buffer structural element; correspondingly, we create a new theory com-
ponent to define rules about buffers where the N2 theory component is im-
ported. We define a new inductive datatype to represent buffers; this can
then be used to define the enqueue and dequeue operators for specific types
of buffers. The buffer constructors consist nil and cons that seperate forms
that an element might take. The cons constructor composed of two destruc-
tors of head and tail that provide a means of accessing the feild of an element.

38

datatypes buffer

type arguments MESSAGE

constructors

nil

cons

destructors

head type MESSAGE

tail type buffer(MESSAGE)

6.4. Using the Theory of the framework

These three network theory levels form the basis of design rules in our
methodology and any extension of these rules adds an instance of the network
components to the library of design rules. As an example of extending the
theory Level N3, the enqueue and dequeue operators of a FIFO-buffer are
illustrated in the following.

The enqueue operator is declared to be a prefix operator with two ar-
guments, buf and msg; it models the adding of the new message msg to
the top of the queue buf . The dequeue operator is defined to be a prefix
operator with the argument buf and models the removal of the message at
the bottom of the queue buf . The functioning of the operators is ensured
with the theorems thm1, thm2, and thm3.

operator FIFO enqueue

prefix

args buf msg

condition buf ∈ buffer(msg)
∧ msg ∈MESSAGE

definition cons(m, b)

operator FIFO dequeue

prefix

args buf

condition buf ∈ buffer(msg)
∧ buf 6= nil

recursive definition match buf

nil : b

cons(x, a) : if a = nil then nil

else cons(x, FIFO dequeue (a,msg))

39

operator FIFO delete

prefix

args buf msg

condition buf ∈ buffer(msg) ∧msg ∈
MESSAGE

recursive definition match buf

(nil,msg) : nil

(cons(x, a),msg) : if x = m then

FIFO delete(a) else

cons(x, FIFO delete(a,msg))

operator FIFO size

prefix

args buf

condition buf ∈ buffer(msg)
recursive definition match buf

nil : 0

cons(x, a) : 1 +FIFO size(a)

thm1 ∀a, x.a ∈ buffer(MESSAGE)⇒ size(cons(x, a)) = size(a) + 1
thm2 ∀b,m.m ∈MESSAGE ∧ b ∈ buffer(MESSAGE)

⇒ size(FIFO enqueue(b,m)) = size(b) + 1
thm3 ∀b.b ∈ buffer(MASSAGE) ⇒ size(FIFO dequeue(b)) =
size(b)− 1

In Fig. 20 we point out the ‘position’ in the hierarchical development that
the enqueue and dequeue operators for the FIFO buffer have. Other exten-
sions can take place - we have depicted for the sake of example a ‘Minimal
Routing’ theory in Fig. 20. In fact, any of the N1-N3 theory levels can be
extended, as well as the newly developed ones such as the FIFO-buffer.

7. Conclusion

In this paper, we have introduced the hierarchical framework NetCorre
for correct network design, we have modeled it formally, and we have proven
various properties about it. The instrumental formalism and tool support
in our modelling and proving endeavors is provided by the Event-B formal
method and its associated Rodin platform. The formal design technique
of refinement is at the centre of all our developments in this paper. It is
through refinement that we are able to model a hierarchical framework and
also through refinement that the intended reuse of NetCorre is put forward.
A network specification based on NetCorre can be refined until a network im-
plementation is derived; some examples of derivations appear in [13]. Based
on NetCorre, we have defined and proved some fundamental ‘design rules’ for
a network theory developed within the theory plugin of the Rodin toolset.
These design rules can then be used to develop even more concrete design

40

Figure 20: Instantiation of Network Theory

41

rules, where precise definitions are proposed for the functional algorithms or
architecture components.

We thus demonstrate that a systematic and effective specification and
verification of various network designs is possible, based upon a small set
of proved structural and functional network primitives, that are added or
detailed gradually. The framework allows to make a variety of design choices
in the early stages of the design with various degrees of modelling details,
relying on the formal refinement technique. Our framework integrates both
the models for the algorithm and the architecture network design so that the
overall correctness is guaranteed.

