
Johannes Eriksson

Turku Centre Computer Sciencefor

TUCS Dissertations
No 127, August 2010

Tool-Supported Invariant-Based

Programming





Tool-Supported Invariant-Based
Programming

Johannes Eriksson

To be presented, with the due permission of the Department of Information
Technologies at Åbo Akademi University, for public criticism in Auditorium
Gamma, the ICT building, Turku, Finland, on August 17, 2010, at 12 noon.

Åbo Akademi University
Department of Information Technologies

Joukahaisenkatu 3-5 A, 20520 Turku, Finland

2010



Supervisor

Prof. Ralph-Johan Back
Department of Information Technologies
Åbo Akademi University
Joukahaisenkatu 3-5, 20520 Turku
Finland

Reviewers

Prof. Bernhard Aichernig
Institute for Software Technology
Graz University of Technology
Inffeldgasse 16 b, 8010 Graz, Austria

Prof. Joseph Kiniry
Software Development Group (SDG)
Programming, Logic, and Semantics Group (PLS)
IT University of Copenhagen
Rued Langgaards Vej 7, 2300 Copenhagen S., Denmark

Opponent

Prof. Bernhard Aichernig
Institute for Software Technology
Graz University of Technology
Inffeldgasse 16 b, 8010 Graz, Austria

ISBN 978-952-12-2446-1
ISSN 1239-1883



Abstract

The development of correct programs is a core problem in computer science. Al-
though formal verification methods for establishing correctness with mathematical
rigor are available, programmers often find these difficult to put into practice. One
hurdle is deriving the loop invariants and proving that the code maintains them. So
called correct-by-construction methods aim to alleviate this issue by integrating
verification into the programming workflow. Invariant-based programming is a
practical correct-by-construction method in which the programmer first establishes
the invariant structure, and then incrementally extends the program in steps of
adding code and proving after each addition that the code is consistent with the
invariants. In this way, the program is kept internally consistent throughout its
development, and the construction of the correctness arguments (proofs) becomes
an integral part of the programming workflow. A characteristic of the approach is
that programs are described as invariant diagrams, a graphical notation similar to
the state charts familiar to programmers.

Invariant-based programming is a new method that has not been evaluated in
large scale studies yet. The most important prerequisite for feasibility on a larger
scale is a high degree of automation. The goal of the Socos project has been to
build tools to assist the construction and verification of programs using the method.
This thesis describes the implementation and evaluation of a prototype tool in
the context of the Socos project. The tool supports the drawing of the diagrams,
automatic derivation and discharging of verification conditions, and interactive
proofs. It is used to develop programs that are correct by construction.

The tool consists of a diagrammatic environment connected to a verification
condition generator and an existing state-of-the-art theorem prover. Its core is a
semantics for translating diagrams into verification conditions, which are sent to
the underlying theorem prover. We describe a concrete method for 1) deriving
sufficient conditions for total correctness of an invariant diagram; 2) sending the
conditions to the theorem prover for simplification; and 3) reporting the results of
the simplification to the programmer in a way that is consistent with the invariant-
based programming workflow and that allows errors in the program specification to
be efficiently detected. The tool uses an efficient automatic proof strategy to prove
as many conditions as possible automatically and lets the remaining conditions
be proved interactively. The tool is based on the verification system PVS and

i



uses the SMT (Satisfiability Modulo Theories) solver Yices as a catch-all decision
procedure. Conditions that were not discharged automatically may be proved
interactively using the PVS proof assistant.

The programming workflow is very similar to the process by which a mathemat-
ical theory is developed inside a computer supported theorem prover environment
such as PVS. The programmer reduces a large verification problem with the aid of
the tool into a set of smaller problems (lemmas), and he can substantially improve
the degree of proof automation by developing specialized background theories and
proof strategies to support the specification and verification of a specific class of
programs. We demonstrate this workflow by describing in detail the construction
of a verified sorting algorithm.

Tool-supported verification often has little to no presence in computer science
(CS) curricula. Furthermore, program verification is frequently introduced as an
advanced and purely theoretical topic that is not connected to the workflow taught
in the early and practically oriented programming courses. Our hypothesis is that
verification could be introduced early in the CS education, and that verification
tools could be used in the classroom to support the teaching of formal methods. A
prototype of Socos has been used in a course at Åbo Akademi University targeted
at first and second year undergraduate students. We evaluate the use of Socos in
the course as part of a case study carried out in 2007.

ii



Sammanfattning

Utveckling av korrekta program är ett grundläggande problem inom dataveten-
skapen. Ehuru det existerar formella verifieringsmetoder för att fastställa korrek-
thet med matematisk stränghet, upplever programmerare ofta dessa som svåra
att tillämpa i praktiken. En stötesten är att härleda invarianter samt bevisa att
programkoden bevarar dessa. Så kallade correct-by-construction-metoder strävar
till att lindra problemet genom att integrera verifiering i programutvecklingsarbetet.
Invariantbaserad programmering är en praktiskt orienterad correct-by-construction-
metod i vilken programmeraren först fastställer programmets invariantstruktur, och
därefter utökar programmet stegvis. Varje steg består av en kodningsfas följd av
en verifieringsfas som fastställer att den tillagda programkoden är konsistent med
invarianterna. Genom detta förfarande hålls programmet internt konsistent under
hela utvecklingsarbetet, och konstruktionen av riktighetsargumenten (bevisen)
blir en väldefinierad del av arbetsflödet. Ett särdrag hos metoden är att program
beskrivs i form av invariantdiagram, en grafisk notation som är snarlik de för
programmerare välbekanta tillståndsmaskinerna.

Invariantbaserad programmering är en ny metod som ännu inte utvärderats i
större skala. Den viktigaste förutsättningen för att metoden skall vara utförbar i
större skala är att den kan automatiseras i hög grad. Målet med Socos-projektet
har varit att bygga verktyg som stöder utveckling och verifiering av program enligt
metoden. Föreliggande avhandling beskriver implementationen och utvärderingen
av ett prototypverktyg inom Socos-projektet. Verktyget stöder diagramritning,
härledning och avskrivning av bevisvillkor, samt interaktiva bevis. Det används för
att bygga program som är korrekta som en direkt följd av utvecklingsprocessen.

Verktyget består av en diagrambaserad omgivning kopplad till en teorembe-
visare. Dess kärna är en semantik för översättning av diagram till bevisvillkor,
vilka skickas till en underliggande teorembevisare för förenkling. Vi beskriver
en konkret metod för att 1) härleda tillräckliga villkor för total korrekthet hos ett
invariantdiagram; 2) skicka bevisvillkoren till en avancerad teorembevisare för
förenkling; och 3) rapportera verifieringsresultaten till användaren på ett sätt som
stöder arbetsflödet i invariantbaserad programmering och som gör det möjligt att
identifiera fel i programspecifikationen. Verktyget använder existerande effektiva
bevisstrategier för att avskriva så många villkor som möjligt automatiskt och stöder
därutöver interaktiv hantering av de återstående villkoren. Verktyget är baserat

iii



på verifieringssystemet PVS och använder SMT-verktyget (Satisfiability Modulo
Theories) Yices som grundläggande beslutsprocedur. Villkor som inte avskrivs
automatiskt kan bevisas interaktivt i PVS.

Det verktygsstödda arbetsflödet för invariantbaserad programmering är mycket
snarlikt den process genom vilken en matematisk teori utvecklas i en datorstödd
teorembevisningsomgivning såsom PVS. Programmeraren reducerar ett stort bevis-
problem med hjälp av verktyget till mindre delproblem (lemman), och denne kan
väsentligt förbättra automatiseringen av bevisen genom att utveckla specialiserade
bakgrundsteorier och bevisstrategier för att stöda specifikationen och verifieringen
av en specifik klass program. I avhandlingen demonstrerar vi detta arbetsflöde
genom att ge en detaljerad beskrivning av konstruktionen av en verifierad sorter-
ingsalgoritm.

Det är vanligt att verktygsbaserad programverifiering ingår i ingen eller ringa
omfattning i universitetens undervisningsprogram i datavetenskap. Därutöver
introduceras programverifiering ofta som ett fördjupat och rent teoretiskt ämne
utan koppling till det arbetsflöde som lärs ut i de tidiga och praktiskt orienterade
programmeringskurserna. Vår hypotes är att verifiering kan introduceras tidigt i
datavetenskapsutbildningen, och att verifieringsverktyg kan användas för att stöda
undervisningen av formella metoder. En prototyp av Socos-verktyget har använts i
en kurs som ingår i grundundervisningen i datavetenskap vid Åbo Akademi och
som är riktad till första och andra årets studerande. Vi utvärderar här tillämpningen
av Socos i kursen som en del av en fallstudie genomförd år 2007.

iv



Acknowledgements

This thesis is not the product of a single person, but the result of a joint endeavor
of which I feel greatly privileged to have partaken. Without the dedicated support
of many people, this thesis would not have come about.

I wholeheartedly thank my supervisor, Professor Ralph-Johan Back, for in-
troducing me to the world of computer science research, and for believing in my
ability to finish this project more than I did myself. His proficiency in applying
sharp theory to versatile areas of computer science and software engineering, as
well as methodical goal-oriented approach, have been constant sources of inspira-
tion. During the whole process he sustained me with unfailing encouragement and
immensely helpful criticism on the shaping of the thesis.

Professor Bernhard Aichernig and Professor Joseph Kiniry kindly agreed to
review the thesis. I sincerely thank them both for taking time to provide useful
comments and suggestions, which greatly helped improve my manuscript. I would
additionally like to thank Bernhard Aichernig for accepting to be the opponent in
the public defense of my thesis.

Thanks go to my co-authors Victor Bos, Linda Mannila, Luka Milovanov and
Magnus Myreen. During my undergraduate studies Victor showed me, through
impeccable example, how mathematics is implemented in a computer. Linda is
an excellent researcher as well as teacher, and our collaboration in the classroom
has taught me many things. Without the process-oriented and agile coaching of
Luka, the software on which the research of this thesis is based would not have
been realized; our collaboration on experimental software engineering was also
inspiring. Magnus conceived and implemented a large portion of the first Socos
system, and his uncompromising example taught me a great many things about the
mechanics of program verification.

I want to thank Ivan Porres for offering me a job in the Gaudí Software Factory
during my undergraduate studies, and for ultimately convincing me to pursue
doctoral studies. Whenever I was mathematically challenged, Viorel Preoteasa
patiently explained the intricacies of higher-order logic and automatic theorem
proving; moreover, he has also been a good colleague and friend. While working at
the department I have benefited from many interesting software engineering-related
discussions with Marcus Alanen and Torbjörn Lundkvist. I also want to thank
Herman Norrgrann for his active involvement in the early days of the Socos project.

v



Brian Plüss provided during his stay with the department in 2007 several inspiring
ideas.

In developing the software to carry out the research in this thesis, I have been
helped in various capacities by many people. I worked with several great teams
in the Gaudí Software Factory, and maintain a fond memory of the unique spirit
(and engaging coffee break discussions) that pervaded these teams. In particular,
I want to thank the people involved in developing and testing Socos: Federico
Dobal, David Eränen, Jon Haikarainen, Fredrik Holmberg, Sören Höglund, Nazrul
Islam, Juuso Jokiniemi, Sami Nevalainen, Niklas Nylund, Håkan Olin, Mikael
Sand, Daniel Sjöblom, Sebastian Strand, John Tran and Johan Ånäs. I also want
to thank the participants in the “Programsemantik” courses of 2007 and 2008 for
valuable feedback on the Socos tool.

Thanks go the department secretary Christel Engblom for keeping the depart-
ment up, Joakim Storrank and Jockum Lillsund for keeping the hardware up, and
Tomi Mäntylä at TUCS for taking care of the publications. During the years of
working at the department, I have shared many interesting discussions with fellow
colleagues Pontus Boström, Fredrik Degerlund, Åke Gustavson, Mats Neovius,
Mikolaj Olszewski, Patrick Sibelius, and Kim Solin.

I am honored to have participated in the TUCS graduate school, and grateful
for its financial support and travel grants. I am also honored to have been able to
work with the Department of Information Technologies at Åbo Akademi University,
under the direction of Professor Babro Back and Professor Johan Lilius. I am
grateful to the Academy of Finland for funding the Center for Reliable Software
Technology (CREST), and to TEKES for financing the development of Socos via
the Tores project.

I also want to thank my friends from outside of work for not asking too many
questions about the topic of my thesis. Finally, I am grateful for the love and
support of my family throughout my education and academic career.

vi



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Invariant-based programming . . . . . . . . . . . . . . . . . . . . 3
1.3 Tool support for IBP . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 The Socos environment . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Research methodology . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Contributions of the thesis . . . . . . . . . . . . . . . . . . . . . 9
1.7 Role of the author . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.8 List of original publications . . . . . . . . . . . . . . . . . . . . . 11
1.9 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . 12

2 Programming for Correctness 13
2.1 Foundations of program verification . . . . . . . . . . . . . . . . 13
2.2 Correctness proofs . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 The constructive approach . . . . . . . . . . . . . . . . . . . . . 15
2.4 Invariant-based programming . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Invariant diagrams . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 IBP workflow . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Related approaches . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Tool-Supported Program Verification 27
3.1 Verification workflow . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Specification languages . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Semantics and embedding . . . . . . . . . . . . . . . . . . . . . 30
3.4 Theorem proving . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Verification techniques and tools . . . . . . . . . . . . . . . . . . 32

3.5.1 Design by contract . . . . . . . . . . . . . . . . . . . . . 32
3.5.2 Extended static checking . . . . . . . . . . . . . . . . . . 32
3.5.3 Program verifiers . . . . . . . . . . . . . . . . . . . . . . 33
3.5.4 Theorem provers . . . . . . . . . . . . . . . . . . . . . . 33
3.5.5 SMT solvers . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

vii



4 PVS and Yices 37
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 The PVS specification language . . . . . . . . . . . . . . . . . . 38

4.2.1 Structure of specifications . . . . . . . . . . . . . . . . . 38
4.2.2 Type system . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.3 Variable and constant declarations . . . . . . . . . . . . . 40
4.2.4 Formula declarations . . . . . . . . . . . . . . . . . . . . 41

4.3 Theorem proving in PVS . . . . . . . . . . . . . . . . . . . . . . 42
4.3.1 Commands . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.2 Example proof . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.3 Strategy language . . . . . . . . . . . . . . . . . . . . . . 44
4.3.4 Proof scripts . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Yices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 The Socos Language 49
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Basic language structure . . . . . . . . . . . . . . . . . . . . . . 51

5.2.1 Lexical conventions . . . . . . . . . . . . . . . . . . . . . 51
5.2.2 Expressions and type expressions . . . . . . . . . . . . . 51
5.2.3 Constant and program variable declarations . . . . . . . . 52

5.3 Program constructs . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3.1 Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3.2 Procedures . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3.3 Situations . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3.4 Transition trees . . . . . . . . . . . . . . . . . . . . . . . 57
5.3.5 Statements . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . 60

6 Verification Methodology 63
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.3 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.4 Liveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.5 Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.6 Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.6.1 Procedure body verification . . . . . . . . . . . . . . . . 73
6.6.2 Procedure call verification . . . . . . . . . . . . . . . . . 73
6.6.3 Recursive procedures . . . . . . . . . . . . . . . . . . . . 74

6.7 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . 75
6.7.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . 76
6.7.2 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . 77

viii



7 Verifying Socos Programs in PVS 79
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.2 Translation into PVS theories . . . . . . . . . . . . . . . . . . . . 80
7.3 Verification conditions . . . . . . . . . . . . . . . . . . . . . . . 82
7.4 Type correctness . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.5 Background theories . . . . . . . . . . . . . . . . . . . . . . . . 86
7.6 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . 88

7.6.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . 89
7.6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . 89

8 An Exercise in Tool-Supported IBP 91
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.2 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.3 Situation structure . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.4 Loop initialization and exit transitions . . . . . . . . . . . . . . . 96
8.5 The siftdown procedure . . . . . . . . . . . . . . . . . . . . . . 97
8.6 Completing heapsort . . . . . . . . . . . . . . . . . . . . . . . 101
8.7 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . 104

9 Case study: Socos in Teaching 107
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
9.2 Tools in formal methods education . . . . . . . . . . . . . . . . . 108
9.3 Undergraduate course in IBP . . . . . . . . . . . . . . . . . . . . 109

9.3.1 Syllabus . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
9.3.2 Use of Socos . . . . . . . . . . . . . . . . . . . . . . . . 110

9.4 The study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
9.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . 112
9.4.2 Problem sessions . . . . . . . . . . . . . . . . . . . . . . 112
9.4.3 Classroom observation . . . . . . . . . . . . . . . . . . . 114
9.4.4 Questionnaire result . . . . . . . . . . . . . . . . . . . . 116

9.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
9.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
9.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

10 The Socos Project 125
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
10.2 Socos1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
10.3 Socos2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
10.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

11 Conclusions and Future Work 133
11.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
11.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

ix



11.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A Listings 141
A.1 Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
A.2 Translation of Socos programs into PVS theories . . . . . . . . . 142
A.3 Background theories . . . . . . . . . . . . . . . . . . . . . . . . 146
A.4 The heapsort context . . . . . . . . . . . . . . . . . . . . . . . 148

Bibliography 151

x



List of Figures

1.1 An invariant diagram . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Program being verified in Socos1 . . . . . . . . . . . . . . . . . . 8

2.1 Palindrome program . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 PALINDROME illustration . . . . . . . . . . . . . . . . . . . . . . 20
2.3 MISMATCH illustration . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 PALINDROME specification diagram . . . . . . . . . . . . . . . . 21
2.5 LOOP situation illustration and invariant . . . . . . . . . . . . . . 22
2.6 Final invariant structure . . . . . . . . . . . . . . . . . . . . . . . 23
2.7 Proof tree outline for palindrome program. . . . . . . . . . . . . . 25

3.1 Basic program verifier architecture . . . . . . . . . . . . . . . . . 27
3.2 Verification workflow . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 A PVS proof tree . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1 Specification of procedure find . . . . . . . . . . . . . . . . . . 56
5.2 Implementation of procedure find . . . . . . . . . . . . . . . . . 59

6.1 Weakest precondition . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 A terminating program . . . . . . . . . . . . . . . . . . . . . . . 69
6.3 Decomposed termination proof of Figure 6.2 . . . . . . . . . . . . 72

7.1 Example PVS translation of two contexts . . . . . . . . . . . . . 81
7.2 A program to reverse an array . . . . . . . . . . . . . . . . . . . 87

8.1 Building the heap . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.2 Sorting the array . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.3 Heapsort situations . . . . . . . . . . . . . . . . . . . . . . . . . 96
8.4 heapsort with acyclic transitions in place . . . . . . . . . . . . . 97
8.5 siftdown specification . . . . . . . . . . . . . . . . . . . . . . . 98
8.6 The siftdown loop invariant . . . . . . . . . . . . . . . . . . . 99
8.7 A first attempt at siftdown . . . . . . . . . . . . . . . . . . . . 99
8.8 Unproven condition for the exit transition from SIFT. . . . . . . . 100
8.9 Final siftdown program . . . . . . . . . . . . . . . . . . . . . . 101

xi



8.10 heapsort with loop transitions in place . . . . . . . . . . . . . . 102
8.11 Unproven condition for loop transition from TEARHEAP . . . . . 103

9.1 Fragment of incorrect solution to UP2 . . . . . . . . . . . . . . . 118

10.1 Interaction between Socos and research projects . . . . . . . . . . 126
10.2 The Socos1 environment . . . . . . . . . . . . . . . . . . . . . . 127
10.3 Software architecture of Socos2 . . . . . . . . . . . . . . . . . . . 129
10.4 Socos diagram editor in Eclipse . . . . . . . . . . . . . . . . . . . 130

List of Tables

7.1 Transformation rules pvs and prf . . . . . . . . . . . . . . . . . . 83

9.1 Student scores for graded problem set . . . . . . . . . . . . . . . 114
9.2 Post-course questionnaire results . . . . . . . . . . . . . . . . . . 117

A.1 List of typeset symbols . . . . . . . . . . . . . . . . . . . . . . . 141

xii



Chapter 1

Introduction

This chapter gives the motivation why we consider the subject of this thesis to be
timely and relevant. We define the goals of the research, the methodology used
and the tools built. We summarize the contributions of the thesis, and present a
structural overview of the remainder of the contents.

1.1 Motivation

Despite more than 50 years of development, the software industry is still fraught
with faulty products. Undetected errors introduced in the specification, design and
implementation phases of the software process manifest as faults in the deployed
products. Test-based validation is the standard quality control method in industry,
but is generally unable to discover all faults in a software before deployment. Faulty
software leads to low reliability, incurs high maintenance costs, and impugns the
credibility of the software industry as a whole [56].

A stronger alternative to testing, program verification, also has a research track
record dating back over 50 years [102]. Formally verifying a program involves
the construction of a rigorous mathematical proof establishing that the program
satisfies its specification. While so called formal methods have long sought to
deliver the elusive goal of software that is provably correct, integration of formal
methods into industry practice has been marked by recalcitrance. The late eighties
and early nineties saw a heated debate on the role of formal methods in software
engineering [75, 90]. Formal methods have been hampered by high up front cost,
difficulty to apply in existing processes, lack of practicable tools [52, 98], but
also by misconceptions on both academic [137] and industrial [45, 89] sides of
the fence. Formal methods still remain very much in the domain of experts and
their use is restricted to security features like cryptographic protocols, and to
environments where the cost of failure is high such as safety-critical and other
dependable systems.

Customers of software have traditionally prioritized feature richness and per-

1



formance over reliability. However, as more sectors of society become software
dependent, one may expect the market to grow less tolerant of faulty software,
thereby increasing cost-effectiveness of formal methods and escalating incentive
to invest in them [147]. Economics is a main driver for acceptance; for instance,
the hardware industry widely adopted formal verification in response to much-
publicized and expensive fiascos such as the Intel FDIV bug. As a case in point,
the world’s largest software manufacturer, Microsoft, has for a number of years
now devoted much resources to its trustworthy computing initiative [119], in which
reliability is one of the fundamental pillars; a concrete example is the focus on
static analysis tools for device driver development [31].

Testing and debugging. The modus operandi of most programmers is to write
an initial version of a program, invent a set of test data, execute the program on
the test data, and validate its results against the specification. Discovered errors,
“bugs”, are corrected and the “debugging” cycle is re-iterated until the tests pass.
The debugging cycle involves a feedback loop, since a programmer often does not
have a complete understanding of how a program he (or someone else) has written
works (or fails). The cycle is therefore a kind of empirical exploration in which
the specification serves as a hypothesis, and the test cases become observations to
either strengthen or falsify the hypothesis. Programmers often record their tests in
a structured way—e.g., using unit testing [100]—so that existing tests can catch
new bugs that are introduced as the program is changed. It is generally much easier
to keep a program consistent if the feedback loop is short and the tests are run
frequently, compared to debugging a large set of changes at once. The practice of
continuous testing [144] takes this to the extreme.

Program verification. Since even the most meticulous of testing regimens cover
only a fraction of all possible inputs, faults inevitably remain undiscovered—a
point succinctly enunciated by Dijkstra’s oft-quoted remark [64] that “program
testing can be used to show the presence of bugs, but never to show their absence.”
Ensuring the absence of errors requires reasoning about all possible execution
paths of a program, proving mathematically that the program behaves correctly
(according to some primitive axiomatization of its runtime environment) with
respect to its specification. This is a much stronger result, but also one that is much
harder to achieve, since it requires the construction of a mathematical correctness
proof. In the verification process the onus is on the programmer to not only write
the code, but also to motivate with mathematical rigor that each part of the code
satisfies the specification. For this to be feasible, the verifying programmer cannot
assent to the view that the program is an entity into which malicious bugs can
“creep” from the outside. Every fault is put into the program by the programmer,
who therefore must attain complete control over and full understanding of the
artifacts he is producing.

2



The role of workflow. However, programming as a process usually does not start
from a fundamental, complete understanding of the program and program domain
at hand. Achieving this level of understanding is typically an iterative process. Just
like the debugging cycle gradually increases the programmer’s understanding of
the program under construction, a verified program may have been preceded by
many incomplete verification attempts, each acting as a stepping stone towards
the final and correct version. For the programmer the stepping stones are lessons
learned, providing additional insight into and understanding of the problem being
solved. Thus, also in verification there is a feedback loop, in which the actions
of the programmer are influenced by interaction with a verification tool. If the
feedback loop is short, and the process is modular in the sense that each unit of
the program is verified before the next is added, the process can be considered a
correct-by-construction development process.

Verification tools. Computer aided software engineering (CASE) tools and in-
tegrated development environments (IDE) increase programmer productivity by
automating many of the chores of software engineering. The traditional design,
implementation, testing and debugging activities are supported by a panoply of
modeling tools, source code editors, debuggers, unit testing frameworks, test data
and oracle generators, and other specialized tools. Formal verification has its
own range of activities that can be automated. Research in mechanized reasoning
has made available a host of powerful theorem provers, capable of automating
many of the deductions required in formal verification. These tools are key to
making formal methods tractable, since they significantly reduce the human effort
required in the verification process. Research in tool-supported verification has
reached a point where several tools have been applied successfully in industrial
projects, and use is becoming increasingly widespread [103, 158]. There may
be reason to anticipate that verification tools will be as ubiquitous in the future
as type checkers are today in software development: Hoare has introduced the
concept verifying compiler [95]—a compiler that verifies the correctness of the
programs it compiles—and envisions that such a compiler may be reality within
15-20 years [96, 97]. If this scenario unfolds, it is not unreasonable to think that
the programmers of tomorrow may be producing verified software on a daily ba-
sis. Nevertheless, tool-supported program verification—in academia as well as in
industry—certainly enjoys a prominent presence in the zeitgeist.

1.2 Invariant-based programming

This thesis is an inquiry into the practical utility of invariant-based programming—
in the sequel abbreviated IBP—when supported by state-of-the art verification
tools. IBP is a correct-by-construction oriented program development method
introduced in the 1980’s by Back [11]. It was inspired by early work of Reynolds

3



[140] on reasoning with transitions and invariants, and has since been developed
by Back towards a hands-on correct-by-construction method [16].

IBP is based on diagrammatic notations, invariants, and a close relationship
between the program and its correctness proof. IBP provides a light formalism
that is easy to learn and that supports teaching formal methods. The programs are
called invariant diagrams and expressed in a notation superficially similar to Harel
statecharts [91], or UML state machines [129, pp. 582–586]. However, rather than
describing finite sets of states and transitions, invariant diagrams use the concept
of situations to partition the program into a finite collection of state subsets. A
situation is a collection of constraints over the program statespace. Situations can
be nested to inherit the constraints of outer situations. Situations are connected by
transitions—program statements comprised of guards (tests) and assignments that
constitute the actual executable part of the program.

Figure 1.1 shows an example invariant diagram. The program in the diagram
computes the sum of the natural numbers up to n using a loop to accumulate the
sum in the variable s. The situations are drawn as boxes with rounded corners.
Constraints are written in the top left hand corner of the situations. The transitions,
drawn as arrows connecting to the edges of the situations, describe the flow of
control. Program statements are written next to the transitions. Guards are written
inside square brackets, and := denotes assignment of a value to variable.

n,s,k ∈ Z
n≥ 0

0≤ k ≤ n 0≤ n− k
s = 0+1+2+ · · ·+ k

k = n

k := 0 ; s := 0

[k 6= n]

k := k +1 ; s := s+ k

[k = n]

Figure 1.1: An invariant diagram representing a program that computes the sum of
the first n natural numbers

The workflow of IBP differs significantly from that of a posteriori verification
approaches, in which the programmer annotates the already written code with
invariants and assertions. In IBP, the programmer instead establishes the situation
structure of a program before he adds the transitions; the program is adapted to
fit the invariants rather than vice versa. IBP is also an incremental verification
methodology: while developing a program, the programmer verifies that each
transition is consistent as it is added and before moving to the next transition. A

4



transition is consistent if and only if its effect on the state is consistent with the
target situation; a program is consistent if and only if all transitions are consistent.
Additionally, the programmer verifies liveness by checking that at least one tran-
sition is executable from each non-final situation, and termination by checking
that each cycle decreases a variant. A variant is a measure with a lower bound of
the remaining number of cycles, and is written in the upper right hand corner of a
situation.

1.3 Tool support for IBP

An invariant diagram is not only an executable program, but also a correctness
proof outline. Verification conditions—logical formulas whose validity imply the
correctness of a program—can be derived straightforwardly from the diagram. The
number of conditions so produced is large, even for small programs; however, the
majority of them are typically rather shallow and could be discharged automatically
by a state-of-the-art theorem prover. Thus, if the generation and discharging of
conditions is automated, the remaining conditions that the programmer has to
consider can be significantly simplified. The Socos Project, directed by professor
Ralph-Johan Back at the Department of Information Technology of Åbo Akademi
University has since 2005 focused on the development of tool support for IBP. The
goal of the project has been to build a tool—the Socos environment—that supports
the construction, verification and compilation of invariant-based programs within
a single framework. Below we summarize the design goals behind the Socos
environment along three lines: practicability, transparency and learnability.

Practicable. Since IBP was introduced as a hands-on method, we wanted Socos
to be usable by, and provide value to, programmers with little or no formal methods
experience. Firstly, familiarity with theorem provers should not be required for
basic use of the tool; a basic background in predicate logic and the IBP workflow
should be enough to get started. Secondly, the tool should provide a high degree
of automation. This involves automatic verification condition generation and the
use of state-of-the-art theorem provers to discharge as many conditions as possible
without user intervention. Interactive theorem proving should also be available
to handle the remaining conditions. Thirdly, the tool should have an easy to
use interface that supports the IBP workflow, in particular the development of
the situations before the transitions. It must support a correct-by-construction
workflow in the sense that the user can verify the consistency of incomplete
versions of a program as stepping stones towards a complete, consistent program.
Incompleteness means that some transitions have not yet been added, or that
liveness or termination has not yet been proved. Feedback from the theorem prover
should be communicated to the user in a visually intuitive way, to allow errors and
inconsistencies to be identified quickly when things go wrong.

5



Transparent. Program verification is often viewed as being comprised of two
sequential activities: constructing the program, and proving the verification con-
ditions. A condition that is not automatically discharged poses a challenge to the
programmer, who must determine if the condition is either false, or indeed true
and provable with additional help (such as a guided proof). Making the wrong
judgment can result in a time-consuming futile search for a proof. Also, when
a program error is detected and the program is rectified, existing proofs must be
rechecked as they may no longer be valid for the updated verification conditions.
Predicting the effect of changes on proof effort requires a good understanding of
the relationship between a program and its correctness conditions. In IBP, the
correctness conditions are already present directly in the diagram. The advantage
of this is that the programmer gets a much better intuition of the relation between
the program and its correctness proof, and hence when the program is changed,
better understanding of the effects of the changes on the proof effort. This ought
to be mirrored in the tool: the programmer should work with a single data repre-
sentation of the program—the diagram—while any intermediate steps (such as
verification condition generation) should be hidden. The tool-supported workflow
should integrate the programming and verification activities seamlessly.

Learnable. A commonly quoted barrier to industrial uptake of formal methods
is the lack of familiarity with correctness concepts among software practitioners
and the subsequent need for extensive and expensive retraining. Unless one resigns
to the idea that formal methods are useful only if invisible—i.e., encapsulated into
tools such that the user is completely shielded from the correctness concepts—
program verification demands new working skills from programmers, in particular
logical and mathematical reasoning. If these skills were learned in university, the
transition could be smoother. However, mathematics and programming education
are often separated within CS curricula. In 1998, Parnas [137, p. 196] wrote:

“Most computer science programs are schizophrenic. In some courses, we teach
mathematical theory but spend little time showing how to apply it in software
development. In other courses, we teach programming but rarely apply any theory.“
We therefore think that a tool that integrates programming and verification should
be introduced in the classroom, so that these skills can be learned within a single
environment and in support of each other. We also think that there is value in
familiarizing tools at an early stage in the CS program, rather than only in later
advanced courses; hence, the tool should provide value to and be usable by students
with no experience in formal methods or program verification.

1.4 The Socos environment

In collaboration with Ralph-Johan Back, Magnus Myreen and Viorel Preoteasa, we
have designed, implemented and evaluated two versions of the Socos environment.

6



We will refer to these as Socos1 and Socos2 in the sequel. Both versions support the
same verification workflow but differ in the programming language notation and
the underlying theorem prover used. We will mention the explicit Socos version in
discussions where the distinction is relevant, but otherwise refer to the tool only as
Socos.

Socos supports the design, construction, and verification of invariant-based
programs. The tool lets the programmer create and edit invariant diagrams in a
graphical environment using drawing program like commands. By the click of a
button, the tool generates verification conditions from the diagram and sends them
to a state-of-the-art automatic prover for simplification. It then shows the simplified
conditions to the programmer. These conditions are often help the programmer
in identifying errors and omissions in the program. True conditions that were not
discharged by the automatic prover may be proved interactively in a proof assistant.

Socos supports incremental correct-by-construction development of programs.
The programmer can verify the consistency of a program that is incomplete in
the sense that a number of transitions may still remain to be added. In the Socos
workflow the programmer verifies continuously during development that each
increment preserves the consistency of the program built thus far, and Socos
provides intuitive visual feedback when something goes wrong. It also allows
fine-grained control over the generation of liveness and termination conditions,
making it possible to distribute the proof effort over the development process as
desired by the programmer. Figure 1.2 shows a screenshot of a Socos1 session,
in which a version of the summation program in Figure 1.1 is being edited. The
graphical interface consists of a menu bar, a tool bar, an editing area in which
the diagram elements are created and manipulated, and a pane for inspecting the
verification conditions. The leftmost part of the pane indicates that all conditions
have been proved to be true by a validity checker (Simplify). The rightmost part
shows the verification condition for the selected element (in this case the loop
transition).

Socos2 is based on the theorem prover PVS [143]. The programmer expresses
all program specifications, situation constraints, and statements in the PVS lan-
guage [136]. During verification, the tool generates verification conditions encoded
within PVS theories. To simplify the specification and verification of programs, the
user can connect custom PVS theories containing domain-specific definitions and
proofs—in the sequel referred to as background theories—to the program being
verified. Any PVS proof strategy [134] may be used to handle the generated verifi-
cation conditions. We have defined a strategy based on the SMT solver Yices [69]
to be used as the default catch-all strategy. The user can extended this strategy to
use specific properties derived in background theories in the proofs, thereby raising
the level of abstraction in the proofs and improving the degree of automation.

7



Figure 1.2: Program being verified in Socos1

1.5 Research methodology

The formal methods community studies the theory and application of rigorous
mathematical reasoning to software and hardware development. This includes,
among others, formal programming and specification languages, semantics, verifi-
cation techniques, theorem proving, program analysis and static checking, as well
as the educational aspects. Rather than placing itself within one of these topics, the
work presented in this thesis touches all of them; our research can be considered
to be based in the practical formal methods field, in which researchers strive to
find workflows, processes and tools that concretize the formal methods and make
them accessible to programmers. The research methodology used in this study has
exploratory, constructive and empirical aspects.

Exploratory. Since IBP is a new method, it was not clear from the outset how
an effective programming environment for it should be designed, nor how to
implement such a tool. Some of the main research questions are:

• How can we integrate tool support into the workflow of IBP?

• How can we use existing verification tools, such as specification languages
and theorem provers, to support IBP?

8



• How can we achieve a high degree of proof automation?

• What is a suitable software architecture for an IBP tool?

• What is a suitable trade-off between generality and conceptual simplicity?

The research in this thesis investigates these questions and presents some answers
based on the experience gained from building and evaluating the Socos environ-
ment.

Constructive. While there exists several well documented verification tools,
adapting existing tools for a new programming methodology such as IBP is a
considerable challenge. The central theme in our study is the prototyping of a proof
of concept for demonstrating the feasibility of tool-supported IBP. We describe
how the Socos environment is implemented, its interfaces to external components,
and how it is used in practice to build correct invariant-based programs.

Empirical. The empirical aspect of our study concerns application of the tool in
computer science (CS) education. Our hypothesis is that IBP improves novices’
understanding of program verification, and that students who have had no exposure
to formal methods can use a tool such as Socos to verify non-trivial programs.
We collected data based on questionnaires, classroom observations and hand-in
assignments. We analyze this data to shed light on the educational aspects of
Socos, the feasibility of introducing IBP to novices, the perceived value of Socos
by students as well as teachers, and potential usability issues.

1.6 Contributions of the thesis

We summarize the contributions of the thesis as follows.

Concrete tool-supported IBP. We define a concrete invariant-based program-
ming language with dual textual and diagrammatic syntaxes, and give a set of
sufficient correctness conditions, based on weakest preconditions, over the lan-
guage. The correctness conditions are sufficient conditions for an invariant-based
program to be consistent, live and terminating. The conditions admit fine-grained
verification of invariant diagrams, and are suitable for checking in a theorem prover.

Software architecture. We have developed a software architecture for an IBP
tool, comprising three main components: a diagram editor, a verification condition
generator, and an interface to a theorem prover. When a diagram drawn in the
editor is checked for correctness, the verification condition generator sends the
generated conditions to the theorem prover, which tries to discharge as many of
them as possible. Conditions that were not discharged automatically are reported

9



to the programmer. Valid conditions that were not discharged automatically may
be proved interactively in the theorem prover.

Implementation. We have implemented the prototype tool Socos1 according to
the above architecture. Based on feedback from the prototype we have subsequently
developed Socos2 to be an improved PVS based verification and programming
environment for IBP. We describe the development settings and history of Socos.
We also presents the current status of implementation of Socos2 and the most
important ongoing and future work

Translation of invariant diagrams into PVS. We have defined and imple-
mented an embedding of invariant diagrams in PVS. The invariant diagrams are
translated into PVS theories such that consistency of the theories implies consis-
tency of the diagrams. We describe the mechanics of the translation process and
the issues involved.

Support for specification and proof automation. Socos2 can use specialized
domain-specific background theories and proof strategies to facilitate the specifica-
tion of programs and to greatly increase proof automation. We describe a general
end-game strategy for filtering verification conditions based on the SMT solver
Yices, and show how this strategy can be extended to various program domains.

Case study. We have built a set of verified programs using Socos. The case
study presented in this thesis is the standard heapsort algorithm. Despite the
straightforward implementation of heapsort, verification is non-trivial. We develop
in our tool an invariant-based implementation for which almost all verification
conditions are proved automatically with the aid of a background theory. The
background theory is general, and could be reused for other programs in the same
domain.

Applications in teaching. In a pilot study in 2007, we evaluated Socos in the
context of an undergraduate university course as part of a descriptive case study
in IBP. The aim of the course was to teach the IBP methodology. The course was
given to first and second year CS students who had no prior experience of program
verification. Students used Socos to complete their final assignments in the course.
The study encompassed analysis of hand-in assignments, classrooms observation
and a post-course questionnaire.

