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Abstract 

The currently-used sources of biomass are limited so new ones are required in order to 

meet the European Union target and to satisfy the constantly-increasing demand for 

energy. This is why energy recovery from residues or waste derived fuels has been given 

considerable attention over recent years.  

The residues generated during the production of biofuels for transportation are often the 

main stream from the production plant. Proper allocation of the residues could 

significantly improve the sustainability of the production process resulting in high 

greenhouse gas emission savings and improvement in their profitability. Energy recovery 

could be one application, among others, for the residues. 

The objective of this study was to investigate the combustion behaviour of four residues 

from the production of biofuels for transportation. The residues of interest were: rapeseed 

cake, palm kernel cake, dried distillers’ grains with solubles, and fermented sewage 

sludge. A wide range of methods of laboratory to semi-industrial scale was applied in 

order to define the main challenges related to the fluidized bed combustion of these 

residues. 

All residues were characterized by means of laboratory methods. The residues differ 

substantially in their composition compared to more traditional biomass fuels. Their 

common property is a high concentration of phosphorus. Until recently, phosphorus was 

considered a negligible element for ash chemistry due to its low concentrations.  

Rapeseed cake was further studied, as an example of phosphorus-rich fuel, during bench-

scale bubbling fluidized bed (BFB) and semi-industrial scale circulating fluidized bed (CFB) 

combustion experiments. Rapeseed cake, with phosphorus and alkali metals dominating 

its ash chemistry, led to defluidization at approximately 800 C. Bed sintering during 

fluidized bed combustion of pure rapeseed cake followed a non-reactive mechanism. This 

mechanism is controlled by the stickiness of fuel-derived ash particles. Entrained fine 

rapeseed cake ash particles also aggravated deposit formation. In order to improve the 
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problematic behaviour two strategies were used: co-combustion and the use of 

limestone. Three different base fuels were used: bark, wood, and coal. 

Co-firing of rapeseed cake with a minimum of 60 wt% of bark in a bench-scale BFB reactor 

increased the defluidization temperatures compared to the pure rapeseed cake case. This 

was correlated with the increase of the Ca/P molar, which increased with a higher 

proportion of bark in the fuel mixture. During co-firing with wood in a semi-industrial 

scale CFB combustor, the addition of limestone was found to be necessary in order to 

improve the bed sintering tendency of the fuel mixture. 

Co-firing of rapeseed cake with coal in a semi-industrial CFB combustor did not show any 

significant operational problems. Therefore co-combustion with coal is considered to be 

one of the strategies to improve combustion of phosphorus-rich biomass. 

The experimental work in this study revealed that phosphorus has a role during 

combustion which cannot be neglected when phosphorus-rich fuels are entering the 

energy market. Challenges during fluidized bed combustion of the residues were defined 

and countermeasures were investigated. 
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Sammanfattning 

Tillgången på traditionella biobränslen är begränsad och därför behöver nya biobränslen 

tas fram för att möta de uppställda målen av EU och det ständigt ökande energibehovet. 

Under de senare åren har intresset riktats mot energiutvinning ur restfraktioner och avfall. 

Vid produktionen av fordonsbränsle ur biomassa är den fasta restprodukten ofta den 

största procesströmmen i produktionsanläggningen. En riktig hantering av 

restprodukterna skulle göra produktionen mera lönsam och mer ekologiskt hållbar 

genom att t.ex. minska utsläppen av växthusgaser. Ett alternativ är att utvinna energi ur 

dem. 

Målsättningen med den här avhandlingen är att studera förbränningsegenskaperna hos 

några fasta restprodukter som uppstår vid framställning av förnybara fordonsbränslen. De 

fyra undersökta materialen är rapskaka, palmkärnskaka, torkad drank och stabiliserat 

rötslam. I studien används ett stort urval av undersökningsmetoder, från laboratorieskala 

till fullskalig förbränning, för att identifiera de huvudsakliga utmaningarna förknippade 

med förbränning av restprodukterna i pannor med fluidiserad bäddteknik. 

Restprodukterna undersöktes med metoderna i laboratorieskala. De skiljer sig alla från 

traditionella biobränslen genom att ha en annan kemisk sammansättning än dessa. 

Vanligtvis har de betydligt högre halter av fosfor. Tidigare har man inte uppmärksammat 

fosforns roll i biobränsleaskans högtemperaturkemi eftersom halterna ansetts vara så 

låga. 

Rapskaka är ett potentiellt biobränsle men med mycket hög fosforhalt. Då den brändes i 

en fluidbäddreaktor av typ bubblande bädd i liten bänkskala sintrade sandbädden redan 

vid 800 C på grund av fosfordominerad askkemi i kombination med alkalimetaller. 

Bäddsintringen vid förbränning av rapskakor i fluidbäddsförbränning följde en icke-

reaktiv mekanism som kännetecknas av att sintringen orsakas av klibbiga askpartiklar från 

bränslet. Askan som lämnar bädden med rökgasen orsakar även beläggningsbildning 

högre upp i pannan. För att komma till rätta med problemet testades två strategier: 
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sameldning med andra bränslen samt tillsats av kalksten. Tre olika bränslen sameldades 

med rapskakan: bark, trä och stenkol. 

Vid sameldning i bänkskala med 60 viktsprocent bark kunde sintringtemperaturen höjas 

jämfört med fallet med endast rapskaka som bränsle. Högre andelar bark i bränslemixen 

höjer molförhållandet Ca/P. Vid sameldning med ved i en fullskalig fluidbäddpanna av typ 

cirkulerande bädd måste även kalksten tillsättas för att minska benägenheten hos 

sandbädden att sintra. Vid sameldning med kol i samma fullskalepanna kunde 

förbränningen fortgå utan några problem. Slutsatsen var att sameldning med kol är ett av 

huvudalternativen för att förbättra förbränningen av biomassor med höga fosforhalter. 

De experimentella undersökningarna i den här studien visar att fosfor har en betydande 

roll som inte kan förbises då biomassor med hög fosforhalt kommer in på 

biobränslemarknaden. I avhandlingen definieras utmaningarna vid förbränning av 

restprodukterna i fluidbäddpannor och förslag undersöks till möjliga åtgärder. 
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1 INTRODUCTION 

1.1 Context 

1.1.1 The European energy market 

One of the key targets set by the European Council to be reached by 2020 is to increase 

the renewable energy share to 20% in European Union energy consumption.1 This energy 

share corresponds to approximately 4.2 PWh based on the total primary energy 

consumption in 2008.2 In order to meet this target, still more effort is needed since the 

share of renewables in energy consumption was at the level of only 8% in 2008.3 Currently 

the main renewable source of energy is biomass (Figure 1) and the overall tendency in the 

energy sector has been to use biomass, thereby partially replacing the use of fossil fuels. 

The present sources of biomass are limited and new ones are required in order to meet 

the European Union target and to compensate for the constantly increasing energy 

demand. Therefore energy recovery from residues or waste derived fuels has been given 

greater attention over the past years.  

The production of liquid and gaseous biofuels for transportation and residues from the 

processes has become a source of biomass residues that can be used in the energy sector. 
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The transportation sector is constantly 

growing and some liquid and gaseous 

biofuels are already implemented 

(Figure 2)4, while R&D works on more 

advanced processes5. The advantages 

and disadvantages for the production 

of biofuels in the transportation sector 

are continuously discussed.6-11 The 

largest concerns are related to an 

increase in food prices, land use and 

biodiversity, and the overall environmental impact. Opinion is here divided. The common 

attitude is that the production should be sustainable and cost-effective. The evaluation of 

the sustainability of the first generation biofuels may be often overrated. Taheripour et 

al.12 argue that studies reporting on the impacts of their production often do not take the 

use of the residues into consideration. The use of the residues could mitigate the price 

impacts, demands for cropland and the indirect land use consequences of first generation 

biofuels. 

1.1.2 Biofuels for transportation 

The main biofuel produced globally is 

bioethanol13, but biodiesel is the main 

biofuel produced in EU−27 (Figure 3). 

Biogas is used to generate electricity 

and heat rather than as a transportation 

biofuel.14-15 However, its consumption 

as transportation fuel is increasing. An 

increase of 40.1% yearly is observed 

and is almost unique to Sweden while 

other countries are in the 

developmental stage.14 

Figure 2 EU targets and share of biofuels in road
transport consumption (EU-27) based on EEA –
Eurostat, data for 2009 from [4]. 
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by biofuel type in EU-27. Estimation for 2010 based
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Bioethanol, a substitute for gasoline, 

can be produced from different 

feedstocks (Figure 4) which serve as a 

source of sugar for fermentation 

processes. The production process 

consists of three main stages: hydrolysis, 

fermentation, and distillation.16-19 The 

main residue of the distillation process is 

stillage, called distillers grains and 

solubles (DGS). It can be sold as a 

protein-rich animal feed. Due to its high 

water content (88% ar) it is further dried 

in order to extend its shelf life.17 The 

name of the dried product is dried 

distillers’ grains with solubles (DDGS). Its 

water content is approximately 9% on a 

received basis.17 Thermal conversion is 

an alternative use of the residues. 

Application of DGS or DDGS in the 

ethanol mills could be beneficial in both 

economic and environmental terms.20-21 

For this purpose the moisture content 

should be lower than 70% on a received 

basis in order to achieve a good level of 

heat and power efficiency.20 

Biodiesel, a substitude for fossil diesel, 

is the most common biofuel produced 

in Europe. Currently, Germany, France, 

Italy, and Spain dominate the European 

Figure 4 Feedstock used for bioethanol
production in EU-27 in 2009 based on EU FAS
posts reported in USDA Annual Biofuel Report
2011 [15]. 
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Figure 5 Feedstock used for biodiesel production
in EU-27 in 2009 based on EU FAS posts reported in
USDA Annual Biofuel Report 2011 [15]. 
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biodiesel market, with Germany contributing to nearly half of the overall production.9,16,22 

Fatty acid methyl ester (FAME), commonly called biodiesel, is considered to be a 

first−generation biofuel. It can be produced from various components, e.g., vegetable oil, 

animal fats, waste oils and fats. However, oilseed plants are the main feedstock (Figure 5). 

Pressing or solvent extraction of straight vegetable oil (SVO) is an intermediate step in the 

process. Triglycerides are further upgraded into alkyl–fatty esters via transesterification.16 

Two residues from biodiesel production were studied in the present work: residue from 

rapeseed methyl ester (RME) and from palm oil methyl ester (PME) production. RME, 

derived from rapeseed oil, is the most common biodiesel fuel available in Europe with 

press cake (rapeseed cake) or extraction meal (rapeseed meal) the main residue.15 Palm oil 

is the third most common feedstock for the biodiesel production in EU-27 (Figure 5).23 The 

residue from the pressing of palm kernels is the palm kernel cake. 

Biogas consists mainly of methane and carbon dioxide.24-25 However, the composition of 

biogas can vary.26 It can be produced from all kinds of biomass.24-25 Three main production 

sources of biogas are shown in Figure 6. Half of European biogas is produced at landfill and 

wastewater treatment plants. Other 

sources of biogas are among others, 

energy crops and municipal solid 

wastes.27 Biogas production is 

considered to be the best environmental 

waste energy recovery and its use is 

increasing from year to year.27,28 

Germany and the United Kingdom are 

the main producers of biogas in EU-27 

(Figure 7). Biogas is used at units 

designed for natural gas or liquefied 

petroleum gas (LPG).29 The most 

common way of biogas utilization is in 

combined heat and power (CHP).24,25 The 

Figure 6 Primary biogas output in the European
Union in 2008 by biogas source based on total
output (ktoe). Data source EurObserv’ER 2010 via
[27]. 
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use of upgraded biogas in the transport 

sector is gaining increased attention, 

especially in Sweden and Switzerland.28 

Depending on the applications, biogas 

needs to fulfil different requirements 

related to fuel quality. Rasi et al.26 

indicate that if biogas is to be 

considered as a vehicle fuel, it is advised 

to produce it from manure or sewage 

sludge since these biogases are the 

easiest to upgrade. The residue from 

biogas production can be called 

fermented sewage sludge.  
 
