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Abstract 

Bacteria can exist as planktonic, the lifestyle in which single cells exist in suspension, and 

as biofilms, which are surface-attached bacterial communities embedded in a self-

produced matrix. Most of the antibiotics and the methods for antimicrobial work have 

been developed for planktonic bacteria. However, the majority of the bacteria in natural 

habitats live as biofilms. Biofilms develop dauntingly fast high resistance towards 

conventional antibacterial treatments and thus, there is a great need to meet the 

demands of effective anti-biofilm therapy. 

In this thesis project it was attempted to fill the void of anti-biofilm screening methods by 

developing a platform of assays that evaluate the effect that screened compounds have on 

the total biomass, viability and the extracellular polysaccharide (EPS) layer of the 

biofilms. Additionally, a new method for studying biofilms and their interactions with 

compounds in a continuous flow system was developed using capillary 

electrochromatography (CEC). The screening platform was utilized with a screening 

campaign using a small library of cinchona alkaloids. 

The assays were optimized to be statistically robust enough for screening. The first assay, 

based on crystal violet staining, measures total biofilm biomass, and it was automated 

using a liquid handling workstation to decrease the manual workload and signal 

variation. The second assay, based on resazurin staining, measures viability of the biofilm, 

and it was thoroughly optimized for the strain used, but was then a very simple and fast 

method to be used for primary screening. The fluorescent resazurin probe is not toxic to 

the biofilms. In fact, it was also shown in this project that staining the biofilms with 

resazurin prior to staining with crystal violet had no effect on the latter and they can be 

used in sequence on the same screening plate. This sequential addition step was indeed a 

major improvement on the use of reagents and consumables and also shortened the work 

time. As a third assay in the platform a wheat germ agglutinin based assay was added to 

evaluate the effect a compound has on the EPS layer. Using this assay it was found that 

even if compounds might have clear effect on both biomass and viability, the EPS layer 

can be left untouched or even be increased. This is a clear implication of the importance 

of using several assays to be able to find “true hits” in a screening setting.  

In the pilot study of screening for antimicrobial and anti-biofilm effects using a cinchona 

alkaloid library, one compound was found to have antimicrobial effect against planktonic 

bacteria and prevent biofilm formation at low micromolar concentration. To eradicate 

biofilms, a higher concentration was needed. It was also shown that the chemical space 

occupied by the active compound was slightly different than the rest of the cinchona 

alkaloids as well as the rest of the compounds used for validatory screening during the 

optimization processes of the separate assays.  
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1 Review of the literature 

1.1 Biofilms 

Biofilms are defined in many ways, “a structured community of bacterial cells enclosed in 

a self-produced polymeric matrix and adherent to an inert or living surface”, given by 

Costerton et al. (1999) is maybe the most explanatory definition. Every description of 

biofilms concludes similarly that a biofilm consists of the bacteria (single or 

multispecies), the matrix and the surface to which the whole structure is attached (Dunne 

2002). Practically any surface, living or non-living can be targeted for bacteria 

colonization and, thus, biofilm formation. Surfaces can range from rocks in a water 

stream (Costerton et al. 1978, Henrici 1933), paper industry machinery (Kolari et al. 

2001) to plants, human and animal lungs, noses, ears, and wounds etc. Biofilms have been 

known as such since the 1970s and 1980s when Costerton and his coworkers defined 

how bacteria stick to a surface and further studied the biofilm phenomenon (Costerton et 

al. 1978, Costerton et al. 1987). Prior to that, Henrici in the 1930s, came to the conclusion 

that bacteria in fresh water are not growing planktonically but in clusters attached to 

solid, even glass, surfaces (Henrici 1933). However, even earlier, Antonie van 

Leeuwenhoek, who was the first person to be able to study bacteria under a microscope, 

or animalculi as he referred to them in the 17th century, was actually studying biofilms 

because he scraped the microbes off his teeth. Biofilms in dental plaques are actually one 

of the most studied areas of biofilm research (Burmølle et al. 2010). Additionally, biofilm 

contamination of prosthetic devices is another area with an intense research focus 

(Schinabeck and Ghannoum 2006).  

1.1.1 Formation of biofilms 

Why are biofilms formed in the first place? At some point in the evolution of prokaryotes, 

biofilm formation was likely to be advantageous for survival. There are many theories as 

to why biofilms are the preferred lifestyle by so many bacteria. First, the surface provides 

stability in the growth environment by localizing the cells in close proximity. Secondly, 

the biofilm formation offers protection from a wide range of environmental challenges 

(Hall-Stoodley et al. 2004). It has also been widely discussed how nutrient availability 

affects initiation of biofilm formation. It has been seen that gram-negative bacteria favor 

biofilm formation in nutrient-rich media and in nutrient-deprived surroundings tend to 

return to the planktonic phase of living, based on the theory that the free floating mode 

helps in the search for fresh nutrients (O'Toole et al. 2000). However, the opposite has 

been seen for the gram-negative Escherichia coli where scarce conditions that tend to 

slow down bacterial growth actually favor biofilm formation (Adams and McLean 1999). 
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Figure 1. Formation of a model biofilm on a surface. The formation is divided into steps that 
include initial adhesion, attachment, proliferation, maturation and detachment. Modified from Otto 
(2004) and Pascual (2002). 

1.1.1.1 Adherence and early maturation 

Biofilm formation can be divided into several steps, presented above in figure 1. First, 

there has to be the opportunity for the bacteria to adhere to the surface. In a water 

stream or in a blood vessel with a continuous flow, this is usually not a limiting stage, but 

in surfaces less influenced by flow (i.e., medical implants) the bacteria have to be 

transported into close proximity of the substrate surface so that the attachment can take 

place. A distance of approximately 50 nm can be regarded as close enough for the 

bacteria to initially adhere (Gorman and Jones 2006). The attachment has been found to 

be mediated by electrostatic interactions and van der Waals forces (Pascual 2002). 

Many structural features on the cell surface of bacteria affect the substrate’s surface 

charge and hydrophobicity and, thus, contribute to the attachment step: fimbriae, the 

teichoic acids in the cell wall of gram-positive bacteria, and the liposaccharides in the 

outer cell membrane of gram-negative bacteria (Gorman and Jones 2006). Additionally, 

the environmental conditions and the characteristics of the surface may also affect the 

rate and the extent of attachment of the bacteria. In general, rougher and more 

hydrophobic materials will lead to more and faster development of biofilms (Donlan 

2001). In contrast, less rough materials can also allow fast biofilm formation, due to a 

conditioning film that is formed of proteinaceous molecules on surfaces when they are 

placed into a liquid environment (can consist of anything between bloodstream and a 

freshwater lake) (Donlan 2001, Schinabeck and Ghannoum 2006). Staphylococcus spp. 

adherence is promoted by protein and glycoprotein components on the surface, the most 
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important being fibronectin, fibrinogen and fibrin, but also collagen, elastin, laminin, 

vitronectin and von Willebrand factors have been shown to be involved (Pascual 2002, 

Beenken et al. 2010). Staphylococcus spp. have several specific adhesion promoting 

proteins that comprehensively are called “microbial surface components recognizing 

adhesive matrix molecules” (MSCRAMMs) (Patti et al. 1994). The most important 

proteins, fibronectin, fibrinogen and fibrin, have also been shown to induce adhesion for 

gram-negative bacteria as well as Candida albicans fungi (Schinabeck and Ghannoum 

2006). Structural properties of the bacteria are also involved in the attachment phase. In 

biofilm-development of Pseudomonas aeruginosa, flagella and type-IV pili structures as 

well as lipopolysaccharides are involved in the initial phase (O'Toole et al. 2000). 

Similarly, type I pili are required for E. coli biofilm development on almost any surface 

(Pratt and Kolter 1998). Twitching motility, a form of bacterial translocation over a 

surface in a liquid environment, seems to be important in early development of biofilm 

structures (Mattick 2002). Gram-positive bacteria are considered non-motile and the 

initial attachment is established by cell surface protein adhesions and extrapolymeric 

substance or extracellular polysaccharides (both abbreviated to EPS) instead of motility 

factors (Pratt and Kolter 1999).  

Following the initial rapid attachment, the cells proliferate, and the bacteria cluster 

together in microcolonies, which then mature into larger clusters if the conditions are 

suitable (Kiedrowski and Horswill 2011). This stage is considered to be an intermediate 

stage, often referred to as the accumulation stage. The biofilms then mature into a 

complex architecture of cells in multiple layers in three dimensions, with channel and 

pore structures (Stoodley et al. 2002). Due to being non-motile, gram-positive biofilms 

tend to be flatter with fewer three-dimensional features than their gram-negative 

counterparts. However, gram-positive biofilms can also form tower-like structures in 

certain conditions, for example under shear stress, such as the flow of the liquid or upon 

nutrient deprivation (Mann et al. 2009). It has also been shown that during the 

maturation stage of P. aeruginosa biofilms, more than half of the proteins are differently 

expressed or completely new in biofilm bacteria compared to their planktonic 

counterpart (Sauer et al. 2002). This is followed by irreversible attachment to the surface 

and EPS production by biofilm cells (Stoodley et al. 2002). 

1.1.1.2 Extracellular matrix production 

The EPS vary between and even within species, but mainly it has been shown to consist of 

polysaccharides, proteins and extracellular DNA (eDNA) (Steinberger and Holden 2005). 

The EPS is important for the biofilm since it provides structural stability and protection 

to the formed biofilm. It acts as a protective barrier against biocides or toxins and it 

sequesters nutrients from the environment, and therefore, is a part of the general 

bacterial strategy for persistence under extreme, non-favorable conditions (Donlan and 
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Costerton 2002). The EPS is also involved in virulence of many biofilm producing strains, 

especially in Staphylococcus spp. and Pseudomonas spp. (Jabbouri and Sadovskaya 2010).  

In P. aeruginosa and other Pseudomonas spp. the EPS mainly consists of alginate, a 

polymer of uronic acid and guluronate (O'Toole et al. 2000, Gacesa 1998). Alginate 

monomers can be arranged in various polymeric compositions with different block 

structures and degrees of O-acetylation. Due to being negatively charged and having a 

high molecular mass, the alginate EPS is viscous and well hydrated (Gacesa 1998). The 

exact function of alginate varies but clearly, it plays an important role in biofilm 

maturation and is also an important virulence factor for many phytopathogenic 

Pseudomonas spp. among other exopolysaccharides (Gacesa 1998). P. aeruginosa alginate 

and, thus, the EPS is one of the key problems in persistent infections in the lungs of cystic 

fibrosis patients (Williams et al. 2010). In E. coli biofilms, the main polysaccharide in the 

EPS is called PGA and it is encoded by the pgaABCD operon (Cerca and Jefferson 2008). 

The EPS of Staphylococcus spp. are represented by β-1,6-linked poly-N-acetyl-

glucosamine residues (PNAG) which are encoded by the icaADBC operon found in biofilm 

forming strains (Ziebuhr et al. 1999). PNAG is structurally and functionally very similar to 

the PGA of E. coli.  For Staphylococcus spp., the main virulence factors are connected to 

the ability to form biofilms, possessing the icaADBC operon and additionally to produce 

PNAG. A strain should, therefore, possess all of these to be considered pathogenic 

(Jabbouri and Sadovskaya 2010). Although it has been seen that biofilm-forming 

capacities are not essential for pathogens to cause infections, it has been shown that 

strains can change from being planktonic to biofilm formers depending on the 

surroundings and environmental circumstances (Chokr et al. 2007, O'Toole et al. 2000).  

1.1.1.3 Detachment and the spread of infection 

Biofilm development is a dynamic process and while continuously growing in size, 

individual cells or clumps of cells are also continuously detaching from the bulk. These 

detached bacteria can regain their planktonic status and move through the surrounding 

area to a new surface where a new biofilm can be formed. Three separate strategies have 

been identified for detachment of cells from a biofilm and can be divided into seeding 

dispersal (where individual cells are released), clumping dispersal (in which aggregates 

of cells are shed off the biofilm), and surface dispersal (in which the whole biofilm 

structure is moving along the surface it is adhered to) (Hall-Stoodley et al. 2004). In 

surroundings with continuous flow, i.e. water pipes or streams, blood vessels, or airways, 

the detachment is particularly clear and also best documented (Stoodley et al. 2001). 

Detachment of planktonic cells from biofilms is also one reason for the efficient spreading 

of biofilm-related infections (Hall-Stoodley and Stoodley 2005). 
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1.1.2 Resistance in biofilms 

Ability to form biofilms, in itself, does not cause pathogenicity but the virulence for 

pathogenic bacteria is increased if they form biofilms (Dethlefsen et al. 2007). It is not 

clear what the reasons for the increased resistance toward anti-biofilm treatments of 

biofilms compared to planktonic bacteria could be. However, extensive research has been 

carried out during the last decade to clarify this issue. The most widely used explanation 

to resistance is target modification by mutation or enzymatic change, or complete change 

of target (Lewis 2007). Metabolically heterogeneous populations, with aerobically 

growing cells on the outer part of the biofilms and metabolic inactivation of cells inside 

the biofilm bulk due to nutrient or oxygen deprivation can also lead to increased 

antimicrobial resistance (Fux et al. 2004, Hall-Stoodley and Stoodley 2009, Bordi and de 

Bentzmann 2011). The EPS layer has been thought to be a physical barrier and, 

subsequently, able to restrict antibiotics diffusion. It has, however, been shown that it is 

rather a limitation of nutrients that results in oxygen limited zones in the biofilm and 

show increased antimicrobial tolerance (Borriello et al. 2006). On one hand, the matrix is 

also thought to retard the penetration of the antimicrobial molecules and to result in 

extra time for the cells deeper down to express new genes and establish resistance even 

before the antimicrobial reaches them (Jefferson et al. 2005). It has, on the other hand, 

been shown that even macromolecules penetrate through thick biofilms in minutes or 

even seconds, and consequentially, the penetration might not be the cause for the lower 

susceptibility to antibiotics (Takenaka et al. 2009). In addition, dead cells inside the 

biofilm have been regarded as important to the development of antimicrobial resistance 

among biofilms; they can act as a nutrient source for the surrounding live bacteria and 

increase their metabolic activity but may also function as a dilution gradient for the 

antimicrobial per cell basis (Mai-Prochnow et al. 2004, Hall-Stoodley and Stoodley 2009). 

Cell death within a biofilm can also lead to an increased dispersal rate of surviving cells 

and thereby indirectly cause spreading of the biofilm (Mai-Prochnow et al. 2006).  

Persister cells are inactive cells within a bacteria population, planktonic or biofilm that 

are highly resistant toward antimicrobial therapies (Spoering and Lewis 2001). In a likely 

in vivo scenario, the metabolically active biofilm and planktonic cells of an infection 

would be killed by the antibiotic treatment, but leaving both planktonic and biofilm 

persisters alive (Lewis 2007). The planktonic persister cells are of no harm as they are 

effectively cleaned away by the immune system, but the biofilm persisters are encased 

within the EPS, which is non-penetrable for most of the immune cells and are thus not as 

easily removed by the immune system (Leid et al. 2002, Vuong et al. 2004). Yet, biofilms 

are not completely protected from the host defense, especially young or altered biofilms 

are not tolerant against host defense (Günther et al. 2009).  
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1.1.3 Biofilm related problems 

1.1.3.1 Clinically severe biofilm related infections 

Cystic fibrosis (CF) is a genetic disease, which is caused by a mutation in the cystic 

fibrosis transmembrane conductance regulator gene and leads to progressive 

dysfunctional secretion mainly in the respiratory system (Høiby 2011). Chronic 

colonization of the principal cystic fibrosis pathogen, Pseudomonas aeruginosa, results in 

progressive lung damage, respiratory failure and eventually death (Hall-Stoodley et al. 

2004). Even with long-term antibiotic treatments, these infections remain chronic and 

this is most probably due to formation of resistant biofilms in the lung secret (Singh et al. 