1.7 Role of the author

The author of this thesis has been primarily responsible for the implementation
of two graphical front-ends for Socos1—one textual [18] and one diagrammatic

10



[22]—as well as for the evaluation of both systems. The author has been pri-
marily responsible for the specification, software architecture, concrete design,
implementation and evaluation of Socos2 since the inception of the project. The
translation of invariant diagrams into higher-order logic in PVS was developed
in joint work with Ralph-Johan Back, Magnus Myreen, and Viorel Preoteasa; it
was implemented in Socos2 by the author. The research on IBP in teaching was
carried out in collaboration with Linda Mannila and Ralph-Johan Back; the author
has been primarily responsible for the evaluation of the Socos1 environment as a
teaching and learning aid.

The overall design of the Socos1 and Socos2 systems is a result of joint work
with Ralph-Johan Back, Magnus Myreen and Viorel Preoteasa. A large portion
of the concrete implementation and testing work for both Socos1 and Socos2 was
carried out by student programmers employed at Åbo Akademi University. These
developers have worked under direct supervision of the author. The extension of
Socos2 to procedures with multiple exits was carried out in collaboration with
Ralph-Johan Back and Brian Plüss.

1.8 List of original publications

The original articles on which this thesis is based are listed in order of publication
below.

1. Ralph-Johan Back, Johannes Eriksson, and Luka Milovanov. Using Stepwise
Feature Introduction in Practice: An Experience Report. In Proceedings
of the 2nd International Workshop on Rapid Integration of Software En-
gineering Techniques – RISE 2005, Heraklion, Crete, Greece, September
2005.1

2. Ralph-Johan Back, Johannes Eriksson, and Magnus Myreen. Verifying
Invariant Based Programs in the SOCOS Environment. In BCS-FACS
Workshop on Teaching Formal Methods: Practice and Learning Experience,
London, UK, December 2006.

3. Ralph-Johan Back, Johannes Eriksson, and Magnus Myreen. Testing and
Verifying Invariant Based Programs in the SOCOS Environment. In Pro-
ceedings of the First International Conference on Tests and Proofs – TAP
2007, Zürich, Switzerland, February 2007.2

4. Ralph-Johan Back, Johannes Eriksson, and Linda Mannila. Teaching the
Construction of Correct Software Using Invariant Based Programming. In
Proceedings of the 3rd South-East European Workshop on Formal Methods.
Thessaloniki, Greece, December 2007.

1Also available as TUCS Technical Report number 705.
2Also available as TUCS Technical Report number 767.

11



5. Ralph-Johan Back, Johannes Eriksson, and Victor Bos. MathEdit: Tool
Support for Structured Derivations. TUCS Technical Report 854, Turku
Centre for Computer Science, December 2007.

6. Johannes Eriksson and Ralph-Johan Back. Applying PVS Background
Theories and Proof Strategies in Invariant Based Programming. Accepted
for publication in the 12th International Conference on Formal Engineering
Methods – ICFEM 2010, Shanghai, China, November 2010.

1.9 Organization of the thesis

The remainder of the thesis is organized as follows. Chapters 2–4 describe the
background of the Socos tool. In Chapter 2 we trace the history of program
correctness research leading up to IBP, and give a concrete example of the IBP
workflow. Chapter 3 deals with the practical and technical aspects of program
verification: workflow and tools. Chapter 4 is an introduction to the PVS language
and interactive theorem prover, as well as to the Yices SMT solver.

Chapters 5–7 focus on the design of Socos. Chapter 5 gives a top-down intro-
duction to the Socos programming language. Chapter 6 describes the verification
methodology: the correctness rules and how they are used to generate verification
conditions. Chapter 7 discusses the embedding of verification conditions into PVS
and the use of proof tactics to discharge them.

Chapters 8 and 9 focus on the Socos environment from a user and workflow
perspective. Chapter 8 describes an interactive session with Socos, in which we
prove a sorting algorithm correct. In Chapter 9 we describe our experience from
using Socos in teaching IBP to formal methods novices.

Chapter 10 summarizes the development settings and history of Socos, and
presents the architecture of Socos2 and its current status of implementation.

Chapter 11 concludes the thesis with a recapitulation, a discussion, and a list
of future work.

12



Chapter 2

Programming for Correctness

This chapter gives an overview of the programming methodology research on which
the work in this thesis builds. We first consider the goals and history of program
verification, leading up to the advent of IBP. We illustrate the IBP workflow with
an example.

2.1 Foundations of program verification

While testing can verify correctness provided a program is exhaustively checked
for every possible input, even a single 64-bit integer constitutes a statespace too
large to be practically covered in this way. Efficient techniques in the field of
model checking [71] have been developed and successfully used to check finite-
state systems of considerable sizes. Model checking typically targets decidable
properties and focuses on efficient automation. It is, however, sensitive to the state
explosion problem, whereby the number of states to be analyzed suddenly grows
beyond practical limits. Furthermore, if the statespace is infinite, model checking
is not at all applicable.

To assert the correctness of programs over large or infinite statespaces, deduc-
tive methods must be used. These methods build on logical inferences and rely
on theorem proving: the programmer or the machine constructs a mathematical
proof that the implementation satisfies the specification. Such a correctness proof
establishes a formally well-defined relation—such as refinement—between the
implementation and the specification. Program proofs tend to be tremendously
detailed and must be rigorously constructed and checked. In practice machine
checking is mandatory, which in turn requires the programming logic and proof
theory to be fully mechanized. Programs can also be built to search for correctness
proofs. However, deductive methods cannot be fully automated in the general, at
least not for specification languages sufficiently expressive to describe non-trivial
constraints on a program.

Researchers early recognized that reasoning about program correctness could

13



be made manageable by attaching assertions about the state to intermediate points
(cutpoints) in a program. Such assertions are used to form inductive arguments
for the correctness the program. The idea of assertion-based reasoning dates back
to the forties with work by Goldstine and von Neumann [81], and Turing [148],
but the first practical methods were developed independently by Naur [123] and
Floyd [80] and presented in 1966 and 1967, respectively. Floyd also discusses
the requirement that a program terminates within a finite number of steps, and
considers termination proofs essential. A seminal paper by Hoare [94] introduced
the Hoare logic, a set of axioms and rules for deriving correctness. Hoare’s
method did not initially consider termination: the verified program satisfies its
specification under the condition that it terminates. It has become customary to
refer to correctness with termination as an obligation as total correctness, and
correctness with termination as an assumption as partial correctness.

The predicate transformer semantics introduced by Dijkstra [65, 66] was an-
other step forward. A predicate transformer is a total function on predicates over
the statespace. The canonical predicate transformer is the weakest precondition.
The weakest precondition allows algebraic derivation of the most general con-
straints under which a program is guaranteed to terminate in a given postcondition.
With predicate transformers a unified program calculus could be developed, han-
dling correctness, nondeterminism, and termination within a single mathematical
framework. This made it possible to develop correct programs in a “calculational
style”, analog to the way mathematical proofs are constructed [68].

The work of Dijkstra sparked a number of developments. The idea of stepwise
refinement, in which a specification is transformed into an implementation in a
series of correctness-preserving refinement steps, is due to Dijkstra and Wirth
[64, 157]. Stepwise refinement was given a mathematical foundation by Back [8]
and Morgan [118] in the refinement calculus. Back and von Wright subsequently
developed the refinement calculus within a lattice-theoretical framework using
higher-order logic [30].

2.2 Correctness proofs

In mathematics, the goal of proof is to demonstrate that some relevant theorem is
universally true; in verification, the goal is to show that a program satisfies its spec-
ification. It has been argued that programmers should, as part of the programming
process, develop correctness proofs in a way similar to how mathematicians write
proofs of theorems. Dijkstra and Scholten proposed the calculational proof format
[68] as a suitable format for constructing and presenting program proofs. In this
format, proofs are developed in a linear fashion similar to the way calculations in
algebra are performed, but with each step being a logical inference. Proofs in the
calculational style are in general easier to read than those in, e.g., natural deduction,
and it has become the standard textbook notation to which students of computer

14



science are subjected [87]. The proof format was later extended by Back and von
Wright into a structured hierarchical format, where subproofs are incorporated into
the syntactic structure [23]. It has been shown that proofs in this format correspond
in generality to Gentzen-like proofs [17].

Despite ostensible similarities between proofs in mathematics and program
correctness proofs, the actual process of developing program proofs is much
different in practice, and is fraught with difficulty. While proofs in mathematics
tend to be deep, elegant and short, program verifications are usually tedious,
verbose and long. Mathematicians frequently use informal argumentation, while
program proofs by way of their high level of detail and subsequent error-proneness
require the use of a formal—and mechanized—proof calculus to be convincing.
A program proof is also highly dependent on the program and specification—if
either one is altered, the proof must be rechecked—a condition that arises often
in practice in software development, whereas a mathematics problem tends to
be much less of a moving target. Maintaining meticulous proofs under these
conditions is a considerable challenge, and it has been argued that the processes
involved in program verification are incompatible with how proofs are developed
in mathematics [58]. On one hand, it is true that conditions derived from programs
not built with verification in mind can be mentally impenetrable, and that proving
them is not a tempting prospect. On the other hand, proofs developed together with
the program and presented at an appropriate level of detail are not only clearer, but
seem necessary to really understand a program; inspiring examples are given by
Dijkstra [66] and Gries [84].

2.3 The constructive approach

Early approaches to program correctness often considered verification a separate
activity from programming, to be performed after the implementation phase. Given
a specification and a putative implementation, one would derive (by hand or with
a tool) all the verification conditions and prove them. While sufficient for small
programs, such a posteriori verification does not scale well. In particular, it is
difficult to infer from already written code the intermediate assertions needed
in a correctness proof. This observation indicated that perhaps the correctness
arguments should influence the design of a program, rather than be used solely to
assert the relation between a given implementation and a specification.

Dijkstra devised the correct-by-construction approach, in which the correctness
proofs are developed hand-in-hand with the program [63]. In this method the
programmer writes the intermediate assertions and loop invariants together with
the code itself, and proves each subcomponent of the program before proceeding
to the next. Adding one component and verifying it before moving on to the
next enables errors to be detected earlier, and the verification effort is distributed
over development time. Program proofs also tend to be easier to understand and

15



maintain, since they are connected to the structure of the code in a much more
intuitive way. Finally, the approach contributes to the overall readability and
understandability of the program code, as it forces the programmer to document
the design decisions (pre- and postconditions and loop invariants).

2.4 Invariant-based programming

Invariant-based programming by Back [11, 14, 15, 16] is an elaboration of Dijk-
stra’s original correct-by-construction approach. It goes one step further by letting
the correctness arguments—the intermediate assertions and loop invariants—decide
the structure of the program, rather than vice versa. Actual program statements are
not added until the structure of the invariants has been defined. The rationale is
that by lifting the correctness arguments to the design phase of development and
giving them first choice in the structure of the final program, the program becomes
easier to verify. IBP has the following design characteristics:

Invariants determine structure. Structure the program around invariants rather
than control flow. Invariants become first class components, not optional
code annotations, and formulating them becomes an integral part of program
development.

Invariants are written before the code. The traditional way of writing code and
annotating it with invariants may lead to complex invariants, since they have
to be adapted to the existing code. In IBP the invariants are written first, and
the code structured around them. This may conversely lead to the code being
more complex; this is considered a trade-off for prioritizing verification.

Programs represent proofs. An invariant-based program is a correctness proof
outline. Its structure allows reduction of the proof into rather fine-grained
lemmas. These individual lemmas are usually quite shallow and easy to
verify, which makes IBP a good target for automated theorem proving.

Unrestricted control flow. IBP does not restrict statements to single-entry and
single-exit. Invariant-based programs are actually similar to flowcharts, in
the sense that each sequence of statements is followed by an unrestricted goto-
statement. Structured programming is aimed at keeping code disciplined in
the absence of invariants, making it easier to understand the control flow;
in IBP the discipline comes from the requirement to state and maintain
invariants.

Locality of reasoning. There is no inherent difference between entry/exit points
and intermediate points in a program. Each state transition can be verified
in isolation, i.e., independently of the flow of control leading up to the
transition.

16



Diagrammatic reasoning. Figures play two key roles in IBP. Firstly, informal
figures of the data structures involved are a useful aid when formulating the
invariants. Secondly, a formal diagrammatic syntax is used for the program
itself.

Simple rules. Verification does not require complicated proof rules; everything
that should be checked can be inferred from the diagram. No knowledge of
a program calculus is required to use IBP; ordinary high school mathematics
and the basics of predicate logic is sufficient.

IBP is a method for “programming in the small” in the sense that it covers the design
of imperative programs but not of entire systems. For instance, information hiding,
data abstraction and encapsulation are not addressed. IBP is not a substitution
for object-orientation (O-O) or modularization but rather orthogonal to these
techniques. We can, e.g., directly use IBP to implement the internals of a class
method in an O-O program. Extension of IBP to object orientation is an open
research topic that is outside the scope of this thesis.

2.4.1 Invariant diagrams

Invariant-based programs are called invariant diagrams. An invariant diagram
is a directed graph with nodes called situations and edges called transitions. A
situation is an indexed predicate, mapping a unique name to a predicate over a
program statespace. A transition connects two situations and is labeled with a
program statement. A situation represents a set of program states, while a transition
represents a state change.

Situations are drawn as boxes with rounded corners and transitions as arrows
connecting to the edges of situations. Situations can be nested to any depth, but are
never drawn partially overlapping. Nesting is used to strengthen the enclosing situ-
ation; the nested situation inherits all the constraints from its enclosing situations.
Transitions can go between any two situations regardless of the nesting structure.
The statement of a transition is drawn adjacent to the arrow. A situation without
incoming transitions is an initial situation; a situation without outgoing transitions
is a final situation.

Invariant diagrams are syntactically close to Harel statecharts [91]. The opera-
tional interpretation is also similar to that of state machines. Control flow passes
from one situation to another through the transitions; any enabled transition (i.e., a
transition whose guard is true in the current state) can be triggered. Triggering of
transitions is demonically nondeterministic: if several transitions are enabled in a
state, the execution environment selects arbitrarily one to be taken. However, the
semantics of nesting differs from that of statecharts. In statecharts, a transition may
be triggered if its guard becomes true when the system is in any one of the nested
substates of the source state. In IBP a nested situation inherits the constraints of
the outer situations, but the transitions are not inherited; only transitions from the

17



edge of the current situation can be triggered. This means that while statecharts
use nesting to economize the number of transitions, invariant diagrams use nesting
to avoid repetition of constraints. It also means that an invariant diagram can be
transformed into an equivalent flat diagram without changing the transitions, but
by repeating the inherited constraints.

Example. Figure 2.1 shows an invariant diagram for a program determining if
an integer array A of size N is a palindrome. If the array is not a palindrome, the
program returns the index k of the first element such that A[N−1−k] 6= A[k] . The
program compares the first element to the last, if they are not equal concludes that
the array is not a palindrome, otherwise compares the second to the next to last,
and so on. The loop terminates either at the first mismatch, or when the counter k
reaches the index bN/2c, in which case the array is concluded to be a palindrome.
The floor function bxc gives the largest integer not greater than x. The empty array
is considered a palindrome.

PRE

N ∈ N
A ∈ [0..N)→ Z

LOOP

k ∈ Z
0≤ k ≤ bN/2 c
∀i•0≤ i < k⇒ A[i] = A[N−1− i]

0≤ bN/2c− k

PALINDROME

k = bN/2c
MISMATCH

A[k] 6= A[N−1− k]

1
k := 0

2

[k = bN/2c]

[k < bN/2c]
3

[A[k] 6= A[N−1− k]]

4

[A[k] = A[N−1− k]] ; k := k +1

Figure 2.1: Palindrome program

The diagram contains four situations: PRE, LOOP, PALINDROME and
MISMATCH. The outermost and initial situation, PRE states that N is a natural
number and A is an integer valued function from 0 up to and including N−1; we
denote this integer range with [0..N). These constraints should hold throughout
(the program never modifies A or N), so they are inherited by the remaining two
situations.

18



LOOP is an intermediate situation, having both incoming and outgoing transi-
tions. It states that the program variable k ranges over the integers 0,1, . . . ,bN/2c,
and additionally that A[N−1− i] 6= A[i] for each i, 0≤ i < k. The predicate in the
upper right corner is the variant for the loop. The variant identifies a function that
is decreased for every iteration of the loop, bN/2c− k, and a lower bound, 0.

The program has two final situations, PALINDROME and MISMATCH. In
PALINDROME the loop counter k has reached the index bN/2c, which together
with the outer situations implies that A is a palindrome. MISMATCH states that
elements at indexes k and N − 1− k differ, which together with the enclosing
situations implies that k is the index of the first conflicting element.

There are four transitions in the program. Transition 1 assigns the initial value
0 to the counter k and enters the main loop of the program. The first exit transition,
Transition 2, becomes enabled when k has reached the index bN/2c. Guards are
written inside square brackets; omitting the guard (as in the case of Transition 1)
means that the transition is always enabled. We note that there is no default (else-)
transition; this is deliberate, as writing each guard makes the assumptions for each
transition explicit and serves to make the program closer to its correctness proof.
To avoid duplication when several transitions share guards we use transition trees:
Transition 3 and Transition 4 share a common guard [k < bN/2c], but diverge to
either the postcondition MISMATCH if the elements at indexes k and N−1− k are
different (Transition 3), or back to LOOP if they are equal (Transition 4), in which
case k is incremented.

In the next section, we describe how the program in Figure 2.1 is built and
verified step by step.

2.4.2 IBP workflow

The process of refining an informal specification into a verified invariant-based
program involves three stages: 1) formal specification, 2) sketching an algorithm,
and 3) construction and verification of the final program. In this section we
illustrate, in the context of the program in Figure 2.1, the main activities involved
in each of the stages 1–3.

Specification. The goal of this stage is to formulate the pre- and postconditions
of the program using mathematical logic. The starting point is usually an informal
understanding of the concepts involved, e.g., that “an array is a palindrome if
it reads the same in both directions.” Informal figures are often useful at this
point to visualize the data structures involved. Figure 2.2 is one way of expressing
graphically that A is a palindrome. We draw A as a sequence of linked shapes and
add equal signs between shapes to indicate that the two values are equal; for clarity,
we draw separate figures for the cases of odd or even N.

19



A
0

A
1

A
N2

A
N1

= = ... =

...

...

even N

A
 ⌊N/2 -1⌋

A
0

A
1

A
N2

A
N1

=

...

...

A
N/2⌊ ⌋

= = ...

odd N

A
 ⌊N/2 1⌋

A
 ⌊N/2 +1⌋

A
 ⌊N/2⌋

Figure 2.2: PALINDROME illustration

We also need to express that some element k of A violates the palindrome property.
This is illustrated in Figure 2.3. Shading is used here for the portion of the array
about which the MISMATCH situation states nothing.

A
0

A
1

A
N2

A
N1

= = ...

...

... A
k

A
N1k

...

...

≠

Figure 2.3: MISMATCH illustration

Such figures provide a useful bridge between the informal and the formal
problem descriptions, and their construction is considered an essential step in the
invariant-based programming approach. Note the use of symbolic (N, k) instead
of concrete values in the figures; in this way a figure represents a situation, i.e., a
set of states, rather than one specific state. It can be surprisingly challenging to
find a figure that is expressive enough and does not overspecify the invariant. In
this case, drawing the separate cases of odd and even N clarifies the fact that in
both cases, we need only compare the elements in the range 0 to bk/2c−1 to their
counterparts.

Formalizing Figures 2.2 and 2.3 involves giving a precise meaning to the
relation between the two halves of the array, which in turn requires a notion of
arrays and array access. We use the standard interpretation of an array as a total
function from the (possibly empty) integer range [0..N) to the value type. Array
update is not needed here, since A will not be changed. In general, identifying
the basic concepts needed to express the situations is referred to as developing
the background theory for the program. While the background theory for a larger
program would be substantial, the palindrome program is sufficiently simple that
given the array concepts above, the rest of the desired properties can be stated
directly in the invariants. Formulating the background theory is a challenging stage
of invariant-based programming, since it directly influences how the program and

20



its proof will be developed in the subsequent stages. However, the effort is usually
amortized over a large number of programs in the same domain; e.g., an array
update theory would be used by most programs.

With the aid of the figures and the array definition, we can now give a first
version of the precondition and the two postconditions of the program:

PRE N ∈ N
∧ A ∈ [0..N)→ Z

PALINDROME N ∈ N
∧ A ∈ [0..N)→ Z
∧ (∀i•0≤ i≤ bN/2c ⇒ A[i] = A[N−1− i])

MISMATCH N ∈ N
∧ A ∈ [0..N)→ Z
∧ k ∈ Z
∧ 0≤ k ≤ bN/2c
∧ (∀i•0≤ i < k⇒ A[i] = A[N−1− i])
∧ A[k] 6= A[N−1− k]

We note that we can use the common substructure to express the specification
more compactly. Instead of repeating the types of N and A, we can nest the two
postconditions within PRE to construct a first version of the invariant diagram
without the loop invariant and the transitions (Figure 2.4).

PRE

N ∈ N
A ∈ [0..N)→ Z

PALINDROME

∀i•0≤ i≤ bN/2c ⇒ A[i] = A[N−1− i]

MISMATCH

k ∈ Z
0≤ k ≤ bN/2 c
∀i•0≤ i < k⇒ A[i] = A[N−1− i]
A[k] 6= A[N−1− k]

Figure 2.4: PALINDROME specification diagram

Sketching an algorithm. The next stage starts with a rough idea of the algorithm.
This idea is refined into a concrete program by identifying intermediate situations

21



such that it becomes possible to implement a sequence of transitions from the
precondition via the intermediate situations to the postcondition. The focus in
this stage is on defining the structure of the situations; we do not actually write
the transitions into the diagram until the next stage. Since we are solving the
palindrome problem using a loop, we need to add a single intermediate situation—
which we call LOOP—to define the loop invariant of the program. In general, a
loop invariant should be formulated in such a way that it 1) can be established
from the precondition by an initial assignment statement, 2) for the final value of
the loop counter establishes the postcondition(s), and 3) is maintained by the loop
transition. The invariant should express that the loop counter k ranges over the first
half of the array (i.e., 0≤ k ≤ bN/2c) and that all elements below k are equal to
their counterparts at the end of the array. Figure 2.5 illustrates the LOOP situation
graphically and textually.

A
0

A
1

A
N2

A
N1

= = ...

...

... A
k

A
N1k

...

...

?

LOOP N ∈ N
∧ A ∈ [0..N)→ Z
∧ k ∈ Z
∧ 0≤ k ≤ bN/2c
∧ (∀i•0≤ i < k⇒ A[i] = A[N−1− i])

Figure 2.5: LOOP situation illustration and invariant

We note that the loop invariant is only a slightly weaker variation of the
postcondition MISMATCH, the difference being that LOOP does not include the
inequality A[k] 6= A[N− 1− k] (question mark in Figure 2.5). Furthermore, the
postcondition PALINDROME is a special case of LOOP where k = bN/2c. Thus,
with these simple guards we are able to establish the postconditions. We can also
reformulate the postconditions slightly to nest them within LOOP and arrive at
Figure 2.6, which is exactly the diagram in Figure 2.1 except for the transitions
and the variant.1

1We have actually altered the specification from Figure 2.4 slightly by inheriting the constraint
on k into the postcondition PALINDROME. For the sake of presentation, we disregard this detail here.

22



PRE

N ∈ N
A ∈ [0..N)→ Z

LOOP

k ∈ Z
0≤ k ≤ bN/2 c
∀i•0≤ i < k⇒ A[i] = A[N−1− i]

PALINDROME

k = bN/2c
MISMATCH

A[k] 6= A[N−1− k]

Figure 2.6: Final invariant structure

In summary, at the end of this stage we should feel confident to have formulated
a loop invariant that is strong enough, satisfying criteria 1–3 above.

Implementation and verification. This stage consists of implementing and ver-
ifying the transitions. At this point, writing the actual statements is straightforward,
as we already ought to have a good idea of how the program should work. The
main effort in this stage lies in checking that the transitions preserve the invariants.
After adding a transition, we verify that it is consistent before moving on to the
next. In general, a transition S from situation P to situation Q is consistent if and
only if every execution of S starting from a state satisfying P terminates in a state
satisfying Q. In the sequel, we denote this proposition with the Hoare-like triple
{P} S {Q}.

We derive the following consistency condition for Transition 1:

N ∈ N
N ∈ N ∧ A ∈ [0..N)→ Z
∧ A ∈ [0..N)→ Z =⇒ ∧ 0 ∈ Z

∧ 0≤ 0≤ bN/2c
∧ (∀i•0≤ i < 0⇒ A[i] = A[N−1− i])

{PRE} k := 0 {LOOP}
To show that the formula below the line is true, we must prove that the implication
above the line is true. Since this transition goes from PRE to LOOP and assigns
0 to the variable k, the antecedent is the predicate of PRE and the consequent is
the combined predicates of LOOP and PRE where 0 has been substituted for all
occurrences of k. Substituted subterms in the right hand side of the implication are
shown in bold. Noting that the quantified expression is vacuously true, it is easy to
see that this condition is true.

All verification conditions for the palindrome program are listed in Figure 2.7.

23



The conditions for Transition 2–4 also include as antecedents the transitions guards.
Conditions for Transition 2 and 3 are trivial, as in both cases each conjunct in the
consequent is also present in the antecedent.

For the cyclic Transition 4 we must discharge an additional termination condi-
tion to show that the program cannot loop indefinitely. Derivation of termination
conditions requires a variant to be given by the programmer. The variant is a
function that maps program states into a well founded set. In the diagram, we draw
the variant in the upper right hand corner of the situations that are part of the cycle.
We should prove that every cyclic transition decreases the variant:

{LOOP∧bN/2c− k = V0}
[k < bN/2c] ;
[A[k] = A[N−1− k]] ;
k := k +1

{0≤ bN/2c− k < V0}

Given an initial value V0 of the variant, after executing the transition the new value
should be above the lower bound 0 and strictly smaller than V0. For brevity, we
have combined the consistency and termination conditions into a single implication
in Figure 2.7. The proof for Transition 4 requires basic quantifier reasoning.

In addition to consistency and termination we usually also want to check
that the program is live. Liveness means that the program does not get stuck
in an intermediate situation because all guards are disabled. Since Transition 1
is unconditional, situation PRE is trivially live. For LOOP we should check the
following liveness condition:

LOOP =⇒
k = bN/2c
∨(k < bN/2c∧ A[k] 6= A[N−1− k])
∨(k < bN/2c∧ A[k] = A[N−1− k])

The antecedent is the situation LOOP and the consequent is the disjunction of
the collected guards of all transitions originating at LOOP. The disjunction is a
consequence of k ≤ bN/2c.

2.5 Related approaches

The basic concepts of invariant-based programming originated in the late seven-
ties. In 1978, Reynolds [140] reported on a method for rigorous development
of goto-programs, emphasizing the importance of invariants and a disciplined
workflow in reasoning about such programs. At the same time van Emden [150]
developed a verification method for flowcharts based on similar ideas. The original
situation analysis method by Back [9] is a development of Reynold’s work and
focuses on the use of invariants to guide the structure of the program as it is being
developed. Back recently added the nested diagram notation [14, 15] to IBP, and
has subsequently been developing it into a programming methodology suitable for
teaching introductory program verification [16]. The mathematical foundations
are also being refined. Recently, Back and Preoteasa [29] introduced a small-step

24



P
R

E

N
∈

N
A
∈

[0
..

N
)
→

Z L
O

O
P

k
∈

Z
0
≤

k
≤
b N

/2
c

∀i
•0
≤

i<
k
⇒

A
[i]

=
A
[N
−

1
−

i]

0
≤
bN

/
2c
−

k

PA
L

IN
D

R
O

M
E

k
=
bN

/
2c

M
IS

M
A

T
C

H

A
[k

]6=
A
[N
−

1
−

k]

1
k

:=
0

2

[k
=
bN

/
2c

]

[k
<
bN

/2
c]

3

[A
[k

]6=
A
[N
−

1
−

k]
]

4

[A
[k

]=
A
[N
−

1
−

k]
];

k
:=

k
+

1

{P
R

E
}k

:=
0
{L

O
O

P}

N
∈

N
∧

A
∈

[0
..

N
)
→

Z
⇒

N
∈

N
∧

A
∈

[0
..

N
)
→

Z
∧

0
∈

Z
∧

0
≤

0
≤
b N

/
2
c

∧
(∀

i•
0
≤

i<
0
⇒

A
[i]

=
A
[N
−

1
−

i])

. . .

{L
O

O
P}

[k
=
bN

/
2c

]{
PA

L
IN

D
R

O
M

E
}

N
∈

N
∧

A
∈

[0
..

N
)
→

Z
∧

k
∈

Z
∧

0
≤

k
≤
b N

/
2
c

∧
(∀

i•
0
≤

i<
k
⇒

A
[i]

=
A
[N
−

1
−

i])
∧

k
=
bN

/
2c

⇒

N
∈

N
∧

A
∈

[0
..

N
)
→

Z
∧

k
∈

Z
∧

0
≤

k
≤
b N

/2
c

∧
(∀

i•
0
≤

i<
k
⇒

A
[i]

=
A
[N
−

1
−

i])
∧

k
=
bN

/2
c

. . .

{L
O

O
P}

[k
<
bN

/2
c]

;
[A

[k
]6=

A
[N
−

1
−

k]
]
{M

IS
M

A
T

C
H
}

N
∈

N
∧

A
∈

[0
..

N
)
→

Z
∧

k
∈

Z
∧

0
≤

k
≤
b N

/
2
c

∧
(∀

i•
0
≤

i<
k
⇒

A
[i]

=
A
[N
−

1
−

i])
∧

k
<
bN

/
2c

∧
A
[k

]6=
A
[N
−

1
−

k]

⇒

N
∈

N
∧

A
∈

[0
..

N
)
→

Z
∧

k
∈

Z
∧

0
≤

k
≤
b N

/
2
c

∧
(∀

i•
0
≤

i<
k
⇒

A
[i]

=
A
[N
−

1
−

i])
∧

A
[k

]6=
A
[N
−

1
−

k]

. . .

{ L
O

O
P
∧

bN
/
2c
−

k
=

V 0

} [k
<
bN

/2
c]

;
[A

[k
]=

A
[N
−

1
−

k]
];

k
:=

k
+

1

{ L
O

O
P
∧

0
≤
bN

/2
c−

k
<

V 0

}

N
∈

N
∧

A
∈

[0
..

N
)
→

Z
∧

k
∈

Z
∧

0
≤

k
≤
b N

/2
c

∧
(∀

i•
0
≤

i<
k
⇒

A
[i]

=
A
[N
−

1
−

i])
∧

k
<
bN

/2
c

∧
A
[k

]=
A
[N
−

1
−

k]

⇒

N
∈

N
∧

A
∈

[0
..

N
)
→

Z
∧

k
+

1
∈

Z
∧

0
≤

k
+

1
≤
b N

/
2
c

∧
(∀

i•
0
≤

i<
k

+
1
⇒

A
[i]

=
A
[N
−

1
−

i])
∧

0
≤
bN

/
2c
−

(k
+

1)
∧
bN

/
2c
−

(k
+

1)
<
bN

/
2c
−

k

. . .

Tr
an

si
tio

ns
[k

=
bN

/
2c

]
[k

<
bN

/
2c

];
[A

[k
]6=

A
[N
−

1
−

k]
]

[k
<
bN

/
2c

];
[A

[k
]=

A
[N
−

1
−

k]
];

k
:=

k
+

1
liv

e
w

ith
re

sp
ec

tt
o

L
O

O
P

N
∈

N
∧

A
∈

[0
..

N
)
→

Z
∧

k
∈

Z
∧

0
≤

k
≤
b N

/
2
c

∧
(∀

i•
0
≤

i<
k
⇒

A
[i]

=
A
[N
−

1
−

i])

⇒

k
=
bN

/
2c

∨
(k

<
bN

/
2c

∧A
[k

]6=
A
[N
−

1
−

k]
)

∨
(k

<
bN

/
2c

∧A
[k

]=
A
[N
−

1
−

k]
)

. . .

1
2

3
4

C
on

si
st

en
cy

C
on

si
st

en
cy

+
te

rm
in

at
io

n
Li

ve
ne

ss

Fi
gu

re
2.

7:
Pr

oo
ft

re
e

ou
tli

ne
fo

rt
he

pa
lin

dr
om

e
pr

og
ra

m
.S

ub
st

itu
te

d
su

be
xp

re
ss

io
ns

in
co

ns
eq

ue
nt

s
ar

e
in

bo
ld

fa
ce

.

25



operational semantics for invariant diagrams and proved that the proof rules are
sound and complete with respect to the operational semantics; they also verified
these rules in PVS.

2.6 Conclusions

Deductive verification of imperative programs is based on adding state assertions
to select intermediate cutpoints. Assertions have no effect on the flow of control
of the program, but decompose the verification into manageable tasks. Assertions
can either be fitted to an already written program (a posteriori verification), or the
program code can be given to fit the assertions (invariant-based programming). In
this thesis we focus only on the latter approach.

Development of an invariant-based program comprises three stages: 1) un-
derstanding the problem and specifying the program; 2) sketching the algorithm
and defining the structure of the invariants; and 3) implementing and verifying the
transitions. Stage (1) involves building the background theory for the program
and expressing the pre- and postconditions within this theory. In stage (2), the
loop invariants and their nesting structure are defined. In stage (3) we implement
the transitions and verify their correctness. Figures play a central role in all three
stages.

There are three correctness conditions for invariant diagrams: consistency
means that the transitions maintain the invariants; termination that the program
does not run indefinitely; and liveness that the program does not “get stuck”. An
invariant diagram that preserves its invariants is consistent. In general, consistency
is a basic condition that should always be proved, while termination and liveness
may or may not be required depending on the operational interpretation of the
diagrams. For example, we may be modeling a reactive system which is not
intended to terminate, or which should allow indefinite blocking. The language
presented in this thesis contains constructs to control the termination and liveness
conditions generated.

We have given an example of the workflow of specification, implementation
and verification in IBP. We note that all the conditions required to verify that the
palindrome program is correct are present in the diagram. While the tabulated
conditions in Figure 2.7 are verbose, deriving and proving them is straightforward.
We can expect a reasonable theorem prover to discharge all the conditions in Figure
2.7 automatically.

26



Chapter 3

Tool-Supported Program
Verification

This chapter focuses on the technical basis for program verification: specification
languages, verification condition generators and theorem provers. We survey
state-of-the-art deductive verification frameworks.

3.1 Verification workflow

Tools for deductive verification of imperative programs are typically designed
around two central components:

1. A verification condition generator (VCG) to mechanically process the pro-
gram and its specification into a set of verification conditions (VCs). The
generated correctness conditions are logical formulas.

2. A theorem prover to try to discharge the generated conditions, and report
the result back to the user. The theorem prover may benefit from additional
input from the user (proof guidance).

The flow of data through these components is illustrated by Figure 3.1 below.

program

verification
condition 
generator

verification
conditions

theorem
prover

validity
reportspecification

proof
guidance

Figure 3.1: Basic program verifier architecture

27



The principle is that the VCs imply the (total or partial) correctness of the program.
Thus, if the VCG is sound and all VCs can be discharged, the program satisfies its
specification.

Similarly to debugging, the verification process does not follow a straight-line
path to a correct program, but is rather an interactive, feedback-driven process.
A program will contain errors and omissions caused by, among other factors, un-
founded assumptions, insufficient understanding of the problem domain, mistakes
in reasoning, and typos. To the effect of detecting such errors, verification is
useful also when the theorem prover fails to prove a condition. Similarly to how
a compiler aids in correcting syntactic errors by emitting messages and warnings
indicating the cause and location of errors, a verification tool can provide fast feed-
back to improve the programmer’s understanding of the program. The verification
data flow annotated with this feedback loop is shown in Figure 3.2.

program

verification
condition 
generator

verification
conditions

theorem
prover

unproved
conditionsspecification

proof
guidance

programmer

improved 
specification

corrected
program

updated
proof

improved 
understanding

Figure 3.2: Verification workflow

A standard approach is to first attack the VCs with a fully automatic theorem
prover to try to discharge as many of them as possible, hence decreasing the number
of conditions to be considered by the programmer. A VC may be unprovable due
to an error or omission in the program or specification, but it is also possible that
the condition is valid but that the prover is not able to prove it, and/or is limited by
time or memory constraints. Early in the development process the first case tends
to be rather common, and the filtered conditions are often helpful for spotting the
errors in the code. Interaction with a verification system can be an effective way of
finding similar up-front errors as with unit tests, but with the advantage of being
static and not requiring test data.

A frequent issue in later stages of the verification process is that some VCs
are (evidently) true but the automatic prover cannot discharge them. Even if the

28



programmer just leaves these conditions unhandled, verification has provided value
both in preventing bugs and in explicitly identifying a smaller set of assumptions
on which the correctness of the program depends. However, for full verification
the system may also provide support for proving the remaining conditions. The
programmer then supplies additional guidance, such as a proof script, allowing
the system to simplify the VCs into subconditions that it is able to discharge
automatically.

3.2 Specification languages

A specification is a precise description of how a program should behave that al-
lows for multiple alternative implementations. Languages for program verification
hence include some form of specification notation. They may provide higher
level modeling primitives such as sets and functions, modular specification meth-
ods (e.g., contracts), assertions, as well as various refinement mechanisms for
relating implementation-level constructs to specification-level constructs. They
may also provide specification statements, which may be composed like ordinary
programming statements but which may not be implementable without further
refinement.

Since the specification part of a language is used for describing programs rather
than for providing instructions to a machine, it allows a much higher abstraction
level than that of the implementation language. Some variant of mathematical
logic underlie most specification languages. The logic has a direct effect on the
expressiveness of the language and the degree of achievable automation. A less
powerful logic makes a higher degree of automation possible, but restricts the
expressiveness of specifications. For example, propositional logic is decidable, but
is in practice not an expressive enough choice except for very limited specifications.
A common choice is some variant of predicate logic, such as first-order or higher-
order logic. In first-order logic variables can only range over a single universe of
individuals; whereas in higher-order logic they can range over, e.g., functions and
relations. First-order logic is much more useful for specification than propositional
logic, but is in general undecidable. It may also be too weak; e.g., the transitive
closure of a relation cannot be expressed in first-order logic. A higher-order logic
is considered powerful enough for most specification needs.

Specifications are easier to write if the specification language integrates well
with the implementation language. Hence, a language designed for verification
defines the specification and programming constructs within the same syntactic
structure; this is called a wide-spectrum language [39]. Alternatively, a pure
implementation language may be extended with a specification notation, though
such extensions may incur syntactic incompatibilites and language-within-language
issues.