 
 

1.1.3 The use of the residues from the production of biofuels for transportation 

The residues generated during the production of biofuels for transportation are often the 

main stream from the production plant.19,30 Proper allocation of the residues could 

significantly improve the sustainability of the production of biofuels resulting in high 

greenhouse gas emission savings31-33 and also improve their profitability19,20,30. Some of 

these residues are rich in proteins and could be used in varying quantities as animal 

feed.34 However, before deciding on the feed intake rates, the nutritional and 

antinutritional properties of feed, its digestibility, and the protein and nitrogen balance 

need to be taken into account. Feed properties need to be known beforehand in order to 

avoid detrimental effects to animal health and performance.35-39 Low intake rates, e.g. 10-

15% of total feed for rapeseed cake with low levels of glucosinolates40,41, and increased 

production of the residues can lead to a saturation of the market. Energy recovery could 

be an alternative application for the residues. In some cases, the use of the residues in 

combined heat and power plants is reported to be the most favourable usage, improving 

sustainability of biofuels production.20,21,32 

Figure 7 Primary biogas output in the European 
Union in 2008 by country based on total output 
(ktoe). Data source EurObserv’ER 2010 via [27]. 
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1.2 Objective 

It can be observed that a substantial part of our economy is based on biomass. However, 

biomass resources are limited and therefore the optimal allocation of biomass resources 

over different applications is the main challenge. The motivation of this work comes from 

the understanding that all viable routes need to be well understood before determination 

of the final use. The application of main interest in this thesis is energy recovery. 

The objective of this study was to investigate the fluidized bed combustion behaviour of 

four residues from the production of biofuels for transportation. The residues of interest 

were: fermented sewage sludge (FSS) from biogas production via anaerobic fermentation, 

dried distillers’ grains with solubles (DDGS) from barley bioethanol production, rapeseed 

cake (RC) and palm kernel cake (PKC) − the residues from oil extraction. A wide range of 

methods from laboratory to semi-industrial scale was applied in order to define 

challenges related to the combustion of the residues. The main focus was to establish the 

role of phosphorus in the combustion process especially bed sintering. The final goal was 

to pave the way for more extensive use of these residues in heat and power production 

using fluidized bed technology. 

1.3 Summary of publications 

Within the frame of this work laboratory, bench-scale, and semi-industrial scale 

experiments were performed and the results are presented in six journal publications. 

The four residues were investigated in a laboratory scale to determine their combustion 

properties and challenges that could occur during combustion. Results are presented in 

Papers I and II. High concentration of phosphorus in the fuel has an influence on sintering 

behaviour. Consequently, rapeseed cake, as an example of phosphorus-rich fuel, was 

further studied in fluidized bed combustion conditions in a bench-scale (Papers III and IV) 

and semi-industrial scale (Papers V and VI). 

The combustion properties shown in Paper I were studied in a co-operation with Delft 

University of Technology. Laboratory scale experiments were performed in a single 
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• Ash Content
• Elemental analysis
• Chemical fractionation

• Standard ash sintering
• Pellet sintering 
• Micro-sample sintering

FUEL 
PROPERTIES

SINTERING 
TENDENCY

Sintering depends on ash-forming matter composition 

Figure 8 Summary of paper II. 

particle reactor. This study showed that 

the residues have a good combustion 

potential. The focus was on the release 

of gaseous compounds during different 

stages of combustion. Ash-forming 

matter was studied in Paper II. Fuel 

properties were related to the ash 

sintering tendency (Figure 8). In all four 

fuels a high concentration of phosphorus was found involved in the sintering behaviour. 

In Paper III systematic studies in a 5 kW bench-scale bubbling fluidized bed reactor are 

described. The studies were performed in order to evaluate the risk of agglomeration in a 

fluidized bed boiler during co-combustion of rapeseed cake with spruce bark, a calcium 

rich biomass. Tests were carried out during an exchange visit at Umeå University as part of 

a joint collaboration with Luleå University of Technology. The studies show that bark (high 

in calcium) improves the combustion of rapeseed cake. In Paper IV the same experiments 

were taken into consideration. In this study a detailed investigation of particles in bottom 

and fly ash has been performed by means of SEM/EDX analyses. The aim of the study was 

to determine ash composition resulting from the combustion of rapeseed cake-bark fuel 

mixtures. 

Paper V and Paper VI show results from the semi-industrial scale combustion of rapeseed 

cake. The main focus of the study was ash behaviour during co-combustion of rapeseed 

cake with wood and coal as base fuels. The influence of addition of limestone was also 

investigated. The measurement campaigns were carried out at Chalmers University of 

Technology. Paper V shows that limestone addition decreased the agglomeration risk 

while Paper VI shows that co-combustion with coal can be another strategy to improve 

the combustion of rapeseed cake. Interesting synergies between the ashes and additives 

have been observed in both papers. 
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2 BACKGROUND 

2.1 Fuel Characterization 

Appropriate fuel characterisation is of 

great importance in respect to 

industrial application. Fuel properties 

and the manner in which those 

properties influence the outcome of the 

combustion process are necessary for 

the process design and control.42,43 The 

aim of fuel characterization is therefore 

to determine the main challenges and 

benefits of fuel application. There are 

many laboratory and bench-scale 

methods that are applied for fuel 

characterization. All of them could be 

grouped into five main research areas (Figure 9), which often overlap with one another. 

Fuel physical properties, like bulk density, particle size or pellet durability, together with 

moisture content, are important properties for fuel handling. Within this group the heat 

content is also useful information when planning storage44, and it defines the feeding rate. 

A first indication of combustion behaviour, availability, and emissions can be made based 

on standard fuel analysis. Standard fuel analysis is a standardized group of analytical 

methods comprising proximate analysis, ultimate analysis, and elemental analysis. The 

analyses are commonly used and thoroughly described.42,43,45-48 Their short description is 

given below. 

Proximate analysis distinguishes moisture, volatile matter, fixed carbon, and ash in a fuel 

sample. It serves as the combustion behaviour indicator. It is based on the main 

combustion stages of a fuel particle as shown in Figure 10. When a fuel particle is 

introduced to a combustion atmosphere, at first it dries and then there is a release of 

Figure 9 Areas of fuel characterization research. 
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volatile matter: this is called the devolatilization stage. The released volatile matter 

undergoes homogeneous oxidation, whereas the remaining char undergoes 

heterogeneous oxidation. The solid residue after combustion is ash. 

The ultimate analysis, giving a first estimation of emissions, determines carbon, hydrogen, 

nitrogen, sulphur, and chlorine, with oxygen usually calculated as the difference between 

100 and the sum of the percentage content of the other elements. Large variations 

between biomass fuels were summarized by Vassilev et al.49. The difference in moisture 

content and ash yields can bias the results of the analysis. Therefore it is better to use 

results on a dry or dry ash free basis for comparative characterisation.49 

Elemental analysis includes the analysis of ash-forming elements for the prediction of the 

ash composition. It is important to know the composition of ash since it can cause a 

decrease of combustor availability. The elemental analysis results are usually reported in 

terms of the most common oxides (wt% of ash), indicating that the analyses were 

performed on an ashed fuel sample.50 Elemental analysis could also serve as the indicator 

of potential ash utilization. The use of ash as a fertilizer is one of the options. Recirculation 

of nutrients by spreading the ashes from heat and power plants could prevent nutrient 

export due to harvesting.51 Of special importance in this respect are heavy metals42, the 

presence of which could limit or even prohibit fertilisation with ash. 

Figure 10 Combustion stages. 
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The standard fuel analysis can be used as a starting point in establishing the suitability of 

the fuel for combustion units, but it is not enough for designing and controlling the 

combustion process. Both fuel properties and process conditions, such as the temperature 

or excess air ratio, are crucial for determining combustion behaviour, combustor 

availability, and emissions.48 Therefore fuels are studied at specific conditions and often in 

test rigs of different scale, e.g., laboratory-, bench- or full-scale in order to provide vital 

information on chemical, physical, and kinetic properties.  

2.2 Combustion properties of biomass fuels 

Biomass is an issue with a relatively long history but which still requires detailed studies in 

order to solve challenging problems. The combustion behaviour differs greatly compared 

to fossil fuels52, which is a result of its different composition49. Combustion of biomass, and 

related operational problems, has been extensively reported in the literature.43,44,47,48 Ash 

chemistry is of significant importance in the field of fuel characterization since it defines 

the suitability for combustion technology. 

Conversion in fluidized bed is the preferable technology for combustion of fuels with 

varying quality like some biomass and wastes or fuel mixtures.47,48,53-55 Since it is flexible, it 

produces low emissions and has a high level of efficiency. The main challenges, as 

reported, are related to ash chemistry.48,52,55-60 The main ash-related problems discussed in 

literature56 are: agglomeration (sintering of fluidized bed)61-63, fouling (heat exchanger 

tube deposit)57,64-67, high temperature corrosion64,68-73, and slagging (furnace deposit)60,74-76. 

Determination of ash properties is crucial to avoid these problems and consequent costs. 

Ash properties differ from fuel to fuel and therefore the analyses should be performed on 

a case-by-case basis. 

For many biomass fuels, alkali metals (K and Na) and chlorine are usually considered the 

main ash constituents responsible for the ash-related problems. Many studies related to 

different aspects of alkali metals can be found in literature.77-79 The reason is that, together 

with sulphur, they are the main factors lowering the first melting temperature of ash.43,52 

During biomass combustion, potassium ends up in the ash in the form of chloride (KCl), 
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sulphate (K2SO4), carbonate (K2CO3), and hydroxide (KOH).80,81 Sodium in combustion is 

generally following the fate of potassium. All these compounds have rather low melting 

temperatures, and some of them are even volatile at normal combustion temperatures 

(700-1000 C).82 A good understanding of the chemistry was gained and prevention 

methods were suggested.70,73,81,83,84 

However, recent studies have shown that a high content of phosphorus in a fuel can have 

a crucial impact on combustion behaviour as well.85-87 being responsible for the formation 

of low melting temperature ash.88 The role of phosphorus has been neglected until 

recently due to its low concentrations in many biomass fuels. It is a newly recognized 

property in some biomass. 

2.3 Bed sintering in fluidized bed combustion of biomass fuels 

Agglomeration or bed sintering during (co-)combustion of biomass fuels has been 

studied by several research groups.55,62,83,87,89-101 Both terms, agglomeration and bed 

sintering, are used alternatively to describe the same phenomenon. Sintering may be 

defined as the formation of bonds between particles at high temperatures102, while 

agglomeration may be defined as the formation of clusters of particles, so called 

agglomerates. The agglomeration of bed material in a fluidized bed reactor at elevated 

temperatures can thus be defined as the sintering of bed material. The tendency of the 

bed particles to agglomerate can cause defluidization and so limit the operation of 

fluidized beds.89 

The mechanisms of sintering have been extensively studied in the field of material 

science, since most bulk ceramic components and glass are made by sintering of 

compressed powder.102 The same mechanisms of sintering could be used to describe 

sintering of ashes and bed material in fluidized bed combustors. Skrifvars et al.103 defined 

three different mechanisms responsible for sintering of ash in fluidized beds: partial 

melting, partial melting with a viscous liquid (or viscous flow sintering), and gas-solid 

chemical reaction. 
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Partial melting refers to sintering through the appearance in fuel-derived ash particles of a 

liquid phase consisting of molten salts. The amount of melt controls the ash stickiness and 

is considered to be the controlling parameter for agglomerate formation. Partially molten 

ash can lead to bed sintering. This phenomenon is described in literature as “melt induced 

agglomeration”104, or direct adhesion of bed material grains by molten particles105. The 

influence of char burn-out on the formation of molten phases was studied by Lin et al.62 

and Scala et al.100,106. They suggested that the temperature of burning char particles could 

be higher than that of the average bed temperature, resulting in melt formation. The 

difference between the burning particle temperature and the bed temperature may be in 

the range of 40-600 K (in107 based on108). 

