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Abstract

Preference relations, and their modeling, have played a crucial role in both
social sciences and applied mathematics. A special category of preference
relations is represented by cardinal preference relations, which are nothing
other than relations which can also take into account the degree of relation.
Preference relations play a pivotal role in most of multi criteria decision
making methods and in the operational research.
This thesis aims at showing some recent advances in their methodology.
Actually, there are a number of open issues in this field and the contributions
presented in this thesis can be grouped accordingly.
The first issue regards the estimation of a weight vector given a preference
relation. A new and efficient algorithm for estimating the priority vector
of a reciprocal relation, i.e. a special type of preference relation, is going
to be presented. The same section contains the proof that twenty methods
already proposed in literature lead to unsatisfactory results as they employ
a conflicting constraint in their optimization model.
The second area of interest concerns consistency evaluation and it is possibly
the kernel of the thesis. This thesis contains the proofs that some indices
are equivalent and that therefore, some seemingly different formulae, end up
leading to the very same result. Moreover, some numerical simulations are
presented. The section ends with some consideration of a new method for
fairly evaluating consistency.
The third matter regards incomplete relations and how to estimate missing
comparisons. This section reports a numerical study of the methods already
proposed in literature and analyzes their behavior in different situations.
The fourth, and last, topic, proposes a way to deal with group decision
making by means of connecting preference relations with social network
analysis.
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Chapter 1

Introduction

Decision making is one of the most natural and omnipresent activities that
everybody experiences, and of which nobody can do without. Decisions can
be more or less complex but they generally share some common factors.
There exists a large literature on the architecture of a decision and, as it
usually is the case, a scarce meeting of minds on the main definitions.

In the widest framework for multi-criteria decision making, Zelený [142]
drew elegant distinctions between the concepts of objective, attribute and
criterion. His conceptual framework is particularly appealing and of broad
interests and so it results in being very general. However, as this thesis
deals only with a part of decision theory, some concepts of the most general
framework, albeit very interesting, can be simplified. This thesis is then
going to refer to the simplier scheme proposed by Keeney and Raiffa [63]
and Saaty [98]. That is, a decision involves a set of alternatives and a set
of criteria and attributes, according to which an alternative can be judged
better, worse, indifferent or sometimes also be incomparable to another one.
A number of notions are generally associated with the idea of a decision. In
this thesis

• The decision maker represents the subject in charge of the decision.
A subject does not need to be a person but can be an organization.
Moreover, later on, the case of decisions where a group of decision
makers are present will also be treated.

• A set of alternatives represent the domain of the decision making ac-
tivity and therefore an alternative means a possible course of action
that the decision maker can take

• Criteria are characteristics, objectives, goals and attributes which
have been judged relevant in a given situation by a particular decision
maker. Criteria can then make one alternative preferable to another.
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Finally, a decision making model is an algorithm which leads to a result,
possibly an element from the set of alternatives.

Example 1 (Purchase decision). Whenever we purchase some goods, we
face a decision. Imagine that a decision maker is going to buy a car. Then,
the set of alternatives is represented by the set of cars available on the
market and the set of criteria is represented by the characteristics of a car,
e.g. power, level of safety, maximum speed. A similar problem, which is that
of buying a house, is a classic toy-example [100], used to introduce novices
to decision making with hierarchies. �

In multiobjective optimization theory [36], the presence of criteria is
fundamental to induce a mapping from the set of alternatives to a set of
tuples where each element of the tuple represents the degree to which that
criterion is satisfied. The set of alternatives is generally called decision space
and the set of tuples is called objective space.

It is just the case to recall an activity which often goes arm-in-arm
with the process of selection: the so-called screening. Screening alternatives
means constructing a set of ‘most’ feasible alternatives as a subset of the
initial set of alternatives. This is often considered a fundamental step in
order to reduce the complexity of the problem.

Going back to the discussion, it is even easier to picture the relevance
of decision making activities in our daily life if we reckon the cascade effect
of decisions, as often the decision at stake is the fruit of another process of
decision. For instance, the decision of what car to buy surely follows the
decision on whether of not to buy a car. By the same token, the purchase
of the car induces more decisions. Choosing the insurance company could
be a proper example in this direction.
The importance of making good decisions is crucial in some other ways which
could not be understood at first sight. For instance, given a set of alterna-
tives and a proper set of criteria, we could be able to perform predictions;
thus, mathematical methods for decision making can act as alternative tools
to statistics and artificial intelligence methods for forecasting.

Example 2 (Football world cup). The football world cup is forthcoming
and we want to guess the winner. The set of alternatives is then the set of
competing teams and the set of criteria is the set of characteristics which
could determine if a given team is better than another, e.g. stamina, moral,
experience. At this point, it is clear that if we had a sound mathematical
model and full information about the teams, then we could be able to fore-
cast what team is most likely to win the world cup. A real application was
made to predict the winner of the chess match between Spassky and Fisher
[101]. �
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Hereafter, until the end of this introductory chapter, the general frame-
work for this thesis is going to be presented. Two more sections will intro-
duce decision theory and preference relations.

1.1 Decision theory

The inception of decision theory could be reasonably dated back to the sem-
inal papers of de Condorcet [32] and de Borda [31] on voting theory. Further
development have occurred over time, as, e.g. the mathematical recognition
of the concept of utility by Daniel Bernoulli [11]. Nevertheless, decision
theory emerged as a discipline only later on and its organic systematization
started at the beginning of the twentieth century. Perhaps, the most criti-
cal contribution was the axiomatic work by von Neumann and Morgenstern
[117]. However sometimes criticized, it has remained the basis for most of
the further development in decision theory and the grand merit of their trea-
tise is that, since then, decisions have far and wide been examined from a
rigorous point of view. Although the work achieved so far generally goes
under the name of decision theory, this does not appear as a unified subject
and there exists different research traditions. These different approaches
and schools have often generated dichotomies within the theory.

Examining some of them is not just a pleasant exercise but it can help
in positioning this dissertation. Namely, it would answer the question where
this thesis stands in the framework of decision theory.

One of the most natural dichotomies in decision theory is that between
stated and revealed preferences. The difference between these two theories is
that the first describes preferences which are directly expressed by a decision
maker, whereas the second is interested in preferences as deduced from the
behavior of the decision maker. This thesis deals with stated preferences
because, with very few exceptions, it is assumed that the decision maker is
capable of expressing his/her preferences on pairs of alternatives.

The need of generalization has led several scholars to pursue two very
interesting directions. These directions are those of decisions under uncer-
tainty, also called robust decisions in some specific contexts, and dynamic
decisions, which are intertemporal decisions. Neither of these directions are
explicitly considered in this thesis but it is definitely worth spending some
few more lines on them.

The idea of decisions under uncertainty [63] has been studied by a large
number of scholars, perhaps also in light of the plurality of measures and
techniques which have been employed to capture uncertainty [65]. However,
in this thesis, preference relations are tackled in such a way that, from first
view, there is no uncertainty. Uncertainty will be implicitly disclosed when
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we shall talk about incomplete preference relations and reciprocal relations
as, for instance, some authors [28] have rightly pointed out that uncertainty
can be embedded in a reciprocal relation, i.e a family of preference relations
which can be interpreted as probabilistic relations. Despite this, different
interpretations are not going to invalidate the results exposed in this thesis
and for sake of simplicity we are going to speak of imprecision only.

The concept of intertemporal decisions is a generalization which was
essentially introduced to take into account the fact that a choice made now
can virtually affect, e.g. constrain, any choice which can be made in the
future. Nevertheless, this field of investigation is generally treated within
the framework of microeconomics and it does not interest this dissertation.

The part of decision theory which deals with mathematical methods
for subjective decisions, is commonly called decision analysis. Within this
field of study, it is possible to see that two main schools have emerged, as
highlighted in a recent survey on future directions for multi-criteria decision
making research [118]. The American school is well represented by the AHP
[95] and MAUT [63] whereas the European school, sometimes improperly
called the French school, has in PROMETHEE [13], ELECTRE [92] and
the many outranking methods, its foremost models. Preference relations
tackled in this thesis are particularly useful for the AHP and therefore this
thesis is connected and may be interesting for the American school rather
than for the European.

Another dichotomy in research in decision theory is made between the
normative and the descriptive approach. A normative decision theory is a
theory about how decisions should be made. Conversely, a descriptive theory
is more concerned about how decisions are actually made. The normative
approach tends to be more elegant than the descriptive one, but this greater
elegance is often achieved at the price of the further assumptions which can
make the model quite unsuitable for practical approaches. Hence, there is an
important and fuzzy trade-off between elegance and pragmatism. As it will
be clear at the end of chapter 3, this thesis introduces concepts of normative
decision theory in the sense that it describes how decisions with preference
relations would be made in a world where there is perfect information and
everybody is rational. On the other hand, still in the same chapter, some
relaxations will be applied to the normative framework as the whole thesis
takes into account more realistic cases as, e.g., incomplete preferences and
irrationality.
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1.2 Preference relations

This thesis is going to explore some advances in the methodology of pref-
erence relations. In classic literature on social choice and voting systems,
preference relations are identified as ordering relations on some reference
set [81]. Ordering relations are good at defining a lattice on the set of
alternatives but they do not provide information regarding the degree of
preference. That is, they provide a ranking of alternatives on an ordinal
scale [111]. More sophisticated and information demanding preference rela-
tions have then been introduced to take into account degrees of preference.
Their importance can be explained by means of an example.
Suppose that there are three decision makers and they have to choose one
alternative out of two. Suppose that two out of three decision makers are
almost indifferent between the two alternatives but, at the end of the day,
they slightly prefer the first alternative over the second. Conversely, the
remaining decision maker strongly prefers the second alternative over the
first. Certainly, if it was a matter of votes, the first alternative would be
chosen but, for sake of fairness, the best decision should take into account
how strongly decision makers prefer one alternative over another [30]. As
it will be presented, starting from chapter 3, preference relations expressing
these degrees of preference are usually called cardinal.

Cardinal preference relations are used in several methods for decision
making, as, for instance, the Analytic Hierarchy Process (AHP) [94, 95, 96,
98] and the Measuring Attractiveness by a Categorical Based Evaluation
Technique (MACBETH) [8].

Preference relations are often used to compare intangible alternatives
and criteria. Especially for the criteria, as they are very often intangibles,
one can see that preference relations can be used for a very wide range of
purposes as, for instance, the determination of the weights of criteria in
potentially every multi-criteria optimization model [142].

So, to sum up, among the family of multi criteria decision making models,
those involving preference relations are particularly appealing to be used
when the number of alternatives and criteria is finite and when alternatives
and/or criteria are intangibles.

Preference relations are mathematical objects collecting opinions of an
expert expressed as pairwise comparisons between alternatives [48]. Their
scope is that of representing these pairwise preferences in such a way that
they can be analyzed and a rating of the alternatives can be derived. This
rating of alternatives will, hereafter, be exchangeably called priority vector
or weight vector.
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Example 3 (Näıve example). Imagine that Mr. Smith got three alternative
months, June, July, and August for going on vacation and that he is asked
to select one. For sake or simplicity and coherence with standard notation,
let us assume that the symbol ≻ means ‘is preferred to’. Then, the following
statements

June ≻ July, June ≻ August, August ≻ July (1.1)

can be representative of his preference relation. With some imagination,
we could also guess a way to construct a weight vector, which is nothing
else but a coherent assignment of some values to alternatives. For instance
we can assume that the higher the assigned number, the more preferable
the alternative. Equivalently, each alternative can be associated with the
number of times that it beats the other competing alternatives. This said,
the assignment June = 2, July = 0, August = 1 seems to be coherent with
the preferences of Mr. Smith (1.1). �

In hierarchically structured problems, weight vectors would be then alge-
braically combined in order to scale the hierarchy, but this is another story,
which does not concern this thesis. Instead, it is definitely worth dwelling
on the raison d’être of preference relations and justifying their relevance. In
other words, could not we just make it without preference relations, perhaps
estimating the weight vector directly, by assigning scores to alternatives?
This can clearly be done but it loses significance when the number of al-
ternatives is large enough. This was first conceived by Thurstone [114] in
his pioneering work on pairwise comparisons and then widely recognized by
Miller [77] when claiming that an individual cannot simultaneously compare
more than 7±2 objects without being confused. Comparing alternatives two
at a time, which is what preference relations do, overcomes this limitation
and helps to make better decisions. There would actually be another, and
more hidden, reason for using the methodology of pairwise comparisons and
it is connected with consistency evaluation. Namely, it is impossible to esti-
mate the inconsistency of a decision maker on the basis of the priority vector
that he/she associates to the set of alternatives. Conversely, on the basis
of his/her preference relations, estimating consistency is possible, thanks to
some conditions of transitivity, which are going to be explored and analyzed
later on.

1.3 Research problems

To my eyes, research in the topic of cardinal preference relations has reached
a very high level of sophistication and it is safe to say that many among
the developed mathematical models are too complex to be implemented in
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practice. However, it is also true that a number of problems are still open.
Seemingly, most of the research has been oriented at building new models
tout court, but, in this maze, not enough has been done in order to validate
and compare these very same models and, if possible, build new ones showing
that they outperform their ancestors. This thesis is concerned with three
major points in the theory of preference relations

• How can one derive a priority vector from a preference relation? What
properties shall this vector satisfy?

• How can we verify if the decision maker is not contradictory when he
expresses his opinions? If he is contradictory, how can we measure the
intensity of this phenomena.

• Supposing that the decision maker is not able to state his preferences
over all the pairs of alternatives, how can we deal with this lack of
information?

Research in the computational methodology of preference relations is
foremost and research in the above mentioned research themes is wide. How-
ever, sometimes it can happen that some big pieces of the puzzle were left,
undiscovered, along the road. If this thesis were taken as a contribution in
going back to look to these, hopefully precious, missing pieces, then I would
be flattered and my goal be achieved.

1.4 Structure of this dissertation

This thesis is organized as a structured exposition of some co-authored con-
tributions to the computational methodology of preference relations. As
explained, the research has concerned a number of topics which can be bet-
ter presented disjointly. Consequently, sometimes the understanding of a
given section does not require the understanding of the previous ones. De-
pendencies, in terms of sections, are graphically exposed in figure 1.1, where
chapters are naturally indicated by numbers from one to eight.

This introduction is represented by chapter 1, followed by chapter 2,
devoted to the exposition of the methodology. Chapter 3, which really is the
‘base camp’ of this dissertation, presents some fundamentals on preference
relations, their consistency and priority vectors. Besides its explanatory role,
chapter 3 ends up with a section which outlines this thesis more extensively,
with the aid of more technical notions and referring to some co-authored
papers. Chapter 4 deals with the issues of priority vectors for a special class
of preference relations. Chapter 5, which possibly is the most central and
rich in this thesis, presents some theoretical and numerical advances in the
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Figure 1.1: Structure of the thesis

estimation of inconsistency. Chapter 6 is, instead, comparatively short and
briefly describes and compares some methods to fill incomplete preference
relations. Unlike chapters 3–5, in order to be more accessible, chapter 7 does
not assume any knowledge of preference relations as it treats the natural
connection between social network analysis and group decision making in
an independent framework. Finally, chapter 8 contains some conclusions
and suggestions for future works. Two appendices, which are not part of
the diagram, integrate the thesis by providing some useful material.
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Chapter 2

Methodology

During my research I have always clung to the idea that a mathematical
model is a formal description of a system. Decision making is a system and,
as such, it can be described in mathematical terms. In doing so, not only
we formalize the model but we generalize it, and we also tap the full power
or mathematics.

The principles guiding this thesis, and the related contributions, are
strictly connected by the present needs of the research field which, in this
case, I consider being Operational Research in its broadest sense. The aim
of Operational Research is often that of helping to make the best decision
or take the best course of action. Thus, although based on subjective infor-
mation, the study of preference relations should be driven by the principles
of Operational Research, as much as possible. As Operational Research is
considered a formal science, the methodology of this thesis is inspired by
the research techniques applied for formal sciences.

This thesis deals with the mathematics of a very small part of Oper-
ational Research. Nevertheless, this does not mean that the mathemati-
cal content of this thesis is supposed to be complicated but just that non-
mathematical aspects of the topic will tendentially be ignored. Such a strat-
egy is necessary to keep the thesis focused and not to dissipate energy; how-
ever, there is absolutely no intention to categorize non-mathematical aspects
of Operational Research as secondary, in terms of importance [37].

2.1 Operational Research

Operational Research is an interdisciplinary branch of mathematics, engi-
neering and economics which aims at solving problems by means of analytic
methods, whenever possible. Several definitions of Operational Research has
been given; a very broad one is ‘the science concerned with the improvement
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of systems, organizations and institutions which uses whatever art, science
and humanities are necessary to do so’ [64]. Some other definitions were
collected by Saaty [93] and some curious and thought-provoking ones can
be found: Operational Research was defined as ‘quantitative common sense’
or, perhaps in the intent of underlining its limitations, as ‘the art of giving
bad answers to problems to which otherwise worse answers are given’.

Historically, Operational Research has always privileged the study and
the application of classical methods, leading to the optimal solution with-
out compromises. However, lately, perhaps discouraged by the complexity
of emerging problem, some so-called soft computing methods have gained
wide acceptance. By soft computing methods we mean all the methods,
e.g. heuristics and meta heuristics, which lead to a suboptimal solution
in exchange of a smaller computational effort. Another direction which has
emerged in Operational Research, which should not be confused with the soft
computing methods, is that of ‘soft’ Operational Research which includes
all those techniques which can be used to solve problems which cannot be
structured mathematically [78].

In the most recent years, the range of Operational Research, and the
influence of its methodology has reached and contaminated a number of
other disciplines. The reason for this expansion is probably caused by a
generalized trend of making things scientifically, whenever possible. In fact,
one of the most successful disciplines is probably management science, which
can be roughly defined as the effort of applying scientific reasoning and
mathematical models in the field of management 1.

Clearly, as it often happens in modern sciences, boundaries of the previ-
ously mentioned disciplines are vague and nowadays, it is quite difficult to
state whether a given problem is in the domain of Operational Research. In-
deed, it would be hard to draw a diagram to show relations between subjects
related with Operational Research.

In spite of these difficulties in sharply defining modern Operational Re-
search, its activity is conventionally divided into several phases [60]:

1. Examination of the real world situation and collection of information;

2. Formulation of the problem, choice of the variables and of the function
to be optimized;

3. Construction of the mathematical model, which is a good represen-
tation of the problem; it ought to be easy to be used, representative
of the problem, using, and returning, all the necessary information to
solve the problem;

1For the sake of truth, sometimes, Operational Research and management science are
treated as a unique subject, without distinctions.
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4. Solution of the model keeping in mind that there may be several dif-
ferent ways to obtain it;

5. Analysis and validation of the obtained solutions and of the theoretical
function and representativity of the model;

6. Implementation of the solution.

Within this framework, the research reported in this thesis aims to find
new models and to analyze and possibly enhance some already proposed
ones. This means that the points of the activities of Operational Research
involved in this thesis are 3–5. Moreover, if there is a method which uses
preference relations as they are described in this dissertation more than any
other, then this is surely the AHP. Describing such a method would improve
the understanding of any thesis so closely related with it, but this would be
far beyond the scope of this work. As a compromise, appendix B offers a
very short, yet possibly self-contained, description of the AHP as a method
for hierarchically combining preferences.

2.2 Positivist research

Operational research has been far and wide influenced by the positivist
methodology. Contrary to what I originally and ingenuously believed, the
term positivism does not stem from the word positive but from the Latin
word positum, roughly translatable with the English words posed and placed.
Positivist research tries, as much as possible to distance the research from
the researcher and the values of that particular time, thus creating an ideal
of objectivity and independence around the results. In this sense positivist
research should be based on concrete and unarguable facts only. This goal
can be obtained by attaining a number of prescriptions:

• Scientific research derives knowledge only from the tools of experi-
mental sciences and not from intuition. The implication is that only
scientific statements are valid whereas all other affirmations are simply
legitimate, however not scientific. A statement is scientific if it refuses
all the hypotheses which cannot be verified

• Positivist researchers should trust reason and science

• The positivist approach tends to extend the scientific method to fields
which formerly used to be the exclusive domain of moral and meta-
physics
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• The results of research should be, as far as possible, based on logi-
cal or empirical observations. Therefore, research should be mostly
deductive rather than inductive.

• Progress is supported by the expansion of the scientific knowledge

It follows that positive research is a very robust methodology and results
are seldom contestable. Alas, this desirable feature is obtained at the price
of the assumptions which are made in order to derive the results. Such often
very elegant assumptions are simplifications of the real-world and for this
reason they are not as incontestable as the results built on them.

2.3 Working methodology

The findings of this thesis can very often be classified as based, as much
as possible, on mathematical evidence. Consequently, also the working
methodology behind this thesis has been inspired by positive methodology.
In this direction, chapter 4 and section 5.2 can be taken as a representative
examples, since they contain propositions which are validated by mathemat-
ical proofs. Unfortunately, it is not always the case that everything can be
proved and therefore, whenever this supremely elegant way cannot be taken,
statements can be rooted on observation of very large samples and thus, we
say that they are statistically based. This procedure can be observed in
section 5.3 and the whole of chapter 6.
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Chapter 3

Preference Relations

Beauty started when people
began to choose.

