
Applications of Graph
Transformation in Tools for
Domain-Specific Modeling

Languages

Torbjörn Lundkvist

Åbo Akademi University
Department of Information Technologies

Joukahaisenkatu 3–5 A, 20520 Turku, Finland

2011

Supervisor

Professor Iván Porres
Department of Information Technologies
Åbo Akademi University
Joukahasenkatu 3–5 A, 20520 Turku
Finland

Reviewers

Associate Professor Dániel Varró
Department of Measurement and Information Systems
Budapest University of Technology and Economics
Magyar Tudósok körútja 2
1117 Budapest
Hungary

Professor Jon Whittle
Department of Computing
Lancaster University
Bailrigg
Lancaster, Lancs LA1 4YW
United Kingdom

Opponent

Associate Professor Dániel Varró
Department of Measurement and Information Systems
Budapest University of Technology and Economics
Magyar Tudósok körútja 2
1117 Budapest
Hungary

ISBN 978-952-12-2601-4
Painosalama Oy, Turku, Finland, 2011

Abstract
The use of domain-specific languages (DSLs) has been proposed as an approach to
cost-effectively develop families of software systems in a restricted application do-
main. Domain-specific languages in combination with the accumulated knowledge
and experience of previous implementations, can in turn be used to generate new
applications with unique sets of requirements. For this reason, DSLs are considered
to be an important approach for software reuse.

However, the toolset supporting a particular domain-specific language is also
domain-specific and is per definition not reusable. Therefore, creating and maintai-
ning a DSL requires additional resources that could be even larger than the savings
associated with using them.

As a solution, different tool frameworks have been proposed to simplify and
reduce the cost of developments of DSLs. Developers of tool support for DSLs
need to instantiate, customize or configure the framework for a particular DSL.
There are different approaches for this. An approach is to use an application pro-
gramming interface (API) and to extend the basic framework using an imperative
programming language. An example of a tools which is based on this approach is
Eclipse GEF. Another approach is to configure the framework using declarative
languages that are independent of the underlying framework implementation. We
believe this second approach can bring important benefits as this brings focus to
specifying what should the tool be like instead of writing a program specifying
how the tool achieves this functionality.

In this thesis we explore this second approach. We use graph transformation as
the basic approach to customize a domain-specific modeling (DSM) tool framework.
The contributions of this thesis includes a comparison of different approaches
for defining, representing and interchanging software modeling languages and
models and a tool architecture for an open domain-specific modeling framework
that efficiently integrates several model transformation components and visual
editors. We also present several specific algorithms and tool components for DSM
framework. These include an approach for graph query based on region operators
and the star operator and an approach for reconciling models and diagrams after
executing model transformation programs.

We exemplify our approach with two case studies MICAS and EFCO. In these
studies we show how our experimental modeling tool framework has been used to
define tool environments for domain-specific languages.

i

ii

Sammanfattning
Domänspecifika språk har föreslagits som en metod för att kostnadseffektivt ut-
veckla familjer av mjukvarusystem inom ett begränsat applikationsområde. Do-
mänspecifika språk i kombination med tidigare samlad erfarenhet och kunskap
om applikationsområdet kan i sin tur användas för att generera nya applikationer
med unika specifikationer. Av denna anledning anses domänspecifika språk vara
en viktig metod för att återanvända mjukvara.

Även verktygsstödet som utvecklats för ett visst applikationsområde är per
definition domänspecifikt och kan inte återanvändas inom andra applikationsområ-
den. Följaktligen kräver utveckling och underhåll av ett nytt domänspecifikt språk
tilläggsresurser som kan vara större än de inbesparningar som användningen av
detta kan inbringa.

För att förenkla utveclingsarbetet för nya domänspecifika språk och följaktligen
minska kostnaderna för detta, har ramverk för ändamålet framtagits. Fortfarande
bör utvecklare som handhar utvecklingen av verktygsstöd för domänspecifika språk
skräddarsy det valda ramverket för det domänspecifika språket. Det finns olika
metoder för detta. En metod är att använda ramverkets programmeringsgränssnitt
(API) och således utöka ramverket med program skrivna i ett imperativt program-
meringsspråk. Exempel på detta är Eclipse GEF. En annan metod är att skräddarsy
ramverket med hjälp av deklarativa språk som är oberoende av ramverkets imple-
mentation. Vi anser den andra metoden vara fördelaktigare eftersom utvecklaren
då kan fokusera mera på vad verktyget skall utföra, än att skriva program som
beskriver hur verktyget kan uppnå en viss funktionalitet.

I denna avhandling studerar vi den andra metoden. Vi använder graftrans-
formationer som utgångspunkt för att skräddarsy ett ramverk för domänspecifik
modellering. Denna avhandling bidrar med en jämförelse över olika metoder att
definiera, representera och utbyta modeller och modelleringspråk och en arkitektur
för ett öppet ramverk för domänspecifik modellering som effektivt integrerar flera
modelltransformationskomponenter och visuella editorer. Vi presenterar även flera
specifika algoritmer och verktygskomponenter för bruk inom ramverk för domän-
specifik modellering. I dessa ingår en metod för förfrågning av grafer baserade på
operatörer som verkar på regioner samt en metod för att uppdatera diagram efter
att modelltransformationsprogram exekverats.

Vi exemplifierar vår metod med två fallstudier, MICAS och EFCO. I dessa
studier visar vi hur vårt experimentella ramverk för domänspecifik modellering
använts för utvecklingen av konkreta verktygsmiljöer för domänspecifika språk.

iii

iv

Acknowledgements
It is a pleasure for me to take this opportunity to express my deepest gratitude to
those who made this thesis possible.

First of all, I would like to thank my supervisor Professor Iván Porres for
having confidence in me and for supporting and guiding me in this work. It has
been a privilege to me to have had the opportunity to work closely with Iván in
many interesting projects.

I also wish to thank Associate Professor Dániel Varró and Professor Jon Whittle
for reviewing this thesis and for providing me with useful comments. I would like
to thank Dániel for kindly accepting the task of being my opponent at the public
defense.

I would especially like to thank my co-authors Marcus Alanen, Johan Lilius,
Johan Lindqvist, Dragoş Truşcan, Tomas Lillqvist, Johan Ersfolk, Asim Zaka,
Glenn Sveholm, Ian Oliver and Kim Sandström. I have had many interesting
discussions with Marcus that have influenced this work, and I am grateful for his
help. I would like to thank Johan Lilius and Dragoş for interesting discussions that
have broadened my perspective on modeling embedded systems. Tomas, Asim and
Glenn for working closely with me in the MICAS project. I had very much fun
working with Tomas. Johan Ersfolk for explaining me the CoFluent Studio. Johan
Lindqvist for his special contributions in the CQuery project. I am also grateful for
the help in implementing the research ideas from undergraduate student working
on the Coral projects.

I would like to thank the department and the Graduate School on Software
Systems and Engineering (SoSE) for providing me with funding for the research
work and conference travel. A special thanks go to Kai Koskimies and Maarit
Harsu for organizing the superb seminars in Lapland. At these semainars and at
conference trips I have had the opportunity to meet many fellow PhD students and
researchers to share ideas with. The discussions with, and the feedback from Jim
Coplien have been very interesting and useful to me. I also appreciate the long
discussions on graph transformation with Reiko Heckel.

I also thank Bernhard Schätz for the opportunity to visit TU München and to
work in his research group. A special thanks go to Florian, Daniel, Marco, Markus,
Silke and Marina.

Thanks also go to the colleagues, administrative personnel and technical per-
sonnel at the Department of Information Technologies for providing an enjoyable
and fun place to work. In particular I would like to thank Johannes, Mats, Ali, Miki,

v

Marta, Jeanette, Irum, Adnan, Espen, Fredrik D., Fredrik A., Pontus, Leonidas,
Linda, Kim, Larissa, Viorel, Luigia, Patrik, Ye, Jerker, Andreas, Juuso, Jani,
Sébastien, Marina, Anna, Karl, Hannu, Åke, Luka, Andrea and Piia for many
interesting discussions in almost any topic. A special thanks go to Ralph-Johan
Back, Barbro Back, Patrik Sibelius, Kaisa Sere, Ion Petre and Jan Westerholm
for their encouragement throughout this work. Thanks to Christel for keeping the
department running, Britt-Marie for invaluable advice and to Tiina for sorting out
the tricky travel and funding related questions I have had.

I am honored and grateful for the generous scholarhips received from the
Finnish Foundation for Technology Promotion, the Nokia Foundation, Hans Bang
Stiftelsen, Ulla Tuomisen Säätiö and Harry Elvings Legat.

I would like to thank all my friends for all the support and encouragement.
Finally, I want to thank my wife Desirée, my daughter Mathilda and all my family
and my family-in-law for all their love and support.

Turku, May 2011

Torbjörn Lundkvist

vi

Contents

I Research Overview 1

1 Introduction 3
1.1 Research Objectives . 3
1.2 Contributions of this Thesis . 5
1.3 Validation of the Research Work 6
1.4 List of Original Publications . 7

2 Background 9
2.1 Modeling Languages in Software Engineering 9
2.2 Domain-Specific Modeling Language Development 12

2.2.1 DSM Architecture . 12
2.2.2 DSM Development Activities 13

2.3 Domain-Specific Modeling Tool Frameworks 14
2.4 Graphs and Graph Transformations 16
2.5 Software Models as Graphs . 18
2.6 Models and Modeling Languages as Graphs 22

3 Graph Query and Transformation 23
3.1 Motivation . 23
3.2 Regions and Matching Operators 24
3.3 Matching Algorithm . 26
3.4 Integration in Tool Environments 27
3.5 Related Work and Discussion . 28

4 Diagram Reconciliation 31
4.1 The Structure of DI Diagrams 32
4.2 The Diagram Interchange Mapping Language 34
4.3 Generation and Reconciliation of Diagrams 35
4.4 Integration in Tool Environments 37
4.5 Discussion . 38

vii

5 Integration of Model Transformation Components in DSM tools 41
5.1 Functional Requirements . 41
5.2 Quality Attributes . 42
5.3 Tool Architecture . 44

6 Applications Using The Coral Modeling Framework 47
6.1 MICAS . 48
6.2 EFCO . 49

viii

Part I

Research Overview

1

Chapter 1

Introduction

1.1 Research Objectives

Developing large software systems is a complex process that involves the use and
integration of many different artifacts. A rigorous software engineering process
can, in addition to source code, produce artifacts such as requirement documents,
design specifications, test cases, build configurations, documentation et cetera,
which are linked in complex relationships. Managing these artifacts and their
relationships in large systems is a difficult task and requires tool support. With
increasing processing capabilities at decreasing hardware costs, software has a
tendency to also become more complex. To manage the increasing complexity of
software, techniques such as software composition and abstractions are necessary.
By raising the level of abstraction of software, the perceived complexity can be
reduced, and consequently help understanding and reasoning about software.

Software modeling is about creating abstractions of software at different levels.
Hence, a software model is an abstraction of software. The level of abstraction is a
trade off of the level of detail.

The abstractions used in software models are defined by modeling languages,
which aim to present a meaningful, particular aspect of software. For example,
a software system can be seen from a structural perspective, describing the re-
lationships of object classes of the software. A concrete example of this is the
UML class diagram [74], essentially a refinement of the ideas by Rumbaugh [87].
Software can also be seen from a behavioral perspective, describing the interaction
of the different components of software. A notable example is the state machine,
which models a software system as an abstract machine with states and transi-
tions [39]. Formalisms such as these are currently part of the UML standard [74],
which has reached de facto status in the software industry. UML is an example
of a general-purpose modeling language, which can be applied to many types of
applications.

Another approach of software modeling is to view the software from the point-

3

of-view of the software problem domain. For a single application implementing
its own unique set of requirements, the problem domain presents a high-level
description of what is relevant for modeling a solution for that particular problem.
However, if the problem domain is slightly expanded to include a set of similar
or a family of software problems, abstractions of a larger application domain can
be created, where a subset of the available concepts are combined to form a set
of application specific requirements. Such languages are called domain-specific
modeling languages. Domain-specific modeling languages (DSMLs) can be used
to model applications in a well-known, restricted application domain, in which
there may exist many implementations. DSMLs are often seen as domain-specific
programming or specification languages [93], based on graphs and often having a
visual syntax. One of the main characteristics of domain-specific (modeling) lan-
guages is the idea of relating the different concepts used for defining requirements
to an implementation and consequently to the idea of generating entire applications
[21, 26] based on models [47, 48, 70]. Often, this is listed as a main advantage of
DSMLs, as this can reduce the cost and effort of implementing new applications.

However, although there exists many successful domain-specific languages,
implementing them for a new or existing application domain can be challenging,
as it implies the development of new, custom application development tools. To
develop and maintain such tools requires additional resources, which can in turn
imply higher costs than the projected savings of using a development process
based on DSMLs. To overcome these additional costs, different domain-specific
modeling (DSM) frameworks have been proposed. However, developers of tool
support for DSMLs need to instantiate, customize or configure the framework
for a particular DSML. There are different approaches for this. Perhaps the most
straightforward approach is to use a framework application programming interface
(API) and to extend the basic framework using a standard programming language.
Another approach is to extend the framework using declarative languages that are
independent of the underlying framework implementation. This can have important
benefits as this brings focus to specifying what should the tool be like instead of
writing a program specifying how the tool achieves this functionality.

In this thesis, we explore the second approach. We use graph grammars and
graph transformation in the development of a framework for the development
of tools for domain-specific, visual modeling languages for software and system
engineering. We have used these techniques to explore the definition of DSML tool
environments based on declarative specifications expressed as graphs and graph
transformations. We do this in the context of industry standards from the Object
Management Group (OMG).

Conceptually, a DSM framework consists of many tool components with
different responsibilities. In this thesis, we also explore and present approaches
for the efficient organization of such tool components in a DSM framework, while
maintaining a low coupling between tool components. We study this especially in
the context of graph transformation.

4

We continue in the next section by presenting the concrete contributions of this
thesis.

1.2 Contributions of this Thesis

In this thesis several contributions related to the use of graph transformation in
the context of framework development for tools for domain-specific modeling
languages (DSMLs) are presented. These contributions are presented in detail in
Publications I–VII, which are included in Part II of this thesis. A summary of the
contributions is presented below:

Comparison of modeling frameworks. A modeling framework is at the core
of modeling tools and decides how information is defined, represented, manipulated
and interchanged. Currently, there are several modeling frameworks which can be
used to describe information especially in the context of modeling tools and these
frameworks share many commonalities. The focus of this contribution is to present
and compare several modeling frameworks and discuss the main differences of each
of these approaches and to discuss benefits and drawbacks of these approaches.
This contribution is presented in Publication I.