Partial melting with viscous flow is another sintering mechanism referring mainly to 

silicate systems. Silicon can form highly polymerized silicate networks for which the liquid 

phase formed at temperatures above the solidus temperature may be highly viscous. The 

molten phase of simple salts shows low viscosity. The formation of a highly viscous liquid 

could occur for the fuel ash particles (as in coal combustion in pf-boilers) and bed material 

containing silicon. While the first one describes the formation of highly viscous melt 

originating from the fuel-derived ash, the second points to the interactions of the released 

inorganic compounds with the bed material, leading to the formation of a layer on the 

bed grains. Depending on the composition, the layer could be sticky and a prerequisite for 

the formation of agglomerates.92,97 In this case the initial composition of the layer is an 

important parameter for bed sintering, depending on both the fuel-ash composition and 

ash-bed material interaction processes.104 

The third sintering mechanism mentioned by Skrifvars et al.103 is gas-solid interaction (or 

chemical reaction sintering). These were reported only in respect to the deposit formation 

in the convective pass of the boiler. However, the chemical reaction of gaseous species, 

e.g. alkali metals, with the bed material, has been also shown to occur in fluidized beds 

during biomass combustion. The layers on grain surfaces have been found83,95,96,104 and 

divided according to their composition. The layer rich in potassium is referred to as inner 
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reaction layer.87,109 Potassium silicates 

can have a first melting temperature as 

low as 750 C97 and their formation can 

lead to viscous flow bed sintering.  

A different perspective on the 

formation of agglomerates is shown by 

De Geyter110 and Visser et al.104. They 

described bed sintering with respect to 

interactions between bed material 

grains and fuel-derived ash, 

distinguishing two cases. One is case 

when a chemical reaction between bed 

material particles and ash is taking place, which could be referred to as a reactive 

mechanism, and the other when no chemical reaction between the bed material particles 

and ash takes place. The latter could be then called a non-reactive mechanism. The 

summary of bed sintering mechanisms is shown in Figure 11. 

All research groups point to the significant role of alkali metals in the formation of 

agglomerates.83,92,97 However, recent studies also indicate phosphorus as the element 

aggravating bed agglomeration.75 

2.4 Phosphorus in biomass and its chemistry during combustion 

Phosphorus is an essential element for plant growth and plays a role in an array of 

processes including nucleic acid synthesis, photosynthesis, nitrogen fixation etc.111,112. 

Therefore it is necessary for the development of new cells and seed formation, making it 

one of the elements limiting the crop yield. 

As reported by Marschner113, in the early stages of seedling growth the embryo has a large 

requirement for mineral nutrients, including magnesium, potassium, and phosphorus. In 

seeds and in grains, phosphorus is typically stored in the form of phytic acid, myoinositol, 

1, 2, 3, 4, 5, 6-hexakiphosphate114,115 (Figure 12) and its salts, phytates. Phytate phosphorus 

Figure 11 Summary of bed sintering
mechanisms. 
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makes up 50% of the total phosphorus 

in legume seeds, 60-70% in cereal 

grains, and about 86% in wheat mill 

bran. In legume seeds and cereal grains 

the main phytates are magnesium-

potassium salts. The proportions of 

potassium, magnesium, and also of 

calcium associated with phytic acid 

might considerably vary between plant 

species and even between different 

tissues of a seed.113 

Due to its low concentrations in 

biomass, to date, its role during 

combustion has been considered negligible even though some studies on phosphorus 

were performed.116 This macro nutrient is present in substantial amounts in some biomass 

fuels. It is mainly present in high concentrations in agricultural biomass and animal wastes 

(chicken litter, meat-bone-meal) and sewage sludge.49 A high concentration in fuel 

increases its content in formed ash. However, the ash properties are different depending 

on the fuel origin. Fly ash from meat-bone-meal consists mainly of apatite117, and in 

sewage sludge ash calcium magnesium phosphate and aluminium phosphates were 

found.118 The found phosphates have high melting temperatures. Thus no ash sintering 

should occur at fluidized bed combustion temperatures. For agricultural biomass, 

however, formation of low melting temperature phosphates is reported.85,119 Bäfver et 

al.120 found potassium and phosphorus dominating the fine fly ash particle fraction (<1 

m) and the molar ratio indicating the formation of KPO3 and KH2PO4 during combustion 

of second-rate oat grains. These compounds can have a significant influence on deposit 

formation and agglomeration. 

The combustion behaviour of fuels rich in phosphorus is different compared to woody 

fuels.75,85,87,121 In woody biomass a negligible amount of phosphates is formed. Alkali metals 

Figure 12 Phytic acid structure according to [123].
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are available for the reaction with bed 

material or silicon present in the fuel. 

Since phosphorus dominates over 

silicon in the competition for the base 

cations: K+, Mg2+, Ca2+; phosphates will 

form preferentially to silicates during 

combustion of P-rich fuels.119 This K-

capturing ability of phosphorus was also 

observed during fluidized bed 

combustion of phosphorus-rich 

biomass.87,121 It was concluded that the 

formation of phosphates prevented the 

formation of the inner reaction layer. The 

reason was that the reduced amount of 

potassium was available for the reaction 

with quartz bed material grains. If the 

formed phosphates show a high K/Ca 

ratio, however, ash of low melting/sintering temperature range could form.86 Partly molten 

ash particles containing K-Mg-P and Ca-K-Mg-P were reported to adhere to the bed material 

grains during fluidized bed combustion87, leading to bed agglomeration. Therefore it seems 

that phosphorus in regard to ash-related problems seems to show a dual behaviour 

depending on the concentration of alkaline earth metals in the fuel/ash (Figure 13).  

Phosphorus in ash occurs as orthophosphates (PO4
3-), but it can also occur in other 

structures like polymeric ions such as metaphosphates (P3O9
3-) and pyrophosphates (P2O7

4-) 

as summarized by Lindberg et al.88. The formation of tripolyphosphates (P3O10
5-) in 

biomass ash samples was also reported by Boström et al.121. Lindberg et al.88, based on122, 

concluded that orthophosphates have the highest melting temperatures. This finding is 

supported by melting temperatures shown in Figure 13 (based on123). Therefore the 

formation of orthophosphates in ash is desirable during the combustion of phosphorus-

Figure 13 CaO−K2O−P2O5 diagram (on molar
basis), showing melting behaviour of some
available compounds. Diagram according to [125]
based on [123]. 
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rich fuels. In fluidized bed combustion, phosphate-dominated ash is present in the bed 

material which is often silica based. Silicon also enters the combustion chamber with fed 

fuel. The reaction of phosphates with silicates at the fluidized bed temperatures is 

suggested.75,86,121 Lindberg et al.88 stated that phosphates are miscible with silicate liquids 

and may lower the melting temperatures of silicate-rich ashes.  

The influence of MgO and/or CaO on the increase of melting point of phosphates was 

reported by Lindström et al.85 and further experimentally studied by: Barišić et al.75, 

Steenari et al.86, Boström et al.119, and Hao et al.124. In these studies limestone was used as a 

calcium source. Studies on laboratory-prepared ash samples86 showed that with additives 

the potassium-rich phosphate phases incorporate calcium and also magnesium to form 

phosphates with a higher Ca(Mg)/K molar ratio, so the melting point becomes higher. The 

other studies show results from bench- and full-scale combustion experiments in both 

fluidized and grate firing technology. Phosphorus was captured to a higher degree in the 

bottom ash during limestone addition compared to the combustion of pure oats, though 

the formation of slag increased.119 The formation of potassium phosphates in the fly ash 

fraction of ash was reduced with limestone addition.119,120 Limestone is expected to favour 

the formation of phosphates with a high melting temperature but it has an additional role 

in fluidized beds, where it was observed to coat silica particles, thereby preventing the 

formation of low melting temperature silicates.75 

In order to better understand the use of Ca/P-based additives to reduce ash-related 

problems, Novaković et al.125 investigated the release of potassium from laboratory 

prepared salt mixtures in Ca-K-P system. They found that the Ca/P molar ratio has an 

influence on the release of potassium from the system if potassium carbonate is used as a 

potassium source. They concluded that potassium in this case is incorporated in non-

volatile phosphate structures. However no influence of Ca/P ratio on potassium release 

was observed when KCl was used as a potassium source. The release of KCl from the 

sample was observed after 90 min of each performed experiment. During combustion of 

phosphorus-rich fuel, an increased formation of KCl was observed when limestone was 

added in a small-scale combustion119, and it was observed that Ca-based additive 
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promoted vaporization of potassium with no significant effect on the release of 

phosphorus in a tube reactor124. 

Additionally in some works also the influence of kaolin on the ash behaviour was 

studied.86,119,120 The combustion of phosphorus-rich fuels was improved, meaning that ash-

related problems minimized. Based on laboratory studies the best antislagging effect is 

expected when both additives are used.86 

The behaviour of a phosphorus-rich fuel can differ depending on the combustion 

conditions and other ash-forming elements present in the fuel. Even though some 

understanding of phosphorus chemistry has been gained, there is still much to be known.  

2.5 Thermal conversion of the residues 

2.5.1 Dried distillers’ grains with solubles 

Thermal conversion of DDGS was studied by several authors.126-132 The literature on 

combustion properties and ash-related problems is scarce, however. It has been stated 

that DDGS is a promising feedstock for char production.129 Gasification of DDGS results in 

considerable H2 and CO yields.131 The main challenge during circulating fluidized bed 

gasification turns out to be the risk of bed agglomeration.132 In order to sustain fluidization 

authors point at the necessity of a fairly low temperature application and continuous 

kaolin addition.132 Combustion properties and possible applications of wheat DDGS were 

studied by Eriksson133 who summarizes that the slagging tendency of DDGS is higher than 

for typical wheat straw. The high agglomeration tendency of wheat DDGS in a bench-

scale BFB is also reported87,133. It was concluded that the agglomeration was due to the 

formation of ash with a low melting temperature range. In order to avoid ash-related 

problems during combustion of bioethanol residues, Kersten et al.134 maintain 

combustion temperature at 700 C. 

2.5.2 Rapeseed Cake 

Some fundamental characterization of thermal properties has been reported by several 

authors135-137 and combustion behaviour of rapeseed cake/meal have already been 
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investigated to some extent75,138-140. Standard fuel analyses of the residue from five 

European RME producers, together with its possible applications have been shown by 

Eriksson et al.139. Combustion of the residue in the fluidized bed boilers was recently a 

subject of parallel studies performed in 5 kWth bubbling121,139, 50 kW circulating138, and 12 

MWth circulating75 fluidized bed boilers. Boström et al.121, after mono- and co−combustion 

tests with bark, stated that the residue could be an attractive fuel from the agglomeration 

point of view, whereas Nevalainen et al.137 stated that it had a clear agglomeration effect 

on the bed material when combusted or co-combusted with wood chips. All stressed the 

importance of potassium -phosphate chemistry during rapeseed cake/meal combustion, 

which could be counteracted by limestone addition.75 Co-combustion of rapeseed cake 

with coal did not show any significant operational problems, neither in a grate furnace140 

nor in a (50 kW) fluidized bed boiler138. 

2.5.3 Palm Kernel Cake 

Palm kernel cake has been studied as a potential source of energy by several 

authors127,129,141-145. The literature is mainly related to pyrolysis and only few are related to 

combustion. Razuan et al.142 studied the pelletisation of palm kernel cake for energy 

recovery and also reported full fuel analyses. Wigley et al.144 studied the influence of palm 

kernels on deposit formation when co-fired with coal in entrained flow reactor. They 

concluded that with up to 60 wt% of palm kernels in fuel feed the deposition efficiency 

was not increased, but the sintering of deposits was. The main elements increasing in the 

deposits were: potassium, magnesium, and phosphorus. Coda Zabetta et al.55 reported 

that 20 wt% of palm kernel (among other agro-biomass) could be co-fired with biomass in 

units up to 447 MWth. 

2.5.4 Fermented Sewage Sludge 

Sewage sludge is formed during wastewater treatment. It can undergo anaerobic 

fermentation which is one of the ways of sludge stabilisation.24,146 During anaerobic 

fermentation volatile solids are degraded to a certain degree and converted into biogas. 