Roberto Benigni

As this thesis deals quite extensively with the concept of preference rela-
tion, this chapter introduces the main definitions for a number of preference
relations and related concepts such as consistency and priority vector. Nev-
ertheless, these latter fundamental concepts are only introduced here, as
their importance is going to be exposed and dwelt on in the next chapters.
At the very end of this chapter, the rest of the thesis will be analytically
summarized and the relevance of the contributions synthesized.

3.1 Preference relations

The kernel of this thesis is the idea of preference relation. Although only
two types of preference relations are going to be examined in the rest of the
thesis, it is always good to have a view on the entire forest in order to better
understand single trees. Here is an operative definition of ‘forest’.

Definition 1 (Preference relation [4]). A preference relation P on the set
X = {x1, . . . , xn} is characterized by a function µP : X×X → S, where S is
the domain of representation of preference degrees provided by the decision
maker for each pair of alternatives.

It is the case to note that, to my best knowledge, in literature it is
generally assumed that S is a lattice.

Apparently this definition is sufficiently ambiguous but, as suggested
before, it comprehends a lot of specific kinds of preference relation.
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It is the case to notice that, equivalently, a preference relation can be
seen as a set of pairs

P = {((xi, xj), µP (xi, xj)) |(xi, xj) ∈ X ×X,µP (xi, xj) ∈ S ∀i, j}

As the cardinality of set X is likely to be a reasonably small natural
number, then a preference relation can conveniently be represented by means
of a matrix 1 whose entry on the i-th row and j-th column is an element
of S which represents the degree of preference of alternative xi over xj ,
i.e.. µP (xi, xj). This representation is especially convenient as it allows an
intuitive and compact representation and ease of algebraic manipulation.
Indeed, once we have a priori defined X and S, then a preference relation
can be univocally associated with its representing matrix. Hence, thanks to
this fact, in the following, no difference will be made between the relational
and the matrix form of a preference relation.

Example 4 (Linguistic preference relation). A linguistic preference relation
L is a relation associated with µL : X×X → S with S being a set of linguis-
tic labels, for instance {far worse, worse, equivalent, better, much better}.
Then, given a set of three alternatives, L can be represented by means of
the following matrix

L =





equivalent better much better
worse equivalent much worse
worse worse equivalent



 . �

Example 5 (Partial order). A partial order (poset) is defined as a reflex-
ive, antisymmetric and transitive relation �, associated with µ� : X ×
X → {0, 1}. A partial order can be represented by means of a matrix
�∈ {0, 1}n×n. An example could be

�=





1 1 0
0 1 0
1 1 1





from which we can easily derive that x3 � x1 � x2. �

Hereafter we are going to focus on two other types of preference relations
called reciprocal relations and pairwise comparison matrices. These two
types of preference relations have proved to be the most popular cardinal
preference relations. By cardinal preference relations we indicate the family
of preference relations where the domain or representation of the preferences,

1At this preliminary stage of the thesis, a matrix is just an array and it does not need
to be defined on a field.
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i.e. set S, allows the decision maker to express the intensity to which he/she
prefers an alternative over another. Taking into account examples 4 and 5
it can be seen that in the first case, linguistic terms represent degrees of
preference, whereas in the second case, the partial order does not allow any
such distinction.

3.2 Reciprocal Relations

One of the most used types of preference relations is based on the idea
of reciprocal relation, often called fuzzy preference relation in literature.
Nevertheless, in order to disambiguate between these two terms we prefer to
adopt the terminology reciprocal relations following the approach proposed
by De Baets et al. [29]. Thus, we consider fuzzy preference relations [49,
83, 141] as a different kind of preference relations whose particularity is
that of using an unipolar scale [34]. Seemingly, and in general, bipolar
representations of preferences have gained wider acceptance than unipolar,
perhaps because preferences, unlike some other relations, e.g. similarity,
seem to be naturally bipolar.

Definition 2 (Reciprocal relation). A reciprocal relation R on the set X
is characterized by a function µR : X ×X → [0, 1], such that µR(xi, xj) =
0.5 ∀i = j and µR(xi, xj) + µR(xj , xi) = 1 ∀i, j.

Furthermore, the unit interval scale has the following associated semantic

µR(xi, xj) =







1, if xi is definitely preferred over xj
α ∈]0.5, 1[, if xi is preferred over xj
0.5, if there is indifference between xi and xj
β ∈]0, 0.5[, if xj is preferred over xi
0, if xj is definitely preferred over xi.

From now on, for sake of convenience, by means of rij := µR(xi, xj), in
the following we will not distinguish between a reciprocal relation R and the
matrix R = (rij) ∈ [0, 1]n×n.
Some consistency conditions are presented in the following, mostly under
the form of transitivity conditions. The importance of consistency, a con-
dition which generally entails the rationality of the decision maker, will be
examined later on and for the moment it is enough to go through the key
concepts.

Definition 3 (Additively consistent reciprocal relations [112]). A reciprocal
relation R = (rij)n×n is additively consistent if the following condition holds

(rik − 0.5) = (rij − 0.5) + (rjk − 0.5) ∀i, j, k (3.1)

We call R+ the set of all the additively consistent reciprocal relations.
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Furthermore, consistency condition (3.1) guarantees the existence of a
priority vector which represents the rating of the alternatives.

Proposition 1 ([112]). If and only if R is additively consistent, i.e. R ∈
R+, then there exists a non-negative vector u = (u1, . . . , un) such that

rij = 0.5 + 0.5(ui − uj) ∀i, j (3.2)

and |ui − uj | ≤ 1 ∀i, j.

Additive consistency is not the only type of consistency which can be
applied to reciprocal relations. Multiplicative consistency is an alternative,
but it can be presented in a similar fashion.

Definition 4 (Multiplicatively consistent reciprocal relations [104]). A re-
ciprocal relation is multiplicatively consistent if the following condition holds

rik
rki

=
rij
rji

rjk
rkj

∀i, j, k. (3.3)

We call R× the set of all the multiplicatively consistent reciprocal relations.

Proposition 2 ([112]). If and only if R is multiplicatively consistent, i.e.
R ∈ R×, then there exists a vector v = (v1, . . . , vn) such that

rij =
vi

vi + vj
∀i, j (3.4)

Once again, an example is proposed in order to clarify what has been
stated so far.

Example 6. Let us consider the following example of reciprocal relation

R =







0.5 0.55 0.65 0.85
0.45 0.5 0.6 0.8
0.35 0.4 0.5 0.7
0.15 0.2 0.3 0.5







. (3.5)

It can be checked that R ∈ R+ because (3.1) holds. Its associated priority
vector is u = (1.275, 1.175, 0.975, 0.575). At the same time one can verify
that R /∈ R× and that consequently a vector v satisfying (3.4) does not
exist. �

3.3 Pairwise comparison matrices

The inception of pairwise comparison matrices, often also called multiplica-
tive preference relations, is often dated back to the pioneering work of Saaty
[95]. Nevertheless, and quite curiously, they had already been employed by
Saaty himself [94] as a tool for estimating the membership function of finite
sets.
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Definition 5 (Pairwise comparison matrix [95]). A pairwise comparison
matrix is a matrix A = (aij)n×n ∈ Rn×n

> such that aij = 1 ∀i = j and
aijaji = 1 ∀i, j.

Using notational conventions as previously done for reciprocal relations,
a pairwise comparison matrix, is then a representation of a preference re-
lation such that µA(xi, xj) ∈ R> ∀i, j. Some consistency condition can be
posed for pairwise comparison matrices too.

Definition 6 (Consistent pairwise comparison matrices [95]). A pairwise
comparison matrix is consistent if the following condition holds

aik = aijajk ∀i, j, k. (3.6)

We call A∗ the class of all the consistent pairwise comparison matrices.

Proposition 3 ([95]). If and only if A is consistent, i.e. A ∈ A∗, then
there exists a vector w = (w1, . . . , wn) such that

aij =
wi

wj
∀i, j. (3.7)

Let’s also incidentally note that, if A ∈ A∗, then the vector w can be
conveniently derived using the geometric mean method

wi =





n∏

j=1

aij





1
n

∀i. (3.8)

It is the case to notice that, originally, Saaty based his studies on the work
of Miller [77] who had stated that the human brain cannot handle more
than 7± 2 alternatives at a time, and therefore he proposed to restrict the
scale of admissible values to the integer numbers between 1 and 9 and their
reciprocals. Besides respecting this approach, Saaty proposed to pairwise
compare alternatives according to the semantic scale reported in table 3.1.

Example 7. Let us consider the following example of pairwise comparison
matrix

A =







1 2 4 1/3
1/2 1 2 1
1/4 1/2 1 1/2
3 1 2 1







. (3.9)

where, if we stick to Saaty’s intepretations, for instance, a41 states that x4
is moderately more important (moderately preferred) than x1. It can be
checked that A /∈ A∗ and that consequently ∄w = (w1, . . . , wn) such that
(3.7) holds. If, instead, aij =

1
aji

= 2, then A ∈ A∗ and w =
(
4
9 ,

2
9 ,

1
9 ,

2
9

)
. �
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Value Degree Description

1 Equal importance Two activities contribute equally to the
objective

3 Moderate impor-
tance

Experience and judgment slightly favor
one activity over another

5 Strong importance Experience and judgment strongly favor
one activity over another

7 Very strong or
demonstrated im-
portance

An activity is strongly favored and its
dominance demonstrated in practice

9 Extreme importance The evidence favoring one activity over
another is of the highest possible order of
affirmation

2,4,6,8 Intermediate values To reflect the compromise between two
adjacent judgments

reciprocals Used to fill the entries and to make the
matrix reciprocal and non–negative

Table 3.1: Saaty’s interpretation of the scale 1–9

3.4 Transformations

Reciprocal relations and pairwise comparison matrices are interchangeable
tools for decision making. This is made evident by the similar structure
based on reciprocity [88] and formalized by means of some consistency pre-
serving functions which allow the switch from a framework to another one.

In this work we will consider two functions, f and g. First we can see the
following transformation between pairwise comparison matrices and additive
consistent reciprocal relations, f :

[
1
9 , 9
]
→ [0, 1].

rij = f(aij) =
1

2
(1 + log9 aij), (3.10)

and its inverse

aij = f−1(rij) = 92rij−1. (3.11)

Function f is consistency preserving in the sense that, if it is applied to all
the entries of a consistent pairwise comparison matrix, then it yields to an
additively consistent reciprocal relation. Its inverse, f−1 is also consistency
preserving, but in the other way round [43]. Both mappings f and f−1 are
depicted in figure 3.1.

Conversely, transformation g : R> →]0, 1[ is consistency preserving if
A ∈ A∗ and we want to pass from the pairwise comparison matrices based
approach to that based on multiplicatively consistent reciprocal relations.
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0.6

0.8
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(a) rij = f(aij) =
1
2
(1 + log9 aij)

0.0 0.2 0.4 0.6 0.8 1.0
rij0
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6

8

aij

(b) aij = f−1(rij) = 92(rij−0.5)

Figure 3.1: Mappings f and f−1

rij = g(aij) =
aij

1 + aij
. (3.12)

Its inverse is
aij = g−1(rij) =

rij
1− rij

(3.13)

and both g and g−1 are represented in figure 3.2

0 2 4 6 8
aij0.0

0.2

0.4

0.6

0.8

1.0
rij

(a) rij = g(aij) =
aij

1+aij

0.0 0.2 0.4 0.6 0.8 1.0
rij0

2

4

6

8

aij

(b) aij = g−1(rij) =
rij

1−rij

Figure 3.2: Mappings g and g−1

Example 8. Consider the following, very easy, pairwise comparison matrix

A =





1 3 9
1/3 1 3
1/9 1/3 1



 ∈ A∗.
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Applying function f results in the following additively consistent reciprocal
relation

R =





0.5 0.75 1
0.25 0.5 0.75
0 0.25 0.5



 ∈ R+.

Similarly, if we used g instead of f , then we would have obtained

R =





0.5 0.75 0.9
0.25 0.5 0.75
0.1 0.25 0.5



 ∈ R×. �

Function composition is an allowed operation and it can be used to pass
from a type of consistency to the other within the framework of reciprocal
relations. For instance, if we have an additively consistent reciprocal relation
and we want to get to its associated multiplicatively consistent reciprocal
relation, then we need to apply the function (f−1 ◦ g)(rij).

Let us point out a fundamental difference between weight vectors u,
v and w, which is going to be so important in the continuation of this
dissertation to deserve a formal remark.

Remark 1. Vector u is unique up to addition of a positive scalar, whereas
vectors v and w are unique up to multiplication of a non-zero scalar.

To clarify what has already been stated in literature, and simply recalled
so far, figure 3.3 may be helpful.

Given an arbitrary consistent pairwise comparison matrix A, the corre-
sponding — through (3.10) — additively consistent reciprocal relation R,
their associated weight vectors, w and u respectively, and the various rela-
tionships are depicted in diagram (3.3a). Conversely, the corresponding —
through (3.12) — multiplicatively consistent reciprocal relation R, with v

that is its associated weight vector and their relationships are illustrated in
diagram (3.3b). In both commutative diagrams, the symbol ∗ indicates that
the relation at issue has not been formalized in literature yet.

3.5 Formalizing some assumptions, or how to out-
line this thesis relaxing them

Preference relations are a convenient tool for representing preferences of a
decision maker over a set of alternatives. As we have seen, the definition of
preference relation is broad and a lot of different types of preference relations
have been proposed to work in practice.
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Figure 3.3: Already known transformations and relationships

Preference Relations

Figure 3.4: Preference relations

Figure 3.4 is nothing but a sketch
which should, nevertheless, be help-
ful. In this maze, the two types of
preference relations which have been
highlighted in this section, as well as
those in examples 5 and 4 are pre-
sented as special types on preference
relations. So far, talking about pair-
wise comparison matrices and recip-
rocal relations, even if tacitly, some
assumptions have been made and
therefore only half of the story has
been told. Actually a greater num-
ber of simplifications has been made, as for instance the fact that no un-
certainty is present. Having said this, it is time to summarize the four
important assumptions which will be the core of the next sections:

1. Uniqueness of the decision maker : There is only one decision maker;

2. Completeness of the preferences : The decision maker is able to
compare all the pairs of alternatives;

3. Consistency : The decision maker is consistent and therefore totally
rational in comparing alternatives;
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4. Priority vector : The priority vector exists if and only if the preference
relation is consistent.

We are going to see that all these four assumptions can be, to some
extent, relaxed, so that we can tap all the potential of preference relations
and make them useful and more real-world oriented. It will be clear that, if
the assumptions hold, then we are facing a special, very rare and also very
lucky case, in a much wider and complex framework. This section will also
offer the opportunity to outline the contents of this thesis.

Group decision making

The case of the single decision maker is the starting point of the analysis
and it is the best one to introduce the main results. However, in many
cases, a group of subjects is supposed to make a decision. For example, an
organization has a number of shareholders, stakeholders and the like, and
each of them represents an individual subject. Examples are indeed very
numerous and can be easily found in everyday life.

Example 9. We have a set of decision makers D = {d1, d2} and a set of
alternativesX = {x1, x2, x3}. In this case, the decision makers d1 and d2 can
express their opinions by means of the following two pairwise comparison
matrices

A1 =





1 2 6
1/2 1 3
1/6 1/3 1



 A2 =





1 1 2
1/1 1 2
1/2 1/2 1



 ,

respectively. �

It should be clear that the case of the single decision maker is equivalent
to the case of group decision making with D being a singleton, and hence it
can be seen as a special case. This thesis does not focus on how to determine
the final outcome of the decision process and how to aggregate different
opinions, but it will show how social network analysis and its tools can be
helpful for group decision analysis. Given a starting model, it is totally
normal to refine it by means of a number of successive improvements, but
I do believe that a lot has already been done in this subfield and there is
not a lot of space left for further, and relevant, improvements of already
existing models. Conversely, the power of social network analysis has not
been exploited for decision making yet. In

• Brunelli M. and Fedrizzi M. (2009): A fuzzy logic approach to social
network analysis. ASONAM 2009, (pp. 225–230), IEEE Computer
Society
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• Brunelli M., Fedrizzi M and Fedrizzi M. (2011): OWA-based fuzzy
m-ary adjacency relations in Social Network Analysis. Yager R.R.,
Kacprzyk J. and Beliakov G. (Eds.): Recent Developments in the Or-
dered Weighted Averaging Operators: Theory and Practice, in: Studies
in Fuzziness and Soft Computing, Vol. 265, (pp. 255–267) Springer-
Verlag, Berlin Heidelberg

the potential of valued adjacency relations in representing compatibility be-
tween decision makers is explored. In doing so, a model for deriving m-ary
fuzzy adjacency relations is proposed. Such model is grounded on the def-
inition of ρ-characterization, which possibly represents the kernel of the
contribution.

Incomplete preference relations

It can happen that a decision maker cannot pairwise compare some of the
alternatives. This may be due to several reasons such as lack of time, re-
sources, or competence. In all these cases, some entries of the preference
relation are missing and the preference relation is then incomplete.

Example 10. Taking into account the following pairwise comparison matrix
where ȧij indicates that the entry is missing

Ȧ =





1 2 ȧ13
1/2 1 2
1/ȧ13 1/2 1



 (3.14)

one can guess that the consistent, and consequently most rational, value for
the missing entry is ȧ13 = a12a23 = 2 · 2 = 4 and that filling the matrix
reduces to a trivial operation. However, looking further than this toy exam-
ple, it is possible to see, as in the following case, that solving this problem
can be extremely cumbersome.

Ȧ =









1 2 ȧ13 1/2 1
1/2 1 8 3 ȧ25
1/ȧ13 1/8 1 2 1/4
2 1/3 1/2 1 3
1 1/ȧ25 4 1/3 1









�

In literature there is a sufficient number of proposals aiming at dealing
with incompleteness in pairwise comparison matrices and reciprocal rela-
tions. The paper

• Brunelli M., Fedrizzi M. and Giove S. (2007). Reconstruction meth-
ods for incomplete fuzzy preference relations: a numerical compari-
son. Masulli F. et al. (Eds.): WILF 2007, LNAI 4578 (pp. 86–93).
Springer-Verlag, Berlin Heidelberg
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presents a comparative study and investigates which method performs better
given a specific situation.

Inconsistency

More or less implicitly we also assumed that preference relations should be
consistent. The truth is that, although the consistent case is the most desir-
able one, it is not always possible to achieve such a goal. This is mainly due
to the fact that human judgments are seldom transitive. Nevertheless, it is
important to know how inconsistent a decision maker has been in expressing
his opinion since it is commonly assumed that a low level of inconsistency is
a signal that the decision maker has a good insight of the problem and put
some effort in the analysis [95, 96]. Consistency estimation then becomes a
crucial point in evaluating decisions.

The chapter devoted to this matter starts recalling some inconsistency
indices already proposed in literature. Briefly recalling the main definitions
is a necessary step because, just after that, an analysis, both theoretical and
numerical, will be offered. From the theoretical point of view, in

• Brunelli M., Critch A. and Fedrizzi M. (2011): A note on the propor-
tionality between some consistency indices in the AHP, submitted to
Applied Mathematics and Computation

there are the proofs of the proportionality between some inconsistency in-
dices. On the other hand, the numerical analysis proposed in

• Brunelli M., Canal L. and Fedrizzi M. (20xx): A comparative study
on inconsistency indices, (working paper)

besides confirming the theoretical results on the proportionality, presents
some statistics on how related different consistency indices are. Together
with a short discussion of the main inconsistency indices, this chapter recalls
the findings of

• Brunelli M. (2011): A note on the article ”Inconsistency of pair-wise
comparison matrix with fuzzy elements based on geometric mean”
[Fuzzy Sets and Systems 161 (2010) 1604–1613], Fuzzy Sets and Sys-
tems, doi:10.1016/j.fss.2011.03.013

to highlight that one of the inconsistency indices at issue may fail to capture
inconsistency. Moreover, the chapter contains a disquisition on what is
called preference strength effect and a proposal to deal with it. Results
draw heavily upon the following paper
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• Brunelli M. and Fedrizzi M (2007). Fair consistency evaluation in
fuzzy preference relations and in AHP. Apolloni B. et al. (Eds.): KES
2007/ WIRN 2007, Part II, LNAI 4693 (pp. 612–618). Springer-
Verlag, Berlin Heidelberg

and its extension

• Fedrizzi M. and Brunelli M. (2009). Fair consistency evaluation for
reciprocal relations and in group decision making, New Mathematics
and Natural Computation, 5(2), 407–420

Priority vector

Reciprocal relations and pairwise comparison matrices have been presented
in such a way that only the consistent preference relations have a well-defined
associated priority vector. In this case, the problem of finding such vector
is trivially solved since it can be verified that, in the consistent case, the
priority vector is represented by any column of the preference relation at
issue. Unfortunately, if the matrix is not consistent identities characterizing
priority vectors do no hold.
In spite of this, it is generally assumed, and in some cases it can be verified,
that small perturbations in the entries of a matrix lead to small variations
of the components of the weight vector. Hence, some methods for deriving
a priority vector from an inconsistent matrix have been proposed, especially
in the framework of pairwise comparison matrices. In contrast, the same
large number of methods cannot be found for reciprocal relations. To solve
this problem

• Fedrizzi M. and Brunelli M. (2010): On the priority vector associated
with a reciprocal relation and with a pairwise comparison matrix, Soft
Computing, 14(6), 639–645

exposes some new characterizations which can be used as straightforward
methods for deriving the priority vector of a reciprocal relation. The very
last paper

• Fedrizzi M. and Brunelli M. (2009). On the normalisation of a priority
vector associated with a reciprocal relation, International Journal of
General Systems, 38(5), 579–586

is a variation on the theme as it presents some arguments against a com-
monly used normalization constraint imposed in some optimization problems
aiming at elicitating the priority vector of a reciprocal relation.
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Chapter 4

Priority vector

In character, in manner, in style,
in all things, the supreme
excellence is simplicity.