29



3.3 Semantics and embedding

Verification systems use a programming language semantics suitable for generating
VCs, often some variant of axiomatic semantics. The axioms and inference rules
are defined inductively over the syntax of the language, and the VC generation is
directed by the syntactic structure of the program. Axioms and rules are defined to
characterize the effect a particular statement has on assertions about the program
state. For instance, the original Hoare logic [94] defines the following axiom for
assignment statements and a consequence rule:

{P[E/X ]}X := E {P}
P′⇒ P {P}S{Q} Q⇒ Q′

{P′}S{Q′}
The Hoare triple {P} S {Q} is an assertion that a program S executed in a state
satisfying P, if it terminates, does so in a state satisfying Q. X and E range
over variables and expressions, respectively. P[E/X ] stands here for the syntactic
substitution of the expression E for all free occurrences of variable X in P. The
axiom states that any program of the form X := E with precondition P[E/X ] and
postcondition P is correct. Using Hoare logic, a VC for a general assignment
program {P}X := E {Q} can be derived as follows:

〈proof 〉
...

P⇒Q[E/X] {Q[E/X ]}X := E {Q} (axiom)
Q⇒ Q

(axiom)

{P}X := E {Q} (consequence)

Thus, in order to prove that the triple {P}X := E {Q} correct, it suffices to prove
that P⇒ Q[E/X ] is true.

A mapping of terms in the programming language into terms in the underlying
logic is called a semantic function. Distinction is made based on whether the
programming language and semantic function are defined outside the underlying
logic, so called shallow embedding, or within the logic, so called deep embedding
[44]. In a deep embedding the abstract syntax of the embedded language is modeled
as a type in the logic, and every program is a value of that type. This makes it
possible to quantify over programs and prove general theorems about the embedded
language in a deep embedding. A shallow embedding translates (outside of the
logic) terms in the embedded language into terms in the logic. Hence one can only
reason about the specific, translated programs. A shallow embedding is, however,
significantly easier to implement and use, and allows sharing of values and types
between the programming and theorem prover languages.

Axiomatic semantics is a substantial abstraction from the lower-level state-
based operational semantics that more closely corresponds to how a program is
executed by a computer. It is thus important that the verification semantics and
the operational semantics are consistent. There are two aspects of this consistency.

30



Soundness means that every program verified according to the axioms executes
correctly; completeness means that the axiomatic semantics is general enough to be
used to verify any correctly executing program. Soundness is a vital requirement
for any verification system. Completeness, however, while desirable is generally
not attainable as there may be programs which produce the correct answer but
cannot be verified in the system, e.g. due to missing intermediate assertions or
loop invariants. It is a main design goal of a verification system to ensure that a
sufficiently large set of programs is covered.

We finally note that for any axiomatic verification semantics, a strict mathemat-
ical assertion of soundness and/or completeness requires the underlying operational
semantics to be fully axiomatized.

3.4 Theorem proving

Since program verification generates a large number of trivial VCs, filtering con-
ditions through a powerful automatic theorem prover can significantly decrease
the number of conditions that must be considered. For instance, a large industrial
project carried out using the B-method [1] reported approximately 80 per cent of
the VCs discharged automatically, and up to 90 per cent with tool adaptations [41].
Systems vary considerably in how the user interacts with the back-end theorem
prover. Highly automated tools that do not support interactive proving may still
allow the programmer to feed “facts” to the prover. These facts effectively become
axioms, though they may also be verified by hand or in another system.

User-written proofs rely on a proof checker to assert the consistency of a proof
with respect to some formal proof system. A chief design principle of theorem
provers is that the checking is performed by a small trusted kernel encoding the
proof rules of, e.g., sequent calculus. However, this requires proofs to be given at an
extremely low level. Thus, in addition to checking there is a need for proof tactics
and strategies, enabling proofs to be carried out at a higher level of abstraction,
while remaining sound with respect to the formal system. The undecidability of any
reasonably expressive logic dictates that full automation of proof construction is not
achievable in the general, so interactive proof assistants enables the user to search
for a proof interactively, in dialogue with the system. Such tools may provide
advanced proof search heuristics to enhance and optimize proof construction.

Satisfiability Modulo Theories (SMT) solvers have evolved to be practical
and highly efficient verification tool back-ends. SMT solvers combine boolean
satisfiability (SAT) solving—typically some variant of the DPLL procedure [57]—
with decidable theory fragments. The combination is usually based on the Nelson-
Oppen method for cooperating decision procedures [125] or some development of
this method. Common theories are linear arithmetic, uninterpreted functions with
equality, and the theories of data structures such as arrays and bit vectors. SMT
solvers are often designed to be used as back-ends for verification and constraint

31



solving systems, and are thus fully automatic and highly optimized for speed. The
canonical use of an SMT solver in program verification is to prove that the negation
of a VC is unsatisfiable. In general, these solvers are complete only for quantifier
free logics; however, heuristics for quantifier instantiation make them useful in
practice also for many conditions involving quantified formulas. Much research is
focused on optimizing SMT solvers for program verification.

Since the proofs produced by automatic provers such as SMT solvers are
seldom amenable to human inspection, the soundness of the verification hinges
on the correctness of the prover itself. It has been argued that for verification
to have a credible impact on the trustworthiness of software, programs should
be accompanied by standardized representations of their correctness proofs such
that another (independent) proof checker can be used to verify them. This raises
the issue of proof interchangeability and open formats, where no consensus has
been reached yet. Necula has introduced the concept of proof-carrying code [124],
where potentially untrusted software is piggybacked with proofs of relevant safety
properties. The idea is that proofs are stored in such a format that the execution
environment can automatically check the validity of the proof as well as verify that
the software conforms to its own safety rules.

3.5 Verification techniques and tools

Below we list some of the state of the art in techniques and tools for program
verification.

3.5.1 Design by contract

Adding assertions to catch errors at run-time is common programming practice, and
can be considered a first step towards embedding verification into the programming
workflow. It has the advantage of being a light-weight addition feasible in any
programming language without special support. Many languages support an
assert statement or macro, such that assertion code can be easily disabled from the
final product. The practice of documenting interfaces using pre- and postconditions
and class/object invariants is known as design by contract [115]. Compared to
assertions, design by contract is more involved, as it requires dealing with objects
and relating values of variables in different states. The Eiffel language [114] is built
from the ground up to support design by contract. The Java Modeling Language
(JML) [108] adds design by contract capabilities to Java via annotations embedded
in comments.

3.5.2 Extended static checking

Extended static checking (ESC) extends the scope of static checking from type
correctness to properties such as the absence of null dereference, safety of array

32



indexing, and invariant maintenance. The goal of ESC is to find bugs, not full
verification [61]. Most ESC tools are based on some variant of first-order logic,
and a fully automatic first-order prover such as an SMT solver is typically used as
the verification back-end. ESC has been a driver for research in automated theorem
proving and SMT.

A tool for checking of Java programs against specification written in the JML
called ESC/Java was originally developed by Flanagan et al. [79]. Development of
this tool was later taken over by Cok and Kiniry to support the advances in JML
and to address issues in the original implementation [53]. Leino et al. [60, 32]
have developed the Boogie methodology for verifying programs written in, among
other languages, a C# extension called Spec# [33].

3.5.3 Program verifiers

The first program verifiers were developed by King [106] and Good [82] in the late
sixties. In 1973 Igarashi et al. [101] built a VCG for a subset of Pascal, which later
evolved into the Stanford Pascal Verifier [109].

A number of tools target Java+JML [48]. LOOP [149] is a compiler that
translates JML-annotated Java into VCs for (among other) the PVS theorem prover;
the generated theorems are then proved using the proof assistant of PVS. Similarly,
JACK [38] generates VCs for Coq and Simplify. Krakatoa [113] generates VCs
for the verification framework Why [76], which supports several interactive and
automatic theorem provers. The KeY System [40] is a verification system based
on dynamic logic for a subset of Java called JAVA CARD. It is supported by a
graphical theorem prover and integrates a number of SMT solvers, including Yices,
as decision procedures.

The B-method [1] is one of the most successful industrial applications of formal
methods, and is well known for having been used in the verification of a segment
of the Paris metro system control software [41] and other large projects. B is based
on set theory, and specifications are given as abstract machines with invariants
and operations; the B tool assists in proving that the operations of a machine
maintain the invariants, as well as in refining operations into executable code.
Current development is centered on the Action Systems-based Event-B language
[25], and the Rodin platform [2]. The Rodin platform is built on top of the Eclipse
framework and integrates Event-B specification, specification animation, and a
point-and-click proof assistant.

3.5.4 Theorem provers

The field of mechanized theorem proving has developed from an effort to mech-
anize mathematical and logical reasoning, as well as to support hardware and
software verification. Notable early examples of theorem provers are NuPRL
[54], LCF[116], and the Boyer-Moore prover Nqthm [46]. Based on LCF, Gordon

33



has developed the HOL system, an ML-based framework for proving program
correctness in higher-order logic [83]. Nqthm was later developed into the pro-
gram verification framework ACL2 [104]. HOL and ACL2 have both been used
extensively in hardware verification. EHDM [142], developed at SRI, was the pre-
decessor of PVS. Current state of the art interactive theorem provers include PVS
[143] and Isabelle/HOL [128], both of which are based on classical higher-order
logic. Another prover used for program verification is Coq, which is based on the
calculus of inductive constructions [42]. This is just a partial list. The systems
vary widely in methods of interaction and how proofs are built and represented;
for instance, Isabelle proofs are based on forward reasoning while PVS proofs are
goal-directed. A comparative overview of the major provers and their proof styles
in the context of a concrete example is given by Wiedijk [154].

3.5.5 SMT solvers

First-order SAT and SMT solvers have developed into efficient, powerful tools
for program verification. Simplify [62] has been used by a number of software
verification tools, including ESC/Java. It is, however, no longer developed. Current
state of the art includes Barcelogic [43], CVC3 [37], Yices [69], and Z3 [59];
this is just a partial list. A common standard input language for SMT solvers,
the SMT-LIB language [36], is being developed to facilitate the writing of front-
ends as well as the interchangeability of back-ends. All the listed solvers except
Simplify support the SMT-LIB language (version 1.2). The international SMT-
COMP competition [34] annually ranks the capacity and performance of SMT
solvers based on a large collection of standard problems. SMT solvers have also
been successfully integrated into several theorem proving systems as endgame
provers. Examples include PVS and Yices, Isabelle and Yices [73], as well as HOL
and Yices [153].

3.6 Summary

The architecture of a program verification system typically comprises a VCG and
a theorem prover. The VCG translates a program and its specification into VCs
which are sent to the theorem prover. Automatic tactics are used to discharge
as many conditions as possible. Working with an automatic theorem prover in a
programming context is a “static debugging” process, in which the output from the
prover helps the developer in identifying errors in the program or specification.

A verification system should provide a means for describing what a program
should do, in addition to how it does it. The specification part of the language must
be expressive enough such that any relevant problem domain can be modeled. A
higher-order logic is typically considered powerful enough for general-purpose
specification.

34



A semantic function defines the translation of an imperative program and its
specification into VCs. This consistency of a verified program hinges ultimately
on the consistency of the verification semantics with respect to the environment in
which the program will be executed.

Interactive theorem provers can be used for building and checking proofs of
VCs. Proofs built in a theorem prover are guaranteed to conform to its underlying
formal proof system. Decision procedures for common background theories
implemented in SMT solvers have been developed to increase the degree of proof
automation in practical program verification.

35



36



Chapter 4

PVS and Yices

This chapter is an overview of the PVS specification language and theorem prover.
We describe the basics of the language as well as the most important proof com-
mands. We also give an overview of the features of the SMT solver Yices, which
is integrated as a decision procedure in PVS.

4.1 Introduction

PVS (originally an acronym for Prototype Verification System) is a specification and
verification system developed by SRI International [143]. At the core, it consists of
a higher-order specification language, a powerful interactive theorem prover, and
an Emacs-based front-end [135]. Examples of auxiliary tools include an evaluation
engine [145] and batch proving, scripting and checking [121]. PVS is open
source and available under the GNU General Public License. It is implemented in
Common Lisp and runs on the Linux, Solaris and Mac OS X platforms.1

Interaction with PVS is primarily via the Emacs front-end. PVS files are
managed and edited as Emacs buffers. The interface provides commands to,
among other tasks, parse and typecheck a file as well as to start an interactive
session with the theorem prover. The prover can run in either interactive or batch
mode. Interactive mode is used to create new proofs, while batch mode is used
to replay existing proofs. The extension ProofLite [121] makes it possible to run
scripted proofs without starting the Emacs front-end.

Commands to the prover are entered as S-expressions into an interactive prompt.
Familiarity with Lisp is not required for normal use of PVS. However, when using
the system in advanced ways—such as when writing custom prover strategies that
query the internal structure of the sequent formulas or the prover state—it is often
necessary to embed Lisp code into the proof commands. This also requires some
degree of familiarity with the internals of PVS.

1PVS can be downloaded in source and binary form at http://pvs.csl.sri.com/download
(link valid as of June 2010).

37



We proceed as follows. We first describe the PVS specification language.
Following this, we give an overview of how proofs are built in PVS and how
the PVS prover is controlled through commands and proof scripts. Finally, we
summarize the functionality of the SMT solver Yices. We restrict the treatment
throughout to features that are relevant to Socos and the case study in Chapter 8.

4.2 The PVS specification language

The PVS specification language [136] is a textual ASCII-based language. It is
case-sensitive in identifiers but case-insensitive in keywords. For example, the
following expressions are equivalent:

forall x : f(x) or F(x)
ForAll x : f(x) OR F(x)

The bold words are PVS keywords and may thus be written in any mixture of cases,
whereas x, f and F are distinct identifiers. We will in the sequel use typographic
mathematical symbols in place of the ASCII equivalents, rendering the above as:

∀x : f(x)∨F(x)
The typeset version of the PVS syntax should present no surprises. A glossary of
the ASCII and typeset symbols used in this thesis is given in the Appendix on page
141.

4.2.1 Structure of specifications

The basic specification unit is the theory, which contains a number of declarations.
Declarations assign names to types, constants, definitions, variables, axioms and
theorems within the theory. Theories provide namespaces for declarations, as well
as genericity and reusability through parameters. Declarations can be imported
from one theory into another, enabling large modular theory hierarchies to be built.
Importings must be acyclic.

PVS comes with an comprehensive library of theories called the prelude
[133]. Prelude theories include functions, relations, orders, real numbers, integers,
indexed sets, and so on. All prelude declarations are available in user created
theories without being explicitly imported.

PVS supports specification of abstract datatypes—either at the top level or
embedded within a theory—from which theories are automatically generated during
typechecking [131]. Datatypes may be recursive and (like theories) parametric,
allowing for specification of generic list- and tree-like structures.

4.2.2 Type system

The underlying logic of PVS is a simply-typed higher-order logic [132]. The type
system provides base types such as bool, nat, int and real, and type constructors

38



to build new types from existing types. Types are closely related to sets: two types
are equal if they denote the same set of values, and subtypes correspond to subsets.
For example, nat is a subtype of int, int is subtype of rational, and rational
is a subtype of real. Subtypes are introduced by predicate subtyping [141]; the
subtype is defined by a predicate picking the elements from the supertype. For
example, the type nat can be defined as a subtype of int using the following set
comprehension-like notation:2

nat : type+ = {i : int|i≥ 0}
The PVS design philosophy encourages the use of predicate subtyping. The syntax
makes it easy to move from predicates to types: a type expression can be built from
a predicate by enclosing the predicate in parenthesis. For example, the following
introduces a new type even_int of even integers based on a predicate over integers
called even? from the PVS prelude:

even_int : type+ = (even?)

Predicate subtyping provides an expressive type system at the cost of rendering
typechecking undecidable. Consequently, theorem proving is required to decide
subtyping and/or type equality relations. PVS generates type correctness conditions
(TCCs) during typechecking and tries to discharge them automatically using a
default strategy. TCCs not discharged automatically can be proved interactively
in the theorem prover. Above, the plus sign following the keyword is a type
judgement: it tells the typechecker that the type even_int is non-empty, which
results in the generation of an existence TCC requiring a witness for the type, and
subsequently allows constants of type even_int to be declared without generation
of an existence TCC. It is even possible to give the witness directly in the type
declaration:

even_int : type+ = (even?) containing 0

In this case no TCC is generated, as the typechecker immediately can decide that 0
satisfies the even? predicate.

PVS supports uninterpreted types and subtypes. An uninterpreted type dec-
laration introduces a new type that is disjoint from all other types except its own
subtypes. An uninterpreted subtype declaration creates a subtype from a given type
without further assumptions; i.e., two uninterpreted subtypes of a single supertype
may or may not be disjoint.

Additional basic type constructors are the tuple (product type), function and
record constructors. These constructors do not allow recursion (abstract datatypes
are used in PVS to model and reason about recursive types such as lists and trees).
A tuple constructor is of the form [T1, . . . ,Tn] where each Ti is a type expression. A

2For the sake of presentation, nat and other definitions in this section do not necessarily match
their namesakes in the prelude exactly.

39



function type constructor is of the form [D1, . . . ,Dn→ R] where each Di and R are
type expressions. Specifically, the type [T→ bool] is called a predicate over type T .
Record types are similar to tuple types, but fields are labeled: [#l1 : T1, . . . , ln : Tn#].
The fields must be distinctly labeled, but in contrast to tuples the order of field
declarations is irrelevant.

As an example, using records we can specify a type of dynamic arrays con-
taining elements of type T with a field len for the number of elements and a field
elem for accessing individual elements:

vector : type+ = [#len : nat, elem : [nat→ T]#]

A powerful extension to predicate subtyping is dependent typing. A dependent
type is a type that depends on a value. Dependent types are useful for succinctly
encoding data invariants and dependencies directly in the types. With dependent
typing, we can construct the following improved vector type:

vector : type+ = [#len : nat, elem : [below(len)→ T]#]

Here below is a dependent type itself, defined in the prelude as follows:

below(i : nat) : type = {s : nat|s < i}

Now the domain of the elem function depends on the value of the len field, so
that instead of covering all of nat it is limited to the integer interval [0..len). As
is elaborated in [141], this definition provides a better notion of equality, since
every vector value is now uniquely defined. This is also the array model which we
use in our example in Chapter 8. A listing of the complete theory is given in the
Appendix, page 146.

4.2.3 Variable and constant declarations

Variable declarations on the theory level bind names to types in the context of
the theory. A name may then be used without explicit type annotation in binding
expressions such as quantifiers and λ -abstractions.3 For example, the declaration

u,v,w : var vector

introduces three variables u, v and w ranging over vectors. Constant declarations
introduce named constants, which may be uninterpreted, as in:

x : T
vec1 : vector

3Variables declared at the theory level may in general not occur free in PVS terms. A notable
exception is theorems, in which free variables are implicitly universally quantified.

40



In this case only the types of x and vec1 are known to PVS. From the previous
declarations the type checker knows that both T and vector are non-empty. In gen-
eral, declaring uninterpreted constants of types that are not declared as non-empty
results in the generation of existence TCCs. Constants may also be interpreted, as
in:

vec2 : vector = (#len := 1, elem := λ (i : below[1]) : x#)

The above declares vec2 to be a one-element vector. Named functions may also
be declared using the traditional name-argument binder notation. Also, multiple
argument tuples may be sequenced to compactly define higher-order functions
in a single declaration without use of λ -abstractions. For instance, the following
declaration defines a curryfied concatenation function:

con(u)(v) : vector = (# len:=len(u)+len(v),
elem:=

λ (i:below[len(u)+len(v)]):
if i<len(u) then elem(u)(i)

else elem(v)(i-len(u)) endif #)

This declaration assigns con the type [vector→ [vector→ vector]].

4.2.4 Formula declarations

Formula declarations associate names with closed boolean expressions. They are
used to introduce formulas to be proved or invoked (as lemmas) in the prover.
Three kinds of formulas can be added to a PVS theory: axioms, assumptions and
theorems. A fourth type, obligation, is reserved for TCCs generated by the type
checker.

Axioms are introduced with the keyword axiom. Injudicious use of axioms
may introduce inconsistencies into the theory. Constants declarations are, on the
other hand, guaranteed to add conservative extensions of the theory, meaning that
they cannot give rise to inconsistency.

Assumptions are constraints on the theory parameters. They appear as axioms
within the parametrized theory. Whenever the theory is imported into another
theory, an instance of the assumptions for the actual parameters must be discharged.

The keyword theorem—or alternatively, formula, fact, lemma and several other
available synonyms—introduces theorems that become proof obligations. For
example, to add a lemma stating that con is associative we write:

lem1 : lemma ∀(u,v,w) : con(u)(con(v)(w)) = con(con(u)(v))(w)

The name lem1 is used to invoke the lemma from the theorem prover. Formula
names exist in a separate namespace from constants and variables, but must be
unique within a theory. PVS interprets a formula declaration containing free

41



variables as the universal closure of the free variables. We can thus state the
above more compactly by omitting the ∀(u,v,w) part. In the next we will see how
theorems are proved in PVS.

4.3 Theorem proving in PVS

The PVS proof theory is based on sequent calculus. A PVS proof is a tree where
each node is a sequent of the form

γ1, . . . ,γn ` δ1, . . . ,δm

where γ1, . . . ,γn are the antecedent formulas and δ1, . . . ,δm are the consequent
formulas. At every point in the proof either n > 0 or m > 0. Proofs are carried out
in a goal-directed style. The proof of a proposition α starts with the root sequent
` α; the user then applies a proof rule that either proves the current sequent, or
reduces it to a collection of subgoals. Each subgoal adds a branch to the proof tree.
A branch is terminated by a step that proves the sequent. A proof is complete if
every leaf sequent is proved. A sequent can be proved by reducing it to a form that
is trivially true. A sequent is trivially true if for any γi, δ j either γi is false, δ j is
true, or γi is syntactically equivalent to δ j (modulo the names of bound variables).

A simple numbering scheme is used to identify sequent formulas in the prover:
antecedents are labeled from the sequence of negative integers −1,−2,−3, . . .
and consequents from the sequence of positive integers 1,2,3, . . . . Additionally
sequent formulas may be given custom labels with the label command.

4.3.1 Commands

The logic of PVS is embodied in a small set of primitive inference rules (listed in,
e.g., [146], Chapter 3). Every PVS proof corresponds to a sequence of applica-
tions of these rules. In practice, proofs are constructed using higher-level proof
commands which encode the primitive inference rules. In total over a hundred
commands are available; we list here a few that are relevant to this thesis. A
complete list and the full documentation can be found in [146]. Many commands
accept as the first parameter the number of the sequent formula to which they
should be applied. For most commands this parameter may be omitted, in which
case PVS either applies it to all formulas, or selects the formula based on command
specific heuristics.

beta applies beta-reduction. For example, (λa,b : a+b)(1,2) is reduced to
1+2.

decompose-equality decomposes equality between functions, records or tuples
into a conjunction of equalities of the constituents. For example, if f and g
are unary functions, f = g is decomposed into f(x) = g(x) where x ranges

42



over the type of the argument. For records and tuples, the command splits
the proof tree for each component.

expand expands in the sequent the names given as parameters to their definitions,
and then applies the simplify command.

flatten-disjunct performs disjunctive simplification of a sequent formula into
a list of formulas. For example, α ` β =⇒ γ is reduced to α,β ` γ . The
depth to which formulas are flattened can be controlled with a parameter; by
default the command iterates until flattening is no longer applicable.

inst instantiates universal quantifiers in the antecedent and existential quantifiers
in the consequent.

propax discharges sequents that are trivially true, otherwise does nothing. PVS
automatically applies propax to new sequents.

skolem introduces Skolem constants for existential quantification in the
antecedent and universal quantification in the consequent. The variant
skolem! of this command additionally invents names for the Skolem
constants.

split branches a sequent into subproofs. For example, applying split on α `
β ∧ γ generates the sequents α ` β and α ` γ . By default splits until the
resulting formulas no longer are conjunctions, but the depth of splitting can
be controlled with the :depth parameter.

simplify, assert, ground, smash, grind apply combinations of built-in
decision procedures, automatic rewriting, quantifier instantiation, if-lifting,
arithmetic and propositional simplification. Only simplify is primitive;
the rest are strategies combining simplify and other proof commands.
grind is the most general strategy: it applies automatic rewriting followed
by repeated quantifier instantiation, if-lifting and simplification until the
sequent is proved or a fixpoint is reached.

4.3.2 Example proof

Figure 4.1 shows a PVS proof of the formula lem1. The first step introduces
skolem constants for the universal quantifier in the consequent. The second step
uses decompose-equality to split the equality over vector into two separate
branches for the components len and elem. Note that in the first branch, when
expanding the definition of con the automatic simplification built into the expand
command immediately simplifies the sequent to TRUE, which is then discharged
automatically by PVS through propax.

The second branch applies decompose-equality again to transform function
equality into range value equality. Names generated by the prover are suffixed

43



with ! and a positive integer. The next command is expand, which expands the
definition of con and then simplifies. After this step, smash discharges the sequent.

A more compact proof of lem1 applies (grind) in place of the expand com-
mands in both branches. Since grind does both rewriting and simplification, it
solves each branch in a single step. It is even possible to prove the lemma with
a single command: (grind-with-ext). This command is like grind, but also
applies extensionality reasoning.

4.3.3 Strategy language

smash, grind and grind-with-ext are examples of proof strategies (tactics) for
applying combinations of the primitive commands in an automated manner. They
are useful for automating commonly occurring proof command patterns. PVS
includes a small language for building custom proof strategies [134]. Below we
list the main constructs in the strategy language; the full list can be found in [146].

skip does nothing.

if evaluates a Lisp expression and chooses a strategy based on the result.
(if cond s1 s2) applies step s1 if cond evaluates to true, otherwise applies
s2.

let allows embedding of arbitrary Lisp code into strategies. The command
(let ((v1 e1), . . . ,(vn en) s ) evaluates Lisp forms e1, . . . ,en and binds
their values to the symbols v1, . . . ,vn in step s.

branch applies a step and assigns a separate strategy to each subgoal. The com-
mand (branch s (s1 . . . sn)) applies for each 0≤ i≤ n the step si to the i’th
subgoal generated from applying s to the current sequent. If there are more
than n subgoals, sn is applied to the n’th as well as all subsequent subgoals.

spread like branch, but applies no step to extraneous subgoals.

repeat* repeats a step along all sub-branches until the step does nothing.

then applies a series of steps in sequence; if a step branches into several subgoals,
the remaining steps in the sequence are applied along all branches.

try applies a step and based on the result chooses to apply one or another step.
The command (try s1 s2 s3) first applies s1; if s1 is successful and generates
subgoals then s2 is applied to each subgoal; if s1 does nothing then s3 is
applied to the current sequent. If s1 fails, failure is propagated to the parent
proof state.

Strategies can be invoked in the prover. For example, the command

(then (skolem!) (repeat* (decompose-equality)) (grind))

44



` ∀(u,v,w : vector) : con(u)(con(v)(w)) = con(con(u)(v))(w)

(skolem * (u v w))

` con(u)(con(v)(w)) = con(con(u)(v))(w)

(decompose-equality)

` con(u)(con(v)(w))‘len
= con(con(u)(v))(w)‘len

(expand con)

` TRUE

(propax)

` con(u)(con(v)(w))‘elem
= con(con(u)(v))(w)‘elem

(decompose-equality)

` con(u)(con(v)(w))‘elem(x!1)
= con(con(u)(v))(w)‘elem(x!1)

(expand con)

` if x!1 < len(u) then elem(u)(x!1)
else if x!1−len(u) < len(v) then elem(v)(x!1−len(u))
else elem(w)(−1∗len(u)−len(v)+x!1)
endif

endif

=
if x!1 < len(u)+len(v)
then if x!1 < len(u) then elem(u)(x!1)
else elem(v)(x!1−len(u))
endif

else elem(w)(−1∗len(u)−len(v)+x!1)
endif

(smash)

Figure 4.1: A PVS proof tree

45



discharges lemma lem1 in one step. Additionally, PVS provides a Lisp macro
called defstep for associating a name and a description with a strategy. Custom
strategies should be defined in a Lisp file and stored together with the theories, or
in a PVS package. These strategies may then be invoked via their names in the
prover.

4.3.4 Proof scripts

The PVS prover records the proof scripts in separate text files, albeit in an internal
format that is not intended to be human-readable nor easy to generate. A PVS
extension, ProofLite, by Munoz et al. [121], allows proof scripts to be given as
S-expressions inside the PVS theories. Using this notation we write the proof in
Figure 4.1 as follows:

%|- lem1: proof

%|- (skolem * (u v w))

%|- (spread (decompose -equality)

%|- (( expand con)

%|- (then (decompose -equality)

%|- (expand con)

%|- (smash ))))

%|- QED

ProofLite recognizes the character sequence %|- and translates the script into the
internal proof format used by PVS (the % character normally starts a PVS comment
that extends until end of line). In the remainder of the thesis we will present PVS
proofs as ProofLite scripts.

4.4 Yices

Yices [69] is a freely available4 SMT solver developed by SRI to support theorem
proving, model checking, hardware verification and related domains. Yices de-
cides the satisfiability—i.e., returns either sat or unsat—of first-order formulas
containing uninterpreted functions with equality, linear real and integer arithmetic,
scalar types, recursive datatypes, tuples, records, extensional arrays, fixed-size
bit-vectors, quantifiers, and lambda expressions.

The implementation comprises a fast DPLL-based [57] SAT solver, a core
theory solver, and a set of satellite solvers (for arithmetic, data types, arrays,
etc.). The propositional structure of a formula is handled by SAT whereas (non-
boolean) literals are handled by decision procedures for the corresponding theory
fragment. The core solver uses congruence closure [126] to decide the satisfiability

4A binary can be downloaded from http://yices.csl.sri.com (as of June 2010).

46



of equations with uninterpreted functions, and communicates with the satellite
solvers using an extension of the Nelson-Oppen procedure [125] for propagating
equality between the solvers. The linear real arithmetic solver is based on the
Simplex algorithm. Yices is implemented in C++, and is interfaced either via the
Yices input language or through a C API.

The Yices input language supports quantifiers, but the decision procedure
is incomplete if they are used. If quantifiers are used, Yices may additionally
return unknown. Yices attemps to handle quantifiers with an E-graph matching-
based [62] instantiation heuristic, complemented with Fourier-Motzkin elimination
to simplify linear arithmetic expressions with quantifiers. It uses a specialized
decision procedure for a fragment of universal quantification over array elements
[47]; in this fragment it is possible to express, e.g., that a predicate is true for each
element in an array, or that two arrays are equal on a common subrange.

Yices can be invoked directly from PVS as a decision procedure. A translation
to the Yices input language has been implemented in PVS, but Yices is not,
however, part of the PVS package and must be downloaded separately. If it
is installed, the prover command (yices) invokes Yices as an end-game strategy
in the PVS interactice prover. An end-game strategy either proves the sequent
and terminates the branch, or does nothing. To check the validity of a sequent
γ1, . . . ,γn ` δ1, . . . ,δm, the command checks the satisfiability of the formula

γ1∧·· ·∧ γn∧¬δ1∧·· ·∧¬δm

using Yices. If the formula is unsatisfiable, the sequent is valid and is discharged.
Otherwise, (yices) behaves as (skip).

For large satisfiability problems, time and memory requirements of the algo-
rithms implemented in Yices can grow beyond practical limits. In these cases it
is possible to set an upper limit on the number of quantifier instantations, as well
as a timeout such that the search terminates after a given number of seconds has
elapsed.

4.5 Summary

PVS is a verification system comprising a specification language and an interactive
theorem prover. Specifications are structured into theory hierarchies. Each theory
contains a set of declarations. The basic declarations are type, variable, constant
and formula declarations.

PVS is based on simply-typed higher-order logic. The base types are the
built-in types, such as booleans and integers, and the uninterpreted types declared
by the user. Type constructors include functions, tuples, records and abstract data
types. Predicate subtypes and dependent types can be used to introduce arbitrary
constraints on values. This makes typechecking undecidable in the general case;
hence, PVS generates type correctness conditions (TCCs) during typechecking.

47



PVS proofs are based on sequent calculus. Formulas are proved in an interactive
theorem prover. Each node and leaf in the proof tree is a sequent. The proof tree is
extended by issuing commands to the prover. A proof is complete when each leaf
in the tree has been proved. Strategies can be defined to automate the application
of multiple proof commands.

ProofLite is a PVS package that allows proof scripts to be embedded within
PVS theories in a human-readable form, and to be batch processed.

Yices is an SMT solver which is integrated as a decision procedure in PVS.
The command (yices) either proves the current sequent, or does nothing.

48



Chapter 5

The Socos Language

This chapter defines the concrete invariant-based programming language used by
Socos. We introduce a textual and a graphical syntax for the language.

5.1 Introduction

Socos provides a language for specifying sequential invariant-based programs. The
language uses a subset of the PVS language. Expressions in the Socos language are
PVS expressions, and the types of program variables are given as PVS types. The
syntax and semantics of (type) expressions are well described in the PVS Language
Reference [136], and hence, we do not go into the details of these here. Some of
the syntactic apparel of PVS is carried over into the Socos language, such as the
convention of enclosing blocks in begin . . .end brackets. The language combines
the specification language of PVS with a concrete implementation language and
can be considered a wide-spectrum language. In addition to standard program
statements, such as assignments and tests, the language includes nondeterministic
choice and nondeterministic assignment. The language has a basic procedure
construct that allows decomposition of programs into subroutines.

We have deliberately kept the language small and simple. Only the minimal
features needed to build procedural programs are included. The language does
not include object-oriented constructs such as classes and inheritance, nor is
there support for generic types.1 Procedures are not values, and the parameter
passing mechanism is restricted to pass by value or value-result. In particular,
the language does not support pointers, pass by reference calls, a global heap or
other mechanisms that may introduce variable aliasing (aliasing occurs when two
separate identifiers are bound to the same mutable variable, so that updating via
one identifier affects reading via the other).

The remainder of this chapter is structured as follows. First we give some

1While it is possible to build and reason about programs that use generic (uninterpreted) types,
there is currently no support for instantiating them with concrete types.

49



conventions used throughout the chapter for defining the syntax of the language.
We describe the lexical structure and the basic declarations. We then introduce the
programming constructs in a top-down fashion, starting with contexts (the basic
translation unit) and concluding with program statements. We end the chapter with
a summary and a short discussion.

Notation. The language is presented in two dual notations: textual and diagram-
matic. They are semantically equivalent; their relationship is the same as that
between invariant diagrams and situation analysis [14, sec. 8]. The textual notation
defines the nesting structure of situations but not the concrete graphical layout—i.e.,
the positions and sizes of the boxes. The two notations converge at the textual level:
the syntax of all textual elements, such as constraints and statements, is identical
in both notations.

The dual representation is pragmatic; textual notations are more readily handled
in a syntax-directed context, and more amenable to automatic processing such as
parsing and analysis. The textual notation is not intended to be used as a front-end
programming language, although it is possible to do so. In Socos, the diagram
representation of a program is converted into textual form as an intermediate step
towards being processed into VCs. In the remainder of this thesis, we will present
complete programs and examples as diagrams, while we use the textual notation
in expositions that deal with fragments of the language, such as the verification
semantics in the next chapter. The correspondence between the two notations is
trivial, so this convention should cause no confusion.

We describe the syntax of the Socos language as a set of productions in BNF
like form using the following conventions:

• Character literals are printed in typewriter font. 0xH indicates an ASCII
character with the hexadecimal value H.

• Reserved words and symbols are printed in bold sans serif.

• Syntactic variables are printed in italics.

• Productions are written in the form P ::= S .

• An optional part S of a clause is denoted S? .

• Angle brackets are used to group clauses, as in 〈S T 〉? .

• For repetition of a clause S one or more times we write S+; repetition zero
or more times is denoted S∗. To indicate that the repeated elements are
separated by a symbol , we write S,+ and S,∗, respectively.

• Alternatives are separated with a bar, as in S | T .

• For elements with a diagrammatic representation, we give a graphical tem-
plate to the right of the production.

50



5.2 Basic language structure

Below we briefly describe the basic structure of the language: lexical conventions,
expressions, and constant and variable declarations.

5.2.1 Lexical conventions

The language follows the lexical conventions of PVS [136, Ch. 2]. Whitespace
delimits tokens but is otherwise ignored, except in strings. Comments are intro-
duced with the % character and extend until the end of the line. Numbers are
nonempty sequences of digits. Strings are delimited with double quotes and may
contain any ASCII character except the null character (the sequence \" is used to
include a double quote in a string). Strings cannot contain comments. Identifiers
are sequences that start with a letter and contain only letters, digits and the question
mark character.

Number ::= 〈0| . . . |9〉+
String ::= " 〈0x01| . . . |0xFF〉∗ "
Id ::= 〈A| . . . |Z | a| . . . |z〉 〈A| . . . |Z | a| . . . |z | 0| . . . |9 | ?〉∗

Id above is the subset of PVS identifiers that do not contain the underscore charac-
ter, which is reserved for identifiers generated by Socos to preclude name clashes
with generated and user defined identifiers.

The structural constructs of the language introduce lexical scopes in which
identifier bindings are restricted to one delimited subcomponent. Within a scope,
Socos uses separate namespaces for the following categories of identifiers:

• constants and variables;

• types;

• contexts;

• procedures;

• situations.

Thus, it is possible to declare a constant with the same name as a situation within
a single scope. Following the conventions of PVS, constants and variables may
be overloaded provided that they can be disambiguated based on their types in
the context where they appear. Identifiers in the other categories may not be
overloaded.

5.2.2 Expressions and type expressions

There are two kinds of expressions, Expr and TypeExpr, corresponding to PVS
expressions and type expressions, respectively. The exact syntax of these is docu-
mented in the PVS Language Reference [136]. Expr includes the basic numeric,

51



boolean and string expressions, as well as compound expressions such as operators,
functions, binders and projections. TypeExpr includes the subtype, function, tuple
and record type constructors.

5.2.3 Constant and program variable declarations

Constant declarations introduce new constants. Currently, non-recursive and recur-
sive definitions are supported:

Const ::= ConstDecl | RecursiveDecl

These productions are the same as ConstDecl and RecursiveDecl of PVS, with the
exception that constant names must be Socos Ids, and thus must not include the
underscore character. Socos also does not currently support redefinition of PVS
operators. This restriction is to simplify parsing, and may be lifted once the parser
is improved.

The pvar keyword is used to introduce program variables. A declaration adding
one or more program variables of the same type has the syntax:

Pvar ::= pvar Id,+ : TypeExpr ;

A program variable declaration has a strictly different interpretation than a PVS var
declaration. The former adds a component to the state vector, whereas the latter
binds a logical variable name to a type. Program variables may not be quantified
over, and are the only identifiers that may appear on the left hand side of an
assignment statement. The identifiers do, however, exist in the same namespace so
it is an error to define a program variable with the same name as a logical variable
in the same scope.

Constants and variables must be declared before they are used. However, in
certain expressions identifiers of the form X_0 (where X is a program variable
identifier) may be used. Such implicit initial value-constants are used to store the
initial value of a mutable parameter of a procedure. Section 5.3.2 describes where
they are available. In the typeset notation we render the initial-value constant X_0
as X0.

5.3 Program constructs

We now describe the basic building blocks of Socos programs: contexts, situations,
transition trees and statements.

