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Abstract 

 

This thesis presents a comprehensive exploration of implementing common guitar 

effects in real time, using signal processing techniques with Python and some of its 

libraries. One key focus of the thesis is latency reduction using Cython. 

The thesis begins with an overview of digital signal processing (DSP) fundamentals 

and common effects for the electric guitar, such as distortion, delay and reverberation. 

Some effects’ algorithmic implementation is also discussed, highlighting the main 

components and parameters required for real-time processing. 

Subsequently, the thesis introduces Python as a powerful tool for prototyping and 

implementing DSP algorithms. Utilising libraries such as NumPy, Sounddevice and 

Librosa, the feasibility of real-time guitar effects processing within the Python 

environment is demonstrated. Moreover, the flexibility of Python, facilitating rapid 

experimentation and algorithm refinement crucial for achieving desired sound 

characteristics, is also highlighted. 

To address the challenge of latency inherent in software-based signal processing, the 

benefits of Cython, a superset of Python designed to optimise code performance, are 

explored. Through Cython's capability of compiling Python code to native machine 

code, significant latency reductions are achieved without compromising computational 

efficiency. 

Experimental results demonstrate the effectiveness of the proposed approach in 

achieving low-latency digital guitar effects processing in real time. Comparative 

latency measurements reveal improvements over traditional Python implementations, 

highlighting the potential adequacy as well as importance of Cython optimisation for 

latency-sensitive applications. 
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1. Introduction 

 

Throughout the history of music, there has been a constant drive for innovation among 

musicians to explore new sounds and techniques when it comes to playing, recording 

and mixing. Guitar effects have played a crucial role in obtaining new sounds and have 

opened endless possibilities for guitarists wanting to explore their musical abilities. 

With the help of computers and digital signal processing solutions in recent years, an 

even broader spectrum of options for audio experimentation is now available. 

Digital signal processing solutions have brought consistency and reliability for 

musicians, allowing effects to be replicated, tweaked and combined in ways not 

possible using their analogue counterparts [1]. Worth noting is also the availability of 

highly powerful processors in today’s world, allowing more advanced effects to be 

discovered through experimentation, that has not been possible to implement in real 

time previously.  

An important aspect of audio processing to take into consideration is latency and 

minimising its presence as well as impact. In compliance with the precedence effect, 

also known as the Haas effect, identical sounds separated by less than 50 ms cannot be 

distinguished between by the human ear and are instead perceived as a single source 

[2]. For a live musical performance, keeping latency below this threshold is key for 

optimal sound and feedback. 

This master’s thesis explores the world of signal processing relevant to audio 

processing and manipulation by highlighting key concepts, techniques and solutions 

available, as well as briefly discussing latency reduction on a theoretical level. The 

thesis is divided into two theory parts and one experimental part: digital sound 

processing theory, latency reduction theory and experimentation with audio signals in 

Python.   

The main goal of this thesis is to introduce the signal processing side of Python for 

implementing real-time guitar effects by presenting hands-on solutions. The thesis also 

aims to highlight the versatility of digital solutions by implementing an effect not viable 

to implement using traditional, analogue methods. The focus of the thesis is on giving 

basic implementations of common guitar effects alongside reducing signal processing 

latency using Cython. 
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1.1 Guitar Effects – A Brief History 

 

Audio effects for the electric guitar have been an essential part of not just the instrument 

but the music industry as a whole throughout history. Effects for the electric guitar were 

originally discovered shortly after the invention of the electric guitar amplifier back in 

the 1930s, when guitarists noticed that turning up the amplifier would result in an 

extorted “overdrive” sound [3]. During the 40s and 50s, effects such as reverb, echo 

and tremolo became standard effects built into guitar amplifiers with the help of 

transistor technology. In the 60s and the 70s, the guitar effect market took off with 

numerous new effects such as chorus, flanger and ring modulation entering the market 

[3]. At this time, standalone guitar effects built into pedals that could be operated 

separately from the amplifier while standing or sitting became popular [2]. During the 

80s and the 90s, digitalised solutions enabled manufacturers to start creating all-in-one 

effect pedals and devices that set the foundation for modern guitar effect systems. In 

the early 2000s, these pedals increased heavily in popularity and became a common 

choice among many guitarists [3].  