2000, Kirov et al. 2007). P. aeruginosa infections also induce immune system responses 

by the release of chemokines, cytokines and macrophage proteins related to 

inflammation. Nonetheless, instead of this being a response to eradicate the bacterial 

infection it is rather an increase in overall inflammation in the lung (Smith et al. 2002a, 

Smith et al. 2002b, Burmølle et al. 2010). In addition to Pseudomonas spp. infections, CF 

patients are more prone to S. aureus lung infections that are difficult to eradicate due to 

biofilm formation even with long-term anti-staphylococcal treatments (Goerke and Wolz 

2010). 

Otitis media is one of the most common diseases in young children; about 75% of all 

children under the age of three develop an otitis media infection at least once (Klein 

1994, Tähtinen et al. 2011). The infection can be either acute or chronic and can be 

caused by a range of different bacteria Streptococcus pneumoniae, Haemophilus 

influenzae, Moraxella catarrhalis and Pneumococcus spp. (Donlan and Costerton 2002). 

The chronic disease involves bacterial biofilm growth behind the tympanic membrane 

and in the middle ear. Antibiotic treatments are mostly used as treatment, but in the case 

of chronic infections, antibiotic treatment is usually ineffective and only contributes to 

resistant bacteria. Tympanostomy tubes are the suggested treatment for chronic 

infections, to relieve the pressure of the built-up fluids behind the eardrum and to 

increase ventilation to prevent further infections (Nguyen et al. 2010). However, the 

tubes themselves are also susceptible to biofilm attachment and make the treatment of 

the disease very troublesome (Donlan and Costerton 2002).  

1.1.3.2 IMD-related infection 

The number of indwelling medical device associated infections has risen in the last 

decades, mainly due to the increased use of IMDs that in turn depends on the advances in 

medical technology. Considering the advantages for patients acquiring a prosthetic device 

and the infection rate, which is usually low (around 1-10%) the risk is usually worth 

taking (Hall-Stoodley et al. 2004). The infection rate and the mortality risk in case of 

infection also need to be evaluated (Schinabeck and Ghannoum 2006). The material used 

in IMDs has been thoroughly investigated and the surface characteristics affecting the 
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adherence are texture, charge and hydrophobicity (Dunne 2002). It has been found that 

most materials can be colonized by biofilms; in vitro studies have shown that the order of 

the biomaterials that biofilms are prone to adhere to is: latex > silicone > PVC > Teflon > 

polyurethane > stainless steel > titanium (Dunne 2002, Gorman and Jones 2006).  

The most frequently used IMDs are urinary and central venous catheters; they also have 

among the highest infection rates (10-30% and 3-8%, respectively) (Donlan 2001, 

Schinabeck and Ghannoum 2006). Central venous catheters (CVC) are essential devices 

for treating critically and chronically ill patients but they are also target for severe 

biofilm-related infections that cause nosocomial bloodstream infections if contaminated 

(Raad and Hanna 2002). The bacteria causing the infection either originates from the 

surrounding skin at the insertion site, moving along the outer or inner surface of the 

device, or from the health care personnel performing the insertion into the blood stream 

where the bacteria can proliferate and grow biofilms on the surface of the catheter (Raad 

1998). Due to direct contact with the blood stream, the surface is conditioned with 

proteins (for example fibrinogen and fibronectin) that enhance biofilm formation on the 

catheter surface (Gorman and Jones 2006, Raad 1998). Pathogens that are the main cause 

of CVC-related infections are coagulase-negative staphylococci (CoNS - mainly 

Staphylococcus epidermidis), S. aureus, P. aeruginosa and other Pseudomonas spp., 

Burkholderia cepacia, Acinetobacter baumannii, Stenotrophomonas spp. and the fungal 

Candida spp. (Ferretti et al. 2003). 

Urinary catheters are widely used during hospitalization and in nursing homes and are 

also connected with infections due to biofilm growth on the catheter surfaces. The 

number of urinary catheter related infections has increased during the last decade, and it 

is currently the second most commonly used indwelling device and has the highest 

related infection rate (Holá et al. 2010). The low mortality risk if the catheter has to be 

removed makes them widely used regardless (Schinabeck and Ghannoum 2006). The 

bacteria can originate from the gastrointestinal tract and enter the system at the time of 

insertion of the catheter, or they can stem from exogenous sources and ascend up the 

inner lumen of the catheter (Tenke et al. 2012). The most widely isolated species found in 

biofilms on urinary catheters are Enterococcus faecalis, E. coli, CoNS, P. aeruginosa and 

Klebsiella pneumoniae as well as Candida albicans biofilms (Holá et al. 2010). 

Biofilm contamination on heart valves and pacemakers is the most problematic, with the 

high infectious rate (25-50%) and the highest mortality risk (> 25%) if removed 

(Schinabeck and Ghannoum 2006). Endocarditis can be caused by a native infection due 

to congenital heart defects, prosthetic heart valves or vascular grafts, probably due to the 

amassing of platelets and fibrin where biofilms can be assisted to attach and grow in the 

turbulent flow in the damaged tissue (Hall-Stoodley et al. 2004). The pathogens causing 

endocarditis have typically been found to be Streptococcus spp., Staphylococcus spp., 
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especially CoNS and S. aureus, gram-negative coccobacilli and fungi (Donlan and 

Costerton 2002). 

1.1.3.3 Severity of Staphylococcus spp. biofilms 

Staphylococcus spp. are the cause of two thirds of all IMD-related infections, in particular 

S. aureus and S. epidermidis (Kiedrowski and Horswill 2011). S. aureus, is an especially 

difficult pathogen that is involved in a range of infections (Götz 2002). The main problem 

with S. aureus is the availability; it colonizes the nasal cavities of up to 40% of individuals 

having the infection and from there can easily be transferred to the skin, where damages 

are not uncommon and the infection can be spread to the blood stream (Higashi and 

Sullam 2006). The occurrence of metabolic zones and phenotypic diversity in 

Staphylococcus spp. biofilms favor division of the labor among the biofilm bacteria and 

contributes to higher resistance and persistence towards anti-biofilm treatments 

(Yarwood et al. 2007, Stewart and Franklin 2008).   

1.1.3.4 Dental plaque 

Dental plaque is one of the most well-known types of biofilm growth, as they are easy to 

study both in vivo and in situ at the right conditions (Burmølle et al. 2010). They are 

multispecies communities normally living side by side with the host. However, a shift in 

the balance in the oral surrounding or within the bacterial community can lead to 

diseases for the host, like caries and periodontal diseases (Burmølle et al. 2010, 

Takahashi and Nyvad 2011). Caries has been shown to be an endogenous disease that is 

due to a shift of dominance towards acidogenic and acidtolerant bacteria while 

peridontitis and gingivitis are caused by increased levels of gram-negative organisms 

(Takahashi and Nyvad 2011, Teles et al. 2012).  

1.1.3.5 Other biofilms 

Water pipes are another source of biofilm-related problems that become contaminated 

by biofilms. From these the water is then delivered in large doses into humans, in whom 

the bacteria can cause infections if the bacteria are pathogenic. Regular water supply 

systems deal with this problem all over the world (Szewzyk et al. 2000). All water 

environments are natural habitats for many water bacteria both in planktonic and biofilm 

stages that are of no harm, but in less controlled environments pathogenic bacteria can 

also end up in the drinking water supplies and cause severe outbreaks of infections, for 

example caused by Vibrio cholerae and Salmonella typhi (Szewzyk et al. 2000). Dental unit 

water lines at dentist practices constitute such a case, where the system of narrow tubes 

used and where the water flows irregularly, is prone to be contaminated with pathogenic 

bacteria, such as P. aeruginosa, Legionella spp. and even S. aureus. This water is then 

administered directly into human bodies and can in rare cases cause infections, at least in 
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immunocompromised individuals (O'Donnell et al. 2011). An additional hazardous place 

for contaminated water appears when dealing with dialysis fluid. The water used for this 

purpose is filtered by reverse osmosis and should remove 90-100% of all organic and 

inorganic matter, bacteria and pyrogens, but in rare cases errors in the filtration has been 

known to lead to bacteria in the end product then administered into humans 

(Lonnemann 2004).  

1.1.4 Available treatments for biofilm infections 

1.1.4.1 Antimicrobials  

The first antimicrobial agent used in the purpose of treating biofilm infections was the 

cinchona tree bark infusion (Cinchona calisaya, C. officinalis and C. succirubra), during the 

17th century in South America. Later, quinine and cinchonine were isolated in 1820 and 

used against malaria (Greenwood 2008). Penicillin was discovered in 1928 by Alexander 

Fleming and came into the market in the 1940s. However, already in the 1960s, 

penicillin-resistant staphylococcal infections were recognized as a medical problem 

(Greenwood 2008). The aminoglycoside antibiotic streptomycin was discovered in 1944 

and was followed by chloramphenicol, tetracycline and macrolide antibiotics in the 

1950s. Vancomycin was discovered in 1956 and the first quinolone antibiotic, nalidixic 

acid was introduced in 1962. Later in the 1960s, the cephem antibiotics were developed 

and divided into generations according to their improved antimicrobial properties. 

Carbapenem and monobactam antibiotics were developed in the early 1980s (Saga and 

Yamaguchi 2009). Following this development, no new classes of antibiotics were 

developed until the oxazolidinone compound linezolid was launched in 2000 (Norrby 

2001). In the last couple of decades, only five new antibiotics actively in use against 

severe resistant bacteria have been approved: linezolid (in 2000), daptomycin (in 2003), 

tigecycline (in 2005), doripenem (in 2005) and the latest one, telavancin (in 2009) 

(Boucher et al. 2009, Moellering 2011). The antimicrobials available in Finland for the 

treatment of severe infections that can be related to biofilm growth are presented in 

Appendix 1.  

Antibiotics can roughly be divided into three categories based on the targets of their 

mechanism of action. There are antibiotics that act on the biosynthesis of the cell wall, 

interfere with the protein biosynthesis and block DNA replication and repair (Walsh 

2003). The first group is mainly represented by the beta-lactams; the penicillin and the 

cephalosporin compounds. The cell walls differ largely between gram-positive and gram-

negative bacteria and, thus, the effect of the antibiotics also varies (Koebnik et al. 2000). 

Many antibiotic features related to cell wall synthesis are connected to the assembly and 

cross linking of the peptidoglycan layer, which is thicker and more multilayered in gram-

positive bacteria (Walsh 2003). The second group consists of compounds that are able to 

interfere with the protein synthesis pathway of the bacteria; macrolides, 

chloramphenicol, tetracycline, aminoglycosides are a few examples (Schlünzen et al. 
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2001, Bulkley et al. 2010, Dunkle et al. 2010). Quinolone antibiotics are representatives of 

the third group of antibiotics, because their antimicrobial effect originates from the 

inhibition of DNA gyrase and topoisomerase IV, which are both type II bacterial 

topoisomerase enzymes that catalyze double strand DNA breakages in the bacteria (Chai 

et al. 2011). About half of the antimicrobial drugs on the market, those that have been 

used for a long time as well as those recently developed, are of natural origin or semi-

synthesized, based on a natural origin structure. Thus, nature is still the major source for 

finding novel antimicrobial agents (Newman and Cragg 2012).  

Most of the antibiotic compounds on the market are developed for planktonic bacteria. 

There are some promising agents with anti-biofilm activity that could be considered for 

drug development but are still in an early stage of development, mostly preclinical in vitro 

or in vivo studies (Moellering 2011). The cell membrane damaging porphyrin derivative 

XF-73 is one, and it has recently been shown to have anti-biofilm activity at low 

concentration levels (Ooi et al. 2010).  

1.1.4.2 Available treatments of Staphylococcus spp. biofilm infections  

There are not that many available drugs used for treatment of Staphylococcus spp. biofilm 

infections and most of the available ones have to be used as combination therapies. To 

prevent biofilm infections new materials that resist biofilm colonization are being 

developed (Lynch and Robertson 2008). Trials with medical devices emitting acoustic 

waves (Hazan et al. 2006), electric current (van der Borden et al. 2004) or pulsed 

ultrasound (Ensing et al. 2006) have been carried out on various materials (Lynch and 

Robertson 2008). Removal of the indwelling medical device, if possible, is often the best 

treatment if the infection is IMD-related (Schinabeck and Ghannoum 2006). In some 

cases, such as heart prosthetic devices, artificial joints or if the patient is not stable 

enough to undergo surgical procedures, this is not an option and there is need for 

effective anti-biofilm chemotherapies (Trampuz and Zimmerli 2006, Kiedrowski and 

Horswill 2011). Most often the treatments then required are extensive or even life-long. 

Antibiotic lock-therapies have been developed for prophylactic settings, lipopeptides and 

lipoglycopeptides have shown to be promising for use in these prophylactic methods 

(LaPlante and Mermel 2007).  

Dalbavancin is a lipoglycopeptide used against catheter related infections caused by most 

gram-negative pathogens, including many MRSA strains (Raad et al. 2005). It has a very 

long half-life time and can be dosed intravenously once a week, which is cost saving and 

more convenient for the patient (Billeter et al. 2008). Daptomycin is a lipopeptide 

clinically used against severe infections mostly caused by gram-positive bacteria biofilms, 

for example bacteremia and endocarditis (Rehm et al. 2008, Cervera et al. 2009). 

Linezolid is the only oxazolidinone compound approved for clinical use (Ford et al. 2001). 

It has shown promising results during in vitro (Raad et al. 2007, Smith et al. 2009, Leite et 
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al. 2011a), in vivo (Oramas-Shirey et al. 2001) and clinical studies (Gómez et al. 2011) 

against various kinds of Staphylococcus spp. biofilm infections, including prostethic 

device associated. However, there is also evidence for linezolid-resistant Staphylococcus 

spp. strains isolated clinically as being effective (Dandache et al. 2009). Rifampicin has 

shown to be very active in vitro (Leite et al. 2011a) and in vivo against a variety of biofilm 

associated implant infections, in addition to showing promising results in clinical studies 

(Zimmerli et al. 1998). Due to the risk of resistance, rifampicin is always administered 

together with another antimicrobial, for example daptomycin (John et al. 2009), linezolid 

(Baldoni et al. 2009), tetracyclines (Rose and Poppens 2009) or dispersing agents, such as 

N-acetyl cysteine (Leite et al. 2011b). Tetracyclines, which include tetracycline, 

minocycline, doxycycline and the newest tigecycline, are mostly used for prevention of 

biofilm growth on catheters (Zhanel et al. 2004). Tigecycline has shown promising 

activity against gram-positive biofilms in vivo (Yin et al. 2005) and in vitro (Cafiso et al. 

2010). Tigecycline together with vancomycin or rifampicin showed even an increased 

effect (Rose and Poppens 2009). Vancomycin is a glycopeptide that has shown in vivo and 

in vitro effect alone but is usually used in combination therapies with fosfomycin, 

rifampicin or tetracyclines against severe biofilm infections (Rose and Poppens 2009, 

Tang et al. 2011, Aybar et al. 2012). Unfortunately, resistance towards vancomycin has 

also been seen both in vitro and in clinical infections (Graninger et al. 2002, Antunes et al. 

2011). 

1.2 Assay development in antimicrobial drug discovery 
1.2.1 Target identification and validation 

In the search for novel drug compounds, the target for the desired pathological defect has 

to be identified (Zheng et al. 2006). Choosing a target is of great importance, as most of 

the drug failures are in the end probably due to a too vaguely chosen target for a drug 

candidate.  The compound is then either ineffective or is proven unsafe (Brötz-Oesterhelt 

and Sass 2010). The targets can roughly be divided into genetic targets, where the goal is 

to find a drug exclusively targeting a disease associated gene or gene product, and 

mechanistic targets, where the drug is affecting a single molecular mechanism related to 

the course of the target disease (Sams-Dodd 2005). This, of course, requires more 

detailed information about the genetics and the mechanisms behind disease releasing 

and proceeding factors (Sams-Dodd 2005). In the 1990s, the antimicrobial drug discovery 

process was changed from targeting the phenotype of the bacteria into targeting the 

infection (Brown and Wright 2005). The ideal target displays well characterized 

functions and is conserved in significant pathogens as well as absent in humans (Brown 

and Wright 2005). It is, as well, of crucial importance for the target organism to be able to 

be handled in Petri dishes or micro well plates. The daunting problem of resistance that is 

evolving constantly would need completely new targets and active components targeting 

them, instead of moderately change the structure and quickly develop inactivation 

mechanisms and thus, resistance (Gwynn et al. 2010). The more unknown aspects there 
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are in the development process; the higher the risk of failure is. Therefore, there is less 

interest in investments. In fact, since the 1970s, only two new classes of antimicrobials 

have been developed and have reached the market; linezolid, an oxazolidinone compound 

(launched in 2000) and daptomycin, a lipopetide (launched in 2003) (Newman and Cragg 

2012). However, the classical way of introducing new active compounds by improving old 

ones with reduced efficiency has given rise to important structures active against 

resistant organisms, for instance, rifampicin from rifamycin, and the semi-synthetic 

penicillins and the cephalosporins from penicillin (Chopra et al. 2002). There are almost 

30 compounds in clinical trials for treatment of various bacterial infectious diseases 

pending for both FDA and EMA approvals. Most of the compounds are semi-synthetic 

derivatives and some are novel natural structures produced by microbes belonging to 

existing antimicrobial classes (Mishra and Tiwari 2011). 