5.3.1 Contexts

The context is the top level program construct and the basic translation unit. It
defines a verification context for a set of procedures. A context declaration has the
syntax:

52



Context ::= Id : context
begin
〈extending Id+;〉?
Importing∗

〈using 〈Id|String〉;〉?
Const∗

Procedure∗

end Id

A context introduces a lexical scope: constants declared on the context level
become available to all the contained procedures. A context may extend one or
more other contexts with the extending keyword, inheriting their constants and
procedures. Extension forms a hierarchy analogous to the PVS theory hierarchy,
so extension declarations must not be cyclic.

Importing is identical to the PVS Importing clause and is used to import
background theories, PVS theories containing definitions and lemmas pertaining
to the verification of the procedures in the context. Importing a PVS theory makes
its constants available in the context, and can also have an effect on the way VCs
are handled, for instance if the theory contains auto-rewrite declarations [136, Sec
3.11]. We will use this mechanism in the case study in Chapter 8.

The using clause defines the proof command to be applied by default to the
verification conditions. The argument is either one of the (transitively) extended
contexts, in which case the command of that context is inherited; or it is a PVS
proof command inside a string. If omitted, the command is inherited from the first
extended context, or, if the context is not an extension, defaults to (skip).

5.3.2 Procedures

The syntax for a procedure declaration is as follows:

Procedure ::=
Id [Signature] :
procedure
Pre?

Post?

〈** Variant ;〉?
begin

Const∗

Pvar∗

Diagram
end Id

Id [Signature] | Variant

Const1...

Pvar1...

Pre Post1

Diagram ...

53



Signature ::= 〈〈Id : TypeExpr〉,+〉?
〈valres 〈Id : TypeExpr〉,+〉?
〈result 〈Id : TypeExpr〉,+〉?

Variant ::= Expr

Pre ::= 〈pre Expr;〉+ Expr1...

Post ::= AnonPost+ | NamedPost+

AnonPost ::= post Expr;
Expr1...

NamedPost ::=
Id : 〈post Expr;〉+

Id

Expr1...

Diagram ::= Situation∗ Trs?

The procedure construct is standard, with the addition that the specification allows
multiple, labeled postconditions. The procedure executes in its own statespace,
consisting of the mutable parameters and local variables. A procedure call is
semantically equivalent to 1) assigning to each of the formal parameters the value
of its corresponding actual parameter, 2) executing the body of the procedure, and
3) copying back the values of the mutable parameters to the caller, while discarding
the values of local variables. Procedure calls are described in Section 5.3.4.

Each procedure in a context must have a unique name. The signature of a
procedure is a list of its formal parameters, describing each parameter’s name,
type and kind. Parameter names should be distinct. The type of a parameter may
be any PVS type, however the type may currently not be dependent on the value
of another parameter (constraints on the parameters should be specified in the
procedure precondition). The three parameter kinds are constant, value-result, and
result. Constant parameters are used for passing values to a procedure: in a call, the
actual constant parameters are evaluated and bound to the corresponding formal
parameters. These bindings remain unchanged during execution of the procedure
body, in contrast to the value parameter model, which allows the binding to be
updated in the procedure body. An advantage of constant parameters is that they
are a semantically simpler concept, and can be used meaningfully in postconditions.
For value-result parameters, the values of the actual parameters are copied to the
formal parameters, and when the procedure returns the final values of the formal
parameters are copied back to the actual parameters. Result parameters are used
for passing a store for the result only. Reference parameters are currently not

54



supported.
Variant, Pre, and Post constitute the specification part of the procedure declara-

tion. A variant must be provided for (mutually) recursive procedures if termination
is to be verified. The variant is an integer expression over the constant and value-
result parameters. Its lower bound is implicitly zero. We describe how variants
are used to prove termination of recursive procedures in the next chapter. The
precondition of the procedure is the conjunction of all pre-prefixed predicates.
Preconditions are over constants and value-result parameters. If Pre is omitted, the
precondition defaults to true. A procedure may declare postconditions in three
different ways:

• No Post. This is equivalent to a single anonymous postcondition true.

• A single anonymous postcondition.

• One or more uniquely labeled postconditions. The predicate associated with
a label is the conjunction of the post-prefixed predicates appearing after the
label.

A procedure with more than one postcondition is called a multi-exit procedure;
typical use for multi-exit procedures is to distinguish between normal and ex-
ceptional returns. The postcondition predicates is over constants, parameters and
initial-value constants. For each value-result parameter V , the initial-value constant
V_0 refers to the value of V prior to execution of the procedure body. This is a
notational shorthand to avoid having to introduce a new identifier for this purpose.

The procedure body introduces a lexical scope containing constant and variable
declarations, and an invariant diagram Diagram. Diagram is the actual procedure
implementation, consisting of an initial transition tree, where execution of the
procedure body starts, and a (possibly empty) set of situations. The syntax of
transition trees will be described in Section 5.3.4.

We make some comments regarding the graphical notation for procedures.
The outermost box represents a scope for the invariant diagram nested within,
binding the parameters, constants and local variables. Due to their roles as initial
and final situations, the pre- and postconditions are drawn as rectangular regions
similar to situations, adjacent to or inside the procedure diagram (but never nested
inside situations). Preconditions additionally have a slightly thicker outline and
postconditions a double outline to set them apart from the intermediate situations.
The initial transition tree of a procedure is drawn from the precondition, extending
into the diagram. Exit transitions (defined in Section 5.3.4) are drawn as arrows
to the postconditions. If the pre- or postcondition is omitted, the frame of the
procedure box is used to anchor these transition arrows.

Figure 5.1 shows an example specification of a procedure called find for
determining whether an integer element x exists in the constant vector a, and in
the positive case also returning an index containing x. The procedure has two

55



find [a : vector[int], x : int result k : int]

FOUND

0≤ k∧k < len(a)
a[k] = x

NOTFOUND

∀(i : nat) : i < len(a)⇒ a[i] 6= x

Figure 5.1: Specification of procedure find

postconditions: NOTFOUND and FOUND. If x is present in a, the procedure
implementation is supposed to exit in FOUND after having set k to some index that
contains x; if x is not present in a, the implementation should exit in NOTFOUND.

5.3.3 Situations

The syntax of situations is as follows:

Situation ::=
Id : situation
begin
〈* Constraint ;〉∗
〈** Variant ;〉?
Nested
Trs?

end Id

Id

Constraint1 | Variant...

NestedTrs

Nested ::= Situation∗

Constraint ::= Expr

Situations within a procedure must be distinctly named. Each situation contains a
(possibly empty) sequence of constraints, an optional variant, a (possibly empty)
sequence of nested situations, and an optional transition tree.

A situation corresponds to a named predicate over the state vector of the
program variables in the containing procedure. Each constraint corresponds to a
data invariant over the state vector. Constraints must be boolean expressions over
the program variables. The predicate of a top level situation is the conjunction of
its sequence of constraints; the predicate of a nested situation is the conjunction
of its sequence of constraints and the predicate of its enclosing situation. Writing
constraints as separate clauses has no semantic significance, but provides a way of
decomposing verification of transitions to the situation. Each constraint becomes a
separate proof goal. For example, declaring a situation as either

56



X

A
B

or
X

A∧B

associates the same predicate with X, but the the first case gives rise to two separate
proof goals, A and B, while in the second case we get a single proof goal, A∧B. If
no constraint is given, the situation predicate is true. The variant, if given, should
be an integer function from the state vector. The lower bound of the variant is
assumed to be zero.

Execution from a situation starts at the transition tree Trs. A situation that
can be reached from the initial transition tree is reachable. A reachable situation
without a transition tree is a final situation.

5.3.4 Transition trees

A transition tree is a tree in which each leaf is either a goto or an exit command,
and each intermediate node is either a choice command, an if command, or a call
command. An edge in the tree may additionally be labeled with a statement S; the
syntax of statements is given in the next section. A transition is a unique path from
the root to a leaf. The syntax of transition trees is:

Trs ::= 〈S ;〉? Tail S
Tail

Tail ::= Goto|Exit|Choice|If |Call

Goto ::=

goto Id Id

| decreasing goto Id Id

| decreasing Id1 goto Id2 decreasing Id1 Id2

Exit ::= exit Id?
Id

Choice ::= choice
Trs+

endchoice

...
Trs1

Trsn

If ::= if
GrdTrs+

endif

...
GrdTrs1

GrdTrsn

GrdTrs ::= [Expr] ; Trs

57



Call ::= call Invoc
〈Id : Trs〉+

endcall

| Invoc; Trs

... ...
Invoc

Id1 :
Trs1

Idn :
Trsn

Invoc
Trs

Invoc ::= Id(〈Expr,+,〉?〈Id,+〉?)

goto and exit identify the targets of the individual transitions. The former jumps to
an intermediate situation in the procedure, while the latter exits to a postcondition.
In the textual syntax we identify the target by name, while in the diagrams we
indicate the target by drawing the transition arrow to the edge of the target situation.
The keyword exit must be given without a parameter in procedures with a single,
unnamed postcondition. For procedures with named postcondition, the parameter
should identify a postcondition. In the diagrammatic notation we draw an exit
transition to the edge of a postcondition.

The keyword decreasing is used to declare that a transition decreases the variant
of the situation given as parameter. This mechanism defines cutpoints for verifying
that transition cycles terminate; we describe how it is used in Section 6.5 in the
next chapter. decreasing can also be given without a situation identifier, in which
case the variant is the target situation. All transitions in a tree sharing a common
target situation must supply identical parameters to decreasing. This requirement
ensures that all transitions between the same two situations decrease a common
variant, which is required for the termination verification method to be sound. In
diagrams, we draw transitions marked as decreasing using a double arrowhead.

choice is nondeterministic choice, while if is a guarded choice. The former
nondeterministically picks one of the branches for execution. The latter nonde-
terministically picks a branch whose guard is true for execution, and aborts if all
guards are false. In the diagrammatic notation the type of choice is indicated at the
branching point with a white or a black square, respectively.

Figure 5.2 shows a linear search implementation of the procedure find, con-
taining the situation LOOP and two transition trees. The transition tree from LOOP

contains two if branches. The transition back to the intermediate situation LOOP

has been indicated to decrease the variant of LOOP.
call is a procedure call. The construct consists of an invocation clause, which

identifies the procedure to be called and supplies the actual parameters, and a
branching part, which connects the exits of the procedure to transition trees. The
second version of procedure call omits the branching part and applies only to
procedures with a single unlabeled postcondition. The invocation clause should
provide actual parameters to match the signature of the called procedure in the
standard positional way. For each formal constant parameter, an expression of the

58



find [a : vector[int], x : int result k : int]

FOUND

0≤ k∧k < len(a)
a[k] = x

NOTFOUND

∀(i : nat) : i < len(a)⇒ a[i] 6= x

LOOP

0≤ k∧k≤ len(a) | len(a)−k
∀(i : nat) : i < k⇒ a[i] 6= xk := 0

k = len(a)

k < len(a)

a[k] = x

a[k] 6= x ;
k := k+1

Figure 5.2: Implementation of procedure find

same type or a subtype must be supplied. For each formal value-result parameter,
a program variable of the same type must be supplied. For each formal result
parameter, a program variable of the same type or a supertype must be supplied.
The branching part should include at most one branch for each postcondition in the
called procedure. For example, a call of the procedure find with actual parameters
b, 0 and j is drawn as follows:

find(b,0,j)

NOTFOUND :

FOUND :

To be considered live, a call should provide a transition tree for each named
postcondition (this is described further in Section 6.6 in the next chapter).

5.3.5 Statements

The language includes five distinct single-exit program statements: assume, assert,
assignment, havoc, and sequential composition. The syntax of statements is as
follows:

S ::= [Expr ] (assume)
| {Expr} (assert)
| Id,+ := Expr,+ (assignment)
| Id,+ := ? (havoc)
| S1 ; S2 (sequential composition)

59



Assume and assert both require the argument to be a predicate. Assume is a
specification statement; it is enabled—i.e., executable—only from states satisfying
the predicate. From such states execution of the assume statement succeeds without
changing the state. Assume blocks if the predicate is false. Assert evaluates its
argument; if true, it succeeds without changing the state; if false, the program fails.

The assignment statement updates a list of values to a list of program variables.
An assignment statement is well-formed only if the number of left hand side
identifiers is equal to the number of right hand side expressions, and every element
on the left hand side is a program variable identifier. The same variable may occur
multiple times on the left hand side. The operational interpretation of an assignment
V1, . . . ,Vn := E1, . . . ,En is that the expressions E1, . . . ,En are first evaluated, and
then the result values are assigned to V1, . . . ,Vn in left to right order. Havoc assigns
each variable in the list nondeterministically an arbitrary value from the type of
the variable. Sequential composition of two statements executes the first statement
followed by the second statement.

5.4 Summary and discussion

We have in this chapter defined dual textual and diagrammatic syntaxes for the
concrete invariant-based programming language used by the Socos tool. The
language is intended to have a simple verification semantics and so excludes many
features that would be expected from a full fledged implementation language, such
as global and reference variables, object orientation, and pointers.

The top level construct defines the verification context (constants, background
theories, default VC discharge command) for a set of procedures. Each procedure is
specified by a contract consisting of a precondition and one or more postconditions.
The implementation of a procedure is given as an invariant diagram with nested
situations connected by transitions. Invariants are predicates over a state vector
consisting of the procedure’s mutable parameters and local variables. A transition
tree is a multi-exit statement rooted in a situation and with each leaf ending in
a situation or a postcondition. The commands choice, if and call add branching
points to the transition tree. Statements are labels on the tree edges.

Program variables can range over any type that can be specified in PVS and
expressions are PVS expressions, allowing the full power of the specification
language to be used. This gives a large degree of freedom in choosing the level of
abstraction for programs. For instance, if we are verifying a program over integers
on a general algorithmic level we may want to use the mathematical (unbounded)
int type, while if we are checking a program near machine level, we may want to
use a bounded integer type corresponding to a specific word size. A trade-off for
the generality is that every Socos program cannot be considered executable as such.
To ensure that a program can be executed, we must check that all program variables
can be represented in the execution environment and that all expressions occurring

60



in statements can be evaluated in finite time. There is currently no support for such
checking in Socos. A more precise language definition should restrict expressions
in statements to a subset of the PVS language that can be evaluated. Such a subset
has been identified for the PVS ground evaluator [145], which translates PVS
expressions into Common Lisp. The ground evaluator also provides a way of
defining custom translations to Lisp called semantic attachments for terms that are
not evaluable in their general form.

A similar approach was taken in Socos1 for translation of invariant-based
programs into Python [21]. Socos1 provides a mechanism for defining Python
evaluators for operators that are not generally executable—such as quantifiers—but
for which meaningful special cases can be identified—such as quantification over
an integer range. However, there is no unified semantics of the types used for
reasoning about the program and the runtime Python types. For Socos2, we are
considering building an execution environment based on the PVS ground evaluator;
this is, however, future work.

61



62



Chapter 6

Verification Methodology

This chapter discusses the mechanics of establishing correctness of an invariant
diagram and gives a basis for VC generation. We describe the consistency, liveness
and termination conditions on invariant diagrams and how Socos derives them.

6.1 Introduction

Chapter 2 described three types of correctness conditions associated with invari-
ant diagrams: consistency, liveness and termination. This chapter goes into the
semantic characterization of these conditions for the language of Chapter 5 and
presents a concrete method for verifying that a program satisfies them. The goal
is to define a verification method that is sound—an incorrect program should
not be allowed to pass the verification process—and “adequately” complete—a
sufficiently large class of programs should be verifiable. The methodology should
support incremental program development. Building a correct program in one
step is infeasible. It must be possible to develop correct programs incrementally,
such as by verifying one transition before adding the next, or strengthening an
existing invariant-based on the feedback from the verification process. It should
also be possible to postpone verification of termination and liveness until the basic
consistency of the program has been established. The tool should thus provide
facilities for checking programs at various “degrees of partial correctness”.

Verification in Socos is based on checking each procedure separately. Hence
the VCs are interpreted in the context of a single statespace corresponding to the
procedure currently being verified. We use the standard technique of abstracting
procedure calls into assert and assume statements based on the specification.

The remainder of the chapter is organized as follows. Section 6.2 introduces
the notations used in this and the next chapter. Sections 6.3–6.6 define a semantic
function based on weakest preconditions for translating invariant-based programs
into VCs. The chapter ends with a summary and discussion of related work.

63



6.2 Notation

Rewrite rules. We express the translation of Socos programs into VCs as collec-
tions of rewrite rules over fragments of the language. We give the rules such that
the transformation is terminating and deterministic.

The rule P R−→ T denotes that the result of applying translation R to a term
matching the pattern P produces the term T . The pattern P is a binder for a set of
syntactic variables, which become available in the right hand side T . We denote
with SR the term produced by applying rule R to term S.

Many rules deal with lists of terms. We use interchangeably the notations T
and T1, . . . and T1, . . . ,Tn for a list of terms, picking the notation that best suits the
exposition. If T and T ′ are lists, then T,T ′ stands for the term list obtained by
concatenating T and T ′.

We use the wildcard symbol [. . . ] in patterns to match uninteresting sequences
of subterms. For instance, the pattern “P [. . . ]” matches any term starting with a
subterm matching P.

Environment. This chapter describes the verification of a single invariant dia-
gram in the environment established by the containing procedure. The environment
consists of a state vector σ and the following injective mappings from identifiers
to terms:

• JX stands for the predicate of situation X , i.e., the conjunction of the con-
straints of X and the predicate of its parent situation;

• VX stands for the variant of situation X ;

• PP(C,V ) gives the precondition of procedure P applied to constant parame-
ters C, value-result parameters V ;

• QP,X(C,V_0,V,R) gives the postcondition of procedure P labeled X applied
to constant parameters C, initial values V_0, value-result parameters V and
result parameters R;

• W(C,V ) stands for the variant of the current procedure (set of mutually
recursive procedures);

• TX stands for the type assigned to program variable X .

Additionally, we write P0 for the precondition of the current procedure, Q0,0 for the
default postcondition of the current procedure, Q0,X for the labeled postcondition
X in the current procedure, and QP,0 for the default postcondition of procedure P.
The concrete details of these mappings are revealed in Chapter 7 where we define
the translation of Socos programs into PVS theories.

64



wp(S)(Q)

P

Q

σ

σ ′

S

Figure 6.1: Weakest precondition

6.3 Consistency

Back [16, Sec. 4] defines consistency of an invariant diagram as the property that
“each transition establishes its target when executed from its starting situation.”
Operationally, consistency of a transition from situation A to situation B means that
every execution trace from a state satisfying JA should not fail, and should terminate
in a state satisfying JB. A transition fails if an assert statement evaluates to false. We
make a strict distinction between failure and nontermination: a statement always
either fails or terminates. Diagrams with loops and transitions containing recursive
procedure calls, on the other hand, may exhibit nontermination. When verifying
consistency we only demonstrate the absence of failure. Thus, consistency can be
seen as a partial correctness assertion.

Socos uses weakest preconditions as the basis for generating VCs. The weakest
precondition of a statement S, denoted wp(S), is a predicate transformer that
for a predicate Q gives the most general (weakest) precondition under which S
is guaranteed to establish Q. In other words, execution of S in a state σ such
that wp(S)(Q)(σ) holds terminates in a state σ ′ such that Q(σ ′) holds. This is
illustrated in the set diagram of Figure 6.1. A single-exit statement S is consistent
if and only if its precondition P is at least as strong as wp(S)(Q):

∀σ •P(σ) =⇒ wp(S)(Q)(σ) (6.1)

Formula 6.1 is the familiar correctness condition for Hoare triples of the form
{P}S{Q}. The weakest preconditions for the statements in Section 5.3.5 are the
standard ones; we postpone their definitions until the next chapter, where they will
be treated in conjunction with the reduction of VCs into proof goals.

A transition tree is consistent if and only if its constituent transitions are all
consistent. We recall that a transition tree is a multi-exit statement with interme-
diate nodes of type Choice, If or Call, and leaves of type Goto or Exit. Of the
intermediate node types, we consider here only Choice, as If and Call will be
defined in terms of Choice and other primitive statements in sections 6.4 and 6.6,

65



respectively. We also consider only Goto leaves; Exit is treated in Section 6.6.
Extending Formula 6.1 to transitions trees, we introduce a semantic translation

rule cc (for consistency condition) such that a transition tree Trs is consistent from
situation X if:

∀σ • JX(σ) =⇒ Trscc(σ) (6.2)

Hence, cc should give a weakest precondition for every transition in the tree Trs to
establish its target. We define cc for goto and choice as follows:

S ; goto X cc−→ wp(S)(JX)

S ; choice Trs1 . . .Trsn endchoice
cc−→ wp(S)(Trscc

1 ∩·· ·∩Trscc
n )

The first case establishes the connection between situations and postconditions,
while the second case expresses the notion that a transition tree is consistent if and
only if each subtree is consistent. When the statement S is absent from the left
hand side, we have the simpler condition:

goto X cc−→ JX

choice Trs1 . . .Trsn endchoice
cc−→ (Trscc

1 ∩·· ·∩Trscc
n )

Formula 6.2 is the basic template for generating VCs. Socos generates exactly
one condition of this form for each situation that has a transition tree, and one
for the initial transition of the procedure. Showing that a procedure is consistent
means proving that each condition is true. This method allows for a concise way of
building VCs generation that match closely the transition tree from which they were
generated, and has the advantage that the weakest precondition for each statement
is calculated only once. However, since Formula 6.2 describes the correctness of a
transition tree rather than individual transitions, it is not suitable for sending to a
theorem prover as such. Reduction of Formula 6.2 into smaller proof goals is done
with PVS proof commands as described in the next chapter.

6.4 Liveness

Liveness means that execution of the diagram, if terminating, terminates in one of
the intended final situations, i.e., in one of the postconditions. A procedure is live
if the following conditions both hold: 1) there is an initial transition tree, and from
every situation that is reachable from the initial transition tree at least one of the
postconditions is reachable; 2) for every reachable transition, each command in
the transition is able to proceed from any state it may be reached by. Condition (1)
ensures that the program does not get stuck in an intermediate situation. Condition
(2) ensures that the execution of a transition can run to completion and proceed to
the target situation.

66



Condition (1) is checked by reachability analysis of the program graph. To
establish condition (2), the transition statements must be checked for enabledness.
In general, for a statement to be enabled in any state it must satisfy Dijkstra’s
“excluded miracle” law [66]:

∀σ •¬wp(S)( /0)(σ)

Here the symbol /0 denotes the universally false predicate (empty set). A statement
that does not satisfy the above is called partial. Thus, for a partial statement S there
exists some state σ ′ from which S cannot progress to any state. The behavior of a
partial statement in such states is sometimes interpreted as “invoking a miracle.”
Of the statements given in Section 5.3.5, only the assume statement is partial; more
precisely, the assume statement [G] is enabled only in those states in which G is
true, so programs that contain assume statements are not necessarily live.

Socos analyzes programs syntactically for liveness and prints a warning that
the program may not be live if condition (1) is not true, or if an assume statement
is used in a reachable transition. Programs which are not live may still be veri-
fied for consistency, as lack of liveness is not necessarily an error but rather an
incompleteness in the program. The incompleteness may be deliberate, e.g., the
checked program is a stepping stone towards a final, live version. On the other
hand, it may also be due to a genuine mistake. In either case the tool points out to
the programmer is this really what is desired.

When liveness is desired, if rather than choice should be used to enclose
guarded transitions. It has the following consistency condition:

S ; if
[G1];Trs1
...
[Gn];Trsn

endif

cc−→

〈S ; {G1∨·· ·∨Gn}; choice
[G1];Trs1
...
[Gn];Trsn

endchoice 〉cc

The collection of guarded transitions is translated into an assertion of the disjunction
of the guards followed by a choice. The assertion is placed just before the choice,
and hence the program aborts if all guards are false; this results in a consistency
condition that at least one guard is enabled being generated. We note that the terms
[G1] . . . [Gn] on the left hand side are transition guards, whereas on the right hand
side they are assume statements.

In summary, to ensure that a program is live the programmer should 1) ensure
that a postcondition can be reached from every reachable situation, 2) avoid assume
statements; and 3) use if commands for conditional transitions. During program
development, assume statements are frequently used to collect explicit assumptions
at specific points in a transition tree, since these assumptions may simplify the
proof search for the automatic prover. However, Socos does not address the
problem verifying that a program containing assume statements is live. We note

67



in this respect that an assume statement whose precondition is sufficiently strong
that it can be proved (automatically) to always be true, can be replaced with an
assert statement. Thus, requirement (2) does not restrict the set of live programs
that can be verified. The effect of (3) is that transition trees are instrumented
with assertions such that the consistency condition is provable only if at least
one guarded transition is enabled. A program that does not satisfy these liveness
conditions may still be checked for consistency.

6.5 Termination

Nontermination in invariant diagrams can be due to either unbounded iteration
through cycles in the transition graph, or infinitely recursive procedure calls. We
describe iteration here; recursion is treated in the next section in the context of
procedures and procedure calls. Methodologically, termination is handled similarly
to liveness in the sense that generation of termination conditions is optional. Socos
analyzes the program graph to determine if termination conditions should be
generated. If termination is to be checked, Socos instruments the transitions that
are part of a cycle with assertions, such that their consistency implies termination.
If termination is not to be checked but the program contains cycles, Socos warns
that the program may not be terminating.

To ensure that an invariant diagram is terminating, we must prove that no situa-
tion in the diagram is visited often; i.e., that the transition relation is well-founded.
This can achieved by showing that every cycle in the transition graph strictly de-
creases a variant, which is bounded from below. A straightforward method is to
generate a verification condition for each cycle in the diagram. However, this is
unappealing since it violates the locality principle of IBP by requiring reasoning
about entire cycles rather than individual transitions. Instead, the following method
which is based on identifying the strongly connected components in the diagram is
used. A graph is strongly connected if there is a path between any pair of nodes.
The strongly connected components of a graph is the disjoint set of its maximal,
strongly connected subgraphs. If each strongly connected component is reduced
into a node while maintaining the edges between components, the resulting graph
is acyclic. We can hence decompose termination of the program into termination
of its individual strongly connected components.

In Socos1 termination is proved by showing that each cycle in a strongly
connected component is cut by a transition that decreases the variant [22]. It
requires the following constraints to be satisfied:

1. All situations in a strongly connected component share a common variant.

2. Every cycle in the component is cut by a transition that strictly decreases
the variant.

3. No other transition in the component increases the variant.

68



The programmer marks a set of transitions, and the tool generates VCs that each
marked transition decreases the variant, and additionally that each unmarked
transition in the same component does not increase the variant. We note that this
method is less general than reasoning about entire cycles, since it does not allow a
variant to be increased in any transition, even if the variant is necessarily decreased
by the cycle as a whole.

While the method works for simple programs, conditions (1)–(3) are too strong
to handle some common cases. In particular, condition (1) does not allow for
decomposition of termination proofs within a strongly connected component. This
means that nested loops must share a common variant, whereas it is often more
natural to give separate variants for the outer and inner loops. Examples of invariant
diagrams with multiple variants can be found in, e.g., [14, 15] and [16]; we consider
here the simplified example in Figure 6.2.

X1

X2

X3

[i > 0]; j := 10

[ j = 0]; i := i−1;k := 10

[k = 0]

[ j > 0]; j := j−1

[k > 0];k := k−1

Figure 6.2: A terminating program

The program comprises three loops, each one decreasing the counters i , j and
k, respectively. It is appealing to assign variant i to the outer loop involving all
situations, and variants j and k respectively to the two inner loops involving single
situations. While we can easily formulate a common variant (say i+ j + k) that is
decreased by each of the double-headed arrows (condition (2)), finding one that
additionally satisfies condition (3) for the transition between situations X1 and X2
seems hopeless.

We generalize the above method slightly by allowing each situation in a
strongly connected component to declare a separate variant. The basic idea is
that a component is split into subcomponents which are separately proved to ter-
minate using conditions (1)–(3). However, since variants can interfere with each
other—decreasing one may increase another—this decomposition must not be
arbitrary.

The extended verification method is based on the following observation. Sup-
pose that in a strongly connected component there is a situation X such that every
cycle through X strictly decreases the associated variant VX . As VX is bounded

69



from below, this precludes all computations where the situation X or any of the
transitions that decrease VX occur infinitely often. Having established this, we
can reduce the problem of showing that the component terminates by deleting all
transitions that strictly decrease VX , and again decomposing the resulting graph
into its strongly connected components. This effectively prunes X along with any
other situation that can reach itself only by decreasing VX , since such situations are
no longer part of a cycle (the cycles have been cut). We then re-iterate the method
on the resulting strongly connected components. If the original component can be
reduced completely using this method, no situation may occur infinitely often, and
thus the component is terminating.

We describe in the following a recursive algorithm to determine based on the
given decreasing assertions if a decomposition is possible, and additionally to
mark transitions with nonincreasing assertions. The latter is an internal marking of
transitions to record the variants that may not be increased; they are not part of the
language and the programmer cannot add these assertions explicitly.

1. Partition the diagram into its strongly connected components, discarding
situations that are not involved in a cycle as well as transitions between
components.

2. For each strongly connected component C:

(a) Select a situation X in C, such that each cycle from X back to X is
cut by a decreasing X transition. If there is no situation satisfying this
criterion, signal failure.

(b) Annotate all transitions in C not marked by decreasing X with
nonincreasing X .

(c) Remove all transitions marked as decreasing X from C, and apply this
algorithm recursively on the resulting graph.

We note that the using a common variant for each component is a base case of
the algorithm. We also note that there may be several acceptable choices in step
(2a); the algorithm is nondeterministic in this case. This is handled pragmatically
by processing situations in the order they are declared, making the selection
deterministic. A more general option that could be considered is to build all possible
nonincreasing markings and generate a VC corresponding to their disjunction.
However, this would add complexity to the conditions by introducing reasoning
about multiple transitions in the same condition, violating the locality principle of
IBP.

Figure 6.3 illustrates the decomposition of the program in Figure 6.2, annotated
with the variants suggested above and with decreasing assertions added. The first
step of the above algorithm selects and prunes X1, which satisfies the cycle cutting
criterion, and annotates every transition in the diagram with nonincreasing X1.

70



The remaining two components consist each of a single situation (X2 and X3,
respectively) and are base cases.

The generation of termination conditions is directed by the presence of
decreasing assertions: if no decreasing assertions are present in a strongly
connected component, Socos shows a warning that the component may not be
terminating. If at least one decreasing assertion is present, the above algorithm is
used to look for a decomposition. If none can be found, Socos reports an error.
Otherwise, the transitions are marked with nonincreasing as described above, and
additionally each transition tree in the component is prefixed with the assignment
statement

X1_0, . . . ,Xn_0 := VX1 , . . . ,VXn

where each situation Xi appears in at least one decreasing or nonincreasing clause
in the transition tree, and Xi_0 is an integer variable recording the value of the
variant at the root of the transition tree. The following correctness condition is then
used for the marked transitions

S ; decreasing X
nonincreasing Y1, . . . ,Yn

goto Z

cc−→

〈 S ; {0≤ VX < X_0};
{0≤ VY1 ≤ Y1_0};
...
{0≤ VYn ≤ Yn_0};
goto Z 〉cc

to ensure that the variant at the end of a transition is bounded from below by zero
and less than/less than or equal to the initial value.

6.6 Procedures

The verification method for procedures is based on standard techniques, so we will
only give a brief overview here. Execution of a procedure body starts in an initial
situation satisfying the precondition, and ends in a final situation satisfying one
of the postconditions. A procedure call is verified using the pre/postcondition ab-
straction for the procedure in the usual way. The trickiest part is properly handling
the substitution of the actual parameters into the specification; a good exposition
of the technique is given in [84, Ch. 12]. The method implemented in Socos is
the same, but with the restriction that mutable value parameters and reference
(var) parameters are not supported, and with the (straightforward) extension to
procedures with multiple postconditions and multi-exit procedure calls. We also
address termination of recursive calls.

71



X1|i

X2| j

X3|k

[i > 0]; j := 10

[ j = 0]; i := i−1;k := 10
decreasing X1

[k = 0]

[ j > 0]; j := j−1
decreasing X2

[k > 0];k := k−1
decreasing X3

X1|i

X2| j

X3|k

[i > 0]; j := 10
nonincreasing X1

[ j = 0]; i := i−1;k := 10
decreasing X1

[k = 0]
nonincreasing X1

X2| j
[ j > 0]; j := j−1
decreasing X2
nonincreasing X1

X3|k
[k > 0];k := k−1
decreasing X3
nonincreasing X1

Figure 6.3: The decreasing-marked program of Figure 6.2 (above) and its decom-
position (below)

72



6.6.1 Procedure body verification

The initial and final situations are derived from the pre- and postconditions of the
current procedure in the following way. The state vector of the procedure consists
of the formal value-result and result parameters and the local variables; constant
parameters, being immutable, are not included in the state vector. Let C, V and R
be the formal parameters of kinds constant, value-result and result, respectively.
Let further L1, . . . ,Lm be the postcondition labels. We recall from Section 5.3.2
that C, V and R are pairwise disjoint; and that in addition to global constants,
precondition P0 may only contain identifiers from C and V whereas postconditions
Q0,0,Q0,L1 , . . . ,Q0,Lm may contain identifiers from C, V , R and the initial value
constants V1_0, . . . ,Vn_0. Initially the precondition is assumed to be true, Vi is
equal to Vi_0 for each 1≤ i≤ n, and nothing is known about the values of result
parameters or local variables. We define a set of indexed final situations, in each of
which the corresponding postcondition holds. The initial and final situations are
thus characterized by the predicates:

I = P0(C,V )∩V1 = V1_0∩·· ·∩Vn = Vn_0

F = Q0,0(C,V _0,V,R)
FL1 = Q0,L1(C,V _0,V,R)
...
FLm = Q0,Lm(C,V _0,V,R)

And consequently we have the following consistency conditions for Exit leaves:

exit
cc−→ F

S ; exit
cc−→ wp(S)(F)

exit X cc−→ FX

S ; exit X cc−→ wp(S)(FX)

6.6.2 Procedure call verification

We now consider a call of procedure P with the actual parameters E, X and Y
supplied for the formal constant parameters C, value-result parameters V and result
parameters R respectively. E is a list of expressions, while X and Y are variable
identifier lists with potentially common members. The call is non-recursive if the
call graph starting from P does not include the current procedure; it is recursive
if the call graph contains the procedure. The consistency condition for the non-

73



recursive procedure call is:

call P(E,X ,Y )
L1 : Trs1
...
Ln : Trsn

endcall

cc−→

〈 {PP(E,X)} ; X ′,Y ′ :=?;
choice

[QP,L1(E,X ,X ′,Y ′)];
X ,Y := X ′,Y ′ ; Trs1
...
[QP,Ln(E,X ,X ′,Y ′)];
X ,Y := X ′,Y ′ ; Trsn

endchoice 〉cc

P(E,X ,Y );Trs cc−→
〈 {PP(E,X)} ; X ′,Y ′ :=? ;

[QP,0(E,X ,X ′,Y ′)];
X ,Y := X ′,Y ′ ; Trs 〉cc

where the labels L1, . . . ,Ln are disjoint and each label Li is a postcondition of P.
X ′,Y ′ are pairwise disjoint lists of distinct variables such that for each X ′i and Y ′j ,
TX ′i = TVi and TY ′i = TRi . The identifiers X ′,Y ′ are picked so as to be fresh for the
transitions trees Trs1 . . .Trsn.

The assertion obliges the caller to ensure that the precondition, with actuals
substituted for the corresponding formal value(-result) parameters, holds. X ′ and Y ′

are introduced for the return values of the procedure. For each branch, the matching
postcondition, over E, X , X ′ and Y ′, is added as an assumption, and then the return
values are assigned back to the actual (value-)result parameters. We note that if the
same variable is passed for multiple formal value-result or result parameters, it will
hold the return value assigned to the last such formal parameter in the procedure’s
signature due to our semantics of the multiple assignment statement.

If the labels L1 . . .Ln do not cover all postconditions of P, Socos warns that the
procedure may not be live.

6.6.3 Recursive procedures

Recursion occurs when a procedure calls itself in the body, either directly (single
recursion) or by calling another procedure that eventually calls it back (mutual
recursion). Similarly to how loops are handled, we analyze the procedure call
graph and detect the strongly connected components to identify the procedures that
are involved in a recursion.

Socos currently use the following simple method for verifying termination of
recursive procedure calls. All procedures in a component for which termination
is to be verified are required to share both a common signature and a common
variant. This constraint allows the procedures to be considered to operate in a
common statespace, simplifying the verification methodology. If termination
verification for a component is not intended—i.e., no variant is given for any

74



of the participating procedures—the constraint on the signatures does not apply.
If termination verification is intended, with W being the shared variant, C the
formal constant parameters, and V_0 the initial-value constants for the value-result
parameters, the assert statement

{0≤W(E,X)∧W(E,X) < W(C,V_0)}

is prepended just before the precondition assertion in the VC for the non-recursive
case above. Thus, at the point of each call, the caller is additionally obliged to
ensure that the variant in terms of the actual parameters is bounded from below
and has decreased since the entry to the procedure. This assertion ensures that the
shared variant decreases with each call and that the recursion eventually terminates.

We note that this method in its present form works well for single recursion,
but imposes significant restrictions on mutually recursive procedures. In addition
to requiring all participating procedures to share a common signature and invariant,
it also requires the variant to be decreased by every call (cf. the termination rules
for loops). These constraints are significant and have implications on the kind of
programs that can be expressed in Socos at present if termination is to be verified.
In particular, the rules enforce a very tight coupling between the mutually recursive
procedures. Better approaches exist in the literature; we discuss some of these in
the next section.

6.7 Summary and discussion

Weakest preconditions give a semantic basis for a syntax-directed translation of
programs into logic VCs. We have in this chapter given a verification schema
for Socos programs based on weakest preconditions. A context is verified by
checking that each procedure is consistent, live and terminating. Consistency means
that every transition establishes its target, and that no assertion fails. Liveness
means that a program does not get stuck in an intermediate situation and that
each transition can proceed to its target. This is ensured by checking that the
transition graph from the initial situation does not contain dead ends, that no assume
statements are used, and that all exits are handled in procedure calls. Termination
means that there are no infinite loops. Termination condition generation is enabled
by annotating the situations with variants and decreasing declarations such that
every cycle is cut by a transition that decreases a variant. For recursive procedures,
each recursive call must decrease a variant that is shared among all procedures
involved in the recursion.

Consistency is a property that should always be verified: every transition added
to the diagram must be consistent. A program can be verified to be consistent even
if it is incomplete (i.e., not live and/or not terminating). Incomplete programs may
serve as stepping stones towards a final, complete program.

75



6.7.1 Related work

Many verification tools use weakest precondition semantics as a basis for trans-
forming programs into verification conditions suitable for checking in an automatic
theorem prover. For instance, in the Boogie methodology [32] a BoogiePL [60]
program containing specifications, code and background theory is first converted
using weakest preconditions into VCs, which are then sent to, e.g., the Z3 SMT
solver [59]. BoogiePL is, however, an intermediate language that is not intended to
be used for programming as such but rather for encoding the verification semantics
of industrial languages (as has been done for, e.g., C# in the form of Spec# [33]).