In modern times, guitar effects remain an essential part of every guitar player’s toolbox 

and are becoming more and more both versatile and affordable. From 2005 to 2021, 

the sales of guitar effect pedals sold in the United States saw a steady increase from 

around 1.1 million units sold in 2005 to around 1.5 million units sold in 2021 [4]. 

Today, digital solutions for amplifiers exist with built-in effects such as the Vox Air GT 

that supports simulating the sound of different amplifier brands and models as well as 

a wide range of effect pedals [5]. 
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2. Digital Signal Processing 

 

The concept of digital signal processing (DSP) has been key for the development of 

new technologies across many fields since digital computers became available in the 

1960’s, with some of the original applications being radar systems, space exploration 

and medical equipment to name a few [1]. Today’s digital world relies more than ever 

before on DSP, with modern applications such as telecommunication, image processing 

as well as audio processing, the main topic of this thesis. 

Section 2.1 discusses DSP applied to audio signals on a theoretical basis, highlighting 

key concepts and techniques used. The topics of Sections 2.2 and 2.3 respectively, are 

A/D (analogue to digital) & D/A (digital to analogue) conversion as well as the Fourier 

transform. Sections 2.4 and 2.5 respectively discuss filtering as well as digital audio 

formats. Audio quality and data rate are the topics of Section 2.6. 

 

2.1 Digital Audio Processing as a Concept 

 

As defined in [6, p. 1], digital audio processing refers to “the digital representation of 

signals and the use of digital hardware to analyse, modify or extract information from 

these signals.” As also mentioned in [6], the key benefits of digital signal processing 

solutions are: 

1. Flexibility: digitally modified signals can easily be modified while analogue 

signals often require hardware changes. 

2. Reproducibility: digital signals can be identically reproduced from one system 

to another while analogue signals rely on hardware that may vary in 

performance. 

3. Reliability: digital solutions do not change over time as electrical components 

of analogue systems may do. 

4. Complexity: processing-heavy applications such as machine learning-based 

solutions in modern times would not be feasible on analogue systems. 

Within the field of music, DSP plays an important role during the whole process from 

the recording session to the final mix, with features such as filtering, equalisation and 

compression being key. Today’s musical world also relies more heavily on modern 
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technology than ever before, with machine learning-based solutions finding their way 

into audio processing and mixing. A recent example of this, at the time of writing this 

thesis, is separating different instruments and voice recordings from a single track into 

separate tracks (e.g. the song “Now And Then” by The Beatles, November 2023). 

 

2.2 A/D – D/A Conversion 

 

Converting an analogue signal to a digital signal and vice versa is what makes digital 

audio processing possible in the first place. Audio signals as they exist in nature are 

analogue, continuous signals and need to be converted into digital, discrete signals in 

order to be processed digitally (A/D) [1]. Vice versa, obtaining the processed signal for 

listening requires the digital signal to be converted to analogue (D/A).  

A continuous or continuous-time signal is a signal with a parameter that can obtain 

values over a continuous range (e.g. voltage) related to time and can be expressed as a 

function 𝑥(𝑡) [1] [7]. This continuous signal can be converted into a sequence of 

numbers known as a discrete, or discrete-time, signal expressed as 𝑥(𝑛) by sampling 

and the same process can be performed in reverse [7]. This is the idea of A/D & D/A 

converters in their simplest forms. An illustration of a typical, generalised DSP system 

can be found in Figure 2.1 below. 

 

 

 Figure 2.1: Block diagram of a general DSP system.  

 

Furthermore, low-pass filters are often applied to the input signal as well as to the 

output signal according to Figure 2.2 below. This is done in order to eliminate high 

frequencies outside the spectrum of interest that could result in aliasing, the 

overlapping of frequency components in the sampled signal [8]. Filters are discussed 

in more detail in Section 2.4. 
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Figure 2.2: Block diagram of a general DSP system with filters .  