Many of the antimicrobial drug compounds on the market have been found to be active 

without the knowledge of the exact target or mechanism they act on from whole-cell 

screens (Baltz 2007). This strategy has re-emerged due to lack of activity on whole-cells 

for the active hits in these specific target based screenings (Gwynn et al. 2010). In this 

way, new active agents with unpredicted mechanisms on microbial whole-cell targets can 

be found, as well as being able to identify new mechanistic targets (Gwynn et al. 2010). 

1.2.2 Screening toward lead identification 

When a reliable target has been found, a suitable assay has to be chosen to be used in the 

screening for compounds against the target, and the first major choice to make is between 

using either a biochemical or a cell-based assay (Macarrón and Hertzberg 2002). 

Biochemical assays are in vitro based and have been the most frequently used in high 

throughput screening (HTS). The biochemical assays used in HTS today are very specific 

and easy to use. The most frequently used assays are so called mix-and-read assays with a 

relatively simple experimental procedure and an end point measurement based on 

absorbance, fluorescence, luminescence, optical, or scintillation readouts (Macarrón and 

Hertzberg 2011). Cell-based assays are one of the most dynamic area of modern HTS and 

they have evolved into the more physiological choice of assay that rather targets a 

pathway in the cell with complete regulatory system and feedback control, instead of just 

aiming for a single molecular target as in a biochemical approach (An and Tolliday 2010). 

Genomics has played an important role in the development of both cell based targets and 

screening assays (Johnston 2002).   

The end point readings for biochemical and cell-based assays are based on a variety of 

detection technologies and can be divided into a single measurement per well and 

multiple measurements per well (An and Tolliday 2010). The single well measurements 

includes fluorescence, luminescence and spectrophotometric methods, with fluorescence 

based assays being the most widely used, with a wide variety of fluorescent labeled 
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molecules (Gribbon and Sewing 2003). High-content screening (HCS) is a generic name 

for using any technique to measure multiple parameters per sample well (Kümmel et al. 

2010).  

1.2.2.1 Assay development and optimization 

The quality of the screening in an HTS process has to be particularly reliable compared to 

smaller scale screening areas. Variability has to be kept low and the signal to background 

(S/B) has to be as high as possible to gain optimal screening results throughout the whole 

screening campaign (Macarrón and Hertzberg 2002). To avoid the number of factors to 

optimize rising to impossible levels, knowledge about the system used is of great 

importance (An and Tolliday 2010). The reagents and consumables used in the assay 

have to stay stable during the whole process. The effect of the compound solvent, usually 

dimethyl sulfoxide (DMSO), has to be evaluated for a possible effect on the assay 

performance (Macarrón and Hertzberg 2002). Determination of cell density, incubation 

time with the compounds and exposure time with the probe are essential factors for 

optimization of the performance for cell-based assays (An and Tolliday 2010). 

Miniaturization lowers the costs and consumables. Today the typical working platform 

for HTS is 384 micro well plates, but 96 well plates as well as 1535 well plates and even 

up to 3456 well plates are in use. The use of reagents is drastically lowered when using 

smaller wells, 96 well plates require 100-200 µl per well, 384 well plates 30-100 µl, 1536 

well plates 2.5-10 µl and 3456 well plates require only 1-2 µl per well (Mayr and Bojanic 

2009). The increased number of compounds that can be screened per day follows the 

assay miniaturization. In addition, the time used for the steps of the screening assay has 

to be thoroughly optimized in order to make the screening campaigns time-effective. 

Costs, along with the time and statistical robustness are the three pillars in which a 

successful HTS process relies on (Mayr and Bojanic 2009).  

In an automated assay, the performance is improved by decreasing variability and higher 

throughput of screened compounds. The automation of assays allows saving labor, 

consumables and reagents due to higher accuracy of the performance (Tammela 2004). 

For automation of a HTS system, instrumentation for routine liquid-handling, robotic 

plate handling and sensitive detection is required. If the used assay requires more 

specialized instrumentation, there can be need of washing stations, incubators, plate 

sealer or piercer (Thiericke 2003). Modern screening systems are mostly integrated into 

large independent facilities with control systems that are not necessarily in need of 

constant human supervision (Michael et al. 2008).  
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1.2.2.2 The screening process 

The initial source of drug compounds used to be nature and still almost half of all newly 

developed drugs are natural or based on natural scaffolds (Newman and Cragg 2012). 

The scaffold of chemical structures produced by nature has not and probably cannot be 

mimicked by synthetic concepts (von Nussbaum et al. 2006). The major source of drugs 

based on natural products is plants, followed by animals, bacteria and fungi, and about 

30% of the total number of drugs consists of semi-synthetic analogues or derivatives 

(Harvey 2008). Despite the fact that plants are the major source of natural based drugs 

there are still no antimicrobial drugs on the market that are plant based (Gibbons 2005, 

Newman and Cragg 2012). About 70% of all natural compounds from bacterial sources 

originate from Streptomyces spp. and myxobacteria (Grabley and Sattler 2003). However, 

marine organisms are significantly more taxonomically diverse than terrestrial 

counterparts and possess completely new, highly complex structures that may possibly 

have potential to be active against various drug targets. So far, they are not as thoroughly 

investigated, but there is an increasing trend toward more interest in compounds from 

marine sources (Leal et al. 2012).  

Combinatorial chemistry is a fast way to synthesize large scale libraries from known 

structures. It was revolutionary at its introduction in the 1990s and has been re-

established as a widely used technique within all steps of modern drug discovery from 

high throughput screening campaigns to in vitro and in vivo drug metabolism studies and 

pharmacokinetic assays (Kennedy et al. 2008).  

Chemoinformatics is a research area, which deals with the application of informatics 

methods to solve chemical or biological issues. It can be used for effectively designing the 

optimal library to be synthesized by combinatorial chemistry, which can then be used for 

HTS or to establish the relationships between structure and biological activity, among 

other problems. In a primary screening, the library used should cover a wide range of 

physicochemical properties and all the compounds should preferably be drug-like to 

make the search more biologically relevant. In targeted library design, the opposite needs 

to be utilized, because similarity of the compounds in the library is emphasized instead 

(Matter 2003, Engel 2006). Virtual screening is a complement to HTS where large 

libraries of compounds (even those that do not physically exist) can be tested using a 

variety of selection criteria. This approach mainly ranks the compounds before the in 

vitro testing of the compounds to prioritize the testing of the candidates most likely to be 

positive hits. This kind of in silico screening has been extensively applied for ligand-based 

targets where large databases are searched. Approaches typical for ligand-based virtual 

screening include pharmacophore, machine learning and similarity methods (Engel 2006, 

Dürig et al. 2010). 

 



Review of the literature 

28 
 

1.2.2.3 From hits to leads to drugs 

A hit in a screening campaign is a compound showing activity against the target used at 

relatively low molarities, depending on the target (Wunberg et al. 2006). For the hit 

compound to become considered as a lead compound, it has to display other properties 

beyond potency, for instance some degree of selectivity and specific binding. Beneficial 

ADME-Tox properties (absorption, distribution, metabolism, excretion and toxicity) 

similarly play an important role in deciding the relevance of a hit compound. If a large 

number of hits are found in a screening, the accessibility of the compounds and how 

easily synthesizable they are can be of importance in the selection (Wunberg et al. 2006). 

Certain physicochemical properties in order to determine whether molecules are more 

likely to behave as lead compounds were introduced by Lipinski et al. (2001) (Table 1), 

with the rules of five and specified by Teague et al. (1999) to lead-likeness properties 

(MW < 350 Da, logP < 3) in the late 1990s. Lipinski’s fifth rule, however, excludes the four 

first rules if the compound has a natural origin, because they do not apply to them and 

would require their own guidelines (Newman and Cragg 2012). The scenario seems to be 

truly complex as it has been shown in a study of effective natural products drugs that half 

of the compounds fell well within the rules of five, while the other half violated them 

radically (Ganesan 2008, Newman and Cragg 2012). Most of the available antimicrobial 

drug compounds are also exceptions to the rules of five, since they are usually larger and 

more hydrophilic than other drug classes (Payne et al. 2007, O'Shea and Moser 2008). 

Table 1. Rule of five properties for molecules in drug discovery and how the natural products and 
the antimicrobials are exceptions to these rules.  

 Rules of five  
(Lead-likeness) 

Natural products  
 

Antimicrobials  
 

Molecular weight < 500 Da (< 350 Da) ca 240-1600 Da Usually < 600 Da, up to 
1 kDa 

Log P < 5 (< 3) Usually < 5 Usually < 5 
H-bond donors  < 5 Usually < 5 up to 20 Usually < 5, up to 20 
H-bond acceptors  < 10  Usually ca 10, up to 30 Usually ca 10, up to 40 
References (Lipinski et al. 2001, 

Teague et al. 1999) 
(Ganesan 2008) (O'Shea and Moser 

2008) 

For a compound to proceed in the drug development process, it also needs to have drug-

like properties, such as good solubility, membrane permeability, proper half-life and 

pharmacophore properties to interact specifically with the target. For natural products, 

these properties are not always fulfilled. However, a natural product might more easily 

enter into a cell than a synthetic structure, but the natural compound might also be more 

susceptible to efflux pumps and other clearance methods (Ganesan 2008). Chemical 

optimization of the molecules can be carried out either at the lead discovery stage, by 

synthesizing analogues that possess improved properties to better fit the lead search, or 
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the discovered lead molecules can be optimized to have improved drug-likeness, in other 

words, drug optimization (Proudfoot 2002). For natural products, this can be a difficult 

task and often the compound is in its original form throughout the drug development 

(Ganesan 2008). This process can be carried out the other way around: first demanding 

the criteria and then searching for candidates. This probably increases the chance of 

finding positive hits within the scope of the search, but reduces the likelihood of 

discovering new drug classes (Muegge 2003). The design of natural product structures 

has had a biosynthetic purpose for the producer organism and is, hence, probably 

advantageous over synthetic molecules in bioactivity (Mishra and Tiwari 2011). 

1.2.2.4 Statistical tools 

Signal-to-noise (S/N) is a parameter distinguishing the real signal from the background 

noise (Macarrón and Hertzberg 2002). Another parameter used is signal to background 

which only distinguishes the maximal signal from the minimal signal, but no variation is 

taken into account. Signal-to-background (S/B) ratio is signal and equipment dependent 

and can be said to only be used within one assay to prove good plate-to-plate and day-to-

day repeatability (Macarrón and Hertzberg 2002). This means that neither S/N nor S/B 

takes the variability and dynamic range of the signal simultaneously into account (Zhang 

et al. 1999).  

The measuring of the relative variability of the signal or the background signal coefficient 

of variation (CV) is a useful parameter. The parameter indicates the stability and 

precision of the assay behavior, such as liquid handling and detection instrumentation 

(Macarrón and Hertzberg 2002).  

The separation band is defined by the difference between the positive controls and the 

negative controls and measures the dynamic range of the assay (Figure 2) (Zhang et al. 

1999). The Z’-factor is a dimensionless parameter able for comparison across methods. 

The parameter is defined as the ratio of the separation band to the signal range of the 

assay. In other words, it shows the relative separation of the maximal signal values from 

the background values (Zhang et al. 1999). It has a range from 0 to 1, where Z’=0 

indicates the maximal and minimal signals overlap and Z’=1 indicates the ideal assay with 

infinite separation (Zhang et al. 1999). Usually, Z’>0.5 is considered to designate a 

properly performing assay. However, for cell based assay Z’≥0.3-0.4 is considered to be 

acceptable (Merten 2010). There is a correlation between Z’, S/B and CV: a Z’ of 0.4 is 

equivalent to a CV of 10% and S/B of 3. A lower variation, accordingly, allows lower S/B, 

but due to CV, which hardly ever falls below 5%, an S/B of 2 is required to have an 

acceptable result for Z’ (Macarrón and Hertzberg 2011). Z’ should be used during 

validation of the screening assay but also throughout the screening process to be able to 

detect failed plates and exclude the results within them to avoid false results (Macarrón 

and Hertzberg 2002). To make a distinction between the tested compounds that do not 
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have any effect and those that show activity, a threshold value or a hit limit has to be set 

(Mayr and Bojanic 2009). In large screening campaigns, unbiased libraries of compounds 

are usually used and most of these are expected to show low or no activity and the 

activity histogram is usually close to be normally distributed. The hit limit can then be 

defined as SDs away from the mean of the control signal, 3 x SD is the most common 

choice (Zhang et al. 1999). However, the hit limit can also be empirically chosen 

depending on the assay, for example 50% activity, to retrieve reasonable numbers of hits 

to be handled in secondary screening assays. The determination of the hit limit is of 

utmost importance in order to end up with the best ratio of false negative and false 

positive results. The further away from the mean of the control the hit limit is set; the 

lower the risk of false positives. However, the risk of false negatives increases (Zhang et 

al. 1999). Compounds found close to the hit limit have some probability to cross over if 

retested and in the ideal situation very few points are found close to the hit limit; they are 

either clearly positive or clearly negative. This can be achieved by increasing the quality 

of the assay by lowering the variability (Zhang et al. 1999).  

 
Figure 2. A schematic view of a model signal window and the equations of the statistical 
parameters. The values of the parameters are calculated from the Relative Measurement Units of 
the points.  

1.2.3 Antimicrobial screening assays  

There are many available methods that are standardized for testing compounds for 

antimicrobial activity against planktonic bacteria. These include: disk diffusion, agar 

dilution, antibiotic gradient disks, and broth micro dilution; they are appropriately 

optimized and have been used for decades (Jorgensen 1993, Amsler et al. 2010). Broth 
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micro dilution is the most widely used due to its simplicity and suitability for most 

bacterial strains (Jorgensen 1993, Rahman et al. 2004). The end point can be visualized or 

measured spectrophotometrically or using a colorimetric redox indicator (Rahman et al. 

2004).  

The corresponding situation is different when it comes to anti-biofilm screening. There 

are hardly any standardized methods for studying biofilms and especially not for 

screening for substances with anti-biofilm activity (Pettit et al. 2009). One assay for 

growing and treating a P. aeruginosa biofilm in a high throughput screening setting called 

the MBEC™ Assay has been standardized by the American Society for Testing and 

Materials (ASTM International 2011). Similarly, a few anti-biofilm screening assays have 

been developed using the most common biofilm forming species of P. aeruginosa, E. coli, 

S. aureus and S. epidermidis. These methods are mostly based on the 96 micro well plate 

format, with one exception being an anti-biofilm screening against P. aeruginosa biofilms 

in 384 well plates, using a BacTiter Glo based assay (Junker and Clardy 2007). Other 

methods use turbidity measurements (Ceri et al. 1999), crystal violet (Stepanovic et al. 