Statements with multiple exits have traditionally been studied in the context
of exceptions [10, 107]. We have not pursued this research direction here. In
an unpublished report, Back and Karttunen [24] extend the weakest precondition
to a function of multiple postconditions and give a semantics for goto-programs.
While a weakest precondition calculus for multi-exit statements would allow us to
state and analyze the correctness conditions for Socos programs more precisely,
development of such a calculus was considered to be outside the scope of this
thesis.

Back and Preoteasa [29] have given a formal operational semantics for invariant
diagrams and defined with respect to this semantics a set of sound and complete
Hoare-like proof rules. The rules allow decomposition of conditions on diagrams
into conditions on transitions. Their work provides a formal proof theory for
invariant based programming. However, we have not yet done a careful analysis of
how the Socos verification methodology maps to their semantics.

Podelski and Rybalchenko [139] have given in the context of an automata-
theoretic framework a proof rule for decomposing a termination verification prob-
lem into smaller independent verifications based on the notion of disjunctive
well-foundedness. Their approach is based on identifying a transition invariant—a
binary relation over program states that includes the reachability relation—that it
is disjunctively well-founded, meaning that it is a finite union of well-founded rela-
tions (disjunctive well-foundedness is a weaker property than well-foundedness).
In their case proving termination amounts to establishing well-foundedness of the
subrelations of the transition invariant.

Homeier [99, Ch. 7] describes a method for verifying termination of mutually
recursive procedures. There every recursion cycle from a procedure back to itself is
shown to make progress (decrease a variant); if this recursion contains intermediate
cycles through other procedures (called diverted recursion), additional VCs are
generated to ensure that the intermediate cycle does not interfere with the progress.
In contrast to the Socos method, progress is aggregated along the paths in the call
graph and a VC is generated for every cycle, making the method more general at
the cost of locality. We note that in his master’s thesis [138], Plüss sketched an IBP
adaptation of Homeier’s method for mutually recursive procedures with multiple
exits, but this has not been implemented.

76



6.7.2 Final remarks

Our liveness semantics corresponds to the standard way a program is executed, in
the sense that from each intermediate state during execution of a transition there
must be at least one next state to proceed to. In other words, once a transition has
been triggered, it must run to completion. As an alternative, one can consider a
semantics in which a command that cannot proceed causes the program to backtrack
to a previous state to try an alternative branch. If this backtracking is repeated
until transitions are exhausted, liveness of a transition tree can be defined as the
property that one of the leaves is eventually reached. Under such an interpretation
of liveness the transition tree

if
[A] ; [B] ; goto X
[C] ; goto Y

endif

would be live from all states satisfying (A∧B)∨C. This interpretation allows for a
larger class of live programs, although the operational semantics can be considered
rather esoteric. It is not supported by the tool.

We acknowledge that the requirements on mutually recursive procedures with
regards to termination proofs are presently too strong. In general, it seems difficult
to give a simple and at the same time sufficiently general verification method for
programs with mutually recursive procedures. One possibility is to extend the
verification method for termination of iterative programs to mutually recursive
procedure calls; e.g., each call statement could be annotated with decreasing/nonin-
creasing assertions and VCs generated accordingly. However, this does not address
the restriction that recursive procedures must have a shared statespace.

A present limitation is that the range of the variant function must be the
non-negative integers. For increased generality, it should be possible to use any
well-founded set, but support for this has not yet been implemented.

77



78



Chapter 7

Verifying Socos Programs in PVS

This chapter describes the translation of invariant diagrams into PVS theories. We
also describe how the generated verification conditions are handled.

7.1 Introduction

The first step of automation of most formal methods consists of applying some form
of general, highly automated proof strategy to simplify the VCs. The result of the
simplification is a set of undischarged VCs, which are reported to the programmer
so that errors and omissions can be identified, and/or a more specific proof strategy
attempted. In an IBP tool this verification machinery should satisfy the following
desiderata:

• The interface should be lightweight and easy to interact with. It should be
possible to send an invariant-based program under development for checking
with a simple command, and the checker should report the results immedi-
ately.

• The system should be general purpose; it should not be limited to any specific
program domain.

• Conditions that were automatically discharged should not be displayed at
all, maintaining the impression that the program is the proof.

• Conditions that were not automatically discharged should be shown to the
programmer without syntactic clutter introduced in a translation process;
e.g., they should contain the same identifiers, operators and term structure.

• Conditions should be presented in a sufficiently succinct way to assist the
user in correcting the program.

• When automation fails, it should be possible to interactively prove individual
conditions.

79



The above have fundamental implications on how VCs should be processed. Firstly,
the process should be completely automatic and the conditions generated in a
format that is amenable to automatic verification. Secondly, the translation function
from programs to VCs should maintain the connection between the program and
the generated conditions. Thirdly, the conditions must be processed at a fine level
of granularity. When verifying that a transition establishes its target situation,
the tool should filter out all constraints that were discharged automatically, and
highlight those that were not.

In general, it is possible to achieve higher degree of automation by using
assumptions about the domain. In PVS it is standard practice to develop a library of
strategies together with a theory library to achieve a increased automation for proofs
in the domain of the library. An IBP tool should also provide means for building,
extending and applying background theories in relevant programming domains.
Background theories can introduce definitions, automatic rewrites, lemmas and
strategies that are useful both for formulating the program and its invariants as well
as for improving automation of the verification.

Another desirable property of the translation process is that the generated
theories are human readable. While the intention is that the end user works at
the level of diagrams, not PVS theories, the generation of readable VCs has
some advantages. Firstly, looking at the generated conditions can be helpful in
understanding the program under development. Secondly, since the VC generator
is under development (and has not been verified correct itself) there is value in that
the generated conditions can be scrutinized.

The remainder of the chapter is organized as follows. Section 7.2 describes the
translation of contexts, procedures and situations into PVS theories. Section 7.3
describes how the generated conditions are handled. In Section 7.4 we consider
the type correctness conditions of the generated theories. Section 7.5 discusses
background theories and gives a simple example. The chapter ends with summary,
conclusions and discussion of related work.

7.2 Translation into PVS theories

During verification of one context, SOCOS generates a hierarchy of unparametrized
PVS theories as follows:

• A single ctx theory containing the importing and constant declarations is
generated for the context being verified. This theory imports the ctx theory
for each extended context.

• A spec theory, importing the main ctx theory, is generated for each proce-
dure. The spec theory contains the visible part of a procedure specification—
its signature, variant and pre- and postconditions.

• An impl theory is also generated for each procedure. This imports the spec

80



theory of the procedure as well as the spec theories of each called procedure.
It contains PVS declarations for the state vector, the situations, and the VCs
for all transition trees.

Only impl theories contain VCs. We note that an impl theory depends on the
specification of the procedure, the specifications of each called procedure, and
each ctx theory in the image of the contexts of these specifications under the
reflexive transitive closure of the extends relation. An example translation is shown
in Figure 7.1. The left hand side shows a program consisting of two contexts, of
which one contains two mutually recursive procedures. The right hand side shows
the generated PVS theories and the importing relation.

Ctx1

Proc11

Proc12

calls calls

Ctx2

Proc21

extends
calls

background

ctx_Ctx1

spec_Proc11 impl_Proc11

spec_Proc12 impl_Proc12

ctx_Ctx2

spec_Proc21 impl_Proc21

Figure 7.1: Example PVS translation of two contexts. Contexts and procedures are
drawn as boxes, theories as ellipses, calls and extends relations as dotted arrows,
and importing relations as solid arrows

The spec and impl theories contain straightforward translations of the pre-
conditions, postconditions and situations into PVS predicates. We give a brief
summary here; the syntactic translation rules are listed in the Appendix, Section
A.2. For a procedure P we have the translated predicates:

PP = spec_P .pre_ JX = sit_X
QP,0 = spec_P .post_ I = sit_ini_

QP,X = spec_P .post_X F = sit_fin_

FX = sit_fin_X

Generated identifiers include the underscore character to avoid name clashes with
user defined identifiers. The specification predicates are prefixed with the spec

theory identifier for disambiguation since multiple spec theories may be imported.

81



The components of the state vector, i.e., the mutable parameters and local
variables, are declared as logical variables in the impl theory. Constant parameters
and initial-value constants are declared as constants in the theory. Since the PVS
importing statement does not import variable names, there is no clash with names
from the spec theories. The predicates on the right hand side above are all over the
state vector. The rest of the impl theory contains VCs, one for each situation that
has a transition tree, and additionally one for the initial transition tree (if present).
These are described in the next section.

7.3 Verification conditions

Each situation that has a transition tree generates a VC consisting of two com-
ponents: a lemma declaration with Formula 6.2 as the proof obligation, and a
ProofLite proof script associated with the lemma. Given a situation X , the state
vector σ , and a transition tree Trs rooted at X , the following transformation is
applied to the triplet X ,σ •Trs to generate the two components:

X ,σ •Trs vc−→ vc_X : lemma ∀σ : sit_X(σ) =⇒ 〈Trscc(σ)〉pvs

%|-vc_X : proof

%|- (skolem-2)

%|- (flatten-disjunct + 1)

%|- 〈Trscc(σ)〉prf

%|-qed

The transformations pvs and prf are defined over the structure of consistency condi-
tions. The former expands the wp function and beta-reduces until all applications
of a predicate to σ are of the form sit_X(σ). The latter builds an S-expression
to be inserted into the proof script associated with the VC for the transition tree.
The proof script first eliminates the top level quantifier. The command skolem-2

is a simple adaptation of the PVS skolem command: instead of generating new
names for the Skolem constants, it reuses the names from the binding expressions;
this makes the VC slightly easier to read.1 The proof script then flattens the se-
quent, such that the antecedent of the implication becomes the antecedent of the
sequent. At this point in the proof the sequent is of the form α ` β , where α is the
precondition and β is the consistency condition of the transition tree.

We recall from Chapter 6 that the consistency condition for a transition tree
is a term of the form wp(S)(Q1∩ ·· ·∩Qn) where each Qi is either a term of the
same form or a situation predicate. The transformations pvs and prf defined over
this structure are given in Table 7.1.

1PVS does not allow a constant that is in the current scope to be used as a skolem constant.
Hence, skolemization using the variable names may fail if, e.g., a constant with a conflicting name
is being imported via a background theory. For such names skolem-2 falls back to the automatic
name generation of skolem!.

82



1. sit_X(σ) pvs−→ sit_X(σ)
prf−→ (expand-defs defs-sexp)

(check-report strat-sexp)

2. (Q1∩·· ·∩Qn)(σ)
(n>1)

pvs−→ (〈Q1(σ)〉pvs)∧·· ·∧ (〈Qn(σ)〉pvs)
prf−→ (branch (split-n n)

(then 〈Q1(σ)〉prf). . .(then 〈Qn(σ)〉prf))

3. wp(S1;S2)(Q)(σ) pvs−→ 〈wp(S1)(wp(S2)(Q))(σ)〉pvs

prf−→ 〈wp(S1)(wp(S2)(Q))(σ)〉prf

4. wp([E])(Q)(σ) pvs−→ (E) =⇒ (〈Q(σ)〉pvs)
prf−→ (flatten-disjunct + 1) 〈Q(σ)〉prf

5. wp({E})(Q)(σ) pvs−→ (E)∧ (〈Q(σ)〉pvs)
prf−→ (branch (split-assert)

((then (expand-defs defs-sexp)
(check-report strat-sexp))

(then 〈Q(σ)〉prf)))

6. wp(X := E)(Q)(σ) pvs−→ (λ (X1 : TX1 , ...,Xn : TXn) : 〈Q(σ)〉pvs)(E)
prf−→ (beta +) 〈Q(σ)〉prf

7. wp(X :=?)(Q)(σ) pvs−→ (∀(X1 : TX1 , . . . ,Xn : TXn) : 〈Q(σ)〉pvs)
prf−→ (skolem-2) 〈Q(σ)〉prf

Table 7.1: Rules for transformations pvs and prf. The pattern on the left hand side
is common for each rule pair

The pvs rules convert the predicates into PVS terms and apply the standard weakest
precondition transformation on the statements defined in Section 5.3.5. The proof
script generated by the prf rules builds a proof tree with a single consequent at
every node, and which branches in synchrony with the correctness condition. The
prf transformation depends on two S-expression parameters: strat-sexp, the default
strategy to be applied to the leaves of the proof tree, which is either defined in
the current context or inherited from other contexts; and defs-sexp, listing the
definitions relevant to the sequent (specifically pre- and postconditions, situations,
and procedure variants). In addition to skolem-prefer the prf rules in Table 7.1
use four Socos specific strategies: expand-defs, check-report, split-n, and
split-assert. They are described below. These strategies are based on the PVS
strategies combined with queries into the proof state; they do not define new proof
rules nor manipulate the proof state, and hence constitute a conservative extension
of PVS.

83



Rules (1) apply to the leaves of the correctness condition, at which the con-
sequent is a single situation or assertion. The command expand-defs expands
all situation, pre-/postcondition and variant definitions in the sequent, and addi-
tionally if the consequent is a sequence of constraints splits the constraints into
separate proof branches. Each proof goal produced by expand-defs is of the form
α1, . . . ,αn ` β , where β is a target situation constraint or an assertion, and each
formula αi originates from a source situation constraint, an assume statement, or
an assertion. check-report applies strat-sexp to each goal, and then prints the
status of the proof.

Rules (2) reduce an intersection of predicates into a conjunction of formu-
las, and split the proof tree such that each conjunct becomes a separate branch.
split-n is an iterated version of split: it splits the top-level conjunction into
two branches, and then repeatedly splits the right branch for a total of at most n−1
iterations. Hence, a sequent of the form Γ ` α1∧ (α2∧ (α3∧ . . .)) is split into the
goals Γ ` α1,Γ ` α2,Γ ` α3 . . . ,.

The remaining rules give the weakest preconditions of single exit statements.
Rules (3) convert a composition of statements into a nested formula and a

sequence of proof commands.
Rules (4) convert an assume statement into an implication and applies

flatten-disjunct, promoting the antecedent of the implication into an
antecedent sequent formula. The first parameter to flatten-disjunct indicates
that only consequent formulas should be flattened; the second parameters limits
the depth to one level.

Rules (5) branch off an assertion of E from the main proof tree. The com-
mand split-assert splits a sequent of the form Γ ` α ∧β into the two goals
Γ ` α and Γ,α ` β . The first goal becomes a verification target, to which the
commands expand-defs and check-report are applied. Remaining conditions
in the second branch get α as an additional antecedent.

Rules (6) apply substitution. The substitution is applied through a lambda
binding expression, and the proof script applies beta-reduction to the consequent.
A side effect of beta is that it rewrites all redexes in the consequent to their
reduced form, including those that occur inside expressions and invariants. This
means that redexes in user defined expressions will be shown in the reduced
forms in the unproven sequents reported by Socos. This is not ideal, since it
may cause conditions being shown in a different form than was given by the user,
contradicting the requirement that they should be unaffected by the translation
process. Unfortunately, PVS does not provide a command for restricting beta
reduction to specific redexes. However, in practice this case has not been a problem.

By executing the proof script produced by the above rules in batch mode,
a transcript of the proof run is produced. The commands expand-defs and
check-report instrument the transcript with text strings indicating the status of
the proof after strat-sexp has been applied to a proof goal. This information is used
by Socos to aggregate the result of the verification.

84



7.4 Type correctness

PVS generates type correctness conditions (TCCs) to ensure that a theory is well
typed. A PVS theory is not consistent until all its associated TCCs have been
discharged. Since type checking in PVS is undecidable in the general, discharging
the TCCs can require theorem proving. By default, PVS automatically applies
the strategy tcc, which is based on grind. TCCs that are not discharged by this
strategy can be proved interactively. The assumptions available in a TCC depend on
the context in which it is generated; e.g., given the formula P⇒Q, type conditions
on the subformula Q may be proved under the antecedent P. The semantics of
PVS type correctness is described in detail in [132]. We note here that the type
conditions associated with the PVS files generated by Socos subsume the following
type conditions on Socos programs:

• All expressions that occur in a program are consistently typed.

• Precondition constraints are boolean expressions over the constant and value
parameters; postcondition constraints are boolean expressions over parame-
ters and initial-value constants.

• Situation constraints and assume/assert arguments are boolean expressions
over the state vector. Every constraint in a situation or condition is type-
checked in the context of the preceding constraints; for nested situations, the
predicate of the immediate outer situation is included in the type checking
context.

• Assignments are type consistent; the expression assigned to a variable has a
type that is from the type of the variable.

• An actual constant parameter has a type from the formal parameter’s type.
An actual value-result parameter has a type that is equivalent with the type
of the formal parameter. An actual result parameter has a type that includes
the type of the formal parameter.

We further note that for an expression that occurs inside a transition tree, the source
situation predicate as well as the preceding assertions and assume statements are
included in the type checking context. This allows, for instance, a guarded transi-
tion (tree) to be type checked under the assumption of the guard. Since the PVS
embedding requires every assignment to be type correct, we use predicate subtyp-
ing to encode “strong” invariants over the program variables—i.e., constraints on
the values that must hold after each assignment statement.

The types of program variables should be non-empty. In general, it is best to
use types with non-emptiness judgments to avoid generation of extraneous TCCs.
Procedures with parameters over possibly empty types can be specified, but the
implementation of such procedures will generate unprovable TCCs if the type

85



of an in-parameter (constant or value-result) may be empty. If the type of any
one variable in the state vector is empty, the program does not have a meaningful
interpretation, as its statespace is empty.

7.5 Background theories

Background theories are PVS theories imported into verification contexts. They
serve two main purposes:

• to introduce domain-specific definitions, notations and types that simplify
the specification and implementation of a program; and

• to support domain-specific strategies for discharging VCs.

Thus, background theories facilitate not only the coding of the program, but also
the verification of the program. As an example we have defined a small background
theory for variable size arrays, vector, and a strategy, endgame. The theory is
listed in the Appendix, Section A.3. It includes the record type vector from
Chapter 4, and adds an array read operator, denoted a[i] (ASCII: access(a,i)),
as well as an update operator, denoted a[i← x] (ASCII: update(a,i,x)). The
second argument i of both operators is type restricted to be a legal index, and
the type of update(a,i,x) is the arrays with the same length as a. The operators
satisfy the following basic read-over-write properties of arrays:

1. a[i← x][i] = x

2. i = j∨a[i← x][j] = a[j]

The endgame strategy is implemented with the following Lisp code:

(defstep endgame (& optional (lemmas nil))

(let ((introduce -lemmas

`(then ,@(loop for l in lemmas

append `((lemma ,l))))))

(then

(skosimp *)

(auto -rewrite -defs :always? t)

(assert)

introduce -lemmas

(yices)

(fail )))

"End -game strategy"

"Invoking yices , supplying lemmas: ~{~a~^, ~}")

The strategy applies skolemization and simplification, followed by
auto-rewrite-defs and assert to expand all relevant definitions in the

86



sequent, loads the supplied formulas into the antecedent with lemma, and finally
invokes yices. Definitions for which auto-rewriting is disabled are not expanded
in the second step; they become uninterpreted constants in the logical context
of Yices. The optional lemmas supplied as parameters to endgame appear as
axioms to Yices. Supplying the above read-over-write properties allows endgame
to prove basic conditions involving vectors. For example, Figure 7.2 shows
a procedure which reverses the order of an array. In this case, the command
(endgame :lemmas (update_prop_1 update_prop2)) discharges all VCs
associated with the procedure automatically.

reverse [ valres a : vector[int] ]

k : pvar int

len(a) = len(a0)
∀(i : index(a)) : a[i] = a0[len(a)–1–i]

LOOP

len(a) = len(a0) |len(a)–k
0≤ k∧k≤ len(a)
∀(i : index(a)) :

(i < k∨len(a)–1–k < i⇒
a[i] = a0[len(a)–1–i])∧

(k≤ i∧i≤ len(a)–1–k⇒
a[i] = a0[i])

[k≥ len(a)−1−k]

[k < len(a)–1–k];
a := a[k← a[len(a)–1–k]]

[len(a)–1–k← a[k]];
k := k+1

k := 0

Figure 7.2: A program to reverse an array

Additional operators for manipulating arrays, concatenation, slicing, and so on can
then be added as they are needed; theorems about these operators can be introduced
to achieve proof automation for programs using them. In the next chapter, we will
extend the background theory with a set of definitions useful for reasoning about
sorting of integer vectors.

Any number of lemmas can be given to endgame as parameters; they are
introduced into the proof as consequents. However, this mechanism must be used
judiciously, as adding a lemma increases the size of the decision problem to which
Yices is applied for each VC in the verified context. A possible consequence is that
a verification which was previously quickly decided, now runs for an unacceptable
amount of time.2 Hence, parameters are best suited for basic properties required

2By default, Socos runs Yices for a maximum of 10 seconds per condition. This can be tuned
with the parameter -tm in the PVS global variable *yices-call*.

87



to discharge most conditions; more specific properties required in only a few
transitions are typically better handled with rewrite rules that translate the condition
into a simplified form before applying Yices. Preprocessing steps are easily added
by redefining the default strategy to

(then S (endgame parameters))

where S is the pre-processing step.

7.6 Summary and discussion

We have described how a program consisting of a set of mutually recursive proce-
dures, where each procedure is implemented as an invariant diagram, is translated
into a PVS theory hierarchy. Each procedure generates a specification and an
implementation theory, the former containing the pre- and postconditions of the
procedure, and the latter containing the situations and VCs. The implementation
theory for a procedure imports the specification theories of the procedure itself as
well as all called procedures. Additionally, the contexts and background theories
are imported. Socos sends the generated theories to PVS for typechecking and
verification. A program is correct when all VCs and TCCs in the theory hierarchy
have been discharged.

VCs are generated from the transition diagram in a syntax directed process.
Each transition tree generates one PVS lemma. The translation is based on the
consistency conditions for transition trees and on the standard weakest precondition
semantics of statements. For each condition, a PVS proof script to reduce the
condition into fine grained proof goals is generated. Each constraint in a situation
or specification becomes a separate proof goal. A default strategy is applied
to each goal. Proof goals that are not directly discharged are reported to the
programmer, and may be helpful when correcting the program. Conditions that
were not discharged automatically can be proved interactively in PVS.

The verification method described here is very open ended. Background
theories and user defined strategies give access to the full verification arsenal of
PVS. Background theories can be used to define domain-specific notations and
types, and to improve automation of the verification. The task of the default strategy
is to discharge as many of the valid leaf sequents of the proof tree as possible.
The endgame strategy invokes Yices to discharge the VCs, and provides a basic
mechanism for feeding assumptions into the decision procedure. Yices was picked
because it is already integrated into PVS. Our experience is that it is well suited
as a default catch-all endgame prover for Socos. It handles linear constraint and
basic quantifier reasoning, and in practice discharges the simpler conditions such
as loop conditions and conditions on array bounds reasonably quickly. While Yices
is limited to first-order problems, it can still be useful for discharging conditions
involving higher-order properties described by uninterpreted functions.

88



7.6.1 Related work

A number of existing verification tools use PVS as a back-end. Owre [130] gives a
recent survey of some of the major tools.

Muñoz [120] has implemented an embedding of the B Abstract Machine
Notation into PVS. The tool is a compiler (called PBF) that takes as input an
abstract machine and generates an embedding of it into a PVS theory. In this
approach, soundness of a B machine is implied by the type correctness of the
generated theory.

Another example is the Loop compiler for JML-annotated Java [149]. It is
based on a coalgebraic semantics of Java, and includes a VC generator that converts
a Java program into a PVS theory hierarchy.

The Why VC generator [76], part of the Why/Krakatoa/Caduceus framework
[77], can use a number of back-end proof tools, including PVS and Yices.

7.6.2 Future work

The open-endedness of the system vs. its robustness is an issue that remains to be
considered. With the current embedding it is possible to alter the interpretation
of conjunction, equality and other boolean relations in the generated predicates
by redefining the corresponding operators (e.g., within a background theory).
The notion of correctness under such alterations is not well defined. Due to the
prototype nature of the tool, this issue has not been a priority. Hence background
theories must at the present be conservative in the sense that they should not
redefine types and constants used in the theory generation. This includes the bool
and int types and the operators =, ∧, ∨, ⇒ and ≤. Straightforward solutions
are to fully name qualify the operators in generated theories, or to reserve a set of
aliased operators for Socos. On a more general level, the boundaries between user
definable parts and the background framework should be more clearly defined.

One possibility that has not yet been explored is that of extracting useful
information about the proof state when a catch-all strategy fails to discharge a goal.
In particular counterexamples could provide useful feedback to the programmer
when verification fails.

89



90



Chapter 8

An Exercise in Tool-Supported
IBP

This chapter exemplifies the Socos verification methodology. We build a verified
implementation of the heapsort algorithm, while using a background theory to
achieve a high degree of proof automation.

8.1 Introduction

Heapsort [155] is an in-place, comparison-based sorting algorithm from the class
of selection sorts. It achieves O(n logn) worst and average case performance by
storing the unsorted elements in a binary max-heap structure, allowing for constant
time retrieval of the maximal element and logarithmic time restoration of the heap
property after the maximal element has been removed. By storing the heap in
the unsorted portion of the array, heapsort uses only a small constant amount of
additional memory.

The algorithm implemented in this chapter is very close to the one given by
Cormen et al. in [55, Ch. 6]. It comprises two main loops in sequence. The first
loop builds a max-heap out of an unordered array by extending a partial heap one
element at a time, starting from the end of the array. The second loop deconstructs
the max-heap one element at a time, maintaining a sorted subarray after the heap.
Each iteration extends the sorted portion by swapping the root of the heap with the
last element of the heap, and then restores the heap property for the next iteration.

Heapsort is an interesting exercise in IBP for a number of reasons. Firstly, even
though an implementation of heapsort can be given rather compactly, its verification
involves a set of nontrivial invariants and proofs. Secondly, it is not so easy to write
a correct implementation of heapsort up front. In particular, there is a corner case
that is easily missed. Thirdly, as with other sorting algorithms the specification of
heapsort involves the notion of permutation. While it is straightforward to give a
general definition of permutation, reasoning in the actual verification in terms of the

91



definition is infeasible. In Socos, we can use background theories to supply more
useful abstract properties for the automatic tactic, while maintaining soundness
with regard to the definitions.

8.2 Specification

We focus in our example on sorting arrays of type vector[int] (the vector theory
is listed in the Appendix, page 146). The postcondition should guarantee that the
array 1) is arranged in non-decreasing order, and 2) preserves the values from the
original array. We introduce a predicate sorted to express property (1) in a new
PVS theory called sorting:

sorting : theory
begin

importing vector[int]
a,b,c : var vector
sorted(a) : bool = ∀(i,j : index(a)) : i < j⇒ a[i]≤ a[j]
...

In the sequel we use sorting as a background theory for our sorting program,
extending it with additional definitions as needed.

Formalizing property (2), we define a binary predicate perm over vectors as
follows, asserting the existence of a bijective mapping over the indexes:

perm(a,b) : bool = ∃(f : (bijective?(index(a),index(b)))) :
∀(i : index(b)) : b[i] = a[f(i)]

While this definition of perm is mathematically concise, reasoning in terms of
the definition gives little room for automation since it requires demonstration of
a bijection. Higher order quantifiers render Yices incomplete, and we will also
have little luck with the catch-all strategies of PVS (such as grind) proving even
a basic property such as reflexivity. Instead, when verifying sorting algorithms
which work on pairs of elements it is more fruitful to consider permutation as
the smallest equivalence relation that is invariant under the pairwise exchange
of elements. Proceeding in this direction, we introduce and prove the following
properties of perm in PVS:1

perm_len : lemma perm(a,b)⇒ len(a) = len(b)
perm_ref : lemma perm(a,a)
perm_sym : lemma perm(a,b)⇒ perm(b,a)
perm_trs : lemma perm(a,b)∧perm(b,c)⇒ perm(a,c)

1As perm may be useful also in contexts outside of sorting of integer arrays it may be better to
build a separate, generic background theory for permutations. For brevity we include everything in a
single theory here.

92



The lemma perm_len allows the prover to infer that permutations have equal
length. This ensures that a valid index in an array is also a valid index in any
permutation of the array. The lemmas perm_ref, perm_sym and perm_trs state
that permutation is an equivalence relation. Proving these lemmas is a straightfor-
ward exercise in PVS, involving in each case finding the right instantiation of the
bijection f and applying basic properties of bijections from the PVS prelude.

We introduce a function swap for exchanging the elements at indexes i and j,
while keeping the remainder of the elements in the array unchanged:

swap(a,(i,j : index(a))) : {b|len(b) = len(a)}=
a[i← a[j]][j← a[i]]

The property that swap maintains the length is encoded in a predicate subtype.
All array manipulations in the heapsort program will be pairwise swaps, so the
endgame strategy only needs to know the following about swap: its effect on
subsequent array reads, and that swap maintains permutation. We state these
properties as follows:

swap_acc : lemma
∀(a,(i,j,k : index(a))) : swap(a,i,j)[k] = a[ if k = i then j

elsif k = j then i
else k endif ]

swap_perm : lemma
∀(a,(i,j : index(a))) : perm(a,swap(a,i,j))

The proofs of these lemmas are trivial. The first property follows directly from the
definitions of update and access; it is proved with (grind). The second lemma
is proved by instantiating the existential quantifier and demonstrating bijectivity.

Finally, to support automatic reasoning in terms of the above more abstract
properties of perm and swap rather than the definitions, we add the following
declaration to the background theory:

auto_rewrite- perm,swap

This prevents occurrences perm and swap from being expanded into their defini-
tions, and hence they will be treated as uninterpreted functions by Yices when the
endgame strategy is invoked. Next, we introduce a new context heapsort that
imports our background theory and applies endgame with the six properties we
have defined so far:

heapsort : context
begin

importing sorting;
using "(endgame :lemmas (perm_len perm_ref perm_sym

perm_trs swap_acc swap_perm))";
...

93



The remainder of the context heapsort will be procedures, which we present as
invariant diagrams. The complete heapsort context is listed in textual format in
the Appendix, page 148.

8.3 Situation structure

We introduce a procedure heapsort, which given a value-result parameter a
of type vector[int], should achieve the postcondition sorted(a)∧perm(a,a0).
We design heapsort around two situations called BUILDHEAP and TEARHEAP.
The former builds the heap out of the unordered a by moving in each iteration
one element of the non-heap portion of a into its correct place in the heap portion;
the latter then sorts a by selecting in each iteration the first (root) element from
the heap portion and prepending it to the sorted portion of the array. TEARHEAP

is not entered until BUILDHEAP has completed, so we use the loop variable k in
both loops. In both situations k will be in the range [0..len(a)], and the invariant
perm(a,a0) should also be maintained by both situations.

In the first stage, BUILDHEAP, the heap is extended leftwards one element at a
time by decreasing k. The portion to the right of k satisfies the following max-heap
property: an element at index i is greater than or equal to both the element at
index 2i +1 (the “left child”) and the element at index 2i+2 (the “right child”).
Figure 8.1 shows the invariant of BUILDHEAP and the loop transition. The loop
terminates when k reaches zero. For each iteration, after k has been decremented
the new element at position k must be “sifted down” into the heap to re-establish
the max-heap property. We introduce a new procedure, siftdown, for this purpose.
The parameters to siftdown are the left and right bounds of the heap, as well as
the array itself. We implement and verify siftdown in the next section.

a : ... ...

k

a : ... x ...

k

a : ... ... x ...

k

k := k−1;

siftdown(k,len(a),a)

[0 < k]

Figure 8.1: Building the heap. The shaded portion satisfies the max-heap property

We now formalize the heap property in the background theory. We extend the
sorting theory with functions l and r for the index of the left and right child
respectively, and a predicate heap expressing that a subrange of an array satisfies

94



the max-heap property:

l(i : nat) : nat = 2×i+1
r(i : nat) : nat = 2×i+2
heap(a,(m,n : nat)) : bool = m≤ n∧n≤ len(a) ∧

(∀(i : nat) : m≤ i⇒
(l(i) < n⇒ a[i]≥ a[l(i)])∧
(r(i) < n⇒ a[i]≥ a[r(i)]))

We then have that BUILDHEAP should maintain heap(a,k,len(a)). When the
loop terminates, heap(a,0,len(a)) should hold.

In situation TEARHEAP, which is entered after BUILDHEAP has completed,
we again iterate leftwards, this time maintaining the heap to the left of k, and a
sorted subarray to the right of k. The loop is iterated while k is greater than one—
when the heap portion contains a single element, this element must be a smallest
element, so the array is already sorted at that point. In each iteration, k is first
decremented, then the element at index k element is exchanged with the element
at index 0 (the root of the heap) to extend the sorted portion. Since the leftmost
portion may no longer be a heap, this is followed by a call to siftdown starting
from index 0 to restore the heap property. Additionally, to infer that the extended
right portion is sorted, we also need to know that the array is partitioned around k,
i.e., that the elements to the left of k are smaller than or equal to the elements to
the right of (and at) k. An informal diagram for the TEARHEAP situation and the
intermediate states in the loop transition is shown in Figure 8.2. In this figure we
have indicated with sloping that a portion is sorted in non-decreasing order.

a : x ... y ...

0 k

a : y ... x ...

0 k

a : ... y ... x ...

k

k := k−1;
a := swap(a,0,k)

siftdown(0,k,a)

[1 < k]

Figure 8.2: Sorting the array. The shaded portion satisfies the max-heap property,
the sloping portion is sorted, and the array is partitioned around k

95



To be able to express the constraints of TEARHEAP concisely we introduce two
predicates into the background theory; one expressing that the rightmost portion of
an array is sorted, and one that an array is partitioned around a given index:

sorted(a,(n : upto(len(a)))) : bool =
∀(i,j : index(a)) : n≤ i∧i < j⇒ a[i]≤ a[j]

partitioned(a,(k : upto(len(a)))) : bool =
∀(i,j : index(a)) : i < k∧k≤ j⇒ a[i]≤ a[j]

With these declarations added to the background theory, we can now give a first
situation structure for the procedure heapsort. A partial invariant diagram is
shown in Figure 8.3. Since CONSTRAINTS is also over the local variable k, the
postcondition cannot be nested inside CONSTRAINTS; hence we have repeated the
constraint perm(a,a0) in the postcondition.

heapsort [ valres a : vector[int] ]

k : pvar nat

sorted(a)
perm(a,a0)

CONSTRAINTS

perm(a,a0)
k≤ len(a)

BUILDHEAP

heap(a,k,len(a))

TEARHEAP

partitioned(a,k)
sorted(a,k)
heap(a,0,k)

Figure 8.3: Heapsort situations

8.4 Loop initialization and exit transitions

We proceed by adding and verifying the transitions that are not cyclic, i.e., the ini-
tial and final transitions, and the transition between BUILDHEAP and TEARHEAP.
Since these transitions do not depend on the siftdown procedure, they can
be checked with Socos immediately. We first consider the initial transition to
BUILDHEAP. One possibility is to initialize the loop counter with len(a). How-
ever, we can do better by noting that heap(a,m,n) is true for any m and n such
that blen(a)/2c ≤ m≤ n≤ len(a), and hence that the right half of the unsorted
array already satisfies the max-heap property. This is because the elements in the
rightmost half are on the last level of the heap and do not have any children within

96



the range [m..n). We can confirm this hypothesis by adding the following initial
transition

k := floor(len(a)/2)

and asking Socos to check heapsort. Our tool responds that all transitions are
consistent, but since the diagram is incomplete, it also points out that the procedure
may not be live. We proceed by adding the two exit transitions: from BUILDHEAP

to TEARHEAP, and from TEARHEAP to the postcondition. The updated diagram is
shown in Figure 8.4. Rechecking the program, Socos confirms that the program is
consistent (it is obviously not live, since the transitions do not cover all the possible
values of k due to the loop transitions being missing). However, before we can
add the loop transitions, we need to actually implement and prove the siftdown
procedure.

heapsort [ valres a : vector[int] ]

k : pvar nat

sorted(a)
perm(a,a0)

CONSTRAINTS

perm(a,a0)
k≤ len(a)

BUILDHEAP

heap(a,k,len(a))

TEARHEAP

partitioned(a,k)
sorted(a,k)
heap(a,0,k)

k := floor(len(a)/2)

[k = 0];k := len(a)

[k≤ 1]

Figure 8.4: heapsort with acyclic transitions in place

8.5 The siftdown procedure

The parameters to the procedure siftdown are the left bound m, the right bound
n, and the array a. Assuming the subrange [m+1..n) satisfies the heap property,
siftdown should ensure upon completion that the subrange [m..n) satisfies the
heap property, that the subranges [0..m) and [n..len(a)) are unchanged, and that
the updated array is a permutation of the original array. A pre-post specification is

97



given in Figure 8.5. Predicate eql(a,b,i,j) is defined in the vector theory (page
146) and is an abbreviation for the property that two arrays are elementwise equal
on the largest common subrange of a and b entirely within the range [i..j).

siftdown [ m : nat, n : nat valres a : vector[int] ]

m≤ n∧n≤ len(a)
heap(a,m+1,n)

heap(a,m,n)
perm(a,a0)
eql(a,a0,0,m)
eql(a,a0,n,len(a))

Figure 8.5: siftdown specification

The procedure siftdown achieves its postcondition by “sifting” the first element
in the range downward into the heap until it is either greater than or equal to
both its left and right child, or the bottom of the heap has been reached. When
either condition is true, the heap property has been restored. Each iteration of the
loop swaps the current element with the greater of its children, maintaining the
invariant that each element within the heap range, except the current one, is greater
than or equal to both its children. The loop statement, using a counter k pointing
to the current element, is given in Figure 8.6 together with an illustration of the
loop invariant. In this figure circles represent elements within the heap range. A
shaded circle indicates that an element is known to be greater than or equal to its
children. The dashed lines indicate that the parent of k is also be known to be
greater than or equal to k:s children. This part of the invariant is required to prove
that the max-heap property holds for the new parent of k after swapping. That it is
maintained follows from the fact that the child selected for swapping is known to
be greater than or equal to its children.

The procedure should return when either the values of both children are less
than or equal the current element, or there are no more children within the range
of the heap. More precisely, the loop should exit to the postcondition when the
following condition holds:

n≤ r(k)∨ (a[l(k)]≤ a[k]∧a[r(k)]≤ a[k])

Figure 8.7 shows a diagram with an intermediate situation SIFT and the entry, loop
and exit transitions in place. We have used If commands (square dot) in both choice
points to enforce liveness conditions, and we have also provided the variant n−k
for situation SIFT and marked both loop transitions as decreasing.