An editor architecture for a domain-specific modeling framework. A
DSM framework is essential for cost-efficient implementation of a DSML ap-
plication. A DSM framework often consists of several individual components
which are configured to obtain a tool environment which supports the development
of applications in a restricted application domain. We present a tool architecture for
an open DSM framework that efficiently integrates several model transformation
components and visual editors, realized by maintaining a strong separation of the
abstract and concrete syntax and by the integration of change propagation compo-
nents in a tool environment. We present an experimental DSM framework which
realizes this approach. This contribution is discussed in detail in Publication IV.

The contributions of this research work also consists of several specific algo-
rithms and tool components for a DSM framework:

Graph query based on region operators. Graph query is used to find parts
of graphs that fulfill some given constraints. Graph query is an important operation
in software modeling tools, and is fundamental in graph transformation based
on algebraic approaches. We present in this thesis a query language based on
declarative patterns consisting of regions denoting the scope of a matching operator.
In the context of this query language we present a matching operator called the star
operator, which can be used to match hierarchical and recursive structures in graphs.
We also present a matching algorithm, which extends existing approaches for graph
matching using subgraph isomorphism, for matching patterns with regions against
a target graph. We present this contribution in Publication II and discuss a graph
transformation engine based on the double-pushout approach with support for the
star operator in Section 3.

5

Diagram reconciliation. In this thesis we propose an approach for maintain-
ing consistency between the abstract and concrete syntax after executing model
transformations. This approach is based on a mapping language between the
abstract syntax and the Diagram Interchange (DI) standard, called the Diagram
Interchange Mapping Language (DIML). Based on this mapping language, we
present an approach to decouple the changes made in models from the related
updates in diagrams. We also present algorithms for creating new diagrams where
previous do not exist and updating existing diagrams when the underlying abstract
model has changed, and present a proof-of-concept implementation in the context
of a modeling tool. We also show that this approach is beneficial, as it allows
model transformation components to deal with the abstract syntax alone while
diagrams are still maintained. We present this contribution in Publication III.

1.3 Validation of the Research Work

We have validated our research work in the context of an experimental tool called
the Coral Modeling Framework. The Coral Modeling Framework is an experimen-
tal DSM framework developed as a demonstrator of research ideas in the context
of various research projects at the Department of Information Technologies at Åbo
Akademi University, including these presented in the context of this thesis.

This framework provides a proof-of-concept implementation of the editor ar-
chitecture presented as a contribution of this thesis in Publication IV. This editor
architecture consists of many different editor components, where update responsi-
bilities are delegated to a set of dedicated change propagation components. Among
these change propagation components is the diagram reconciliation component
based on DIML presented in Publication III. We have used this component to
further support the integration of tool components in a tool environment, based
on the abstract syntax alone. We have validated in practise that by using this
approach we can reduce the coupling between editor components by decoupling
model transformations and diagram updates.

We have implemented a graph query engine called CQuery based on the
query language with the star operator and the matching algorithm presented in
Publication II. This work is a further development of the work by Lillqvist [56].
This query engine consists of a graphical editor allowing the definition of queries
using the concrete syntax of the target modeling language. This query engine is
an integral part of the Coral Modeling Framework and has successfully been used
to define queries in many modeling languages like UML 1.4 and 2.0 and in many
domain-specific languages. The query engine has also been used as a part of an
experimental transformation engine based on the double-pushout approach. We
have evaluated the use of the star operator in rule-based model transformation
in a component called DPOTrans, especially in the context of the Coral diagram
editor, which uses double-pushout transformation rules to define editor actions

6

for all modeling languages. CQuery has also been evaluated in the context of
a constraint evaluation engine initially developed by Lillqvist [56] and further
adapted to support the star operator. There is also a model-to-text transformation
engine based on CQuery developed by Nyman [67].

Using the Coral Modeling Framework, we have implemented diagram editors
for UML 1.4 and 2.0, implementing most of the diagrams described in the stan-
dards. We have implemented editors for many of the domain-specific languages
used for developing editors, components and tool environments based on Coral.
For example, we have implemented editors for the DIML and CQuery languages
presented in this thesis. We have also validated the approaches presented in this the-
sis in the context of the domain-specific tool environments MICAS (Publication V
and VI) and EFCO (Publication VII).

1.4 List of Original Publications

This thesis is based on the following publications numbered I to VII. For each
publication the contribution of the author is stated. In the European research
communities in Computer Science, authors are listed alphabetically and thus no
distinction is made between the first author and other authors. It must be noted that
the authors are here listed in alphabetical order with the exception of Publication
VI.

I Marcus Alanen, Torbjörn Lundkvist and Ivan Porres. Comparison of Modeling
Frameworks for Software Engineering. Nordic Journal of Computing, vol: 12,
num: 4, page(s): 321–342, Winter, 2005.
Author’s contribution: The author participated in the preparation of this
paper and specially contributed in Section 2 of the paper.

II Johan Lindqvist, Torbjörn Lundkvist and Ivan Porres. A Query Language with
the Star Operator, In proceedings of the 6th International Workshop on Graph
Transformation and Visual Modeling Techniques (GT-VMT 2007), volume
6(2007) of Electronic Communications of the EASST, Braga, Portugal, March
2007. EASST
Author’s contribution: The author developed the original idea of the paper
and lead the development of the proof-of-concept implementation.

III Marcus Alanen, Torbjörn Lundkvist and Ivan Porres. Creating and Reconcil-
ing Diagrams After Executing Model Transformations. Science of Computer
Programming, Elsevier, 68(3), 2008.

This journal article is based on the following conference publications:

• Marcus Alanen, Torbjörn Lundkvist and Ivan Porres. Reconciling Dia-
grams After Executing Model Transformations. In Proceedings of the

7

21st Annual ACM Symposium on Applied Computing, Track on Model
Transformation, Dijon, France, April, 2006.

• Marcus Alanen, Torbjörn Lundkvist and Ivan Porres. A Mapping Lan-
guage from Models to DI Diagrams. In Proceedings of the ACM/IEEE
9th International Conference on Model Driven Engineering Languages
and Systems, Genova, Italy, 2006.

Author’s contribution: The original idea of these papers was jointly de-
veloped by Alanen and the author. The author also developed the diagram
reconciliation algorithms and the proof-of-concept implementation.

IV Torbjörn Lundkvist and Ivan Porres, Coordination of Model Transformation
Engines and Visual Editors. TUCS Technical Report number 974, April 2010.
Author’s contribution: The idea of this paper was developed jointly by the
author and Prof. Porres.

V Johan Lilius, Tomas Lillqvist, Torbjörn Lundkvist, Ian Oliver, Ivan Porres,
Kim Sandström, Glenn Sveholm and Asim Pervez Zaka. An Architecture
Exploration Environment for System on Chip Design, Nordic Journal of
Computing, vol: 12, num: 4, page(s): 361–378, Winter, 2005
Author’s contribution: The author contributed with ideas related to the
definition of the domain-specific language, transformations and developed tool
support for MICAS. The author also developed parts of the Coral Modeling
Framework in parallel.

VI Dragos Truscan, Torbjörn Lundkvist, Marcus Alanen, Kim Sandström, Ivan
Porres and Johan Lilius, MDE for SoC Design. Innovations in Systems and
Software Engineering, Springer, 5(1):49–64, March 2009.
Author’s contribution: The author contributed with ideas related to the
definition of the domain-specific language, transformations and developed tool
support for MICAS. The author also developed parts of the Coral Modeling
Framework in parallel.

VII Johan Ersfolk, Johan Lilius, Torbjörn Lundkvist and Ivan Porres. A Tool
for Efficient Combination and Evaluation of Reusable Design Assets. TUCS
Technical Report number 975, April 2010.
Author’s contribution: The author contributed in the study and specially
authored Section 5 of this paper.

8

Chapter 2

Background

2.1 Modeling Languages in Software Engineering

Software models and modeling languages are used to create abstractions of a
software system, to capture the most important design decisions of the software
system and allow the reasoning about a system before it is built. Software models
are used to create software designs and document, analyze, verify and validate
them before implementing a solution in a programming language.

A software modeling language aims to provide developers and stakeholders us-
ing it with a set of relevant concepts that can be used to to create these abstractions.
Different stakeholders may be interested in different views depending on their role
in the development and use of the system. This has given rise to different modeling
languages, each focusing on describing different aspects of the system. Examples
of such are the structure, which models how a system is composed and structured,
and behavior, which models how a system reacts to input under given conditions.
Users of a modeling language need to choose an appropriate modeling language
and use it to create meaningful models or views of the system.

In general, there are two main families of approaches for software modeling.
One approach is to use a modeling language which is applicable to many software
design problems in many different application domains. We refer to these languages
as general-purpose modeling languages. General-purpose modeling languages
are languages developed for describing systems using a general set of software
concepts which apply to most software systems. Perhaps the most notable general-
purpose modeling language is the Unified Modeling Language (UML) [74],
standardized by the Object Management Group (OMG) [68]. The UML has been
widely adopted in software development and can be considered de facto standard
for software modeling. UML can be used to describe software using general object-
oriented concepts, independently from the programming language eventually used
to implement the software. There exists numerous tools for creating, editing and
analyzing UML models, for example Rational Rose [42], Gentleware Poseidon [37],

9

Magic Draw [59] and Eclipse Model Development Tools [2].
While general-purpose modeling languages aim to generalize software concepts

in order to apply them to many software domains, another approach is to use
a modeling language developed for a particular application domain. Domain-
specific modeling (DSM) [47] brings the focus of the modeling to one particular,
restricted application domain. A domain-specific modeling language (DSML) has a
limited scope, often to a particular type of software based on a particular software
framework, and are therefore by design not reusable in a different domain. On the
other hand, as the domain is restricted, a higher expressivity within this domain
can be achieved instead. However, as these languages are highly specific-purpose,
the level of abstraction and modeling concepts used can be defined to more closely
correspond to the problem domain in question, creating a more problem-oriented
abstraction of the system under development.

Perhaps the most important characteristics of DSMLs is that they can often be
viewed as both specification languages and as high-level programming languages.
Combined with the use of domain concepts in the language, this can effectively hide
the complexity of the actual implementation from the users of this language [93].
That is, a user of a DSML will not necessarily need to know how to implement
the solution in a general-purpose programming language to be productive; ideally
sufficient knowledge about the problem domain is enough. This can in some cases
allow domain experts to develop their own applications despite lack of skills to
implement the same program using general-purpose programming languages [61].

To obtain a deliverable or an executable program, the specification expressed in
the DSML is processed further by a compiler. Typically the solution is either gener-
ated using an application compiler or application generator [21, 26] application to
a general-purpose programming language, or executed using a language interpreter.
This application contains the mapping from the domain concepts to code needed
to produce the final artifact or execute the program. Program generation [26] can
facilitate the reuse of optimized solutions to specific problems. For these reasons,
domain-specific languages are considered a viable form of software reuse [53].

Domain-specific modeling languages can be considered to be a form of domain-
specific languages (DSLs) [93], and the term DSL is therefore often used to denote
a DSML. There exists numerous domain-specific languages used for a variety
of purposes. For example, SQL for querying and updating data from relational
databases [22], YACC [43] for generating parsers based on BNF grammars [5],
TEX [50] for typesetting documents and many more are discussed in [89]. Among
the above mentioned examples, the application compilers of YACC outputs the
executable code of a parser, TEX outputs a device independent file that can be
rendered to for example PDF or HTML, while SQL program statements embedded
in an application are passed to an interpreter, which executes these statements and
returns the results to the embedding application for further processing.

Perhaps the most significant difference between the above mentioned DSLs and
DSMLs, is that DSMLs are represented as graphs defined using graph grammars

10

or metamodels, often represented with a visual notation to allow graphical editing.
Otherwise the usage patterns are very similar. However, DSMLs can also have
other notations such as textual representations.

By using abstractions, the same artifacts are more likely to be used to commu-
nicate the system among stakeholders (customers, domain experts, requirements
engineers, designers, programmers, testers etc.), as well as using them for testing,
analysis, model checking as well as generating the full system code. This allows for
a higher degree of automation in software development, which can have a positive
effect on productivity and reduce the time required to specify, design, implement
and test an application [47].

Although there exists many documented and successful DSMLs, most are de-
veloped in-house by software companies to bring benefits to their own development
[93, 47]. This can make it difficult to find existing reusable solutions. In addition,
existing solutions will need to be a superset of the requirements of the product to
be built using DSM. If there is no available third party DSML to fit the problem
domain, software companies will need to develop their own solution in order to
benefit from using DSML. However, developing a new language and efficient use
of it also implies a need to develop tool support for application development.

The development of a new DSML involves several tasks which can require
a substantial effort to complete. These major tasks are defining the appropriate
scope and abstraction of the domain, defining domain-constraints and DSML and
tool-chains, mapping the DSML to executable code for application generators and
maintaining the solution. This effort needs to be weighed against the effort required
to develop a one-off solution in a conventional general-purpose programming
language. On the other hand, if it is likely that many similar applications will be
developed with slightly different requirements, this effort can be distributed over
several application development projects. Studies by Weiss and Lai [98] suggest
that for software product lines, three or more variants need to be built before a
DSM solution can become cost-effective. The extra effort invested in finding a
DSM solution will probably require more resources to complete than a one-off

solution.

In the context of this thesis we will focus on tool support for creating DSM
solutions, in particular tool infrastructure, language and editor definition and the
support for model transformation in DSM tools. Out of scope of this thesis are the
DSM related activities of domain engineering, such as domain analysis [10, 26] and
how to define program generators. Program generation based on a graph defined
by a DSML is a specific instance of model-to-text transformation, and an example
of how this has been implemented can be found in [67]. In the next section we will
provide a brief overview of the main development activities in DSM.

11

DSML

DSML-
based
model

Application
generator

Test case
generator

Generated
test cases

Domain
framework

DSML
editors

Generated
code

DSM definition

DSM usage

defines or creates

uses

DSML
validation

tools

DSML
analysis

tools

Figure 2.1: A basic DSM architecture; definition and usage.

2.2 Domain-Specific Modeling Language Development

2.2.1 DSM Architecture

Software development based on domain-specific languages is often based on a
two-level application structure, which has a clear distinction between definition
and usage of DSM, each with its own set of tools and key developer roles.