We observe that our proposed NetCorre is very general, so that it can
be reused to model a wide variety of network designs. Remarkably, both
networks ‘in the large’ as well as networks-on-chip are approachable via our
framework, because defining NetCorre is based on previously engineering
numerous networking models in Event-B [12, 14]. With NetCorre, we extract
the most general reusable network characteristics and put them up for further
reuse.

References

[1] Abrial, J.: A System Development Process with Event-B and the Rodin
Platform. chap. 1, pp. 1–3. Springer Berlin / Heidelberg, Berlin, Heidel-
berg (2007). DOI http://dx.doi.org/10.1007/978-3-540-76650-6 1. URL
http://dx.doi.org/10.1007/978-3-540-76650-6 1

[2] Abrial, J.: A system development process with event-b and the rodin
platform. Formal Methods and Software Engineering pp. 1–3 (2007)

[3] Abrial, J.R.: Modeling in Event-B: System and Software Engineering.
Cambridge University Press (2010)

[4] Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F.,
Voisin, L.: Rodin: an open toolset for modelling and reason-
ing in event-b. Int. J. Softw. Tools Technol. Transf. 12, 447–
466 (2010). DOI http://dx.doi.org/10.1007/s10009-010-0145-y. URL
http://dx.doi.org/10.1007/s10009-010-0145-y

[5] Abrial, J.R., Butler, M., Hallerstede, S., Leuschel, M., Schmalz, M.,
Voisin, L.: Proposals for mathematical extensions for event-b. Technical
Report

42

[6] Attiogbé, C.: Event-based approach to modelling dynamic architecture:
Application to mobile ad-hoc network. In: ISoLA, pp. 769–781 (2008)

[7] Attiogbé, C.: Modelling and analysing dynamic decentralised systems.
CoRR abs/0909.4896 (2009)

[8] Back, R.J.R., Kurki-Suonio, R.: Decentralization of process nets with
centralized control. In: Proceedings of the second annual ACM sympo-
sium on Principles of distributed computing, PODC ’83, pp. 131–142.
ACM, New York, NY, USA (1983). DOI 10.1145/800221.806716. URL
http://doi.acm.org/10.1145/800221.806716

[9] Butler, M., Maamria, I.: Mathematical extension in event-b through the
rodin theory component. Technical Report

[10] Cansell, D., Méry, D., Proch, C.: System-on-chip design by
proof-based refinement. Int. J. Softw. Tools Technol. Transf.
11(3), 217–238 (2009). DOI 10.1007/s10009-009-0104-7. URL
http://dx.doi.org/10.1007/s10009-009-0104-7

[11] Hoang, T.S., Kuruma, H., Basin, D.A., Abrial, J.R.: Developing topol-
ogy discovery in event-b. In: IFM, pp. 1–19 (2009)

[12] Kamali, M., Laibinis, L., Petre, L., Sere, K.: Formal develop-
ment of wireless sensoractor networks. Science of Computer
Programming (0) (2012). DOI 10.1016/j.scico.2012.03.002. URL
http://www.sciencedirect.com/science/article/pii/S0167642312000470?v=s5

[13] Kamali, M., Petre, L., Sere, K., Daneshtalab, M.: Correcomm: A formal
hierarchical framework for communication designs. In: the 2nd IEEE
International Conference on Embedded Systems for Enterprise Applica-
tions. IEEE (2011)

[14] Kamali, M., Petre, L., Sere, K., Daneshtalab, M.: Formal modeling
of multicast communication in 3d nocs. In: Digital System Design
(DSD), 2011 14th Euromicro Conference on, pp. 634 –642 (2011). DOI
10.1109/DSD.2011.86

[15] Kamali, M., Petre, L., Sere, K., Daneshtalab, M.: Refinement-based
modeling of 3d nocs. In: Fundamental of Software Engineering (FSEN),

43

2011 4th IPM International Conference on, vol. 7141, pp. 236 –252.
Springer-Verlag (2012)

[16] Lucarz, C., Mattavelli, M., Dubois, J.: A co-design platform for al-
gorithm/architecture design exploration. In: Multimedia and Expo,
2008 IEEE International Conference on, pp. 1069 –1072 (2008). DOI
10.1109/ICME.2008.4607623

[17] Meng, Y.: Algorithm/architecture design space co-exploration for en-
ergy efficient wireless communications systems. Ph.D. thesis, Santa Bar-
bara, CA, USA (2006). AAI3233117