98



A

C D

B

E F

kl(k) r(k)

≤ ≥

A

C D

B

E Fk

≤

≤

B

A

C D E Fk

≥

≥

[r(k) < n ∧
(a[k] < a[l(k)]∨a[k] < a[r(k)])]

[a[r(k)]≤ a[l(k)]];
a := swap(a,k,l(k));
k := l(k)

[a[l(k)]≤ a[r(k)]];
a := swap(a,k,r(k));
k := r(k)

Figure 8.6: The siftdown loop invariant

siftdown [ m : nat, n : nat valres a : vector[int] ]

k : pvar nat;

m≤ n∧n≤ len(a)
heap(a,m+1,n)

heap(a,m,n)
perm(a,a0)
eql(a,a0,0,m)
eql(a,a0,n,len(a))

SIFT

perm(a,a0) |n−k
m≤ k∧k≤ n∧n≤ len(a)
eql(a,a0,0,m)
eql(a,a0,n,len(a))
∀(i : nat) : m≤ i⇒

(i 6= k⇒
(l(i) < n⇒ a[l(i)]≤ a[i])∧
(r(i) < n⇒ a[r(i)]≤ a[i]))∧

(l(i) = k∨r(i) = k⇒
(l(k) < n⇒ a[l(k)]≤ a[i])∧
(r(k) < n⇒ a[r(k)]≤ a[i]))

k := m

[ n≤ r(k)∨
(a[l(k)]≤ a[k]∧
a[r(k)]≤ a[k]) ]

[ r(k) < n∧
(a[k] < a[l(k)]∨
a[k] < a[r(k)]) ]

[a[r(k)]≤ a[l(k)]];
a := swap(a,k,l(k));
k := l(k)

[a[l(k)]≤ a[r(k)]];
a := swap(a,k,r(k));
k := r(k)

Figure 8.7: A first attempt at siftdown

99



If we try to verify the program, Socos informs us that all transitions except the exit
transition were proved; the remaining condition is shown in Figure 8.8.

procedure 'siftdown ', constraint(s) in transition from

'Loop ' to exit:

[-1] n <= r(k) OR

(a[l(k)] <= a[k] AND a[r(k)] <= a[k])

[-2] (n <= r(k) OR

(a[l(k)] <= a[k] AND

a[r(k)] <= a[k]))

OR

(r(k) < n AND

(a[k] < a[l(k)] OR a[k] < a[r(k)]))

[-3] (perm(a, a_0))

[-4] m <= k and k <= n and n <= len(a)

[-5] eql(a, a_0 , 0, m)

[-6] eql(a, a_0 , n, len(a))

[-7] FORALL (i: nat):

m <= i =>

(i /= k =>

(l(i) < n => a[l(i)] <= a[i]) AND

(r(i) < n => a[r(i)] <= a[i]))

AND

((l(i) = k OR r(i) = k) =>

(l(k) < n => a[l(k)] <= a[i]) AND

(r(k) < n => a[r(k)] <= a[i]))

|-------

[1} (heap(a, m, n))

Figure 8.8: Unproven condition for the exit transition from SIFT (the sequent is
shown in ASCII, but we have rendered access(a,i) as a[i] for brevity)

The tool was unable to prove that heap(a,m,n) is established by the exit transition.
By inspecting the assumptions it is easy to see that the condition is actually not
provable. The reason is an omission of a corner case in the program in Figure 8.7.
The problem is that when n = r(k), nothing is known about the relation between
a[k] and a[l(k)]. This case occurs when the left child of the current element is
the last element in the heap range, and the right child falls just outside of the heap
range. To confirm this guess, we can strengthen the first disjunct of the exit guard
to n < r(k) and re-check. Now, the exit transition is proved consistent, but the
liveness assertion for the first branch from SIFT now fails since the case n = r(k)
is no longer handled.

We resolve the issue by restoring the first disjunct of the exit guard to n≤ r(k),
and instead handling the corner case in a separate branch of the exit transition
which swaps elements k and l(k) if a[k] < a[l(k)] before exiting to the postcondi-

100



tion. The updated program can be seen in Figure 8.9. This diagram is a correct
implementation of siftdown, and now all the VCs (as well as the TCCs) are
discharged automatically by endgame.

siftdown [ m : nat, n : nat valres a : vector[int] ]

k : pvar nat;

m≤ n∧n≤ len(a)
heap(a,m+1,n)

heap(a,m,n)
perm(a,a0)
eql(a,a0,0,m)
eql(a,a0,n,len(a))

SIFT

perm(a,a0) |n−k
m≤ k∧k≤ n∧n≤ len(a)
eql(a,a0,0,m)
eql(a,a0,n,len(a))
∀(i : nat) : m≤ i⇒

(i 6= k⇒
(l(i) < n⇒ a[l(i)]≤ a[i])∧
(r(i) < n⇒ a[r(i)]≤ a[i]))∧

(l(i) = k∨r(i) = k⇒
(l(k) < n⇒ a[l(k)]≤ a[i])∧
(r(k) < n⇒ a[r(k)]≤ a[i]))

k := m

[ n≤ r(k)∨
(a[l(k)]≤ a[k]∧
a[r(k)]≤ a[k]) ]

[n 6= r(k)]

[n = r(k)]

[a[k] < a[l(k)]];
a := swap(a,k,l(k))

[a[l(k)]≤ a[k]]

[ r(k) < n∧
(a[k] < a[l(k)]∨
a[k] < a[r(k)]) ]

[a[r(k)]≤ a[l(k)]];
a := swap(a,k,l(k));
k := l(k)

[a[l(k)]≤ a[r(k)]];
a := swap(a,k,r(k));
k := r(k)

Figure 8.9: Final siftdown program, with corrected exit transition. The corner
case n = r(k) is handled in a separate branch of the exit transition.

8.6 Completing heapsort

Using the siftdown procedure to implement both missing loop transitions, we can
complete the procedure heapsort. Figure 8.10 shows the program from Figure
8.4 completed with loop transitions, procedure calls and variants.

101



heapsort [ valres a : vector[int] ]

k : pvar nat

sorted(a)
perm(a,a0)

CONSTRAINTS

perm(a,a0)
k≤ len(a)

BUILDHEAP

heap(a,k,len(a)) | k

TEARHEAP

partitioned(a,k) | k
sorted(a,k)
heap(a,k)

k := floor(len(a)/2)

[k = 0];k := len(a)

[k > 0];
k := k−1;
siftdown(k,len(a),a)

[k > 1];
k := k−1;
a := swap(a,0,k);
siftdown(0,k,a)

[k≤ 1]

Figure 8.10: heapsort with loop transitions in place

If we ask Socos to check the program in Figure 8.10, it discharges all termi-
nation and liveness conditions automatically. Socos also proves all transitions
except the TEARHEAP loop transition consistent. For this transition, the prover has
trouble showing that the loop transition maintains partitioned. The unproven
condition is listed in Figure 8.11. In this condition the name a_1 denotes the value
of a returned by siftdown. It seems that the condition is hard to prove because
of the way we have defined the postcondition of siftdown. This conjecture is
correct. siftdown manipulates the leftmost portion of the array, and the properties
of perm given to the automatic prover cannot be used to infer that partitioned is
maintained throughout the procedure call. In fact, this condition cannot be proved
without using the definition of perm.

Further analysis reveals that proving the condition actually requires two non-
trivial properties: 1) that the root of a max-heap is the maximal element; and 2) that
if partitioned holds for an index and an array, it also holds for a permutation of
the array where the portion to the right of the index is unchanged. One alternative
is to start proving this condition directly in PVS. However, it is better to first make
properties (1) and (2) explicit in the program by adding assertions to the loop

102



procedure 'heapsort ', constraint(s) in transition from

'TearHeap ' to 'TearHeap ':

[-1] 0 <= k - 1

[-2] k - 1 < k

[-3] (heap(a_1 , 0, k - 1))

[-4] (perm(a_1 , swap(a, 0, k - 1)))

[-5] (eql(a_1 , swap(a, 0, k - 1), 0, 0))

[-6] (eql(a_1 , swap(a, 0, k - 1), k - 1, len(a_1)))

[-7] 0 <= k - 1

[-8] k - 1 <= len(swap(a, 0, k - 1))

[-9] (heap(swap(a, 0, k - 1), 0 + 1, k - 1))

[-10] k > 1

[-11] ((k > 1 OR k <= 1))

[-12] (perm(a, a_0))

[-13] k <= len(a)

[-14] (partitioned(a, k))

[-15] (sorted(a, k))

[-16] (heap(a, k))

|-------

[1] (partitioned(a_1 , k - 1))

Figure 8.11: Unproven condition for loop transition from TEARHEAP

transition. In this case we update the TEARHEAP loop transition statement to the
following:

[k > 1] ; k := k−1 ; {∀(i : index(a)) : i≤ k⇒ a[i]≤ a[0]};
a := swap(a,0,k) ; {partitioned(a,k)} ;siftdown(0,k,a)

Re-checking the program, we are now left with two simpler conditions:
the first assertion, and the same condition as in Figure 8.11 but with
the added assertions as additional antecedents. The second assertion is
discharged automatically. The first assertion requires an induction proof, but
is straightforward. Proving that partitioned(a_1,k−1) is a consequence of
partitioned(swap(a,0,k−1),k−1) and the antecedents in Figure 8.11 is
much more involved, requiring reasoning in terms of the definition of permutation
and applying properties of bijective functions.

The background theory listed in Section A.3 includes two additional lemmas,
heap_max and perm_partitioned, which we have proved in PVS and which can
be directly used to discharge the above conditions. The automatic tactic is not,
however, as such able to find the right instantiations to discharge the conditions
automatically. This is because the definitions of heap and partitioned are
expanded, making it more difficult to find a match. If we turn off auto-rewriting
for these definitions in the above branches of the proof and then apply endgame,
both goals are discharged automatically.

103



8.7 Summary and discussion

In this chapter we have shown how PVS and Socos can be used to build a correct
invariant-based sorting program. First a basic background theory about sorting and
permutations was built. After that the invariants were identified and the situation
structure of the program was defined. The transitions were then added one by
one, with consistency being maintained throughout the development process. The
product of the example is a fully mechanized proof of the consistency, liveness and
termination of the implementations of heapsort and siftdown. With the basic
background theory in place, all transitions except one were proved automatically.
When the properties heap_max and perm_partitioned had been identified and
added to the background theory, full automation could be achieved.

An SMT solver such as Yices is powerful enough to automatically discharge
most of the simpler conditions. By pinpointing problematic conditions, the output
from the verification is useful even when the automatic strategy is unable to
discharge a valid condition. For such conditions we have a number of alternatives:

• Add an assume statement to achieve consistency at the cost of liveness. This
may be a valid alternative if full formal verification is not necessary or we
are, e.g., satisfied with using testing for the parts that could not be verified.

• Add an assert statement to isolate a specific condition on which the cor-
rectness proof hinges. This condition can then be handled using one of the
alternatives listed here.

• Prove the condition in the PVS proof assistant. This method is mainly useful
for verifying the final version of a program, and has the disadvantage that
proofs must be rechecked when the program is changed.

• Add a lemma to the background theory. This allows the lemma to be reused
in other contexts, and to be automatically applied by Yices. This option must
be used judiciously, since sending a large number of lemmas to Yices may
cause to it to hit its time and/or quantifier instantiation bounds.

• A final option is to identify and add intermediate situations. This may be
merited if the intermediate states are complex and further decomposition of
the proof is desired. The disadvantage is that the program structure becomes
more complicated.

We have shown how our tool integrates the specification, implementation and
verification activities into a single workflow. The possibility of verifying incom-
plete procedures allows a very fine-grained, incremental correct-by-construction
approach. Our experience is that careful formulation of the invariants, as well
as introduction of useful theorems that can be reused, are key to the verification
process and allow a high degree of automation to be achieved. The heapsort

104



example used background theories extensively to make automatic verification in-
volving non-trivial properties manageable. It extended the basic vector theory
with properties of sortedness, heaps and permutations, and a set of lemmas useful
for automatically discharging simple conditions. The correctness of the heapsort
procedure is based on these rather general lemmas, which once proved, could also
be reused in other verification contexts. The actual application of the lemmas to
verify individual transitions was completely automatic.

Our experience is that an automated workflow based on PVS and Yices provides
substantial aid in the construction and verification of invariant-based programs. We
have so far primarily focused on verification of algorithmic programs, which are
typically rather small but may be tricky to specify and/or verify. Examples include
sorting, searching, graph algorithms and dynamic programming. In these cases, a
high degree of automation generally requires well developed background theories.
Simpler programs and toy examples can usually be verified using only the basic
system, and in this case the conditions are quite often simple enough that an SMT
solver can discharge them all. Verifying such programs is thus plausible even for
users not familiar with theorem provers and interactive proof assistants. This gives
opportunity for applications of the tool in teaching.

105



106



Chapter 9

Case study: Socos in Teaching

This chapter presents a descriptive case study to evaluate IBP as well as the use of
Socos in the context of a course given to first and second year students in 2007.
We discuss the setup of the case study, the data collection methods used, and the
obtained results.

9.1 Introduction

Considering that logic and discrete mathematics are fundamental in the skillset of
the software engineer in the same way that continuous mathematics are essential in
the traditional engineering disciplines [93], one would expect this to be reflected
in the education of future software engineers. However, prominent CS academics
such as Dijkstra [67] and Gries [85, 86] have long criticized the diminishing role
of mathematics in CS education. While a traditional CS program typically includes
several courses in logic and discrete mathematics, the theory learned in these
courses is often not put into practice in the programming courses [137]. Moreover,
the role of mathematics in CS may be deliberately downplayed by faculty [105].

In IBP, programming is addressed as a hands-on mathematical problem-solving
activity; in particular, mathematical reasoning is integrated seamlessly into the
process of producing a correct implementation from a specification. The IBP
workflow of constructing correct programs is quite similar to that of construct-
ing mathematical proofs. One first writes down the specification of the program;
the pre- and postcondition correspond to the assumptions and goals of the proof,
respectively. Formulating the specification in mathematical logic requires rea-
soning in—and potentially developing—the appropriate background theory for
the program domain. In the following step, one selects a concrete algorithm for
implementing the specification and describes its intermediate situations using the
same mathematical logic. This corresponds to a proof strategy that breaks down the
proof into a set of lemmas. Finally, one checks the individual lemmas to complete
the proof.

107



IBP has been studied in teaching experiments by Back [16] since 2004. The ini-
tial experiments were in the form of ad-hoc programming sessions in which a pair
or small group of programmers with no prior experience of IBP solved a program-
ming problem on the whiteboard while being closely monitored by researchers.
The feedback from these initial experiments was promising and prompted the ex-
pansion of the method into the classroom. The first organized teaching of IBP was
in 2005 as a segment of an advanced course aimed at graduate students. Back has
since then founded the IMPEd resource center [49] to improve the mathematics and
programming education in the Åbo Akademi CS undergraduate program as well
as in Finnish high schools. The center promulgates a CS undergraduate program
that includes a stack of courses in mathematical logic, structured derivations and
IBP. As a pilot study, the IBP course was given in spring 2007 as an elective course
for first and second year students. Since then IBP has become the primary vehicle
at Åbo Akademi University for teaching introductory formal methods: the 2007
course was re-iterated in spring 2008, and in 2009 it became a compulsory course
in the undergraduate program. This chapter describes the 2007 pilot study [19],
and focuses on the use of Socos in the course.

The remainder of this chapter is structured as follows. Section 9.2 discusses the
general role of tools in formal methods courses. Section 9.3 describes the course
syllabus. Section 9.4 defines the study: objectives, methods, and results. Section
9.5 discusses the results. The chapter ends with a summary, discussion of related
work, and conclusions.

9.2 Tools in formal methods education

Verification tools are often introduced to students only in advanced level courses,
where the focus is on industrial strength formal methods, model checking, or
theorem proving. The value of integrating formal methods tools into the CS
curriculum has been recognized by several educators [6, 74, 156], with a key
point being that students should be made aware of existing tools. Since these
tools require considerable expertise, learning the tool itself is usually the main
objective in such courses. Verification tools can also play a role in the curriculum
as a support for teaching and learning. Tools provide immediate feedback, and
students are motivated by interactions that allow them to work in small increments
with continuous feedback. The edit–compile–debug regimen taught in traditional
programming courses surely encourages learning–by–doing: the feedback obtained
from bouncing a program against the compiler or a test case allows the program
to be “explored”, improving the programmer’s understanding of it. Furthermore,
tools identify typos and careless errors, freeing up time and mental capacity for
other tasks.

A tool is useful in practice even if its technical underpinnings are not understood
in detail by its user. When teaching programming, we do not expect students to

108



produce working, or even syntactically correct, programs without the aid of a
compiler. We let them experiment and learn by interacting with a compiler, and we
do this before teaching compiler technology. Similarly, when teaching verification
it is not reasonable to expect a student to laboriously develop, in full mathematical
detail, a calculational style proof of a program without any intermediate feedback
in the process. Our hypothesis is that a tool such as Socos can provide value even
if the students are not familiar with the underlying theorem prover technology.

9.3 Undergraduate course in IBP

The first undergraduate course on IBP was given in the third period (January–
March 2007) of the academic year 2006–2007 at Åbo Akademi University. The
course was elective, and targeted mainly first and second year computer science
and computer engineering students. 5 ECTS credits were awarded for completion
of the course.

The overall design goals of the course were as follows. Firstly, it should serve
to decrease the gap between practical programming and formal methods. This
means that correctness checking should be introduced from day one as an integral
part of the program development process. Secondly, the course should present
correctness concepts in a way that is not off-putting to students. It should in
particular abstain from highly formal descriptions and instead introduce IBP in
a hands-on, example-driven fashion using only the minimal background theory
necessary to reason about a specific problem domain. Thirdly, it should strive to
inculcate into students that mathematical reasoning is a practical, powerful tool
that they can apply in their later software engineering careers.

Familiarity with formal methods, verification tools or even programming was
not required to take the course. The only prerequisite was basic knowledge of
predicate logic. All students who had taken the standard introductory logic course
given to all CS students at the beginning of their first study year were eligible to
take the course.

9.3.1 Syllabus

The syllabus of the course comprised the following segments, delivered over eleven
lectures and six problem sessions: 1) introduction to IBP, 2) calculational proofs,
3) background theory (arrays, sortedness, permutations), and 4) tool-supported
verification using the Socos prototype. Both lectures and sessions were 90 minutes
each. Segments (1) to (3) were introduced without tool support and comprised
eight lectures and four sessions in total. Due to unfamiliarity of the target audience
with mathematical modeling and proofs, a large share (five lectures) of the time
was allocated to segments (2) and (3). Segment (4) included two lectures of Socos
introduction and practical demonstration, and two problem sessions.

109



All problems sessions involved invariant diagram construction and verification.
Problems were given in increasing order of difficulty. The first exercises consisted
of filling in invariants and proving transitions for already given programs, while
later exercises only gave an informal problem description and required the student
to formulate the pre- and postconditions as well as construct and verify the solution
program. Problem sessions for segments (1) to (3) took place in classrooms and
involved teacher assistance, but included homework assignments to be solved
independently and handed in at the next session. The students wrote their solutions
using pen and paper. The Socos problem sessions took place in a computer lab
in which Socos was available on all computers, and solutions were handed in
electronically. Teacher assistance was available also in the lab.

The course finished with a written exam, in which no software or other support
material was allowed. To pass the course, a student should achieve at least 50 per
cent of the score of each individual graded homework assignments, as well as 50
per cent on the final exam.

9.3.2 Use of Socos

We felt it was important to introduce IBP without tool support so that students
could focus on the fundamentals and not be overwhelmed with several concepts
in the beginning of the course. But it is evident that once the method has been
learned and exercised a few times using pen and paper, the burden of hand proofs
quickly becomes significant even for relatively simple programs. The student must
laboriously write down and check verbose conditions—many of which are identical
to or minor variations of already proven ones. Due to the absence of immediate
feedback, careless errors may not be detected until several pages of proofs have
been written. At this point, increasing the scope of problems without providing
any kind of automation only subjects students to repetitive drudgery. The method
could then be experienced as frustrating, motivation would falter, and students may
leave with a potentially long-lasting bad taste of verification. The other option,
limiting the scope of problems, on the other hand risks implanting into students
that verification is limited to toy examples.

In our setting there was also a practical aspect to the problem. The exercise
segment of an introductory CS course at Åbo Akademi University involves a string
of 5–10 problem sets that are to be completed and handed in by the student. The
problem sets are usually given weekly and each set is either solved during a 90
minute classroom session, given as a homework assignment with a tight deadline
(one week), or as a combination. Problem sets are expected to require at most a few
hours work per set to complete for the average student. Given the time-demanding
nature of writing down proper proofs this significantly limits the scope of the
problems that can be given.

Our approach was to increase the difficulty of the problems while at the same
time “easing in” tool support, with the goal of keeping the workload roughly

110



unchanged, but letting the students solve harder problems. Students would first
be subjected to a demonstration of a Socos verification of a known problem, i.e.,
one they had already solved using pen and paper. In the next stage, students
would solve a simple problem on their own to get accustomed to the tool and its
capabilities. Given that they at this point have some experience of hand verification,
we expected them to welcome the addition of automation. Finally, we ramped up
the difficulty of the problems for the final assignment.

A side benefit of integrating Socos into the course was that the constructed
programs could be executed. Constructing a program that can be executed is likely
more motivating than writing programs on paper.

Note on version. While the technical description and examples presented so far
in this thesis have pertained to Socos2, the case study in teaching was carried out
using Socos1 and so the examples in this chapter will be presented in the context
of that version. The main difference on the user level is the notation—Socos1 uses
a syntax based on the MathEdit mathematics editor [18], whereas Socos2 is based
on the PVS language. The Socos1 notation is less rich than the PVS based notation,
and is Unicode-based rather than ASCII-based. It includes the standard logical
connectives, quantifiers, arithmetic operators, and constant and variable definitions.
The back-end verifier also differs—Socos1 uses Simplify, whereas Socos2 uses
PVS and Yices. Simplify [62] is a validity checker that supports linear arithmetic,
interpreted functions with equality, arrays (maps) and quantifier instantiation based
on E-graph-matching. Simplify belongs to a generation of validity checkers that
has now been succeeded by SMT solvers; it is, however, still a powerful proof tool
and well capable of handling most of the simple conditions generated from the
examples in this course. Socos1 supports the definition of uninterpreted functions
and axioms, which are sent to Simplify, but it does not interface with PVS theories.

9.4 The study

The study was part of an overall inquiry into the educational merits of IBP verifi-
cation education, which we described in the report [19]. We focus here only on
the use of Socos in the course. The study follows the principles of descriptive case
study in computer science education research [78, pp. 47-48]. We address the
following research questions:

1. What educational value does Socos provide?

2. If students have knowledge of IBP but no prior tool experience, are they able
to quickly start using Socos?

3. Given experience of pen and paper verification, are students able to effec-
tively tackle bigger problems using the tool?

111



4. Does the tool add perceived value to the course from the point of view of the
students?

5. Does the tool add perceived value to the course from the point of view of the
teacher?

6. Is the Socos tool considered easy or difficult to use? How can we improve it?

7. How can we streamline Socos integration into teaching?

9.4.1 Methodology

The undergraduate course was elective and the CS student body at Åbo Akademi
University is rather small. Altogether ten students were active in the Socos part of
the course. Due to the small number of participants, we adopted a multi-faceted
approach to data collection to improve the trustworthiness of the results. Data was
collected based on classroom observation, analysis of homework assignments, and
a post-course questionnaire.

Classroom observation. The teacher assisting in the Socos problem sessions
monitored the students while they were working with the tool, taking notes
of common problems and other issues.

Homework assignments. Students sent solutions to the Socos homework assign-
ments directly to the teacher as e-mail attachments for grading. The results
presented are based on assignments handed in by 7 students.

Questionnaire. The post-course questionnaire included five multiple choice ques-
tions using Likert-type scales and one open ended question asking the stu-
dents their opinions about Socos and the course in general. Answers were
anonymous. The results presented are based on the analysis of 10 question-
naires.

9.4.2 Problem sessions

We introduced the tool segment of the course with a brief overview of the principles
of automatic proving. The goal here was to give a “feel” for the capabilities of the
automatic prover (Simplify), so as not to raise unrealistic expectations. Students
were introduced in an informal way to the expressiveness and limitations of first-
order logic, as well as to capabilities of Simplify. We did not include PVS at all in
the course.

Students started the first problem session by individually going through an
introductory tutorial to Socos. Actual problems were then given in two sets of
three problems each. Students had one week to complete each set. The first set
was not graded, and model solutions were presented in class by the teacher. The

112



second set was handed in and graded, with solutions made available to students
on line after the deadline. Students were instructed to supply manual proofs for
transitions which could not be proved by Simplify. Such proofs could be entered
into a free-text field in Socos and saved together with the program, and we also
allowed students to manually prove either the actual condition or a “helper” lemma
sent to the theorem prover. Computers with Socos installed were accessible in the
lab at all times but students were encouraged to be present at the sessions to benefit
from the teacher assistance.

Ungraded problems. The following problems were given in the ungraded set,
in increasing order of difficulty:

UP1) Finding the index of the largest element in a non-empty integer array.

UP2) Reversing an array in-place.

UP3) Raising an integer to the power of a positive integer using an efficient
algorithm. Students were given a background theory with the following
properties: x0 = 1, xe = xe/2xe/2 and xe = xe−1x .

Graded problems. Grading for the Socos assignments was based on the number
of verified transitions and how precisely the pre- and postconditions were expressed.
The maximal score was set for each problem based on its difficulty. A student’s
score was calculated from the number of proven VCs on a pro rata basis. Erroneous
pre-/postconditions were penalized with a 60 per cent deduction of the score for the
problem in question; this was intended to encourage care with this rather important
part of the solution as well as to discourage simplifying the problem by changing
the specification. The problems given in the graded set and their maximal scores
were as follows:

GP1) Summing the elements of an integer array (5 points).

GP2) Binary search to determine if an integer value exists in a sorted array (5
points).

GP3) Sorting an integer array using a freely chosen algorithm (“simpler” quadratic
algorithms such as insertion sort earned at most 10 points, whereas “harder”
efficient algorithms such as quicksort earned at most 15 points). Only
selection sort was excluded from the choices, since it was a familiar problem
from the pen and paper part of the course. Students were in advance given
a background theory with an equivalence relation permutation over arrays
defined, together with an already verified swapping procedure maintaining
permutation.

113



The maximum total score was 20 points, of which 10 or more were required to
pass. Extra points earned by selecting a harder algorithm in GP3 could be used
to make up for lost points for GP1 and GP2, but not to raise the total score tally
above 20. Ten students attended the Socos part of the course regularly, and seven
students handed in solutions to the graded problems within the time frame. Their
scores are summarized in Table 9.1. The three remaining students out of the ten
active participants did not hand in solutions in time. In one of these cases the
student had been absent from the introductory sessions and subsequently lacked
basic knowledge of the tool. These students were allowed to participate in the
written exam, and were later given a new set of Socos problems to solve in order to
earn the final credits for the course.1 While these students later passed the course
they were not accounted for in this study.

Student GP1. Array
sum (5 p)

GP2. Binary
search (5 p)

GP3. Sorting
(10/15 p)

Total

S1 1 1 2 (IS) 4

S2 1 5 5 (IS) 11

S3 4 3 5 (IS) 12

S4 5 5 10 (IS) 20

S5 3 1 9 (IS) 13

S6 3 4 10 (QS) 17

S7 5 5 10 (MS) 20

Average 3.14 3.43 7.29 13.86

Table 9.1: Student scores for graded problem set
IS=insertion sort, QS=quicksort, MS=mergesort

The table shows that six students (S2–S7) passed the assignment, while one (S1)
failed. In GP3, five students chose to implement insertion sort, while S6 opted for
the more difficult quicksort and S7 for mergesort.

9.4.3 Classroom observation

As we were interested in evaluating the Socos workflow and identifying potential
usability issues, the teacher assisting the students in the lab sessions actively
monitored the students’ use of Socos. We did not use a systematic data collection

1At Åbo Akademi University, it is common to allow failed students to compensate by solving a
set of supplementary assignments. However, solutions to the original problems have usually been
posted at that point, so the supplementary assignments must be new and it is thus difficult to compare
their answers to the original answers. We therefore omitted them from the study.

114



method so we present here only a collection of key observations.
Starting by going through the Socos tutorial in a common lab session was a

good choice, since the threshold for asking questions was much lower compared
to had we used e-mails or other written correspondence. A number of practical
questions regarding the user interface that were initially not covered in the tutorial
surfaced in this session, such as how to add intermediate points to a transition, how
to layout diagrams, and how to manage program files in Socos.

Knowing what to do, but not how to do it, is a common source of frustration
when working with a software tool. While the syntax used in the pen and paper
part of the course was very similar to the Socos syntax, minor discrepancies were
still present, e.g. in the ways arrays were declared and used. Also, procedures
and formal parameters, while familiar concepts from introductory programming
courses, were not used in the pen and paper part of the course. Students were
initially instructed to look at and redo Socos implementations of programs they
had already solved using pen and paper. It was felt that solving such familiar
problems smoothed out learning curve bumps from syntactic and methodological
idiosyncrasies, and allowed students to quickly assimilate “the Socos way” of
building the same program.

Students did not have difficulty with the Socos workflow. They learned quickly
to apply the tool in the intended way and to benefit from the dialog with the
automatic prover. The direct feedback allowed errors and omissions to be detected
immediately, rather than being lost in complicated derivations. This allowed
students to put more effort into the formulation of the invariants. As a result, we
felt that their understanding of the programs being verified deepened.

We consider separately two classes of usability issues, intrinsic and accidental.
Intrinsic issues are specific to the method and are directly related to the intended
workflow and the decisions made when designing the tool. They should be consid-
ered the graver category of usability issues. Accidental issues are caused by factors
not essential to the method. Most of these are related to the prototype nature of
the Socos tool and avoidable given sufficient development resources for the tool.
However, we think that the accidental issues are still interesting as they highlight
problems specific to tool integration into CS courses, where most users are novices.

Intrinsic issues

I1) The unproven VCs reported by Socos were perhaps not sufficiently empha-
sized in the user interface. They were displayed in a pane at the bottom of the
Socos window, which we felt could have downplayed their significance.

I2) Every Socos program must be encapsulated into a procedure. Reasoning with
procedures and parameter types was not treated in the theory part, and the
semantics of the various parameter kinds was also new to the students.

I3) Management of diagrams in the diagram editor was perceived as tricky at

115



times. The most problematic tasks were resizing a situation to make room for
nested situations and arranging transition labels neatly.

Accidental issues

A1) Syntax change. For instance, the Socos integer type is called Int, while the
IBP theory segment used integer. Also, Socos does not support compact,
mathematics style inequality syntax such as 0≤ x < N (this must be expressed
instead as 0≤ x∧ x < N). Additionally the array update syntax was slightly
different.

A2) Some students found the mechanism for typing operators and special symbols
difficult. The Socos prototype uses the Mathedit [18] input method, which
involves either picking the right symbol from a long menu, or learning a three
letter key combination. The first option is inefficient for frequent symbols, and
while the key combinations were mnemonic, it may not be easy to remember
a large set of them.

A3) In Socos1, defining a function or predicate involves creating a Mathedit type
definition, giving the type and arity of the function, and a Mathedit rule, giving
the body of the function. This proved to be difficult due to the scaffolding
syntax required.

A4) Some syntax and type error messages were cryptic, since the Socos parser
has not been fine-tuned to produce highly informative error messages; e.g.,
the type checker reports only that a term is not of an expected type, not the
actual inferred type of the term. In a few cases, resolving such errors was
unnecessarily time-consuming.

A5) Generation of VCs in the Socos prototype is rather slow, mainly due to
inefficiencies in the MathEdit rule processing engine. Generating the VCs for
a small program can take up to a few seconds.

A6) One student tried to install Socos at home, but experienced problems installing
the correct support libraries and compiling the code.

We propose some remedies to these difficulties in Section 9.5.

9.4.4 Questionnaire result

Table 9.2 lists the questions asked in the post-course questionnaire and the arith-
metic averages of the answers based on 10 respondents.

The results indicate that the students found Socos to be useful, and also that
they welcome the use of tools in theoretical courses. However, they also reported
some difficulties associated with the use of the tool. Four students answered

116



Statement Average

Q1. The Socos tool was easy to use 3.7

Q2. Automatic verification with Simplify was
useful for proving programs correct

2.1

Q3. I was more confident about the correctness
of the programs constructed with the tool
compared to the ones constructed using pen
and paper

2.1

Q4. Given adequate tool support, invariant-based
programming could be used for programs of
larger scales

2.8

Q5. It is generally a good idea to include tool
support in theoretical courses

1.8

Table 9.2: Post-course questionnaire results
(scale 1-5, 1 = completely agree, 3 = neutral, 5 = completely disagree)

the open ended questions; their answers supported these findings. All usability
issues reported were related to syntax and the lack of a language reference manual.
Several students wished that more time had been allotted to the Socos segment of
the course.

9.5 Discussion

We will now revisit the research questions from Section 9.4 in light of the collected
data.

1. What educational value does Socos provide? The course participants per-
formed well in graded homework assignments, with two students scoring the
highest 20 points, and with an average score of 13.86. While we acknowledge
that success in assignments is not a guarantee for learning, the observation that
students at the end of the course were able to independently construct and verify
with full mathematical rigor non-trivial programs (in particular, GP3) indicates that
tool-supported IBP gave students a good insight into program verification. Also,
as pointed out in [19], it should be kept in mind when interpreting the results that
the participating students were complete novices; many of them had prior to the
course no notion of concepts such as “precondition” and “invariant”.

Writing calculational proofs was considered by students to be the most difficult
and time-consuming step in hand verification of invariant-based programs [19].
In the Socos segment of the course students had to write only a minimal amount

117



of proofs and more time was available for identifying the invariants, something
we felt deepened the understanding of the problems. We noticed that the students
gained some important insights this way. For example, a typical novice mistake in
the loop invariant for problem UP2 (reversing an array) is shown in Figure 9.1.

LOOP

0≤k ∧ k≤N div 2
(∀i:Int � (0≤i ∧ i<k) ⇒ (A[i]=A0[(N�1)�i]))
(∀i:Int � (((N�1)�k)<i ∧ i<N) ⇒ (A[i]=A0[(N�1)�i]))

N�k ≥ 0
k := 0

[k<N div 2]

A := A[k←A[N�1�k]][N�1�k←A[k]];
k := k+1

[k = N div 2]

Figure 9.1: Fragment of incorrect solution to UP2. The loop invariant is too weak.

The LOOP situation relates A to the original A0 in the already processed
portions [0 ..k) and (N−1−k ..N). This invariant is, however, too weak since
nothing is stated about the intermediate portion of the array, [k ..N−1−k], and the
loop transition consequently cannot be proved consistent. We observed that several
students who at first were confident that the above loop invariant was sufficient
and that the program was provable, when asked to examine the unproven VCs
without regard to the operational structure of the program quickly realized that the
given assumptions were too weak. This requirement to state not only what changes,
but also what does not change, is an important element of invariant formulation
that is not obvious to novices (especially not to those used to an operational way
of thinking). After the invariant was strengthened in the proper way, Simplify
proved the transition automatically. We observed that this immediate confirmation
from the tool contributed to the satisfaction felt by the student when the error was
corrected. While the above error would be detected in a meticulously written hand
proof as well, the lack of machine checking and immediate feedback induces a risk
of the student using an unfounded assumption to “finish” the proof, or becoming
frustrated with a derivation leading nowhere and giving up without suspecting the
error being in the invariant formulation.

We were aware that introducing proof automation in a basic course carries
with it the risk of students misunderstanding and misjudging the capabilities of
the automatic prover. While students are not gullible, they may have unreasonably
high expectations and start applying the tool in a futile guess–check–modify cycle
in place of trying to understand the programming problem properly. However, this
risk did not manifest itself. We believe that the theoretical part of the course had

118



given the students sufficient insight into the difficulty of the verification problem
to understand that such random testing would not converge into a correct program.
We felt that the practical use of Socos rather quickly imparted students with a
good basic understanding of the strengths and limitations of the automatic theorem
prover. Also, by first being subjected to manual verification, students may have
learned to better appreciate the automation. In summary, we think that the course
worked well in familiarizing students with computer aided verification and provided
a good starting point for more advanced theorem proving courses.

2. If students have knowledge of IBP but no prior tool experience, are they
able to quickly start using Socos? As the tool segment of the course had a very
tight schedule (two lectures + two problem sessions at the end of the course) this
question was put to a heavy test. We felt that the student quickly grasped the
general idea of how to use Socos to develop programs. One student commented
that “[...] it was rather straightforward to understand the idea of the Socos tool
and how to apply it.” This came as no surprise, since the manual IBP workflow
taught in the course and the Socos workflow are essentially the same.

We noticed that reiterating a known problem from the theory segment in the
beginning of the Socos segment turned out to be a good way of highlighting the
syntactical differences between the unparsed “pseudo-code” used in the former and
the machine-checked code used in the latter. The palindrome program allowed the
students to identify and absorb these idiosyncrasies in a known context, reducing
frustration later.

Based on the feedback we received having to learn basic reasoning with pro-
cedures (I2) was not perceived as a significant hurdle by the students. We did,
however, feel that it made the transition from theory to tool somewhat less smooth
than it could have been. Possible solutions are to either introduce procedures
already in the theory segment, or to support procedureless programming using only
global variables in Socos.

3. Given experience of pen and paper verification, are students able to effec-
tively tackle bigger problems using the tool? As we discussed in Section 9.3.2,
introductory CS courses at Åbo Akademi University limits the student workload
for a single problem set to a few hours. In the final problem before the tool segment
of the course students were asked to construct and verify a palindrome program.
This was considered to be the limit for pen and paper proofs. All problems given in
the tool segment (Section 9.4.2) were either on par with the palindrome program in
difficulty (UP1, GP1) or considerably more difficult (UP2–3, GP2–3). The students
who picked the more difficult sorting algorithms also performed well. Overall
we think that the quality of the student’s solutions and the results in the graded
problems support this statement.

119



4. Does the tool add perceived value to the course from the point of view of the
students? Our general feeling was that the students clearly showed interest in
Socos and found it a nice addition to the course. We were also impressed by their
motivation to learn the tool and their diligence in completing the assignments,
and it was satisfying to see how their programming and verification competence
increased. One student gave the following feedback on the course:

“Socos definitely added value to the course. It was interesting to see
what a mathematical tool looks like. I’ve never seen or used one
before. But it was good to start with only pen and paper.”

Results from the questionnaire indicate that students were predominantly positive
about the use of automatic theorem proving (Q2), that they found that Socos
increased their confidence about the correctness of programs (Q3), and that they
welcomed the use of tools in theoretical courses (Q5). On the question whether
IBP could be realistically used to construct larger programs (Q4), answers were
more negative with the average tending towards neutral. In summary, we conclude
that Socos was well received and that the students clearly appreciated an automatic
prover, and that they also understood the necessity of having a clear understanding
of the underlying theory.

5. Does the tool add perceived value to the course from the point of view of the
teacher? We found that using Socos simplified the grading process of homework
assignments in two ways. Firstly, offloading the syntax checking to the tool allowed
the teacher to focus on the semantic errors. While this is unsurprising, we still
think it is worth pointing out, as a quantitative analysis of errors in pen and paper
solutions by Erikson [72, p.43] in 2008 reports that 39 per cent of errors were
syntactic, and recent analysis of student difficulties with IBP by Mannila [112] also
indicate that a significant share of the errors related to the IBP and logic notation
could easily be prevented with a syntax checker. Grading exercises with a large
number of syntax errors frequently requires the teacher to guess what the student
intended, resulting in wasted time and the risk of missing more serious semantic
errors.