 

The sampling of a continuous signal with the highest frequency component 𝑓𝑚𝑎𝑥 can 

be done according to the Nyquist-Shannon Sampling Theorem, which states that the 

minimum sampling rate 𝑓𝑠 should be at least double the size of 𝑓𝑚𝑎𝑥  , or  𝑓𝑠 > 2𝑓𝑚𝑎𝑥, 

while still keeping the signal’s information content intact [7] [8]. 𝑓𝑚𝑎𝑥 is known as the 

Nyquist frequency at which point aliasing occurs if the signal is sampled with a 

sampling rate less than 2𝑓𝑚𝑎𝑥 [8]. 

The amplitude of the signal during the sampling period 𝑇𝑆 = 1/𝑓𝑠 needs to be 

quantised, meaning converted into a number sequence 𝑥(𝑛) by a quantiser (see Section 

2.2.1). This number sequence is used during the digital signal processing of the signal. 

Figure 2.3 by [7] below shows a schematic diagram of the analogue-to-digital, as well 

as back-to-analogue, conversion process. 

 

 

Figure 2.3: Schematic diagram of the A/D – D/A process [7].  
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Digital-to-analogue conversion is required post-processing if the goal is to reproduce 

the signal sonically, for example, by driving a speaker. Below is an example of a D/A 

converter producing the analogue output signal by mapping the digital code to the 

corresponding analogue value [8]. This produces a staircase-like shape of the signal, as 

illustrated below in Figure 2.4 by [8], since the value is held during the time 𝑇 for each 

converted value. This effect, known as imaging, can be reduced with a low-pass filter 

functioning as an anti-imaging filter to smooth out the steps [8]. 

 

 

Figure 2.4: Digital-to-analogue conversion process [8].  

 

This type of D/A converter is known as zero-order hold, meaning that the converter 

holds each value during the duration of a time sample until the next sample is received 

[8]. To overcome this drawback of zero-order hold D/A converters, a digital processor 

can be used to interpolate the signal between the different samples. 

 

2.2.1 Quantisation 

 

The idea behind quantisation is approximating the analogue signal’s amplitude using 

the discrete samples in order to digitise the signal [9]. A continuous signal with an 

amplitude consisting of values ranging from −∞ to +∞ can be modelled discretely by 

approximating the amplitude from a finite set of real numbers at each sample of the 
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signal, with a maximum error of ±½ LSB (Least Significant Bit) [1] [8] [9]. A 

quantiser’s precision is measured in bits that are used for representing the output signal 

in binary words according to 𝑁 = 2𝑛, where 𝑁 is the number of output points and 𝑛 is 

the bit precision [1] [9]. For example, a 12-bit quantiser has 212 = 4096 possible 

output values. 

Quantisation of a signal 𝑥 in practice is equivalent to the addition of a uniform 

distributed random noise signal 𝑒 (error) and the unquantised input signal 𝑥 [1] [7]. As 

a result, this model of quantisation is only applicable if the error can be treated as 

random, meaning the signal does not remain the same over numerous consecutive 

samples. This is illustrated in Figure 2.5 by [1] below, where (a) represents the original 

analogue signal, (b) represents the sampled analogue signal, (c) represents the digitised 

signal and (d) represents the quantisation error. The output of the A/D converter in this 

example is the signal represented by (c), where noise (d) has been added to the sampled 

signal (b). For slowly varying signals, dithering can be utilised (see Section 2.2.2) [1]. 

 

 

Figure 2.5: Example of the digitisation process [1].  
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2.2.2 Dithering 

 

Digitising a signal using the quantisation error is not feasible if the signal is of slowly 

varying nature, meaning that it remains around the same value across many samples 

[1]. To overcome this, a technique known as dithering can be used to introduce random 

noise to the signal. As illustrated in Figure 2.6a by [1] below, the digitised signal values 

do not follow the analogue signal due to the original signal varying less than ±½ LSB. 

By introducing noise to the signal, as shown in Figure 2.6b by [1], the changes in the 

original signal become more apparent in the digitised signal, as shown in Figure 2.6c 

by [1]. The noise introduced in this case is normally distributed and has a standard 

deviation of ⅔ LSB, which results in a peak-to-peak amplitude of 3 LSB [1]. 