Henry Wadsworth Longfellow

The rule of accuracy: When
working toward the solution of a
problem it always helps if you
know the answer

John Peer

The priority vector is the final result which represents the rating of the al-
ternatives obtained from the preference relation. Therefore, it is self-evident
that the way to obtain it is a crucial step in decision making with preference
matrices.

There exist several methods to estimate the priority vector of a pair-
wise comparison matrix and also some comparative studies have already
been proposed in literature [25, 72]. As these studies report, there are at
least eighteen such methods. The most common method is the eigenvec-
tor method, proposed by Saaty. According to the eigenvector method, the
priority vector is the vector associated with the largest eigenvalue of the
pairwise comparison matrix. Thus, the priority vector is obtained as one of
the solutions of the following linear system

Aw = λmaxw (4.1)

with λmax that is the maximum right eigenvalue ofA. Moreover, let us notice
that the fact that λmax ∈ R and w ∈ Rn is guaranteed by the theorem of
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Perron-Frobenius [61]. Another very popular way for obtaining the priorities
is the geometric mean method (3.8).

Certainly, there exist methods for estimating the priority vectors of re-
ciprocal relations but they have not been examined in detail. The scope of
this chapter is that of introducing some new characterizations for the pri-
ority vectors of reciprocal relations and, thanks to them, to propose some
methods for estimating the vector itself. The last part is, instead, devoted
to correct some models which contain an incompatible normalization con-
straint.

4.1 The priority vector of a reciprocal relation

This section starts with a brief presentation of some of the methods that have
been proposed to estimate the weight vector in the framework of reciprocal
relations. Descriptions are kept very short as it would be impossible to show
the proposals of each paper in their entirety. What is important is to get
the flavor of their complexity.

Fan et al. [41] established some quadratic programming problems to
find the priority vector of a reciprocal relation. Fan et al. [39] constructed
a multi-objective problem which they eventually formulate as a goal pro-
gramming problem in n2 variables and n(n− 1)/2 constraints involving the
deviations from the optimal solution. Their work was extended to the case
where a plurality of decision makers are involved and they express their
preferences by means of different preference formats [40]. Lipovetsky and
Conklin [74] proposed an eigenproblem to estimate the weight vector as the
solution of a system of linear equations. Their proposal was extended [124]
to perform with incomplete reciprocal relations. Wang and Parkan [121]
also based their optimization problems on the eigenproblem introduced in
[74]. Xu [123] solved a multi-objective optimization problem using the goal
programming methodology. Such a proposal is coherent with those already
proposed in literature but it is more general as it deals with incomplete re-
ciprocal relations and with multiple decision makers. An improved method
which works under the same conditions, i.e. group decision making with
lack of information, was proposed in [135]. Xu and Da [136] solved an opti-
mization problem by means of a convergent iterative algorithm. Wang and
Fan [119] proposed to solve a logarithmic least squares problem to find the
priority vector. This approach and its objective function are then extended
to the more general framework where some entries of the reciprocal relation
are missing [54]. Wang et al. [120] proposed a rather elaborated chi-square
method. Two other papers [128, 132] suggested to use some very flexible
models for deriving the priority vector in a very general context. However,

30



the validity of both approaches [128, 132] will be questioned in the rest of
this chapter. Chiclana et al. [22] proposed the Quantifier-Guided Domi-
nance Degree (QGDD) method and further analyzed [23] and developed it
such that it can perform in contexts where a number of experts express their
incomplete preferences [57, 58]. Although it does not aim at finding priority
vector u as characterized by (3.2), in the special case where the quantifier
is the identity function, i.e. Q(x) = x, it leads to a vector which is propor-
tional to u. To be more precise, it can be proven, and it will be clear later on
in this section, that they are in the proportion 1:2 [46]. Some of the meth-
ods mentioned above share one of the following two desirable properties:
(i) the weight vector u calculated from an additively consistent R satisfies
(3.2); (ii) the weight vector v calculated from a multiplicatively consistent
R satisfies (3.4). In spite of the large number of proposed methods, they
still remain rather complex to be implemented and there is not a method
which leads to such vectors u and v, respectively, with a simple and easily
interpretable formula. Their complexity is sometimes justified by the fact
that some among these proposals can be applied to special cases, e.g. group
decisions and incomplete reciprocal relations. Nevertheless, when the single
decision maker deals with a complete reciprocal relation, this complexity
does not seem to be justified and this is why, we aim at finding a simpler
approach.

The intuition leading to some new characterizations, and therefore to
some agile formulas to estimate vectors u and v, comes naturally when
looking at figure 3.3. Can we find a characterization that, given a consistent
reciprocal relation, either additively or multiplicatively consistent, leads to
its priority vector? The following propositions prove it positively and provide
the analytic expression of the components of the priority vectors u and v,
respectively.

Proposition 4. Given an additively consistent reciprocal relation, R ∈ R+,
the weight vector u = (u1 . . . , un) defined by

ui =
2

n

n∑

j=1

rij (4.2)

is the unique vector, up to an additive constant, that satisfies characteriza-
tion (3.2).

Proof. By substituting (4.2) in the right hand side of (3.2), it is

0.5 + 0.5

(

2

n

n∑

k=1

rik −
2

n

n∑

k=1

rjk

)

= 0.5 +
1

n

n∑

k=1

(rik − rjk) .
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From additive consistency condition (3.1), it is (rik − rjk) = (rij − 0.5).
Then,

0.5 +
1

n

n∑

k=1

(rij − 0.5) = 0.5 +
1

n
(rij − 0.5)n = rij ,

proving that (4.2) satisfies (3.2).
To prove uniqueness, let us assume (3.2) and rewrite it in the form

2rij − 1 = ui − uj .

Then, by summing with respect to j,

2
n∑

j=1

rij − n = nui −
n∑

j=1

uj

ui =
2

n

n∑

j=1

rij − 1 +
1

n

n∑

j=1

uj .

Since c = −1 + 1
n

∑n
j=1 uj is constant with respect to i, it is

ui =
2

n

n∑

j=1

rij + c .

It may be noted that ui is nothing other than the arithmetic mean of
the entries on the i-th row of R multiplied by 2. Due to the uniqueness of
this characterization, we can state that the simple arithmetic mean does not
satisfy Tanino’s characterization (3.2), as it can also be directly checked.
Ma et al. [76] proposed a consistency improving method which is coherent
with (4.2).
The following proposition is similar to Proposition 4 but it refers to multi-
plicatively consistent reciprocal relations.

Proposition 5. Given a multiplicatively consistent reciprocal relation, R ∈
R×, the weight vector v = (v1 . . . , vn) defined by

vi =

(
n∏

j=1

rij
rji

) 1
n

(4.3)

is the unique vector, up to a multiplicative constant, that satisfies character-
ization (3.4).
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Proof. Analogously to the proof of Proposition 4, we substitute (4.3) into
the right hand side of (3.4)

vi
vi + vj

=
1

1 +
vj
vi

=
1

1 +

(
∏n

k=1

rjk

rkj

) 1
n

(
∏n

k=1
rik
rki

) 1
n

=
1

1 +
(
∏n

k=1
rjkrki
rkjrik

) 1
n

,

then from (3.3)

1

1 +
(
∏n

k=1
rji
rij

) 1
n

=
1

1 +
rji
rij

=
rij

rij + rji
= rij ,

and (3.4) is satisfied.

To prove uniqueness, let us assume (3.4) and rewrite it in the form

vi

(
1− rij
rij

)

= vj .

Then, by multiplying with respect to j and exploiting the additive reci-
procity,

n∏

j=1

(

vi
rji
rij

)

=
n∏

j=1

vj

vi =

(
n∏

j=1

rij
rji

) 1
n

×

(
n∏

j=1

vj

) 1
n

=

(
n∏

j=1

rij
rji

) 1
n

× c

where c =
(
∏n

j=1 vj

) 1
n
is constant with respect to i.

Let us only highlight that we have just derived the explicit forms of the pri-
ority vectors involved in Tanino’s two characterization theorems. While
Tanino’s characterizations (3.2) and (3.4) provide interpretations of the
weights, formulas (4.2) and (4.3) give simple expressions of those weights.
Furthermore, they can clearly be applied in the non-consistent case, as it
is common practice with the geometric mean method for pairwise compar-
ison matrices (3.8). The analogy with (3.8) will be better clarified in the
following.

Let us now investigate the relationships between weight vectors u, v and
w given by (4.2), (4.3) and (3.8), respectively. Bearing in mind that u

is unique up to addition of a constant, while w and v are unique up to
a multiplication by a constant (see remark 1), it possible to explore the
relationships between vectors.
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Proposition 6. Let A ∈ A∗, and R ∈ R+ its corresponding reciprocal
relation obtained by applying (3.10) to A. If u and w are given by (4.2)
and (3.8) respectively, then, up to addition of a constant,

ui = log9wi i = 1, . . . , n . (4.4)

Proof. Let us consider rij given by (3.10) and substitute it in (4.2). We
obtain

ui =
2

n

n∑

j=1

1

2
(1 + log9 aij) = 1 +

1

n
log9

n∏

j=1

aij = 1 + log9

(
n∏

j=1

aij

) 1
n

(4.5)

which, according to (3.8), can be rewritten

ui = 1 + log9wi .

Finally, since u is unique up to addition of a constant, (4.4) holds.

Proposition 7. Let A ∈ A∗, and R ∈ R× its corresponding reciprocal
relation obtained by applying (3.12) to A. If v and w are given by (4.3) and
(3.8) respectively, then they are equal up to a multiplication by a constant,

vi = wi , i = 1, . . . , n . (4.6)

Proof. Thanks to (3.13), let us replace aij with rij/rji in (4.3). We obtain
the right hand side of (3.8), thus proving (4.6).

Corollary 1. According to propositions 6 and 7, one also obtains ui =
log9 vi and ui = 2g(wi).

Example 11. We start by considering the following additively consistent
reciprocal relation

R =







0.5 0.55 0.65 0.85
0.45 0.5 0.6 0.8
0.35 0.4 0.5 0.7
0.15 0.2 0.3 0.5







∈ R+. (4.7)

We can derive the priority vector with the aid of (4.2) and it is easy to verify
that relation (3.2) is satisfied

u =







1.275
1.175
0.975
0.575







. (4.8)
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At this point we proceed using the inverse of (4.4), that is wi = 9ui . After
a multiplication by a proper scalar, and taking into account propositions 6
and 7, we derive the following two normalized vectors

w = v =







0.394505
0.316686
0.204070
0.084739







, (4.9)

which are associated to the following two matrices

A =







1 1.24573 1.93318 4.65554
0.802742 1 1.55185 3.73719
0.517282 0.644394 1 2.40822
0.214798 0.267581 0.415244 1







∈ A∗, (4.10)

R =







0.5 0.554711 0.659073 0.823182
0.445289 0.5 0.608127 0.788905
0.340927 0.391873 0.5 0.706592
0.176818 0.211095 0.293408 0.5







∈ R×, (4.11)

respectively. �

Clearly, (4.10) is a consistent pairwise comparison matrix, as it satisfies
(3.6), while (4.11) is a multiplicatively consistent reciprocal relation, as it
satisfies (3.3). Moreover, it can be verified that v can also be derived directly
from R ∈ R× by using (4.3) and w from A by using (3.8). To summarize,
matrices R and A are equivalent ways to express the consistent preferences
of a decision maker, as well as u, v and w are equivalent priority vectors.

However, although the matter appears trivial, it is crucial to correctly
distinguish between priority vectors, since ratings u and w have different
characterizations and meanings. Namely, u represents priority values on an
interval scale whilew does the same but on a ratio scale. That is, differences
ui − uj between components play a pivotal role in u (see (3.2)) while ratios
wi/wj do the same in w (see (3.7)). Hence, constructing models that do
not consider the different nature of u and w can lead to undesirable results.
As an example, let us consider matrices (4.7) and (4.10) as representing the
preferences of two decision makers in model (M11) in [128], where vectors
u and w are treated without making any distinction (see (30) and (33) in
[128]). Since the objective function J∗

8 of (M11) is a conjoint estimation
of both disagreement between decision makers and inconsistency, in this
case its value should be null. Nevertheless, since vector (4.8), which is
associated with (4.7), is different from vector (4.9), which is associated with
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(3.9), it can be verified that one obtains J∗
8 > 0 [133, 134]. Furthermore, this

conclusion implies that the obtained priority vector cannot be representative
of the preferences expressed by the decision makers as it represent another
preference configuration.

The acknowledgment of this notable difference between priority vectors
is also the fundamental starting point of the next section.

4.2 Normalization of the priority vector

Vector normalization is a widespread technique used in many fields of math-
ematics, physics, economics, etc. in order to obtain uniqueness from an in-
finite set of vectors. A well-known example is given by the eigenvectors of a
square matrix. Usually, normalization is obtained by dividing every compo-
nent wi of a vector w by a suitable value k. Frequently used values of k are
k = ‖w‖, i.e. the norm of w, and k =

∑n
i=1wi. In the first case a unit-norm

vector is obtained, ‖w‖ = 1, while in the second case the components of the
obtained vector sum up to one,

n∑

i=1

wi = 1. (4.12)

Clearly, normalization is meaningful only if all the vectors of the infinite
set we are dealing with are equivalent for our purpose, so that the nor-
malized vector can correctly represent the whole vector set. Eigenvectors
corresponding to a single eigenvalue are again a suitable example. As said
before, in the AHP [95], as well as in other similar methods, the decision
maker’s judgments aij estimate the ratios of priorities wi/wj . Therefore,
priorities (or weights) wi can be multiplied or divided by the same arbi-
trarily chosen positive real number without changing ratios wi/wj . In this
framework, normalization (4.12) is plainly justified and thus usually applied.

Nevertheless, careful attention must be paid in order to avoid misleading
applications of (4.12) in problems where applying this constraint leads to
unsatisfactory results. More precisely, it can be shown [45] that, as long
as reciprocal relations are concerned, constraint (4.12) is incompatible with
additive consistency. Since in many papers on reciprocal relations constraint
(4.12) is imposed, it is important, in our opinion, that researchers are aware
of this incompatibility. Several papers can be cited as examples [7, 68, 69,
70, 71, 87, 86, 123, 128, 129, 125, 127, 126, 130, 131, 132, 133, 134, 135], but
possibly they are not the only ones.

Note 1. Given an additively consistent reciprocal relation R = (rij), a
vector u is called ‘associated’ with R if and only if it satisfies (3.2) as well
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as the assumptions of Proposition 1. Vector u is said to ‘represent’ the
associated reciprocal relation.

Proposition 8. For every positive integer n ≥ 3, there exists at least an ad-
ditively consistent reciprocal relation such that none of its associated weight
vectors satisfies the constraint

n∑

i=1

ui < n− 1. (4.13)

Proof. Let us consider the following additively consistent reciprocal relation

R̂ = (rij)n×n =







0.5 · · · 0.5 1
· · · · · · · · · · · ·
0.5 · · · 0.5 1
0 · · · 0 0.5







(4.14)

We prove that every vector u associated with (4.14) cannot satisfy (4.13).
By substituting rin = 1 in (3.2) for i = 1, ..., n− 1, one obtains

ui = un + 1 i = 1, ..., n− 1,

and therefore

n∑

i=1

ui = (n− 1)(un + 1) + un = nun + n− 1.

Since un ≥ 0, inequality (4.13) is violated and the proposition is proved.

Proposition 8 can clearly be equivalently reformulated in the following way,

Proposition 9. For every positive integer n ≥ 3, condition

n∑

i=1

ui ≥ n− 1. (4.15)

is necessary, in order to represent every additively consistent reciprocal re-
lation by means of a weight vector u = (u1, . . . , un).

The following proposition shows that the bound n− 1 is tight.

Proposition 10. For every positive integer n ≥ 3, every additively con-
sistent reciprocal relation can be represented by means of a weight vector u

satisfying
n∑

i=1

ui ≤ n− 1 . (4.16)
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Proof. Let us consider an arbitrary additively consistent reciprocal relation
R = (rij)n×n. Proposition 1 guarantees the existence of a vector u =
(u1, ..., un) representing R, i.e. satisfying (3.1). Let us assume, without loss
of generality, un ≤ un−1 ≤ · · · ≤ u1. Since components of u are unique up
to addition of a real constant k (Proposition 1), by choosing k = −un, it is
always possible to represent R ∈ R+ by a vector u with un = 0, obtaining
u = (u1, · · · , un−1, 0). From un = 0 and proposition 1, it follows 0 ≤ ui ≤ 1.
Then it is

∑n
i=1 ui ≤ n− 1.

Note that (1, 1, · · · , 1, 0) is the priority vector representing (4.14) with the
minimum value of the sum of its components and it is

∑n
i=1 ui = n− 1.

One might argue that (4.14) is a borderline and implausible example,
as it corresponds to the case where the first n− 1 alternatives are strongly
preferred to the last one. Let us then briefly consider a very common case,
where the preferences on the alternatives are uniformly distributed from the
most preferred alternative x1 to the less preferred xn. This is perhaps the
most simple and frequent reference case and, for n = 4, it is represented by
the additively consistent reciprocal relation

R̄ = (r̄ij)n×n =







3/6 4/6 5/6 6/6
2/6 3/6 4/6 5/6
1/6 2/6 3/6 4/6
0/6 1/6 2/6 3/6







∈ R+. (4.17)

As it can be easily verified by means of (3.2), ū =
(
1, 23 ,

1
3 , 0
)
represents

(4.17) and has the minimum value of the sum of the components, ū1 + ū2 +
ū3+ū4 = 2. Note that the priority vector ū indicates that x1 ≻ x2 ≻ x3 ≻ x4
with uniformly spaced (as the preferences r̄ij are) priority weights.

Example (4.17) can be extended to the general n–dimensional case,

R̄ = (r̄ij)n×n =

(
n− 1 + j − i

2n− 2

)

n×n

(4.18)

where the priority vector satisfying (3.2) and representing (4.18) with the
minimum value of the sum of the components is

ū =

(

1,
n− 2

n− 1
, · · · ,

2

n− 1
,

1

n− 1
, 0

)

,

with
∑n

i=1 ūi =
n
2 . Let us sketch the proof. First, by substituting ūi and

ūj in (3.2) it can be verified that ū represents (4.18). Then, by summing

the components of ū one obtains
∑n

i=1 ūi =
∑n

i=1
n−i
n−1 = 1

n−1

(

2n− n(n+1)
2

)

= n
2 . All other priority vectors associated to (4.18) have component sum

larger than n
2 , since they are obtained by adding a positive constant to
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each component of ū. Therefore, also in this case, condition (4.12) cannot
be satisfied and the larger n, the larger the spread between left and right
hand side of (4.12). A priority vector satisfying (3.4) can be normalized
using (4.12), since the ratio in (3.4) remains unchanged, as it is in wi/wj for
Saaty’s case. To conclude, normalization (4.12) can be properly applied in
the framework of pairwise comparison matrices as well as in the framework
of multiplicatively consistent reciprocal relations. In the following section
we propose a normalization condition compatible with additive consistency
for reciprocal relations.

Uniqueness of priority vector satisfying (3.2) can be achieved simply
by adding the constant k = −min{u1, ..., un} to each component ui, thus
obtaining a vector with the minimum component equal to zero. Assuming
un ≤ un−1 ≤ · · · ≤ u1, it is k = −un and the normalized vector becomes

u = (u1, · · · , un−1, 0). (4.19)

Contrary to (4.12), this alternative normalization procedure is compatible
with proposition 1 and, as proved above, it guarantees that all the priorities
ui are in the interval [0, 1]. This is a good standard result that also allows
an easier and more familiar understanding of the obtained priorities. To
summarize, the normalization constraint we propose is

min{u1, ..., un} = 0
0 ≤ ui ≤ 1 i = 1, ..., n

(4.20)

Up to now, we have considered the case of additively consistent reciprocal
relations. Let us now consider the case in which additive consistency is not a
priori satisfied, but it is the goal of a proposed optimization model. Xu [123],
for instance, considered incomplete reciprocal relations and proposed some
goal programming models to obtain the priority vector. He [123] referred to
proposition 1 to construct the following multi-objective programming model

(MOP1) min εij = δij | rij − 0.5(ui − uj + 1)| i, j = 1, ..., n

s.t. ui ≥ 0, i = 1, .., n,
n∑

i=1

ui = 1.

To solve (MOP1), the author introduced the following (linear) goal pro-
gramming model,
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(LOP2) min J =
n∑

i=1

n∑

j=1,j 6=i

(d+
ij + d−

ij )

s.t. δij [rij − 0.5(ui − uj + 1)]− d+
ij + d−

ij = 0, i, j ∈ N, i 6= j

ui ≥ 0, i ∈ N,
n∑

i=1

ui = 1

d+
ij ≥ 0, d−

ij ≥ 0, i, j ∈ N, i 6= j .

where N = {1, . . . , n}. Optimization models (MOP1) and (LOP2) are
clearly based on the idea of moving as close as possible to satisfying (3.2).
The proposal is appropriate and effective but, as proved in the previous
section, the normalization constraint (4.12) required in both (MOP1) and
(LOP2) conflicts with the goal. This should not happen as the constraint
to add the weights up to one is needed to find uniqueness of solution and it
should not affect the value of the objective function. For obvious reasons,
this kind of constraints have sometimes been called cosmetic constraints.