Consequently the sludge volume but also carbon content are reduced. The residual 
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sludge, called digestate/fermented sewage sludge, is usually sold as compost but could 

be also combusted.24  

Fluidized bed combustion of sewage sludge and fermented sewage sludge has a 

relatively long history.147,148 It was reported that, due to the low heating value, an auxiliary 

fuel may need to be co-fired and that a high ash content in sludge results in high ash 

flow.149 The sludge ash could be beneficial, however, when sludge is co-fired with alkali-

rich fuels, and can lead to significant decrease of alkali chlorides in flue gas and 

deposits.150 This could be assigned to aluminium silicates and iron compounds present in 

sludge that could immobilise potassium and sodium.151,152 Dry fermented sewage sludge 

ash is not expected to become sticky at temperatures up to 950 C.153 
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Table 1 Methods used in this thesis to characterize the residues. 

 
laboratory-scale characterization bench-scale 

BFB 
semi-industrial 

scale CFB 

 section 3.1 section 3.2 section 3.3 

method 
 

 
 

residue 

standard fuel 
analysis 

(Papers I-VI) 

combustion 
in SPR 

(Paper I) 

chemical 
fractionation 

(Paper II) 

sintering 
tests 

(Paper II) 

agglomeration 
test 

(Papers III-IV) 

co-firing and use 
of additive 

(Papers V-VI) 

FSS x x x x - - 

DDGS x x x x - - 

PKC x x x x - - 

RC x x x x x x 

3 METHODS 

The residues of interest were characterized by using laboratory and bench-scale methods, 

and were tested on a semi-industrial scale. The summary of performed tests is shown in 

Table 1. Gas release in a single particle reactor (SPR) was studied in Paper I. In order to 

study ash-forming matter, chemical fraction and laboratory sintering tests were applied 

and discussed in Paper II. The bed agglomeration tendency of RC in a bubbling fluidized 

bed (BFB) reactor was studied in Papers III-IV and co-firing of RC in semi-industrial scale 

circulating fluidized bed (CFB) combustor was studied in Papers V-VI. 

3.1 Laboratory-scale characterization of the residues (Papers I-VI) 

3.1.1 Standard fuel analysis (Papers I-VI) 

Ultimate and elemental analyses were performed by an external laboratory. Ultimate 

analysis was performed according to Swedish and European standards. Carbon, hydrogen, 

and nitrogen were determined according to ASTM D3178-79 with LECO CHN 600. Sulphur 

was analyzed with LECO SC-144DR (SS 187177, utg 1), and chlorine with Dionex ICS-90 

(SS-187185). Elemental analysis was performed with ICP-AES and ICP-SFMS. For this 

purpose a fuel sample was first ashed at 550 C, then digested with LiBO2 and dissolved in 

HNO3. 
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3.1.2 Combustion in SPR (Paper I) 

The combustion tests were performed in a single 

particle reactor (SPR) in order to study carbon and 

nitrogen release from the residues. The setup is shown 

in Figure 14. The reactor consists of a quartz tube 

inserted in an electrically heated ceramic furnace. 

Premixed gases were supplied from the bottom and 

the middle of the reactor. Additionally a purging gas 

was supplied at the place of sample insertion. The flow 

of the gases was controlled by mass flow controllers. 

Air was used as an oxidizing gas and nitrogen as a 

purging gas. The average residence time for the gases 

was around 20 s, while, considering only the product 

gases from devolatilization/combustion of the fuel, the 

residence time at high temperature was estimated at 

about 4 s. The temperature in the reactor was 

measured with a thermocouple inserted in the ceramic 

wall of the furnace, close to the surface of the quartz 

reactor in the proximity of the sample placement point. An insertion probe allowed the 

sample to be placed on the sample holder in a room temperature environment and then to 

be inserted, in a fraction of seconds, into the hot reactor. The reactor was designed and 

used mostly for the study of properties of black liquor droplets154-156 and black liquor 

mixtures with biomass157. These samples could be placed on a hook and, thus, directly 

exposed to the atmosphere. In the present work 10-15 mg of biomass was placed on a 

sample holder made of quartz with a porous bottom. A chemiluminescence analyzer was 

used for NO detection; a non-dispersive infrared (NDIR) analyzer was used for CO and CO2 

measurement. The measurements were performed for all of the fuels at three different 

temperatures relevant for industrial applications: 800, 900, and 1000 C. Two different 

Figure 14 Quartz tube of the single
particle reactor [157]. 
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oxygen concentrations, 3 and 10 vol%, were used. Three samples were tested for each fuel 

at each condition. The content of reduced species (NH3, HCN, tar-N) were not analyzed. 

3.1.3 Chemical fractionation (Paper II) 

Principals of chemical fractionation 

analysis used in this work are described in 

detail in literature158-162. This method has 

been developed for coal163, later adapted 

for biofuels57 and modified46,179. It is applied 

to determine the chemical forms of the 

ash-forming matter in fuels. Chemical 

fractionation is based on selective 

consecutive leaching by water (H2O), 1M 

ammonium acetate (NH4Ac), and 1M 

hydrochloric acid (HCl). Subjecting the 

untreated fuel samples to the increasingly 

aggressive solvents produces a series of 

four fractions. The untreated samples, the three liquid fractions, and the remaining solids are 

analyzed for the elemental composition by an external laboratory with ICP-AES and ICP-SFMS. 

A scheme of the procedure is shown in Figure 15. Analysis was performed on a single fuel 

sample. The reliability of the results is indicated with the mass balance closure. This means the 

concentration of an element in an untreated fuel sample compared to the sum of the element 

concentrations in the four fractions from the chemical fractionation. The four fractions are: 

water leachable, ion exchangeable, acid leachable, non-soluble rest. 

3.1.4 Sintering tests (Paper II) 

The ash sintering tendency of the fuels was investigated using three different tests: 

microsample sintering, pellet sintering, and standard ash sintering (CEN/TS 15370). 

Laboratory ash prepared at 550 C was used in the pellet sintering and standard ash 

sintering tests, while the original fuels were used for the microsample sintering test. 

Figure 15 Chemical fractionation analysis [56] 
based on [178]. 
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The degree of microsample sintering for fuel samples was investigated using a 

thermogravimetric analyzer (TGA) and an optical microscope equipped with a digital 

camera. The fuels were ground (particle size less than 1.0 mm) to ensure the homogeneity 

of the samples. Approximately 15.5±0.3 mg of the fuel sample was placed in the hot 

reactor at a stabilized temperature. The airflow was kept constant at 50 ml/min. Three 

samples were tested for each fuel at each temperature (550 C and 1050 C). The sample 

was removed after 25 min and cooled to room temperature. A picture was taken with a 

digital camera through the optical microscope at three different magnifications: 1.6, 3.2, 

and 5.0. Based on the pictures, the ash samples were classified according to four classes of 

sintering defined by Moilanen et al.164 (Figure 16). Unsintered ash residue that resembles 

the original fuel particles is marked “0”. There are two classes of partly sintered ash 

particles. The first, labelled with one asterisk, describes a sintered sample in which 

individual particles of the original unsintered sample can still be observed. In the second, 

labelled with a double asterisk, individual particles of the original sample can no longer be 

distinguished. Completely sintered ash particles are labelled with three asterisks. 

Pellet sintering tests were based on compression strength measurement tests described in 

detail by Hupa et al.165 and Skrifvars166. The main stages of the method are shown in Figure 17. 

The standard ash was pelletized into 8.0 mm-high cylinders with a diameter of approximately 

8.3 mm. The pelletizing pressure applied to all the pellets was the same (approx. 40105 Pa); it 

was determined by finding the minimum measurable pressure necessary to pelletize the ash. 

After preparation, the pellets were subjected to heat treatment for 4 hours at various 

temperatures in the range between 350 °C and 950 °C in a tube furnace with a constant 

Figure 16 Classification of sintering tendency [164]. 
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synthetic air (80% N2 and 20% O2) flow of 

3.3 Nm3/s. Three pellets were prepared for 

each temperature. After heat treatment, 

the pellets were removed and cooled to 

room temperature in desiccators. The size 

of each pellet was checked to calculate 

the compression strength per mm2. The 

compression strength was measured with 

a standard crushing device.  

Standard ash sintering test was 

performed according to the procedure 

described in CEN/TS 15370167. Ash pellets with a diameter equal to their height (3.0 mm) 

were subjected to heat treatment at a controlled heating rate up to 1500 ºC; the heating 

rate between 500 ºC and 1500 ºC was 5 ºC/min.  

Images of the pellet during heating were recorded and evaluated automatically with an 

image analysis routine written in MATLAB, and they were used to identify the phases in the 

ash melting process, as described in Figure 18. The transitions were determined based on 

the shrinkage of the pellet area. The initial shrinkage temperature corresponds to a 5% 

shrinkage of the cross-sectional area. The deformation temperature, defined in the standard 

as a 15% change in the shape factor, could not be detected for the square-like cross 

sections, so these are not included in the results. Three replicates were performed for each 

fuel. 

 

Figure 18 Phases in the ash melting process (original shape = shape and size at 550C) 
according to [167]. 

Figure 17 Pellet sintering test. 
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3.2 Bed agglomeration tests in a bench-scale BFB (Paper III-IV) 

3.2.1 Experimental set-up 

The experiments for Papers III-IV were 

carried out in a bench-scale 5 kW bubbling 

fluidized bed reactor (BFB), described in 

detail by Öhman and Nordin168 (Figure 19). 

The stainless steel reactor is 2 m high with 

an inner diameter of 100 mm in the bed 

section and of 200 mm in the freeboard 

section. The maximum temperature that 

can be reached is 1045 C (in the bed). A 

constant temperature is achieved by using 

preheated primary air, in conjunction with 

electrical heaters in the freeboard section. 

A perforated stainless steel plate at the 

bottom of the fluidized bed with 1% open 

area functions as an air distributor. The 

temperature and pressure drop in the bed 

were continuously monitored using two thermocouples and two pressure probes. 

Experiments were conducted using two fuels: spruce bark, and rapeseed cake. The 

samples were ground, and eleven different mixtures were prepared, with the proportion 

of bark ranging from 0 to 100 wt%. For each mixture, approximately 40 kg of ground 

material was homogenized in a concrete mixer before pelletizing. The bed agglomeration 

test was carried out for all mixtures. Each experiment could be divided into two stages: 

combustion and agglomeration (Figure 20).  

Stage 1 is combustion of continuously fed fuel. This is followed by stage 2, a controlled 

fluidized bed agglomeration test. During the first stage, approximately 4-5 kg of fuel 

mixture, continuously fed into the reactor with a screw feeder, was burned for 8 h at 800 

Figure 19 Schematic view of the bench-scale 
BFB (5 kW); courtesy of Alejandro Grimm (Luleå 
University of Technology, Division of Energy 
Engineering). 
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C. Bark and rapeseed cake 

have a similar energy content, 

so a constant fuel input 

guaranteed a constant energy 

output of 3.3 kW ± 0.3. For 

each experimental run, 540 g 

of fresh quartz sand (>98% 

SiO2) was used, with an initial 

particle size in the range of 

200-250 m. The excess 

oxygen level was maintained at 

8% dry flue gas for all the experiments, and the air flow was kept constant at 80 Nl/min. 

During the combustion phase, the fluidization velocity was kept 10 times higher than the 

minimum fluidization velocity, corresponding to about 1 m/s. After 8 h of combustion, the 

fuel feed was stopped, and a sample of bottom ash was collected. The air flow was 

minimized to 30 Nl/min, and combustion of propane gas in a chamber below the primary 

air distributor plate was initiated. During the agglomeration tests, propane was burned 

below the air distribution plate, making it possible to achieve the desired mixing of gases 

and to maintain a combustion atmosphere in the reactor. Then, the bed was heated at a 

constant rate of 3 C/min until defluidization was achieved. After reactor cooled down 

sample of agglomerates was collected. 

3.2.2 Samples and analyses 

The recorded temperature and pressure curves were analysed to determine the initial and 

the total defluidization temperatures. The initial defluidization temperature is the 

temperature at which changes in the bed pressure are first observed and it probably 

indicates that the growth of agglomerates and/or slagging begin to take place. In case 

where the pressure curves were constantly declining during the 8-h combustion stage, 

initial defluidization was said to occur during combustion. When the pressure curves were 

stable or increasing during the combustion stage, the initial defluidization temperature 

Figure 20 Stages in controlled agglomeration: bed
temperature and pressure versus time for 90 wt% bark and
10 wt% rapeseed cake. 