2000), crystal violet together with 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) and log 

reduction (Pitts et al. 2003), or resazurin (Pettit et al. 2005, Pettit et al. 2009, Mariscal et 

al. 2009). Other staining methods have been developed for detecting biofilms or effects 

on biofilms, but not for screening purposes. Tetrazolium salts, such as XTT (2,3-bis(2-

methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) are reduced by 

metabolic activity to a colored formazan product that can be visually or 

spectrophotometrically detected, which measures cell viability in the biofilms (Adam et 

al. 2002, Peeters et al. 2008). Another viability probe is fluorescein diacetate, which is 

converted into highly fluorescent fluorescein by esterases found both intra- and 

extracellularly (Honraet and Nelis 2006). SYTO 9 has been widely used in microscopy 

approaches for detecting living cells, both eukaryotic and prokaryotic in a combination 

with a probe staining only the dead cells, i.e. a LIVE/DEAD staining kit (Karthikeyan and 

Beveridge 2002, Jefferson et al. 2005). SYTO 9 penetrates the cell membranes and binds 

to the DNA of living and dead cells, causing a green fluorescent signal (Honraet and Nelis 

2006). 

So far, no method has been developed that can measure all features desirable for anti-

biofilm studies. The existing methods measure only one feature each. Viability can be 

measured by resazurin (O'Brien et al. 2000), total biomass can be measured by crystal 

violet (Christensen et al. 1985) and the effect on the EPS layer can be measured by wheat 

germ agglutinin linked to an Alexa fluorophore (Burton et al. 2007), or 1,9-dimethyl 

methylene blue (DMMB) (Toté et al. 2009). 
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Table 2. Methods for studying biofilms and effect of compounds on biofilms. 

Staining probe Detection 
method 

Measured 
feature  

Assay 
format 

Key references 

 Plate count CFU Agar plates  

 Turbidity growth 96 mwp, 
pinlids 

Ceri et al. 1999 

Safranin or 
trypan blue stains 

Visual detection biomass Test tube Christensen et al. 1982 

Crystal violet Visual detection, 
absorbance 

biomass Tube test, 
96-mwp 

Christensen et al. 1985, 
Stepanovic et al. 2000 

Tetrazolium salts 
(XTT, MTT, etc) 

Absorbance viability 96-mwp Adam et al. 2002, 
Peeters et al. 2008 

Fluorescein 
diacetate 

Fluorescence viability Flow system Honraet and Nelis 
2006 

Resazurin Fluorescence, 
absorbance 

viability 96-mwp O'Brien et al. 2000, 
Mariscal et al. 2009, 
Pettit et al. 2005 

SYTO 9 Fluorescence, 
microscopy 

viable cells Flow system, 
96-mwp 

Honraet and Nelis 
2006, Jefferson et al. 
2005 

BacTiter Glo Luminescence Attachment 
vs 
detachment 

384-mwp Junker and Clardy 2007 

WGA-Alexa 
fluorophore 

Fluorescence, 
microscopy 

EPS 96-mwp Burton et al. 2007 

Dimethyl 
methylene blue 
(DMMB)  

Absorbance  EPS 96-mwp Toté et al. 2009 
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2 Aims of the study 

Most of the methods used in antimicrobial research have been developed for planktonic 

bacteria. However, bacteria in natural environments mainly exist in biofilm form and 

biofilms are more prone to cause severe infections than their planktonic counterparts. 

Additionally, since the infections caused by biofilms are often very difficult to treat, there 

is a need to find new active anti-biofilm agents. The aim of this research project has been 

to fill the void of screening assays that can be applied for the search of novel anti-biofilm 

compounds, using Staphylococcus aureus as a model strain. What distinguishes this study 

is the embraced strategy, as it is aimed to develop a platform of cell-based assays, which 

could measure the essential features of bacterial biofilms, most relevant from a drug 

discovery perspective. In this approach, the focus is on building high-information, multi-

signal, screening-based assays that could permit the identification of true anti-biofilm 

hits. 

The specific aims of the study were to: 

- optimize the performance of the biomass based crystal violet assay with statistical 

tools, to be used for automated anti-biofilm screening of a natural compounds library 

(I) 

- evaluate the use of the resazurin probe for viability detection on a fast anti-biofilm 

screening of a natural and naturally-derived chemical library (II) 

- improve the anti-biofilm assay platform by addition of a third assay based on specific 

binding of a WGA-probe to the matrix and establish a platform of assays for screening 

of libraries against bacterial biofilms by targeting viability, biomass and the EPS-layer 

(III)  

- develop an additional method using capillary electrochromatography (CEC) for 

immobilizing biofilm-forming bacteria and studying anti-biofilm effects of compounds 

(IV) 

- apply the three optimized assays in a validatory antimicrobial and anti-biofilm 

screening using a library of cinchona alkaloids (V) 
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3 Materials and methods 

3.1 Materials and equipment 

Tryptic soy broth (TSB) and tryptic soy agar (TSA) were purchased from Fluka 

Biochemika (Buchs, Switzerland). Crystal violet (2.3% w/v), resazurin, dimethylsulfoxide 

(DMSO), 3-aminopropyltriethoxysilane (APTES), poly-L-lysine and Mueller-Hinton broth 

were from Sigma–Aldrich (Steinheim, Germany). Wheat germ agglutinin-Alexa 488 and 

LIVE/DEAD® BacLightTM were from Molecular Probes, Inc. (Eugene, Oregon, USA). 

Phosphate buffered saline (PBS) was from Lonza (Verviers, Belgium). Hydrochloric acid 

was from Oy FF-Chemicals Ab (Yli-Ii, Finland). All the antibiotics used; penicillin G, 

ciprofloxacin, fusidic acid, methicillin, oxacillin, polymyxin B, rifampicin, streptomycin, 

and vancomycin were from Sigma–Aldrich (Steinheim, Germany).  

The 96-well polystyrene micro well plates with Nunclon™ Δ surface were from Nunc 

(Roskilde, Denmark). The uncoated fused-silica capillaries were from Composite Metal 

Services Ltd. (Worcestershire, UK). The Varioskan Flash Multimode Plate Reader and the 

Multidrop® Combi dispenser were from Thermo Fisher Scientific Oy (Vantaa, Finland). 

The Biomek® 3000 liquid handling workstation was from Beckman Coulter, Inc. 

(Fullerton, California, USA). The Hewlett-Packard 3DCE system was from Agilent 

(Waldbronn, Germany). The Lauda Ecoline Re-104 water bath was from Lauda (Lauda-

Königshofen, Germany). The Nanoscope IIIa scanning probe microscope equipped with a 

J-scanner was from Digital Instruments, Inc. (Santa Barbara, California, USA) and was 

used for imaging the sample surfaces. The silicon cantilevers (model NSC15/NoAl were 

from MicroMasch (Tallinn, Estonia). The AxioVert 200M fluorescence microscope was 

from Carl Zeiss MicroImaging GmbH (Munich, Germany). 

3.1.1 Compound libraries 

A chemical compound library of 686 compounds was provided by Professor Thomas 

Erker at the University of Vienna, Austria. The cinchona alkaloid library consisting of 24 

compounds was provided by Professor Reko Leino at the Laboratory of Organic 

Chemistry, Åbo Akademi University, Finland. The library of 86 bacterial extracts from the 

Arctic Microbe culture collection (ARMI) was provided by Dr. Minna Männistö at the 

Finnish Forest Research Institute (Metla), Rovaniemi, Finland. An in-house collection of 

123 natural compounds was also used, Department of Biosciences, Åbo Akademi 

University, Finland.  
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3.1.2 Bacterial strains (I-V) 

The bacteria strains Staphylococcus aureus ATCC 25923, Staphylococcus aureus Newman, 

Staphylococcus epidermidis ATCC 12228, Staphylococcus epidermidis RP62A (ATCC 

35984) and Escherichia coli XL1 Blue were obtained from the Faculty of Pharmacy and 

the Faculty of Veterinary Medicine, University of Helsinki, Finland.  

3.2 Methods 

3.2.1 Bacterial culture (I-V) 

All strains were stored in -70°C in tryptic soy broth (TSB) containing 20% glycerol. Fresh 

cultures were started from the glycerol stocks and pre-cultured in TSB over night in 37°C 

with 220 rpm shaking. The liquid cultures were prepared by diluting the pre-cultures 

1000 times (S. aureus-strains, E. coli) or 100 times (S. epidermidis) in fresh TSB and under 

aerobic conditions at 37°C and 200 rpm to reach exponential growth. The concentration 

was routinely estimated by spectrophotometric turbidity measurement at 595 nm using a 

Varioskan Multimode Plate Reader. For determination of the concentrations, the cultures 

were serially diluted and plated on tryptic soy agar (TSA). The bacterial concentration 

was established as colony forming units per milliliter (CFU/ml). 

3.2.2 Optimization of biofilm formation conditions (I-V) 

Biofilms were always formed from fresh cultures, by diluting the exponentially grown 

culture to be approximately 106 CFU/ml. The biofilms were grown in sterile 96-microwell 

titer plates by dispensing 200 µl of the diluted bacterial culture per well. Biofilms were 

formed in 37°C, 200 rpm for 18 h. These conditions were optimized by testing various 

dilutions of the culture (from 103 to 108 CFU/ml) and incubation times (from 4 to 24 h). 

Crystal violet was used for the endpoint measurement. 

3.2.3 Cryopreservation of S. aureus biofilms (I) 

To store ready-made biofilms containing plates, 96-well polystyrene micro well plates 

with biofilms were prepared as described in 3.2.2. After 18 h of biofilm formation in 

optimal assay conditions, the planktonic suspension was removed and the plates 

containing biofilms were sealed and immediately frozen at −20°C for a period of up to 7 

days. The bacterial concentration was compared in fresh and frozen plates made from the 

same culture by detaching the biofilms mechanically, diluting the bacteria in fresh TSB 

and performing counts on TSA plates. After 7 days, biofilm formation determined by 

crystal violet staining was also compared with freshly prepared biofilms. Similarly, the 

ability of the preserved biofilms to perform in a screening assay using model compounds 

was estimated and compared with freshly prepared biofilms. Briefly, plates were 
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removed from the deep-freezer 1 h prior to the experiments and were defrosted at room 

temperature. The selected compounds were added to the plates with fresh TSB and 

incubation was carried out in the same conditions used for screening (37 °C, 200 rpm, 2 

h). The plates were stained with crystal violet stain assay. 

3.2.4 Automation of the crystal violet staining protocol (I) 

First, a manual performance of the crystal violet staining assay was optimized. The 

biofilms formed in a 96-well plate were washed once with 200 µl of MQ-water prior to 

the addition of 190 µl of the crystal violet solution. The plate was incubated for 5 minutes 

at room temperature (RT). The stain was removed and the plate was washed twice with 

MQ-water. After the last washing step the plate was left to dry and the remaining stain 

was dissolved in 96% ethanol. Absorbance was spectrophotometrically measured at 595 

nm.  

Automation of the assay was conducted by using the Multidrop Combi dispenser for 

sterile dispensing of the bacteria onto 96-well plates with an addition of the crystal violet 

stain. The Biomek® 3000 liquid handling workstation was used for the washing steps. The 

same staining protocol as was used in the manual method was utilized, except for an 

additional washing step after the removal of the stain. The programming of the 

dispensing and aspiration steps was optimized and the optimal settings were used for the 

experiments (dispensing speed 150 μl/s, aspiration steps conducted from the edge of the 

well bottom).  

3.2.5 Optimization of the resazurin staining assay (II) 

The resazurin stain was prepared in sterile water and kept sterile for further usage at 

+4°C during one month. For the staining procedure, the culture media and non-adhered 

cells were removed from the mature biofilms and replaced by resazurin diluted in PBS. 

Four concentrations of the stain were initially tested, ranging from 2 µM to 2 mM. The 

plates were incubated in darkness and at RT during six different ranges of time (15, 20, 

30, 60, 120 and 240 minutes). As a final step, the fluorescence was measured using an 

excitation filter of 560 nm and an emission filter of 590 nm. 

The relation between the fluorescent signal generated by the reduced resazurin and 

bacterial concentrations in the wells was studied for both bacterial suspensions and 

biofilms. In the first case, dilutions of an exponential phase bacteria culture (from 2.80 x 

104 to 2.80 x 108 CFU/ml) were prepared in 96-well micro titer plates. Resazurin stain 

was added (20 µM) directly to the wells and the plates were incubated in darkness, RT for 

20 minutes followed by the measurement of fluorescence as indicated above. In the 

second case, different biofilm concentrations were achieved by incubating suspensions 
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on the plate during different time periods ranging from 1 hour to 24 hours. For the 

staining, planktonic bacteria were removed and resazurin (20 µM) added as described 

above. To measure actual concentrations in the wells, biofilms from replicate wells were 

scraped and plated on TSA, as indicated before.  

3.2.6 Wheat germ agglutinin staining (III) 

The wheat germ agglutinin probe was kept in ‒20°C in 1 mg/ml stock solutions and 

always kept from redundant light exposure. The protocol used was according to the 

original description of the method by Burton et al. (2007). Briefly, the planktonic 

suspension was removed from the wells and the wells were washed once with sterile 

PBS. The stain was added (5 µg/ml) and the plate was incubated in darkness, +4°C for 

two hours. Unbound stain was washed off by washing the wells with 200µl of PBS three 

times, followed by air drying the plate for 15 minutes at RT. The bound stain was 

dissolved in 33% acetic acid and sonicated twice with an incubation period of one hour in 

between to detach the bound mass from the wells. The fluorescence was then measured 

at a Varioskan Multimode plate reader.  

3.2.7 Capillary electrochromatography (IV) 

Phosphate and acetate buffers (8 mM) were used as background electrolyte (BGE) 

solutions. Bacterial suspensions in BGE were prepared by centrifuging TSB suspensions 

at 2500g for 5 min, re-suspending the bacterial pellet in BGE, with the centrifugation step 

repeated twice. 

The electrophoretic measurements were carried out with a Hewlett-Packard 3DCE 

system equipped with a diode array detector and an air-thermostating capillary. The 

capillary was coated with poly-L-lysine (1:10 v/v diluted in BGE) by flushing for 30 min 

with a sterile phosphate saline buffer, for 30 min with poly-L-lysine, and finally, the 

capillary was flushed once again with sterile PBS for 15 min to remove the extra poly-L-

lysine not bound to the capillary surface. Following this, the capillary was treated for 17-

20 h with bacteria. Briefly, the capillary was flushed for 30 min with S. aureus and left to 

stand filled with bacteria for 30 min. The whole 60 min treatment was repeated 17-20 

times.  

DMSO was used as EOF marker and worked as an indicator for surface charge changes 

during biofilm formation. The biofilm coated capillary was flushed for 2 min with the 

antibiotics, and then the antibiotics were left standing for 2 h. EOF was also monitored in 

the antibiotic/biofilm interaction studies by carrying out six successive runs. The 

experiments in the capillary and auto-sampler were always performed at 37°C. Before 
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every experiment, the coated capillary was flushed for 2 min with BGE. The time of the 

runs ranged from 5 to 20 min depending on the mobility of the EOF marker. 

3.2.8 Antibiotics susceptibility testing (I, IV) 

Minimal inhibitory concentrations (MIC) were established by using standard techniques 

according to the CLSI, with some modifications. To establish planktonic MIC for the 

antibiotics used, the compounds were serially diluted two-fold in plates (from 1.2x10-4 

mg/ml to 1.024 mg/ml) and with bacteria added. The plates were incubated at 37°C and 

200 rpm for 18 h and then stained using the crystal violet assay. Biofilm MIC values were 

established by adding the serially diluted antibiotics to mature biofilms and incubating in 

37°C and 200 rpm for 24 h and then stained with crystal violet. The lowest concentration 

of the antibiotics able to prevent biofilm formation (planktonic MIC) or eradicate mature 

biofilms (biofilm MIC) and causing the crystal violet signal to be lower than the hit limit, 

was determined as MIC. 

3.2.9 Screening of compound and extract libraries (I, II, V) 

All compounds of the in-house library were prepared as dry DMSO stocks (20 mM) and 

stored at ‒20°C. Aliquots were further diluted in TSB to reach a final concentration of 40 

μM and a DMSO final concentration of 0.25%. In cases of solubility problems no further 

dilution in TSB was used and maximal DMSO concentration used was 2%. The bacterial 

extracts were prepared to 30 mg/ml in dry DMSO and the final concentration tested on 

biofilms was 0.6 mg/ml. Screening was run in two different modes: prevention of biofilm 

formation and destruction of formed biofilms. In the biofilm prevention experiment, the 

compounds were added simultaneously with the bacterial suspension and were 

incubated in optimal biofilm-forming conditions (18 h, 37°C, 200 rpm). In the destruction 

mode, mature biofilms were grown for 18 h, the planktonic suspension was removed and 

replaced by fresh TSB along with the compounds and incubated in optimal biofilm-

forming conditions for 2 or 24 h.  