DSM definition involves defining and developing tool components needed to
develop the domain-specific language and related tool support, such as language
and editor definition, application generator or interpreter, domain-specific libraries
and framework and development utilities (testing, analysis etc.). Each of these
components can in turn be based on reusable framework specialized for developing
one or more of these tool components, etc. languages or code generators. The
process to systematically model and develop domain-specific solutions is referred
to as domain engineering [26].

DSM usage is, as implied, the every day usage of the tools defined for the DSM
to create concrete applications with their own set of requirements. In software
development based on DSM, models remain the primary artifact for developing
new applications. Thereby, DSM usage is primarily modeling activities such as
creating and editing models and using these as input for code generators or other
utilities.

A typical DSM architecture is depicted in Figure 2.1. On the top of this figure
are the components defining the DSM application architecture and on the bottom
are the artifacts involved in the usage of DSM and their relations. In this setting,
the following components are defined during DSM definition: The domain-specific
modeling language (DSML), the DSML editors, the DSML validation tools, the
DSML analysis tools, the application and test case generators and finally, the

12

domain framework.
The domain-specific modeling language contains the abstractions of the prob-

lem domain and describes the concepts and their relationships. The editors, here
shown as a single component, are used to create and maintain models. Examples
of such editors are diagram editors and form-based editors. The validation tools
are used to check whether DSML models constructed using the editors are valid
models. Examples of validation tools are well-formedness checks and simulation.
Well-formedness checks [17, 18] are used to validate models against additional
design constraints. Such checks can be carried out while the model is being created,
or as a separate step before proceeding to e.g. code generation. Using simulation,
it can be possible to determine whether an application based on a DSML model
satisfies some given requirements, e.g. performance criteria, in parallel with the
development of the application. The analysis tools can consist of a variety of differ-
ent tools which can be used as part of the verification of DSML models. Important
examples of such can be found in the field of model checking [20]. Models can
also be analyzed to collect metrics [64].

The application generator is a program which task is to translate all valid
models to executable systems. Essentially, the application generator contains a
mapping of the problem domain to code and a set of rules how the output code
objects and statements are glued together based on the input model. The complexity
of the application generator will most certainly vary between different domains.
Application generators can also use domain-specific framework, which can consist
of ready-made libraries with domain-specific components and functions. This
framework can be used for various purposes such as to simplify the generated
code or to map generated code to slightly different target platforms (for example
different hardware).

Similarly as an application is generated from a model expressed in a DSML,
the same models can sometimes be used to generate test cases for the application,
based on some additional heuristics. In [15], various approaches for model-based
testing are discussed.

On the bottom of the figure are the main artifacts involved in DSM usage,
produced using the components of the DSM tool. Ideally, the developer only needs
to construct specifications of the system under development as models based on
the DSML and execute the code generator to obtain the generated code (or more
generally, the deliverable) and the test case generators to generate tests for the
application. When interpretation is used instead of code generation, the models are
loaded and executed, either as is or via an intermediate format, in an application
interpreter.

2.2.2 DSM Development Activities

The use of a particular domain-specific language is in practise often limited to a
setting consisting of one single software company. Yet, developing applications

13

using DSM can be beneficial as development is done using high-level domain
concepts rather than general-purpose programming languages, which in turn can
increase productivity. To benefit from DSM, a software company will often need
to develop tool support in-house, which is likely to be a long-term investment.

Domain-specific modeling solution development is in general divided into
three major phases: Analysis, implementation and usage [93].

The analysis phase consists mainly of activities related to defining the actual
DSML. These activities are defining the domain and domain boundaries, collect-
ing relevant information about the domain and defining the concepts needed to
describe applications in this domain. As an output of this process, a DSML for
describing applications in this domain can be defined. This phase is perhaps the
most demanding in DSML development, as it requires a high degree of maturity
in the application domain as well as sufficient knowledge and experience with the
application domain [47].

The implementation phase in turn consists of the activities related to implement
the tool support required to start developing applications using the DSML. This
involves the development of domain-specific application libraries. In this phase
tool support for constructing applications based on the DSML is also developed.
This tool support in the context of model-based approaches typically include the
development of editors, e.g. diagram editors and form-based editors. Depending
on the chosen approach to actually create executable programs or the deliverable,
typically either a DSML interpreter or a code generator program is also developed.

In all, the outcome of this phase is a tool environment supporting development
of new applications in the given domain. Consequently, the third and final phase is
the usage of these tools.

2.3 Domain-Specific Modeling Tool Frameworks

Domain-specific modeling is often heavily based on tools as increased automation
is one of the main drivers of adopting DSM. Examples of tools used in the DSM
development process are tools to define and edit modeling languages, model analy-
sis tools, verification and validation tools and application generators or interpreters.
These tools are used together as part of a custom tool chain. These tools can be
developed in-house specifically to the domain or acquired from a third party. As
these tools can support application development for a narrow-focused domain,
such tools are per definition domain-specific and not reusable as such for other
future application domains. Hence, it is likely that the effort of reusing existing
domain-specific applications when creating similar tool sets for new application
domains is high. Despite the fact DSM solutions are developed to facilitate reuse
in software development, the initial cost of development of such tools can still be
high. These initial costs can be prohibitive for software companies exploring the
possibility of using DSM in software development.

14

DSM Framework
Modeling

framework

DSML

DSML-
based
model

Application
generator

Test case
generator

Generated
test cases

Domain
framework

Testing
framework

DSML
editors

Editor
framework

Generated
code

DSM definition

DSM usage

Generator
framework

defines or creates

uses

DSML
validation

tools

Validation
framework

DSML
analysis

tools

Analysis
framework

Figure 2.2: A basic DSM architecture, based on a reusable DSM framework

Despite DSM solutions are often developed as long-term investments, these will
require maintenance over time, for example if the domain evolves or if increased
understanding of the domain is gained. Still, there are no guarantees the lifetime
of the applications will be high. As there can be benefits with DSM, developers
implementing tool support for a DSL needs to take into account gains of developing
new applications rapidly, towards the effort of developing the tool support for the
DSL.

To reduce the effort of developing tool support for a DSML, numerous DSM
tool frameworks have been developed. Examples of such frameworks are Eclipse
Graphical Modeling Framework (GMF) [3], GME [55], Metacase MetaEdit+ [49],
Atom3 [28], Microsoft Visual Studio DSL Tools [25] and the Coral Modeling
Framework (Publication IV).

DSM frameworks generally consist of a set of tools and utilities frequently
needed to develop customized tools supporting the development of applications
using DSM. An example of such a setting is shown in Figure 2.2. In this case, a
generic DSM framework (framed in the figure) is customized for a specific domain
using tool-specific extensions to produce similar components as previously shown
in Figure 2.1. A highly customizable tool is likelier to be reusable in several
application domains, but the effort involved in customizing the tool can be high,
and how exactly the customization is carried out can vary significantly. For an
organization developing many DSM solutions, reusing the same general tools for
many domains can bring benefits as the initial effort can possibly be reduced to
involve only the customizing of the general DSM framework.

While there exists various philosophies of organizing DSM tool frameworks,

15

many consist of one tool set including the tools required to construct domain-
specific tools (DSM definition) and another consisting of runtime components
used when particular applications are developed (DSM usage). Sometimes, both
definition and usage is carried out in the same tool. Central in these frameworks is
the support for a modeling framework. A modeling framework defines how models
and modeling languages are defined, represented and interchanged uniformly. We
discuss modeling frameworks more in Section 2.5 and Publication I. DSM tool
frameworks provide facilities to define basic tool support for model manipulation.
Typically, this tool support includes visual language editors, allowing models to
be manipulated visually and various form-based editors allows more data-oriented
editing approaches. Support for automation is often included, as it is an essential
element in domain-specific modeling. Examples of such components are various
analysis tools used in e.g. constraint validation [96, 79] and metrics calculation [62],
model query and transformation components and code generators.

2.4 Graphs and Graph Transformations

Software modeling tools can benefit from the fact that software models can be
considered as graphs. The theoretical and mathematical foundation of graphs is
given by graph theory [29]. One of the most notable benefits of applying graph
theory to software modeling are in the field of visual language theory [60] and
graph transformation [85, 31].

In this section we will define the most important concepts of graphs and graph
transformations we use in this thesis. The following definitions are based on [31]:

In the context of this thesis we will use solely directed graphs. A directed
graph G = (V, E, s, t) consists of a set V of nodes (vertices), a set E of edges, and
the functions s, t : E → V , where s is the source and t is the target functions.

In graph theory, graph morphisms are used to relate two graphs to create a
mapping. A graph morphism is defined as follows: Given graphs G1,G2 with
Gi = (Vi, Ei, si, ti) where i ∈ {1, 2}, a graph morphism f : G1 → G2, f = (fV , fE)
consists of two functions fV : V1 → V2 and fE : E1 → E2 that preserve the source
and target functions. A graph morphism f is injective or surjective if both fV , fE

are injective or surjective respectively. A graph isomorphism is defined when f is
bijective (injective and surjective).

Graphs can be classified as typed, labeled (also called attributed) and hierarchi-
cal graphs, each providing new characteristics to the graph.

A type graph defines a set of types, which are assigned to the nodes and edges
of a graph. Graphs are typed by defining a graph morphism between the graph
and the type graph. The definition is as follows: A type graph is a distinguished
graph TG = (VTG, ETG, sTG, tTG). VTG and ETG are called the node and edge type
alphabets. A typed graph is defined as a tuple (G, type) of a graph G together with
the morphism G → TG.

16

Typed graph morphisms can be used to define graph morphisms such that
the morphism between typed graphs are consistent with the type graph: Given
typed graphs GT

1 = (G1, type1) and GT
2 = (G2, type2), a typed graph morphism

f : GT
1 → GT

2 is a graph morphism f : G1 → G2 such that type2 ◦ f = type1.
Labeled graphs [32] are used to add additional labeled information to nodes

and edges of a graph as key–value pairs. It is one of the fundamental mechanisms
of carrying data in graphs. Labeled graphs are defined as follows: A label alphabet
L = (LV , LE) consists of a set LV of node labels and a set of LE edge labels. A
labeled graph G = (V, E, s, t, lV , lE) consists of an underlying graph G0 = (V, E, s, t)
together with label functions lV = V → LV and lE = E → LE . Type graphs can
also be labeled. In this case there is a bijective correspondence between the labels
of the typed graph and type graph.

There are also hierarchical graphs [30], where there are a special type of
edges called frames. These frames can contain a subgraph, which in turn can
be a hierarchical graph. While hierarchical graphs are useful for dealing with
composition in graphs, we will not deal with this category of graphs in this thesis.

A graph grammar can be used to restrict which graphs that can be constructed
and is therefore a fundamental mechanism to define graph-based languages. A
graph grammar consists of the set of productions or rules which represents the
possible derivation steps which can be applied to construct all valid graphs. A
production p can be defined as p = (LHS ,RHS) where LHS describes the left-
hand side and RHS the right-hand side. The LHS describes a graph for which
the rule is valid to be applied on a target graph, while the RHS describes a graph
after the rule is applied. The actual application of the rule involves replacing an
occurrence of the LHS by an occurrence of the RHS.

A graph grammar is used in a graph transformation system and defines the
rules and the theoretical aspects of applying graph grammar productions on graphs.
Different solutions of how the application of productions are applied has lead to
a variety of graph transformation approaches. A detailed overview of the main
approaches can be found in [85, 31] .

Perhaps the most widely used graph transformation systems are based on the
algebraic approaches, of which the double-pushout approach is the most notable.
The concept of a pushout is used to describe how the gluing of graphs occurs, that
is, how nodes and edges are connected in a target graph. In the double-pushout
approach a production is described as p = (L,K,R), where L and R describes the
left- and right-hand sides and K is the intersection L∩R. K can also be referred to
as a mapping between L and R. The productions are also declarative, L and R can
also be seen as pre- and post-conditions. The application of this production (i.e. a
transformation) can be understood as L\K being the part to be deleted, and R\K
the part to be created.

In the context of this thesis, we are interested in how these productions can
be used to obtain a new graph. In Figure 2.3 the main idea of the application of
a production in the double-pushout approach is shown. The production is here

17

written in the form p = (L ← K → R). The two squares (PO1) and (PO2)
illustrate the two pushouts, and the vertical arrows describe morphisms between
the production and the graphs; L and G (the source graph), R and H (the derived
graph) as well as between the mapping structures K and D (the context graph)
which in turn must be valid graphs. This figure shows the conditions which must
hold in the application of this rule: (PO1) the gluing of L\K and D must result in
G and (PO2) the gluing of R\K and D must result in H. These gluings form two
pushouts, hence the name of the approach.

L K R

G D H

m (PO1) (PO2)

Figure 2.3: The double-pushout approach

The actual application of the rule to obtain the derived graph H, is to find a
morphism (match) of m : L → G and construct a graph D := (G\m(L)) ∪ m(K) ,
and remove L\K from G (PO1). Then, in a second step (PO2), R\K is glued onto
D, resulting in the derived graph H.

We have now presented the most fundamental concepts of graphs and graph
transformations used in this thesis. We will discuss graph query and graph trans-
formations further in Chapter 3.

2.5 Software Models as Graphs

In the context of our work, we consider software modeling to be the manipulation,
specification, analysis and the transformation of many related graphs at different
levels of abstraction. Graph theory allows the definition and execution of these
activities to occur with formal precision.

Software models are no longer only used for communicating the systems
among humans, they are also used by software programs to perform automated
tasks, hence software models needs to be based on formal languages [40].

The widespread use of models in software development has given rise to the
need of standardization of modeling languages and their technical space. The
Object Management Group (OMG) [68] is a non-profit, vendor-neutral software
consortium setting standards in the area of object-oriented computing. Perhaps the
most known OMG standard is the Unified Modeling Language (UML) [74].

Standards such as UML have not been specified in isolation. The OMG man-
ages a process where standardization of technologies can be proposed and proposals
for standards are invited. The members of OMG with an interest in the technology

18

M3

M0

M2

M1

MOF

Runtime
Objects

UML

UML Model

Meta- metamodel
Layer

User Object
Layer

Metamodel
Layer

Model Layer

defined by

defined by

defined by

defined by

corresponds to

corresponds to

corresponds to

corresponds to

defined by

defined by

defined by

defined by

defined by

defined by

defined by

defined by

Figure 2.4: The OMG Four-Layer Metadata Architecture

can contribute by submitting their own proposal and collaborate to refine the pro-
posal towards a new standard. All OMG standards are freely available from the
OMG website. The OMG manages a large collection of standards, of which UML,
MOF (Meta Object Facility), CWM (Common Warehouse Metamodel) [72] and
XMI (XML Metadata Interchange) [76], are the most notable, forming the flagship
standard Model Driven Architecture (MDA) [82].