Secondly, Socos provided a semi-automatic procedure for assigning scores:
each submitted solution was checked with Socos and a base score was calculated
based on the proportion of VCs automatically proved; the solution was then
inspected by hand and the base score adjusted with additional points for manually
proven VCs, as well deductions for incorrect pre- or postconditions as described in
Section 9.4.2. Since this procedure considers only the number of proven VCs and
not their difficulty it must not be applied blindly—it is easy to contrive a program
with many trivial transitions to achieve a high ratio of proven VCs. However, we
found it to be a practical way of establishing a baseline when grading assignments.

120



6. Is the Socos tool considered easy or difficult to use? How can we improve
it? While students did not seem to have any problems understanding how to
build and verify programs in Socos and were able to successfully complete the
assignments, the survey indicates that they did find the practical use of the tool
somewhat difficult (Q4). Most of the issues reported were related to not knowing
how to express things properly (A1–A3). Due to lack of a language reference, the
Socos syntax and semantics were taught on the whiteboard and by examples. The
only documentation available for the students was the Socos introductory tutorial
and a list of key combinations for typing mathematical symbols. As one student
commented in the open ended feedback:

“The Socos user manual was insufficient (e.g. to define own functions)
and the system was difficult to use due to not knowing the syntax.”

We experienced that almost all of the questions and issues raised during the first
problem session could have been resolved with a standard reference manual. The
usability issues A4–A6 were understandable and expected as the tool is a prototype.
All of the syntax issues could be resolved quickly in the classroom by the teacher.
While we do not consider these issues to indicate any fundamental flaw in the
workflow of Socos, they do call for further refinement of the tool.

7. How can we streamline Socos integration into teaching? It must be admitted
that we did not allocate enough time for the Socos segment of the course, and
that a main difficulty in this study was lack of time. Even if the students knew
the background theory well, introduction of a tool inevitably brings with it a
considerable amount of new material to learn. As one student commented:

“Difficult to get started [with Socos], and when I finally did, the course
was over. Socos was difficult because of the lack of time.”

We think that adjusting the proportion of the Socos segment of the course upwards,
together with improving the documentation, should be sufficient to handle most of
the issues encountered by students.

We are currently also working on improving more fundamental aspects of the
tool’s usability in light of this study. One thing we noticed was the verification
report (the list of unproven conditions) deserves a more prominent place in the
Socos user interface (I1). In the re-designed diagram editor, verification results
will be indicated directly in the diagram by color-coding invariants based on the
verification status. The new editor has improved layout capabilities to address issue
I3.

9.6 Related work

Walther and Schweitzer [152] have developed the Verifun system and evaluated
it in the context of a practical course for advanced students and a second year

121



undergraduate course; the latter was much larger in scope (more than 400 students)
than the Socos course. Verifun focuses on the verification of functional programs
in an easy to use theorem prover with automation; program specific lemmas can be
formulated to help the automatic tactic. While Verifun is mainly geared towards
building correctness proofs of existing programs rather than correct-by-construction
development, it is designed for classroom use and has similar design goals as Socos.
Exercises given in their undergraduate course were similar in difficulty to the Socos
problem sessions (the most difficult problem was merge sort), and the reported
findings are in-line with ours: the authors feel that a verification system can be
used successfully at the undergraduate level, given that the students have a good
grasp of the programming notation and understand the role of logic and proofs
from the outset. Their study also highlighted the importance of an introductory
tutorial.

9.7 Conclusions

We have in this chapter described a case study to evaluate the use of Socos in
an introductory program verification course. We have considered the educational
aspects of Socos, the feasibility of introducing it to novices, its perceived value by
students as well as teachers, and potential usability issues. We have collected data
using classroom observation, analysis of homework assignments and anonymous
questionnaires.

While the aim of the course was to teach the IBP method rather than a verifica-
tion tool, we wanted to include the tool in the course both as a learning support and
to let students advance beyond trivial examples. However, we consider it essential
that the students were introduced to the IBP methodology through pen and paper
exercises before being allowed to use Socos. In this way the tool was introduced
to support, and not to replace, the already learned workflow. There was no re-
quirement that given a problem had to be proved by the tool, even if it would have
been possible; students were still allowed to write manual proofs, which were not
machine checked. Thus the students could use the automatic prover as a program
construction support rather than merely as a verification oracle, and they found
its use valuable even without complete understanding of the underlying theorem
proving technology. The feedback cycle allowed them to identify semantical errors
that had slipped through in hand proofs, and we felt that their understanding of
programming deepened as a result of this.

As Socos was introduced near the end of the course and the students had
already learned the IBP methodology, we did not have any fundamental problems
with introducing and familiarizing it. Most of the usability issues were due to
slight differences in notation and, to some extent, lack of documentation. It did,
however, become clear that two weeks was not really enough time to get the
students competent with the tool. However, we still think it is a valuable goal in

122



itself to familiarize a tool in an introductory course, a sentiment also shared by
the students who answered the questionnaire. The course also provides a natural
bridge to a course in computer aided verification and theorem proving.

Our conclusion from this study is that Socos is a useful teaching and learning
support for IBP. The promising results from this pilot course resulted in a re-
iteration of the course in 2008, and it has since then become a standard course in
the CS curriculum at Åbo Akademi University. We admit that the scope of the
pilot study is so small that we cannot draw any hard conclusions based on these
results. Also, comparisons with other methods need to be made. However, since
IBP is a new method and Socos is an experimental tool, we still think that the
study was valuable in that it did not disprove the feasibility of using either one in
undergraduate education.

The fact that one of the teachers was also a developer of Socos may have
impacted the students’ answers to the questionnaire, which could be considered
a challenge to the veracity of the results. However, since the questionnaire was
post-course and anonymous the students were assured that their answers would not
affect their grading, and hence we do not think the candidness of their answers is
in question.

123



124



Chapter 10

The Socos Project

This chapter describes the development history of Socos. We present the settings
in which the tool was developed. We describe the architecture of Socos2 and its
current status of implementation, and we also list the most important ongoing and
future work related to tool implementation.

10.1 Introduction

The tool presented in this thesis is a product of the Socos Project, a research
software development project started in 2005. The project is directed by Ralph-
Johan Back and carried out in the context of the Software Construction Laboratory
at the Department of Information Technologies, Åbo Akademi University. The
Socos Project has evolved symbiotically with three other research projects at the
department: TORES II, IMPEd, and Gaudí. Figure 10.1 shows the relationships
between Socos and these projects.

The aim of the TORES II Project (Tools for Reliable Software Construction,
2005–2008) has been to research and implement an advanced environment to
support the construction of reliable software. TORES II has funded Socos tool de-
velopment and provided a collaborative environment for tool development. Socos1
and Coral, a general purpose modeling framework [5], are the two main software
products to come out of the TORES II Project. The relationship between these two
products is described in the next section.

The IMPEd Resource Center is a joint initiative between the IT departments at
Åbo Akademi University and the University of Turku. It focuses on improving the
basic mathematics and programming education in high schools and universities
through the introduction of new ideas and methods [49]. It is directed by Ralph-
Johan Back and provides a resource center for teachers, faculty, researchers, and
other interested parties. A particular branch of IMPEd focuses on practical formal
methods and is dedicated to promoting IBP in programming education. IMPEd
has actualized the need for an IBP tool and provided the opportunity to apply and

125



TORES II
Project

Socos
Project

IMPEd
Resource

Center

Gaudí
Software
Factory

teaching tool

feedback

tasks

software

methods and tools funding and collaboration

Figure 10.1: Interaction between Socos and research projects

evaluate Socos in teaching.
The Gaudí Software Factory is a software production unit in an academic

setting [26]. The factory employs programmers from the undergraduate-level
CS student body at Åbo Akademi to develop, among other products, research
software for the Software Construction Laboratory. Employment is full time for
three months (usually in the summer), in which a group of two to four students
complete a well-defined subset of a software project. The students are hired as
software developers and do not earn academic credit points for their work, and they
receive a full salary following the university regulations for research assistants.
Software projects in Gaudí follow the Gaudí Process, an agile like software process
that has been extensively adapted to academic settings. The process includes
intensive customer involvement: for research software products, the customer is a
research group (internal or external) or an individual researcher or project leader. In
addition to providing the infrastructure for software development, the factory also
functions as a platform for empirical software process research: researchers at the
laboratory closely monitor the projects in Gaudí and use the factory as a sandbox
for experimental software process evaluation and improvement [27, 117]. In this
way Socos has also contributed to the corpus of software available for empirical
evaluation within Gaudí.

Development of Socos has comprised three main stages: 1) the prototype
tool Socos1 was built in 2005 and 2006; 2) Socos1 was evaluated in case studies
(including the 2007 undergraduate course described in Chapter 9); and 3) the
redesign and reimplementation project Socos2 was started in 2007 to improve the

126



software architecture and to address issues raised in the evaluation. A large portion
of the implementation work on both Socos1 and Socos2 has been carried out by
student programmers employed in the Gaudí software factory. Socos1 is no longer
developed. Socos2 at the present consists of a command line tool, which compiles
programs into PVS theories containing verification conditions and sends them to
the Yices SMT solver. It is implemented in Python [151], and relies on no other
external components outside of PVS and Yices. We are currently developing a
graphical front-end as an Eclipse plug-in, based on the editing framework GEF
[70].

The remainder of the chapter describe the software architectures of Socos1 and
Socos2 as well as the current status of implementation of Socos2.

10.2 Socos1

The Socos1 prototype consists of a graphical invariant diagram editor and a verifier
connected to an automatic theorem prover. The verifier generates conditions from
the diagrams and tries to discharge as many as possible using Simplify. The
unproven conditions are reported to the programmer via the editor interface. The
user interface of the editor is similar in style to that of UML state chart editors.
Figure 10.2 shows a screenshot of the Socos1 environment in action.

Figure 10.2: The Socos1 environment

Socos1 uses the Coral data repository to store invariant diagrams. Coral is a

127



metamodeling framework developed by Alanen and Porres [3, 5]. The diagram
editor was initially implemented by Nevalainen [127] as an extension to Coral. The
extension was based on DIML, a domain-specific language for defining concrete
graphical syntaxes in Coral [4, 110].

Back and Myreen [28] built the first verifier for invariant-based programs as
a feature layer of MathEdit, an extensible mathematics editor [18]. The verifier
generates verification conditions from textual programs written in MathEdit and
uses the validity checker Simplify [62] as a back-end for automatically simplifying
the conditions. MathEdit was originally developed in the Gaudí factory as a case
study of Back’s stepwise feature introduction [12, 20]. Its software architecture
is a layered class hierarchy, in which each layer introduces a specific feature; the
program verifier contributes one layer to this hierarchy. Myreen later extended the
layer with a compiler to Python. The Coral-based diagram editor and MathEdit
were subsequently integrated into the Socos1 environment [22] by the author in
collaboration with Haikarainen [88].

The original intention of the Socos Project was to support refinement diagrams
[13] rather than invariant diagrams. The focus of development was shifted towards
IBP in 2005. Also, MathEdit was originally intended to be a tool for writing
structured derivations rather than programs. While a working Socos1 prototype
at the time could be quickly built on top of these components, the fact that the
underlying components were originally designed with other objectives made it dif-
ficult to maintain and develop a clean code base. Hence, the research group started
development of the simplified and redesigned Socos2 tool. Another motivation
was to take advantage of the new generation of SMT solvers (Socos1 is based on
Simplify, which is no longer being developed).

10.3 Socos2

The overall architecture of Socos2 is shown in Figure 10.3. Components with
dotted outlines are planned, but have not yet been implemented. The architecture
is motivated by a desire to separate back-end and front-end components, and to
add a degree of extensibility to the individual components of the system.

The verifier-compiler (IBP-VC) processes invariant-based programs into VCs
and/or code. It consists of a command line program that reads invariant-based
programs given in the syntax of Chapter 5. The discussion in this thesis has centered
mainly around its first subcomponent, the verification condition generator (VCG),
which generates the PVS theories as described in Chapter 7. We are currently
evaluating the IBP-VC through case studies in early 2010, and are planning to
make available a primary version of the Socos2 system later that year. As we noted
earlier, we have not yet implemented a compiler (COMP) for Socos2. In the future
work section of the next chapter we describe our current and planned work related
to this component.

128



IBP-VC

VCG COMP

Verifier/Compiler

IBP-IDE

PA

Eclipse 
Platform

Interactive
Environment

IBP-LIB

DE

PVS Theories

NASA Langley
Libraries

Back-end Front-end Support
So
co
s 2

E
xt
er
na
l

co
m
po
ne
nt
s

PVS

Yices

Prelude

PVS System

Figure 10.3: Software architecture of Socos2 and its external components. Arrows
indicate dependencies; dotted components are yet to be implemented

The front-end, IBP-IDE, consists of an Eclipse-based interactive development
environment. Eclipse is an open source extensible development environment that
offers a large collection of software engineering and problem solving related plug-
ins, and has become one of the standard IDEs for software development. We are
currently building a diagram editor (DE) in which programs can be created and
checked directly as diagrams. The editor is implemented as an Eclipse plug-in;
a snapshot of a prototype version of the editor in use is shown in Figure 10.4.
The DE is currently being finished and integrated with the IBP-VC; when this
work is completed, it will be possible to check the correctness of diagrams directly
from Eclipse. The verification feedback will be presented within the editor in a
context-sensitive manner. When a transition is selected, the tool will highlight
the constraints of the target situation that were not proved automatically, and
additionally show the actual VC in a popup window when a highlighted constraint
is being hovered with the cursor.

A useful addition to the IBP-IDE whose implementation we have not yet
considered is an Eclipse-based proof assistant (PA), such that PVS proofs could
be carried out without leaving the Eclipse environment (the standard front-end of
PVS is Emacs). Implementing such a front-end is a major undertaking, although
there are currently projects in this direction underway. Proof General Eclipse [7]
is an effort to build a generic prover interface for Eclipse-based on a protocol

129



Figure 10.4: Socos diagram editor in Eclipse

called PGIP; there is support for Isabelle, but a PVS mode for Proof General
Eclipse does not seem likely to appear in the near future. ProverEditor [51] is a
generic lightweight theorem prover interface and is part of the Mobius Program
Verification Environment [50]. The main target of ProverEditor has been to support
Coq interaction in PVS, but an experimental PVS plugin is also available.

The IBP-LIB is intended to be a library of programs, background theories and
strategies that can be reused. It currently consists of just a few basic elements
(such as the vectors theory and the endgame strategy) but is continuously being
extended as case studies are implemented in Socos. The NASA Langley PVS
collection [122] contains several ready made packages in the domains of graphs,
arrays, integer arithmetic, trigonometry, etc. This library of theories could be used
directly from Socos to assist specification and verification of programs in these
domains.

10.4 Summary

Socos has been developed in a project directed by Ralph-Johan Back at the De-
partment of Information Technologies at Åbo Akademi University in collaboration
with the TORES II Project, the IMPEd Resource Center, and the Gaudí Software
Factory. Researchers functioned as customers for the project, whereas CS students

130



from Åbo Akademi University carried out most of the actual implementation work.
The development of Socos comprised three stages in the timespan 2005–2010.

We first built the prototype Socos1 and subsequently evaluated it in case studies.
This prototype was based on MathEdit, Simplify and the Coral framework. We
have since implemented a VC generator for PVS as described in Chapter 7, and
we are currently building a graphical diagram editor based on Eclipse. Remaining
components include an Eclipse front-end to PVS and a compiler to executable
code.

131



132



Chapter 11

Conclusions and Future Work

This chapter concludes the thesis. We summarize the thesis, discuss the obtained
results and outline some possible future research directions.

11.1 Summary

This thesis has described the product of a research project intended to build tool
support for invariant-based programming (IBP). IBP was introduced to be a hands-
on, concrete method for building programs that are correct by construction. The
Socos project is a step towards making IBP practicable. The project has produced
two prototype tools. We have in this thesis described the design goals and the
technologies used to realize them, the features and limitations of the prototype
tools built, and the contexts in which they have been evaluated.

Chapters 2–4 gave the research background of the thesis. We described a vein
of program verification research leading up to IBP, followed by an overview of
the technical basis for tool-supported program verification: verification semantics,
language embedding and theorem provers. We also described the PVS specification
language and theorem prover.

Chapter 5 introduced a basic invariant-based programming language based
on the PVS language. A program is a verification context and a set of mutually
recursive procedures specified with parameters and pre- and postconditions. The
implementation of a procedure is an invariant diagram—a graph of nested situa-
tions and transitions with unrestricted control flow. Transitions are composed of
nondeterministic choice, guarded choice, multi-exit procedure calls and single-exit
statements.

Chapter 6 described a semantics based on weakest preconditions for verifying
that an invariant diagram is consistent, live and terminating. Consistency means that
no transition aborts, and that the target situation of every transition is established.
Liveness means that a diagram does not terminate in a transition or a situation that
is not final. Termination means that there are no infinite loops. The basic premise

133



is that consistency conditions are always checked, while liveness and termination
checks are optional. To ensure liveness, a final situation should be reachable from
every reachable situation, and no isolated assume statements should occur. To
ensure termination, the graph must be reducible to a set of terminating components,
such that every cycle in a terminating component strictly decreases a variant, and
does not interfere with the variants of other terminating components.

Chapter 7 described a syntax directed translation of a Socos context into a PVS
theory hierarchy, based on the verification semantics of invariant-based programs.
Proving all lemmas and type conditions in the generated theories ensures that
the context is consistent and type correct. Each lemma in a generated theory
is structurally similar to the transition tree from which it was derived, and is
associated with a proof script that splits the proof into separate goals for the
individual constraints in the target situations. An extensible proof strategy is then
applied to each leaf; if the strategy is unsuccessful, the unproven sequent is reported
to the user.

Chapter 8 described a tool session in which a verified implementation of
heapsort was built. The example used a background theory to make verification
involving sortedness, permutations and heaps, manageable. Once a few deep
properties in the background theory are proved, almost all the VCs were discharged
automatically. We showed how the output when verification fails can be used to
identify errors. We described alternative ways of handling unproven conditions.

Chapter 9 was an exposition of a teaching case study, in which IBP was taught
to first and second year students in a pilot course. We described the course syllabus,
the case study, and the results obtained. Our main finding was that an IBP tool can
provide value to the teacher as well as to the learner, but that further refinement
and documentation of the tool is necessary.

Chapter 10 described the development settings, the technologies behind Socos,
and the current status of implementation of Socos2.

11.2 Conclusions

Achievement of design goals. As stated in Chapter 1, Socos was intended to be
designed for 1) practicability, 2) transparency, and 3) learnability. We will now
give some observations in retrospect and try to judge how well these desiderata
were realized.

Desideratum (1) is concerned with whether the tool is actually fit for purpose;
i.e., does it support and add value to the IBP workflow, and is it indeed usable by,
e.g., students who may not have a strong background in logic? Our experience
is that the answer to the first question is a definitive yes. This is in one sense
unsurprising, since automation obviously adds value to any deductive method
that relies on proofs. We have estimated a typical discharge rate of 80–90 per
cent of the generated VCs in our case studies, although we have not carried

134



out a detailed quantitative analysis.1 Our case studies have also highlighted the
importance of feedback when verification fails. The features available in the tool
for decomposing proof effort—separation of constraints within situations, assert
statements, decreasing declarations and assume statements—are useful not only
because they allow a verification to be divided and conquered, but also because
they allow a fine-grained verification report in which goals that are automatically
discharged are never shown. This makes the feedback easier to read and understand,
and enables proof effort to be more precisely targeted. Our response to the second
segment of the question is more cautious, but positive. Based on experience from
the case studies and teaching experiments, we do think that Socos could be used
effectively by anyone who is familiar with programming and has a basic knowledge
of predicate logic. However, since application has been restricted to small examples
within academia, there is inconclusive data to assert that Socos is accessible to,
say, the average professional programmer. It is not possible to test this hypothesis
empirically at the present, since Socos does not currently support programming in
the large and is thus not suited for realistic scale software projects. In Section 11.3
we discuss two potential research directions in this area.

Transparency (2) comes from the sharing of syntax and semantics with the
reasoning framework, PVS. Since the verification semantics is a quite shallow
layer, constraints and expressions in the source program are unobfuscated by
the translation process and hence the VCs appear very natural. The absence
of translation artifacts maintains the impression that the program is the proof,
in particular when all proofs are fully automated. User defined constraints and
expressions occur unchanged in the VCs, and new identifiers appear only in the
context of procedure parameters (for initial-value constants, and to denote the
updated values of mutable actual parameters after a call). This is comparable with
the integration of formulas and programs within a single language in verification
systems based on dynamic logic (DL) [92], such as KeY [40]. However, in contrast
to DL our system does not allow involving programs in the description of states,
but makes a strict distinction between the situation language (higher-order logic)
and the transition language. Another aspect of transparency is that the generated
PVS theories are human readable and can be scrutinized to check that the tool
produces sound VCs for a given program. This is important since the VC generator
itself has not been verified.

Our main conclusion from the teaching experiment is that desideratum (3) was
achieved to the extent that it indeed is feasible to introduce Socos into an IBP
course, even when the participants are formal methods novices. We attribute this
to the lightweight and easy to learn workflow of IBP, and the fact that automatic
theorem proving could be applied in a value-adding and non-intrusive manner

1Rate of discharged VCs is a somewhat dubious metric. Frequently the correctness proof for a
program hinges on one or a few hard lemmas, while the rest of the lemmas are routine. A metric
could be used to argue for the efficiency of a tool with respect to some standard base set of problems,
though.

135



using the tool. The latter allowed us to ease in the tool support, and we think that
the student perception of formal methods tools improved as a result. In summary,
the results from the study were encouraging.

Use of underlying technology. Here we summarize our experience of the formal
methods tools underlying Socos.

From the user perspective, PVS seemed well suited as a front-end language for
IBP. In all our case studies, the panoply of constructs and powerful type system
provided by PVS enabled succinct formulation of the specifications, invariants and
transitions. The large existing theory libraries, such as the prelude [133] and the
NASA PVS libraries [122], proved useful in several case studies. Abstract data
types, although not used in the examples in this thesis, enables modeling of lists,
trees and other data structures which add to the usefulness of the PVS language as
an implementation language. The PVS language also has a feel to it that seems to
make it quite natural and easy to learn for programmers, a quality not shared by all
mathematical or specification oriented notations.

One difficulty we encountered when embedding a subset of PVS into our
own language was parsing. We currently parse an LALR encoding of the PVS
grammar subsets Expr, TypeExpr, and a subset of the constant declarations. The
PVS grammar is highly context-dependent, and due the powerful overloading
mechanisms an abstract syntax tree must be type checked even before identifier
resolution can be attempted. As implementing type checking outside of PVS is
not desirable, Socos currently does no semantic analysis of terms produced by the
grammar subsets shared with PVS; such terms are passed through into the generated
PVS theories. Hence, semantic errors are reported for the generated PVS theories,
and not for the program. A better approach is to build the theories programmatically
within PVS, using existing Lisp functions for parsing and typechecking, but we
have not yet explored this option in detail yet. This approach is feasible since the
PVS source code is fully open and can hence be inspected. However, an issue is
that the internals are not well documented.

From our experience we also feel obligated to echo the points raised by Lüttgen
et al. [111] in 2000. Since the internals of PVS are not documented it is difficult to
reuse in strategies existing Lisp routines such as those for identifier generation or
for accessing the database of generated TCCs. The correct use of such routines
must be either inferred from the code of the routine, or reverse engineered from
the built in strategies. More insight into the mechanisms of the prover, in the form
of well-documented access to the proof context and the proof environment, would
also be useful for developing more elaborate strategies. Finally, extensibility of the
syntax within PVS itself would be useful when building support for other notations.
Now tool builders must write their own parser (and perhaps typechecker), which
as discussed above incurs additional complexity for the implementer.

Since Yices supports dependent types well and is already integrated into PVS, it

136



was a natural choice for the default validity checker. A practical advantage of using
Yices is that it handles the common conditions such as conditions on array bounds
well. For more elaborate conditions, it is important that the programmer has a good
basic understanding of the capabilities of the SMT solver, since its effectiveness
as well as efficiency depend greatly on how the constraints are formulated in the
program. One issue occurs when the solver does not return an answer promptly;
a delay of more than a few seconds can in practice be enough to interrupt the
workflow. The SMT solver’s time and memory requirements are not always related
to the size of the problem or the statespace in a predictable way, and paradoxically
it is possible that simplifying the formulas or reducing the statespace may result in
worse performance. This is, however, an instance of a more general problem and
not specific to Yices.

Criticism. In the next we address some of the criticism that the work presented
in this thesis may evoke.

The most difficult problem in program verification is arguably the discovery of
the invariants, and hence much effort has been devoted to methods for invariant
detection. IBP circumvents the problem by requiring all invariants to be given,
and argues that the discovery and formulation of invariants is to be the main
focus of programming. We will try to argue for this view by considering two
classes of invariants: invariants that are simple enough to be inferred from code,
and invariants that are hard enough not to be. For the first class, it is true that
the redundancy of having to state, e.g., loop counter bounds in situations (as
constraints) as well as in transitions (as guards) can seem unnecessary. However,
this redundancy can also be good, since it expresses two properties at different
levels of abstraction: the state description level and the control flow level, and
allows inconsistencies between the two to be identified in a very local fashion (if
there is an error in the loop condition, an inferred invariant will also be wrong—
in the sense of not matching the programmer’s intention). Also, it is likely to
be the case the conditions associated with such invariants and transitions can be
discharged automatically (it is generally easier to check a proof than to build a
proof). For the second class, user specified invariants are required in both the code-
first and invariants-first approaches. Here the argument is that coming up with the
invariant is harder than writing the code—even in code-first development, some
basic notion of the properties the program is to maintain during its execution must
exist before any code can be written—so adapting the code makes the program
easier to verify.

The reasoning in the previous paragraph assumes that programmer intention
is better expressed and understood by way of declarative rather than operational
reasoning; most programmers who use assertions in their code are likely to agree
on this. Furthermore it assumes that programs are built from the ground up. If the
task is to redesign an existing program into an invariant-based one, a tool that aids

137



in finding the invariants may indeed be valuable. However, verification a posteriori
is outside the scope of this thesis.

We acknowledge that the set of programs we have considered exhibits only a
subset of the issues that a programmer faces, and that our case studies may not
be representative of industry scale software development. However, the objective
of this research has not been to build a full-fledged program verification tool,
but rather to investigate the feasibility of tool-supported IBP, and to evaluate the
method in case studies. Since IBP is a new method, we consider this is an important
stepping stone towards scaling up the technique to realistic programs.

The verification semantics of Socos is not yet formally connected to an opera-
tional (trace) semantics. An end-to-end verification methodology should establish
soundness (and perhaps completeness) along the whole semantic spectrum from
small step execution up to the actual proof rules; this remains to be done. While the
mathematical underpinnings is an important research theme, it is also one that can
be considered independent of the research into the utility of IBP. Back introduced
IBP not as a new program calculus, but as a hands-on method for building correct
programs. Socos should be considered an extension of this method with state of the
art proof tools. For a technique that cannot be taught, learned or properly supported
by tools is unlikely to have impact, even if theoretically well-founded.

We acknowledge the small scale of the teaching case study and that we have
not done a comparative evaluation of IBP against other approaches means that
there is not enough data to draw any hard conclusions regarding the role of an
IBP tool in education. We consider our teaching experiments to the present to
have been on the proof-of-concept stage, where the goals have been to evaluate
the advantages and disadvantages of both IBP and Socos. The case study is not
a claim that IBP and/or Socos are superior to existing approaches. The results
have convinced us that this is a direction worth pursuing; further development to
streamline integration of the tool into teaching and evaluations on a larger scale
will be necessary to strengthen the credibility of the whole approach.

11.3 Future work

There is scope for much future work on this topic. We list here the new features of
the tool that we are working on, and some future research directions.

Tool enhancement. As the IBP research has been experimental and the tools we
have implemented are highly prototypical, we have certainly not yet harnessed
the full potential of automation. Improving automation is an ongoing task. More
comprehensive control of the application of auto-rewrites, background theory
lemmas and user-defined strategies, e.g. by allowing diagrams to be annotated
with prover hints or even entire proof scripts, could potentially have a significant
impact on the degree of automation in practice. Another interesting prospect is

138



background verification, whereby VCs are generated and discharged on the fly
as the diagram is being drawn. An analogous feature exists in the Spec# system
[33], where assertion violations are highlighted inside the code editor as the code
is being written. We are considering building a set of benchmark programs, such
that endgame strategies can be tested and compared quantitatively. We are also
looking forward to being able to use the new Yices2 solver, which was ranked high
in the 2009 SMT-COMP [35]; Yices2 reads input in the SMT-LIB format, and
hence cannot at the present be used directly from PVS.

There is currently no standard run-time environment for IBP. Socos1 provided
a basic lexical translation into Python. For Socos2, we have done basic experimen-
tation with the PVS ground evaluator [145], which converts PVS expressions into
executable Common Lisp code. An evaluable expression is an expressions that is
not of an uninterpreted type, and that does not contain free variables, unbounded
quantification, or higher-order equality. It is straightforward to define a virtual
machine for Socos programs that uses the ground evaluator to interpret expressions,
or alternatively, a compiler that generates stand alone Lisp programs. Evaluation
of invariants and specifications may be useful for traditional debugging and testing;
in this mode the interpreter/compiler should evaluate the expressions that are in the
evaluable subset. We are also planning a compilation of invariant-based programs
in which the generated executable is automatically proved consistent with the
verification semantics. The compilation will use a translation validation approach,
in which instances of consistency proofs are generated together with the VCs and
the executable based on a connection between the verification and operational
semantics defined by Back and Preoteasa [29].

There is a number of immediate enhancements that could be implemented,
including nested lexical scopes within procedures, global variables, use of any
well founded set in termination proofs, and generalized termination conditions for
mutually recursive procedures (discussed in Chapter 6).

Scaling up IBP and Socos. Given that the basic approach seems feasible, the
next challenge is to identify realistic applications for IBP. This involves finding
niches in which the method can provide direct value for its users, such that a
community can be built and tools developed in interaction with an active user
group. At the present, teaching may be such an application area. An interesting
prospect in the long run is adapting IBP to development of software of realistic
scales. Below we discuss two possible approaches to the latter.

One approach involves extending IBP/Socos to handle programming in the
large. Firstly, an invariant-based methodology for reasoning about high-level
constructs such as classes, modules, and libraries should be developed. This is in
itself a major research undertaking. Support for the extended methodology should
then be added to Socos. Two open research problems are 1) finding a practical
method for structuring the statespace of a large program into situations, and 2)

139



extending the transition checking technique to higher-level constructs to ensure,
e.g., that the methods of a class maintain the object invariant. Both (1) and (2)
require a notion of refinement to be supported.

A second approach involves adapting IBP/Socos to existing programming
environments, and making use of IBP mainly as a methodological tool. One
possible direction is integrating IBP orthogonally into an existing “host method”,
such as the B-method [1], which already handles development in the large and
which has robust and readily available support tools. In this way the internals of an
individual component, such as a B abstract machine, could be developed in the IBP
style, while the refinement and interfacing of components would be handled by
the support mechanisms in the host method. This would allow IBP to be applied
directly in large scale projects, since it could coexist with the other components
already developed using the host method.

Teaching. The application of Socos in teaching also continues. We are currently
(as of 2010) giving two courses in which the tool will be used: an introductory
IBP course, as well as a special course on tool-supported verification. The first
course follows the syllabus described in Chapter 9. The second course focuses
on the development of correct programs using PVS and Socos, and is targeted at
advanced students. We expect it to give us additional insight in the feasibility of a
tool such as Socos for building and verifying non-trivial programs.

140



Appendix A

Listings

A.1 Symbols

Table A.1 below shows the ASCII versions of the typeset symbols used in the
examples in this thesis, and the PVS theory in which each is defined.

Symbol ASCII Defined in Description

→ -> built-in function type constructor
∃ EXISTS –"– existential quantifier
∀ FORALL –"– universal quantifier
λ LAMBDA –"– lambda abstraction
6= /= notequal not equal to
⇒ => booleans implication
⇔ <=> –"– equivalence
∧ AND –"– binary conjunction
∨ OR –"– binary disjunction
× * operator_defs star operator
≤ <= orders less than or equal to
≥ >= reals greater than or equal to
a[i] access(a,i) vector array access
a[i← x] update(a,i,x) –"– array update

Table A.1: Typeset symbols and corresponding ASCII sequences

The PVS theory vector is listed on page 146.

141



A.2 Translation of Socos programs into PVS theories

We give below syntactic rewrite rules for a transformation ctx, which translates a
Socos context into a collection of PVS theories. The translation was discussed in
Chapter 7.

Id : context begin
extending CId1;
...
extending CIdn;

Importing1
...
Importingm

[. . . ]

Const1
...
Constk

Procedure1
...
Procedureu

end Id

ctx−→

ctx_Id : theory begin
importing ctx_CId1;
...
importing ctx_CIdn;

Importing1
...
Importingm

Const1
...
Constk

end ctx_Id

〈Id •Procedure1〉spec

...
〈Id •Procedureu〉spec

Procedureimpl
1

...
Procedureimpl

u

N.B. The transformations spec and impl are given in the remainder of this section.

142



Idc •Id[C1 : TC1 , . . . ,Cn : TCn

valres V1 : TV1 , . . . ,Vm : TVm

result R1 : TR1 , . . . ,Rk : TRk ] :
procedure
pre P1;
...
pre Pu;

Idq1 : post Q1,1
...
post Q1,n1

...
Idqv : post Qv,1

...
post Qv,nv

** W ;

begin
[. . . ]

end Id

spec−−→

spec_Id_ : theory begin
importing ctx_Idc

C1 : var TC1 ;
...
Cn : var TCn ;

V1,V1_0 : var TV1 ;
...
Vm,Vm_0 : var TVm ;

R1 : var TR1 ;
...
Rk : var TRk ;

pre_(C,V ) : bool =
(P1)∧·· ·∧ (Pu);

post_Idq1(C,V_0,V,R) : bool =
(Q1,1)∧·· ·∧ (Q1,n1);

...
post_Idqv(C,V_0,V,R) : bool =

(Qv,1)∧·· ·∧ (Qv,nv);

var_(C,V ) : int = W ;
end spec_Id

N.B. In the right hand side above, V_0 is an abbreviation for the sequence
V1_0, . . . ,Vm_0.

143



Id[C1 : TC1 , . . . ,Cn : TCn

valres V1 : TV1 , . . . ,Vm : TVm

result R1 : TR1 , . . . ,Rk : TRk ] :
procedure
[. . . ]
Idq1 : [. . . ];
...
Idqu : [. . . ];
begin

Const1;
...
Constv;

L1 : pvar TL1 ;
...
Lw : pvar TLw ;

Diagram[PId1([. . . ]);
...
PIdt([. . . ]); ]

end Id

impl−−→

impl_Id : theory begin
importing Id_Spec

importing PId1_Spec
...
importing PIdt_Spec

C1 : TC1 ; . . . Cn : TCn ;

V1 : var TV1 ; . . . Vm : var TVm ;

R1 : var TR1 ; . . . Rk : var TRk ;

V1_0 : TV1 ; . . . Vm_0 : TVm ;

Const1; . . . Constv;

L1 : var TL1 ; . . . Lw : var TLw ;

sit_ini_(V,R,L) : bool=

pre_(C,V )∧
V1 = V1_0∧·· ·∧Vm = Vm_0 ;

sit_fin_Idq1(V,R,L) : bool=

post_Idq1(C,V_0,V,R);
...
sit_fin_Idqu(V,R,L) : bool=

post_Idqu(C,V_0,V,R);

〈V,R,L•Diagram〉impl

〈V,R,L•Diagram〉vc

end impl_Id

N.B. Above PId1, . . . ,PIdt is the set of called procedures. On the right hand side,
V_0 is an abbreviation for the sequence V1_0, . . . ,Vm_0. .

144



σ• Situation1
...
Situationn
[. . . ]

impl−−→
〈σ •Situation1〉impl

...
〈σ •Situationn〉impl

σ• Id : situation begin
* I1;
...
* In;
[. . . ]
Situation1
...
Situationm
[. . . ]

end Id

impl−−→

sit_Id(σ) : bool =
(I1)∧·· ·∧ (In);

〈σ , Id •Situation1〉impl

...
〈σ , Id •Situationm〉impl

σ , Idp• Id : situation begin
* I1;
...
* In;
[. . . ]
Situation1
...
Situationm
[. . . ]

end Id

impl−−→

sit_Id(σ) : bool =
sit_Idp(σ)∧
(I1)∧·· ·∧ (In);

〈σ , Id •Situation1〉impl

...
〈σ , Id •Situationm〉impl

σ• Situation1
...
Situationn
Trs

vc−→

〈σ •Situation1〉vc

...
〈σ •Situationn〉vc

〈ini_,σ •Trs〉vc;

σ• Id : situation begin
[. . . ]
Situation1
...
Situationn
Trs

end Id

vc−→

〈σ •Situation1〉vc

...
〈σ •Situationn〉vc

〈Id,σ •Trs〉vc;

N.B. We described the transformation vc in Section 7.3.