 

 

Figure 2.6: Illustration of signal dithering [1].  
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2.3 The Fourier Transform 

 

One key aspect of signal processing is analysing the frequency spectrum of signals for 

the purpose of, for example, extracting frequencies of interest, analysing the behaviour 

of the signal or making sure that the signal behaves as expected. For continuous, 

periodic waveforms (Figure 2.7), the Fourier series has traditionally been used to 

model the signals mathematically. However, most waveforms found in nature are non-

periodic (Figure 2.8), meaning that the Fourier series in its basic form is not applicable 

for signal analysis. As a result, one of the most fundamental and most widely used 

concepts of signal processing was formed, the Fourier transform – a modified version 

of the Fourier series [8] [10].  

 

 

Figure 2.7: Example of a periodic waveform [11].  

 

 

 

Figure 2.8: Example of a non-periodic waveform [11].  
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Simply put, the Fourier transform is a function for extracting the frequencies present 

in a signal by analysing the amplitude and phase components of each sinusoid [12]. It 

can be used to convert a function of time ℎ(𝑡) to a function of frequency 𝐻(𝑓) and is 

described mathematically in Equation 2.3.1 [8] [10]. 

 

𝑯(𝒇) = ∫ 𝒉(𝒕)𝒆−𝟐𝝅𝒋𝒇𝒕
∞

−∞

𝒅𝒕 = 𝑯(𝒋𝝎) = ∫ 𝒉(𝒕)𝒆−𝒋𝝎𝒕
∞

−∞

𝒅𝒕 

 

 

                     (2.3.1) 

 

Similarly, its inverse (IFT) can be used to convert a function of frequency 𝐻(𝑓) back 

to time-space ℎ(𝑡), as described mathematically in Equation 2.3.2 [8] [10]. 

 

𝒉(𝒕) = ∫ 𝑯(𝒇)𝒆𝟐𝝅𝒋𝒇𝒕
∞

−∞

𝒅𝒇 = 𝒉(𝒕) = ∫ 𝑯(𝒋𝝎)𝒆𝒋𝝎𝒕
∞

−∞

𝒅𝒇 

 

 

                     (2.3.2) 

 

Due to the nature of analogue signals containing infinitely many data points, applying 

the Fourier transform directly on analogue signals is highly impractical [8]. For this 

reason, the Discrete Fourier Transform (DFT) was developed for use on discrete data 

instead of the standard Fourier transform that can only be used on continuous data. As 

a result, the signal to be examined must first be sampled into discrete data points, as 

previously discussed in Section 2.2 [8]. A commonly used algorithm for calculating the 

DFT is the Fast Fourier Transform (FFT). The DFT formula is described 

mathematically in Equation 2.3.3. 

 

𝑭[𝒏] = ∑ 𝒇[𝒌]𝒆−𝒋
𝟐𝝅
𝑵

𝒏𝒌

𝑵−𝟏

𝒌=𝟎

 (𝒏 = 𝟎, 𝟏, … , 𝑵 − 𝟏) 

    

             

(2.3.3) 

 

𝐹[𝑛] is the DFT of the sequence 𝑓[𝑘] and 𝑛 represents the harmonic number of the 

transform component [8]. Similarly as for the standard Fourier transform, the inverse 

DFT can be expressed mathematically, as shown in Equation 2.3.4. 

 

𝒇[𝒌] =
𝟏

𝑵
∑ 𝑭[𝒏]𝒆𝒋

𝟐𝝅
𝑵

𝒏𝒌

𝑵−𝟏

𝒏=𝟎

 

 

 

                     (2.3.4) 
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2.4 Filters 

 

Filtering is an essential part of both analogue and digital signal processing. Analogue 

filters work by running the signal through individual, electrical components that 

interact with the signal in the desired way while digital filters work by manipulating 

the signal digitally, for example, by using mathematical algorithms on signal data 

stored in computer memory [8] [13]. Signal filtering can be useful during the whole 

signal processing phase, as previously shown in Figure 2.2, and can, for example, be 

used for (1) filtering of the raw, analogue signal, (2) filtering of the digitally replicated 

signal and (3) filtering of the reconstructed, analogue signal. 