Example 12. Let us consider the incomplete reciprocal relation obtained
from the reciprocal relation in (4.17) by considering r14 (and therefore also
r41) as missing. Following definition 2.5 of [123], this reciprocal relation
is called an additively consistent incomplete fuzzy preference relation. By
applying (LOP2), vector u∗ =

(
2
3 ,

1
3 , 0, 0

)
is obtained, and its corresponding

value of the objective function is J(u∗) = 2
3 , evidencing that (3.2) has not

been completely fulfilled. Conversely, if the constraint (4.12) was substituted
by (4.20) in (LOP2), one would obtain the vector ū =

(
1, 2

3 ,
1
3 , 0

)
, with

J(ū) = 0, so that (3.2) is completely fulfilled. Note that u∗ does not even
respect preference ordering, as it is u∗3 = u∗4 with r34 > 0.5. Moreover, while
ū is associated to (4.17), vector u∗ is associated to a different consistent
reciprocal relation, more precisely to

R∗ =







3/6 4/6 5/6 5/6
2/6 3/6 4/6 4/6
1/6 2/6 3/6 3/6
1/6 2/6 3/6 3/6







∈ R+. (4.21)

Analogous results are obtained if the goal of the optimization models is
still additive consistency for a reciprocal relation, but this goal is not fully
achievable. �

Xu and Chen [133] also considered interval reciprocal relations, repre-
sented by square matrices whose entries are real intervals. This approach
generalizes the former [123], as each preference is quantified by using an in-
terval [r−ij , r

+
ij ], instead of a single value rij . Their optimization models [133]
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denoted by (M–1), (M–2), (M–3), (M–4) and (M–5) are still based on the
objective of best fulfillment of Tanino’s condition (3.2), but they contain
constraint (4.12). Therefore, all the arguments exposed above can be re-
peated also in this case and therefore is not not the case to report a detailed
discussion with examples.

Nevertheless, it is necessary to draw the attention on the consequences
of imposing (4.12) in definitions 3 and 4 given by [133] for an ‘additive
consistent interval fuzzy preference relation’ (or ‘additive consistent interval
reciprocal relation’, following our terminology). These definitions extend the
well-known case of additively consistent reciprocal relation by requiring that
in each entry of the interval matrix a single value rij ∈ [r−ij , r

+
ij ] can be chosen

to form an additively consistent reciprocal relation, i.e. satisfying (3.2). In
other words, an interval reciprocal relation is called additively consistent if it
‘contains’ an additively consistent reciprocal relation. By including (4.12) in
definitions 3 and 4, it is implicitly required that Tanino condition (3.2) must
be associated to (4.12) in order to obtain additive consistency. As we stated
above with proposition 9, the two of them are incompatible. Coherence with
the definition of additively consistent reciprocal relation can be achieved only
by removing (4.12) or by substituting it with a suitable normalization, e.g.
(4.20). Otherwise, it is easy to check that an interval reciprocal relation
obtained simply by adding a small spread to the entries of an additively
consistent reciprocal relation could not satisfy the previous definitions and
should be classified as inconsistent. This is clearly unacceptable and an
example can be constructed by means of (4.17). It can be verified that the
interval reciprocal relation whose entries, for i 6= j, are intervals centered
in r̄ij , i.e. [r−ij , r

+
ij ] = [r̄ij − ε, r̄ij + ε], does not satisfy the definitions 3 and

4 if ε < 0.166. To be more precise, since all the considered values must
remain in the interval [0, 1], we should better define r−ij = max(0, r̄ij − ε)

and r+ij = min(1, r̄ij+ε), but this does not change our conclusion. Definition
3 of [133] is also reported in another work on the same issue [134] and in a
survey of preference relations [128], where it is referred to as definition 10.

4.3 Discussion

This chapter has shown some results regarding the priority vector of a re-
ciprocal relation and served to shed more light on the relation between a
reciprocal relation and its priority vector in both consistent and inconsistent
cases (see section 3.5). In summary, the scope of this section was at least
fourfold.

First, propositions 4, 5, 6 and 7 completed the set of transformations
and relationships between consistent pairwise comparison matrices, the two
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types of corresponding consistent reciprocal relations and their associated
weight vectors. Figure 4.1 shows the same diagrams presented in Figure 3.3
but completed with the relationships that we have introduced in this chapter.
While Tanino [112] proved the existence of vectors u and v satisfying (3.2)
and (3.4) respectively, characterizations (4.2) and (4.3) provide the simplest
representations of such vectors.
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(a) Matrices A ∈ A∗, R ∈ R+ and
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(b) Matrices A ∈ A∗, R ∈ R× and
corresponding vectors w and v

Figure 4.1: Complete diagrams of transformations and relationships

Thanks to formulas (4.2) and (4.3), which can be considered to be the
counterparts of (3.8) for reciprocal relations satisfying (3.1) and (3.3) respec-
tively, we propose two methods to derive vectors u and v from inconsistent
reciprocal relations too. A natural consequence of this analogy is that for-
mulas (4.2) and (4.3) share, and introduce in the framework of reciprocal
relations, the same good properties that make the geometric mean method
one of the best estimation methods for the weight vector of an inconsistent
pairwise comparison matrix [72].

The third scope of this chapter has been that of remarking the difference
of characterization and interpretation between ratio cardinal rankings v and
w and interval cardinal rankings u in order to avoid misunderstandings.

Fourth, and last, given the very frequent use of vector normalization,
it is important that researchers are warned not to consider it as a risk-
free routine when dealing with reciprocal relation. It was shown how some
interesting proposals can become useless, due to an inadequate choice of the
normalization constraint.
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Chapter 5

Consistency

Many complain of their memory,
few of their judgment.

Benjamin Franklin

Although some studies claimed the contrary [73, 113], it is generally as-
sumed that the reliability of the weight vector goes arm-in-arm with the
consistency of the judgments expressed by the decision maker 1. In fact,
the more consistent the judgments are, the more likely it is that the deci-
sion maker is a good expert with a deep insight into the problem and paid
the due attention in eliciting his/her preferences. Conversely, if judgments
are far from consistency, it is likely that the he/she gave them with scarce
competence and care. In fact, everyone would be able to provide a strongly
inconsistent preference relation, perhaps by randomly generate it, but, in
practice, only a sufficiently well-informed decision maker is likely to provide
a consistent one.

Therefore, in several applications it is crucial that the consistency eval-
uation process is carried out in a fair way. In group decision making, for
instance, the aggregation of the individual preferences can be performed tak-
ing into account the consistency of the judgments [24, 44]. The importance
of consistency evaluation, as well as the reason behind the previous claims,
is easily deduced if we reckon that the property of consistency is the exten-
sion to the cardinal framework of the property of transitivity of relations. It
is just the case to remember that transitivity is one of the axioms proposed
by von Neumann and Morgenstern [117] and it is fundamental for the whole
microeconomics theory [62].

1Or, at least, it is the best proxy measure find so far to estimate the reliability of an
expert.
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As aforementioned, consistent preferences denote coherence and absence
of contradiction in the decision maker’s judgments. Although the consistent
case is certainly the most desirable one, it is hardly ever possible for a
decision maker to be fully consistent, especially if the number of alternatives
is large enough. Hence, a certain degree of inconsistency should be tolerated.
Nevertheless, as the inconsistency increase, judgments become less and less
reliable. These aspects contribute to make the consistency evaluation a
crucial matter in the decision making process. In this context, hereafter,
the word inconsistency means an evaluation of the degree of incoherence of
the expressed preferences of a given decision maker.

In the next section the best known consistency indices are briefly recalled
by means of some self-contained descriptions. After having done this, some
theoretical advances are presented. Such advances are two propositions stat-
ing the proportionality, and therefore the equivalence, between some indices.
This will greatly simplify the numerical analysis of the indices. The analysis
comprehends a section based on [14] which highlights a shortcoming of one
of the inconsistency indices. The last part of this chapter, prior to some
final remarks, will be an analysis of the preference strength effect and will
contain a proposal to neutralize it.

5.1 (In)consistency Indices

Eleven indices for estimating (in)consistency have been chosen to be pre-
sented in this section and analyzed in the following ones. The description
of the indices will be kept brief and unnecessary details be skipped, as their
full illustration would go beyond the scope of this dissertation.

Relative Error

The relative error index [9] requires the construction of an auxiliary matrix
A+ = (a+ij)n×n = (log2 aij)n×n ∈ Rn×n which is skew symmetric and often
called ‘additive’ pairwise comparison matrix [9]. The second step consists
in deriving a weight vector w+ = (w+

1 , . . . , w
+
n ) with w+

i = 1
n

∑n
j=1 a

+
ij .

Having done this, the consistent part of A+ is obtained as C = (cij)n×n =
(w+

i − w+
j )n×n. Another matrix, E = (eij)n×n = (aij − cij)n×n, is also

obtained to represent the error part of A, such that C + E = A. At this
point the relative error index is derived as

RE =

∑n
i=1

∑n
j=1 e

2
ij

∑n
i=1

∑n
j=1 a

2
ij

.
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CI and CR

Following the result that the maximum eigenvalue, λmax, of a pairwise com-
parison matrix A, equals n if and only if the matrix is consistent (and is
greater then n otherwise), Saaty [95] proposed a consistency index

CI =
λmax − n

n− 1
. (5.1)

However, empirical tests showed that the expected value of CI of a random
matrix of size n+ 1 is, on average, higher than the expected value of CI of
a random matrix of order n. Consequently, CI is not reliable in comparing
matrices of different size and it needs to be normalized.
CR, which stands for Consistency Ratio, is the normalized version of CI.
Given a matrix of order n, CR can be obtained by dividing CI by a real
number RI (Random Index ) which is the average CI obtained from a large
enough set of randomly generated matrices of size n. Hence,

CR =
CI

RI
(5.2)

This normalization process should have been implemented for the other
indices too, but, often, this step was not considered in the original papers.

Squared differences index

The definition of this index [26] is based on (3.7) and it assumes that each
deviation from the situation of perfect consistency should be considered a
symptom of inconsistency. Thus, the sum of the squares of the deviations
(aij−

wi

wj
) ∀i 6= j is considered a fair and global quantification of inconsistency

LS = min
w1,...,wn

n∑

i=1

n∑

j=1
j 6=i

(

aij −
wi

wj

)2

s.t.
n∑

i=1

wi = 1, wi > 0. (5.3)

Index LS, which stands for least squares, is also easy to be standardized
since the number of (non-diagonal) terms of the sum, as noted above, is
n(n − 1). Let us note that the argument minimizing (5.3) is the priority
vector w∗ = (w∗

1, . . . , w
∗
n) associated to the pairwise comparison matrix

W∗ = (w∗
i /w

∗
j )n×n which minimizes the Frobenius norm ||A − W||2 with

W = (wi/wj)n×n
. Despite the elegant formulation, optimization problem

(5.3) is difficult to solve numerically, multiple solutions can exist and at least
so far, no analytic solution has been found. Bozoki [12] built an equation
system whose roots yield to the optimal components of w. However, this
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method suffers of a huge computational complexity. In order to overcome
this problem, other authors [5] proposed some simplifications which are —
though — based on some uncertain assumptions.

Cavallo - D’Apuzzo

In their papers [19, 20], Cavallo and D’Apuzzo, besides proposing a general
framework based on Abelian linearly ordered groups for some representa-
tions of cardinal preferences, introduced an approach based on some new
metrics and a normalized index. Given a pairwise comparison matrix A,
their index is

I =
n∏

i=1

n∏

j>i

n∏

k>j

(
aik

aijajk
∨
aijajk
aik

) 1

(n3) ∈ [1,+∞[. (5.4)

Index of determinants

This index [85] is based on the following property of pairwise comparison
matrices of order three. Expanding the determinant of a real matrix of order
3 one obtains

det(A) =
aik

aijajk
+

aijajk
aik

− 2.

If the matrix is not consistent, then det(A) > 0, because a
b
+ b

a
−2 > 0 ∀ a 6=

b, a, b > 0.
It is possible to generalize the approach for matrices of order greater than
three and define such inconsistency index as the arithmetic mean of the
determinants of all the possible submatrices Tijk of a given pairwise com-
parison matrix, constructed in a way so that they respect the following
formulation

Tijk =





1 aij aik
aji 1 ajk
aki akj 1



 , ∀i < j < k.

The number of so constructed submatrices is
(
n
3

)
= n!

3!(n−3)! . The result is
a normalized index and its value is the average inconsistency computed for
all the submatrices Tijk (i < j < k)

CI∗ =
n∑

i=1

n∑

j>i

n∑

k>j

(
aik

aijajk
+

aijajk
aik

− 2

)/(
n

3

)

. (5.5)
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Golden-Wang index

The Golden-Wang index [53] assumes that the priority vector is normal-
ized such that its components sum up to one. They call the so obtained
vector w∗ = (w∗

1, . . . , w
∗
n) The same operation is similarly repeated on the

columns of A. Namely, entries on the j-th column are divided by a constant
kj =

∑n
i=1 aij and the new matrix can then be called A∗ = (a∗ij). The

standardized index proposed in [53] is

GW =
1

n

n∑

i=1

n∑

j=1

| a∗ij − w∗
i |.

Geometric consistency index

This method was first implicitly introduced by Crawford and Williams [27],
then it was reexamined by other authors in [3]. It considers the priority vec-
tor to be estimated by means of the geometric mean method (3.8). With the
so estimated weights it is possible to build a local estimator of inconsistency,

eij = aij
wj

wi
, i, j = 1, . . . , n. (5.6)

For consistent matrices the value of eij is equal to 1 because it is the result
of a multiplication of an entry times its reciprocal. Therefore, since aij =
wi

wj
⇒ ln eij = 0, it is then possible to define a global inconsistency index,

i.e. the Geometric Consistency Index (GCI), that is

GCI =
2

(n− 1)(n− 2)

n∑

i=1

n∑

j>i

ln2 eij . (5.7)

Harmonic consistency index

If and only if A is a consistent pairwise comparison matrix, then its columns
are proportional and rank(A) = 1. Therefore, it is fair to suppose that
the less proportional are the columns, the less consistent is the matrix.
A new consistency index, loosely based on the proportionality between
columns, was then proposed by Stein and Mizzi [110]. Given a matrix
A, they proposed to construct an auxiliary vector s = (s1, . . . , sn) with
sj =

∑n
i=1 aij ∀j. It was proven that

∑n
j=1 s

−1
j = n if and only if A is

consistent and smaller than n, otherwise. The harmonic mean of the com-
ponents of vector s is then the result of the following

HM =
n

∑n
j=1

1
sj

. (5.8)
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HM itself is an index of inconsistency, but Stein and Mizzi [110], according
to computational experiments, proposed a normalization in order to align
the behavior of their index with that of CI. The Harmonic Consistency
Index is then

HCI =
(HM− n)(n+ 1)

n(n− 1)
. (5.9)

The index c3

The index c3 of the characteristic polynomial of a pairwise comparison ma-
trix was also suggested as an inconsistency index [105, 106, 107]. In fact, by
definition, the characteristic polynomial of a real valued matrix has always
the following form

PA(λ) = λn + c1λ
n−1 + · · ·+ cn−1λ+ cn,

with c1, . . . , cn that are real numbers and λ the unknown. Shiraishi et al.
prove that, if and only if c3 < 0 the matrix at issue is not consistent. In
fact, this is evident if we consider that the only possible formulation of the
characteristic polynomial that returns λmax = n, is

PA(λ) = λn−1(λ− n). (5.10)

Thus, the presence of c3 is certainly a symptom of inconsistency. Moreover,
Shiraishi et al. also proved that c3 has the following analytic expression

c3 =
n∑

i=1

n∑

j>i

n∑

k>j

(

2−
aik

aijajk
−

aijajk
aik

)

. (5.11)

Ramı́k-Korviny Index

Ramı́k and Korviny [90] and Ramı́k and Perzina [91] presented a consistency
index for pairwise comparison matrices whose entries are triangular fuzzy
numbers. However, as they treat it as a more general case, their index can
be adapted to work with pairwise comparison matrices with crisp entries in
the interval [1/σ, σ]. They formulate the inconsistency index as follows:

NIσn = γσn max
i,j

{∣
∣
∣
∣
aij −

wi

wj

∣
∣
∣
∣

}

, (5.12)

where the weights should be obtained by means of the geometric mean
method and

γσn =







1

max

{

σ−σ
2−2n

n ,σ2

(

( 2
n)

2
n−2−( 2

n)
n

n−2

)} , if σ <
(
n
2

) n
n−2

1

max

{

σ−σ
2−2n

n ,σ
2n−2

n −σ

} , if σ ≥ n
2

n
n−2
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is a positive normalization factor.

The index ρ

The index ρ, originally introduced by Fedrizzi et al. [42] and then studied by
Fedrizzi and Giove [47], is based on the definition of consistency of a single
triple of pairwise comparisons of a reciprocal relation. The papers at issue,
recalled the condition of additive consistency for reciprocal relations (3.1)
and defined the local inconsistency associated with the three alternatives
xi, xj , xk as

(rik + 0.5− rkj − rij)
2 . (5.13)

Fedrizzi and Giove [47] gave the definition of an index of global inconsistency,

ρ =
n∑

i<j<k

(rik + 0.5− rkj − rij)
2

/(
n

3

)

. (5.14)

It is interesting to see that ρ can be reformulated, and equivalently intro-
duced, in the framework of pairwise comparison matrices. We can do it
thanks to the following proposition.

Proposition 11. The index

ρA :=
1

4

n∑

i<j<k

(log9 aikajiakj)
2

/(
n

3

)

(5.15)

computed on a pairwise comparison matrix A is equal to ρ computed on its
associated reciprocal relation R by means of the function (3.10).

Proof. First, let us note that, thanks to reciprocity rij + rji = 1, (5.13) can

be rewritten as
(
rik + rjk + rji −

3
2

)2
. Substituting this expression in (5.14)

and then applying the consistency preserving mapping rij =
1
2(1+ log9 aij),

we obtain

n∑

i<j<k

(
1

2
log9 aik +

1

2
log9 aij +

1

2
log9 ajk

)2/(n

3

)

then, with a succession of elementary steps we get to

1

4

n∑

i<j<k

(log9 aikajiakj)
2

/(
n

3

)

which completes the proof.
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Koczkodaj

Koczkodaj [67] proposed to estimate the inconsistency of a pairwise com-
parison matrix of order three as

K(xi, xj , xk) = min

{
1

aij

∣
∣
∣
∣
aij −

aik
ajk

∣
∣
∣
∣
,

1

aik

∣
∣
∣
∣
aik − aijajk

∣
∣
∣
∣
,

1

ajk

∣
∣
∣
∣
ajk −

aik
aij

∣
∣
∣
∣

}

(5.16)
where xi, xj , xk are the only alternatives for such a preference relation. This
method was then generalized [35] for n ≥ 3

K = max{K(xi, xj , xk)|1 ≤ i < j < k ≤ n} (5.17)

so that inconsistencies of several transitivities are aggregated by means of
the max function. Note that, for sake of simplicity, it was proven [35] that
(5.16) collapses into the following

K(xi, xj , xk) = min

{∣
∣
∣
∣
1−

aik
aijajk

∣
∣
∣
∣
,

∣
∣
∣
∣
1−

aijajk
aik

∣
∣
∣
∣

}

(5.18)

5.2 Theoretical results

It is interesting to note that some seemingly different indices, are instead
proportional. Moreover, it is important to be aware of their proportion-
ality for two reasons. From an empirical point of view, they should not
be considered as contributing independent evidence for the consistency of a
subject’s preferences. Besides, from a pure mathematical perspective, their
equivalence may be taken to suggest that they represent an important quan-
tity. Hereafter, with two propositions we will justify our claims that c3 is
proportional to CI∗, and ρ is proportional to GCI.

Proposition 12. Given a pairwise comparison matrix A = (aij)n×n with
n ≥ 3, the consistency indices c3 and CI∗ satisfy the equality

c3 = −

(
n

3

)

CI∗. (5.19)

Proof. Consistency index CI∗ was defined as

CI∗ =

n∑

i=1

n∑

j>i

n∑

k>j

(
aik

aijajk
+

aijajk
aik

− 2

)/(
n

3

)

. (5.20)

Furthermore, since A is positive and reciprocal, Shiraishi et al. [106] proved
that

c3 =
n∑

i=1

n∑

j>i

n∑

k>j

(

2−
aik

aijajk
−

aijajk
aik

)

. (5.21)
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Said this, equality (5.19) follows from (5.20) and (5.21).

If in this case the similarity between the two indices was quite clear, then
the same cannot be said about the next two. For this reason, if the previous
proof was rather straightforward, the next involves more computations.

Proposition 13. Given a reciprocal relation R = (rij)n×n and its associated
— by means of (3.11) — pairwise comparision matrix A = (aij)n×n, the
consistency indices ρ and GCI satisfy the equality

ρ =
3

4 ln2(9)
GCI (5.22)

for every n ≥ 3.