0

100

200

300

400

500

600

700

0

100

200

300

400

500

600

700

800

900

1000

1100

09:36:00 12:00:00 14:24:00 16:48:00 19:12:00 21:36:00

P
re

ss
u

re
 in

 b
ed

 [P
a]

B
ed

 t
e

m
p

er
at

u
re

 [
C

]

T Upper Bed T Lower Bed dP Upper bed dP Lower Bed

S
A

M
P

L
IN

G

COMBUSTION AGGLOMERATION S
A

M
P

L
IN

G

STAGE 1 STAGE 2



Methods 

32 

was determined based on the 

pressure curves for the 

agglomeration stage: it is 

defined as the point of 

intersection of two tangent 

lines to the differential 

pressure curves. The total 

defluidization temperature 

refers to the temperature at 

which no fluidization is 

observed: it is defined as the 

first temperature at which the pressure curve reaches its minimum (Figure 21). 

Cross-sections of both collected bottom ash samples after stage 1 and 2 were studied by 

means of SEM/EDX. With the sample collected after the combustion stage (STAGE 1) the 

layers on the bed particles were studied. Samples after the agglomeration stage (STAGE 2) 

were used to study the agglomerate necks. For the purpose, the bed particles were 

embedded in epoxy resin, and after drying were ground with silica carbide grinding paper 

to a obtain smooth surface that was covered with thin carbon coating. 

SEM/EDX point analyses were carried out for two types of ash samples: fuel-derived ash 

found in bottom ash sample collected after stage 1, and fly ash. Fuel-derived ash particles 

(dp < 200 μm) were sieved from the bottom ash sample. Fly ash samples were collected 

from the cyclone (dp < 10 μm). For SEM/EDX analyses ash samples were mounted on 

carbon tape and covered with a thin carbon layer. From 50 to 90 data points in each 

bottom ash sample were analysed for the following experiments: B0, B10, B50, B60, B70, 

and B90. For pure bark combustion test (B100) only a few bottom ash particles could be 

found and 12 data points are given for this test. Between 60 to 100 data points were 

analyzed for fly ash samples for the following tests: B0, B10, B50, B70, B90, and B100. All 

together approximately 470 data points from bottom ash and 480 data points from fly ash 

samples were analysed. 

Figure 21 Bed defluidization temperatures indicated on 
the temperature and pressure profile for test 60 wt% of bark 
and 40 wt% of rapeseed cake. 
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3.3 Co-firing in a semi-industrial scale CFB (Papers V-VI) 

3.3.1 Experimental set-up 

Combustion tests at a semi-

industrial scale were 

performed in a 12MWth 

circulating fluidized bed (CFB) 

boiler. The schematic diagram 

of the boiler is shown in Figure 

22. The combustion chamber is 

13.6 m high and has a cross 

section of 2.25 m2. Fuels are 

mixed before being fed 

through the fuel chute. Primary 

air is introduced to the bottom 

of the bed and secondary air 

2.2 m above the bottom plate. 

The bed temperature during 

the experiments presented in this work was held at approximately 850 C at the bottom 

and at approximately 860 C at the top of the bed. The excess air ratio was held at 1.21. Fly 

ash samples are captured in secondary cyclone and bag filter ash. Secondary cyclone 

consists of ash particles >10 μm.169 This coarse mode of fly ash is mainly formed via 

entrainment of ash particles with the flue gas. In the bag filter ash particles <10 μm can be 

found. These particles could originate from the fine entrained ash fraction but most 

probably are mainly formed during condensation or nucleation of vapours. 

During the tests, the boiler was operated at approximately 6.0 MW thermal. The flue gas 

temperature was approximately 830 C when entering the convection pass, and the fly 

ashes were separated in the secondary cyclone and the bag house filter, where the 

temperature dropped to about 150−160 C. There is approximately 3000 kg of bed 

Figure 22 The schematic diagram of the 12 MWth CFB 
boiler at Chalmers University of Technology: 
(1) combustion chamber; (2) fuel feed chute; (3) primary cyclone;
(4) particle return leg; (5) bottom ash sampling spot; (6) loop seal; (7) 
heat exchanger; (8) deposits sampling spot and position of IACM
upstream of the convection pass; (9) convection pass; (10) secondary 
cyclone; (11) bag house filter; (12) flue gases measuring spot; (13) flue
gas fan; (14) bag house filter ash sampling; (15) secondary cyclone ash 
sampling; (16) recirculating material sampling spot; (17) bottom ash
removal; (18) flue gas recirculation fan; (19) air fan; (20) fuel bunkers;
(21) sand bin; and (22) limestone bin. 
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material in the system (50% in the riser section and 50% in the cyclone leg and particle 

seal). During all tests, sand consisting of 98.9% silica (SiO2) was used as bed material, with 

a particle diameter of 106-125 μm. The limestone was taken from Ignaberga in the south 

of Sweden and more than 93% of it is calcium carbonate.170 Bottom ash, circulating 

material, and fly ash samples were collected after approximately 12 h and at the end of 

each co-combustion test.  

During the tests rapeseed cake (RC) pellets were co-fired with two base fuels: wood or 

coal. For the wood case, a mixture of wood chips produced from spruce grown in the 

south of Sweden, and wood pellets (WP) produced from pre-dried sawdust originating 

from pine and spruce; was used. Two 12 hour tests with and without limestone addition 

were carried out. In both tests approximately 15% on an energy basis of rapeseed cake 

was used. During the tests with coal, South African bituminous coal was used as a base 

fuel. Two 22-23 hour tests were carried out with limestone as a varying parameter. 

Approximately 25% of rapeseed cake on an energy basis was co-fired. A test without 

limestone followed a test with limestone addition with a 1.5 h break, during which only 

coal was combusted. 

3.3.2 Samples and analyses 

Samples from all outgoing solid material streams, namely: bottom ash and fly ash 

samples, were collected at the end of each test. These samples were analyzed 

quantitatively by means of ICP-AES according to ASTM D3683 and ASTM D3682 by an 

external laboratory. After the bag filter (12 in Figure 22), the emission of HCl was 

measured by means of Fourier transform infrared (FT-IR) and SO2 with a non-dispersive 

ultraviolet (NDUV) analyzer. The quantitative analyses of the incoming and outgoing solid 

streams and emission measurements were used to calculate elemental flows. 

Agglomeration characteristics of each fuel mixture were studied by means of SEM/EDX. 

For this purpose the cross sections of bottom ash particles, collected 0.7 m above the 

nozzles (5 in Figure 22), were prepared. First the bed particles were embedded in epoxy 
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resin, and after drying were ground with silica carbide grinding paper to obtain a smooth 

surface that was covered with a thin carbon coating. 

Deposit samples were collected on steel rings (outer diameter 38 mm) that were fitted on 

an air-cooled probe situated in the middle of the flue-gas stream before the convection 

pass (8 in Figure 22). The surface temperature of the steel rings was set at 480 C during 

the 12-h tests to simulate superheater tubes. The rings were weighed before and after 

exposure to the flue gas. The difference in weight was used to calculate the rate of deposit 

build-up (RBU). Semi-quantitative analyses of the deposit samples were performed by 

means of SEM/EDX.  

Additionally, at the beginning of the convection pass (8 in Figure 22) gaseous HCl and SO2 

concentrations were measured using FT-IR. In addition, the concentration of gaseous 

alkali chlorides was continuously measured at this position using the in-situ alkali 

chlorides monitor (IACM) developed by Vattenfall. 
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4 RESULTS AND DISCUSSION 

4.1 Laboratory-scale characterization of residues 

4.1.1 Characterization with standard fuel analysis (Papers I-VI) 

Biomass has a significantly lower heating value than coal (Table 2). This is due to the low 

carbon and high oxygen contents in biomass fuels. 

The different origins of the tested residues are already clearly visible from the data 

reported in Table 2. Dried distillers’ grains with solubles (DDGS), palm kernel cake (PKC), 

and rapeseed cake (RC) present similar content of C, H, and O, while fermented sewage 

sludge (FSS), because of a completely different origin, differ greatly in composition. While 

the agricultural residues have a carbon content of around 50 wt% db, which is similar to 

woody fuels, the content of carbon in the FSS is lower than 30 wt% db. The content of 

nitrogen in all tested residues is definitely higher than in other biomass materials or even 

coals. Nitrogen concentration between 2.4 to almost 6 wt% db warns of possible high NOx 

emissions. Sulphur in FSS and RC is significantly high (0.7-1.2 wt% db). The release of SO2 

was not further studied in this work. The ultimate analysis gives an indication of emissions, 

but, cannot accurately predict the combustion in a large scale fluidized bed boiler. 

Elemental analysis of the residues and reference fuels is shown in Table 3. In contrast to 

fossil fuels, biomass contains many fewer minerals and consists more of the nutrients 

required for the proper development of living cells. Sulphur and chlorine are shown in 

Table 2 Ultimate analysis and energy content of the residues and reference fuels (fuels used in 
Papers I-VI) 

 
dry  

basis 
COAL RC DDGS PKC FSS 

SPRUCE 
BARK 

WOOD 
CHIPS 

WOOD 
PELLETS

LHV MJ/kg 27.1 20.7 18.5 18.1 9.7 19.8 18.7 18.9 

C 

w
t%

 

69.3 49.9 46.7 47.1 26.5 52.3 49.9 50.6 

O 10.0 29.9 36.2 38.3 14.9 36.6 43.3 42.8 

H 4.4 6.9 6.7 6.5 5.9 5.7 6.0 6.1 

N 1.8 5.1 3.9 2.5 3.2 0.4 0.2 0.1 

S 0.5 0.7 0.3 0.2 1.2 0.0 0.0 0.0 

Cl <0.05 0.26 0.18 0.18 0.07 0.02 <0.05 <0.05 
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Table 2. Even though these two elements form gaseous species (SO2 and HCl), they are 

often bound in ash. For coal, the main ash-forming elements are silicon and aluminium, 

which mainly originate from different clays and impurities. On the other hand for biomass 

the main elements are Ca, Mg, K, P, and S. These elements are considered to be 

macronutrients, which are essential for plant growth. Silicon, aluminium, and sodium are 

considered non−essential for plant growth (review by Werkelin50 based on biological 

studies113,171,172). The studied residues, compared to traditional woody biomass and coal, 

contain very high concentration of phosphorus. The influence of phosphorus on the ash 

chemistry will be therefore further studied in this thesis. 

4.1.2 Carbon and nitrogen release during combustion in SPR (Paper I) 

When a solid fuel enters a hot fluidized bed the volatile compounds are released rapidly 

and some remain in the solid char. The remaining compounds are released during slow 

char oxidation stage (Figure 10). Volatile carbon and nitrogen follow different conversion 

routes than char bound elements. Their different oxidation pathways, which were 

described in literature173-175, result in different secondary reactions. Therefore the division 

between volatile and char release is of importance for determination of fate during 

combustion and emission prediction. In this work the single particle reactor (Figure 14) 

Table 3 Elemental analysis of the residues and reference fuels (fuels used in Papers I-VI). 

 
dry 
basis 

COAL RC DDGS PKC FSS 
SPRUCE 
BARK 

WOOD 
CHIPS 

WOOD 
PELLETS

P 

m
g

/k
g

 

915 11500 8750 6090 33900 506 120 56 

Si 32900 261 6580 4090 33200 4642 346 165 

Al 20200 43 75 1370 13900 1006 207 37 

Mg 2030 4500 3090 2970 4000 790 224 160 

Ca 7470 7040 1440 3930 28900 9648 1100 783 

Na 637 4660 1330 145 2630 356 50 29 

K 1310 12300 11900 6790 4410 2192 594 432 

Mn 58 60 44 277 530 479 166 112 

Fe 2690 152 156 4360 114000 497 204 44 

Ti 1180 4 5 53 1400 38 8 2 
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allowed us to study the release 

of carbon (as CO and CO2) and 

nitrogen (as NO) and to 

differentiate between two 

combustion stages. The results 

are shown as the average of 

three measurements. In order 

to determine different 

contributions of volatile versus 

char emissions, the curves 

obtained from the analyzers 

were fit with two Weibull-type 

distributions representing the 

devolatilization and char 

burning contributions using a 

least-squares method. The 

total release of carbon (as CO 

and CO2) resulted in mass 

balance closures between 80 

and 100%; the difference in the 

mass balances was most likely 

due to the formation of soot. The release of fuel N as NO at all studied conditions was 

below 30% of initial nitrogen content in the fuels.  