The effect of DMSO was established using the crystal violet assay by making two-fold 

serial dilutions to achieve final DMSO concentrations ranging from 0.001% to 20%. 

3.2.10 Visualization using atomic force microscopy (AFM) (I, IV) 

Bacterial biofilms formed on polystyrene pieces were used for AFM visualization. The 

pieces were taken from micro well plate bottoms (Nunclon™ Δ surface) and were small 

enough to fit the microscope sample area. Polystyrene pieces with biofilms formed during 

0 h and 18 h, as well as polystyrene pieces with TSB during 0 h and 18 h, were prepared. 

In 0 h samples, the bacterial suspension (106 CFU/ml) or TSB was added to the 
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polystyrene plate and then immediately removed. Following incubation, the planktonic 

suspension was removed and the plates were left to air dry for 30 min in sterile 

conditions. 

A Nanoscope IIIa scanning probe microscope equipped with a J-scanner was used for 

imaging the sample surfaces. The microscope was placed on an active vibration isolation 

table (MOD-1M; JRS Scientific Instruments, Zwillikon, Switzerland), which was further 

placed on a massive stone table to eliminate external vibrational noise. Silicon cantilevers 

(model NSC15/NoAl) were used for imaging. All images (512 × 512 pixels) were captured 

using the intermittent contact AFM mode in ambient conditions (RH = 34 ± 5%, T = 25 ± 2 

°C) without filtering. The free amplitude of the oscillating cantilever (off contact) was ca. 

60 ± 15 nm. A damping ratio (contact amplitude/free amplitude) of ca. 0.7–0.8 and a line 

frequency of 1.00 Hz was used for imaging. The Scanning Probe Image Processor (Image 

Metrology, Hørsholm, Denmark) software was used for the image analysis. 

3.2.11 Visualization using Fluorescence Microscopy (III, V) 

Mature (18 h) biofilms were imaged for viability and EPS production using Fluorescence 

Microscopy (FM). Viability imaging was undertaken with the commercial bacterial 

viability kit LIVE/DEAD® BacLightTM that contains SYTO 9 (stains viable cells green) and 

propidium iodide (stains dead cells red). Final concentrations of the probes (added as a 

mixture, 6 µl/well) were 5 µM and 30 µM, respectively. For EPS imaging, the WGA probe 

was added and incubated for 2 h at 4°C in darkness, as previously described. FM pictures 

were taken after removing the unbound dye. Images were captured with an AxioVert 

200M fluorescence microscope, using a FITC filter (SYTO 9, WGA) or a TRITC filter 

(propidium iodide).  

3.2.12 Data processing and statistical analysis (I-V) 

For characterizing the assays, plates containing positive (bacteria, maximal signal) and 

negative (TSB, minimal signal) control wells were made, so that plate-to-plate and day-to-

day variations could be established. The plate-to-plate variability was established by 

comparing the mean of the maximal signal in three plates made the same day, whilst the 

day-to-day variability was made by comparing the mean of the maximal signal of three 

plates made on separate days. In all cases, coefficients of variations of the maximal signal 

were calculated. Statistical parameters characterizing the performance of the screening 

assay were calculated and used to monitor the assay optimization process. The 

parameters signal window coefficient Z′-factor, signal-to-noise (S/N), signal-to-

background (S/B), separation band, and coefficient of variations (CV) of the signals were 

calculated using the corresponding formulae indicated below. The hit limits used in the 

screening experiments were calculated according to equation 6. In all equations, SDmin, 
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Xmin and SDmax, Xmax represent the standard deviations and means of the minimal (min) 

and maximal (max) signals, respectively.  

The Kolmogorov-Smirnov test was used to assess the signals’ binominal distribution. 

One-way ANOVA comparisons and Tukey post tests were applied to the original 

fluorescence and absorbance data points. In the case of paired comparisons, unpaired t-

test with Welch's correction was used, where p<0.05 was considered statistically 

significant. GraphPad Prism software, v. 5.0 for Mac OS (La Jolla, CA, US) was used for the 

entire span of calculations. 
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4 Results 

4.1 Optimization of biofilm formation conditions (I, IV) 

To determine the optimal conditions for S. aureus biofilm formation in 96-well micro well 

plates ten different time ranges (2 to 24 h) and six different bacterial concentrations (103 

to 108 CFU/ml) were tested and stained using the manual crystal violet assay. Previously, 

a wide variety of conditions for biofilm formation in 96-well micro well plates have been 

reported using initial bacteria concentrations from 105 to 108 CFU/ml and incubation 

times from 4 up to 24 h (Amorena et al. 1999, Stepanović et al. 2001, Giacometti et al. 

2005). The optimal biofilm formation according to statistical performance was detected 

using 106 CFU/ml as the initial bacterial concentration. At that concentration, a significant 

biofilm formation was registered when bacteria were incubated between 12 and 18 h in 

37°C and 200 rpm. For practical convenience in performing the experiments overnight, 

18 h of biofilm formation was further selected. However, biofilms also seem to survive 

longer without refreshing of nutrients in 96-micro well plates as well as in the CEC 

system (IV), as biofilms were kept in the capillary for two days after formation.  

To confirm biofilm formation in these optimal conditions, imaging experiments using 

AFM were conducted. A clean surface was obtained in the negative control wells 

indicating the absence of biofilms when incubating the plates only with TSB (Figure 2A in 

Publication I). Moreover, no biofilm was detected in samples in which bacteria were 

added and then removed immediately afterward (0 h sample). The image of the sample 

treated with bacteria for 18 h showed a homogeneous surface of round bacteria capsules 

(Figure 2B in Publication I). 

4.2 Screening assay platform (I-III) 

4.2.1 The crystal violet assay (I) 

4.2.1.1 Optimization and detection limit (I) 

The manual performance of the crystal violet staining assay was optimized by modifying 

previously published protocols (Stepanovic et al. 2000, Kolari et al. 2001). This was 

carried out in order to improve the performance without endangering the statistical 

quality of the assay.  Modifications to the protocol consisted of reducing the number of 

washings steps that were conducted: one washing before adding the stain was carried out 

instead of two, and two washing steps to remove unbound stain were undertaken instead 

of three washing steps after the staining. These modifications did not affect the statistical 

performance of the assay, as the parameters were similarly good, but they allowed for 

cutting down the time required and decreasing the labor involved in testing. Although the 

crystal violet assay has been extensively applied, the detection limit has not been 

emphasized. This is probably due to the fact that the readout signal measures both living 
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and dead cells (that together with the EPS generally is referred to as the biomass). 

However, we attempted to measure the detection limit, as it can still provide information 

on the linear dependence range of the assay. If this assay is used in combination with 

other assays, this information is relevant to understand whether the assays are able to 

quantify biofilm formation in a similar fashion. The lowest biofilm concentration resulting 

in a signal was 2x107 CFU/ml (Figure 3) which coincides well with bacterial densities 

(107 CFU/cm2) normally reached in micro plate wells (Pitts et al. 2003).  

 

Figure 3. Relation between bacterial concentration and relative absorbance units of biofilms 
stained with crystal violet. 

4.2.1.2 The crystal violet assay; manual vs automated performances (I) 

After optimization of the manual protocol it was then transferred into an automated 

environment by introducing a Biomek® liquid handling robot during all the steps of the 

assay, with the exception of the cellular dispensing and the crystal violet addition steps 

that were performed with a Multidrop dispenser. A comparison was made between the 

manual and the automated assays in terms of the signal window, which is defined as the 

separation of the maximal signals (biofilm samples) and the minimal signals (TSB 

controls) (Figure 4). In addition, the assay performance in terms of statistical parameters 

was compared for the manual and the automated assay (Table 2 in Publication I). In the 

automated approach, the mean of the maximal signal decreased but the dispersion of the 

maximal signal points was also lower, resulting in similar Z’ values for both assays. The 

obtained Z’ values for both assays (> 0.4) can be regarded as an indicator of a well 

performing cell-based screening assay. Although the separation band was narrower in 

the automated assay due to the lower maximal signal and slightly higher minimal signal 

(Figure 4), a significant improvement in the repeatability measures was registered. This 

was due to that the plate-to-plate variability decreased from 3.50% to 0.64% and day-to-
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day variability was reduced from 35.2% to 8.90% when the automated performance was 

utilized. 

 

Figure 4. Signal window graph of crystal violet methods, filled symbols represent the manual assay 
and empty symbols the automated assay. Squares represent biofilm controls and triangles TSB 
controls. 3 x SDs of the controls are shown and the separation bands of the assays are the dashed 
lines. 

4.2.1.3 Validatory screening and antimicrobial susceptibility (I) 

The performance of the automated crystal violet assay was further tested by investigating 

the susceptibility to eight different antibiotics with previously reported effect on S. aureus 

bacteria (Table 2 in Publication I) and running a validatory screening campaign using a 

small in-house library of natural, commercially available, low molecular weight molecules 

(123 compounds, Figure 4 in Publication I).  

Planktonic bacteria were more susceptible to treatment than the biofilms, when using the 

most active antibiotic compounds. None of the antibiotics was able to kill more than 50% 

of the biofilms and thus, MIC50 for biofilms as well as both MIC50 and MIC90 for planktonic 

bacteria were established for the antimicrobials. The MIC50 ratios ranged from being 

equally effective to 1000 times more effective against planktonic bacteria than biofilms 

(Table 1 in Publication I). Rifampicin was found to be the most active against S. aureus 

biofilms followed by fusidic acid, penicillin G and oxacillin. For the planktonic 

counterparts, the most active agents were the same but in a slightly different order: 

rifampicin > penicillin G > oxacillin > fusidic acid. Polymyxin B, streptomycin and 

vancomycin had only minimal effect on biofilms and only a slightly higher effect on 

planktonic bacteria than on biofilms.  

The compounds found as positive hits in both prevention and destruction screening of 

the natural products collection, farnesol and lauryl gallate, have previously been reported 

to have antimicrobial and anti-biofilm activity against S. aureus bacteria (Kubo et al. 2002, 
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Jabra-Rizk et al. 2006, Unnanuntana et al. 2009). None of the other compounds in the 

screened library has been reported to be active against S. aureus biofilms, indicating that 

the assay was not giving rise to neither false positive nor false negative hits.  

4.2.1.4 Cryopreservation of biofilms for faster screening (I) 

To additionally improve the efficiency of the screening assay, a trial was performed using 

cryopreserved biofilms on plates. The typical biofilm assay testing takes four days when 

including all of the steps from preculturing the bacteria to staining the destruction 

experiment plate (see scheme in Figure 1 in Publication III). The use of cryopreserved 

biofilms would shorten the whole screening process from 4 to 2 days, as the biofilms 

could be grown in larger batches, stored and be used when needed without the need of 

re-culturing the bacteria and forming the biofilms.  

To validate this approach, the cryopreserved biofilms were compared with freshly 

prepared biofilms. Bacterial viability, as measured by CFU counts on TSA plates, was 

slightly decreased (although not statistically significantly) in 7 days-cryopreserved 

biofilms. In terms of assay performance, a slight increase was observed in the dispersion 

of the data points when using cryopreserved biofilms. This resulted in a decrease of Z’ 

(from 0.49 to 0.34) as well as S/B. Then again, the plate-to-plate variability was kept at 

about 3% when performing the assay with cryopreserved biofilms, but the day-to-day 

variability significantly decreased from 35% to 13%, when compared to the manual 

assay. In addition, the activity of eight model antibiotics was tested in cryopreserved and 

fresh biofilms and the results showed similar activities of the compounds on both biofilm 

types. 

4.2.2 The resazurin assay (II) 

4.2.2.1 Optimization of the performance 

Resazurin (7-hydroxy-3H-phenoxazin-3-one-10-oxide) is non-fluorescent and blue in its 

oxidized state and can be reduced by metabolically active cells to resofurin, which is 

highly fluorescent and pink (Guerin et al. 2001). The resofurin molecule can be further 

reduced to non-fluorescent and colorless hydroresofurin and thus, the staining time and 

the concentration used of the probe had to be optimized to find stable conditions for 

measuring the fluorescence. During the optimization experiments, 4 different stain 

concentrations as well as 6 different incubation times with the probe were tested. We 

found that 20 min incubation time using 20 µM resazurin was the shortest possible 

incubation time and lowest possible resazurin concentration providing statistically good 

performance results (Z’=0.66, S/N=9.41, S/B=10.56). Incubation time periods between 30 

and 120 min correspondingly provided statistically satisfactory signals, but they 

implicated longer duration assays with no significant benefits from the screening point of 

view. When the incubation was extended to 240 minutes, a reduction in the detectable 
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fluorescence signal was observed, which decreased the assay quality (from Z’>0.6 to 

Z’<0.4). This behavior was likely due to the accumulation of the colorless, non-fluorescent 

hydroresofurin.  

4.2.2.2 Planktonic calibration curve and detection limits 

The resazurin assay can also be directly applied to planktonic bacteria and it had 

previously been suggested that planktonic calibration curves could be used to estimate 

the number of bacteria in the stained biofilms (Toté et al. 2008). To be able to conduct a 

better interpretation of resazurin fluorescent signals and to establish the detection limit 

of the assay, the relation between planktonic and biofilms bacterial concentration was 

studied in closer detail (Figure 5). In both cases, a sigmoidal behavior of the fluorescent 

signal with increasing bacterial concentrations (as measured by actual CFU/ml in 

planktonic or biofilms) was registered. However, a preliminary comparative analysis of 

the curves reveals that similar resazurin fluorescent signals cannot be related to 

equivalent bacterial concentration in suspensions and in biofilms. The actual bacterial 

concentration associated with a certain fluorescent signal, is higher for cells in biofilms 

compared to in planktonic suspensions, i.e. at 100 RFU the actual bacterial concentration 

(in CFU/ml) was 59% higher for planktonic bacteria than for biofilm bacteria. A similar 

bacterial concentration generates a higher fluorescent signal when cells are in 

suspension, compared to biofilms at the similar cell concentration, i.e. at 1x108 CFU/ml 

the RFU for planktonic bacteria was 32% higher than for biofilm bacteria. A plausible 

explanation for this result is that it is indeed more difficult for the probe to be evenly 

distributed among the more densely packed biofilms cells than among suspended single 

bacterial cells. The metabolic activity among the cells in a biofilm varies and metabolically 

inactive cells can be present in the cellular core of the biofilm, causing a reduction of the 

fluorescent signal.  

The observation was made that the detection limit of the probe is high; concentrations 

higher than 5 x 107 CFU/ml are required of S. aureus bacteria in the well, to reach 

significant resazurin fluorescent signals for biofilm cells. However, such as in the crystal 

violet assay, the concentration required corresponds well to reported bacterial densities 

(107 CFU/cm2) in micro plate wells (Pitts et al. 2003). A linear increase-phase of the 

fluorescent signal was registered within a concentration range of 6 x 106 - 3 x 108 

CFU/ml. Under the optimal conditions identified in our assay, the fluorescent signal in the 

maximal signal wells (bacteria controls) is found at the end of this linear phase.  
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Figure 5. Relation between bacterial concentration (in CFU/ml) and relative absorbance units 
versus biofilms stained with resazurin. 

4.2.2.3 Assay performance 

The maximal (only biofilms) and minimal (only TSB) fluorescent control signals of this 

screening assay were normally distributed and clearly separated. Moreover, the average 

Z’-factor value calculated for the assay (0.66) as well as S/N (9.41), S/B (10.56) and CV 

(14.06%) indicated that the assay performs well, especially when taking into account that 

it is a cell-based method. The well-to-well, plate-to-plate and day-to-day variabilities 

were in all cases lower than 13%, which also support the assay repeatability as high.  

The resazurin assay consists of one very simple addition step. Performing the assay in 

manual conditions does not demand high labor efforts. Using an automated protocol 

would actually have increased the labor and prolonged the assay procedure. The 

procedure comprised about 30 seconds to manually add 200 µl per well in a 96-well 

plate, while in comparison, using the liquid handling robot it acquired more than 2 

minutes (using an 8-tip head multipipette, without changing the tips between columns). 