Proof. For later convenience, letting qij = rij − 0.5 allows us to write rij +
rji = 1 property as qij = −qji. Then, (3.11) becomes aij = 92qij . Now, write
tijk = rij − rik − rkj + 0.5 = qij + qjk + qki so that, from (5.14), the index ρ
can be reformulated as (see [47])

ρ =
n∑

ijk

(rij − rik − rkj + 0.5)2
/

6

(
n

3

)

=
∑

ijk

t2ijk

/

6

(
n

3

)

.

Let us rewrite the Geometric Consistency Index (5.7) for reciprocal relations
by applying (3.10). From (3.8),

log9wi =
2

n

∑

k

qik

and thus, from the definition of local inconsistency eij := aij
wj

wi
in (5.7),

n log9(eij) = 2nqij + 2
∑

k

(qjk − qik)

= 2
∑

k

(qij + qjk + qki)

= 2
∑

k

tijk

so the Geometric Consistency Index equals
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GCI =
2

(n− 1)(n− 2)

∑

i

∑

j>i

ln2 eij

=
1

(n− 1)(n− 2)

∑

ij

ln2 eij

=
ln2(9)

(n− 1)(n− 2)

∑

ij

(

2

n

∑

k

tijk

)2

=
4 ln2(9)

n2(n− 1)(n− 2)

∑

ij

(
∑

k

tijk

)2

At this point, the proportionality claim ρ ∝ GCI is equivalent to

∑

ijk

t2ijk ∝
∑

ij

(
∑

k

tijk

)2

(where the constant of proportionality could depend on n). First, let us
compute the LHS:

t2ijk = q2ij + q2jk + q2ki + 2(qijqjk + qjkqki + qkiqij)

Let S =
∑

ij

q2ij and C =
∑

ijk

qijqjk. Summing the expansion of t2ijk one term

at a time,
∑

ijk

q2ij =
∑

k

∑

ij

q2ij = nS

and by symmetry,
∑

ijk

q2jk =
∑

ijk

q2ki = nS.

Similarly,
∑

ijk

qijqjk =
∑

ijk

qjkqki =
∑

ijk

qkiqij = C.

Hence,

LHS =
∑

ijk

t2ijk = nS + nS + nS + 2(C + C + C) = 3(nS + 2C).

Next let us compute the RHS, first by rewriting:

RHS =
∑

ij

(
∑

k

tijk

)2

=
∑

ij

(
∑

kl

tijktijl

)

=
∑

ijkl

tijktijl
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tijktijl = (qij + qjk + qki)(qij + qjl + qli)

= q2ij + qijqjl + qijqli + qjkqij + qjkqjl + qjkqli + qkiqij + qkiqjl + qkiqli

The 1st term sums to
∑

ijkl

q2ij =
∑

kl

∑

ij

q2ij = n2S.

The 2nd term sums to
∑

ijkl

qijqjl =
∑

k

∑

ijl

qijqjl = nC.

Similarly, the 3rd, 4th, and 7th terms respectively sum to
∑

ijkl

qliqij =
∑

ijkl

qijqjk =
∑

ijkl

qkiqij = nC,

whereas the 5th and 9th terms each sum to
∑

ijkl

−qkjqjl =
∑

ijkl

−qkiqil = −nC.

The 6th term sums to

∑

ijkl

qjkqli =




∑

jk

qjk





(
∑

li

qli

)

= (0)(0) = 0,

and similarly the 8th term sums to 0. Hence, the total sum is

RHS = n2S + nC + nC + nC − nC + 0 + nC + 0− nC

= n2S + 2nC

= n(nS + 2C)

so we obtain the proportionality

LHS

RHS
=

3(nS + 2C)

n(nS + 2C)
=

3

n
,

and also recover the proportionality factor

ρ

GCI
=

LHS

RHS
·
n2(n− 1)(n− 2)

4 ln2(9)
·

1

6
(
n
3

)

=
3n(n− 1)(n− 2)

4 ln2(9)
·

1

n(n− 1)(n− 2)

=
3

4 ln2(9)
.
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In order to stress that the quantity expressed by these two seemingly
different indices may be interpreted as an important one, let us formulate
the following corollary to show how it comes from two seemingly different
formulas.

Corollary 2. As a natural consequence of propositions 11 and 13, given
a pairwise comparison matrix A = (aij)n×n and given a priority vector w

estimated by means of the geometric mean method, then

n∑

i=1

n∑

j>i

ln2 aij
wj

wi
∝

n∑

i<j<k

(log9 aikajiakj)
2 .

Consequently, GCI can be formulated as an index of deviation from both
consistency conditions (3.6) and (3.7). The same applies to index ρ too.

To conclude the section, let us note that the constant of proportionality
between c3 and CI∗ depends on the number n of alternatives, whereas the
one between ρ and GCI does not. Propositions 12 and 13 can also be
represented graphically. A large number of randomly generated pairwise
comparison matrices (or, equivalently, reciprocal relations) was created, and
to each of them was associated a point on the Cartesian plane having as
coordinates the corresponding values of the two consistency indices involved
in proposition 12. As expected, all the points lie on a straight line. The
same holds for proposition 13.

5.3 Numerical results

Despite the large number of consistency indices, there is not any compara-
tive study in literature. The main question that such a study should answer
is how different they are. The theoretical results derived in the previous
section proved that some indices are proportional but we still know nothing
about the others. Therefore, in this section, we are going to investigate
the degree of agreement between consistency indices by means of numeri-
cal simulations. In doing so, we created a large sample of 10,000 randomly
generated pairwise comparison matrices and, for each, we estimated the in-
consistency by means different consistency indices. Graphical results, which
are more than a simple curiosity (Anscombe’s quartet docet [6]), on a smaller
sample of 500 pairwise comparison matrices, are collected in figure 5.1. An
expanded representation of the same scatter plots is reported in appendix
A.

The numerical analysis was based on the Spearman index [108]. There-
fore, it is a good idea to shortly recall its formulation and its importance.
Imagine that the scores of two consistency indices are collected into two
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Figure 5.1: Pairwise scatterplots of consistency indices
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Index CI CI∗, −c3 LS GCI, ρ HCI I RE K GW NIσ
n

CI 1. 0.975 0.872 0.973 0.826 0.918 0.765 0.802 0.845 0.437
CI∗, −c3 - 1. 0.854 0.935 0.789 0.848 0.724 0.874 0.803 0.440
LS - - 1. 0.853 0.690 0.828 0.566 0.734 0.735 0.563
GCI, ρ - - - 1. 0.837 0.967 0.841 0.708 0.906 0.377
HCI - - - - 1. 0.805 0.707 0.598 0.893 0.290
I - - - - - 1. 0.811 0.618 0.884 0.346
RE - - - - - - 1. 0.501 0.886 0.228
K - - - - - - - 1. 0.585 0.462
GW - - - - - - - - 1. 0.303
NIσ

n
- - - - - - - - - 1

Table 5.1: Spearman index computed on 10,000 randomly generated pairwise
comparison matrices of order 6

sequences y = (y1, . . . , yq) and z = (z1, . . . , zq) where q is the number of
preference relations that we are considering. Furthermore, given that each
sequence can be associated to a vector of ranks, then we represent these
latter vectors as ȳ = (ȳ1, . . . , ȳq) and z̄ = (z̄1, . . . , z̄q). At this point, the
Spearman index is calculated as

s(y, z) = 1−
6
∑q

i=1 d
2
i

n(n2 − 1)
∈ [−1, 1]

where di = x̄i − ȳi. However, as in the case of teaching a kid how to tie the
shoestrings, perhaps it is more efficient to illustrate the Spearman index by
means of an example than with words.

Example 13. Given two sequences of observations

y = (1.2, 1.1, 1.9, 0.7, 1.3)

z = (243, 451, 459, 12, 250)

we obtain the following two auxiliary vectors, containing the ranks

ȳ = (3, 2, 5, 1, 4), z̄ = (2, 4, 5, 1, 3),

One can see that the highest rank, q, is given to the position associated with
the maximum element of the original sequence. Analogously, the second
highest rank, q − 1, is given to the component of the auxiliary associated
vector with the second largest component of the sequence, and so forth.
Having done this, one obtains s(y, z) = 7/10. �

The main advantage of the Spearman index over the common correla-
tion coefficient is that it estimates the co-monotonicity between variables
regardless the nature of the correlation itself. The results are reported in
Table 5.1.
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Index CI CI∗, −c3 LS GCI, ρ HCI I RE K GW NIσ
n

CI 1. 0.950 0.875 0.976 0.823 0.900 0.795 0.604 0.848 0.266
CI∗, −c3 - 1. 0.864 0.917 0.779 0.832 0.695 0.504 0.754 0.287
LS - - 1. 0.861 0.693 0.835 0.577 0.463 0.717 0.448
GCI, ρ - - - 1. 0.841 0.949 0.855 0.572 0.894 0.227
HCI - - - - 1. 0.798 0.724 0.464 0.889 0.143
I - - - - - 1. 0.777 0.440 0.827 0.224
RE - - - - - - 1. 0.551 0.892 0.062
K - - - - - - - 1. 0.573 0.026
GW - - - - - - - - 1. 0.133
NIσ

n
- - - - - - - - - 1

Table 5.2: Linear correlation computed on 10,000 randomly generated pair-
wise comparison matrices of order 6

Nevertheless, for comparison, results obtained with the linear correlation
are reported as well, in table 5.2.

Although the numerical results are easily interpretable, some remarks
are indeed necessary. The first case regards the index of least squares LS,
whose value achieved with both the Spearman index and the linear correla-
tion could be interpreted as a lower bound of the true value. As said before,
seemingly all the feasible optimization algorithms can fail to find an optimal
solution in reasonable time and in the simulations, due to the number of ma-
trices taken into account, a metaheuristic was used. Hence, it is reasonable
to assume that its degree of agreement with the other indices, as computed
here with the Spearman index, but also with the linear correlation, should
be taken as a lower bound for the real agreement level, as, in some cases,
the value of the index could not be the optimal one.

Another remark is about indicesK andNIσn which scored ‘poorly’. First,
the fact that they scored ‘poorly’ does not mean that they are bad indices,
but just that they are likely to be very different from the others. The main
difference is that they focus on the maximal local inconsistency and therefore
they result to be invariant with respect to the variations of some elements
of the pairwise comparison matrix. Particularly in the case of NIσn , it has
been shown [14] that this index can lead to undesired results 2.

5.4 Shortcoming

Seen from another perspective, some of the already cited indices [3, 27, 47,
53, 35, 85, 95, 106, 110] do not fairly estimate inconsistency. In fact, as
already suggested in [17], it can be noted that, the further the judgments
are from the indifference, the more difficult it is for the decision maker

2Such results were published in [14] after this dissertation had been submitted for
pre-evaluation, and thus they cannot be included in this manuscript.
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to reach a good consistency level. All along this paper, we will call this
phenomenon preference strength effect. To go straight to the point, let us
now consider table 5.3 where the results obtained from a sample of 10,000
randomly generated reciprocal relations of order 6

R̄ = (r̄ij)6×6 s.t. r̄ij ∈ [r−ij , r
+
ij ] (5.23)

are summarized. The second column of the table indicates the interval of the
real numbers in which the entries are randomly generated. The last column
reports the percentage of matrices which would be considered inconsistent
if Saaty’s threshold CR < 0.10 [95] was applied (transformation (3.11) was
employed to pass from reciprocal relations to pairwise comparison matrices).

# r−ij r+ij %

1 0.4 0.6 0
2 0.3 0.7 14.82
3 0.2 0.8 87.69
4 0.1 0.9 98.44
5 0 1 99.75

Table 5.3: Percentage of inconsistent matrices

Therefore, if we take case number 1, the decision maker is always considered
as acceptably consistent. Consequently, in a competitive framework he/she
has no incentives to be rational.

To summarize, the closer the judgments are to the indifference (rij ≈
0.5, aij ≈ 1), the less demanding it is to achieve a good level of consistency.
Conversely, a decision maker with strong preferences is unfairly penalized.
Although we use the CR to estimate inconsistency, such drawback is shared
by most of the indices mentioned above. If these remarks were accepted, a
direct consequence would be that inconsistency indices which do not take
into account the preference strength effect are unable to fairly estimate the
real reliability of a decision maker. If we want to overcome this shortcoming,
we need a different approach to inconsistency evaluation. To this aim, in the
next section we propose to partition the set of pairwise comparison matrices
into equivalence classes taking into account the preference strength effect.
The same operation will then be naturally extended to the case of reciprocal
relations too.
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5.5 Consistency equivalence classes

For notational convenience, let us denote by An the set of n × n pair-
wise comparison matrices. First of all, let us find a consistency preserving
transformation f to be applied to the entries of a pairwise comparison ma-
trix. More precisely, if A = (aij) is consistent, we want to find a function
f : [1/9, 9] → R such that f(A) := (f(aij)) is still a consistent pairwise com-
parison matrix. The consistency condition (3.6) for the pairwise comparison
matrix (f(aij)) is

f(aij) = f(aik)f(akj). (5.24)

Since A = (aij) is consistent, it is aij = aikakj and from (5.24) the following
Cauchy’s functional equation is obtained [1]

f(aikakj) = f(aik)f(akj) (5.25)

Excluding the trivial solution and assuming continuity, since aij > 0, the
general solution of (5.25) is

f(aij) = (aij)
ξ ξ ∈ R>. (5.26)

As a consequence, if A = (aij) is a consistent pairwise comparison matrix,

then every Â = (âij) obtained from A by means of (5.26), âij = f(aij) =
(aij)

ξ, is also consistent for every real value of ξ.

The general result stated above clearly requires that the scale 1
9 , . . . , 9

originally proposed by Saaty is extended to the set of positive real numbers.
If it is required that the entries of the pairwise comparison matrix remain
in the interval [19 , 9], it is sufficient to conveniently bound the value of ξ in
(5.26).

So far, the argumentation has been that an unbiased method for con-
sistency evaluation should take into account only the mutual coherence of
the judgments and thus should be, in a suitable way, independent from the
preference strength effect. Starting from the consistency preserving trans-
formation (5.26), let us define an equivalence relation on An.

Definition 7 (Consistency–Equivalence for pairwise comparison matrix).
Let A,B ∈ An, A = (aij) , B = (bij). A is said to be consistency-equivalent

to B, A ∼ B, if and only if ∃ξ > 0 3 s.t. aij = bξij ∀i, j .

Proposition 14. Consistency–Equivalence ∼ is an equivalence relation.

3Positivity of ξ is required only to avoid preference reversal
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Proof.

1. Reflexivity. Clearly, with ξ = 1, it is A ∼ A .

2. Symmetry. From aij = bξij , it is bij = a
1
ξ

ij ; then A ∼ B ⇒ B ∼ A.

3. Transitivity. Let C ∈ An, C = (cij). If aij = bξij and bij = cτij , then

aij = cξτij . Therefore (A ∼ B and B ∼ C) ⇒ A ∼ C.

As a consequence of Proposition 14, set An is partitioned by ∼ into equiv-
alence classes. Let An/ ∼ be the quotient set. To overcome the above
mentioned drawback, we propose to consider equivalent, from the point of
view of consistency, all the pairwise comparison matrices in the same equiv-
alence class Θ ∈ An/ ∼. Therefore, we assign to all the pairwise comparison
matrices A ∈ Θ the same numerical value to quantify their consistency. We
denote this value by C(A) and we will call it inconsistency level of A. Since
all the pairwise comparison matrices in Θ share the same inconsistency level,
we can denote it by CΘ. Using this notation, it is A ∈ Θ ⇒ C(A) = CΘ.

We propose to define CΘ in the following way. We choose a particular pair-
wise comparison matrix Â ∈ Θ as representative for the entire equivalence
class, we compute its consistency ratio CR(Â) and we then assign to all the
matrices in Θ the inconsistency level

CΘ = CR(Â) . (5.27)

We also want to propose a natural method to find the matrix Â representing
its whole class. We start defining an index for the preference strength

PSA =

∑∗ aij
n(n−1)

2

∈ [0, 1] , (5.28)

where the sum
∑∗ is extended to the n(n−1)/2 values aij ≥ 1 corresponding

to all the pairwise comparisons with i 6= j and where the possible value
aij = aji = 1 is taken only once.

Example 14. Let us consider the following pairwise comparison matrix
with the entries taken into account in

∑∗ that are circled

A =








1 3 1 1/2

1/3 1 4 5

1 1/4 1 1/3
2 1/5 3 1








.

We can therefore obtain PSA = (3 + 1 + 4 + 5 + 2 + 3)/6 = 3. �
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We propose to choose Â with average preference strength (5.28) as the
matrix representing its equivalence class Θ. In Saaty’s approach, the average
value of PSA is the average value of the interval [1, 9]. Thus,

(PSA) = 5. (5.29)

The fact that the matrix representative of each class was chosen in this
particular way has a justification. Often, to discriminate between matrices
of sufficient consistency and matrices which are not consistent enough, a
threshold is imposed. For instance, according to Saaty’s approach, the value
of CR must be smaller than 0.10 to allow a matrix to pass the consistency
test. The value of RI in the formula of CR is usually computed on a very
large set of random matrices whose average preference strength tends to 5,
as the sample size grows. Therefore, it seems fair that the representative
matrix share the same preference strength with the matrices to which it is
compared. The preference strength effect is so neutralized and preferences
expressed in a pairwise comparison matrices can be fairly compared to some
randomly generated ones in order to test their consistency. Throughout
this section, we shall consider the value PSA ∈ [1, 9] as an estimator of
the preference strength of a decision maker on the set of alternatives X.
Obviously, if PSA = 1 the decision maker expresses full indifference while, if
PSA = 9, he/she has the strongest possible degree of preference between the
alternatives. Furthermore, in light of what we have shown up to this point,
we suggest that the matrix Â with PS

Â
= 5 represents the equivalence class

to which it belongs.

The same findings exposed above can be extended to the case of re-
ciprocal relations. Let R be an additively consistent reciprocal relation,
i.e. satisfying (3.1). The simplest way to obtain the consistency preserv-
ing transformation f : [0, 1] → R suitable for reciprocal relations is to apply
(3.10) to the consistency preserving transformation (5.26) previously derived
for pairwise comparison matrices. It results

f(rij) = 0.5 + ξ(rij − 0.5). (5.30)

If R = (rij) is an additively consistent reciprocal relation, then every R̂ =
(r̂ij) obtained from R by means of (5.30), r̂ij = f(rij) = 0.5 + ξ(rij − 0.5),
is also an additively consistent reciprocal relation for every real value of ξ.

Clearly, function (5.30) could also be derived analogously to (5.26), i.e. by
solving Cauchy’s functional equation corresponding to additive consistency
(3.1),

f ((rik − 0.5) + (rkj − 0.5)) = f(rik − 0.5) + f(rkj − 0.5) . (5.31)
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The extension to additively consistent reciprocal relations of the results ex-
posed above for pairwise comparison matrices is presented very briefly in
the following, as they correspond to the already described ones.

Definition 8 (Consistency-Equivalence for reciprocal relations). Let Rn

denote the set of the n-dimensional reciprocal relations. Let R,S ∈ Rn,
R = (rij) , S = (sij). R is said consistency-equivalent to S, R ∼ S, if and
only if ∃ξ > 0 s.t. rij = 0.5 + ξ(sij − 0.5) ∀i, j .

Proposition 15. Consistency-Equivalence for reciprocal relations ∼ is an
equivalence relation.

Proof. Similar to proof of Proposition 14.

The set or reciprocal relations or order n, Rn, is partitioned by ∼ in equiv-
alence classes, and Rn/ ∼ is the quotient set. All the reciprocal relations in
the same equivalence class Φ share the same inconsistency level CΦ.

Instead, if we consider a multiplicatively consistent reciprocal relation,
the consistency preserving transformation is the following,

r̂ij =

(
rij

1−rij

)ξ

1 +
(

rij
1−rij

)ξ
i, j = 1, . . . , n, ξ ∈ R>. (5.32)

As observed for (5.26), the general validity of the results presented above
requires the use of an open scale, as it was assumed in [9]. Nevertheless, if it
is required that the entries of R̂ remain in the interval [0, 1], it is sufficient
to conveniently bound the value of ξ in (5.30).

In [59] a related problem is addressed: the function

ϕ(x) =
1

1 + 2a
· x+

a

1 + 2a
(5.33)

was used to rescale into the interval [0, 1] an additively consistent reciprocal
relation with entries in the interval [−a, 1 + a]. Note that function (5.33) is
a special case of (5.30), obtained for ξ = 1

2a+1 .

Let us end the section noting that, analogously to what proposed for
pairwise comparison matrices, it is possible to define the preference strength
of a reciprocal relation,

PSR =

∑∗ rij
n(n−1)

2

∈ [0.5, 1] , (5.34)

where the sum
∑∗ is extended to the n(n − 1)/2 values rij ≥ 0.5 corre-

sponding to all the pairwise comparisons with i 6= j and where the possible
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value rij = rji = 0.5 is taken only once. Consequently, the average value,
analogous to (5.29), is PSR = 0.75.

Example 15. Let us consider a simple and merely illustrative example in
which two decision makers are involved and express their preferences by
means of the following reciprocal relations

R1 =







0.5 0.8 1 1
0.2 0.5 0.9 0.9
0 0.1 0.5 0.8
0 0.1 0.2 0.5







R2 =







0.5 0.6 0.4 0.6
0.4 0.5 0.6 0.4
0.6 0.4 0.5 0.5
0.4 0.6 0.5 0.5







.