The OMG standards are based on a four-layered meta-data architecture coined
by Kotteman and Konsynski [51], defining a hierarchical relationship of models
and modeling languages, depicted in Figure 2.4. The relationship between two
layers in this architecture is analogous to that of the relationship of classes and
instances in object-oriented software development. Hence, an instance of the
concepts available on a certain level will form the concepts at the next layer. This
formalism of defining languages is referred to as metamodeling. We consider
metamodeling to be an alternative approach to the definition of graph grammars in
the context of graphs.

The four-layered meta-data architecture is based on the notion of a modeling
language with the expressive capability of defining all modeling languages, in-
cluding itself. This language is placed at the M3 layer. In the OMG standards,
this layer is represented by MOF or the UML Infrastructure [73]. This layer is
referred to as the meta-metamodel or metalanguage layer. The language on the M3
layer is per definition in the four-layered architecture self-defining, and is therefore
considered a fix point, hence this language is often fixed or hard-wired in tools
utilizing all levels of the architecture. Based on the concepts for modeling language
definition defined at the M3 layer, the modeling language or metamodel is defined

19

Note: shared

aggregation is

discouraged

Typed graphs

Metamodel nesting

Ordered graphs

Directed graphs

Attributed graphs

Element ownership

GeneralizableElement

Package

AssociationDatatypeClass

EnumerationType

MultiplicityType

AggregationKind

Classifier

TypedElement

StructuralFeature

Feature

ModelElement

Namespace

AssociationEnd

Reference

Attribute

 « »

isAbstract :

isDerived :

labels : [* ordered]

upper :

lower :

isUnique :

isOrdered :

enumeration

none :

shared :

composite :

multiplicity :

name :

isNavigable :

multiplicity :

aggregation :

isDerived :

Boolean

Boolean

String

Integer

Integer

Boolean

Boolean

MultiplicityType

String

Boolean

MultiplicityType

AggregationKind

Boolean

typedElement

*

type

1

subtype

supertype

* container 0..1

containedElement *

*

exposedEnd1

*

referencedEnd1

 { ordered }

Figure 2.5: A fragment of the MOF metamodel

at the M2 layer. At this layer modeling languages such as UML, are defined. The
modeling language defines the concepts that in turn can be used to construct all
models conforming to it. The M1 layer, or the model layer, contains actual models
used to e.g. describe a particular software system. While the M3 and M2 layers
are often static when designing a system, the models on the M1 layer forms the
actual model artifacts, such as UML models, developed by system designers. The
fourth, M0 layer defines represents actual instances of model data in a run-time
environment, such as objects in computer memory. It is therefore out of scope for
the OMG modeling standards and is often omitted.

A concrete example of the organization of metamodeling languages, modeling
languages and models can be found in Figures 2.5, 2.6, 2.7 and 2.8, each residing
on it’s own layer, respectively. As described previously, each layer defines the
next via object instantiation. In these figures, Figure 2.5 describes the MOF meta-
metamodel residing on layer M3. Based on the concepts of MOF, UML can be
defined on layer M2. A fragment of the UML metamodel is shown in Figure 2.6.
Again, the concepts defined in the UML metamodel are instantiated to models
residing on layer M1. In this case, we show two different diagrams in Figures 2.7
and 2.8. These figures show two different representations of the same model
fragment, Figure 2.7 shows a UML diagram in the UML concrete syntax and

20

ModelElement

Package

Attribute Operation

ClassifierFeature

Model

AssociationEnd

Association

Class

+ name : String

connection

2..*

association0..1

participant

0..1

association

*

ownedElement *

namespace

1

owner

0..1feature

*

 { ordered }

Figure 2.6: A fragment of the UML metamodel
Class1 Class2

b+ a+

Figure 2.7: An example UML Class Diagram

:Model
name=""

:Class
name=
"Class2"

:Association
name=""

:Class
name=
"Class1"

:Association
End

name="a"

:Association
End

name="b"

namespace

association

connection

pa
rtic
ipa
nt

ownedElement

ow
ne
dE
le
m
en
t

ow
ne
dE
lem
en
t

na
m
es
pa
ce

na
me
sp
ac
e

participant
as
so
cia
tio
n

co
nn
ec
tio
n

associationas
so
cia
tio
n

Figure 2.8: A graph representation of the Class Diagram from Figure 2.7.

21

Figure 2.8 shows the abstract syntax of the same model fragment. In Figure 2.8,
each model element (instance of a metaclass) is represented by a labeled node and
and each relationship (instance of a meta-association) as a directed, labeled edge.

The organization of models and modeling languages are an important part of a
software modeling framework. The above examples show which are the artifacts
and how these have been defined according to the modeling framework based on
MOF.

2.6 Models and Modeling Languages as Graphs

In Publication I, we discuss and compare the modeling frameworks for software
engineering in more detail. These frameworks are MOF, Graph eXchange Lan-
guage (GXL) [100, 99] and the Eclipse Modeling Framework ECORE [16]. A
modeling framework is essential in the definition of domain-specific modeling
languages and consequently tools, as it defines how models and modeling lan-
guages are represented and organized in tools. Modeling frameworks can also
include standards for model interchange and visualization, and as a consequence
the choice of modeling framework can have an impact on the interchangeability of
models and modeling languages, as modeling tools are often limited to a single
modeling framework. Of the modeling frameworks in the study, all frameworks
implemented explicit M3, M2, M1 layers, despite the fact that the frameworks had
emerged from different backgrounds: GXL has emerged as a standard from graph
theory community, MOF as a standardization effort from the industry and ECORE
as a result from practical needs and open-source collaboration. While there is a
difference in how languages are defined and interchanged, each of the approach had
important benefits, for example GXL can interchange models without metamodel
definitions and ECORE benefits from the increasing popularity of the framework
and the rather small metametamodel, and MOF from being recognized as an OMG
standard. From a practical implementation point-of-view, the difference between
the approaches were minor.

22

Chapter 3

Graph Query and
Transformation

3.1 Motivation

Graph theory can be used as a foundation to software modeling as software models
can be seen as graphs and defining modeling languages can correspondingly be
regarded as a method of defining graph grammars.

Graphs can contain large amounts of structured information and are therefore
often used for representing and solving many important problems in computer
science. Many fields of graph theory, such as graph transformation [85], relies on
an efficient solution of the subgraph isomorphism [92] and related graph matching
problems.

Graph query languages can be based on graph matching theory. In software
development, graph query is used to find occurrences on subgraphs in a graph. Typ-
ical applications are pattern matching, specification and validation of constraints,
graph transformation, metrics calculation et cetera. For example, in constraint
validation, the absence of a given subgraph may declare the graph representing
a model invalid [65]. In graph transformation, graph query is used to determine
whether a graph transformation rule can be applied to construct a new graph. In
software metrics, a query language in combination with aggregation can be used to
calculate metrics [64].

Numerous query languages exist which can be used in software development.
Many of these have been implemented for the use in conjunction with graph trans-
formation languages. Notable examples are PROGRES [101, 13, 90], AGG [86],
VIATRA [11], Fujaba [66] and GReAT [4]. The Object Management Group has
also proposed QVT [81] for use in software development. All of these approaches
uses advanced approaches for graph matching.

Subgraph isomorphism [92] can be used to detect if a graph G has an isomor-
phic subgraph H. For a positive match, a subgraph of G, H′ isomorphic to H is

23

obtained. In the simplest form of this approach both G and H are expressed as
graphs and hence can be seen as a declarative approach to graph matching. While
the basic approach is limited to detect isomorphisms in graphs, it has been extended
with new variables to enable queries of higher complexity. Examples of such ex-
tensions are the inclusion of negative application conditions [38], path expressions
and multi-objects (or also referred to as set-nodes) [90]. Path expressions are used
to describe transitive relationships in graphs over many nodes and multi-objects
bind multiple instances of a node to a single match. However, these approaches
may not be sufficient for describing many hierarchical and recursive structures
commonly occurring in many computer languages. Examples of such queries can
be found in UML Class and Package diagrams and State Diagrams, where these
can be needed for queries for inheritance hierarchies, nested Packages and nested
States, respectively.

In Publication II we present a query language, CQuery, based on subgraph
isomorphism to propose a new graph matching variable, the star operator. This
language also supports the isomorphic and negative operators. In all cases the
scope of matching operators are regions, which are annotated subgraphs in our
approach. We have chosen to base our approach on subgraph isomorphism as we
consider query languages should be declarative.

3.2 Regions and Matching Operators

In our approach, we operate on directed, typed and attributed graphs, conforming
to a graph grammar. For the purposes of evaluation, we have based our approach
on graphs defined using metamodeling, which we consider to be an alternative
approach for defining graph grammars. A pattern consists of two parts, a graph
defined similarly as the target graph and a second graph consisting of query
language annotations.

A pattern graph consists of a graph partitioned in one or more regions, where
each region is a connected subgraph of the pattern. Each region is associated to
one matching operator. Consequently, the regions are non-overlapping and nodes
belong to exactly one region. By using regions in combination with matching
operators, it allows the defining of the scope of the operator to a subgraph rather
than single nodes or edges in the pattern. This contributes to a certain generality
in the operator semantics and is beneficial in case the query language is extended
with new operators.

An edge can overlap region boundaries if it interconnects nodes in adjacent
regions. We refer to such edges as connection points. These can be computed
automatically if two given nodes are assigned to different regions. Connection
points are used by the matching algorithm to traverse between regions as well as to
validate whether operator-specific requirements regarding the connection points are
satisfied before attempting to execute a query. We will discuss these requirements

24

later in this section.
The isomorphic operator applied on a region in a pattern graph, describes

an occurrence of an isomorphic subgraph in the target graph. When the pattern
graph consists of only isomorphic regions or there are several adjacent isomorphic
regions, the isomorphic regions can be merged without without affecting the
resulting mapping between the pattern and the target graph.

The negative operator applied to a region describes the absence of a subgraph
in the target graph. For a failed match, a subgraph isomorphic for the negative
region is found in the target graph. Similar definitions of the negative operator in
the context of graph transformations can be found in [38].

The star operator can be used to describe hierarchical or recursive structures
and is conceptually similar to the star operator defined in Kleene algebra [52]. Star
regions can be used to express a pattern where a subgraph isomorphic to the star
region can occur zero or more times. Hence, the star region represents a group
of patterns which can be expanded an arbitrary amount of times and be replaced
by isomorphic regions of the same content. The resulting patterns can then be
matched against a target graph.

To ensure the star region can be expanded an arbitrary amount of times, the
star region needs to have two connection points to two other isomorphic regions.
The edges representing these connection points must be derived from the same
relationship in the grammar or metamodel, and define the point where star regions
are expanded. Within the region, the star region can still have an arbitrary structure.
Since the connection points have a compatible edge, the structure of the generated
patterns will not violate the graph grammar or metamodel.

An example pattern is shown in Figure 3.1. The figure shows a graph pattern
(above) with a star region that is used to generate new patterns (below). The pattern
G1 is generated by replacing one of the edges at the connection points (marked
with circles) in G with an empty graph and rewriting the edge m (bold). Pattern G2
is consequently obtained by replacing m in G1 with an occurrence of star region
R2 and rewriting m. By repeating this process G3 can be obtained.

Using for example subgraph isomorphism, the patterns G1..n, generated from a
pattern G, can be matched against a target graph. It must, however, be noted that
generating intermediary patterns for the purposes of a matching application may be
inefficient in large graphs, in comparison with an approach where the star regions
are expanded dynamically during the matching process.

The star operator applied to regions can bring benefits when defining graph
queries which involve hierarchical or recursive structures, especially if these struc-
tures involve subgraphs with more than one element. In Publication II, two exam-
ples in UML 1.4 [71] are presented for UML Generalization and UML Composite-
States. In UML 2.0 [74], the part of the metamodel involving state machines was
changed, such that UML 1.4 CompositeStates were replaced by UML 2.0 States
containing UML 2.0 Regions. Consequently in UML 2.0, star regions to express
state hierarchies require a pattern with more elements to express a similar query.

25

1':S

4':T
2':T
 3':S

R
2

Pattern Graph
 G

m

m
n

R
1

R
3

=

=

*

Pattern Graph
 G
1

1':S

4':T

m

Pattern Graph
 G
2

1':S

4':T
2':T
 3':S

m

m
n

Pattern Graph
 G
3

1':S

4':T

2':T

3':S

2'':T

3'':S
 m

m

n

m

n

Figure 3.1: (Top) A pattern graph formed by two isomorphic regions, R1 and R3,
and one star region R2. (Bottom) Three possible patterns that could be generated
from pattern G in the top of the figure.

3.3 Matching Algorithm

In Publication II an algorithm for matching patterns with regions is presented. The
algorithm is an extension of an existing graph matching algorithm. An existing
graph matching algorithm is still used to match the content of an individual region.
We have in our work extended an algorithm presented by Lillqvist [56] based on
CSP [91] and VF2 [23, 24].

The presented matching algorithm is based on an approach where the star
regions are dynamically expanded during the matching process. This approach
was chosen for efficiency reasons, as the number of patterns to be generated from a
pattern containing star regions is arbitrary. The algorithm attempts to match one
region at the time before proceeding to match adjacent regions.

In our experiments we found that the region matching algorithm is significantly
faster if the starting point of execution is the largest isomorphic region in the pattern.
We found that this is related to the fact that a larger region will be less likely to have
multiple matches. Despite the matching algorithm operates on regions, matches are
reported as a mapping between the nodes in the region and target graph is returned.
For star region nodes, a mapping to a target graph node is reported as an ordered
set.

26

3.4 Integration in Tool Environments

An experimental implementation supporting the concepts presented in the previous
section was implemented in an experimental DSM tool, Coral. In this modeling
tool, a graphical editor for CQuery and a matching engine was implemented.
Coral treats languages as and their respective editors as modules, and the CQuery
language was designed to contain unidirectional references to models written in
any other modeling language loaded into the tool. The editor implementation
followed a similar approach. The CQuery editor focused on creating the patterns
with regions, operators and matching instructions to construct the model elements
for the pattern. The CQuery editor dynamically loaded the editors of the target
language (for example a UML Class Diagram editor) and added the CQuery actions
to it. Consequently, there was no need to modify any of the existing metamodels
or tools to support CQuery. As the CQuery editor also extends the diagram editor,
it is possible to construct queries visually.