Figure 23 a) shows the division of released carbon. Quite homogeneous behaviour for all 

fuels can be observed. The percentage of volatile carbon ranged from 55 to 60% for the 

FSS and went up to 65-70% for the residue materials. This is in agreement with the higher 

carbon and volatile content of the residues (Paper I). On the other hand nitrogen does not 

show such a uniform behaviour (Figure 23 b). With increasing temperatures, it appears 

that a decrease of NO released during char oxidation occurs. At low temperatures most of 

the fuels released around 60-70% of their total released fuel N as NO during the 

Figure 23 Carbon a) and nitrogen b) release during
devolatilisation and char oxidation (Paper I). 
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devolatilization stage. At higher temperatures, almost all measured NO was released 

during the devolatilization stage. The values are comparable to previous studies176,177 

reporting volatile N values in the range of 60-70% for different types of biomass materials. 

The performed measurements show how, despite the high nitrogen content of these 

fuels, most of the formed NO was released in the few seconds of devolatilization, so that 

the reduction of NO with radicals from NH3 and HCN could be effective even without the 

application of air staging. The overall emissions of NO are the results of simultaneous 

formation and reduction of nitrogen oxides during combustion. 

4.1.3 Determination of ash-forming matter (Paper II) 

Chemical fractionation was applied to all studied residues in order to determine how ash-

forming elements are bound in fuel.178 Chemical fractionation divides ash-forming matter 

into: water fraction, ammonium acetate fraction, acid fraction, and rest fraction.179 As 

reported by Werkelin et al.50 the water-soluble fraction in woody biomass fuels consist 

mainly of KCl, KH2PO4, and K2SO4. Ammonium acetate fraction consists of organically 

associated metal ions. The acid and rest fractions consist mainly of minerals and also some 

parts of covalently bound non-metals (Figure 15).  

The chemical fractionation results for the residues studied in this work are shown in 

Figure 24. The ash-forming matter of FSS occurs mainly in the form of iron phosphates, 

which are likely present because iron sulphate is used during wastewater treatment 

processes for the precipitation of phosphorus. The presence of aluminium silicates in the 

form of zeolites can also be indicated; the aluminium in the hydrochloric acid soluble 

fraction most probably originates from the dealumination of zeolites in the HCl solution. 

The ash-forming matter of DDGS is mainly leached in water, indicating the presence of 

highly soluble salts of alkali metal phosphates and chlorides. In addition, some mostly 

insoluble silicon is detected. The origin of the silicon might be explained by 

contamination with sand. Some silicon could also have accumulated in the barley grain 

during plant growth. The presence of sulphur in the unleached residual fraction indicates 

that it is covalently bound to organic matter. In PKC, insoluble aluminum silicates, 
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probably contaminants or residues from the production process occur together with 

highly soluble potassium, phosphorus, and chlorine. Low concentrations of silicon are 

found in RC, in which the ash-forming matter consists of alkali metals, phosphorus, 

sulphur, and chlorine; they appear mainly in the fraction leached by water, indicating the 

presence of simple salts like alkali metal chlorides, sulphates, and phosphates. A 

substantial amount of sulphur was found in the residual fraction, suggesting that RC also 

contains covalently bound sulphur. Acid and ammonium acetate soluble phosphorus is 

assumed to occur in the form of phytic acid salts. 

Ash-forming matter undergoes different transformations in combustion, such as oxidation 

(e.g., the oxidation of organic sulphur to SO2); chemical reactions of, for example, reactive 

species with bed material; and thermal decomposition (e.g., the calcination of calcium 

carbonates or loss of structural water from minerals or crystals), depending on how it is 

combined with other constituents.178 An understanding of the association of the ash-forming 

matter in fuels serves as a starting point for understanding its subsequent transformations. 

Figure 24 Chemical fractionation results for the residues (Paper II). 
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n/a-data not available

Temperature 

[C] 
RC DDGS PKC FSS 

550 0 0 0 0 

750   0 0 

850     

950  molten   

1050  n/a   

Table 4 Summary of microsample sintering test results
(Paper II). 

4.1.4 Determination of sintering tendency (Paper II) 

Based on microsample sintering 

tests, DDGS exhibits the highest 

sintering tendency. During the 

microsample sintering test 

(Table 4), at 950 °C, DDGS 

already formed a molten 

amorphous phase and the 

sample could not be removed 

from the crucible. For RC, cake-

like sintering could first be observed at 750 °C. However, further progression of the ash 

sintering could be observed at 950 C. Differences in the ash sintering tendency arise from 

Figure 25 SEM/EDX point analyses of rapeseed cake (RC) after the microsample sintering test.
Results are shown on oxygen and carbon free basis (Paper II). 
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differences in the ash-forming matter and the way it is combined. The two fuels with the 

lowest sintering temperatures, DDGS and RC, have the highest concentrations of water-

soluble alkali metals and phosphorus. The PKC and FSS exhibit the lowest sintering tendency. 

The determined sintering temperatures indicate the properties of ash. They do not directly 

correspond to bed sintering temperatures, however, during fluidized bed combustion.  

The composition of palm kernel cake is similar to that of RC. Their sintering tendencies 

differ significantly, however, and that could be attributed to the smaller ratio of water-

soluble alkali metals to earth alkaline metals in PKC; another possibility is the influence of 

the Al-Si in the fuel sample. Phosphate species can interact with the silicate phases, but 

the interaction needs to be further clarified.86 The chemistry of studied FSS is dominated 

by iron oxides and, as concluded by Wang et al.180, the appearance and disappearance of 

Fe2O3 in ash was the leading factor affecting the sintering of sewage sludge ash when 

Fe2(SO4)3 was used at a wastewater treatment. 

SEM/EDX results of microsample sintering test are introduced in detail in Paper II. Here the 

results for RC are discussed (Figure 25). The SEM/EDX results support that RC sintering 

tendency is driven principally by the presence of alkali metal and earth alkaline phosphate 

particles. Based on literature findings and this research a summary of ash melting 

behaviour is shown in Figure 

26. The melting behaviour of 

the two kinds of phosphate was 

discussed by Lindström et al.85, 

who studied the slagging 

characteristics of phosphorus 

fuels with and without 

limestone addition in a 

residential cereal burner. They 

concluded that limestone, as a 

source of calcium, contributes 

to the formation of high-
Figure 26 Summary of melting behaviour. 
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temperature melting calcium potassium phosphates. The formation of high melting 

phosphates in a fluidized bed was investigated by Barišić et al.75, who reached a similar 

conclusion. Steenari et al.86 reduced the sintering tendency of laboratory ash of rapeseed 

cake with the addition of limestone. They pointed out that a high K/Ca ratio can be 

associated with low temperature ash sintering and melting for phosphorus-rich fuels. The 

increase of the melting temperature with the content of earth alkaline metals for both: 

silicates and phosphates; could be inferred from the results (Figure 26). However, the 

interactions of phosphates and silicates are also of importance, and should be further 

studied. These interactions could most probably result in lowering the first melting point 

and result in the formation of strongly sintered ash. 

The overall sintering trend 

exhibited by the four fuels 

introduced in Table 4 is in 

agreement with that for the 

pellet sintering tests (Figure 27) 

and with the results from the 

standard ash sintering (Figure 

28), with the initial sintering 

temperature increasing in the 

following order: 

RC<DDGS<PKC<FSS.  

There are some disagreements, 

however, regarding the initial 

sintering temperatures. Pellet 

sintering tests suggest that the 

onset of sintering takes place 

at lower temperatures for RC 

and DDGS than were identified 

during the microsample 

Figure 27 Pellet sintering test results (Paper II). 
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sintering test and the standard ash sintering test. The initial sintering temperatures for FSS 

and PKC are similar for all the tests. The initial sintering for PKC and FSS is expected to 

occur at approximately 900-950 °C. However for the pellet sintering test no hard sintering 

was observed in the temperature range, making determination of the onset temperature 

difficult. 

The lowest initial sintering temperatures were observed for RC and DDGS, and for the 

three sintering methods. They are below 800 ºC, suggesting that these fuels should not be 

combusted alone, without precautions against ash-related problems, no matter what the 

combustion technology. The PKC and FSS samples do not exhibit significant sintering 

below 900 ºC, which could be interpreted to mean that when the combustion 

temperature is below 900 °C no significant ash-related problems will occur. However this 

temperature corresponds to the fuel ash sintering tendency, and does not take into 

consideration the influence of other parameters related to the combustion technology, 

e.g. bed material in a fluidized bed. 
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4.2 Bed agglomeration tests in a bench-scale BFB (Papers III-IV) 

4.2.1 Determination of bed defluidization temperatures (Paper III) 

The agglomeration tendency of mixtures of rapeseed cake and spruce bark was determined 

using controlled fluidized bed agglomeration tests. The initial defluidization temperatures 

(IDT) and the total defluidization temperature (TDT), described in section 3.2, were plotted 

as functions of the mixture composition (Figure 29). The inaccuracy of ±30 C was 

determined in previous studies168 and is included in the Figure. The TDT indicates the 

temperature at which the formation of agglomerates leads to the complete collapse of the 

bed and loss of fluidization. Rapeseed cake showed a strong agglomeration tendency, and 

total defluidization occurred during the combustion stage (800 C). At the other extreme, 

the TDT for bark was above 1045 °C, so it could not be measured due to the limitations of 

the experimental set-up. These results are in agreement with findings from previous studies 

on the agglomeration tendency of bark.139 In Figure 29 the initial defluidization temperature 

(IDT) is also indicated. At this temperature the growth of agglomerates and/or slagging 

begins to take place. The IDT in this study was sometimes as much as 200 C lower than the 

total defluidization temperature. 

Figure 29 Bed defluidization temperatures versus proportion of bark in the fuel
mixture (Paper III). 
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The defluidization temperatures of the fuel mixtures increase with increasing proportion 

of bark. The change in the trend in the graph of the IDT occurs for 60 wt% of bark. For 

mixtures dominated by RC ash (0-50 wt% bark), a constant decline in the pressure curve 

can already be observed during the combustion stage (800 C). Accordingly, it is 

reasonable to suppose that initial defluidization occurs during combustion.  

4.2.2 Correlation between defluidization temperatures and ash-forming matter (Paper III) 

Three molar ratios were used to describe ash-forming matter: (K+Na)/(Ca+Mg), (Ca/P), and 

(K+Na-P)/(K+Na), and were plotted as a function of fuel mixture (Figure 30). A correlation 

between the molar ratios, the defluidization temperatures, and the formation of the inner 

reaction layer is shown. The molar ratios which correspond to the mixture with 

significantly higher defluidization temperatures compared to rapeseed cake mono-

combustion (60 wt% bark) are further discussed. Calcium to phosphorus (Ca/P) molar ratio 

in the mixture is approximately 1.3 and the molar ratio of alkali metals to alkaline earth 

metals (K+Na)/(Ca+Mg) is 0.8. These molar ratios indicate an increase of alkaline metals in 

the phosphate compounds. An increased content of Ca in a Ca-K-P system may shift the 

Figure 30 Molar ratios versus the proportion of bark in the fuel mixture (Paper III). 
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first melting temperature to over 1000 C.85 This is in agreement with the defluidization 

temperature result for the mixture with 60 wt% of bark (TDT ~1045 C).  

Another shown molar ratio is (K+Na-P)/(K+Na). It indicates the amount of alkali metals that 

may be available for the formation of alkali silicates, -chlorides or -sulphates. The strong 

affinity of phosphorus towards alkali metals was reported by Boström et al.121,181 and alkali 

metals phosphates are formed preferably if both silicon and phosphorus are present. The 

molar ratio (K+Na-P)/(K+Na) was below 0.3 for mixtures up to 60 wt% bark in fuel mixture. 

An inner reaction layer, however, can be already observed in mixtures with as low as 30 

wt% of bark (Figure 30), indicating the possible reaction of alkali phosphates with silica 

grains as was suggested by Barisič et al.75. The formation of an inner reaction layer has 

been well reported in literature in respect to agglomeration mechanisms for woody fuels. 

This layer is formed when alkali metal compounds are reacting with bed material particles, 

leading to the formation of potassium silicates, whose first melting point could be as low 

as 750 C. The resulting inner reaction layer on the bed material particles leads to viscous 

flow sintering. It is discussed in more detail in Paper III.  