[18] Métayer, C., Voisin, L.: The Event-B Mathemati-
cal Language (Version 2) (2009). URL http://deploy-
eprints.ecs.soton.ac.uk/11/4/kernel lang.pdf

[19] Plosila, J., Sere, K.: Action systems in pipelined processor design. In:
In Proc. of the 3rd Int. Symp. on Advanced Research in Asynchronous
Circuits and Systems, pp. 156–166. IEEE Computer Society Press (1997)

[20] Rigorous Open Development Environment for Complex Systems
(RODIN), IST FP6 STREP project [online]: Documentation at
http://rodin.cs.ncl.ac.uk/ (accessed 26 october 2011)

[21] RODIN tool platform [online]: Available at http://www.event-
b.org/platform.html/ (Accessed 26 October 2011)

[22] Zhu, X., Malik, S.: A hierarchical modeling framework
for on-chip communication architectures of multiprocess-
ing socs. ACM Trans. Des. Autom. Electron. Syst. 12(1),
6:1–6:24 (2007). DOI 10.1145/1188275.1188281. URL
http://doi.acm.org/10.1145/1188275.1188281

44

Turku Centre for Computer Science

TUCS Dissertations

1. Marjo Lipponen, On Primitive Solutions of the Post Correspondence Problem
2. Timo Käkölä, Dual Information Systems in Hyperknowledge Organizations
3. Ville Leppänen, Studies on the Realization of PRAM
4. Cunsheng Ding, Cryptographic Counter Generators
5. Sami Viitanen, Some New Global Optimization Algorithms
6. Tapio Salakoski, Representative Classification of Protein Structures
7. Thomas Långbacka, An Interactive Environment Supporting the Development of

Formally Correct Programs
8. Thomas Finne, A Decision Support System for Improving Information Security
9. Valeria Mihalache, Cooperation, Communication, Control. Investigations on

Grammar Systems.
10. Marina Waldén, Formal Reasoning About Distributed Algorithms
11. Tero Laihonen, Estimates on the Covering Radius When the Dual Distance is

Known
12. Lucian Ilie, Decision Problems on Orders of Words
13. Jukkapekka Hekanaho, An Evolutionary Approach to Concept Learning
14. Jouni Järvinen, Knowledge Representation and Rough Sets
15. Tomi Pasanen, In-Place Algorithms for Sorting Problems
16. Mika Johnsson, Operational and Tactical Level Optimization in Printed Circuit

Board Assembly
17. Mats Aspnäs, Multiprocessor Architecture and Programming: The Hathi-2 System
18. Anna Mikhajlova, Ensuring Correctness of Object and Component Systems
19. Vesa Torvinen, Construction and Evaluation of the Labour Game Method
20. Jorma Boberg, Cluster Analysis. A Mathematical Approach with Applications to

Protein Structures
21. Leonid Mikhajlov, Software Reuse Mechanisms and Techniques: Safety Versus

Flexibility
22. Timo Kaukoranta, Iterative and Hierarchical Methods for Codebook Generation in

Vector Quantization
23. Gábor Magyar, On Solution Approaches for Some Industrially Motivated

Combinatorial Optimization Problems
24. Linas Laibinis, Mechanised Formal Reasoning About Modular Programs
25. Shuhua Liu, Improving Executive Support in Strategic Scanning with Software

Agent Systems
26. Jaakko Järvi, New Techniques in Generic Programming – C++ is more Intentional

than Intended
27. Jan-Christian Lehtinen, Reproducing Kernel Splines in the Analysis of Medical

Data
28. Martin Büchi, Safe Language Mechanisms for Modularization and Concurrency
29. Elena Troubitsyna, Stepwise Development of Dependable Systems
30. Janne Näppi, Computer-Assisted Diagnosis of Breast Calcifications
31. Jianming Liang, Dynamic Chest Images Analysis
32. Tiberiu Seceleanu, Systematic Design of Synchronous Digital Circuits
33. Tero Aittokallio, Characterization and Modelling of the Cardiorespiratory System

in Sleep-Disordered Breathing
34. Ivan Porres, Modeling and Analyzing Software Behavior in UML
35. Mauno Rönkkö, Stepwise Development of Hybrid Systems
36. Jouni Smed, Production Planning in Printed Circuit Board Assembly
37. Vesa Halava, The Post Correspondence Problem for Market Morphisms
38. Ion Petre, Commutation Problems on Sets of Words and Formal Power Series
39. Vladimir Kvassov, Information Technology and the Productivity of Managerial