Query languages are fundamental in many applications based on graphs. The
CQuery implementation is an integral part of the Coral Modeling Framework and
many concrete modeling applications. Examples are a model search facility where
a query pattern is loaded into a tool and occurrences of the pattern are matched
towards models. CQuery is also used in a constraint evaluation component, which
uses a set of pre-defined patterns describing well-formedness rules. The constraint
evaluation component continuously checks for violations and reports offending
elements. CQuery is also used as a matching facility for a model to text component.

Based on the CQuery language a graph transformation engine using the double
pushout approach [85], called DPOTrans, was implemented. In this transformation
approach, transformation rules are given as a pair of left-hand side (LHS) and
right-hand side (RHS) graphs with an explicit mapping M between LHS and RHS.
In DPOTrans, CQuery patterns are used to specify the LHS and RHS and to search
for an occurrence of the LHS in the target graph.

The inclusion of a star operator in the double pushout approach differs signifi-
cantly from the inclusion of the isomorphic and negative operators. The negative
operator is widely used in many graph transformation systems, and is generally
accepted as a standard application condition to be used on the LHS of the graph
transformation rule [38]. Thus, for a LHS rule, the occurrence of a negative region
in the target graph will prevent the creation of a mapping between the LHS and the
target and consequently prevent the application of the RHS.

The star operator can be used to express that a specific region in a graph
can be recursively matched in a graph a number of times which is not known a
priori. However, after a valid mapping has been found, this number will be known.
In our approach, star regions can occur in both LHS and RHS. The number of
expansions of a star region required to match the pattern is identically applied to
the corresponding star regions to dynamically create a new transformation rule,
where the star regions are replaced by isomorphic regions. In this case, if there are

27

mappings between nodes in corresponding star regions, these are also duplicated
to maintain consistency. The duplication of the mappings have allowed the use of
a general double pushout approach supporting star regions.

The transformation engine with support for star regions is implemented in
the context of the Coral Modeling Framework, in which it is extensively used
for defining transformation rules for model editing actions in the context of the
diagram editor.

We have found that the inclusion of the star operator is beneficial in languages
where complex hierarchies occur frequently, for example in UML Class and State
Diagrams. As the star operator can describe such hierarchies at arbitrary depth,
a single pattern with a star region can describe many patterns and consequently
reduce the number of transformation rules needed to implement e.g. diagram editor
transformation rules for a new modeling language.

3.5 Related Work and Discussion

The concept of introducing constructs to support hierarchies in graph matching
and transformation approaches is not new and has received much attention. The
PROGRES path expressions [85] describe transitive relationships which can be
used to describe hierarchies in graph queries and transformation. In the PROGRES
approach, however, path expressions are always defined over single nodes of com-
patible type on which a transitive relationship can occur. The Fujaba environment
also presents a similar path expression construct [36]. Our approach extends
this notion by allowing the definition of similar relationships over entire regions,
while the contents of the star region is arbitrary. Our approach is also similar to
PROGRES multi-objects, however, the star region operates on depth of multiple
occurrences of a subgraph, while multi-objects describe multiple occurrences of a
single in breadth. However, extensions for PROGRES has later been presented [35]
to allow set-valued transformations, which are conceptually similar to regions in
our approach, to make single node or edge operations and application conditions
available to sets.

A similar construct as the star region, SCORE subgraphs is presented in [54].
In this approach, interconnected set valued subgraphs (ICONS) are presented,
which can be used to match and transform repetitive subgraphs in patterns and
graph transformation rules. This approach has been implemented as an extension
to PROGRES. While the motivation for and the semantics of the ICONS are mostly
similar to the star region, ICONS subgraphs are specified as sets of three almost
identical subgraphs, first, middle and last, where the middle subgraph is similar
to the star region. To the best of our knowledge, one significant difference is the
ICONS subgraph cannot express the situation where the repetitive subgraph occurs
zero or one times, whereas the star operator semantics are aligned with the Kleene
star.

28

In [95], an approach for matching recursive graph structures based on magic
sets used in the VIATRA2 language is presented. This approach is based on the
idea that a graph pattern can be composed of a set of sub-patterns which can
reference themselves to allow recursion in graph patterns. The presented approach
supports the efficient matching of more general forms of recursion than the star
operator, including the support for disjunction in the form of an OR operator. When
recursion is combined with the OR operator, similar queries and transformations
as provided by the star operator can be executed.

29

30

Chapter 4

Diagram Reconciliation

In the context of our research work, we represent the abstract and concrete syntax
(diagrams) of a model as two different graphs which are maintained independently.
We consider this separation important as it enables the abstract syntax to have
multiple representations and visualizations in different contexts and diagrams and
for these to be maintained independently. In the OMG [68] standards, modeling
languages are defined using the Meta Object Facility (MOF) [77] or the UML 2
Infrastructure [73]. To represent the concrete syntax, OMG provides a standard for
interchanging diagrams, called the UML 2.0 Diagram Interchange (DI) [80]. The
DI is defined as a modeling language using the same metamodeling approach as
the UML or MOF. The DI diagrams are stored alongside the abstract syntax for
interchange using the XML Metadata Interchange (XMI) [76] standard. Despite
this standard was originally proposed to be used to interchange UML diagrams,
nothing prevents the standard from being used to interchange diagrams in domain-
specific languages.

However, existing OMG standards do not specify how to define the relation (i.e.
mapping) between the abstract syntax and diagrams. The DI standard is designed to
contain only the structural information relevant for displaying diagrams, where DI
elements are linked to corresponding abstract syntax elements, realizing separation
of the abstract and concrete syntax. Additional elements are also used in DI to
store information relevant to the correct structure and layout of the final diagram,
such as placeholders for text information and visible and invisible compartments.
Appendix C of the DI standard [80] presents a list of how the most common UML
elements correspond to DI elements and which are the most common compartments
used in UML 2.0 Diagrams. However, the level of detail of this information is
not sufficient for processing diagrams in modeling tools. An exact specification
of how to map models and diagrams is a requirement for correctly processing and
interchanging DI diagrams in tools. To address this issue, OMG has published a
request for proposals (RFP) for a new model view to diagram standard [78]. This
RFP contains a set of requirements proposal submissions should address. Among

31

these requirements are a mapping language from metamodels written using MOF
and DI, as well as an extension to DI which allows the definition of notational
symbols compliant with Standard Vector Graphics (SVG). A typical outcome of
a RFP process is a standard, expressed as a language, with indications of it’s use
in software development processes or tools. To the best of our knowledge, we
are not aware of any publicly available submission. In addition to the concerns
presented in the RFP, we also consider the practical implications of using such
diagram mapping languages are important.

Model transformation engines are examples of tool components, which take
a model M and a transformation rule as input, executes the rule on M to produce
a slightly different model M′. In our discussion, we generalize the concept of
transformation engine to include all tool components which make changes to a
model in any way. Many of these components may have been designed to operate
on the abstract syntax alone. Hence, using these components can lead to a situation
where the diagrams do no longer conform to the abstract syntax models or are lost.
Since the diagrams are important for the human software developer, we consider
that diagrams created or modified as a result of model transformation are updated
accordingly to allow further manipulation using visual editors.

4.1 The Structure of DI Diagrams

The purpose of the OMG DI standard is to allow the diagrammatic representation of
abstract syntax models. The focus of this language is to represent the structure and
layout of a diagram. DI itself does not have any mechanisms for describing how
diagrams are actually rendered. Rather, the use of DI is based on the assumption
that a modeling tool will have built-in knowledge about the visual notation to be
able to render an image of the diagram.

The DI is a small language consisting of only 22 metaclasses, of which the main
concepts are GraphNode, GraphEdge, GraphConnector and SemanticModelBridge.
GraphNodes are used to represent rectangular shapes, while GraphEdges represent
represent edges. To provide anchor points for GraphEdges, GraphConnectors
are used. All of these elements also contain properties to specify placement
and dimensions in two dimensions. SemanticModelBridges are used to link DI
elements to the abstract model. GraphElements (GraphNodes and GraphEdges)
representing a UML element are connected using a Uml1SemanticModelBridge
with a directed link. To add semantic information to GraphElements important
for the correct layout and rendering, SimpleSemanticModelElements containing a
string named typeInfo, are used.

DI GraphElements can contain other GraphElement to form a hierarchy to
describe complex layout information and provide precise placeholders for rendered
symbols or text. The GraphElements necessary to describe a single abstract model
element can therefore be said to form a subtree. Exceptions to a strict tree structure

32

: :

InternalTransitionCompartment : InternalTransitionCompartment :

T ransitionDescription :

Nam e :

NameCompartment : NameCompartment :

Nam e :

CompartmentSeparator : Nam e : CompartmentSeparator :

: : :

S2 : S1 : Transition :

:

StateDiagram :

GraphNodeGraphNode

GraphNode G raphNode

GraphNode

GraphNode

GraphNodeGraphNode

GraphNode

GraphNodeGraphNodeGraphNode

GraphEdge GraphConnectorGraphConnector

SimpleStateSimpleStat e Transition

StateMachine

Diagram

subvertextransitionssubvertex

incomingsource targetoutgoing

S1 S2

Transition

Figure 4.1: (Top) UML model in gray with two SimpleStates and a Transition and
its representation in DI. (Bottom) DI diagram rendered using the UML concrete
syntax.

are the GraphConnectors, interconnecting subtrees. A full DI Diagram is composed
of a similar structure of subtrees. In this case, we consider a partitioning of the
entire DI Diagram graph in subtrees, where a subtree is defined as a GraphElement
mapped to an abstract model element via a Uml1SemanticModelBridge, including
all transitively contained GraphElements.

In Figure 4.1, an example of a UML 1.4 State Diagram using DI is shown using
a notation similar to a UML object diagram, where we show containment and di-
rected links explicitly. In the top of this figure, SimpleSemanticModelElements are
shown as instance names and Uml1SemanticModelBridges are shown as directed
links to UML elements (gray). The DI elements with a Uml1SemanticModelBridge
represent the root of each DI subtree. The bottom part shows the same DI diagram
rendered using the UML concrete syntax.

From the figure, it can be seen that the mapping between a state machine and
the corresponding diagram involves many DI elements organized such that the

33

MappingModel

Contained

ElementToDIMapping
InitialPart

ConcretePart Delegation

GraphElementPart

MOF::Class

DiagramPart GraphEdgePart GraphNodePart

guard :

selection :

contextGuard :

acceptsConnector :

typeInfo :

diagramType : connector :

OCL::OclExpression

OCL::OclExpression

OCL::OclExpression

OCL::OclExpression

String

String OCL::OclExpression

0..1

* mappings

1 element

*

*
1

root

0..1

parent

1

child

0..1 separator0..1

parent0..1

children

*

*

validIn *

 { ordered }

Figure 4.2: The DIML metamodel.

mapping is not trivial. Many of these DI elements are not visible in the rendered
diagram, but are important for the layout of the diagram. However, to correctly
create, modify and display a diagram, the exact mapping between the abstract and
concrete syntax models need to be known.

4.2 The Diagram Interchange Mapping Language

To address this issue, we propose a language called the Diagram Interchange Map-
ping Language (DIML). The purpose of this language is to provide a mechanism
to describe the relations between MOF-based modeling language and DI. The
proposed mapping language also deals with the hierarchical composition of DI
diagrams. The DIML metamodel is presented in Figure 4.2.

In Publication III we present a thorough discussion of the DIML. The DIML
is a mapping language, defined as a modeling language. A mapping expressed
in DIML is based on the idea that each metaclass in a modeling language is
mapped using an ElementToDIMapping to one or more trees of DIML Parts. The
ElementToDIMapping can contain a positive application condition, context guards,
to enable multiple diagram representations for the same abstract model element.
This context guard defaults to true, but can be specified arbitrarily as long as the
guards are mutually exclusive.

Each DIML tree consists of an InitialPart as a root element, followed by a
hierarchy of Contained-elements and GraphElementParts. The GraphElementParts
specify a corresponding DI GraphElement in diagrams, while the Contained-
elements specify that a GraphElement can contain other elements. The Contained-
element also provides the main mechanisms of parametrization in a DIML tree,
guard and selection, defined as OCL expressions. Guards are a mechanism to

34

GraphNodePartGraphNodePart

GraphNodePart GraphNodePart

Delegation

Delegation

GraphNodePart

UML14::SimpleState GraphNodePart

Delegation

typeInfo : = InternalTransitionCompartmenttypeInfo : = CompartmentSeparator

typeInfo : = StereotypeCompartment typeInfo : = Name

typeInfo : = NameCompartment

[self.stereotype->notEmpty()] self.entry->asSet()

self.doActivity->asSet()

self.exit->asSet()

acceptsConnector := true

Figure 4.3: The DI mapping rule of UML 1.4 SimpleState.

control the creation of a specific subtree within a DIML tree. A guard will allow
the creation of a subtree if the specified expression is evaluated to the value true.
Selection expressions, used in conjunction with DIML Delegation-elements, are
used to invoke another ElementToDIMapping. In this case, the selection expression
returns a collection of abstract model elements, for which the corresponding
mapping is invoked. Thus, Delegation only symbolizes the invocation of another
mapping rule satisfying the context given by the abstract model. This mechanism
allows the creation of DI Diagrams of arbitrary depth, adds scalability to the
mapping language, as well as the reuse of existing DIML mappings in many
different diagrams.

An example of a DIML mapping for a UML 1.4 SimpleState is shown in
Figure 4.3.

4.3 Generation and Reconciliation of Diagrams

The DIML provides a mechanism to specify the mapping between abstract model
data and DI Diagrams. Analogous to a graph transformation rule, this information
can be used to transform an abstract syntax model into a diagram, while simultane-
ously creating links between the new diagram and the underlying abstract syntax
model. In this section, we will discuss what we consider are the most important
applications of DIML, diagram generation and reconciliation.

Diagram generation assumes only the abstract syntax model is present, and
consequently can be useful when a model transformation program has created a
new model without diagrams, while diagrams are later required. A similar scenario
can also occur in a DSM tool setting, when exporting diagrams in DI if another
diagram language is primarily used in the tool.