4.2.3 Fly and bottom ash composition before agglomeration stage (Paper IV) 

The composition of ash particles found in the samples from combustion of bark (B100) 

and rapeseed cake (B0) are shown in Figure 31. During bark combustion (B100) hardly any 

fuel-derived ash particles could be found in the bottom ash samples and the composition 

Figure 31 Composition of fly ash (a) and bottom ash (b) samples for 0 wt% bark (pure
rapeseed cake) and 100 wt% bark determined by SEM/EDX. Here only points with SiO2 <10
mol% are shown (Paper IV). 
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of a single bottom ash particle is shown in the figure. Combustion of bark results mainly in 

the formation of fine particles collected in the cyclone (fly ash with dp <10 m). The 

composition of fly ash formed during combustion of bark is found in the top corner of the 

triangle (Figure 31 a). These points almost entirely correspond to calcium compounds (in 

the diagrams expressed as oxide). Calcium compounds occurring in biomass ash are CaO, 

CaCO3, and Ca(OH)2. However, in this study these compounds were not distinguished and 

are described with CaO. Some calcium sulphate and chloride also formed. Composition of 

ash for fuel mixtures with high proportion of RC (B 0) and high proportion of bark (B 0) is 

shown in (Figure 32). Higher amount of sulphates and chlorides formed for test B90 when 

compared to the pure bark test (B100). This could be explained with 10% of rapeseed cake 

combusted with the fuel mixture. Sulphates and chlorides which are shown in Figure 31 

and Figure 32 (points with P2O5<10 mol%) for both fuels bark and rapeseed cake were 

almost entirely found in particles with a high calcium content. 

For rapeseed cake ash samples alkali metals were observed mainly together with 

phosphorus. The fact that alkali metals will primarily form phosphates was reported in 

literature181. In the bottom ash from test B0 (Figure 31 b) and B10 (Figure 32 b) mainly 

phosphate particles were found. Numbers 1, 2, and 3 in all ternary diagrams indicate 

different forms of phosphates. Number 1 indicates orthophosphates (PO4
3-), with 

approximately 25 mol% of P2O5. Phosphorus can form other structures also like polymeric 

ions, such as metaphosphates (P3O9
3-) and pyrophosphates (P2O7

4-).88 The formation of 

tripolyphosphates (P3O10
5-) in biomass ash samples was also reported121. Pyrophosphates 
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Figure 32 Composition of fly ash a) and bottom ash b) samples for tests B10 and B90 based on 
SEM/EDX. Here only points with SiO2 <10 mol% are show (Paper IV).  
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and tripolyphosphates could be found in diagrams with approximately 33 mol% and 38 

mol% of P2O5. This range of phosphorus content is indicated by number 2. On the other 

hand, the composition in number 2 could also correspond to mixtures of the different 

types of phosphates mentioned. 

It is difficult therefore to state if group 2 indicates pure pyro- and tripoly-phosphates or 

denotes formation of phosphate mixtures. Number 3 corresponds to the formation of 

methaphosphates. 

In Figure 33 an example of rapeseed cake ash particle from test B0 is shown. The particle 

shows a heterogeneous composition with high phosphorus content. It is plausible that 

different types of phosphates are present in one ash particle. Additionally, there seems to 

be a correlation in the forms of phosphates: K and Mg are found together in higher 

concentrations in the same points, and this also holds true for Na and Ca. Based on 

SEM/EDX analysis the formation of some compounds may be inferred. Figure 33 suggests 

that orthophosphates such as CaNaPO4 (point 16) and MgKPO4 (point 17 and point 18) are 

present together with other phosphates, e.g. with a composition close to that of CaK2P2O7 

(point 1). While such compounds were previously indentified in biomass ash samples85 the 

sodium rich compounds have not been reported recently. The other point analyses in this 

particle indicate the presence of complex phosphate mixtures. The melting behaviour of 

Figure 33 Example of RC ash particle from the bottom ash sample after 8 hours of fluidized
bed combustion at 800 C and its composition on oxide basis as mol%, based on SEM\EDX
studies. Composition normalized to 100 mol%. Before normalization, the composition ranged
between 94 mol% to 100 mol% for the shown elements (Paper IV). 
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point Na2O MgO P2O5 K2O CaO
1 6 6 33 26 30
2 12 2 31 20 35
3 20 3 28 12 38
4 14 3 30 17 36
5 9 12 30 21 28
6 7 7 33 25 28
7 13 12 29 20 26
8 5 46 28 22 0
9 18 6 27 14 35

10 9 2 31 21 37
11 3 13 33 27 24
12 4 3 32 25 36
13 5 43 31 21 0
14 9 7 33 28 22
15 2 2 35 29 32
16 23 4 25 6 42
17 4 48 27 21 0
18 4 48 27 22 0
19 26 4 25 6 39
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mixtures can drastically differ from the melting behaviour of pure compounds, influencing 

the amount of melt present in and the first melting point of the ash. The substantial 

amount of sodium found in these mixtures may have a considerable influence on the 

melting behaviour of phosphates.  

In order to determine the approximate amount of alkali and alkaline earth metals in the 

phosphate compounds, analyses of points with phosphorus as the main anion were 

chosen and shown in ternary diagrams (Figure 34 and Figure 35). 

In Figure 34 it can be seen that phosphates formed during rapeseed cake combustion can 

contain as low as 20 mol% (CaO+MgO). The composition of ash particles, which is in the 

range 2 with P2O5 between 60-70 mol%, contains between 20-40 mol% of (CaO+MgO). For 

Figure 34 Composition of ash particles in bottom ash samples from tests with 100% fuel (a),
B0 and B100, and mixtures (b) with a high proportion of rapeseed cake (B10) and with high
proportion of bark (B90) based on SEM/EDX. Composition normalized to 100%. Before
normalization the sum of the oxides in the corners was above 90 mol% (Paper IV). 
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Figure 35 Composition of ash particles in bottom ash sample for tests B60 (left) and B70 (right)
based on SEM/EDX. Composition normalized to 100%. Before normalization the sum of the
oxides in the corners was above 90 mol% (Paper IV). 
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RC
100%

1 weight-% atom-%
P 29.9 30.4
Si 9.4 10.5
Al 0.0 0.0

Mg 4.3 5.6
Ca 27.2 21.4
Na 15.2 20.9
K 14.0 11.3

Mn 0.0 0.0

2 weight-% atom-%
P 30.4 30.6
Si 13.1 14.5
Al 0.0 0.0

Mg 15.7 20.2
Ca 7.2 5.6
Na 4.1 5.6
K 29.4 23.4

Mn 0.0 0.0

3 weight-% atom-%
P 30.6 31.8
Si 12.7 14.6
Al 0.0 0.0

Mg 7.4 9.8
Ca 15.4 12.4
Na 6.2 8.8
K 27.7 22.8

Mn 0.0 0.0

BARK
100%

2 weight-% atom-%
P 6.8 6.9
Si 48.6 54.0
Al 0.5 0.6

Mg 0.7 0.9
Ca 18.6 14.5
Na 6.2 8.4
K 17.9 14.4

Mn 0.7 0.4

3 weight-% atom-%
P 0.0 0.0
Si 43.4 51.9
Al 0.0 0.0

Mg 0.5 0.7
Ca 50.7 42.5
Na 0.7 1.1
K 4.0 3.4

Mn 0.8 0.5

1 weight-% atom-%
P 0.6 0.6
Si 62.6 68.2
Al 0.2 0.3

Mg 1.0 1.3
Ca 10.3 7.9
Na 4.1 5.5
K 20.2 15.8

Mn 0.9 0.5

Figure 36 Agglomerates found for the test with rapeseed cake (left) and bark (right) (Paper III). 

test B90, phosphates found in the bottom ash indicate orthophosphates (indicated with 

point 1) with an alkaline earth metals content at approximately 50 mol% and higher. This 

corresponds well with, e.g., CaKPO4 previously being reported to form during biomass 

combustion.85 This compound has a high melting temperature. Almost all point analyses 

from tests B60 and B70 (Figure 35) indicate orthophosphates formation. As indicated in 

Figure 30, the (K+Na)/(Ca+Mg) fuel molar ratio is decreasing with higher proportion of 

bark in the fuel mixture and is favouring formation of alkaline dominated phosphates 

(Figure  34  35). 

4.2.4 Agglomeration characteristics (Paper III) 

SEM/EDX analyses of cross-section of agglomerates formed after the agglomeration test 

(stage 2) are shown for 100 wt% rapeseed cake and 100 wt% bark in Figure 36. In the case 

of pure bark firing the composition of the neck formed between the two bed material 

grains resembled the composition of the inner reaction layer (Paper III). Therefore it is 

expected to be the reason of bed material sintering. A reaction between the silica bed 

material particles and the ash-forming elements originating from the fuel, which leads to 

layer formation, is the dominant mechanism underlying agglomerate formation. This 

s and 
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mechanism can be described as a reactive mechanism. In the case of 100 wt% RC, the 

direct adhesion of partly molten ash particles to bed particles can be the driving force for 

the formation of agglomerates. Since no chemical interaction was observed between the 

bed material particles and the molten ash, this mechanism is referred to as a non-reactive 

mechanism. Both mechanisms are summarized in Figure 11. 

In Paper III the distribution of the total layer thickness around the bed material particles 

was also studied in an attempt to define the prevailing mechanism of agglomeration for 

fuel mixtures. It was found that in mixtures containing at least 40 wt% bark, the non-

reactive mechanism prevails. In mixtures containing at least 60 wt% bark, the reactive 

mechanism prevails. In the mixture with 50 wt% bark, there is evidence that both 

mechanisms may play a role in bed agglomeration. 

Investigations of the agglomerate neck composition during the combustion of 100 wt% 

RC revealed that the partly molten ash found between the silica sand particles consisted 

mainly of phosphates: magnesium-potassium-phosphates, and calcium-

potassium/sodium-phosphates. Because of the high sodium content of rapeseed cake, the 

combustion of 100 wt% RC results mainly in the formation of sodium-calcium-phosphates. 

4.3 Co-firing in a semi-industrial CFB (Paper V-VI) 

4.3.1 Elemental mass balance (Papers V-VI) 

Elemental flows were calculated using the quantitative analyses of the incoming and 

outgoing streams. The results are shown in Figure 37 giving an indication of the pathways 

that ash-forming matter was taking throughout the boiler. The figure is divided into 

bottom ash, secondary cyclone ash, bag filter ash, and emission fractions of elemental 

inflow. The sum of those flows indicates the elemental mass balance closure 

(outflow/inflow [%]). The difference between the sum and 100% is marked on the graph 

as an accumulated ash fraction in the system; this naturally also includes any possible 

measurement errors. During the coal test without limestone the mass balance of calcium, 

sulphur, and chlorine exceeded 100%. Coal with limestone addition was fired prior to the 

test without limestone addition. When no limestone was added the cleaning of the boiler 
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can be observed. This high concentration in bed material was a result of high bed 

regeneration during this test and removal of calcium sulphate accumulated during the 

limestone test. 

The secondary cyclone stream was the main fly ash stream for both, wood and coal case. 

During wood case, 20-25% (during coal, 40%) of entering alkali metals and phosphorus 

were found in the secondary cyclone stream as particles >10 m. 

The total ash recovery for wood (Paper V) without limestone was approximately 70% 

ashout/ashin, indicating ash accumulation in the system. This indicates possible 

agglomeration and fouling tendencies occurring during RC co-combustion with woody 

biomass. For coal (Paper VI) without limestone the closure was above 90% ashout/ashin 

indicating no significant ash accumulation in the system. However, some ash accumulated 

during this test and was removed from the boiler during the following coal combustion at 

the end of the experiments resulting in mass balance closure higher than 100%. 

Figure 37 Elemental mass balances shown as outflow/inflow of the element in [%].
Accumulation (or error) bar calculated as a difference of the mass balance closure 
and 100% (Δ = 100 [%] - out/in [%]) (Papers V-VI). 
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4.3.2 Agglomeration characteristics (Papers V-VI) 

During combustion, rapeseed cake forms ash particles that are heterogeneous in their 

composition consisting of both alkali and earth alkaline metals (Figure 38). As discussed in 

previous sections the melting behaviour is changing with the content of alkaline earth 

metals (Figure 26). In Paper III, it was shown that RC ash particles could lead to 

defluidization already at 800 C. In Paper V, during co-combustion of wood and a small 

proportion of rapeseed cake, a high agglomeration tendency was observed. The 

proportion of rapeseed cake (RC) during combustion of wood with and without limestone 

was approximately 15% on an energy basis. This fuel proportion results in a doubled RC 

ash inflow compared to wood ash inflow. The test without limestone addition led to the 

formation of agglomerates in the particle seal and the shutdown of the boiler occurred. 