Work
40. Frank Tétard, Managers, Fragmentation of Working Time, and Information

Systems

41. Jan Manuch, Defect Theorems and Infinite Words
42. Kalle Ranto, Z4-Goethals Codes, Decoding and Designs
43. Arto Lepistö, On Relations Between Local and Global Periodicity
44. Mika Hirvensalo, Studies on Boolean Functions Related to Quantum Computing
45. Pentti Virtanen, Measuring and Improving Component-Based Software

Development
46. Adekunle Okunoye, Knowledge Management and Global Diversity – A Framework

to Support Organisations in Developing Countries
47. Antonina Kloptchenko, Text Mining Based on the Prototype Matching Method
48. Juha Kivijärvi, Optimization Methods for Clustering
49. Rimvydas Rukšėnas, Formal Development of Concurrent Components
50. Dirk Nowotka, Periodicity and Unbordered Factors of Words
51. Attila Gyenesei, Discovering Frequent Fuzzy Patterns in Relations of Quantitative

Attributes
52. Petteri Kaitovaara, Packaging of IT Services – Conceptual and Empirical Studies
53. Petri Rosendahl, Niho Type Cross-Correlation Functions and Related Equations
54. Péter Majlender, A Normative Approach to Possibility Theory and Soft Decision

Support
55. Seppo Virtanen, A Framework for Rapid Design and Evaluation of Protocol

Processors
56. Tomas Eklund, The Self-Organizing Map in Financial Benchmarking
57. Mikael Collan, Giga-Investments: Modelling the Valuation of Very Large Industrial

Real Investments
58. Dag Björklund, A Kernel Language for Unified Code Synthesis
59. Shengnan Han, Understanding User Adoption of Mobile Technology: Focusing on

Physicians in Finland
60. Irina Georgescu, Rational Choice and Revealed Preference: A Fuzzy Approach
61. Ping Yan, Limit Cycles for Generalized Liénard-Type and Lotka-Volterra Systems
62. Joonas Lehtinen, Coding of Wavelet-Transformed Images
63. Tommi Meskanen, On the NTRU Cryptosystem
64. Saeed Salehi, Varieties of Tree Languages
65. Jukka Arvo, Efficient Algorithms for Hardware-Accelerated Shadow Computation
66. Mika Hirvikorpi, On the Tactical Level Production Planning in Flexible

Manufacturing Systems
67. Adrian Costea, Computational Intelligence Methods for Quantitative Data Mining
68. Cristina Seceleanu, A Methodology for Constructing Correct Reactive Systems
69. Luigia Petre, Modeling with Action Systems
70. Lu Yan, Systematic Design of Ubiquitous Systems
71. Mehran Gomari, On the Generalization Ability of Bayesian Neural Networks
72. Ville Harkke, Knowledge Freedom for Medical Professionals – An Evaluation Study

of a Mobile Information System for Physicians in Finland
73. Marius Cosmin Codrea, Pattern Analysis of Chlorophyll Fluorescence Signals
74. Aiying Rong, Cogeneration Planning Under the Deregulated Power Market and

Emissions Trading Scheme
75. Chihab BenMoussa, Supporting the Sales Force through Mobile Information and

Communication Technologies: Focusing on the Pharmaceutical Sales Force
76. Jussi Salmi, Improving Data Analysis in Proteomics
77. Orieta Celiku, Mechanized Reasoning for Dually-Nondeterministic and

Probabilistic Programs
78. Kaj-Mikael Björk, Supply Chain Efficiency with Some Forest Industry

Improvements
79. Viorel Preoteasa, Program Variables – The Core of Mechanical Reasoning about

Imperative Programs
80. Jonne Poikonen, Absolute Value Extraction and Order Statistic Filtering for a

Mixed-Mode Array Image Processor
81. Luka Milovanov, Agile Software Development in an Academic Environment
82. Francisco Augusto Alcaraz Garcia, Real Options, Default Risk and Soft