Furthermore, the robot had to be loaded with tips and reagents, which prolonged the 

time needed for the assay procedure. Automating the assay would not have represented a 

key necessity in order to screen libraries of moderate sizes.  
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Figure 6. Signal window of the resazurin assay. 3 x SD are shown for both maximal (squares) and 
minimal (triangles) signals (the SD of the minimal signal is very low and symbols exceed the lines). 
The separation band is shown with a dashed line.  

4.2.2.4 Validatory screening and antimicrobial susceptibility 

To evaluate the performance of the resazurin assay in a real setting, a validatory 

screening campaign of a chemical library was performed (Figure 7). A set of 6 

conventional antibiotics with known effects on S. aureus biofilms were randomly 

distributed within the screened plates to evaluate the assay reliability. Same antibiotics 

that showed some effect (fusidic acid, oxacillin, penicillin G, rifampicin and vancomycin) 

on the biofilms in the crystal violet assay were used in addition to methicillin.  

The library used in the validatory screening for the crystal violet assay was extended with 

low-weight compound derivatives, spanning through different chemical classes such as 

benzanilides, chalcones, imidazoles, thiophenes and thienothiazepines. In this screening 

campaign, the effects on the 18 h old biofilms were measured and no hits were found, 

other than the active antibiotics (listed above) to have an effect. The two compounds 

found positive in the first screening campaign, lauryl gallate and farnesol, were not 

reconfirmed here and apparently do not have an effect on the viability of the biofilms at 

the 40 µM concentration used in the screening. Neither farnesol nor lauryl gallate have 

been reported to be able to eradicate mature biofilms at this low concentration (Gomes et 

al. 2009, Kubo et al. 2003).  

In addition, the suitability of the assay to perform screening with natural extracts was 

also tested. The bacterial extracts from the ARMI collection were screened for destruction 
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of mature biofilms. In the initial screening, three extracts showed anti-biofilm activity. 

The complex composition of the bacterial extracts could make them more prone to 

interfere with the resazurin signal and appear as false negatives in the screening. 

However, the extracts showed no effect on the reduction of the resazurin probe. This 

proved the usefulness of the assay, as it can be suitable for pure compounds as well as for 

extracts. 

 

Figure 7. Screening graphs of 815 pure compounds using resazurin staining in destruction of 
mature biofilms. The shadowed area indicates positive hits in the screening. The hit limit is 
calculated as mean of control – 3 x SD. 

4.2.3 The wheat germ agglutinin assay (III) 

4.2.3.1 Optimization and detection limit 

This protocol was originally proposed by Burton et al. (2007) and it was based on the 

specific binding of the wheat germ agglutinin-Alexa Fluor 488 fluorescent conjugate 

(WGA) to poly-N-acetylglucosamine (PNAG) residues present in the typical EPS of 

Staphylococcus spp. biofilms (Burton et al. 2007). The original protocol proved a 

statistically well performing assay: several conditions were tested and in the end minor 

modifications were undertaken. Different concentrations (ranging from 0.01 to 10 µg/ml) 

of the WGA-Alexa 488 probe were tested and the original 5 µg/ml resulted in the best 

statistical performance and therefore it was considered optimal for use. The transfer of 
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the dissolved sample onto a new plate before measuring the fluorescence did not improve 

the assay and was hence removed from the protocol.  

To prove that the WGA assay was able to detect biofilms at the concentrations achieved in 

micro plate assays, the detection limit was established and compared with the previously 

established methods of the crystal violet and resazurin assays (Figure 8). If responses 

from the same compounds using the same three assays differ in terms of the detection 

limits, then conditions for bacterial biofilm formation need to be optimized again as 

comparisons between them could be limited. In this study, it was seen that the WGA assay 

could detect biofilm concentrations above 2x107 CFU/ml, which coincide well with the 

other two methods (Figures 3 and 5). Untreated biofilms reach up to 109-1010 CFU/ml, so 

a 3-log reduction could be measured using all of the above mentioned methods. The EPS 

has been reported to consist of extracellular DNA (eDNA) and proteins in addition to the 

polysaccharides (Steinberger and Holden 2005). To consider the activity of other 

molecules in the EPS, the biofilms were treated with DNase I and proteinase K to evaluate 

the effect of eDNA and extracellular proteins, respectively. DNase I did not show any 

effect on the biofilm at all. The treatment with proteinase K killed 23.9 ± 9.1% of the 

biofilms after 6 h treatment and 13.7 ± 8.4% after 22 h treatment. This indicated that 

neither eDNA nor proteins were a major constituent of the matrix of S. aureus biofilms.  

 

Figure 8. Relation between bacterial concentration and relative absorbance units versus biofilms 
stained with WGA. 

4.2.3.2 Performance and suitability 

The performance of the WGA assay made it amenable for screening purposes. The 

average Z’-values from carried out assays (both prevention and destruction) exceeded 

0.4. The maximal signal (biofilm controls) varied between 3 and 12 RFUs, but within the 

same experiment, the SD of the signal was kept low and the statistical parameters were 

good. Figure 9 shows the controls from six separate experiment plates, with the average 

of the statistical parameters as Z’=0.44±0.07, S/N=5.7±0.80, S/B=17.8±9.9.  
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Due to the wheat germ agglutinin assay being very laborious, requiring at least 3 h for the 

whole assay and using a relatively expensive probe, this assay was regarded to not be 

suitable for the primary screening stage. It is, however, important to take into account the 

effect of possible active compounds on the EPS as biofilm infections tend to re-emerge if 

matrix is left after treatment (Toté et al. 2008). This assay is therefore to be used in 

follow up studies of active screening hits. 

 

Figure 9. Control samples from six experimental plates, with individual Z’-factor values included. 
Filled symbols represent maximal signals (biofilm controls) and empty symbols represent minimal 
signals (TSB controls). 

4.3 Capillary electrochromatography –an additional biofilm method (IV) 

4.3.1 Optimization of the assay 

So far CEC has only been used for separation and analysis of planktonic bacteria (Desai 

and Armstrong 2003, Kłodzińska et al. 2009). As a novel approach, biofilms were 

immobilized in the capillary and the effect of various compounds on the biofilms could be 

studied. For the formation of biofilms in fused-silica capillaries, the first step involved the 

binding of the bacteria cells to the silica surface, which in the conditions used was 

negatively charged. This was conducted by growing biofilms on silica disks in Petri 

dishes, staining using the crystal violet assay and applying the statistically well 

performing conditions to the actual CEC apparatus. No biofilms could be formed on 

uncoated silica surface, due to the highly negative charge that is not present in 

polystyrene surfaces where the S. aureus bacteria adhere without problems (Gross et al. 

2001). Therefore, there was a need for a positively charged coating agent to increase the 

S. aureus binding to the inner surface of the capillary. Poly-L-lysine provided the surface 

with positively-charged amino groups forming an excellent base for the bacteria to 

adhere onto. The best biofilm attachment was achieved by coating the silica with 0.01% 
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of poly-L-lysine (Figure 2 in Publication IV). This concentration also provided the most 

stable surface in the capillary and was hence chosen for coating the inner surface of the 

capillary. The same results were also proven by imaging the biofilms formed on the 

coated silica and the capillary using AFM, and both the coated silica and the capillary 

showed bacterial aggregations of more than 300-500 nm, which confirmed the presence 

of biofilms (Figure 3 in Publication IV). The size of the biofilms matched previously 

reported AFM-studies (Tollersrud et al. 2001, Jonas et al. 2007). 

The stability was evaluated by measuring the mobility of the EOF during six successive 

runs. In order to evaluate the stability of the formed biofilm in the capillary, the mobility 

of the EOF was measured after first preconditioning the capillary and coating it with S. 

aureus biofilm corresponding to 17-20 h of biofilm formation in the capillary. The EOF 

mobility did not vary remarkably among the different coating times (Table 2 in 

Publication IV). The relative standard deviation values were, however, the lowest at 18 h 

and this incubation time was also used in the micro well plate approach and was chosen 

for use in optimal biofilm coating of the capillary in the future. To ensure the stability of 

the biofilm over time in the capillary, the EOF mobility was measured with 12 successive 

runs per day on 2 consecutive days. The results showed that the biofilm coating of the 

capillary was kept perfectly stable for at least the two-day period.  

4.3.2 Antimicrobial susceptibility 

The susceptibility of five of the same antibiotic compounds as in the crystal violet section 

was estimated in uncoated and biofilm coated electrochromatography capillaries using 

retention factors and reduced mobilities. The retention of the antibiotics by the biofilms 

was seen to decrease in the following order: penicillin > fusidic acid > oxacillin > 

vancomycin > rifampicin. The order of the interactions between biofilm and antibiotics 

followed the order for retention factor calculations; penicillin had the strongest 

interaction, followed by fusidic acid and oxacillin. Both vancomycin and rifampicin 

seemed to have very little interaction and were almost without effect on the biofilms. The 

rifampicin result was the only one that was contradictory to what was found in the micro 

well plate assay. The order of the antibiotics according to the biofilm MIC values in micro 

plates (stained by crystal violet, Publication I) was rifampicin (0.031 µg/ml) > fusidic acid 

(0.063 µg/ml) > penicillin (0.13 µg/ml) > oxacillin (0.25 µg/ml) > vancomycin (1 µg/ml). 

4.4 Applying the screening platform 

4.4.1 Combination of assays in a validatory study: a third method added (III) 

4.4.1.1 Resazurin and crystal violet assays performed in sequence 

First the performance of the screening platform was improved by combining resazurin 

and crystal violet measurements to one plate in a sequential workflow. Resazurin was 

proven not to have any effect on the following crystal violet staining, for crystal violet 
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staining of biofilms in the same plate as resazurin RAU was 1.52 ± 0.25 compared to 

crystal violet stained biofilms in a separate plate gave RAU = 1.57 ± 0.29. No statistically 

significant change was detected (p=0.4149). A scheme of the whole experimental 

sequence is visualized in Figure 1 in Publication III. 

4.4.1.2 Susceptibility studies using known antimicrobial compounds 

The combination of the three assays in a susceptibility study of three model compounds 

was performed using ciprofloxacin and penicillin G as active compounds and rosmarinic 

acid as a negative control (Figure 10). Ciprofloxacin and penicillin G significantly reduced 

the viability, the biomass and the EPS layer in the prevention approach. Rosmarinic acid 

is a weak antimicrobial agent and only slightly reduced the viability, but had no effect on 

the total biomass and the EPS. When the compounds were added to mature biofilms, the 

rosmarinic acid did not show any effect. Both ciprofloxacin and penicillin G were able to 

reduce the biomass and the viability significantly but in the case of ciprofloxacin 

unchanged WGA signal was detected compared to the control. Biofilms treated with 

penicillin showed a drastically elevated WGA signal that was more than 200% of the 

control. 

In addition, fluorescence microscopy was used to confirm the results obtained with the 

WGA and resazurin assays (Figure 4 in Publication III). For that purpose, images were 

taken in samples stained with WGA and the LIVE/DEAD probe that provides a functional 

response distinguishing living and dead cells, in a way comparable to the resazurin signal. 

Penicillin G (400 µM) gave a nearly 50%-reduction of the viable cells compared to 

untreated cells (G/R ratio) visualized by the LIVE/DEAD stained sample. In contrast, the 

surviving cells clearly produced more EPS and increased the green fluorescence in the 

treated sample compared to the control sample (Figure 4 in Publication III).  
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Figure 10. The effects of three model compounds in (A) prevention of and (B) destruction of S. 
aureus biofilms utilizing the combination of the three assays of the platform (resazurin - black bars, 
crystal violet - grey bars and WGA - white bars), are shown here. One-way ANOVA comparisons and 
Tukey post tests were applied to the original data points but for better clarification, only the results 
of the comparisons between the untreated biofilms and the highest concentration of the two 
compounds are presented here. *** indicates a high statistical significance in the difference from 
the control, p<0.001. 
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By investigating the effect of the treatments on other biofilm-forming strains, this 

phenomenon could be excluded to be a strain-specific artifact. For S. aureus Newman 

strain and E. coli (XL1 Blue) the same increase of the WGA signal was measured for 

penicillin G treated biofilms. The EPS of S. epidermidis RP62A was not affected by any of 

the antibiotics. S. epidermidis ATCC 12228, on the contrary, was not showing reliable 

WGA-signals (even negative Z’-values were received). As a result it seems like that the 

WGA-assay is dependent on PNAG production, as this strain is lacking the icaADBC 

operon and is not producing any PNAG. 

4.4.2 A pilot study (V) 

4.4.2.1 The screening campaign for anti-biofilm activity 

A cinchona alkaloid library containing the natural cinchona alkaloids cinchonidine and 

cinchonine as well as 22 of their analogues and derivatives was initially screened for 

investigating the effect on planktonic bacteria (Figure 11A). The entire library was also 

screened for activity in preventing biofilm formation (Figure 11B) and destruction of 

mature biofilms (Figure 11C) using the initial screening approach with staining the 

biofilms sequentially with resazurin and crystal violet. The same active compound was 

also able to prevent biofilm formation, but had no effect on mature biofilms at the 

concentration used in the screening. 

No antimicrobial effect was found for the original compounds cinchonidine or cinchonine, 

whereas one derivative inhibited the growth completely, 11-triphenylsilyl-10,11-

dihydrocinchonidine (11-TPSCD). The most distinctive feature of this molecule is the 

triphenylsilyl group in position 11, which is absent in all the other molecules of the 

library, except for compound 9-TMSO-11-TPSCD (11-triphenylsilyl-9-O-trimethylsilyl-

10,11-dihydrocinchonidine (Figure 12). However, 11-TPSCD has a free OH group in 

position 9 that is blocked in 9-TMSO-11-TPSCD by a trimethylsilyl group. Thus, these two 

structural features seem to be crucial for high activity of 11-TPSCD, in contrast to the 

other cinchonidine derivatives from the library.  

 

Figure 11. Screening graphs for planktonic, prevention, and destruction assay results. The active 
compound, 11-TPSCD is marked in red in all the graphs. 
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Figure 12. The structures of the active hit compound 11-TPSCD (A) and the structurally related 9-
TMSO-11-TPSCD (B). The cinchonidine part of the structures is indicated in black and the 
substitution parts are marked in red. 

4.4.2.2 Follow up studies 

Potencies (IC50s) were determined for the active cinchonidine derivative against 

planktonic bacteria as well as biofilms in prevention and destruction. For planktonic 

bacteria and the prevention of biofilms, the IC50s were low, 6.11 µM (planktonic), 6.56 µM 

and 2.21 µM (prevention of biofilms resazurin and crystal violet, respectively). For 

destruction of mature biofilms, the potency values as measured by IC50 values were 212 

µM and 225 µM for resazurin and crystal violet staining, respectively.  

Figure 13. Fluorescence microscopy images of untreated biofilms (A), biofilm treated with 11-
TPSCD (B) and TSB control (C). The imaging was conducted with the fluorescent LIVE/DEAD® 
BacLight™ commercial kit. Alive cells are stained green with SYTO 9 and dead or ruptured cells are 
stained red with propidium iodide. The ratios of green-to-red fluorescence (G/R ratio) quantified 
from parallel samples are shown in D. The scale bars equal 100 µm. 

B. Biofilm + 11-TPSCD (215 µM) 

  

 

A. Untreated biofilm 

C. TSB control 
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Imaging studies were carried out in parallel to confirm the anti-biofilm activity of 11-

TPSCD by fluorescence microscopy (Figure 13). An untreated biofilm control sample, a 

TSB control sample and a biofilm sample treated with 215 µM 11-TPSCD were imaged. 

The ratio between the green and the red fluorescence in the samples were calculated.  

The reduction of the biofilm amount by treatment with the active compound was 

quantified using log reduction. In the prevention assay, the log R values (the difference in 

logCFU/ml in treated and untreated samples) were 2.1 at 10 µM for biofilms and 3.9 for 

the planktonic phase. Log R values in the destruction assay were at 200 µM, 2.7 for 

biofilm bacteria and 4.9 for the planktonic bacteria. 