145



A.3 Background theories

vector[T:type]: theory

begin

vector:type+ = [# len:nat, elem:[below(len)->T] #]

index(a:vector):type = below[len(a)]

access(v:vector,i:below(len(v))):T = v`elem(i)

acc(v:vector)(i:below(len(v))):macro T = access(v,i)

conversion+ acc

update(v:vector,j:index(v),x:T):{w:vector|len(w)=len(v)}=

(# len:=len(v),

elem:=elem(v) with [ j:=x ] #)

update_prop_1: lemma

forall (v:vector,i:index(v),x:T):

access(update(v,i,x),i) = x

update_prop_2: lemma

forall (v:vector,i:index(v),j:index(v),x:T):

i=j or access(update(v,i,x),j) = access(v,j)

auto_rewrite- access,update

eql(a:vector,b:vector,l,r:nat): bool =

forall (i:nat): l<=i and i<r and i<len(a) and i<len(b)

=> access(a,i)=access(b,i)

end vector

sorting: theory

begin

importing vector[int]

a,b,c: var vector

sorted(a,(k:upto(len(a)))):bool =

forall (i,j:nat): k<=i and i<j and j<len(a) =>

access(a,i)<=access(a,j)

sorted(a):bool = sorted(a,len(a))

146



partitioned(a,(k:upto(len(a)))):bool =

forall (i,j:nat): i<k and k<=j and j<len(a) =>

access(a,i)<=access(a,j)

perm(a,b) : bool =

exists (f:(bijective?[index(b),index(a)])):

forall (i:index(b)): access(a,f(i)) = access(b,i)

perm_len: lemma perm(a,b) => len(a)=len(b)

perm_ref: lemma perm(a,a)

perm_sym: lemma perm(a,b) => perm(b,a)

perm_trs: lemma perm(a,b) and perm(b,c) => perm(a,c)

swap(a,(i,j:index(a))):{b|len(b)=len(a)} =

update(update(a,i,access(a,j)),j,access(a,i))

swap_acc: lemma forall (a,(i,j,k:index(a))):

access(swap(a,i,j),k) = access(a,if k=i then j

elsif k=j then i

else k endif)

swap_perm: lemma forall (a,(i,j:index(a))): perm(swap(a,i,j),a)

auto_rewrite- perm,swap

l(i:nat):nat = 2*i+1

r(i:nat):nat = 2*i+2

heap(a,(m,n:nat)): bool =

m<=n and n<=len(a) and

forall (i:nat):

m<=i =>

(l(i)<n => access(a,i)>=access(a,l(i))) and

(r(i)<n => access(a,i)>=access(a,r(i)))

heap_max: lemma

forall (a,(k:nat)):

heap(a,0,k) => forall (i:nat): 0<=i and i<k =>

access(a,i)<=access(a,0)

perm_partitioned: lemma

forall (a,b,(k:upto(len(a)))):

perm(a,b) and partitioned(a,k) and eql(a,b,k,len(a))

=> partitioned(b,k)

end sorting

147



A.4 The heapsort context

heapsort: context

begin

importing sorting;

using "(endgame :lemmas (perm_len perm_ref perm_sym

perm_trs swap_acc swap_perm))";

heapsort[ valres a:vector[int] ]: procedure

post sorted(a);

post perm(a,a_0);

begin

k: pvar nat;

Constraints: situation

begin

* perm(a,a_0);

* k<=len(a);

BuildHeap: situation

begin

* heap(a,k,len(a));

** k;

if [k>0]; k:=k-1;

siftdown(k,len(a),a);

decreasing goto BuildHeap

[k=0]; k:=len(a);

goto TearHeap

endif

end BuildHeap

TearHeap: situation

begin

* partitioned(a,k);

* sorted(a,k);

* heap(a,0,k);

** k;

if [k>1]; k:=k-1;

a:=swap(a,0,k);

siftdown(0,k,a);

decreasing goto TearHeap

[k<=1]; exit

endif

end TearHeap

end Constraints

k:=floor(len(a)/2); goto BuildHeap

end heapsort

148



siftdown[ m,n:nat, valres a:vector[int] ]: procedure

pre m<=n and n<=len(a);

pre heap(a,m+1,n);

post heap(a,m,n);

post perm(a,a_0);

post eql(a,a_0,0,m);

post eql(a,a_0,n,len(a));

begin

k: pvar nat;

Sift: situation

begin

* perm(a,a_0);

* m<=k and k<=n and n<=len(a);

* eql(a,a_0,0,m);

* eql(a,a_0,n,len(a));

* forall (i:nat): m<=i =>

(i/=k =>

(l(i)<n => a(l(i))<=a(i)) and

(r(i)<n => a(r(i))<=a(i))) and

((l(i)=k or r(i)=k) =>

(l(k)<n => a(l(k))<=a(i)) and

(r(k)<n => a(r(k))<=a(i))) ;

** n-k;

if [n<=r(k) or (a(l(k))<=a(k) and a(r(k))<=a(k))];

if [r(k)=n];

if [a(l(k))<=a(k)]; exit

[a(k)<a(l(k))]; a:=swap(a,k,l(k)); exit

endif

[r(k)/=n]; exit

endif

[r(k)<n and (a(k)<a(l(k)) or a(k)<a(r(k)))];

if [a(r(k))<=a(l(k))];

a:=swap(a,k,l(k)); k:=l(k);

decreasing goto Sift

[a(l(k))<=a(r(k))];

a:=swap(a,k,r(k)); k:=r(k);

decreasing goto Sift

endif

endif

end Sift

k:=m; goto Sift

end siftdown

end heapsort

149



150



Bibliography

[1] J.-R. Abrial. The B-book: assigning programs to meanings. Cambridge
University Press, 1996.

[2] J.-R. Abrial, M. Butler, S. Hallerstede, and L. Voisin. An open extensible
tool environment for Event-B. In Proc. of the 8th International Conference
on Formal Engineering Methods (ICFEM 2006), volume 4260 of Lecture
Notes in Computer Science, pages 588–605. Springer, 2006.

[3] M. Alanen. A Metamodeling Framework for Software Engineering. PhD
thesis, Turku Centre of Computer Science, Finland, 2007.

[4] M. Alanen, T. Lundkvist, and I. Porres. Creating and reconciling diagrams
after executing model transformations. Science of Computer Programming,
68(3):128–151, 2007.

[5] M. Alanen and I. Porres. The Coral Modelling Framework. In K. Koskimies,
L. Kuzniarz, J. Lilius, and I. Porres, editors, Proc. of the 2nd Nordic Work-
shop on the Unified Modeling Language NWUML’2004, number 35 in
General Publications. Turku Centre for Computer Science, July 2004.

[6] V. L. Almstrum, C. N. Dean, D. Goelman, T. B. Hilburn, and J. Smith.
Support for teaching formal methods. SIGCSE Bull., 33(2):71–88, 2001.

[7] D. Aspinall, D. Winterstein, C. Lüth, and A. Fayyaz. Proof General in
Eclipse: System and Architecture Overview. In Eclipse ’06: Proc. of the
2006 OOPSLA workshop on Eclipse technology eXchange, pages 45–49,
New York, NY, USA, 2006. ACM.

[8] R.-J. Back. On the correctness of refinement in program development. Ph.d.
thesis, Department of Computer Science, University of Helsinki, Finland,
1978.

[9] R.-J. Back. Program construction by situation analysis. Research Report 6,
Computing Centre, University of Helsinki, Helsinki, Finland, 1978.

151



[10] R.-J. Back. Exception handling with multi-exit statements. In H. J. Hoff-
mann, editor, 6th Fachtagung Programmiersprachen und Programmentwick-
lungen, volume 25 of Informatik Fachberichte, pages 71–82, Darmstadt,
1980. Springer-Verlag.

[11] R.-J. Back. Invariant based programs and their correctness. In W. Bier-
mann, G. Guiho, and Y. Kodratoff, editors, Automatic Program Construction
Techniques, pages 223–242. MacMillan Publishing Company, 1983.

[12] R.-J. Back. Software construction by stepwise feature introduction. In ZB
’02: Proc. of the 2nd International Conference of B and Z Users on Formal
Specification and Development in Z and B, pages 162–183. Springer, 2002.

[13] R.-J. Back. Incremental software construction with refinement diagrams.
Technical Report 660, Turku Centre for Computer Science, Turku, Finland,
Jan. 2005.

[14] R.-J. Back. Invariant based programming revisited. Technical Report 661,
Turku Centre for Computer Science, Turku, Finland, 2005.

[15] R.-J. Back. Invariant based programming. In S. Donatelli and P. S. Thiagara-
jan, editors, ICATPN, volume 4024 of Lecture Notes in Computer Science,
pages 1–18. Springer, 2006.

[16] R.-J. Back. Invariant based programming: Basic approach and teaching
experiences. Formal Aspects of Computing, 21(3):227–244, 2009.

[17] R.-J. Back. Structured derivations: a unified proof style for teach-
ing mathematics. Formal Aspects of Computing, 2009. Online at
http://www.springerlink.com/index/a75tmu1110kku422.pdf.

[18] R.-J. Back, V. Bos, and J. Eriksson. MathEdit: Tool Support for Structured
Derivations. Technical Report 854, Turku Centre for Computer Science,
Turku, Finland, Dec. 2007.

[19] R.-J. Back, J. Eriksson, and L. Mannila. Teaching the construction of correct
programs using invariant based programming. In Proc. of 3rd South-East
European Workshop on Formal Methods (SEEFM07). South-East European
Research Centre (SEERC), 2007.

[20] R.-J. Back, J. Eriksson, and L. Milovanov. Using stepwise feature introduc-
tion in practice: an experience report. In Proc. of the 2nd International Work-
shop on Rapid Integration of Software Engineering Techniques (RISE’2005),
volume 3943 of Lecture Notes in Computer Science, pages 2–17. Springer,
2005.

152



[21] R.-J. Back, J. Eriksson, and M. Myreen. Testing and verifying invariant
based programs in the SOCOS environment. Technical Report 797, Turku
Centre for Computer Science, Turku, Finland, Dec. 2006.

[22] R.-J. Back, J. Eriksson, and M. Myreen. Testing and verifying invariant
based programs in the SOCOS environment. In Proc. of the International
Conference on Tests And Proofs (TAP), volume 4454 of Lecture Notes in
Computer Science, pages 61–78. Springer, 2007.

[23] R.-J. Back, J. Grundy, and J. von Wright. Structured calculational proof.
Formal Aspects of Computing, 9(5–6):469–483, 1997.

[24] R.-J. Back and M. Karttunen. A predicate transformer semantics for state-
ments with multiple exits. University of Helsinki, unpublished manuscript,
1983.

[25] R.-J. Back and R. Kurki-Suonio. Decentralization of process nets with
centralized control. Distributed Computing, 3(2):73–87, 1989.

[26] R.-J. Back, L. Milovanov, and I. Porres. Software development and exper-
imentation in an academic environment: The Gaudi experience. In Proc.
of the 6th International Conference on Product Focused Software Process
Improvement - PROFES 2005, Oulu, Finland, June 2005.

[27] R.-J. Back, L. Milovanov, I. Porres, and V. Preoteasa. XP as a framework
for practical software engineering experiments. In Proc. of the Third In-
ternational Conference on eXtreme Programming and Agile Processes in
Software Engineering - XP2002, May 2002.

[28] R.-J. Back and M. Myreen. Tool support for invariant based programming. In
Proc. of the 12th Asia-Pacific Software Engineering Conference (APSEC’05),
pages 711–718. IEEE Computer Society, 2005.

[29] R.-J. Back and V. Preoteasa. Semantics and proof rules of invariant based
programs. Technical Report 903, Turku Centre for Computer Science, Turku,
Finland, July 2008.

[30] R.-J. Back and J. von Wright. Refinement Calculus: A Systematic Introduc-
tion. Springer, 1998.

[31] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey,
B. Ondrusek, S. K. Rajamani, and A. Ustuner. Thorough static analysis of
device drivers. SIGOPS Oper. Syst. Rev., 40(4):73–85, 2006.

[32] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino.
Boogie: A modular reusable verifier for object-oriented programs. In
Formal Methods for Components and Objects: 4th International Symposium

153



(FMCO’2005), volume 4111 of Lecture Notes in Computer Science, pages
364–387. Springer, 2006.

[33] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming
system: An overview. In Construction and Analysis of Safe, Secure, and
Interoperable Smart Devices, volume 3362 of Lecture Notes in Computer
Science, pages 49–69. Springer, 2004.

[34] C. Barrett, L. de Moura, and A. Stump. SMT-COMP: Satisfiability modulo
theories competition. In K. Etessami and S. K. Rajamani, editors, Proc. of
the 17th International Conference on Computer Aided Verification (CAV

’05), volume 3576 of Lecture Notes in Computer Science, pages 20–23.
Springer-Verlag, July 2005. Edinburgh, Scotland.

[35] C. Barrett, M. Deters, A. Oliveras, and A. Stump. SMT-COMP’09.
http://www.smtcomp.org/2009, visited Jun 1, 2010.

[36] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard: Version 2.0
(draft). Technical report, Department of Computer Science, The University
of Iowa, 2010. Available at http://www.smt-lib.org, visited Jun 1,
2010.

[37] C. Barrett and C. Tinelli. CVC3. In Proc. of the 19th International Confer-
ence on Computer Aided Verification (CAV ’07), volume 4590 of Lecture
Notes in Computer Science, pages 298–302. Springer, July 2007.

[38] G. Barthe, L. Burdy, J. Charles, B. Grégoire, M. Huisman, J.-L. Lanet,
M. Pavlova, and A. Requet. JACK: a tool for validation of security and
behaviour of Java applications. In Proc. of the 5th International Symposium
on Formal Methods for Components and Objects (FMCO’06), volume 4709
of Lecture Notes in Computer Science, pages 152–174. Springer, 2007.

[39] F. L. Bauer, M. Broy, R. Gnatz, W. Hesse, B. Krieg-Brückner, H. Partsch,
P. Pepper, and H. Wössner. Towards a wide spectrum language to support
program specification and program development. SIGPLAN Not., 13(12):15–
24, 1978.

[40] B. Beckert, R. Hähnle, and P. H. Schmitt, editors. Verification of Object-
Oriented Software: The KeY Approach, volume 4334 of Lecture Notes in
Computer Science. Springer-Verlag, 2007.

[41] P. Behm, P. Benoit, A. Faivre, and J. Meynadier. Météor: A successful
application of B in a large project. In Proc. of the Wold Congress on Formal
Methods in the Development of Computing Systems - Volume I, pages 369–
387. Springer, 1999.

154



[42] Y. Bertot and P. Casteran. Interactive Theorem Proving and Program
Development. Springer, 2004.

[43] M. Bofill, R. Nieuwenhuis, A. Oliveras, E. Rodríguez-Carbonell, and A. Ru-
bio. The Barcelogic SMT solver. In Computer Aided Verification, volume
5123 of Lecture Notes in Computer Science, pages 294–298. Springer, 2008.

[44] R. Boulton, A. Gordon, M. Gordon, J. Herbert, and J. van Tassel. Experience
with embedding hardware description languages in HOL. In Proc. of the
International Conference on Theorem Provers in Circuit Design: Theory,
Practice and Experience, pages 129–156. North-Holland, 1992.

[45] J. P. Bowen and M. G. Hinchey. Seven more myths of formal methods.
IEEE Software, 12(4):34–41, 1995.

[46] R. S. Boyer, M. Kaufmann, and J. S. Moore. The Boyer-Moore theorem
prover and its interactive enhancement. Computers & Mathematics with
Applications, 29(2):27–62, 1995.

[47] A. R. Bradley, Z. Manna, and H. B. Sipma. What’s decidable about arrays?
In Verification, Model Checking, and Abstract Interpretation, volume 3855
of Lecture Notes in Computer Science, pages 427–442. Springer, 2006.

[48] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T. Leavens, K. R. M.
Leino, and E. Poll. An overview of JML tools and applications. International
Journal on Software Tools for Technology Transfer (STTT), 7(3):212–232,
2005.

[49] Centre of Excellence for Formal Methods in Programming at Åbo
Akademi (CREST). IMPEd Resource Centre. Project website
http://crest.cs.abo.fi/imped, visited Jun 1, 2010.

[50] J. Charles, D. Cochran, W. Dietl, F. Fairmichael, R. Grigore, M. Huisman,
J. Kiniry, E. Poll, and A. Schubert. Deliverable 3.10: Final report on program
verification environment and annotation generation, 2010. Available at
http://mobius.inria.fr.

[51] J. Charles and J. Kiniry. A lightweight theorem prover interface for
Eclipse. In 8th International Workshop User Interfaces for Theorem Proving
(UITP’08), Aug 2008.

[52] G. Cleland and D. MacKenzie. Inhibiting factors, market structure and
the industrial uptake of formal methods. In WIFT ’95: Proc. of the 1st
Workshop on Industrial-Strength Formal Specification Techniques, pages
46–60, Washington, DC, USA, 1995. IEEE Computer Society.

155



[53] D. Cok and J. Kiniry. ESC/Java2: Uniting ESC/Java and JML. In Construc-
tion and Analysis of Safe, Secure, and Interoperable Smart Devices, volume
3362 of Lecture Notes in Computer Science, pages 108–128. Springer, 2005.

[54] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer,
R. W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden,
J. T. Sasaki, and S. F. Smith. Implementing mathematics with the Nuprl
proof development system. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1986.

[55] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to
Algorithms. McGraw-Hill Higher Education, 2001.

[56] M. A. Cusumano. Who is liable for bugs and security flaws in software?
Communications of the ACM, 47(3):25–27, 2004.

[57] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Communications of the ACM, 5(7):394–397, 1962.

[58] R. A. De Millo, R. J. Lipton, and A. J. Perlis. Social processes and proofs
of theorems and programs. Communications of the ACM, 22(5):271–280,
1979.

[59] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Tools and
Algorithms for the Construction and Analysis of Systems, volume 4963 of
Lecture Notes in Computer Science, pages 337–340. Springer, Apr. 2008.

[60] R. DeLine and K. R. M. Leino. BoogiePL: A typed procedural language for
checking object-oriented programs. Technical Report MSR-TR-2005-70,
Microsoft Research, May 2005.

[61] D. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe. Extended static
checking. Technical Report SRC-RR-159, Compaq SRC, Palo Alto, CA,
Dec. 1998.

[62] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for
program checking. Journal of the ACM, 52(3):365–473, 2005.

[63] E. W. Dijkstra. A constructive approach to the problem of program correct-
ness. BIT Numerical Mathematics, 8(3):174–186, 1968.

[64] E. W. Dijkstra. Notes on structured programming, pages 1–82. Structured
programming. Academic Press Ltd., 1972.

[65] E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation
of programs. Communications of the ACM, 18(8):453–457, 1975.

[66] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

156



[67] E. W. Dijkstra. On the cruelty of really teaching computer science. Commu-
nications of the ACM, 32(12):1398–1404, Dec. 1989.

[68] E. W. Dijkstra and C. S. Scholten. Predicate calculus and program semantics.
Springer-Verlag New York, Inc., 1990.

[69] B. Dutertre and L. de Moura. The Yices SMT solver. Technical report,
Computer Science Laboratory, SRI International, Menlo Park, CA, Aug.
2006. Available at http://yices.csl.sri.com/tool-paper.pdf.

[70] Eclipse Foundation. Graphical Editing Framework (GEF). Project website
http://www.eclipse.org/emf/, visited Jun 1, 2010.

[71] J. Edmund M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT
Press, Cambridge, MA, USA, 1999.

[72] J. Erikson. Nybörjarsvårigheter med invariantbaserad programmering. Mas-
ter’s thesis, Åbo Akademi University, Department of Information Technolo-
gies, 2008.

[73] L. Erkök and J. Matthews. Using Yices as an automated solver in Is-
abelle/HOL. In Automated Formal Methods’08, pages 3–13, Princeton, New
Jersey, USA, July 2008. ACM Press.

[74] I. Feinerer and G. Salzer. Automated tools for teaching formal software
verification. In Teaching Formal Methods: Practice and Experience, BCS
Electronic Workshops in Computing (eWiC). BCS-FACS, Dec. 2006.

[75] J. H. Fetzer. Program verification: the very idea. Communications of the
ACM, 31(9):1048–1063, 1988.

[76] J.-C. Filliâtre. Why: a multi-language multi-prover verification tool. Re-
search report 1366, LRI, Université Paris Sud, Mar. 2003.

[77] J.-C. Filliâtre and C. Marché. The Why/Krakatoa/Caduceus platform for
deductive program verification. In Computer Aided Verification, volume
4590 of Lecture Notes in Computer Science, pages 173–177. Springer, 2007.

[78] S. Fincher and M. Petre, editors. Computer Science Education Research.
RoutledgeFalmer, 2004.

[79] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and
R. Stata. Extended static checking for Java. In Proc. of the ACM SIGPLAN
2002 Conference on Programming language design and implementation
(PLDI’02), pages 234–245. ACM Press, 2002.

[80] R. W. Floyd. Assigning meanings to programs. Proc. of Symposium of
Applied Mathematics, 19:19–32, 1967.

157



[81] H. H. Goldstine and J. von Neumann. Planning and coding of problems for
an electronic computing instrument, 1947. Report on the Mathematical and
Logical Aspects of an Electronic Computing Instrument, Part II, vol. I. Also
in A.H. Taub, editor. John von Neumann, Collected Works, Volume V, pp.
80-151.

[82] D. I. Good. Toward a man-machine system for proving program correctness.
PhD thesis, The University of Wisconsin - Madison, 1970.

[83] M. J. C. Gordon. Mechanizing programming logics in higher order logic. In
Current Trends in Hardware Verification and Automated Theorem Proving,
pages 387–439. Springer, 1988.

[84] D. Gries. The Science of Programming. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1987.

[85] D. Gries. Teaching calculation and discrimination: a more effective curricu-
lum. Communications of the ACM, 34(3):44–55, 1991.

[86] D. Gries. The mathematics of programming and why we should teach it.
Journal of Computing Sciences in Colleges, 19(5):2–2, 2004.

[87] D. Gries and F. B. Schneider. A logical approach to discrete math. Springer-
Verlag New York, Inc., 1993.

[88] J. Haikarainen. SOCOS support for data modules. Master’s thesis, Åbo
Akademi University, Department of Computer Science, 2006.

[89] A. Hall. Seven myths of formal methods. IEEE Software, 7(5):11–19, 1990.

[90] A. Hall. What is the formal methods debate about? IEEE Computer,
29(4):22–23, 1996.

[91] D. Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8(3):231–274, 1987.

[92] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.

[93] P. B. Henderson. Mathematical reasoning in software engineering education.
Communications of the ACM, 46(9):45–50, 2003.

[94] C. A. R. Hoare. An axiomatic basis for computer programming. Communi-
cations of the ACM, 12(10):576–580, 1969.

[95] C. A. R. Hoare. The verifying compiler: A grand challenge for computing
research. Journal of the ACM, 50(1):63–69, 2003.

158



[96] C. A. R. Hoare. Towards the verifying compiler. In O. Owe, S. Krogdahl,
and T. Lyche, editors, Essays in Memory of Ole-Johan Dahl, volume 2635
of Lecture Notes in Computer Science, pages 124–136. Springer, 2004.

[97] C. A. R. Hoare and J. Misra. Verified software: Theories, tools, experiments
vision of a grand challenge project. In B. Meyer and J. Woodcock, editors,
VSTTE, volume 4171 of Lecture Notes in Computer Science, pages 1–18.
Springer, 2005.

[98] C. M. Holloway and R. W. Butler. Impediments to industrial use of formal
methods. IEEE Computer, 29(4):25–26, 1996.

[99] P. V. Homeier. Trustworthy tools for trustworthy programs: a mechani-
cally verified verification condition generator for the total correctness of
procedures. PhD thesis, University of California at Los Angeles, 1995.

[100] IEEE Standards Board. IEEE Standard for Software Unit Testing: An Amer-
ican National Standard, ANSI/IEEE Std 1008-1987. In IEEE Standards:
Software Engineering, Volume Two: Process Standards. American National
Standards Institute, 1987.

[101] S. Igarashi, R. L. London, and D. C. Luckham. Automatic program verifi-
cation I: a logical basis and its implementation. Technical report, Stanford
University, 1973.

[102] C. B. Jones. The early search for tractable ways of reasoning about programs.
IEEE Annals of the History of Computing, 25(2):26–49, 2003.

[103] C. B. Jones, P. O’Hearn, and J. Woodcock. Verified software: A grand
challenge. Computer, 39(4):93–95, 2006.

[104] M. Kaufmann, P. Manolios, and J. S. Moore. Computer-Aided Reasoning:
An Approach. Springer, 2000.

[105] C. Kelemen, A. Tucker, P. Henderson, O. Astrachan, and K. Bruce. Has
our curriculum become math-phobic? (an American perspective). SIGCSE
Bull., 32(3):132–135, 2000.

[106] J. C. King. A program verifier. PhD thesis, Carnegie Mellon University,
1969.

[107] S. King and C. Morgan. Exits in the refinement calculus. Formal Aspects of
Computing, 7(1):54–76, 1995.

[108] G. T. Leavens, A. L. Baker, and C. Ruby. JML: A notation for detailed
design. In Behavioral Specifications of Businesses and Systems, pages
175–188. Boston, 1999.

159



[109] D. C. Luckham, S. M. German, F. W. von Henke, R. A. Karp, P. W. Milne,
D. C. Oppen, W. Polak, and W. L. Scherlis. Stanford Pascal Verifier user
manual. Technical report, Stanford University, 1979.

[110] T. Lundkvist and I. Porres. Coordination of model transformation engines
and visual editors. In J. Peltonen, editor, Proc. of SPLST’09 and NW-
MODE’09, number 5 in Department of Software Systems reports, pages
269–283. Tampere University of Technology, 2009.

[111] G. Lüttgen, C. Munoz, R. Butler, B. Di Vito, and P. Miner. Towards a
customizable PVS. Technical Report NASA CR-2000-2098 / ICASE 2000-
4, ICASE and NASA Langley Research Center, Jan. 2000.

[112] L. Mannila. Invariant based programming in education - an analysis of
student difficulties. Informatics in Education, 9(1):115–132, 2010.

[113] C. Marché, C. Paulin-Mohring, and X. Urbain. The KRAKATOA tool for
certification of JAVA/JAVACARD programs annotated in JML. Journal of
Logic and Algebraic Programming, 58(1-2):89–106, 2004.

[114] B. Meyer. Eiffel: The Language. Prentice Hall, second edition, 1992.

[115] B. Meyer. Object-Oriented Software Construction. Prentice Hall, second
edition, 1997.

[116] R. Milner. Logic for computable functions: description of a machine
implementation. Technical Report CS-TR-72-288, Stanford, CA, USA,
1972.

[117] L. Milovanov. Agile Software Development in an Academic Environment.
PhD thesis, Turku Centre of Computer Science, Finland, 2006.

[118] C. Morgan. Programming from specifications. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1990. Available at
http://users.comlab.ox.ac.uk/carroll.morgan/PfS/.

[119] C. Mundie, P. de Vries, P. Haynes, and M. Corwine. Trust-
worthy computing. Microsoft white paper, 2002. Available at
http://www.microsoft.com/mscorp/twc/default.mspx, visited Jun
1, 2010.

[120] C. Muñoz. PBS: Support for the B-Method in PVS. Technical Report
SRI-CSL-99-01, Computer Science Laboratory, SRI International, Menlo
Park, CA, Feb. 1999.

[121] C. Muñoz. Batch proving and proof scripting in PVS. Technical Report
NASA CR-2007-214546 / NIA 2007-03, NASA Langley Research Center
and National Institute of Aerospace, 2007.

160



[122] NASA Langley Research Center. NASA Langley PVS Libraries.
Available at http://shemesh.larc.nasa.gov/fm/ftp/larc/

PVS-library/pvslib.html, visited Jun 1, 2010.

[123] P. Naur. Proof of algorithms by general snapshots. BIT Numerical Mathe-
matics, 6(4):310–316, 1966.

[124] G. C. Necula. Proof-Carrying code. In Proc. of the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Langauges (POPL’97),
pages 106–119. ACM Press, 1997.

[125] G. Nelson and D. C. Oppen. Simplification by cooperating decision pro-
cedures. ACM Transactions on Programming Languages and Systems,
1(2):245–257, 1979.

[126] G. Nelson and D. C. Oppen. Fast decision procedures based on congruence
closure. Journal of the ACM, 27(2):356–364, 1980.

[127] S. Nevalainen. An editor for invariant based programming. Master’s thesis,
Åbo Akademi University, Department of Computer Science, 2006.

[128] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: a proof assistant
for higher-order logic. Springer, 2002.

[129] OMG. UML 2.2 Superstructure Specification, Feb. 2009. Document ptc/09-
02-02, available at http://www.omg.org/.

[130] S. Owre. A brief overview of the PVS user interface. In 8th Interna-
tional Workshop User Interfaces for Theorem Provers (UITP’08), Montreal,
Canada, Aug. 2008.

[131] S. Owre and N. Shankar. Abstract datatypes in PVS. Technical Report
SRI-CSL-93-9R, Computer Science Laboratory, SRI International, Menlo
Park, CA, Dec. 1993. Revised June 1997.

[132] S. Owre and N. Shankar. The formal semantics of PVS. Technical Report
SRI-CSL-97-2, Computer Science Laboratory, SRI International, Menlo
Park, CA, Aug. 1997.

[133] S. Owre and N. Shankar. The PVS Prelude Library. Technical Report
SRI-CSL-03-1, Computer Science Laboratory, SRI International, Menlo
Park, CA, Mar. 2003.

[134] S. Owre and N. Shankar. Writing PVS proof strategies. In M. Archer, B. D.
Vito, and C. Muñoz, editors, Design and Application of Strategies/Tactics in
Higher Order Logics (STRATA 2003), number CP-2003-212448 in NASA
Conference Publication, pages 1–15, Hampton, VA, Sept. 2003. NASA
Langley Research Center.

161



[135] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS
System Guide. Computer Science Laboratory, SRI International, Menlo
Park, CA, Sept. 1999.

[136] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS
Language Reference, Version 2.4. Computer Science Laboratory, SRI Inter-
national, Menlo Park, CA, Nov. 2001.

[137] D. L. Parnas. "Formal methods" technology transfer will fail. Journal of
Systems and Software, 40(3):195–198, 1998.

[138] B. Plüss. A practical method for reasoning about procedures in invariant
based programming. Master’s thesis, National University of Rosario, 2008.

[139] A. Podelski and A. Rybalchenko. Transition invariants. In LICS ’04: Proc.
of the 19th Annual IEEE Symposium on Logic in Computer Science, pages
32–41, Washington, DC, USA, 2004. IEEE Computer Society.

[140] J. C. Reynolds. Programming with transition diagrams. In D. Gries, editor,
Programming Methodology, pages 153–165. Springer-Verlag, 1978.

[141] J. Rushby, S. Owre, and N. Shankar. Subtypes for specifications: Predicate
subtyping in PVS. IEEE Transactions on Software Engineering, 24(9):709–
720, 1998.

[142] J. Rushby, F. von Henke, and S. Owre. An introduction to formal spec-
ification and verification using EHDM. Technical Report SRI-CSL-91-2,
Computer Science Laboratory, SRI International, Menlo Park, CA, Feb.
1991.

[143] S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M. K. Srivas. PVS:
Combining specification, proof checking, and model checking. In Proc.
of the Eighth International Conference on Computer Aided Verification
(CAV’96), volume 1102 of Lecture Notes in Computer Science, pages 411–
414. Springer, 1996.

[144] D. Saff and M. D. Ernst. Reducing wasted development time via continuous
testing. In Fourteenth International Symposium on Software Reliability
Engineering, pages 281–292. IEEE Computer Society, 2003.

[145] N. Shankar. Efficiently executing PVS. Project report, Computer Science
Laboratory, SRI International, Menlo Park, CA, Nov. 1999.

[146] N. Shankar, S. Owre, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS
Prover Guide, Version 2.4. Computer Science Laboratory, SRI International,
Menlo Park, CA, Nov. 2001.

162



[147] C. Snook and R. Harrison. Practitioners’ views on the use of formal methods:
an industrial survey by structured interview. Information and Software
Technology, 43(4):275–283, 2001.

[148] A. M. Turing. Checking a large routine. In Report on a Conference on High
Speed Automatic Computation, June 1949, pages 67–69, Cambridge, UK,
1949. University Mathematical Laboratory, Cambridge University.

[149] J. van den Berg and B. Jacobs. The LOOP compiler for Java and JML. In
Proc. of the 7th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, volume 2031 of Lecture Notes in
Computer Science, pages 299–312. Springer, 2001.

[150] M. H. van Emden. Programming with verification conditions. IEEE Trans-
actions on Software Engineering, 5(2):148–159, 1979.

[151] G. van Rossum and F. L. Drake, Jr., editors. An introduction to Python:
release 2.2.2. Network Theory Ltd., Bristol, UK, 2003.

[152] C. Walther and S. Schweitzer. Verification in the classroom. Journal of
Automated Reasoning, 32(1):35–73, 2004.

[153] T. Weber. SMT solvers: New oracles for the HOL theorem prover. In
Workshop on Verified Software: Theory, Tools, and Experiments (VSTTE
2009), Eindhoven, The Netherlands, Nov. 2009.

[154] F. Wiedijk. The Seventeen Provers of the World, volume 3600 of Lecture
Notes in Computer Science. Springer, 2006.

[155] J. W. J. Williams. Algorithm 232 Heapsort. Communications of the ACM,
7(6):347–348, 1964.

[156] J. M. Wing. Weaving formal methods into the undergraduate computer sci-
ence curriculum. In Proc. of the 8th International Conference on Algebraic
Methodology and Software Technology, pages 2–9. Springer-Verlag, 2000.

[157] N. Wirth. Program development by stepwise refinement. Communications
of the ACM, 14(4):221–227, 1971.

[158] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald. Formal methods:
Practice and experience. ACM Computing Surveys, 41(4):1–36, 2009.

163



92. Arho Virkki
93. Olli Luoma

94. Dubravka Ili

95. Kim Solin
96. Tomi Westerlund
97. Kalle Saari
98. Tomi Kärki
99. Markus M. Mäkelä

100. Roope Vehkalahti

101. Anne-Maria Ernvall-Hytönen

102. Chang Li
103. Tapio Pahikkala

104. Denis Shestakov
105. Sampo Pyysalo
106. Anna Sell
107. Dorina Marghescu

108. Tero Säntti

109. Kari Salonen
110. Pontus Boström

111. Camilla J. Hollanti

112. Heidi Himmanen
113. Sébastien Lafond

114. Evgeni Tsivtsivadze
115. Petri Salmela

116. Siamak Taati
117. Vladimir Rogojin

118. Alexey Dudkov
119. Janne Savela

120. Kristian Nybom
121. Johanna Tuominen
122. Teijo Lehtonen
123. Eeva Suvitie

124. Linda Mannila

125. Hanna Suominen

126. Tuomo Saarni
127. Johannes Eriksson

, The Human Respiratory System: Modelling, Analysis and Control

, Efficient Methods for Storing and Querying XML Data with Relational

Databases

, Formal Reasoning about Dependability in Model-Driven

Development

, Abstract Algebra of Program Refinement

, Time Aware Modelling and Analysis of Systems-on-Chip

, On the Frequency and Periodicity of Infinite Words

, Similarity Relations on Words: Relational Codes and Periods

, Essays on Software Product Development: A Strategic

Management Viewpoint

, Class Field Theoretic Methods in the Design of Lattice Signal

Constellations

, On Short Exponential Sums Involving Fourier

Coefficients of Holomorphic Cusp Forms

, Parallelism and Complexity in Gene Assembly

, New Kernel Functions and Learning Methods for Text and Data

Mining

, Search Interfaces on the Web: Querying and Characterizing

, A Dependency Parsing Approach to Biomedical Text Mining

, Mobile Digital Calendars in Knowledge Work

, Evaluating Multidimensional Visualization Techniques in Data

Mining Tasks

, A Co-Processor Approach for Efficient Java Execution in Embedded

Systems

, Setup Optimization in High-Mix Surface Mount PCB Assembly

, Formal Design and Verification of Systems Using Domain-

Specific Languages

, Order-Theoretic Mehtods for Space-Time Coding: Symmetric

and Asymmetric Designs

, On Transmission System Design for Wireless Broadcasting

, Simulation of Embedded Systems for Energy Consumption

Estimation

, Learning Preferences with Kernel-Based Methods

, On Commutation and Conjugacy of Rational Languages and the

Fixed Point Method

, Conservation Laws in Cellular Automata

, Gene Assembly in Stichotrichous Ciliates: Elementary

Operations, Parallelism and Computation

, Chip and Signature Interleaving in DS CDMA Systems

, Role of Selected Spectral Attributes in the Perception of Synthetic

Vowels

, Low-Density Parity-Check Codes for Wireless Datacast Networks

, Formal Power Analysis of Systems-on-Chip

, On Fault Tolerance Methods for Networks-on-Chip

, On Inner Products Involving Holomorphic Cusp Forms and Maass

Forms

, Teaching Mathematics and Programming – New Approaches with

Empirical Evaluation

, Machine Learning and Clinical Text: Supporting Health

Information Flow

, Segmental Durations of Speech

, Tool-Supported Invariant-Based Programming

ć

Turku Centre for Computer Science

TUCS Dissertations





Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www.tucs.fi

Turku

Centre

Computer

Science

for

ISBN 978-952-12-2446-1

ISSN 1239-1883

University of Turku

Department of Information Technology

Department of Mathematics

Åbo Akademi University

Turku School of Economics

Department of Information Technologies

Institute of Information Systems Sciences

�

�

�

�



Jo
h
a
n
n
e
s
 E

rik
s
s
o
n

T
o
o
l-S

u
p
p
o
rte

d
 In

v
a
ria

n
t-B

a
s
e
d
 P

ro
g
ra

m
m

in
g

Jo
h
a
n
n
e
s
 E

rik
s
s
o
n

T
o
o
l-S

u
p
p
o
rte

d
 In

v
a
ria

n
t-B

a
s
e
d
 P

ro
g
ra

m
m

in
g

T
o
o
l-S

u
p
p
o
rte

d
 In

v
a
ria

n
t-B

a
s
e
d
 P

ro
g
ra

m
m

in
g

Jo
h
a
n
n
e
s
 E

rik
s
s
o
n


	Introduction
	Motivation
	Invariant-based programming
	Tool support for IBP
	The Socos environment
	Research methodology
	Contributions of the thesis
	Role of the author
	List of original publications
	Organization of the thesis

	Programming for Correctness
	Foundations of program verification
	Correctness proofs
	The constructive approach
	Invariant-based programming
	Invariant diagrams
	IBP workflow

	Related approaches
	Conclusions

	Tool-Supported Program Verification
	Verification workflow 
	Specification languages
	Semantics and embedding
	Theorem proving
	Verification techniques and tools
	Design by contract
	Extended static checking
	Program verifiers
	Theorem provers
	SMT solvers

	Summary

	PVS and Yices
	Introduction
	The PVS specification language
	Structure of specifications
	Type system
	Variable and constant declarations
	Formula declarations

	Theorem proving in PVS
	Commands
	Example proof
	Strategy language
	Proof scripts

	Yices
	Summary

	The Socos Language
	Introduction
	Basic language structure
	Lexical conventions
	Expressions and type expressions
	Constant and program variable declarations

	Program constructs
	Contexts
	Procedures
	Situations
	Transition trees
	Statements

	Summary and discussion

	Verification Methodology
	Introduction
	Notation
	Consistency
	Liveness
	Termination
	Procedures
	Procedure body verification
	Procedure call verification
	Recursive procedures

	Summary and discussion
	Related work
	Final remarks


	Verifying Socos Programs in PVS
	Introduction
	Translation into PVS theories
	Verification conditions
	Type correctness
	Background theories
	Summary and discussion
	Related work
	Future work


	An Exercise in Tool-Supported IBP
	Introduction
	Specification
	Situation structure
	Loop initialization and exit transitions
	The siftdown procedure
	Completing heapsort 
	Summary and discussion

	Case study: Socos in Teaching
	Introduction
	Tools in formal methods education
	Undergraduate course in IBP
	Syllabus
	Use of Socos

	The study
	Methodology
	Problem sessions
	Classroom observation
	Questionnaire result

	Discussion
	Related work
	Conclusions

	The Socos Project
	Introduction
	Socos1
	Socos2
	Summary

	Conclusions and Future Work
	Summary
	Conclusions
	Future work

	Listings
	Symbols
	Translation of Socos programs into PVS theories
	Background theories
	The heapsort context

	Bibliography