Applications
83. Kai K. Kimppa, Problems with the Justification of Intellectual Property Rights in

Relation to Software and Other Digitally Distributable Media
84. Dragoş Truşcan, Model Driven Development of Programmable Architectures
85. Eugen Czeizler, The Inverse Neighborhood Problem and Applications of Welch

Sets in Automata Theory

86. Sanna Ranto, Identifying and Locating-Dominating Codes in Binary Hamming
Spaces

87. Tuomas Hakkarainen, On the Computation of the Class Numbers of Real Abelian
Fields

88. Elena Czeizler, Intricacies of Word Equations
89. Marcus Alanen, A Metamodeling Framework for Software Engineering
90. Filip Ginter, Towards Information Extraction in the Biomedical Domain: Methods

and Resources
91. Jarkko Paavola, Signature Ensembles and Receiver Structures for Oversaturated

Synchronous DS-CDMA Systems
92. Arho Virkki, The Human Respiratory System: Modelling, Analysis and Control
93. Olli Luoma, Efficient Methods for Storing and Querying XML Data with Relational

Databases
94. Dubravka Ilić, Formal Reasoning about Dependability in Model-Driven

Development
95. Kim Solin, Abstract Algebra of Program Refinement
96. Tomi Westerlund, Time Aware Modelling and Analysis of Systems-on-Chip
97. Kalle Saari, On the Frequency and Periodicity of Infinite Words
98. Tomi Kärki, Similarity Relations on Words: Relational Codes and Periods
99. Markus M. Mäkelä, Essays on Software Product Development: A Strategic

Management Viewpoint
100. Roope Vehkalahti, Class Field Theoretic Methods in the Design of Lattice Signal

Constellations
101. Anne-Maria Ernvall-Hytönen, On Short Exponential Sums Involving Fourier

Coefficients of Holomorphic Cusp Forms
102. Chang Li, Parallelism and Complexity in Gene Assembly
103. Tapio Pahikkala, New Kernel Functions and Learning Methods for Text and Data

Mining
104. Denis Shestakov, Search Interfaces on the Web: Querying and Characterizing
105. Sampo Pyysalo, A Dependency Parsing Approach to Biomedical Text Mining
106. Anna Sell, Mobile Digital Calendars in Knowledge Work
107. Dorina Marghescu, Evaluating Multidimensional Visualization Techniques in Data

Mining Tasks
108. Tero Säntti, A Co-Processor Approach for Efficient Java Execution in Embedded

Systems
109. Kari Salonen, Setup Optimization in High-Mix Surface Mount PCB Assembly
110. Pontus Boström, Formal Design and Verification of Systems Using Domain-

Specific Languages
111. Camilla J. Hollanti, Order-Theoretic Mehtods for Space-Time Coding: Symmetric

and Asymmetric Designs
112. Heidi Himmanen, On Transmission System Design for Wireless Broadcasting
113. Sébastien Lafond, Simulation of Embedded Systems for Energy Consumption

Estimation
114. Evgeni Tsivtsivadze, Learning Preferences with Kernel-Based Methods
115. Petri Salmela, On Commutation and Conjugacy of Rational Languages and the

Fixed Point Method
116. Siamak Taati, Conservation Laws in Cellular Automata
117. Vladimir Rogojin, Gene Assembly in Stichotrichous Ciliates: Elementary

Operations, Parallelism and Computation
118. Alexey Dudkov, Chip and Signature Interleaving in DS CDMA Systems
119. Janne Savela, Role of Selected Spectral Attributes in the Perception of Synthetic

Vowels
120. Kristian Nybom, Low-Density Parity-Check Codes for Wireless Datacast Networks
121. Johanna Tuominen, Formal Power Analysis of Systems-on-Chip
122. Teijo Lehtonen, On Fault Tolerance Methods for Networks-on-Chip
123. Eeva Suvitie, On Inner Products Involving Holomorphic Cusp Forms and Maass

Forms
124. Linda Mannila, Teaching Mathematics and Programming – New Approaches with

Empirical Evaluation
125. Hanna Suominen, Machine Learning and Clinical Text: Supporting Health

Information Flow
126. Tuomo Saarni, Segmental Durations of Speech
127. Johannes Eriksson, Tool-Supported Invariant-Based Programming