In Publication III an algorithm for diagram generation is presented. The
diagram generation algorithm is based on the idea that for an abstract model

35

element e and the desired diagram type, an ElementToDIMapping is found. The
algorithm will then traverse the mapping rule using depth-first search and create
diagram elements accordingly with respect to the structure and defined guards.
Where Delegation elements are found in the rules, the algorithm evaluates the
selection expression to obtain a set of abstract model elements and invokes other
ElementToDIMappings for each element. Finally, when all diagram elements have
been created, DI GraphConnectors are created for all GraphEdges.

It must be noted that diagrams created using the diagram generation algorithm
will need to be layouted using an appropriate layout algorithm for the diagram type
in question.

The creation of a new diagram is an important operation when no previous
DI diagram exists for a particular abstract model. However, we assume a setting
in which diagrams and the underlying abstract syntax model is being edited in
parallel. If a diagram exists and changes are introduced to the underlying abstract
syntax model, the diagram will no longer be consistent. To regenerate a diagram
can be a slow and costly operation if only small changes are made to the abstract
syntax model, for example by an editor or a model transformation program. In
these cases, a more efficient approach is to perform only the changes required to
keep the diagram up to date.

Diagram reconciliation is the process of maintaining consistency between an
abstract model and a diagram after executing a model transformation program
modifying the abstract model. To determine the changes made to the abstract
model, a change description from a model repository can be used. A diagram
reconciliation component is a component which, based on the changes made in
the abstract model, performs only the necessary changes required to to bring
the corresponding diagrams up to date, while preserving as much as possible
from the existing diagrams. The mappings created using DIML are declarative
constructs, meaning the diagram reconciliation component can use any algorithm
for performing diagram reconciliation as long as the resulting diagrams correspond
to the mappings.

In Publication III a high-level outline of a diagram reconciliation algorithm
is presented. The presented algorithm takes an abstract model element element
and the slot which has changed. For example, the element can be an instance
of a UML CompositeState and the slot “subvertex”. Using this information, the
algorithm finds all diagrammatic representations of the element and all the corre-
sponding DIML mappings. Based on the structure of the DIML mapping, different
reconciliation approaches are used. In the algorithm we present three functions
for the reconciliation of DIML GraphEdgePart connectors, GraphElementParts
and Delegations. All of these functions compare the DIML mapping against the
existing DI subtree, and creates or removes diagram elements from the subtree
depending on the changes in the abstract model and the DIML mapping.

The proposed high-level diagram reconciliation algorithm reconciles diagrams
based on individual changes in a single slot of an abstract model element, as

36

provided by a change description list. To improve the efficiency of the diagram
reconciliation algorithm, especially for executing larger model transformation
programs, it may be possible to group together some of the changes in the change
description list, for example if there are several insertions of new elements into the
same slot performed in sequence.

4.4 Integration in Tool Environments

While the DI standard enables a full separation of the abstract and concrete syntax
by separating the diagrammatic elements into a diagram model, the DIML map-
pings and the diagram reconciliation component can be used in combination to
decouple the changes made in the abstract syntax model from the updates required
in the diagrams.

We have implemented DIML and a diagram reconciliation component in the
Coral Modeling Framework tool. In this tool, DIML mappings are used to define
and describe diagrams in the context of a diagram editor component. As a proof of
concept, we have implemented DIML mappings for many diagrams in conjunction
with UML 1.4 and UML 2.0 editors. A large collection of UML 1.4 mappings
is presented in [58]. By using the mappings for UML 1.4, we have assessed
compatibility with Gentleware Poseidon [37] version 3.0. As Gentleware was one
of the main contributors to the DI standard [14], we consider Poseidon to be a
reference implementation of DI. DIML mappings have also been implemented
for numerous domain-specific languages, such as DIML itself, SOCOS [33], a
language for defining invariant-based programming diagrams and MICAS and
EFCO, presented as examples in Chapter 6. We consider that these examples
show that DIML is a viable language for defining diagrams both for UML and
domain-specific languages.

The diagram reconciliation component is implemented as a change propagation
component built on top of the Coral model repository [7]. The model repository
automatically provides a change description as a list of changes grouped together
as a transaction when changes occur in models loaded in the repository. At
the end of a transaction, the diagram reconciliation component is invoked to
update all the diagrams for models which have changed. In Coral, models can be
manipulated in several ways, using diagram editors, form-based editors, model
transformations and imperative scripts loaded into a Python shell. Neither the
model repository nor the diagram reconciliation can distinguish between which
method is used for model manipulation. In fact, when a diagram is manipulated
in the Coral diagram editor, the diagram editor performs only changes on the
underlying abstract model using the model transformation engine described in
Section 3.4, while new diagram elements are created in the diagrams as a result of
executing the diagram reconciliation component.

37

4.5 Discussion

DIML and the diagram creation and reconciliation components can be seen as a
domain-specific transformation language and engine respectively. In our approach,
we treat the abstract model and diagram as two linked graphs, of which the di-
agram can be derived from the abstract syntax alone. The proposed DIML and
its applications are as such suitable for maintaining diagrams only. While DIML
can be seen as an exogenous model transformation language [63], we consider a
specific-purpose approach is motivated since this allows for the development of a
mapping language optimized to deal with the hierarchical structure of diagrams and
maintaining diagrams is a crosscutting DSM tool concern. The DIML mappings
are further independent of the definition of model transformation rules and their
execution. That is, once DIML mappings for a modeling language have been
created, new model transformation rules will not impose changes in the DIML
mappings.

We have chosen an approach based on the OMG MOF and DI standards, as
standard compliance is an important requirement for tool interoperability. However,
the general principles of DIML and its applications are not as such limited to the
OMG standards and can be adapted to other diagramming standards with similar
characteristics.

To the best of our knowledge, there exists no similar approach for maintaining
consistency between abstract syntax models and diagrams based on the OMG
standards.

The work by Ráth et. al [88] presents an approach for synchronizing abstract
and concrete syntax based on a mapping language between Eclipse EMF and
the diagram metamodel of GMF using VIATRA2 live transformations [84]. This
approach has many conceptual similarities with DIML and diagram reconciliation.
In this approach, while an own bidirectional mapping language is used to describe
the relation between models and diagrams, their diagram synchronization facility is
implemented using a general-purpose model transformation language. In addition
this approach supports synchronization from diagrams to abstract models. This
mapping language has been implemented in ViatraDSM [84] tool.

Existing general purpose model transformation languages such as [27, 83,
41, 94, 12, 45, 75] are designed to deal with the abstract syntax alone. Such
transformation languages could be extended to include abstract syntax model to
diagram transformations. However, we still consider diagram definitions should be
separated from model transformation rules, especially as all components in a DSM
tool modifying abstract syntax may have an interest in maintaining diagrams.

Existing DSM tools such as Eclipse GMF [3], MetaEdit+ [49], GME [55]
and Microsoft DSL Tools [25] present approaches for defining diagrams using
their own diagramming languages, respectively. In these approaches, however,
only one-to-one mappings between the abstract and concrete syntax are possible,
whereas in DIML a single metaclass can have an arbitrary number of distinct visual

38

representations in many different diagrams depending on the diagram it appears in
and the context in which the abstract syntax model it is constructed. In the existing
approaches the consistency of diagrams is only maintained when editing occurs
using the diagram editor component, where as the presented diagram reconciliation
component can maintain this consistency regardless of which component initiated
the changes in the model.

39

40

Chapter 5

Integration of Model
Transformation Components in
DSM tools

In order to reduce the effort of developing tool support for DSM, several DSM
frameworks have been proposed, such as the Eclipse EMF, MetaEdit+, GME, MS
DSL Tools. These frameworks provide the possibility to construct basic DSM appli-
cations using built-in tools. Many DSM frameworks provide programmatic access
to tool infrastructure and models using an application programming interface (API)
to allow the integration of custom or third party components. Such components
can, for example, be specialized editors, model transformation components and
sometimes other modeling tools.

5.1 Functional Requirements

In Publication IV we have listed and motivated some of the functional requirements
we consider most important in DSM tools: (R1) Multiple, standard and user defined
visual languages, (R2) Define new languages based on metamodeling standards,
(R3) Multiple interactive editors and (R4) Model transformation support.

While (R1) is rather obvious in a DSM framework, (R2) is not always sup-
ported in full. In our view, we consider that the full support of (R2) implies
tool-independent and high-level metamodeling standards are used to define new
modeling languages. We consider this important as it enables interchange of
modeling languages which would ensure interoperability between tools and tool
components. While requiring tools to adhere to a specific standard such as Meta
Object Facility (MOF) [77] is practically difficult, approaches such as Eclipse
ECORE [16], Kernel Meta Meta Model (KM3) [44] and Simple Metadata Descrip-
tion (SMD) [6] provide a high level of MOF compliance and are conceptually very
similar. However, compatibility at the metamodeling framework level (OMG M3

41

level) does not still ensure full interoperability, as this requires that the metamodel
(M2 level) externally and internally complies with the specification. In the OMG
standards, XML Metadata Interchange (XMI) is proposed for interchanging models
between tools. XMI itself operates on models alone (M1 level) and is as such
independent of the modeling framework [8]. Studies such as [57] show that there
are still interoperability issues due to implementation and interpretation differences
of various standards. While there is a need to integrate various modeling tools and
components, such differences as described above has lead to the development of
integration approaches such as Modelbus [9] and tool adapters [46].

Support of (R3) and (R4) suggests a certain level of flexibility is required in
DSM frameworks, by not restricting methods of representing, manipulating and
transforming models. For example, while a diagram editor component clearly
needs to maintain consistency between the abstract and concrete syntax (diagram)
models, the focus of e.g. rule-based model transformation is on transforming
abstract syntax models alone. Integrating model transformation components into
a DSM tool can lead to a situation where diagrams are not maintained as the
relation between the abstract syntax and diagrams is not trivial and methods to
define and represent diagrams can be tool-specific. This can have a negative effect
on the integration of different editors and transformation engines in a DSM tool.
This has the implication that there is a need for mechanisms which collaborate to
maintain consistency between the various artifacts such as models, diagrams and
other derived artifacts, while still not restricting either the method of editing or
transforming models or the order in which these are used.

5.2 Quality Attributes

In the implementation of these functional requirements, there are also some quality
attributes we consider especially important in the implementation of DSM tools
and tool components. Examples of these quality attributes are customizability and
language independence (reusability), low tool coupling and low customization
effort. A high reusability will allow a tool component to be used in the context of
many different domain-specific tool environments. To achieve this we propose to
base tool components on standards. This will in addition promote tool interoper-
ability. A low coupling to the tool environment is important to ensure that new
components can be integrated with the tool with reasonable effort. To achieve this,
we propose to use simple patterns of communication between tool components,
such that tool components need to focus only on the changes in the models, not on
update or change propagation issues in the tool environment.

Perhaps the most difficult quality attribute is to ensure a low customization
effort.

It can be argued that a generic tool framework, with a powerful and feature-
rich application programming interface (API) library, where customization of the

42

tool for a certain domain-specific solution is carried out by programming using
a standard programming language such as C++ or Java, provides the highest
potential of reusability, as there are few limitations on which applications can be
developed. However, this will require special knowledge about both the domain-
specific language and the tool specific API. It is also likely such a tool API will
have a high learning curve and as components are customized using programming
languages, customization will be time-consuming.

On the other hand, the customization could be based simply on facts about
the DSML that can be automatically derived from the metamodel. In this case the
metamodel would be used directly as the only input to editor generation compo-
nents and editors can be obtained relatively quickly and with little customization
effort. While this can be adequate in some cases, this approach will not necessarily
allow customization and the set of features are limited to such that generally can
be used with all domain-specific languages. If the editor generation is based on the
semantics of the metamodeling language (e.g. MOF, ECore) the reuse potential is
limited to what metamodels can be expressed in these languages.

The two mentioned customization methods represent two extremes, but indeed
both can be beneficial to include in an open tool environment. For example,
when an new model editing method is developed for a DSM solution, an API is
an important prerequsite. When an automatically generated solution matches or
exceeds the requirements of the DSM solution, there is a benefit with this approach.

To tackle the requirement of low customization effort, we propose an approach
using generic tool components, which are customized using a graph-based, declar-
ative approach. This approach is similar to DSM, but the target domains are
different types of editors for domain-specific languages. That is, the basic approach
to the customization of tool components is using a set of high-level declarative
descriptions, rather than to use an API alone. Existing API is in this case not
redundant, as it can be used as domain framework. Clearly, and in line with the
principles of DSM and generative programming, this requires a mature domain (the
editor component or more generally the method of editing in a tool) and sources of
variability and means to create configurations. There are several such sources, for
example the DSML metamodel, the metamodeling language, existing standards
in the domain and how they have been applied and finally, commonly accepted
and anticipated domain requirements. The variable features are then selected to
create a customization (configuration) that matches the user requirements for the
editor component in question. In the actual implementation of editor components,
by finding general approaches to relate viewers and editors via metamodels and
graph transformation the effort of customizing editors can be reduced. A concrete
example of this is the diagram reconciliation component discussed in Chapter 4.

There are, however, some important trade-offs. The potential variability will
certainly be more limited in comparison to using solely programming languages
with an API. But on the other hand, this approach promotes reusability and less
customization effort especially in the general case, while still providing suffi-

43

cient capabilities of developing domain-specific language tool components and
environments.

5.3 Tool Architecture

The architecture of a proposed DSM tool is outlined in Publication IV. The
presented architecture is based on a shared model repository, where all application
data is stored as graphs. The model repository acts as a modeling language
independent storage of models and modeling languages and can be used as the
core of a modeling tool. In this architecture, there is no explicit communication
between tool components to exchange data: components may do this only by
reading or writing data in the shared repository. We have chosen this approach
as it minimizes the coupling between editor components working on models and
change propagation components. This has the important side-effect that e.g. model
viewers will need to react to data being written or modified in the model repository.

Central in this architecture is a communication pattern based on a transac-
tion mechanism emitting notification events to registered tool components. The
transaction mechanism allows tool components introducing changes in models,
active components, to group a list related changes in models into transactions.
When the transaction ends, a notification event is emitted containing a reference to
the last transaction. This mechanism allows components responsible for change
propagation, maintaining derived artifacts in the model repository and views, to
react to the introduced changes. In our approach, we refer to such components as
reactive components and concrete examples of such are diagram viewers and the
diagram reconciliation component discussed in the previous chapter.

It is up to the active components to decide the size of the transaction. However,
regarding interactive editor components, a typical transaction would include the
changes in models due to executing an editor action. It is the responsibility of the
reactive components to in turn perform change propagation efficiently based on the
transactions alone. The changes in the model repository introduced by the reactive
components are also monitored, and these changes are appended to the original
transaction. This has the benefit that e.g. undo is a task of reversing the changes
in the transaction list. The use of transactions has the benefit that both active and
reactive components are able to work incrementally and driven by a set of related
changes to be processed as units of work, which in turn ensures responsiveness in
the modeling tool.