On the other hand the test with limestone addition did not result in any drift problem. 

Agglomeration during the test without limestone addition was attributed to the 

formation of low melting temperature K-silicates on the surface of the bed material grains 

and adhesion of phosphorus-rich, partly molten ash particles. The addition of limestone 

improved co-combustion. It prevented the formation of a low melting temperature 

reaction layer (K-silicate) on bed material particles by coating the grains with uniform 

calcium layer, as can be seen in Figure 39 (the white band around the grey silica core). 
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Figure 38 Rapeseed cake ash particle found in the bottom ash after 12 hours of rapeseed cake
and wood co-combustion. 
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During coal co-combustion no bed sintering was observed and the outer coating layer 

was dominated by coal ash. There could be two reasons for the observed weak 

agglomeration tendency. Coal ash might have acted as a diluting agent for low melting 

temperature RC ash particles (4-fold higher coal ash flow compared to RC ash inflow). 

However, also the influence of coal ash chemistry could be taken into consideration. Alkali 

released could have been scavenged in the bed by ash compounds originating from coal 

in the form of high melting temperature aluminium silicates. The interactions of 

phosphates with coal ash should be also considered. However, the reaction of phosphorus 

with aluminum silicates leading to the formation of high melting temperature 

compounds is not well understood yet and requires further investigation. 

4.3.3 Fouling characteristics (Papers V-VI) 

The measurements carried out in the beginning of the convective pass are shown in 

Figure 40. The increased formation of alkali metal chlorides during limestone addition for 

wood case took place (a). The increase in chlorides is followed by the increased rate of 

deposit build-up (RBU) on the deposit probe and creates the risk of corrosion. 

Correspondingly (K and Na) concentration in the bag filter fraction was raised and the 

chlorine content doubled compared to the no limestone test. This could be a result of 

calcium sulphate formation. When no sulphur was released to the gas phase the 

sulphation of (KCl+NaCl) was not possible182. The fact that limestone was found to 

Figure 39 Bed material grains after co-combustion of rapeseed cake with wood a) without 
limestone addition and b) with limestone addition (Paper V). 

a b
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indirectly facilitate the 

formation of (K and Na)Cl 

during wood combustion was 

not observed during coal case 

(Figure 40 b). No alkali 

chlorides in the gas phase 

were formed but also no 

chlorine was found in the bag 

filter ash. This indicates a 

significant influence of 

aluminium silicates from coal 

ash on alkali metal compounds 

as was earlier reported in the 

literature183. 

The composition of deposits 

collected during the tests is 

shown in Papers V and VI. Here 

the composition of a leeward 

side deposit is shown in Figure 

41 since there the highest 

concentration of phosphorus was observed.  

The increase of chlorine during wood and rapeseed cake co-combustion when limestone 

was added can be observed. This is a result of increased formation of (KCl+NaCl). High 

content of calcium in the deposit indicates limestone induced fouling. For the test with 

limestone addition a decrease of phosphorus concentration in the deposits can be 

observed. This was most probably the result of the favoured formation of calcium 

phosphates which most probably stayed in the bed. During the coal case no deposition of 

chlorides could be observed in the deposits both with and without limestone addition. 
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Figure 40 Measurements at the entry to the convective 
pass (Papers V-VI). 
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Furthermore, when no limestone was added hardly any deposit was collected. This 

observation suggests that the rapeseed cake and coal mixture does not cause fouling.  

In has been previously reported that ash-related problems could be counteracted when 

co-combusting biomass with coal.184,185 It seems that ash-related problems during 

combustion of phosphorus-rich fuels can also be reduced during coal co-combustion. 

4.4 Evaluation of characterization methods 

Different laboratory methods were used in this study to determine the main challenges 

related to the residues combustion. They served their purpose well but certainly each of 

them has some disadvantages. Therefore they should be used with caution when 

interpreted in terms of full-scale applications. 

Development of an analytical method was not the objective of this research. However, 

when applying them to answer the research questions; several sources of uncertainties 
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Figure 41 Composition of leeward deposit based on SEM/EDX shown as wt% of oxides
(Papers V-VI). 
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were observed. The main uncertainties of the methods could arise from accuracy of the 

instruments, measurement conditions, operator effects, and sampling. These can be, of 

course, minimized with the calibration of the instruments, good control of the 

measurement conditions, and the precise and systematic way of carrying out the 

experiments. It is also of great importance to eliminate the human factor during the 

process of data evaluation. Methods mostly influenced by this uncertainty are the two 

sintering methods: microsample and standard ash sintering methods. For the last one a 

MATLAB routine was used in order to avoid subjectivity. The largest challenge for all of 

these methods comes, however, with sampling. Samples used for analysis with all 

methods were in the range of grams to nanograms and were supposed to be 

representative for the bulk material measured in tonnes. Therefore, the 

representativeness of the sample is of crucial importance for all of the methods. In this 

work two main measures were applied in order to minimize uncertainties originating from 

sampling: homogenization and repetition. However, this uncertainty should be kept in 

mind when carrying out analyses. 

An initial estimation of fuel properties is given with the standard fuel analysis, which can 

be used as a starting point. This is relatively easy to carry out. It shows only fuel 

composition and heating values with no indication of process behaviour. Chemical 

fractionation gives additional information on ash-forming matter, which could be then 

interpreted in terms of the elements’ reactivity. However, this correlation is not always 

straightforward and is recently more discussed in terms of elements than in terms of 

leached fractions. In this study the method was used not to predict the ash behaviour but 

to show the way ash-forming matter is present in a fuel and to fulfil other methods with 

this information. In Paper II three different laboratory-scale sintering tests were used and 

results were compared in order to determine the sintering tendency of the residues. One 

important parameter of these methods to bear in mind is that two of them (the pellet 

sintering test and the standard sintering test) are performed on ash. In this study ash 

samples were prepared at 550 C (standard ash). This does not correspond to ash formed 

during full-scale combustion and therefore they do not give the process temperature. 
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These could be used, however, to study fuel ash properties and for conducting 

comparative studies. On the other hand, microsample sintering tests were performed on 

fuel samples eliminating ashing temperature as a limiting parameter. However, since the 

results are based on microscopic visual inspection, they might be somewhat subjective. 

Another drawback of all sintering tests (Paper II), is that neither of them recognizes the 

influence of bed material nor the fluidization velocity. Even though they give valuable 

information on sintering tendency, they cannot be directly correlated with the bed 

sintering tendency of a fluidized bed. 

Agglomeration tests were performed in a bench-scale BFB (Paper III-IV). The combustion 

stage with the continuous feeding and combustion at temperatures relevant to fluidized 

bed operating conditions can be directly correlated to a full-scale operation, and therefore 

the accumulated ash should show the same properties. On the other hand, the 

agglomeration stage cannot be directly correlated with the real process due to the 

constant heating rate and the none combustion of fuel particles in the bed during the 

measurement. It indicates the initial bed sintering temperature, taking account of bed 

material and fluidization velocity. Semi-industrial scale experiments (Paper V-VI) give the 

best indication of the combustion behaviour of tested residues. However, the number of 

scale-up experiments will be limited due to the operation being costly and time-

demanding. Both laboratory and bench-scale studies could provide useful information on 

the combustion behaviour and therefore should proceed full-scale testing. 
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5 CONCLUSIONS 

Extensive fuel characterization was undertaken and proved that the residues could be a 

valuable source of heat and power. The residues differ substantially in their composition 

compared to more traditional biomass fuels. A common property is the high 

concentration of phosphorus. This element was considered until now as negligible for ash 

chemistry due to its low concentrations in fuels. The experimental work revealed that 

phosphorus has a role during combustion which cannot be neglected anymore when 

phosphorus-rich fuels are entering the energy market. 

Agricultural residues and wastes contain a high concentration of phosphorus which has a 

crucial effect on ash sintering. Laboratory-scale (Papers I-II) investigation defined the 

challenges related to the combustion of the investigated residues. Relatively low ash 

sintering temperatures (Paper II) were observed for phosphorus-rich fuels when present 

together with a high content of soluble alkali metals. It was observed that the higher the 

content of alkaline earth metals in the ash samples, the higher was the sintering 

temperature. This was confirmed during bench-scale studies in Papers III-IV and semi-

industrial scale studies in Papers V-VI.  

Limitations of combustor availability associated with silica bed sintering and deposit 

formation of phosphorus-rich fuel were studied on the sample of rapeseed cake. This fuel 

next to phosphorus contains high concentration of potassium and also sodium. High 

agglomeration and fouling tendency during fluidized bed combustion was observed. In 

order to improve the problematic behaviour two strategies were used: co-combustion 

and the addition of limestone. 

Bed sintering during fluidized bed combustion of pure rapeseed cake followed non-

reactive mechanism. This mechanism is controlled by the stickiness of fuel-derived ash 

particles. Entrained fine rapeseed cake ash particles also aggravated the deposit 

formation. During co-combustion experiments of rapeseed cake with wood, deposit 

mainly built up on the windward side of the deposit probe. However, the highest 

concentration of phosphorus was found on the leeward side. 



Conclusions 

62 

Co-combustion of rapeseed cake with bark proved to decrease agglomeration tendency 

of phosphorus-rich fuel. With an increasing proportion of bark, Ca/P increased in the fuel 

mixture and the formation of high melting temperature phosphates in the ash was 

favoured. However, bark addition also favoured the formation of low melting temperature 

K-rich reaction layer on the silica bed material grains. Increasing Ca/P ratio to 1.3 resulted 

in a significant decrease of the agglomeration tendency when the (K+Na)/(Ca+Mg) molar 

ratio was approximately 0.8. 

During co-combustion of rapeseed cake with wood, the addition of limestone resulted in 

improved combustion and no heavy bed sintering was observed, even though the 

retention of phosphorus in the bed took place. Limestone addition was used to favour the 

formation of high melting temperature phosphates during rapeseed cake and wood co-

combustion tests. Additionally, limestone also induced coating of bed material grains with 

a thick and uniform calcium dominated layer which prevented reaction of potassium with 

silica from the bed. The amount of phosphorus in the leeward side deposit was decreased 

with limestone addition; however, at the same time the formation of (KCl+NaCl) was 

increased. 

During rapeseed cake co-combustion with coal, neither bed sintering nor fouling was 

observed. The ratio of coal ash inflow to rapeseed cake ash inflow was four times higher 

thereby diluting the low melting temperature rapeseed cake ash particles, but the 

interaction of aluminium silicates with rapeseed cake ash may also take place. 
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6 FUTURE WORK 

The combustion characterization of phosphorus-rich fuels was investigated, indicating 

possible challenges and possible countermeasures. There is still a need, however, for more 

fundamental studies on phosphorus. Detailed reaction mechanisms behind bed 

agglomeration and fouling should be further investigated. The interactions of phosphates 

with silica and aluminum silicates were not investigated in this study, and require better 

understanding. 

This work proved that co-combustion with bark reduced the agglomeration tendency of 

phosphorus-rich fuels. However an examination of the influence on deposit formation 

was not undertaken. Before the full-scale implementation the fouling tendency during 

rapeseed cake and bark co-combustion experiments should be investigated as well as the 

long term effect on the combustor operation. 

Understanding thermodynamic properties of compounds formed during biomass 

combustion is an important step for ash behaviour determination. Thermodynamic data 

for phosphates are, however, scarce. The determination of thermodynamic properties of 

phosphorus compounds is, therefore, crucial for a better understanding of ash chemistry 

during combustion of phosphorus-rich biomass. 

Another aspect for future studies is ash utilization. As was demonstrated, ash from 

combustion of the residues could be rich in phosphorus. Consequently its potential use as 

fertilizer on agricultural land should be further studied. It would close the cycle of 

phosphorus and could add extra value to the production process from which the residues 

were obtained. 
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