128. Tero Jokela, Design and Analysis of Forward Error Control Coding and Signaling
for Guaranteeing QoS in Wireless Broadcast Systems

129. Ville Lukkarila, On Undecidable Dynamical Properties of Reversible One-
Dimensional Cellular Automata

130. Qaisar Ahmad Malik, Combining Model-Based Testing and Stepwise Formal
Development

131. Mikko-Jussi Laakso, Promoting Programming Learning: Engagement, Automatic
Assessment with Immediate Feedback in Visualizations

132. Riikka Vuokko, A Practice Perspective on Organizational Implementation of
Information Technology

133. Jeanette Heidenberg, Towards Increased Productivity and Quality in Software
Development Using Agile, Lean and Collaborative Approaches

134. Yong Liu, Solving the Puzzle of Mobile Learning Adoption
135. Stina Ojala, Towards an Integrative Information Society: Studies on Individuality

in Speech and Sign
136. Matteo Brunelli, Some Advances in Mathematical Models for Preference Relations
137. Ville Junnila, On Identifying and Locating-Dominating Codes
138. Andrzej Mizera, Methods for Construction and Analysis of Computational Models

in Systems Biology. Applications to the Modelling of the Heat Shock Response and
the Self-Assembly of Intermediate Filaments.

139. Csaba Ráduly-Baka, Algorithmic Solutions for Combinatorial Problems in
Resource Management of Manufacturing Environments

140. Jari Kyngäs, Solving Challenging Real-World Scheduling Problems
141. Arho Suominen, Notes on Emerging Technologies
142. József Mezei, A Quantitative View on Fuzzy Numbers
143. Marta Olszewska, On the Impact of Rigorous Approaches on the Quality of

Development
144. Antti Airola, Kernel-Based Ranking: Methods for Learning and Performace

Estimation
145. Aleksi Saarela, Word Equations and Related Topics: Independence, Decidability

and Characterizations
146. Lasse Bergroth, Kahden merkkijonon pisimmän yhteisen alijonon ongelma ja sen

ratkaiseminen
147. Thomas Canhao Xu, Hardware/Software Co-Design for Multicore Architectures
148. Tuomas Mäkilä, Software Development Process Modeling – Developers

Perspective to Contemporary Modeling Techniques
149. Shahrokh Nikou, Opening the Black-Box of IT Artifacts: Looking into Mobile

Service Characteristics and Individual Perception
150. Alessandro Buoni, Fraud Detection in the Banking Sector: A Multi-Agent

Approach
151. Mats Neovius, Trustworthy Context Dependency in Ubiquitous Systems
152. Fredrik Degerlund, Scheduling of Guarded Command Based Models
153. Amir-Mohammad Rahmani-Sane, Exploration and Design of Power-Efficient

Networked Many-Core Systems
154. Ville Rantala, On Dynamic Monitoring Methods for Networks-on-Chip
155. Mikko Pelto, On Identifying and Locating-Dominating Codes in the Infinite King

Grid
156. Anton Tarasyuk, Formal Development and Quantitative Verification of

Dependable Systems
157. Muhammad Mohsin Saleemi, Towards Combining Interactive Mobile TV and

Smart Spaces: Architectures, Tools and Application Development
158. Tommi J. M. Lehtinen, Numbers and Languages
159. Peter Sarlin, Mapping Financial Stability
160. Alexander Wei Yin, On Energy Efficient Computing Platforms
161. Mikołaj Olszewski, Scaling Up Stepwise Feature Introduction to Construction of

Large Software Systems
162. Maryam Kamali, Reusable Formal Architectures for Networked Systems

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www. tucs.fi

Turku
Centre for
Computer
Science

University of Turku
Faculty of Mathematics and Natural Sciences
 • Department of Information Technology
 • Department of Mathematics and Statistics
Turku School of Economics
 • Institute of Information Systems Science

Åbo Akademi University
Division for Natural Sciences and Technology
 • Department of Information Technologies

ISBN 978-952-12-2932-9
ISSN 1239-1883

M
aryam

 K
am

ali

M
aryam

 K
am

ali
Reusable Form

al A
rchitectures for N

etw
orked System

s

Reusable Form
al A

rchitectures for N
etw

orked System
s