The effect of the active compound on the EPS layer was also determined by the WGA 

assay. In prevention, a slight decrease in the signal could be observed at concentrations 

ranging from 5 to 10 µM (14-31% of inhibition), higher concentrations (20-100 µM), 

however, increased the WGA-signal to 118-165% of the control. In destruction, no effect 

compared to untreated biofilms could be observed. This indicates that the compound is 

not fully able to remove the biofilms. However, in combination with a dispersing agent, 

the compound could be effective, by killing planktonic bacteria and preventing biofilm 

formation. 

4.4.2.3 Screened compound locations in chemical space 

To explore the chemical space occupied by the active compound 11-TPSCD, the 

antibiotics and the non-active compounds from the cinchona alkaloid library, as well as 

all the other compounds used in the validatory screening campaigns, a comparative study 

was performed using the ChemGPS-NP tool. ChemGPS is a Principal Component Analysis 

(PCA)-based chemical space navigation tool applicable to natural products (Larsson et al. 

2007, Rosén et al. 2009).  

In Figure 14, it is demonstrated that the cinchona alkaloid derivatives populate a fairly 

similar chemical space when compared to the other screened libraries. The cinchona 

alkaloids were characterized by low molecular sizes (given by PC1), high aromaticity 

(given by PC2) and restricted flexibility (given by PC4, not shown here). The compounds 

were quite evenly distributed between hydrophilic or hydrophobic compounds (PC3). 

The antibiotics were the ones most widely spread over the chemical space presented 

here. The largest antibiotics (amphotericin B, polymyxin B, rifampicin and vancomycin) 

represent both active (green dots) and non-active antibiotics (blue dots) and were the 

most distant from the rest of the compounds. The rest of the antibiotics are low molecular 

weight compounds and were distributed among the rest of the compounds. The non-

active antibiotics were the least aromatic. The active hit compound, 11-TPSCD (red dot), 

was found to be located in a slightly more lipophilic region than the rest of the 

compounds together with its non active analogue, 9-TMSO-11-TPSCD. It appears like 
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there is no specific space for antimicrobial compounds; they vary in all three dimensions. 

The hit compound 11-TPSCD supports the fact that also compounds with anti-biofilm 

activity can be found outside the drug- and lead-like space defined by Lipinski (2001) and 

Teague (1999).  

Figure 14. Three-dimensional representation of the chemical space occupied by all of the 
compounds (829 compounds) screened for anti-biofilm activity using the PCA-based navigation 
tool ChemGPS-NP, as described in publication V. The cinchona alkaloid library is represented by the 
purple dots, the hit compound 11-TPSCD by a red dot, the natural product library is represented by 
black dots and the chemical library by grey dots. The active antibiotics are marked in green and the 
non-active antibiotics in blue. 
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5 Discussion 

5.1 Antimicrobial and anti-biofilm research and screening against 

biofilms 

Antimicrobial resistance is an evolving problem and there is a lack of effective agents. In 

spite of this, antimicrobial drug discovery is not a favored area for pharmaceutical 

companies today (Moellering 2011). The reasons are understandable as the promised 

techniques introduced about 20 years ago by genome sequencing of micro-organisms and 

combinatorial chemistry for gene target based high throughput screening campaigns 

have not provided the much sought after results (Payne et al. 2007). However, there are 

multifactorial reasons explaining the failure of screening campaigns. Regarding only the 

targets and the libraries used; the need of validation of targets in every species used, in 

vivo validation, rapid resistance development, and the libraries used for screening are 

often containing very few compounds with the physical-chemical properties suitable for 

antimicrobials are reasons for failure (Brötz-Oesterhelt and Sass 2010). The fact that if an 

effective antibiotic is found, it most probably would not be a high-profit product for the 

company investing in developing it as it has to be used with caution to avoid the 

occurrence of resistance (ECDC/EMEA 2009, Fox 2006). One advantage antimicrobial 

drug compounds have over many other drug compounds is the high predictive value of 

the animal models that are used for in vivo studies. This is due to the fact that most of the 

pathogens causing problematic infections in humans also infect animals (Payne et al. 

2007). In many cases, the same strains have been detected in humans and animals, and 

this is also forging a new thinking in veterinary use of antimicrobials to prevent the 

evolving of more resistant strains due to overuse of antimicrobials to treat animal 

infections (ECDC/EMEA 2009). Nevertheless, economically feasible or not, the problem 

remains and progress as, biofilms are currently regarded as the cause of a majority of all 

severe infections (Kiedrowski and Horswill 2011). Until other effective antibiotics are 

found, currently existing moderate compounds will be needed to keep the pathogen 

problems under control and in order to do that, effective assays for screening will be 

required (Fox 2006). 

Whole-cell screening as opposed to target-based screening has re-emerged into the 

antibacterial drug discovery (Gwynn et al. 2010). This is due to the fact that targets have 

been problematic. Single specific gene targets have been prone to resistance development 

and multiple targets would be beneficial instead. Complex mechanisms rather than 

simple enzyme inhibition functions have given better results as well (Brötz-Oesterhelt 

and Sass 2010). The drawback of whole-cell primary screening is the unspecific mode of 

action of potential hits (Brötz-Oesterhelt and Sass 2010). Many of the existing 

antimicrobial agents are naturally produced or semisynthetic derivatives of natural 

products. Erythromycin, vancomycin and daptomycin from actinomycetes or fungi are 
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examples of compounds that have been found by whole-cell screening methods, even 

without knowing the exact mechanism (Baltz 2007). However, quorum sensing (QS) 

targeting screening has, for instance, been suggested to be an effective anti-biofilm 

screening approach (Landini et al. 2010). For gram-negative P. aeruginosa biofilms there 

are several well-established QS-targets, such as the las and the rhl systems (Sintim et al. 

2010). In S. aureus biofilms, there is the autoinducing peptide (AIP) based agr and the 

luxS systems that have been shown to play a role in virulence of S. aureus biofilms (Kuehl 

et al. 2009). It has been shown that the susceptibility of gram-positive and gram-negative 

biofilms to antibiotics might be enhanced by suppression of the QS-system, even though 

the QS-suppression itself was not enough (Brackman et al. 2011). Therefore, the impact 

of quorum sensing for biofilm formation and virulence does not seem to be a straight 

forward approach. The fact that, with the exception of a few QS-suppressor-mimicking 

molecules, the targets of the anti-biofilm agents found are not known (Sintim et al. 2010). 

The applicability of the lead molecules found by target-based screening has been limited 

by the lack of activity when they are tested in cell-based assays (Baltz 2007). This has 

prompted to favor the use of whole-cell based assays during the initial chemical 

screening to identify lead molecules, followed by target specific assays in a secondary 

screening phase, to establish the mode of action of tentative leads (Payne et al. 2007). For 

this reason, in this study, it was chosen to develop a platform of whole-cell based 

screening assays against S. aureus biofilms. 

S. aureus is a clinically relevant strain causing severe infections and can currently be 

nosocomial and community-acquired. The infections are difficult to treat, probably due to 

biofilm formation (Kiedrowski and Horswill 2011). Biofilms show multidrug resistance 

that can even be increased if the initial treatment has been too mild to eradicate the 

biofilm completely (Hall-Stoodley and Stoodley 2009). Additionally, it is difficult to 

diagnose a severe infection as to have been caused by biofilms and thereby be able to 

administer the correct treatment (Hall-Stoodley et al. 2004). There are diagnostic criteria 

for biofilm infections including demands of being surface attached, showing microbial 

aggregates in localized infections with resistance to antibiotics with or without culturing 

the bacteria, as well as ineffective host clearance, but they are hard to determine in a 

timely fashion (Parsek and Singh 2003, Hall-Stoodley and Stoodley 2009). Poor 

diagnostics lead to requirements of rapid treatments with effective broad spectrum drugs 

(Brötz-Oesterhelt and Sass 2010). However, there is no diagnostic method or specific 

biofilm marker for Staphylococcus spp. biofilm infections and they remain challenging to 

treat (Bordi and de Bentzmann 2011). The S. aureus ATCC 25923 strain has been a widely 

used reference strain for antimicrobial research (Kronvall 1982, Ozturk et al. 2008), i.e., 

as well as for biofilm research (Zmantar et al. 2010, Singh et al. 2010), i.e. 
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5.2 The chosen assays in comparison with other biofilm assays  

Crystal violet is a widely used method for studying bacteria in biofilms (Djordjevic et al. 

2002, Li et al. 2003, Peeters et al. 2008). The method was first used in tubes and was later 

optimized for micro well plates (Christensen et al. 1985, Stepanovic et al. 2000). The 

assay is based on the use of available, inexpensive reagents, with a simple absorbance 

endpoint reading. Staining biofilms with the crystal violet assay requires several washing 

steps and when dealing with screening campaigns on several plates this signifies a great 

number of dispensing and aspiration steps performed by hand. This issue was solved in 

publication I by using automation with a liquid handling robot that easily manages 

dispensing and aspiration.  

The most serious drawback of the method is the fact that it only measures total biomass 

and is, therefore, not applicable to viability measurements (Li et al. 2003, Pitts et al. 

2003). This drawback is targeted by the addition of the viability measuring resazurin 

assay to the primary screening platform (Publication II).  

Resazurin is a very fast (single-addition) and non-laborious method based on a single 

addition step of a non-fluorescent probe, which is reduced by metabolic activity to a 

fluorescent compound (Pettit et al. 2005). However, this method requires optimization 

for every separate strain it is used with. An example of optimization of the performance 

of this assay was presented in publication II. A wide variety of experimental protocols 

had been used according to the literature and both the concentration of the probe and the 

incubation time for staining the S. aureus biofilms in these experiments had to be 

validated. It was demonstrated from that study that 20 µM final concentration of the 

probe and 20 min incubation time were the fastest optimal conditions found for the 

screening purpose. The importance of optimization when taking a new strain into use 

was seen in publication III when we used additional biofilm strains for the combination 

of the assays. For the two Staphylococcus epidermidis strains and S. aureus strain Newman 

used, the same conditions as for the original strain could be conducted. In contrast, 

staining E. coli biofilms with resazurin, required a longer incubation time with the probe 

to give an appropriate signal. Peeters et al. (2008) optimized the resazurin assay for 

several different strains and came to the conclusion that 1 h was an appropriate 

incubation time for all the strains (yeast, gram-positive and gram-negative bacteria) 

except for S. aureus that required shorter incubation (30 minutes). Toté et al. (2008) 

similarly used 30 minutes for S. aureus biofilms. Pettit et al. (2005, 2009) used 1 h 

incubation for S. epidermidis. 

Another important factor that was found in this study during the resazurin optimization 

was the difference in responses when the resazurin assay is applied to the staining of 

planktonic and biofilm bacteria. Previously it had been suggested that bacteria 
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concentration of biofilms could easily be estimated by using a titration curve done with 

planktonic bacteria (Toté et al. 2008). This, however, is clearly not the case. It was seen 

that higher concentrations of biofilm bacteria compared to planktonic bacteria were 

required to achieve similar resazurin signal (Figure 3).  

Other viability probes such as XTT, FDA and SYTO 9 have also been successfully 

optimized for biofilm staining. In a comparison study with different biofilm forming 

bacteria and fungi, resazurin and FDA were found to be the most favorable assays 

(Peeters et al. 2008). Both XTT and SYTO 9 are performing-wise usable but they are 

expensive and XTT is also much more laborious to use than the resazurin and FDA assays 

(Peeters et al. 2008). The most cost-effective reagent is resazurin (according to 

concentrations used and prices provided by Sigma Aldrich) and is clearly not toxic to the 

biofilms.  

There is no single method that can measure the effect of a compound on viability, 

biomass and the EPS layer at the same time. Therefore, there is a need for combining 

assays to be able to detect an effect on all three features already at a primary screening 

stage. Because the resazurin compound is not toxic to the cells, crystal violet could be 

performed on the same sample after concluding the resazurin assay without interfering 

with the outcome (O'Brien et al. 2000). In the present study, this was a remarkable 

improvement of the workflow and it lowered costs and time needed for the experiments. 

The assay platform was also shown to be reliable from the validatory screening 

campaigns performed for each assay separately, as only compounds with reported 

antimicrobial and/or anti-biofilm activity were detected. 

Biofilms are built not only from the viable bacteria but of the self-produced extracellular 

polysaccharide matrix surrounding them as well. To measure the production of this 

matrix, a third assay was used based on the fluorescence staining with WGA. A 

comparison of the three biofilm quantification assays showed that they have similar 

detection limits (107 CFU/ml), which correspond well with concentrations generally 

measured for biofilms in micro well plates (Pitts et al. 2003). This also enables the assays 

to be used together without need of thorough optimizations of biofilm formation 

conditions.  

The combination of the three assays optimized in this thesis, allowed an overall picture of 

the anti-biofilm effects of compounds in terms of biomass, viability and EPS production. It 

had previously been noticed that certain antibiotics could apparently have positive 

effects on biofilms by causing a significant decrease of biomass and viability, but still 

leave the EPS unaffected (Toté et al. 2009). Based on these results, Toté et al. proposed a 

classification of antibiotics in connection to their effects on biofilm bacteria and matrix. 

We proposed in publication III that a sixth category of compounds could be added to the 

list (Table 1). These types of compounds, exemplified in our case with penicillin G, have a 



Discussion 

 

62 
 

significant effect on decreasing the viability and the total biomass, but the EPS are 

simultaneously increased upon compound exposure. The other model antibiotic used, 

ciprofloxacin, was able to decrease the viability and the biomass, but had no effect on the 

EPS layer of S. aureus biofilms (Publication III). Ciprofloxacin could as a consequence be 

added into the fourth category proposed by Toté et al. (2009) along with kanamycin that 

displays similar effects against P. aeruginosa biofilms (Toté et al. 2009). The same effect 

on the EPS levels caused by penicillin G was also proven to occur in another S. aureus 

(Newman strain) and E. coli (XL1 Blue) biofilms, confirming that the registered results 

were not exclusive to the model strain used here. Leaving the EPS can be the cause of a 

re-emerging biofilm infection, as there can be latent cells left protected in the slime or the 

pre-existing slime layer can enhance attachment of bacteria and promote biofilm 

formation (Toté et al. 2008). This would ultimately affect the long-term 

chemotherapeutical effects of antibiotics against biofilms.  

Table 3. Antibiotics divided into categories based on their effect on the biofilm bacteria and the 
matrix. Modified from Toté et al. (2009).  

Category Effect on 
bacteria

a 
Effect on 
matrix

a 
Example antibiotic 
(target biofilm

c
) 

Reference 

1 none none ampicillin (SA) (Toté et al. 2009) 

2 none ‒ cefalotin (SA) (Toté et al. 2009) 

3 ‒ none polymyxin (SA) (Toté et al. 2009) 

4 ‒ ‒ kanamycin (PA) 
ciprofloxacin (SA) 

(Toté et al. 2009) 
Publication III 

5
b
 ‒ (+) ‒ doxycycline (PA) (Toté et al. 2009) 

6 ‒ + penicillin G (SA, EC) Publication III 
a
 none; no effect, ‒; decreased, +; increased 

b
 includes compounds having an increased effect at sub-MIC levels. 

c
 biofilm strains, SA – S. aureus, PA – P. aeruginosa, EC – E. coli. 

Toté and colleagues (2009) used dimethylmethylene blue (DMMB) that has been used for 

quantification of sulphated polysaccharides because it binds glycosaminoglycans (GAG) 

in biological samples (Barbosa et al. 2003). The similarity of GAG to the polysaccharide 

intercellular adhesin (PIA) that is a major component in Staphylococcus spp. biofilms, 

makes the DMMB probe suitable for quantification of the biofilm matrix (Toté et al. 