Based on this communication pattern, we propose an editor architecture for
visual language editors. The architecture, explained in more detail in Publica-
tion IV, is based on a strict distinction of active and reactive modeling language
independent tool components, each performing a designated task or maintaining
a specific artifact stored in the model repository. Such artifacts can be models,
diagrams, modeling languages, model transformation definitions etc. As there is

44

no explicit communication between the various components, components detect
the need to update views or regenerate derived artifacts solely based on changes
in the artifact of interest. We consider this approach to promote high cohesion,
as components need to focus only on one specific task, and low coupling, as the
various components are coordinated via the model repository alone.

In our approach, the responsibility of updating views and derived artifacts is
strictly delegated to designated components. In line with the results presented in
Publication III, we consider the abstract and concrete syntax of models to be two
separate artifacts maintained individually. In the context of this research work,
we consider a mapping between the abstract and concrete syntax can be used to
reconcile diagrams after changes occur in models. We have in our architecture
used this result to show diagrams can be treated as a derived artifact in practise by
integrating the diagram reconciliation engine to manage diagram updates.

In Figure 5.1, we exemplify this architecture in context of a DSM tool, where
we for the sake of clarity show only the components related to displaying a diagram
in a diagram viewer. In this figure, a tool setting consisting of a model repository
is shown, where a diagram viewer, the diagram reconciliation engine and a model
transformation engine are integrated as tool components. The components pre-
sented here are generic tool components configured using graphs, stored in the
model repository. The model transformation component acts as an active compo-
nent reading a model transformation definition (1.1) and executes it (1.2) in the
context of a UML model, which is modified. The diagram reconciler then acts as a
change propagation component and is notified that the UML model has changed
(2.1). The diagram reconciler then reads the mappings for UML (2.2), to finally
bring the UML diagram up to date. A second change propagation component, the
diagram viewer, is notified of the changes in the diagram model (3.1) and redraws
the diagram view based on the UML notation (3.2).

Component Model

Component Model

Component Model

Update

Read Only

Notification

Model
Transformation

Component
Diagram ViewDiagram

Reconciler

UML
Model

UML Class
Diagram

Model Repository

1.2 2.1 2.3 3.1

UML Visual
Notation
Definition

UML
Diagram
Mapping

MT
Definition

2.2 3.21.1

Figure 5.1: Using model transformations.

As we discuss in Publication III and IV, we can generalize the concept of model
transformation engines to include interactive editor components. The architecture
supports this generalization, as we can use the same architecture as described in
Figure 5.1 to connect interactive editors.

45

As a proof of concept, we have implemented the presented architecture using
generic, modeling language independent components in an experimental DSM
framework, called the Coral Modeling Framework. In Coral, the controller part
of our diagram editor is based solely on transformations executed on the abstract
syntax of a model alone, while the diagram view is implemented as a change
propagation component propagating the changes made in the diagram model by
the diagram reconciliation engine.

In Coral, the change propagation components are driven by the transaction
and notification mechanisms, and consequently, from the point of view of the
model repository, there is no distinction of which type of component introduces the
changes in models. This allows the integration of model transformation components
into the tool environment based on the abstract syntax alone, while still ensuring
existing diagrams are maintained consistently.

46

Chapter 6

Applications Using The Coral
Modeling Framework

The Coral Modeling Framework can be used to build DSM tool environments sup-
porting general-purpose languages and custom domain-specific languages. Coral
is also a modeling tool, which implements various different customizable editors
and components for manipulating models and transformation engines for executing
model-to-model or model-to-text transformations. In these components, customiz-
ability has been ensured by basing the tools on metamodeling standards. This is
aligned with the OMG meta-data architecture where the M3 can be considered a
fixpoint. Thus, defining a DSM tool environment is ideally a matter of customizing
the framework component to the application domain in particular.

We have chosen to use an approach based on DSM to implement individual
framework components. The most important reasons for this is that we consider
the problem domains of one single editor component narrow-focused and targeted
enough to allow the description of a language-specific editor in terms of the
tool component’s problem domain and the metamodel of the DSML, while still
being able to generate an efficient implementation. We have used this approach
to create generic editor and tool components which are configurable for both
general-purpose and domain-specific modeling languages. In contrast to developing
language-specific components using general purpose programming languages and
tool specific API’s, the components are configured using graph-based, declarative
artifacts as exemplified in Section 5 of Publication IV. This allows a both DSM
definition and usage components to reuse substantial parts of the framework,
effectively treating DSM definition components as editor components.

Next, we will present two DSM applications, which have been implemented in
the Coral Modeling Framework.

47

6.1 MICAS

In Publication V and VI we present a tool environment for defining peripherals
for mobile phones called MICAS (Microcode Architecture for System-on-Chip),
built as customizations of the Coral Modeling Framework. The objective of these
studies was to evaluate the use of a model based approach to design System-on-
Chip (SoC) [69] architectures for embedded systems. The MICAS architecture
describes a platform for static integration of components implementing a process,
for controlling the resource assignment of components, as well as dynamic data
processing, such as configuring services and streams between these components.

Components implementing a dedicated data-processing task (load files, decode
video, display video), can then be combined as a domain consisting of a micro-
controller and interconnected components (e.g. a video player). Several domains
can in turn be interconnected as a network. The dynamic aspects of MICAS allows
the definition and combination of services, which in turn consist of composed or
basic streams. The optimal routing of data streams is the result of a design-space
exploration process, where the static and dynamic configurations of a MICAS
application is evaluated using simulation.

The MICAS tool is a tool environment consisting of a domain-specific language
implementing several diagram types, model transformations chains between high-
level and more detailed models, a set of domain-specific model editors, a constraint
evaluation engine and code generators. In addition to these editors, the MICAS
tool implemented libraries consisting of reusable components and transformation
definitions.

The publications V and VI present two stages of the development of the MICAS
tool, of which the former is based on a domain-specific modeling language (DSML)
implemented as a UML profile extending UML Class and Object diagrams and the
latter as a DSML defined using a metamodel. Both versions were implemented
using Coral. We consider both approaches to represent alternative methods for
defining DSMLs. A comparison of these approaches can be found in [97].

The UML profile for MICAS is defined using a set of dedicated UML Stereo-
Types and TaggedValues. In the implementation of this profile we extended the
UML diagram editor and created a new diagram editor which was in turn based
on the MICAS problem domain. The diagram editor actions could in turn be cus-
tomized to add the appropriate stereotypes and tagged values needed for other tool
components such as code generators to properly identify MICAS models. However,
MICAS models still conformed to the UML metamodel and could still be loaded
and manipulated in other UML tools. While this was considered an advantage, a
clearly identified drawback of the MICAS UML profile was the additional UML
profile layer which needed to be taken into account when manipulating or travers-
ing MICAS models in different tool components or when defining well-formedness
rules for validating designs.

The latter implementation presented in Publication VI presents a more elabo-

48

rate version of MICAS implemented using a DSML based on a metamodel. The
conceptual MICAS metamodel presented in Publication V was extended with sev-
eral new diagram types where many of the elements had alternative representations
depending on the how the element was used in the MICAS models. In addition,
many of the elements used in MICAS designs were defined in libraries, meaning a
library element could be linked to many different models. As presented in Section
6 of Publication VI, the tool environment consisted of many different editors, each
providing different editing methods of a MICAS model. While most model editing
took place at the highest level of abstraction proposed by the MICAS language,
we used two additional lower levels of abstraction, obtained using model-to-model
transformations to bring the MICAS models closer to the abstraction level of the
implementation from which executable simulation code was generated. All of these
editors and transformation components operated on the abstract syntax alone while
still supporting diagrams at all stages of the design process of MICAS applications.

6.2 EFCO

In Publication VII a tool environment for efficient combination and evaluation of
reusable assets is presented. The EFCO (Efficient Feature COmbination evaluation)
tool was designed to extend the workflow of an existing embedded systems design
tool, CoFluent Studio [1, 19], with support for treating existing designs as reusable
design assets. These design assets consists mainly of Use Cases, describing a
component, which in turn consists of a hierarchy of Features, describing functional
units, which in turn defined a set of Services. The EFCO tool extended CoFluent
Studio by implementing a library of design assets, from which these assets could
be combined [34] and explored to create new application designs. These designs
could in turn be exported back to CoFluent Studio for the purposes of evaluation by
simulation, and eventually added as new reusable assets in the EFCO tool. Thus,
a process of design space exploration based on reusable assets was possible by a
joint workflow of the EFCO tool and CoFluent.

The EFCO tool was implemented as a customization of the Coral Modeling
Framework. The tool environment consists of a DSML for managing projects
and design assets, diagram editors for various diagram types, form-based editors,
a constraint evaluation engine for evaluating well-formedness rules and a set of
integration tools for CoFluent Studio.

Importing CoFluent designs into the EFCO tool involves a conversion between
the tool-specific CoFluent XML-format and the EFCO DSML and storage in a
library as reusable assets, mainly complete EFCO UseCases composed of Features
and Services. The EFCO tool included an editor which could be used to inspect
and modify the lower level constructs which were used to compose the UseCase.
In this case, new diagrams were created if needed for these components, to allow
graphical editing of the detailed structures at the UseCase, Feature or Service level.

49

The EFCO library supports the reuse of assets at all levels, for example existing
UseCases could be extended by adding new Features, or completely new Features
can be composed from existing Services. The UseCases created or modified in the
EFCO tool can then be stored as new reusable assets and exported to CoFluent for
simulation.

The EFCO tool serves as an example of how third party tools can be integrated
with a domain-specific tool environment implemented as a customization of the
Coral Modeling Framework.

50

Bibliography

[1] CoFluent Design Homepage, available at http://www.cofluentdesign.com,
visited May 9, 2011.

[2] Eclipse Model Development Tools. http://www.eclipse.org/uml2,
visited May 9, 2011.

[3] The Eclipse Graphical Modeling Framework. Available at
http://www.eclipse.org/gmf/, visited May 9, 2011.

[4] Aditya Agrawal. Metamodel based model transformation language to facili-
tate domain specific model driven architecture. In OOPSLA ’03: Companion
of the 18th annual ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications, pages 118–119, New York, NY,
USA, 2003. ACM.

[5] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers—Principles,
Techniques and Tools. Addison-Wesley, January 1986.

[6] Marcus Alanen. A Meta Object Facility-Based Model Repository With
Version Capabilities, Optimistic Locking and Conflict Resolution. Master’s
Thesis in Computer Engineering, Department of Computer Science, Åbo
Akademi University, Turku, Finland, November 2002.

[7] Marcus Alanen. A Metamodeling Framework for Software Engineering.
PhD thesis, Åbo Akademi University, May 2007.

[8] Marcus Alanen and Ivan Porres. Model Interchange Using OMG Standards.
In Bob Werner, editor, Proceedings of the 31st Euromicro Conference on
Software Engineering and Advanced Applications, pages 450–458. IEEE
Computer Society, Aug 2005. ISBN 0-7695-2431-1.

[9] Aitor Aldazabal, Terry Baily, Felix Nanclares, Andrey Sadovykh, Christian
Hein, and Tom Ritter. Automated model driven development processes. In
Proceedings of the ECMDA workshop on Model Driven Tool and Process
Integration, 2008.

51

[10] G. Arango. Domain analysis: from art form to engineering discipline.
SIGSOFT Software Engineering Notes, 14(3):152–159, 1989.

[11] Gábor Bergmann, András Ökrös, István Ráth, Dániel Varró, and Gergely
Varró. Incremental pattern matching in the viatra model transformation
system. In GRaMoT ’08: Proceedings of the third international workshop
on Graph and model transformations, pages 25–32, New York, NY, USA,
2008. ACM.

[12] Jean Bézivin, Erwan Breton, Grégoire Dupé, and Patrick Valduriez. The
ATL Transformation-based Model Management Framework. Technical
Report 03.08, University of Nantes, France, 2003.

[13] Dorothea Blostein and Andy Schürr. Computing with graphs and graph
transformations. Softw. Pract. Exper., 29(3):197–217, 1999.

[14] Marko Boger, Mario Jeckle, Stefan Mueller, and Jens Fransson. Diagram in-
terchange for uml. In Jean-Marc Jézéquel, Heinrich Hussmann, and Stephen
Cook, editors, «UML» 2002 — The Unified Modeling Language, volume
2460 of Lecture Notes in Computer Science, pages 371–378. Springer Berlin
/ Heidelberg, 2002.

[15] Eckard Bringmann and Andreas Krämer. Model-based testing of automotive
systems. In ICST, pages 485–493. IEEE Computer Society, May 2008.

[16] Frank Budinsky, David Steinberg, Ed Merks, Raymond Ellersick, and Timo-
thy J. Grose. Eclipse Modeling Framework. Addison Wesley Professional,
August 2003.

[17] Jordi Cabot and Ernest Teniente. Constraint support in mda tools: A survey.
In Arend Rensink and Jos Warmer, editors, Model Driven Architecture –
Foundations and Applications, volume 4066 of Lecture Notes in Computer
Science, pages 256–267. Springer Berlin / Heidelberg, 2006.

[18] Jordi Cabot and Ernest Teniente. Incremental evaluation of ocl constraints.
In Eric Dubois and Klaus Pohl, editors, Advanced Information Systems
Engineering, volume 4001 of Lecture Notes in Computer Science, pages
81–95. Springer Berlin / Heidelberg, 2006.

[19] Jean-Paul Calvez. Embedded Real-Time Systems. A Specification and Design
Methodology. John Wiley and Sons, 1993.

[20] E. M. Clarke and R. P. Kurshan. Computer-aided verification. IEEE Spec-
trum, 33(6):61–67, 1996.

[21] J. Craig Cleaveland. Building application generators. IEEE Software, 5:25–
33, 1988.

52

[22] Thomas Connolly. Database Systems. Oxford University Press, Oxford
Oxfordshire, 1999.

[23] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. An improved algorithm
for matching large graphs. In Proceedings of the 3rd IAPR-TC-15 Interna-
tional Workshop on Graph-based Representations. Italy, pages 149–159,
2001.

[24] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (Sub)Graph Isomor-
phism Algorithm for Matching Large Graphs. IEEE Trans. Pattern Anal.
Mach. Intell., 26(10):1367–1372, 2004.