Analogue and digital filters each have advantages and disadvantages over the other, 

depending on various factors. The main advantages of digital filters, as presented in 

[8], are: 

1. Can implement certain features that are practically impossible using analogue 

filters due to inconsistencies in electrical components. 

2. Performance is independent of external factors such as temperature, which 

eliminates the need for periodic calibration. 

3. Filter variables such as frequency response can be adjusted programmatically. 

4. Data can be stored in memory for future use, both filtered and original. 

5. Filter performance is reproducible, as it does not depend on electrical 

components which may have slight inconsistencies. 

Analogue filters may, however, be preferred in certain situations, with the main 

advantage over digital filters presented in [8] being speed. Digital filters depend on the 

speed of the underlying processor while analogue filters do not. Hence, this factor has 

to be considered, especially for real-time signal processing. 

Filters are generally classified based on their frequency selectivity, meaning the 

frequencies they let through. Depending on the frequency selectivity, filters can have 

(1) low-pass, (2) high-pass, (3) band-pass or (4) band-stop response, as described in 

[13] as:  

(1) Only passes through low frequencies and high frequencies are significantly 

reduced. 

(2) Only passes through high frequencies and low frequencies are significantly 

reduced. 
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(3) Only passes through frequencies in the middle band of the frequency range, 

while frequencies outside the band are significantly reduced. 

(4) Only passes through frequencies outside the middle band of the frequency 

range, while frequencies inside the band are significantly reduced. 

Frequency selective filters are an essential tool within the music industry and are 

commonly used in equalisers (EQs) for elevating or cutting specific frequency bands 

in the audio signal [2]. For this reason, digital solutions have become widely available 

and are a standard in most Digital Audio Workstations (DAWs) today [2]. For guitarists, 

EQ pedals are available that allow the player to directly tune the frequency bands 

present in the signal coming from the guitar. These are essential as they allow the player 

to mix the frequency in real time according to the environment. 

The above-mentioned filter types are described more in detail and visualised in 

Sections 2.4.1 – 2.4.4. Section 2.4.5 gives an introduction to the two main digital filter 

types, namely finite impulse response filters (FIR) and infinite impulse response filters 

(IIR). 

 

2.4.1 Low-Pass Filters 

 

The frequency plane can typically be divided into three areas: the passband, the 

stopband and the transition area. The passband defines the frequency range included 

in the filtered signal, the stopband defines the frequency range excluded from the 

filtered signal and the transition area is the frequency range between these [13]. The 

low-pass filter, as previously mentioned, filters out frequencies above the defined 

passband edge frequency 𝑓𝑝𝑎𝑠𝑠, with the stopband ranging from 𝑓𝑠𝑡𝑜𝑝 to infinity. The 

preferred signal gain in the passband should be between 0 dB and 𝑎𝑝𝑎𝑠𝑠 while the gain 

in the stopband should be between −∞ and 𝑎𝑠𝑡𝑜𝑝 [13]. Low-pass filters are typically 

used when it is of interest to eliminate frequencies of a signal above a certain threshold. 

During A/D & D/A conversion, low-pass filters are commonly used both before the 

sampling process to keep the signal frequency below the Nyquist frequency and after 

the D/A conversion to eliminate imaging, as previously discussed in Section 2.2. Figure 

2.9 by [13] below illustrates an example of a low-pass filter specification. 
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Figure 2.9: Example of a low-pass filter specification [13].  

 

2.4.2 High-Pass Filters 

 

Similarly to the principle of low-pass filters, high-pass filters allow frequencies in the 

range of 𝑓𝑝𝑎𝑠𝑠 to infinity to pass, while filtering out frequencies in the range 0 to 𝑓𝑠𝑡𝑜𝑝 

and keeping the signal gain below 𝑎𝑝𝑎𝑠𝑠 in the passband and 𝑎𝑠𝑡𝑜𝑝 in the stopband. As 

previously mentioned, high-pass filters are used to eliminate frequencies of a signal 

below a certain threshold, for example, unwanted low-frequency noise such as engine 

rumble. An example of a high-pass filter specification is illustrated in Figure 2.10 by 

[13] below. 