Applying (3.11) to R1 and R2 we obtain the corresponding pairwise com-
parison matrices A1 and A2, respectively. At this point, using the tra-
ditional approach suggested by Saaty, we calculate the consistency ratios
CR(A1) ≈ 0.119665 and CR(A2) ≈ 0.0824676, which entail that the sec-
ond decision maker has been sufficiently consistent while the first one has
been not. Using our approach these results are inverted because, using
(5.27), we obtain C(A1) ≈ 0.0936079 and C(A2) ≈ 1.75276. Let us con-
clude the example saying that there is no wonder to see that, according to
the consistency levels, A2 has such very high inconsistency level, because
the preferences, as expressed by the second decision maker, contain two cy-
cles, i.e. x1 ≻ x2 ≻ x3 ≻ x1 and x2 ≻ x3 ∼ x4 ≻ x2 (thus revealing
intransitivity), while those provided by the first decision maker are strictly
acyclical. �

5.6 An excursus on preference aggregation

Pairwise comparison matrices and reciprocal relations are appealing tools
for group decision making too. Let us consider a group decision problem
with the usual set of n alternatives X = {x1, . . . , xn} (n ≥ 2) and a set
of m decision makers D = {d1, . . . , dm} (m ≥ 2). If each decision maker
expresses his/her preferences by means of pairwise comparisons on the al-
ternatives, then the preferences of the m decision makers must be taken
into account in order to obtain an outcome that can be either a collective
matrix or a collective weight vector. The process yielding to a collective
matrix/vector and having as input m individual matrices/vectors is called
preference aggregation.

A large number of methods have been proposed for aggregating prefer-
ences, e.g. [2, 50, 89, 116], but few take into account the reliability/consistency
of the decision maker’s preferences [24, 42]. This section introduces a method
which weighs the importance of decision makers according to their inconsis-
tency levels as defined in the previous section. It is assumed that the more

63



inconsistent his/her judgments are, the more irrational the decision maker
is. Therefore, reliability of expressed preferences is strictly related with
their consistency. According to this assumption, we are going to aggregate
preferences using the information provided by the inconsistency estimations.
Namely, if the estimations of the reliability (then the consistency) of the de-
cision makers is partially affected by the strength of their preferences, then
every aggregation process based on them yields to a solution which is closer
to the indifference than it should reasonably be. In fact, decision makers
providing matrices with entries close to the indifference would be consid-
ered more rational than they really are. This is why inconsistency levels
(5.27), instead of inconsistency indices, should be taken into account in the
aggregation process.

First of all, it must be said that it is possible to aggregate preferences
either by aggregating matrices or priority vectors. A work on this issue is
that by Forman and Peniwati [50] in which they distinguish between (i)
aggregation of matrices, which is considered as an aggregation of individual
judgments (AIJ), and (ii) aggregation of vectors which, in contrast, is seen as
an aggregation of individual priorities (AIP). Our idea applies to preferences
expressed as preference relations or priority vectors.

Given m pairwise comparison matrices A1, . . . ,Am, each associated to
a decision maker, we derive their inconsistency levels C(A1), . . . , C(Am)
referring to (5.27). Then we define the weight pk to be assigned to the k-th
decision maker as a function of his/her inconsistency level C(Ak),

pk =
1

(φ · C(Ak)) + 1
, (5.35)

where φ ∈ [0,+∞[ is a parameter which stress the role of the inconsistency
level. Weights can finally be normalized,

m∑

k=1

pk = 1. (5.36)

Matrix aggregation

As already mentioned, preferences can be aggregated alternatively at two
stages. Here we propose to aggregate the m pairwise comparison matrices
A1, . . . ,Am by means of a weighted geometric mean,

a⋆ij =
m∏

k=1

apkij i, j = 1, . . . , n, (5.37)

where A⋆ = (a⋆ij) is the collective pairwise comparison matrix resulting after
the aggregation.
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Vector aggregation

It is also possible to elicitate m priority vectors thanks to one of the several
methods proposed in literature and then aggregate them. In this second
case, we define w⋆ = (w⋆

1, . . . , w
⋆
n) to be the priority vector which synthesize

all them priority vectors of them decision makers. According to [50], we can
proceed in two different ways. The first method is the weighted geometrical
mean

w⋆
i =

m∏

k=1

wpk
i i = 1, . . . , n, (5.38)

and the second is the weighted arithmetical mean

w⋆
i =

m∑

k=1

pkwi i = 1, . . . , n. (5.39)

Although (5.38) and (5.39) lead to different results, in [50] they are both
considered reasonable and reliable. However, it does not seem that the
aggregation of preferences under the form of priority vector should be re-
stricted to these two methods. Namely, arithmetic and geometric means are
the most popular aggregation methodologies but several others can indeed
be employed.

Example 16. Let us assume that four decision makers provide the following
pairwise comparison matrices

A1 =







1 3 6 9
1/3 1 5 8
1/6 1/5 1 3
1/9 1/8 1/3 1







A2 =







1 3 2 2
1/3 1 1/4 1
1/2 4 1 2
1/2 1 1/2 1







A3 =







1 1/2 3 4
2 1 4 3
1/3 1/4 1 2
1/4 1/3 1/2 1







A4 =







1 1/2 3 6
2 1 2 1/2
1/3 1/2 1 2
1/6 2 1/2 1







According to the method exposed above, the algorithm leading to a collective
pairwise comparison matrix is the following,

step 1 To each pairwise comparison matrix Ak we associate, by means of
(5.26), the pairwise comparison matrix Âk representative of its equiv-
alence class.

step 2 For k = 1, 2, 3, 4, we compute the CR of Âk, thus obtaining the
inconsistency levels C(Ak) for Ak,

C(A1) = 0.0544351, C(A2) = 0.158733, C(A3) = 0.112451, C(A4) =
1.0876.
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step 3 By means of (5.35) and (5.36), we map inconsistency levels into
normalized weights pk. In this example, we assume φ = 1 and we
obtain p1 = 0.297359, p2 = 0.270594, p3 = 0.281852, p4 = 0.150195.

step 4 We aggregateA1,A2,A3,A4 with the aid of (5.37). The so obtained
collective pairwise comparison matrix is

A⋆ ≈







1 1.38332 3.30359 4.48514
0.722897 1 1.63917 2.27933
0.302701 0.610066 1 2.25628
0.222959 0.438726 0.443208 1







. �

5.7 Discussion

When making use of the various indices observed and proven proportional
in this chapter, it is important that the applied mathematician be aware of
their equivalence. This avoids redundancy in the consideration of evidence
for consistent preferences, and allows any existing results proven for one
index to apply directly to other indices which are proportional to it.

Furthermore, if two indices are, instead, not proportional it is still rel-
evant to approximately know how much co-monotone they are. It is very
difficult to state if, in general, an index is better than another; more likely
some instances can be brought up in order to show that, in some very special
cases one index is more reasonable than another. All in all, it cannot be
hidden that the choice of an inconsistency index is a ‘religious-like’ decision,
i.e. everyone chooses the index in which he/she believes the most. Nev-
ertheless, having a good insight to the inconsistency indices may help the
decision maker to figure out how far different ‘religions’ are.

Finally, the method proposed in the last part of this chapter for evalu-
ating the consistency/reliability of a decision maker aims to overcome what
could be consider a commonly shared shortcoming of most of the known con-
sistency indices, i.e. they do not take into account the preference strength
effect. It is interesting to observe that, seemingly, the elegant index pro-
posed by Barzilai in [9] is the only one which is invariant with respect to
(5.26), thus avoiding the above mentioned shortcoming.

All in all, this chapter has possibly cleared some of the fog in the maze of
consistency indices and the relevance of its results can naturally be related
to what originally stated in section 3.5, especially to the part in which the
assumption that the decision maker is fully rational is dropped.
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Chapter 6

Incomplete preference
relations

We can try to avoid making
choices by doing nothing, but
even that is a decision.

Gary Collins

Having, and manipulating, a complete and consistent preference relation
means dealing with rich and reliable information and therefore, it represents
the most desirable situation in a decision making problem with preference
relations. However, sometimes, it is not possible for the decision maker to
elicitate all his/her pairwise preferences under the form of pairwise compar-
isons and therefore, it is nowadays common practice to accept that some
entries of a pairwise comparison matrix be missing [18].

As a matter of fact, in complex problems, it may happen that the de-
cision maker cannot complete a preference relation due to the nature of
the problem, his/her incapacity in comparing two alternatives of different
nature, and so forth [16].

All in all, the range of reasons is wide and the main problem is how
to derive a reliable priority vector when there is not full information about
the preferences on alternatives. Several methods have been implemented to
face this problem and, despite their diversities, and bearing in mind the fact
that the final scope of preference relations is that of allowing an estimating
a priority vector, they can be classified into two main families, according
to the following diagram, where, for sake of simplicity, only the case of
pairwise comparison matrices is taken into account, and where A and Ȧ

are a complete and an incomplete pairwise comparison matrix respectively.
In words, given an incomplete pairwise comparison matrix Ȧ, the decision
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maker can proceed in one of the two following alternative ways (see diagram
in figure 6.1):

• Complete the matrix by means of the information provided by the ex-

isting comparisons, 1 . This operation is usually carried out following
some principles of consistence, in the sense that the missing compar-
isons should be as coherent as possible with the existing ones. Having
done this, it is possible to estimate the priority vector by means of one

of the methods proposed in literature [72], 2

• Estimate directly the priority vector by means of some especially mod-
ified algorithms which work even is some comparisons are missing, i.e.
3 .

Ȧ
1

//

3   A
AA

AA
AA

A A

2
��
w

Figure 6.1: Obtaining w from Ȧ

Given an incomplete preference relation, it is possible to compute the
corresponding priority vector for the alternatives in two ways. The first
one is to directly use one of the few methods proposed in the literature for
incomplete reciprocal relation [47, 59, 123, 124]. The second one is to use, as
explained in section 3, one of the methods proposed for the same problem
in the framework of pairwise comparison matrices [55, 56, 106, 115]. For
the numerical simulations presented in this section we have chosen three
methods of the first kind and four of the second one. The scope of the
simulations is that of estimating how good different methods are.

6.1 Reconstruction of incomplete preference rela-
tions

The simulations presented in section 6.2 considered three methods, denoted
in the following by M5–M7, proposed in the literature to compute the miss-
ing entries ṙij of an incomplete reciprocal relation, as well as four methods,
M1–M4, proposed to compute the missing entries ȧij of an incomplete pair-
wise comparison matrix. The methods considered for the analysis are listed
below. For easy reference, a tag and a name are assigned to each method,
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M1 Least Squares method 1

M2 Least Squares method 2

M3 Harker

M4 Shiraishi et al. c3

M5 Xu goal programming

M6 Xu eigenproblem

M7 Fedrizzi-Giove ρ

In the following, methods M1–M7 are briefly described, each time referring
to the original papers.

Method M1 – Least squares 1

The priorities wi of a complete pairwise comparison matrix A can be com-
puted by solving, with respect to w1, ..., wn, the problem (see [26])

argmin
w1,...,wn

n∑

i=1

n∑

j=1
j 6=i

(

aij −
wi

wj

)2

s.t.
n∑

i=1

wi = 1, wi > 0. (6.1)

If Ȧ is incomplete, the only change needed in (6.1) is to skip, in the objective
function, the terms ȧij corresponding to the missing comparisons [115].

Method M2 – Least squares 2

In some cases, method M1 can have serious problems in numerical compu-
tation, due to the presence of the variable wj in the denominator. Therefore
it was modified, obtaining

argmin
w1,...,wn

n∑

i=1

n∑

j=1
j 6=i

(aijwj − wi)
2 s.t.

n∑

i=1

wi = 1, wi > 0. (6.2)

Details can be found in [26, 115].

Method M3 – Harker

This method, proposed by Harker [56], is not based on the optimization of an
objective function, but refers to the eigenvector approach of Saaty. Practi-
cally, it extends Saaty’s approach to non-negative quasi-reciprocal matrices,
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in order to apply it to the case of incomplete preferences. The procedure
requires to construct the auxiliary matrix C = (cij)n×n as follows

cij =







1 +mi, ∀i = j
ȧij , ∀i 6= j and ȧij is not missing
0, ȧij is missing

where mi is the number of missing comparisons on row i. Having done this,
the priority method can be estimated by means of the eigenvector method.

Method M4 – Shiraishi et al. c3

The name c3 refers to the coefficient of λn−3 of the characteristic polynomial
of the matrix A. Shiraishi et al. [107] observed that c3 can be considered
an index of consistency for a pairwise comparison matrix (see chapter 5).
Then, in order to maximize the consistency of Ȧ, the authors considered the
m missing comparisons as variables α1, . . . , αm and proposed to maximize
c3 as a function of these variables, thus obtaining the optimal values as the
solution of

argmax
α1,...,αm

c3(α1, . . . , αm) s.t. α1, . . . , αm > 0 (6.3)

Example 17. An example is here presented in order to make the explana-
tion as clear as possible. First, we present a preference relation Ȧ

Ȧ =







1 4 5 ȧ14
1/4 1 1/3 1/6
1/5 3 1 2
1/ȧ14 6 1/2 1







.

Its missing comparison is estimated by (6.3), which returns max(c3) ≈
−51.1742 with ȧ14 ≈ 2.58199. The plot in figure 6.2 shows the relation
between the value of ȧ14 and index c3. �

Method M5 – Xu goal programming

In [123], Xu proposed a model, based on goal programming to calculate the
priority vector of an incomplete reciprocal relation. This method was al-
ready presented as LOP2 in (4.21). However, to obtain satisfactory results,
it was necessary to remove, from the proposed model, a normalization con-
straint, which conflicted with the optimization problem [45].

Method M6 – Xu eigenproblem

In his second proposal, Xu [124] developed a method for incomplete recip-
rocal relations, similar to M3. In [124] the priority vector v is calculated by
solving a system of equations which resembles the auxiliary eigenproblem
developed by Harker in the framework of pairwise comparison matrices.
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Figure 6.2: c3

Method M7 – Fedrizzi–Giove ρ

The method proposed in [47] for incomplete reciprocal relations, considers,
as in M4, the m missing comparisons as variables α1, . . . , αm and computes
their optimal values by minimizing the (in)consistency index ρ(α1, . . . , αm)
based on the condition of additive consistency for reciprocal relations (3.1),

argmin
α1,...,αm

n∑

i<j<k=1

(rik + rkj − rij − 0.5)2
/(

n

3

)

s.t. 0 ≤ xj ≤ 1. (6.4)

Example 18. Let’s take into account the following incomplete reciprocal
relation

Ṙ =







0.5 0.6 0.3 ṙ14
0.4 0.5 0.2 0.7
0.7 0.8 0.5 0.4

1− ṙ14 0.3 0.6 0.5







.

We can elicitate the optimal value of ṙ14 by applying minimization (6.4)
and obtain ρ = 3.24 with ṙ14 = 0.5. A plot of the function is here presented
Figure 6.3a. To go further, let us imagine that entries r12 and r21 were also
missing. Then we would have to solve a quadratic programming problem in
two variables whose plot is showed in figure 6.3b. The optimal value of the
objective function is ρ = 2.88 with ṙ12 = 0.4 and ṙ14 = 0.4. �

6.2 Numerical simulations

The objective of the numerical simulations presented in this section is to
study how well the seven methods mentioned above are able to reconstruct
an incomplete preference relation and to compare the results obtained in the
considered cases.
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It should be preliminarily noted that methods M1, M2, M3, M5 and
M6 give, as a result, not directly the missing comparisons, but a priority
vector. Nevertheless, each missing comparison can be estimated by means of
characterizations (3.2), (3.4), and (3.7). Thus, for every considered method,
the final result is a complete (reconstructed) preference matrix.

The results of the various methods are compared on the basis of the
consistency of the reconstructed preference relations. As seen and discussed
before, many different methods have been proposed to measure the incon-
sistency level of a preference relation. We chose to use the most old and
popular: the consistency ratio, CR. The smaller is the CR, the more con-
sistent is the preference relation, with CR = 0 only for fully consistent
matrices. We assume that the more consistent is a reconstructed matrix,
the better is the reconstruction method, as the computed missing compar-
isons are coherent with the known entries. Since the CR can be calculated
for pairwise comparison matrices only, functions f , g, and their inverses (see
chapter 3) are used to pass from one approach to another.

In order to study the performances of the methods in different consis-
tency situations, we use two classes of matrices: random matrices — which
are very inconsistent — and consistent matrices slightly modified by a Gaus-
sian noise. The results of the simulations are summarized in table 6.1 and in
figures 6.4 (a)–(d). We proceeded as follows. First, we randomly generated
1,000 pairwise comparison matrices of order 6. For each matrix we randomly
chose three comparisons to be considered missing; due to the reciprocity, six
entries of the matrix are missing. We applied the seven methods, obtaining,
for each matrix, seven different reconstructed matrices. We computed the
CR of the obtained matrices. Finally, we computed, for each method, the
average value of the CR on the 1,000 preference relations. We reported this
average value in the first column of table 6.1. The values in the second col-
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M1 M2

M3

M4

M5

M6
M7

0.38

0.39
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0.41
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(a) n=6 random

M1
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M3
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M5

M6

M7
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0.100
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0.110

(b) n=6 σ = 0.5
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0.144
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(d) n=10 σ = 0.5

Figure 6.4: Consistency Ratio of the reconstructed preference relations

umn were obtained in the same way, with the only difference that, instead
of random matrices, we used randomly generated consistent matrices which
were then modified with Gaussian random noise. The parameter σ repre-
sents the standard deviation of the Gaussian distribution. Also in this case
the reported average values are obtained from 1,000 simulations.

Columns three and four of table 6.1 are obtained with the same kind of
simulations, but with 10 × 10 matrices. Column two is interesting because
the CR values are close to Saaty’s threshold 0.1 for acceptability and some
methods succeeded in respecting it, while others did not.

The last row of table 6.1 reports the average CR of the original matri-
ces, before having considered three entries (plus the reciprocals) as missing.
Note that, as expected, all the considered methods improve in average the
consistency of the original complete matrices.

The results of the simulations are shown in figure 6.4 (a)–(d) by means
of bar charts.

It can be observed that the best results are obtained by using the opti-
mization methods M4 and M7, where the missing entries are directly com-
puted, followed by the methods where the priority weights are first com-
puted. Good results are also obtained by using M3 and M6, which are
methods based on the eigenvalue approach. The two least squares based
methods M1 and M2 form the last group, together with M5.

Some more experiments, which are not reported here, showed that, by
varying the order of the preference relations and the number of missing
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n = 6 n = 10

random noise σ = 0.5 random noise σ = 0.5

M1 0.4130 0.1043 0.5249 0.1427
M2 0.4147 0.1053 0.5233 0.1445
M3 0.3981 0.0987 0.5195 0.1408
M4 0.3908 0.0958 0.5188 0.1401
M5 0.4180 0.1035 0.5254 0.1425
M6 0.3943 0.0983 0.5188 0.1406
M7 0.3916 0.0960 0.5187 0.1403

original 0.5599 0.1395 0.5621 0.1531

Table 6.1: Consistency ratio of the reconstructed preference relations

comparisons, the relative performances of the methods do not significantly
change. Given this stability with respect of these parameters, we have omit-
ted to report other tables and bar charts.

Example 19 (Example of reconstruction). Let’s take into account an in-
complete pairwise comparison matrix. We consider the matrix on page 14
in [102] with some entries missing so that, such a matrix has the following
form with a12, a28, a37 and their reciprocals being missing entries too:

Ȧ =















1 ȧ12 3 7 6 6 1/3 1/4
1/ȧ12 1 1/3 5 3 3 1/5 ȧ28
1/3 3 1 6 3 4 ȧ37 1/5
1/7 1/5 1/6 1 1/3 1/4 1/7 1/8
1/6 1/3 1/3 3 1 1/2 1/5 1/6
1/6 1/3 1/4 4 2 1 1/5 1/6
3 5 1/ȧ37 7 5 5 1 1/2
4 1/ȧ28 5 8 6 6 2 1















Different methods complete the matrix with different degrees of consistency.
In details, They perform as follows: M1 = 0.0785, M2 = 0.077, M3 =
0.0746, M4 = 0.07463, M5 = 0.0843, M6 = 0.0777, M7 = 0.07467. �

6.3 Discussion

In this chapter we have considered and compared seven reconstruction meth-
ods, but they are not the only ones, and so the analysis could be extended
to other methods.

Moreover, the CR could be substituted by any other index proposed in
the literature and discussed in chapter 5. Here we have chosen the CR of
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Saaty for two main reasons: the first one is that it is the oldest and most pop-
ular one; the second reason is its neutrality : some other possible consistency
indices, as c3 and ρ, are precisely the objective function of the corresponding
reconstruction method, and would unfairly favorite the method itself. Note
that each optimization-based method implicitly defines a consistency index
and vice versa. Nevertheless, alternative ways for evaluating the various
reconstruction methods could be taken into account.