[25] Microsoft Corporation. Microsoft Domain-Specific Language Tools. Avail-
able at http://msdn.microsoft.com/vstudio/DSLTools/, visited May 9, 2011.

[26] Krysztof Czarnecki and Ulrich Eisenecker. Generative Programming: Meth-
ods, Tools, and Applications. Addison-Wesley, Boston, MA, 2000.

[27] David H. Akehurst and Stuart Kent and Octavian Patrascoiu. A relational ap-
proach to defining and implementing transformations between metamodels.
Software and System Modeling, 2(4):215–239, 2003.

[28] J. de Lara and H. Vangheluwe. Using Meta-Modelling and Graph Grammars
to Process GPSS Models. Electronic Notes in Theoretical Computer Science,
72(3), 2003.

[29] Reinhard Diestel. Graph Theory (Graduate Texts in Mathematics). Springer,
August 2005.

[30] Frank Drewes, Berthold Hoffmann, and Detlef Plump. Hierarchical graph
transformation. Journal of Computer and System Sciences, 64(2):249 – 283,
2002.

[31] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic
Graph Transformation (Monographs in Theoretical Computer Science. An
EATCS Series). Springer, 1 edition, March 2006.

[32] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Fun-
damental theory for typed attributed graphs and graph transformation based
on adhesive hlr categories. Fundam. Inf., 74(1):31–61, 2006.

[33] Johannes Eriksson. Tool-Supported Invariant-Based Programming. Ph.d.
thesis, Turku Centre for Computer Science, Finland, 2010.

[34] Niklas Fors. Efficient combination of reusable components in embedded
system design. Master’s thesis, Åbo Akademi University, Faculty of Tech-
nology, 2008. http://research.it.abo.fi/research/ese/projects/efco/fors.pdf.

53

[35] Christian Fuss and Verena Tuttlies. Simulating set-valued transformations
with algorithmic graph transformation languages. In Andy Schürr, Manfred
Nagl, and Albert Zündorf, editors, Applications of Graph Transformations
with Industrial Relevance, volume 5088 of Lecture Notes in Computer
Science, pages 442–455. Springer Berlin / Heidelberg, 2008.

[36] Leif Geiger and Albert Zündorf. Statechart modeling with fujaba. Electronic
Notes in Theoretical Computer Science, 127(1):37 – 49, 2005. Proceedings
of the International Workshop on Graph-Based Tools (GraBaTs 2004).

[37] Gentleware. The Poseidon for UML product. http://www.gentleware.
com/, visited May 9, 2011.

[38] Annegret Habel, Reiko Heckel, and Gabriele Taentzer. Graph grammars with
negative application conditions. Fundamenta Informaticae, 26(3-4):287–
313, 1996.

[39] David Harel. Statecharts: A visual formalism for complex systems. Science
of Computer Programming, 8(3):231–274, 1987.

[40] David Harel. On Visual Formalisms. Communications of the ACM,
31(5):514–530, May 1988.

[41] Jan Hendrik Hausmann and Stuart Kent. Visualizing model mappings in
UML. In SoftVis ’03: Proceedings of the 2003 ACM symposium on Software
visualization, pages 169–178, New York, NY, USA, 2003. ACM Press.

[42] Rational IBM. Rational Rose Modeler. http://www.ibm.com/
software/awdtools/developer/rose/modeler/, visited May 9,
2011.

[43] Stephen C. Johnson. Yacc: Yet another compiler-compiler. Computing
Science Technical Report 32, Bell Laboratories, 1975.

[44] Frédéric Jouault and Jean Bézivin. KM3: a DSL for Metamodel Specifi-
cation. In Proceedings of 8th IFIP International Conference on Formal
Methods for Open Object-Based Distributed Systems, Bologna, Italy, 2006.

[45] Audris Kalnins, Janis Barzdins, and Edgars Celms. Basics of Model Trans-
formation Language MOLA. In Workshop on Model Transformation and
Execution in the Context of MDA (ECOOP 2004), June 2004.

[46] Gabor Karsai, Andras Lang, and Sandeep Neema. Design patterns for open
tool integration. Journal of Software and System Modeling, 4(2):157–170,
May 2005.

54

[47] Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling: En-
abling Full Code Generation. Wiley-IEEE Computer Society Pr, March
2008.

[48] Stuart Kent. Model Driven Engineering. In Proc. of IFM International
Formal Methods 2002, volume 2335 of LNCS. Springer-Verlag, 2002.

[49] Heiko Kern. (Meta)Model Interchange between MetaEdit+ and Eclipse
EMF using M3-Level-based Bridges. In The 8th OOPSLA Workshop on
Domain-Specific Modeling, pages 14–19, October 2008.

[50] Donald E. Knuth. The new versions of TEXand MF. TUGboat, 10(3):325–
328, November 1989.

[51] J.E. Kottemann and B.R. Konsynski. Dynamic metasystems for information
systems development. In Proceedings of the 5th International Conference
on Information Systems, pages 187–204. ACM Press, 1984.

[52] Dexter Kozen. A completeness theorem for kleene algebras and the algebra
of regular events. volume 110, pages 366–390, Duluth, MN, USA, May
1994. Academic Press, Inc.

[53] Charles W. Krueger. Software reuse. ACM Comput. Surv., 24(2):131–183,
1992.

[54] Anne-Thérèse Körtgen. Modeling successively connected repetitive sub-
graphs. In Andy Schürr, Manfred Nagl, and Albert Zündorf, editors, Appli-
cations of Graph Transformations with Industrial Relevance, volume 5088
of Lecture Notes in Computer Science, pages 426–441. Springer Berlin /

Heidelberg, 2008.

[55] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason,
G. Nordstrom, J. Sprinkle, and P. Volgyesi. The Generic Modeling Environ-
ment. In Workshop on Intelligent Signal Processing, Budapest, Hungary,
volume 17, May 2001.

[56] Tomas Lillqvist. Subgraph Matching in Model Driven Engineering. Master’s
Thesis in Computer Science, Department of Information Technologies, Åbo
Akademi University, Turku, Finland, March 2006.

[57] Björn Lundell, Brian Lings, Anna Persson, and Anders Mattsson. Uml
model interchange in heterogeneous tool environments: An analysis of
adoptions of xmi 2. In Oscar Nierstrasz, Jon Whittle, David Harel, and
Gianna Reggio, editors, Model Driven Engineering Languages and Sys-
tems, volume 4199 of Lecture Notes in Computer Science, pages 619–630.
Springer Berlin / Heidelberg, 2006.

55

[58] Torbjörn Lundkvist. Diagram Reconciliation and Interchange in a Modeling
Tool. Master’s Thesis in Computer Science, Department of Computer
Science, Åbo Akademi University, Turku, Finland, November 2005.

[59] MagicDraw. MagicDraw UML. http://www.magicdraw.com/, visited
May 9, 2011.

[60] Kim Marriott and Bernd Meyer, editors. Visual language theory. Springer-
Verlag New York, Inc., New York, NY, USA, 1998.

[61] James Martin. Application Development without Programmers. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 1982.

[62] Jacqueline McQuillan and James Power. On the application of software
metrics to uml models. In Thomas Kühne, editor, Models in Software
Engineering, volume 4364 of Lecture Notes in Computer Science, pages
217–226. Springer Berlin / Heidelberg, 2007.

[63] Tom Mens and Pieter Van Gorp. A taxonomy of model transformation.
Electronic Notes in Theoretical Computer Science, 152:125 – 142, 2006.
Proceedings of the International Workshop on Graph and Model Transfor-
mation (GraMoT 2005).

[64] Tom Mens and Michele Lanza. A graph-based metamodel for object-
oriented software metrics. Electronic Notes in Theoretical Computer Sci-
ence, 72(2):69–80, November 2002.

[65] Tom Mens, Ragnhild Van Der Straeten, and Maja D’Hondt. Detecting and
resolving model inconsistencies using transformation dependency analysis.
In Oscar Nierstrasz, Jon Whittle, David Harel, and Gianna Reggio, editors,
Model Driven Engineering Languages and Systems, volume 4199 of Lecture
Notes in Computer Science, pages 200–214. Springer Berlin / Heidelberg,
2006.

[66] Ulrich Nickel, Jörg Niere, and Albert Zündorf. The FUJABA environment.
In ICSE ’00: Proceedings of the 22nd international conference on Software
engineering, pages 742–745, New York, NY, USA, 2000. ACM.

[67] Matias Nyman. A Model-Based Approach to Text Generation from Software
Models. Master’s Thesis in Computer Science, Department of Information
Technologies, Åbo Akademi University, Turku, Finland, May 2006.

[68] Object Management Group website. http://www.omg.org/.

[69] OMG. UML Profile for System-on-Chip (SoC) Specification. Version 1.0.1
formal/06-08-01. Available at www.uml.org, 2006.

56

[70] OMG. OMG Model Driven Architecture, July 2001. Document ormsc/2001-
07-01. Available at http://www.omg.org/.

[71] OMG. OMG Unified Modeling Language Specification, version 1.4,
September 2001. Available at http://www.omg.org/.

[72] OMG. Common Warehouse Metamodel, version 1.1, March 2003. Docu-
ment formal/2003-03-02, available at http://www.omg.org/.

[73] OMG. UML 2.0 Infrastructure Specification, September 2003. Document
ptc/03-09-15, available at http://www.omg.org/.

[74] OMG. UML 2.0 Superstructure Specification, August 2003. Document
ptc/03-08-02, available at http://www.omg.org/.

[75] OMG. MOF 2.0 Query / View / Transformation Final Adopted Specification,
November 2005. OMG Document ptc/05-11-01, available at http://www.
omg.org/.

[76] OMG. XML Metadata Interchange (XMI) Specification, version 2.1,
September 2005. Document formal/05-09-01, available at http://www.
omg.org/.

[77] OMG. Meta Object Facility (MOF) Core Specification, version 2.0, January
2006. Document formal/06-01-01, available at http://www.omg.org/.

[78] OMG. Model View to Diagram Request for Proposal, November 2006.
Document ad/06-11-07, available at http://www.omg.org/.

[79] OMG. Object Constraint Language, version 2.0, May 2006. Document
formal/2006-05-10, available at http://www.omg.org/.

[80] OMG. UML 2.0 Diagram Interchange, version 1.0, April 2006. OMG
document formal/06-04-04. Available at http://www.omg.org.

[81] OMG. MOF 2.0 Query / View / Transformation V1.0 Specification, April
2008. OMG Document formal/08-04-03, available at http://www.omg.
org/.

[82] OMG Architecture Board. Model Driven Architecture—A Technical Per-
spective, 2001. Document ormsc/01-07-01, available at http://www.omg.
org/.

[83] Octavian Patrascoiu. YATL:Yet Another Transformation Language. In
Proceedings of the 1st European MDA Workshop, MDA-IA, pages 83–90.
University of Twente, the Nederlands, January 2004.

57

[84] István Ráth, Gábor Bergmann, András Ökrös, and Dániel Varró. Live model
transformations driven by incremental pattern matching. In ICMT ’08:
Proceedings of the 1st international conference on Theory and Practice of
Model Transformations, pages 107–121, Berlin, Heidelberg, 2008. Springer-
Verlag.

[85] Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing
by Graph Transformations, Volume 1: Foundations. World Scientific, 1997.

[86] Michael Rudolf. Utilizing constraint satisfaction techniques for efficient
graph pattern matching. In TAGT’98: Selected papers from the 6th Inter-
national Workshop on Theory and Application of Graph Transformations,
pages 238–251, London, UK, 2000. Springer-Verlag.

[87] James Rumbaugh. Object-Oriented Modeling and Design. Prentice Hall,
Englewood Cliffs, 1991.

[88] István Ráth, András Ökrös, and Dániel Varró. Synchronization of abstract
and concrete syntax in domain-specific modeling languages. Software and
Systems Modeling, 9:453–471, 2010. 10.1007/s10270-009-0122-7.

[89] Peter H. Salus. Little Languages and Tools. Macmillan Technical Publishing,
1998.

[90] Andy Schürr, Andreas J. Winter, and Albert Zündorf. The PROGRES
Approach: Language and Environment. Handbook of Graph Grammars and
Computing by Graph Transformation: Vol. 2: Applications, Languages, and
Tools, pages 487–550, 1999.

[91] Edward Tsang. Foundations of Constraint Satisfaction. Academic Press,
London and San Diego, 1993.

[92] J. R. Ullmann. An algorithm for subgraph isomorphism. J. ACM, 23(1):31–
42, 1976.

[93] Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific languages:
an annotated bibliography. SIGPLAN Not., 35(6):26–36, 2000.

[94] Dániel Varró. Automatic Program Generation for and by Model Transfor-
mation Systems. In Hans-Jörg Kreowski and Peter Knirsch, editors, Proc.
AGT 2002: Workshop on Applied Graph Transformation, pages 161–173,
Grenoble, France, April 12–13 2002.

[95] Gergely Varró, Ákos Horváth, and Dániel Varró. Recursive graph pattern
matching. In Andy Schürr, Manfred Nagl, and Albert Zündorf, editors,
Applications of Graph Transformations with Industrial Relevance, Third
International Symposium, AGTIVE 2007, Kassel, Germany, October 10-12,

58

2007, Revised Selected and Invited Papers, volume 5088 of Lecture Notes
in Computer Science, pages 456–470. Springer, 2007.

[96] J. Warmer and A. Kleppe. The Object Constraint Language: Precise
Modeling with UML. Addison-Wesley, 1998.

[97] Ingo Weisemöller and Andy Schürr. A comparison of standard compliant
ways to define domain specific languages. In Holger Giese, editor, Models in
Software Engineering, volume 5002 of Lecture Notes in Computer Science,
pages 47–58. Springer Berlin / Heidelberg, 2008.

[98] David M. Weiss and Chi Tau Robert Lai. Software product-line engineering:
a family-based software development process. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1999.

[99] Andreas Winter et al. The Graph Exchange Language website. http:
//www.gupro.de/GXL/, visited May 9, 2011.

[100] Andreas Winter, Bernt Kullbach, and Volker Riediger. An Overview of
the GXL Graph Exchange Language. In Revised Lectures on Software
Visualization, International Seminar, pages 324–336, London, UK, 2002.
Springer-Verlag.

[101] Albert Zündorf. Graph pattern matching in PROGRES. In Selected papers
from the 5th International Workshop on Graph Gramars and Their Appli-
cation to Computer Science, pages 454–468, London, UK, 1996. Springer-
Verlag.