2008). The method used in publication III similarly targets the PIA of the Staphylococcus 

spp. biofilm matrix but is based on the specific binding of wheat germ agglutinin to poly-

N-acetylglucosamine PNAG residues in the biofilm matrix (Burton et al. 2007). PNAG is 

also involved in biofilm formation by both gram-positive and negative strains. The 

icaADBC-operon has been shown to be required in the genome for PNAG production in 

Staphylococcus spp. (Gerke et al. 1998), and the pgaABCD-operon in E. coli (Cerca and 

Jefferson 2008). The importance of PNAG was seen with the S. epidermidis ATCC 12228 
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strain, which lacks the ica-locus (Zhang et al. 2003) and the WGA-assay was not 

applicable to that strain (Publication III). There was no replicability and the signal 

variation was too high, even negative Z'-values were received. The WGA assay for 

quantification of the biofilm matrix was originally described as an enzyme-linked lectin-

sorbent assay (ELLA) by Thomas et al. (1997) and was further optimized by Burton et al. 

(2007) using the wheat germ agglutinin Alexa Fluor 488-conjugate. The Alexa Fluor 488 

conjugation enables fluorometric readout, which simplifies the assay (Burton et al. 2007).  

The CEC-method (Publication IV) allows for a completely novel way of studying biofilms 

and the effect of complex mixtures on biofilms. The growth conditions are simple to 

change because the flush of bacteria is constant. It can be compared to methods using 

constant flow for the growing environments, such as the Robbins device where biofilms 

are formed on a surface in a flow of nutrients and fresh bacteria (Linton et al. 1999). The 

CEC-method proved in the present study to be reliable for growing biofilms when 

compared to the crystal violet micro plate based assay. The effect of the antibiotics was 

similar with the exception of rifampicin. In the micro plate assays (also resazurin) it was 

shown to be the most active agent against biofilms. In the CEC, however, rifampicin did 

not show any interaction with the biofilm in the capillary in contrast to the other active 

agents and was considered to be the least active compound against biofilms (Figures 4 

and 5 in Publication IV). Previous research has shown that antibiotics might bring about 

varying results when the assay format is changed (Tammela et al. 2004). In another study 

of the impact of different anti-biofilm agents on the viscoelastic properties of the biofilm 

structure, rifampicin was shown to alter the mechanical properties of the biofilm (Jones 

et al. 2011). The rifampicin might have caused physical changes in the biofilms 

subsequently causing the discrepant signal in the CEC. 

5.3 Screening for new chemical structures and bacterial extracts 

In the screening of the cinchona alkaloid library, the primary screening platform of 

resazurin and crystal violet staining was used (Publication V). Only one compound (11-

TPSCD) was able to reduce the viability and the biomass in screening for prevention of 

biofilm formation. Using the crystal violet assay, two compounds (9-TMSO-11-TPSCD and 

11-TPSCD) were found to be beneath the hit limit. 9-TMSO-11-TPSCD, however, had no 

effect on the viability of the biofilms and was not considered for further studies. The 

active 11-TPSCD and the non-active 9-TMSO-11-TPSCD compounds were found to be 

occupying a slightly different area in the chemical space than the rest of the screened 

compounds. However, only one of them was active leading to the conclusion that the 

physico-chemical properties cannot be the only explanation for the activity. The active as 

well as and the non-active antibiotics were widely spread over the chemical space, 

implying that biofilms are complicated to eradicate and that active anti-biofilm 

compounds can be found in different locations in chemical space. This approach of using 
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small targeted libraries for a single aim is not only the proceeding of small academic 

laboratories, but of large pharmaceutical companies, like GSK, where they have tried this 

approach when large multi-target screening campaigns had failed (Payne et al. 2007). The 

active compound does not fall within all the Lipinski's rule of five (slightly larger and 

more lipophilic) but it has been stated that many natural products as well as 

antimicrobials are exceptions to the rule (Coates and Hu 2007, Newman and Cragg 2007). 

Maybe there would be requirements for new rules for the screening of antimicrobials or 

when using natural products. As proposed by i.e. Payne at al. (2007), the screening 

campaigns could be concentrated to fewer compounds (i.e. small natural products 

libraries). Interesting compounds from these small libraries could then be chemically 

modified, if needed. However, the amount of unexplored natural chemical space is so 

wide that the right structure for activity most probably does exist; the difficult part is the 

strategy to find it. Thus, the development of effective methods compatible for testing 

compounds, including natural products, against chosen targets is of great importance. 

One future direction is to use natural products for drug development; especially in field 

like antimicrobials where the usual compound demands are not the most suitable. The 

use of crude extracts is also an interesting strategy, especially combined with fast and 

effective methods for separation and identification of the pure substituents (Vuorela et al. 

2004).  

A library of bacterial extracts was also used for validatory screening of the resazurin 

method and two extracts were displaying clear anti-biofilm effects in both prevention and 

destruction of biofilms (unpublished results). Screening libraries of natural product 

extracts have been revisited since many large screening campaigns with pure compounds 

have failed (Payne et al. 2007). Earlier extract screening was the primary source for drug 

screening, but was then considered to be too laborious and abandoned for pure 

compound libraries in the era of synthetic chemistry (Grabley and Sattler 2003). 

Nevertheless, with modern technologies extracts can be efficiently microfractionated and 

identified (Vuorela et al. 2004). Especially in the field of antimicrobial agents, the natural 

product extracts have shown interesting results. Additionally, the physico-chemical 

properties of natural products seem to coincide quite well with antimicrobial and 

targeted libraries with natural product scaffolds (Payne et al. 2007, Brötz-Oesterhelt and 

Sass 2010). It is also possible that there is not one single active component, but rather a 

combination of several which provides the activity. Indeed, the first mixture of 

compounds was approved for drug use by the FDA in 2007 and in Europe in 2010 

(Mishra and Tiwari 2011). Bacteria clearly represent the largest biodiversity (Pace 1997, 

Pace 2009). The Arctic Microbes culture collection (ARMI) used in the screening 

comprises bacteria isolated from arctic environments and they most likely possess 

interesting components for survival in the harsh conditions they were isolated from 

(Männistö and Häggblom 2006). Micro-organisms from marine environments are also yet 

unexplored to a large extent and are of present interest for the drug discovery research 

(Leal et al. 2012). 
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6 Conclusions and future perspectives 

Biofilms are the cause of very severe infections and S. aureus, especially, has been a 

troublesome pathogen in nosocomial infections. The dauntingly rapid development of 

resistance among these pathogenic bacteria increases the necessity of novel effective 

antibiotics. The majority of all bacteria are able to form biofilms and it is currently 

believed that existing in biofilm format is actually the preferred bacterial lifestyle. 

However, the existing antibiotics as well as the methods for studying bacteria have been 

developed for planktonic bacteria, which basically make them unusable for biofilm 

studies.  

In the project at hand, the overall aim was to fill the void of biofilm assays suitable for 

screening. For this purpose, a statistically robust platform of three assays amenable for 

anti-biofilm screening was developed. Three very important features of biofilms, essential 

from a drug discovery perspective, were targeted using three separate assays carried out 

in sequence succeeding each other. We propose that the effects that the screened 

compounds have on biomass (Publication I) and viability (Publication II) can be studied 

at a primary screening stage using crystal violet and resazurin, respectively. Positive hits 

could then be followed up by investigating the effects on the EPS-layer (Publication III), 

in order for true hits, with positive effects on viability, biomass and matrix could be 

identified. The CEC-method is providing an additional way of studying interaction 

between compounds and biofilms in a continuous flow system (Publication IV). Smaller 

institutions, such as academic groups or small companies, could utilize this platform of 

methods for anti-biofilm screening. They are perhaps interested in screening a specific 

library or against a certain biofilm strain, but lack the interest or knowledge in 

developing the assays.  

Large pharmaceutical companies have failed in finding new antimicrobial drugs in their 

large screening campaigns using compounds that fulfill the drug-like properties 

established by Lipinski (2001). Consequently, natural products have been left out in some 

cases from large screening libraries due to not fulfilling the drug-like properties. Both 

antibiotics and natural products are mostly larger and more hydrophilic and it has been 

suggested that targeted libraries of natural products-like compounds could be successful 

in the search for new antimicrobials.  

A total of 820 small molecular, mostly naturally derived compounds, were screened 

during the validation steps of the current study’s assays. In the pilot study (Publication 

V), where the whole platform was utilized using a small library of cinchona alkaloids, one 

novel compound, 11-TPSCD - a derivative of cinchonidine - was found to have 

antimicrobial activity against planktonic bacteria. The compound was also able to prevent 

biofilm formation at a low micromolar concentration and eradicate mature biofilms at a 
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higher concentration. Still, no effects were found on removing the EPS layer using the 

WGA-assay.  

Nature is to a wide extent still unexplored, marine and extreme environments in 

particular. Thus, there are certainly natural products to find with interesting activities in 

antimicrobial and anti-biofilm research. The difficulties lie in finding them and 

economically motivate the research, while with the knowledge that if a potential 

compound is found and developed into a drug it has to be saved for seriously threatening 

situations, such as risks of pandemics. This, however, makes antimicrobial research an 

increasingly important field and to be able to find the active compounds new strategies 

are required, especially in the field of anti-biofilm compounds.  

This project could be continued by further screening additional libraries, including 

targeted natural products and extract libraries. Another interesting input would be to 

optimize the platform for other biofilm-forming strains. Gram-negative strains are the 

new threat for pandemic outbreaks, for example the multi-resistant EHEC-bacteria (WHO, 

2011). Also other dangerous pathogens that are known to form biofilms could be used as 

target in this screening platform. 
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Appendix 1 
Antibiotics with reported anti-biofilm activity against the most common biofilm producing strains. 
Trade names for compounds used clinically for severe infections in Finland. 

Antibiotic Year
a 

Target organism  Biofilm MIC Origin
b 

References
c
  

amoxicillin 
AMORION 
AMOXICILLIN 
AMOXIN 

+ clavulanic acid 
AMORION COMP 
AUGMENTIN 

1972 
 
 
 
1980 

Streptococcus 
pneumoniae 
 
 
E. coli 

8 mg/l 
 
 
 
5-6 mg/l 

NPD del Prado et al. 
2010 
 
 
 
Rodríguez-
Martínez et al. 
2007 

ampicillin 
A-PEN 

1961 S. aureus 
 

128 mg/l  NPD Olson et al. 2002 

amikacin 
BIKLIN 

1970
s 

S. aureus 
P. aeruginosa 

 
4-64 mg/l 

NPD Singh et al. 2009 
King et al. 2010 

azithromycin  
AZITHROMYCIN 
ZITHROMAX 

1988 P. aeruginosa  
S. aureus  
Candida albicans 

 
 
 

NPD Bala et al. 2011 
Wu et al. 2010 
Ku et al.2010 

aztreonam  
AZACTAM 

1984 P. aeruginosa  
 

 NPD Moskowitz et al. 
2004, Field et al. 
2005, Høiby 2011 

cefalexin 
KEFALEX  
KEFEXIN 

1967 S. aureus 
 

8 mg/l NPD Haddadin et al. 
2010 

ceftazidime  
CEFTAZIDIM 
GLAZIDIM 

1990 P. aeruginosa  
 

 NPD Riera et al. 2010 
 

ceftriaxone  
CEFONOVA 
CEFTRIAXON 
ROCHEPHALIN 

1982 S. epidermidis 600-2400 mg/l NPD Hajdu et al. 2009 

cefuroxime  
CEFUROXIM 
ZINACEF 
ZINNAT 

1987 E. coli 1.3 mg/l 
(prevention) 

NPD Koseoglu et al. 
2006 

ciprofloxacin  
CIPROFLOXACIN 
CIPROMED 
CIPROXIN 
SIPIRON 

1986 P. aeruginosa  
 

 Synthetic Brooun et al. 2000 
 

clarithromycin  
CLARITHROMYCIN 
KLACID 
ZECLAR 

1990 S. aureus  
P. aeruginosa 

4 mg/l 
200 mg/l 

NPD Aguinaga et al. 
2011 
Tré-Hardy et al. 
2009 

clindamycin 
CLINDAMYCIN 
CLINDOXYL 
DALACIN 

1970 S. aureus 
 

 NPD Huang et al. 2012 
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cloxacillin 
CLOXACILLIN 
STAFLOCIL 

1960 S. aureus 
 

512 mg/l NPD Olson et al. 2002 

daptomycin 
CUBICIN 

2003 S. aureus 
S. epidermidis 

 Natural Domínguez-
Herrera et al. 
2012, Leite et al. 
2011a 

doxycycline 
DOXIMED 
DOXIMYCIN  
DOXITIN  

1967 C. albicans 
Enterococcus faecalis 

256 mg/l NPD Miceli et al. 2009 
Saber and El-Hady 
2012 

erythromycin  
ABBOTICIN 
ERMYSIN 

1988 S. pneumoniae 
 

 NPD del Prado et al. 
2010 
 

gentamicin 
GENSUMYCIN 
GENTAMICIN B 
SEPTOMAL 

1963 S. aureus 
 
P. aeruginosa 

 Natural McConeghy and 
LaPlante 2010, 
LaPlante and 
Woodmansee 
2009 
Cai et al. 2009 

imipenem  
IMIPENEM 
TIENAM 

1985 P. aeruginosa 2-4 mg/l NPD Pereira et al. 2011 

levofloxacin 
LEVOFLOXACIN 
TAVANIC 

1993 S. aureus  
P. aeruginosa  
 

1-64 mg/l  
1-2 mg/l  
 

Synthetic Cafiso et al. 2010 
King et al. 2010 
 

linezolid  
ZYVOXID 

2000 S. aureus 
S. epidermidis 

0.5-64 mg/l 
18 mg/l 

Synthetic Cafiso et al. 2010 
Leite et al. 2011a 

meropenem 
MERONEM 
MEROPENEM 

1994 P. aeruginosa 16 mg/l NPD Moskowitz et al. 
2011 

moxifloxacin  
AVELOX 
VIGAMOX 

1999 S. aureus 0.06-4 mg/l Synthetic Morrow et al. 
2011 

mupirocin  
BACTROBAN 

1985 S. aureus,  
S. epidermidis 

0.06-0.12 
 

Natural Hurdle et al. 2009 

nitrofurantoin 
NITROFUR-C 

1978 E. coli  Synthetic Blango and 
Mulvey 2010 

norfloxacin  
NORFLOXACIN 

1983 S. epidermidis 
P. aeruginosa 

50 mg/l 
3.125 mg/l 

Synthetic Yassien and 
Khardori 2001 
Yassien et al. 1995 

ofloxacin  
TARIVID 

1985 S. epidermidis 
P. aeruginosa 

6.25 mg/l 
12.5 mg/l 

Synthetic Yassien and 
Khardori 2001 
Yassien et al. 1995 

rifampicin 
RIMAPEN 

1959 S. aureus 
S. epidermidis 

1-16 mg/l 
10 mg/l 

NPD Cafiso et al. 2010 
Leite et al. 2011a 
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tazobactam –
piperacillin 

PIPERACILLIN/ 
TAZOBACTAM 
TAZOCIN 

1992 P. aeruginosa  
 

 NPD Jang et al. 2009 

teicoplanin  
TARGOCID 

1988 S. aureus,  
S. epidermidis 

0.5 mg/l Natural Lee et al. 2006 

tetracycline 
APOCYCLIN 
ORICYCLIN 

1945 S. epidermidis  
P. aeruginosa 

 Natural Monzón et al. 
2002 
Liaqat et al. 2009 

tigecycline  
TYGACIL 

 

2005 S. aureus 
E. faecalis 
Candida albicans 

0.06-1 mg/l 
4 mg/l  
512 mg/l  

NPD Cafiso et al. 2010 
Minardi et al. 
2011 
Ku et al. 2010 

trimethoprim-
sulfamethoxazole 

COTRIM 

1960 S. aureus 
S. epidermidis 

 Synthetic del Pozo et al. 
2009 

tobramycin 
TOBI 
TOBRAMYCIN B 
TOMYCIN 

1975 S. aureus 
P. aeruginosa  
 

2-128 mg/l 
 

Natural Cafiso et al. 2010 
Herrmann et al. 
2010 
 

vancomycin 
VANCOMYCIN 
VANCOSAN 

1956 S. aureus, 
S. epidermidis  
 

2 mg/l 
2 mg/l 

Natural Aybar et al. 2012, 
Rose and Poppens 
2009, Tang et al. 
2011, Giacometti 
et al. 2005 

a
year developed or launched (can be an old drug launched for a new purpose). 

b
NPD – natural product derivative 

c
References for the reported anti-biofilm activity of the compounds.
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