With all the above mentioned limits, this chapter has been useful to see
which reconstruction methods performs better in some given situation. Fur-
thermore, it can be easily connected with the theory of preference relations
whenever the assumptions that the preference is complete is dropped.
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Chapter 7

Fuzzy adjacency relations

Social Network Analysis (SNA) is a relatively new and still developing sub-
ject that focuses on the study of social relationships [103, 122]. It can be
seen as a branch of the broader discipline named network analysis [80] whose
main goal is the study of the relationships between objects belonging to one
or more reference sets. It is worth noting that, during the very recent period,
the study of SNA has attracted the interest of scholars in fields of study such
as decision making [109] and systems science [21].

The approach proposed in this chapter takes advantage of the ability of
fuzzy relations [66, 140] to model imprecision permeating the relationships
between the actors in the network, and of the OWA functions [137, 139] to
move continuously from non-compensatory to full-compensatory situation
and characterizing therefore the attitude of the actors to connect each other.
The relevance of this chapter for the issue of group decision making, and
thus its connection with with the rest of the thesis, shall be clarified as
some optimization problems will be presented. This chapter is outlined
as follows. Section 7.1 offers a presentation of SNA and introduces the
adjacency matrix, which is the main tool to perform the analysis. In section
7.2 it is shown that adjacency relations can be valued (cardinal) relations and
that fuzzy adjacency relations are simply a special case of valued relations.
Having presented that, in section 7.3 fuzzy m-ary adjacency relations are
defined and a method based on aggregation functions for estimating them
is presented. It will be claimed that OWA functions satisfy some reasonable
properties and that they can be employed as suitable aggregation functions
to increase the dimension of the analysis. Namely, fuzzy m-ary adjacency
relations are obtained by aggregating fuzzy binary adjacency relations by
means of OWA functions. Section 7.4 proposes some optimization models,
based on fuzzy m-ary adjacency relations, which can be interpreted in terms
of finding the ‘most consensual subset’ of a set of decision makers. Section
7.5 contains a commented example and, finally, section 7.6 points out some
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concluding remarks. All in all, the scope of this chapter is that of bridging
the gap between SNA and group decisions, and to show that these these
two research themes are quite close to each other and. In fact some tools
from SNA can be used to estimate the level of agreement between subsets
of decision makers.

7.1 SNA and adjacency matrix

As already mentioned, SNA is the branch of network analysis devoted to
studying and representing relationships between ‘social’ objects. Hence,
hereafter, we consider a finite non-empty set D = {d1, . . . , dn} of social
objects. The letter d has been chosen to remark the possible connection
between objects and decision makers. The main tool to explore the relation-
ships between the elements of D is called adjacency matrix. An adjacency
matrix is a representation of an adjacency relation, T̃2 ⊆ D × D, whose
characteristic function is µT̃2

: D ×D → {0, 1} such that

µT̃2
(di, dj) =

{
1, if di is related to dj
0, if di is not related to dj

By definition [66], adjacency relations satisfy properties of reflexivity,
µT̃2

(di, di) = 1 ∀i, and symmetry, µT̃2
(di, dj) = µT̃2

(dj , di) ∀i, j. Note that,
unlike for equivalence relations, no transitivity condition is required to hold.

If D is reasonably not too large, then the adjacency relation can be
conveniently represented by a adjacency matrix T̃ = (t̃ij)n×n ∈ {0, 1}n×n

with t̃ij := µT̃2
(di, dj). One of the good characteristics of matrix T̃ is that

it is a concise synthesis of the pairwise relationships between elements in D.
On the other hand, it can be said that it does not take into account the
strength of the relationships. Due to this drawback, it could happen that,
by using such type of adjacency relation, very different cases are treated in
the same way, without discriminating among situations where intensities of
relationship may be very different. This can seriously weaken the analysis
of a social network.

7.2 Valued and fuzzy adjacency relations

One natural proposal for overcoming the problem of taking into account
different degrees of relationship and coherently representing them, is that of
employing a scale of measurement. Each entry of the matrix would therefore
indicate the degree of relationship between two objects and not only state
whether they are related of not.
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A binary fuzzy relation on a single set, hereafter only fuzzy relation if not
differently stated, is a fuzzy subset of the Cartesian product, i.e. a relation
T2 ⊆ D ×D defined through the following membership function

µT2 : D ×D → [0, 1]. (7.1)

Also in this case, putting tij := µT2(di, dj), a fuzzy relation can be suitably
represented by a matrix T = (tij)n×n ∈ [0, 1]n×n where the value of each
entry is the degree to which the relation between di and dj holds. In other
words, the value of µT2(di, dj) is the answer to the question: ‘how strong is
the relationship between di and dj?’. Therefore, in the context of SNA

µT2(di, dj) =







1, if di has the strongest possible
degree of relationship with dj

γ ∈]0, 1[ if di is, to some extent, related to dj
0, if di is not related with dj

Moreover, let us remark that, in literature, the term adjacency relation
is often considered interchangeable with tolerance, proximity [33], and com-
patibility [66].

Fuzzy adjacency relations, as well as crisp adjacency relations, are here
assumed to be reflexive and symmetric. It is useful to spend some words
about symmetry. A fuzzy binary relation is symmetric if and only if

µT2(di, dj) = µT2(dj , di) i, j = 1, . . . , n. (7.2)

Although the assumption of symmetry is a simplification, it is of great help
for the model because, thanks to it, such relations can be represented by
means of undirected graphs and problems related with the so-called combi-
natorial explosion are partially avoided. Furthermore, in many real-world
cases, symmetry is spontaneously satisfied by the nature of the relationship.

As for the case of crisp adjacency relations, fuzzy adjacency relations are
not necessarily transitive. For this reason we remark the difference between
them and similarity relations, i.e. fuzzy equivalence relations, which, con-
versely, are transitive [141] definite.
According to its definition, a fuzzy adjacency relation seems to be a special
case of a valued adjacency relation. The case is not restrictive as the scale
[0, 1], albeit usually part of the definition, is not a necessary condition. It
has been remarked in literature [52] that the unit interval can consistently
be substituted by any lattice, L, and therefore the membership function be
generalized,

µT2 : D ×D → L . (7.3)

Thus, valued relations may be easily meant to be fuzzy relations in their
broader sense. In spite of this remark, whose aim was that of underlying
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the non-restrictive nature of the interval [0,1], for simplicity we are going to
use the real unit interval in the following.

Let us end the paragraph stressing some further points:

• Fuzzy relations contain more information than crisp relations. This
has been made clear by α-cuts. In fact, we can shift from the fuzzy
approach to the crisp one thanks to the α-cuts. An α-cut, Tα

2 , of a
fuzzy relation T2 is the crisp subset of D×D defined by its membership
function:

µTα
2
(di, dj) =

{
1, if µT2(di, dj) ≥ α
0, if µT2(di, dj) < α

For instance, considering a fuzzy binary relation in his matrix form

T =







1 0.7 0.3 0.7
0.7 1 0.1 0.8
0.3 0.1 1 0.2
0.7 0.8 0.2 1







, (7.4)

its α-cut with α = 0.5 is

T0.5 =







1 1 0 1
1 1 0 1
0 0 1 0
1 1 0 1







(7.5)

It can be seen that a crisp relation appears as an approximation of a
fuzzy relation. Therefore, it is always possible, given a fuzzy relation,
to obtain a crisp relation (this operation is not reversible).

• Applying fuzzy relations to SNA, we can extend most of the tech-
niques employed for analyzing crisp adjacency matrices. A significant
example is the normalized index of local centrality [122], that is

C(di) =
1

n− 1

n∑

j=1
j 6=i

tij . (7.6)

If ci := C(di) and c = (c1, . . . , cn), then we can refer to T in (7.4) and
find that c =

(
17
30 ,

8
15 ,

1
5 ,

17
30

)
. Moreover, this result is more informative

than the same index computed for T0.5 in (7.5), i.e. c =
(
2
3 ,

2
3 , 0,

2
3

)
.

• The structure of the problem can be addressed thanks to graph the-
ory too. More precisely, a fuzzy binary relation can be represented
by a complete weighted graph where the n nodes are the n social ob-
jects d1, . . . , dn and the weights of every edge (di, dj) are the degrees
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of relationship µT2(di, dj) between objects di and dj , i, j = 1, . . . , n.
Therefore, the problem can also be addressed in a graphical way with
µT2(di, dj) representing the ‘thickness’ of the edge between di and dj .
Furthermore, a fuzzy relation can be seen as a fuzzy graph [79] with
the peculiarity that edges only are fuzzy, whereas nodes are crisp.

7.3 Fuzzy m-ary adjacency relations and OWA func-
tions

Thus far, adjacency relations have been tackled in their binary form. Namely,
they have been good at expressing relationships over pairs. In this section we
propose an extension of the analysis involving m-dimensional relations with
m ∈ {2, . . . , n}. In performing this generalization we consider the binary
case as a special case in a more general approach. Therefore, considering an
m-ary adjacency relation, the degree of membership on an m-tuple in the
relation represents the degree to which the elements of the tuple are related.
Analogously to the binary case (7.1), it is straightforward to define a fuzzy
m-ary relation.

Definition 9. A fuzzy m-ary relation Tm on a single set D is a fuzzy subset
of Dm defined by means of the membership function

µTm : Dm → [0, 1]. (7.7)

Therefore, the membership function characterizing fuzzy m-ary relations is
the following

µTm(dp1 , . . . , dpm) =







1, if dp1 , . . . , dpm are definitely related
one another

γ ∈]0, 1[ if dp1 , . . . , dpm are, to some extent,
related one another

0, if dp1 , . . . , dpm are definitely not related
one another

Nevertheless, as the semantic underlying the membership function remains
substantially unchanged, properties of reflexivity and symmetry are ex-
tended to the m-dimensional case in the following way. An m-ary relation
is reflexive if and only if

µTm(dp1 , . . . , dpm) = 1

for all p1 = · · · = pm. An m-ary relation is symmetric if and only if

µTm(dp1 , . . . , dpm) = µTm(dπ(p1), . . . , dπ(pm))
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where π is any permutation map of the multiset 〈p1, . . . , pm〉. A multiset is
a generalization of the idea of set, characterized by the fact that multiple
instances of the same member can occur.
At this point, having defined fuzzy m-ary adjacency relations, it is the case
to highlight the difference between an element of a fuzzy m-ary adjacency
relation and a clique [75, 84, 122]. Namely, a clique of a graph is a maximum
complete subgraph whereas, if we deal with m-ary relations and the contrary
is not made explicit, the value µTm(dp1 , . . . , dpm) simply states, by means of
the bounded unipolar scale [0, 1], the degree to which the relationship holds,
without taking into account any maximality condition.

Although we can easily define an m-ary relation under the theoretical
point of view, it might be very difficult to represent it in a direct way. In the
following part of the paper we aim at introducing a method for representing
m-ary relations starting from the (binary) fuzzy adjacency relation.
Let us first introduce the notation which will be used hereafter. Given m
not necessarily different indices p1, . . . , pm ∈ {1, . . . , n}, we take into account
the symmetric property of a fuzzy binary adjacency relation and, to avoid
unnecessary repetitions, we consider the k =

(
m
2

)
= m(m − 1)/2 ordered

pairs (dpi , dpj ) such that i < j. We can then define ρ-dependence.

Definition 10 (ρ-dependence [15]). Given a fuzzy binary adjacency relation
T2, a fuzzy m-ary adjacency relation Tm (m > 2) is said to be ρ-dependent
on T2 if and only if there exists a function

ρ : [0, 1]k → [0, 1] (7.8)

such that, for any choice of m indices p1, . . . , pm ∈ {1, . . . , n} it is

µTm(dp1 , . . . , dpm) =ρ
(
µT2(dp1 , dp2), . . . , µT 2(dpm−1 , dpm)

)
, (7.9)

where the k =
(
m
2

)
arguments of function ρ are the values µT2(dpi , dpj ) of

the fuzzy binary adjacency relation T2, with i < j.

Example 20. Imagine we have a fuzzy adjacency relation T2 on the set
{d1, d2, d3, d4} and, given ρ, we want to verify if a relation T3 is ρ-dependent
on T2. This means that n = 4 and m = 3. Therefore, T3 is ρ-dependent on
T2 if and only if the following equalities are simultaneously satisfied

µTm(dp1 , dp2 , dp3) = ρ
(
(µT2(dp1 , dp2), (µT2(dp1 , dp3),

(µT2(dp2 , dp3)
)
, ∀ p1, p2, p3 ∈ {1, 2, 3, 4}.

In addition, it can be checked that the number of arguments of ρ is k =
(
m
2

)
=
(
3
2

)
= 3.
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We propose to represent m-ary adjacency relations by means of ρ-depen-
dence. Nevertheless, it is necessary to define a suitable function ρ.

Hereafter until the end of the section, some assumptions regarding ρ
will be formalized. First of all, coherently with the spirit of a process of
aggregation of information, ρ is required to be an aggregation function. One
reaches this conclusion by considering that, in order to estimate a coherent
m-ary relation, ρ should somehow weigh the contribution brought by each
involved pair.

Definition 11 (Aggregation function [10]). An aggregation function is a
function of k > 1 arguments that maps the (k -dimensional) unit cube onto
the unit interval, f : [0, 1]k → [0, 1], with the properties

• f(0, . . . , 0) = 0 and f(1, . . . , 1) = 1 (extremal conditions)

• a ≤ b implies f(a) ≤ f(b) for all a,b ∈ [0, 1]k (monotonicity)

where a ≤ b means that each component of a is no greater than the corre-
sponding component of b.

Moreover, we are going to propose and justify some other properties
which ought to be satisfied by every ρ.

1. idempotency: ρ(a, . . . , a) = a. Therefore, if m elements of some set
are pairwise related with degree a, then we assume that the inten-
sity of relationship computed on the k-tuple containing those objects
has value a as well. We will see later that idempotency is implicitly
embedded in property 4, i.e. averaging behavior.

2. commutativity: ρ(a1, . . . , ak) = ρ(aπ(1), . . . , aπ(k)) where π is any per-
mutation map of the index set {1, . . . , k}. This property is required to
hold because fuzzy adjacency relations are symmetrically defined for
all m = 2, . . . , n .

3. strict monotonicity: ρ(a1, . . . , ak) > ρ(b1, . . . , bk) if ai ≥ bi ∀i and
there exists at least one j such that aj > bj . Strict monotonicity is
asked to hold in order to overcome some evaluation problems which
would arise if we used non-strictly monotonically increasing functions
as, for instance, the geometric mean g(·). To give an example, substi-
tuting g to ρ we would have g(1, . . . , 1, 0) = g(0, . . . , 0), which is not a
desirable result from the social analysis point of view.

4. strictly averaging behavior: min(a) < ρ(a) < max(a). This require-
ment implies that conjunctive and disjunctive aggregation function are
excluded. This property is actually a consequence of strict monotonic-
ity ([10] pg. 11).
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These four more assumptions lead us to choose within a restricted class
of aggregation functions. It is easy to check that a large number of common
aggregation functions are excluded. For instance, as already mentioned, the
geometric mean is excluded because it is not strictly monotone. Whenever it
does not collapse into the simple arithmetic mean, the weighted arithmetic
mean is also excluded because it is not commutative.

We propose to use as function ρ an OWA function with weights wi ∈]0, 1[,
since such type of aggregation function satisfies all the listed properties and
can be characterized by some relevant and well interpretable indices, as those
of orness and entropy. OWA functions were introduced by Yager in [137] and
further on studied by many other authors as, for instance, in [139]. One of
the reasons behind the success of OWA functions is that they are sufficiently
flexible to cover a range of some well-known aggregation functions.

As said before, OWA functions with wi ∈]0, 1[ are strictly increasing
functions in all the arguments. Therefore, their definition is the following.

Definition 12 (Strictly monotone OWA function). A strictly monotone
OWA function of dimension k is a mapping F : Rk → R, that has an
associated weighting vector w = (w1, . . . , wk) such that wi ∈]0, 1[ and
∑k

i=1wi = 1. Furthermore,

F (a1, . . . , ak) = w1b1 + · · ·+ wkbk =
k∑

j=1

wjbj

where bj is the j-th largest element of the multiset A = 〈a1, . . . , ak〉.

To better justify the use of OWA functions in this context let us take
the following simple example into account. Suppose ρ is replaced by the
arithmetic mean. Then we would get to the result that

ρ( 1, . . . 1
︸ ︷︷ ︸

half arguments

, 0, . . . , 0
︸ ︷︷ ︸

half arguments

) = ρ(1/2, . . . , 1/2). (7.10)

which might be acceptable but, the social analyst, according to the context,
may also prefer to consider the situation described in the left hand side of
(7.10) to be more/less expressive of a high level of relationship than the
situation considered in the right hand side. For instance, we can assume
that the accomplishment of a task requires, as a necessary condition, the
cooperation of all the subjects involved. In this case it is likely that the set
of objects represented by binary relations on the right hand side of (7.10) is
preferred to the one described on the left hand side of the same equality.

Therefore, it is possible to obtain the most suitable outcome of the ag-
gregation with respect to the faced problem by assigning different weights
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to the terms of the aggregation function according to their values. OWA
functions are particularly appealing for our proposal, thanks to some of
their properties and the fact that they are easily interpretable in terms of
a trade-off between the two operators min (and) and max (or). Also a re-
cently published work by Yager [138] is supporting the natural connection
between granular computing, OWA and SNA thanks to a new paradigm for
intelligent social network analysis (PISNA).

To each OWA is associated a measure of orness [51, 82] which estimates
how much the aggregation process tends to be an ‘orlike’ operation

orness(w) =
1

k − 1

k∑

i=1

(k − i)wi . (7.11)

It is possible to determine a complementary index, andness(w) = 1 −
orness(w), that is its mirror image. For clarity, let us briefly recall some
special cases

orness(w) =







1, if w = (1, 0, . . . , 0)
0, if w = (0, . . . , 0, 1)
0.5, if w = (1/k, . . . , 1/k)

(7.12)

In the first case, with w = (1, 0, . . . , 0), the OWA operator becomes the max
(or) operator, in the second case, with w = (0, . . . , 0, 1), the OWA function
becomes the min (and) operator. Note that we exclude the extreme values
0 and 1 for the weights wi, so that for strictly monotone OWA functions it
is always 0 < orness(w) < 1. Thus, in light of the preceding remarks, we
suggest that OWA operators can be considered a suitable choice for function
ρ in (7.9). In this case, the elements a1, . . . , ak of definition 12 are the k
values, µT2(dpi , dpj ) , i, j = 1, . . . ,m, i < j.

7.4 Optimization models for m-ary relations

In the previous section we defined fuzzy m-ary relations µTm(dp1 , . . . , dpm)
under the general assumption that the indices p1, . . . , pm ∈ {1, . . . , n} are
not necessarily distinct. This assumption was necessary in order to extend
the well established approach of binary adjacency relation where reflexivity
(µT2(di, di) = 1) is assumed and full matrix representation is used. In spite
of it, in the optimization problems we are considering in this section, it is
convenient to restrict the study to the case where the m indices p1, . . . , pm ∈
{1, . . . , n} are distinct indices. In fact, by this assumption it is possible to
interpret each m-tuple (dp1 , . . . , dpm) as a set of social objects, for instance
decision makers, containing precisely m distinct elements, thus allowing a
better understanding of the suggested application models. Therefore, in
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the following, by considering µTm(dp1 , . . . , dpm), we assume i 6= j ⇒ pi 6=
pj , i, j = 1, . . . ,m. Moreover, for sake of simplicity, and thanks to symmetry,
we will assume p1 < · · · < pm. Let us consider some optimization problems
that can be of interest in applying fuzzy m-ary adjacency relations to SNA.

The first model is useful to find the subset with cardinality m whose
elements are the most related between each other.

(OPT1) max{µTm(dp1 , . . . , dpm)|p1 < p2 < · · · < pm} (7.13)

This proposal can be refined by assuming that each element di ∈ D has
a specific weight ωi denoting its relative importance. Let us consider the
weight vector

ω = (ω1, . . . , ωn) such that
n∑

i=1

ωi = 1, ωi ≥ 0 ∀i. (7.14)

Then, we can perform an analysis similar to that described above by assum-
ing that parameter m is free, and by requiring that the sum of the weights
associated to the considered m elements is equal or greater than a given
majority threshold 0 < τ < 1. Thus, the optimization problem is

(OPT2) max

{

µTm(dp1 , . . . , dpm) | p1, . . . , pm ∈ {1, . . . , n},

p1 < · · · < pm,
m∑

i=1

ωpi > τ, m = 2, . . . , n− 1

} (7.15)

Some comments on (OPT2) could be useful to better understand the in-
volved optimization. In (OPT2) we are still interested in the most related
subset, but the constraint of having a fixed number of elements is replaced
by a constraint on a majority threshold τ to be satisfied by the sum of the
weights of the elements in the subset. That is, subsets with different number
m of elements are taken into account, provided that they fulfill threshold
τ . Note that large values of µTm can be easily achieved if the number m
of elements is small, while the constraint

∑m
i=1 ωpi > τ is satisfied by the

subsets with a sufficiently large number of strong elements. Therefore, the
optimal solution of (OPT2) arises by taking into account the two conflicting
criteria: power of the subset and degree of relationship among the elements
of the subset. We stress again that the number m of the elements is op-
timally determined only after having solved (OPT2). Note that vector ω

defining the relative importance of each di ∈ D must not be confused with
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vector w of an OWA function, which is used in this paper to assign weights
to degrees of relationships among elements in D.

Maximization problem (OPT2) can bear the addition of some constraints.
For example, let us assume that we are interested in solving it with the con-
straint that some objects are included in the m-tuple which optimize the
model. In this case, we can assume the indices of those objects that we
want to be part of the solution are the only elements whose index belongs
to an index set I ⊂ {1, . . . , n}. This said, the new constrained model is

(OPT3) max

{

µTm(dp1 , . . . , dpm) | {p1, . . . , pm} ⊇ I,

p1 < · · · < pm,
m∑

i=1

ωpi > t, m = 2, . . . , n− 1

}

.

(7.16)

Another problem that can be addressed is that of maximizing the number
m of elements in a subset satisfying a fixed majority threshold. Namely, let
us fix a threshold δ ∈ [0, 1] such that µTm(dp1 , . . . , dpm) > δ and leave the
dimension m of our analysis free. In this way, progressively increasing m
and calculating µTm(dp1 , . . . , dpm) at every stage, we can detect the largest
B ⊆ D such that µTm(B) > δ. Let m̂ denote this maximal cardinality.

(OPT4) m̂ = max{m| ∃B ⊆ D, m = |B|, µTm(B) > δ} .

It may occur that set B is not unique, since there exist ν different subsets
Bj , j = 1, . . . , ν satisfying inequality µTm(Bj) > δ with the same maximal
cardinality m̂. In this case, it is possible to define a winner as the subset Bi

with the strongest degree of relationship, µTm(Bi) ≥ µTm(Bj), j = 1, . . . , ν.
If again the solution is not unique, the multiple solutions are considered
equivalent for our analysis.

7.5 Example

At this point it is worthwhile to present a numerical example based on the
following fuzzy adjacency matrix

T =













1 0.4 0.5 0.5 0.8 0.4 0.3
0.4 1 0.6 0.7 0.7 0.7 0.8
0.5 0.6 1 0.2 0.9 1 1
0.5 0.7 0.2 1 0.4 0.7 0.2
0.8 0.7 0.9 0.4 1 0 0.5
0.4 0.7 1 0.7 0 1 0.1
0.3 0.8 1 0.2 0.5 0.1 1













(7.17)
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To make this simple example more consistent with real-world cases, it is
possible to imagine, for instance, that entries of T are estimations of the
degrees of consensus between some decision makers. Let us suppose that we
are interested in estimating the ternary fuzzy adjacency relation on D for all
(dp1 , dp2 , dp3) such that p1 6= p2 6= p3. A suitable OWA function has to be
chosen. All along the example, we suppose that the analyst desires to use a
vector w with orness(w) = 0.5 with maximal entropy [51, 82]. In this case,
such vector represents the arithmetic mean, i.e. all the weights are equal.
Going ahead, it is possible to derive the ternary relations on d by means of
(7.9).

µT3(d1, d2, d3) = 0.5

µT3(d1, d2, d4) = 0.533

... =
...

µT3(d4, d6, d7) = 0.33

µT3(d5, d6, d7) = 0.2

Note that, as specified in section 7.4, we only take into account the rela-
tionship degrees µT3(dp1 , dp2 , dp3) with p1 < p2 < p3. Let us now imagine
that we are seeking for the three objects that are the most related. For
example, if the objects of our analysis were decision makers, then we would
be seeking for the most ‘consensual’ subset with cardinality equal to three.
In this case, the set of the three elements which we are looking for is the
solution of model (OPT1) with fixed length of the m-tuple (dp1 , . . . , dpm).
In our example, in light of the results obtained before, the three objects at
issue are d2, d3, d7 with µT3(d2, d3, d7) = 0.8.

It is particularly interesting to set the analysis with m = m⋆ where m⋆

is the integer part of n/2 + 1,

m⋆ = ⌊n/2 + 1⌋ =

{
n
2 + 1, if n is an even integer
n
2 + 1

2 , if n is an odd integer
(7.18)

Namely, m⋆ = min{z ∈ N|z > n/2}, where N is the set of the natural num-
bers.
The result of (OPT1) with m = m⋆ can be seen as minimum winning coali-
tion with the strongest degree of relationship. If we realistically assume
that the larger µTm(dp1 , . . . , dpm), the more likely to arise a coalition among
dp1 , . . . , dpm is, then the value m⋆ becomes very useful. In our example,
m⋆ = 4 and the elements at issue are d2, d3, d5, d7 with µT4(d2, d3, d5, d7) =
0.75.

As said before, (OPT2) is a generalization of (OPT1). Let us go through
it by means of our example. Referring to matrix (7.17), if we apply model
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(OPT2) with ω = (0.23, 0.14, 0.07, 0.12, 0.16, 0.05, 0.23) and τ = 1/2, then
we would find that the solution is (d2, d5, d7) with

µT3(d2, d5, d7) =
1

3
µT2(d2, d7) +

1

3
µT2(d2, d5) +

1

3
µT2(d5, d7)

=
1

3
0.8 +

1

3
0.7 +

1

3
0.5 =

2

3
≈ 0.66667.

(7.19)

We can further check that the threshold is respected; in fact, it is ω2+ω5+
ω7 = 0.14 + 0.16 + 0.23 = 0.53 > τ

Although the example proposed here is not based on a real world case,
the problem solved in (OPT2) could be applied to economics and political
sciences. In fact, it is possible to see vector ω as a collection of weights for
experts or political parties. In this latter case, if we are able to establish a
index of proximity between any two decision makers di and dj i.e. estimat-
ing entries of matrix T, then we can apply (OPT2) and find the strongest
winning coalition.

If we want to find a coalition and impose some constrains on what el-
ements we want to be part of it, then (OPT3) might be used. Again, to
formulate an example, suppose I = {1, 2}. In this case the argument maxi-
mizing (OPT3) is (d1, d2, d5) with

µT3(d1, d2, d5) =
1

3
µT2(d1, d2) +

1

3
µT2(d1, d5) +

1

3
µT2(d2, d5)

=
1

3
0.4 +

1

3
0.8 +

1

3
0.7 =

1.9

3
≈ 0.63333,

(7.20)

with ω1 + ω2 + ω5 = 0.23 + 0.14 + 0.16 = 0.53 > τ .

To show (OPT4), suppose δ = 0.6. A good way to find B is that of
starting with m = 7 and decrease m step by step until we find a m such
that there exists µTm(·) > δ. At this point we should verify its uniqueness.
If it is not unique we seek for the maximum and if we still cannot achieve
uniqueness we consider the solutions to be equivalent.

In our case, m̂ = 5 and there are two m̂-tuples with membership value
greater than 0.6. They are (d1, d2, d3, d5, d7) and (d2, d3, d5, d6, d7). As

µT5(d1, d2, d3, d5, d7) = 0.65 > µT5(d2, d3, d5, d6, d7) = 0.63

we find that (d1, d2, d3, d5, d7) is the solution of (OPT4).

The very last observation concerns the dimension of the analysis. If
m = n, then the degree to which this particular relationship holds is a
measure of how strong the relationship among all the di ∈ D is. It can
be interpreted as the degree of social relationship computed on the entire
network.
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7.6 Discussion

In the first part of this chapter the natural connection between fuzzy re-
lations, social network analysis, and group decision analysis was shortly
discussed and justified. After the introductory part, attention was drawn
on the natural extension of relations to the m-dimensional case. Thus, fuzzy
m-adjacency relations were introduced and their link with fuzzy binary rela-
tions is formalized. To this aim, OWA functions appear to be valuable tools
in order to estimate m-ary relations. Future work shall focus on the struc-
tural properties of the already mentioned connection between the binary and
the m-ary case. Moreover, we have discussed an approach which takes into
account imprecision and so far we have not dealt with uncertainty. Thus,
extending the analysis of m-ary relations and the ρ-dependence in order to
consider uncertainty could be a promising future direction.
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Chapter 8

Discussion

A number of problems were posed in the first part of this thesis and each
section has tried to clear the fog in the maze of preference relations by
means of proving the equivalence between consistency indices, numerically
comparing methods, and finding new and better algorithms. The research
questions have focused on a very wide spectrum of issues in the methodology
of preference relations, and their answers have been arranged in this thesis,
or, at least, this was my goal. Rather than following the tradition and sum-
marize, once again, this dissertation, I prefer to discuss how future research
can improve some of the results. Naturally, suggesting developments and
improvements will serve to highlight the limitations of this work.

8.1 Future research

If something has been achieved in this thesis, then a lot more is still unex-
plored. Hereafter, by means of a list, some hot topics will be pointed out
and briefly explained.

• A wide number of inconsistency indices have been proposed and a
comparative study, under both the theoretical and numerical point of
view, is reported in this dissertation. Despite this, there is a need for
a formal definition of inconsistency index. Some future efforts should
aim at clarifying what a consistency index is and perhaps trying to
formalize some characterizing properties. Afterwards, with a widely
agreed definition of inconsistency index, it would be possible to check
whether or not, the already proposed indices satisfy such definition.

• The numerical study on inconsistency indices presented in this thesis
gives an idea of the behavior of indices but it is far from being en
exhaustive statistical study. For instance, only randomly generated
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preference relations have been taken into account whereas the most
plausible case is that of slightly perturbed consistent matrices. More-
over, the Spearman index is only one (and perhaps one of the least
sophisticated) among the tools for analyzing agreement between ob-
servations on two quantities. Future research should try to achieve
more robustness and statistical significance.

• Some attempts have already been made in order to bring the concept
of preference relation to a higher mathematical level. Recently, Cav-
allo and D’Apuzzo [19, 20] employed Abelian linearly ordered groups
in order to develop a common framework for some different types of
preference relations. Barzilai [9], even earlier, tried to give a more
formal structure to some preference relations. The importance of this
kind of research does not reduce to mere aesthetics, since establish-
ing some such connections between different approaches would prove
different approaches isomorphic. Thanks to such abstract relations,
we know that the algebraic and topological properties of one approach
could be automatically transfered to those which are isomorphic to
it. Another attempt to use very abstract mathematical instruments is
that proposed by Eklund et al. [38] where the authors tried to describe
social choice by means of category theory. These are possibly promis-
ing, and still unexplored, areas of study which connects the theory of
preference relations with abstract algebra.

• The difference between open and closed scales for preference relations
should be formalized and studied, also empirically. Each condition
of consistency for preference relation always embeds a not necessarily
total binary operator ∗ : S × S → S such that the preference relation
is consistent if and only if

µP (xi, xj) ∗ µP (xj , xk) = µP (xi, xk) ∀i, j, k

Example 21. Given reciprocal relations and multiplicative consis-
tency, it can be verified that the operator ∗ is the following uninorm
∗ :]0, 1[×]0, 1[→]0, 1[

rik =
rijrjk

rijrjk − (1− rij)(1− rjk)
,

which, in fact, is nothing else but another way of posing the condition
of multiplicative consistency for reciprocal relations. �

A scale S, with respect to an operator ∗, is open if and only if the set
S is closed under that same operator. Equivalently, it can be said that
a given scale S is open under a binary operator ∗ if and only if that
operator is total on the set S.
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Example 22. In the pairwise comparison matrices case, the domain
of representation of the preferences can either be the interval [1/9, 9]
or the set of positive reals, R>. In the first case, the set is not closed
under the operation of multiplication and therefore the scale is closed.
In the latter case, the contrary is true; hence, the scale is open. �

Seemingly, open scales are more elegant and allow a greater mathemat-
ical abstraction. However, due to psychological reasons, closed scales
seem to be more suitable in practice. This issue has not been studied
in details and therefore future research should try to bridge the gap or
at least show drawbacks and good points in using one approach rather
than the other.

• The study of incomplete preference relations presented in chapter 6 was
supposed to be the starting point of a more extensive research, since
it takes into account only a limited number of methods and it presents
the results without statistical analysis. Further studies could aim at
comparing different methods by means of statistical tools. However, it
appears that such a study would always share some of the limitations
of the original one. Namely, the scope of some of the studied methods
is that of estimating a priority vector from an incomplete preference
relation rather than completing the preference relation according to
some criterion of consistency. Thus, any comparative study would
remain questionable.

• The approach to social network analysis can be improved and studied
in many ways:

– This dissertation has presented fuzzy binary adjacency relations,
but it has not proposed a method for obtaining them. However,
it is realistic to assume that they can be derived from prefer-
ence relations of decision makers. Future research should inves-
tigate the connection between preference relations and relations
of adjacency. It would be quite interesting to build a bridge
between preference relations and adjacency relations such that,
given a number of preference relations, each associated to a de-
cision maker, then we can estimate an adjacency relation on the
set of decision makers. In doing so, all the tools of social net-
work analysis could be naturally introduced into group decision
making theory.

– The algorithms for constructing m-ary adjacency relations have
not been studied from the point of view of computational com-
plexity. The same applies to the combinatorial optimization prob-
lems proposed in the same chapter. My feeling is that, given the
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particular configuration of the underlying algorithms, complexity
can be estimated rather precisely. These answers are necessary
to understand if, and at what point, the combinatorial explosion
can make the model impractical for large networks.

– If it is true that the proof of a pudding is in the eating, then
the ρ-characterization and its associated optimization problems
should be applied to at least one real-world case, e.g. elections,
in order to be validated.
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Appendix A

Scatter plots of consistency
indices

This appendix contains the scatter plots of the consistency indices presented
in chapter 5 and previously summarized in figure 5.1. However, in light of
the results on the proportionality between some inconsistency indices, only
nine of them are here presented. The following plots are simply enlargements
of the upper triangle of figure 5.1. However, more information is gathered in
the following, as, not only their size is larger but values are reported on the
axes thus showing some possible unexpected behavior. Under this point of
view, due to their low co-monotonicity with the other indices, K and NIσn
are surely interesting quantities.
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Appendix B

The Analytic Hierarchy
Process

The Analytic Hierarchy Process (AHP) is a multi-criteria decision making
method originally introduced by T.L. Saaty in 1974 [94]. Since its official
inception [95] it has been widely studied and applied to several real-world
decision making problems in business, engineering, political sciences, mar-
keting, forecasting, conflict resolution and so on [96, 97, 99]. It can tackle
problems involving several alternatives and criteria and was also axiomatic
justified [98]. This appendix aims to present the very fundamentals of AHP
in a practical way, thus skipping all the unnecessary details.

As already mentioned, in our framework, the AHP can be applied to
most decision making problem involving a plurality of alternatives and cri-
teria. Formally, every decisional process has one goal and there is always a
finite set of alternatives X = {x1, . . . , xn} from which the decision maker,
is usually asked to pick the best one. Also, in the decision making process
the expert has to consider a set of criteria C = {c1, . . . , cn}. Criteria are
characteristics which make one alternative preferable to another one. Let
us now present one of the most classical among the examples: a family has
to decide which city to visit during their holidays. Their goal is the highest
overall satisfaction with the trip. Alternatives may be some cities, in our
example

X = {Rome,Barcelona,Rejkyavik}, (B.1)

and the set of criteria could be

C = {climate, sightseeing, environment}, (B.2)

Later, we will return to this example in order to illustrate some theoretical
matters.
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In usual decision making processes the decision maker assigns a score
to each alternative and then he chooses the alternative with the maximum
value. That is, given X there is a weight vector

w = (w1, . . . , wn), (B.3)

where wi is a value which can coherently estimates the utility1 of alternative
xi, the higher it is, the better the alternative is. Weight vectors are nothing
other than rankings and their components are scores. Components wi of w
are also called priorities or weights of the alternatives xi. For example

w = (0.4, 0.2, 0.3, 0.1) (B.4)

implies x1 ≻ x3 ≻ x2 ≻ x4. Making decisions in this way seems to be
rather easy. Unfortunately, it becomes a hard task whenever complexity
increases. As we will see, complexity augments as the number of alternatives
and criteria increases. In the following, at first, we consider the case of
complexity in alternatives, then we discuss the complexity in criteria.

The AHP in practice

Complexity in alternatives - From the priority vector to pair-
wise comparison matrix

It is clear that the decision maker could run into troubles when he/she is
asked to submit a rating for a large number of alternatives. It often happens
that we cannot decide among several alternatives or, even worse, we decide
and then we realize that it was not the right choice.
An effective way to overcome this problem is using pairwise comparison
matrices. According to some studies, the most reasonable point in doing so,
is that such matrices allow the decision maker to consider two alternatives
at a time. More formally, the aspect of a pairwise comparison matrix A =
(aij)n×n is

A =








a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann








(B.5)

with aij ∈ [19 , 9] that is a value which can express the degree of preference
of xi over xj . More precisely, according to Saaty’s theory, each entry is

1Similarly to what happens for utility theory, the main rule is that xi should be pre-
ferred to xj if and only if wi ≥ wj
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supposed to approximate the ratio between two weights

aij ≈
wi

wj
. (B.6)

As soon as (B.6) is understood, multiplicative reciprocity aijaji = 1 holds
and, still thanks to (B.6), A in (B.5) can be simplified and rewritten

A =








1 a12 · · · a1n
1

a12
1 · · · a2n

...
...

. . .
...

1
a1n

1
a2n

· · · 1








. (B.7)

The fact that multiplicative reciprocity holds thanks to (B.6) is easy to be
verified.

Let us now proceed with the example and build a pairwise comparison
matrix for the set of cities X.

A =





1 3 6
1/3 1 2
1/6 1/2 1





From this matrix, in particular from entry a12, one can figure out that x1
is considered to be three times better than x2. Once a pairwise comparison
matrix is fulfilled there are many methods to derive the priority vector w 2.
In the example it is

w =





6/9
2/9
1/9



 ,

and thus Rome is the best alternative. Using the example it is possible to
verify that (B.6) holds for all i, j = 1, . . . , n. To summarize, we have shown
that, whenever the number of alternatives is too large, pairwise comparing
alternatives is an effective way for obtaining a ranking. Perhaps we have
spent a bit more of our time but w is now far more reliable that it would
be if it had been estimated without using A.
Obviously, the case involving three alternatives is trivial and solely illustra-
tive and pairwise comparison matrices are of great help only if the number
of alternatives is quite large.

From the pairwise comparison matrix to the hierarchy

At this point, it is time to wonder whyA was filled in that particular way and
what factors could have guided the decision maker. Of course, such decision

2The most famous one is the eigenvector method according to which vector w is the
principal right eigenvector of A
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factors are few if the expert is choosing the kind of bread to buy (mainly
price and taste) whereas they were many when, at the age of eighteen, he/she
was asked to choose his/her perspective degree course (location, reputation,
future employment and many others). First, we should start using the word
criterion instead of factor.

The main problem is that matrix A compares alternatives without con-
sidering criteria. Simply, when filling it the decision maker was only thinking
about his/her overall satisfaction with the alternatives and he/she did not
make any separate reasoning about the criteria, e.g. cost, sightseeing and
environment in the example.

Once again, complexity rises and the best way to overcome this problem
is to decompose it. This is why, at this point, Saaty suggested to build a
different matrix for each criterion (we will see later what happens). Hence,
in the following, a matrix A(k) is the matrix of pairwise comparisons be-
tween alternatives according to criterion k, for example, entry a13 of matrix
A(c) entails that the decision maker prefers Rome over Reykjavik if he/she
compares them according to the climatic point of view only.

A(c) =





1 1 4
1 1 4
1/4 1/4 1



 A(s) =





1 2 6
1/2 1 3
1/6 1/3 1



 A(e) =





1 1/2 1/8
2 1 1/4
8 4 1





Then, we estimate their priority vectors

w(c) =





4/9
4/9
1/9



 w(s) =





6/10
3/10
1/10



 w(e) =





1/11
2/11
8/11





Now we have three vectors instead of one. The interpretation of these vectors
is at least twofold: (i) as they are m vectors of dimension n, then one can
imagine them as m points in the n-dimensional space; (ii) vectors are ratings
and they are often contradictory: climate-wise Barcelona is preferred over
Reykjavik, but, on the other hand, the opposite is true if the criterion is the
environment.

Thus, the solution should be a compromise between ratings of different
criteria. The simple arithmetic mean is not the best way because criteria
have different weights as they have different degrees of importance. For
instance, an old and rich man would not care much about the cost as he
may only demand a quiet and peaceful place. We need another type of
averaging operator and the compromise that we are looking for is the result
of a weighted arithmetic mean operation 3. The question is how to find the

3Mathematically, we speak of a convex (linear) combination of vectors

114



weights to associate to different vectors. The only thing we know is that
the weight associated to a vector should be coherent with the importance of
the criteria associated with that rating. The proposed solution is using the
same technique used so far. First, we build a matrix which compares the
importance of criteria respect to the achievement of the goal, Â = (âij)n×n.
In the example, the matrix could be

Â =





1 1/2 1/4
2 1 1/2
4 2 1



 .

Then, we derive a vector ŵ = (ŵ1, . . . , ŵn)

ŵ =





1/7
2/7
4/7





whose components are the weights of criteria. According to this vector the
expert is really interested in the third criterion, i.e. the environment. We
go further with the linear combination of w(c), w(s) and w(e).

w∗ = ŵ1w
(c) + ŵ2w

(s) + ŵ1w
(e)

=
1

7





4/9
4/9
1/9



+
2

7





6/10
3/10
1/10



+
4

7





1/11
2/11
8/11



 ≈





0.287
0.253
0.460





The result of the AHP is w∗ ≈ (0.287, 0.253, 0.46). We have a final ranking
and we can choose the best alternative, which is the one associated with the
’heaviest’ weight, then x3 which, in our example, is Reykjavik. Formally,
the best alternative is any element of the set {xi|w

∗
i ≥ w∗

j , ∀i, j}.
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