 

Figure 2.10: Example of a high-pass filter specification [13].  
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2.4.3 Band-Pass Filters 

 

As previously mentioned, band-pass filters filter out frequencies outside the defined 

band, with a frequency range of 𝑓𝑝𝑎𝑠𝑠1 to 𝑓𝑝𝑎𝑠𝑠2. The band-pass filter has two 

stopbands, namely 0 to 𝑓𝑠𝑡𝑜𝑝1 and 𝑓𝑠𝑡𝑜𝑝2 to infinity [13]. Similarly to the other filters, 

the band-pass filter also implements the defined gain parameters 𝑎𝑝𝑎𝑠𝑠 and 𝑎𝑠𝑡𝑜𝑝 for 

determining signal attenuation. For certain applications, it can be useful to define 

separate stop-band gain parameters 𝑎𝑠𝑡𝑜𝑝1 and 𝑎𝑠𝑡𝑜𝑝2, in order to have different 

attenuation depending on stopband [13]. Stopbands are used to keep the frequencies of 

a signal between 𝑓𝑝𝑎𝑠𝑠1 and 𝑓𝑝𝑎𝑠𝑠2 and an example of this is voice recordings, as the 

human voice typically ranges from 300 Hz to 3000 Hz [13]. An example of a band-

pass filter specification is illustrated in Figure 2.11 by [13] below. 

 

 

Figure 2.11: Example of a band-pass filter specification [13].  

 

2.4.4 Band-Stop Filters 

 

Finally, band-stop filters are used to filter out frequencies in the defined band between 

𝑓𝑝𝑎𝑠𝑠1 and 𝑓𝑝𝑎𝑠𝑠2. The frequencies allowed to pass are 0 to 𝑓𝑝𝑎𝑠𝑠1 as well as 𝑓𝑝𝑎𝑠𝑠2 to 

infinity. Opposite to the band-pass filter, the band-stop filter has a single defined gain 

parameter 𝑎𝑠𝑡𝑜𝑝 for the stopband while the passband may have individual gain 

parameters 𝑎𝑝𝑎𝑠𝑠1 and 𝑎𝑝𝑎𝑠𝑠2 if necessary [13]. Band-stop filters are typically used to 
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filter out undesired signal noise at a certain frequency (notch filters). Figure 2.12 by 

[13] below illustrates an example of a band-stop filter specification. 

 

 

Figure 2.12: Example of a band-stop filter specification [13].  

 

2.4.5 Digital Filters: FIR and IIR 

 

Digital filters are typically categorised based on their impulse response, which in 

simple terms can be described as how the output signal is affected when the filter reacts 

to an input signal impulse. Finite Impulse Response (FIR) filters are digital filters that 

only depend on past and current values of the input signal by calculating the filter 

coefficients directly, based on the preferred frequency response of the filter. As a result, 

the filter is said to be of non-recursive nature [13]. The impulse response ℎ(𝑘) of these 

filters is generally finite, hence the name. The impulse response of a FIR filter, as 

presented by [8], is described mathematically in Equation 2.4.1, where 𝑦(𝑛) is the 

output signal. 

 

𝒚(𝒏) = ∑ 𝒉(𝒌) 𝒙(𝒏 − 𝒌)     𝒌 = 𝟎, 𝟏, …

𝑵−𝟏

𝒌=𝟎

 

 

                     (2.4.1) 

 

Another type of digital filter is the Infinite Impulse Response (IIR) filter, meaning that 

the impulse response in theory can be infinite. IIR filters depend on not just previous 
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and current values of the input signal but also previous values of the output signal and 

are, as a result, recursive in nature [13]. Similarly to FIR filters, IIR filters can in theory 

be mathematically modelled according to Equation 2.4.2 below [8]. 

 

𝒚(𝒏) = ∑ 𝒉(𝒌) 𝒙(𝒏 − 𝒌)     𝒌 = 𝟎, 𝟏, …

∞

𝒌=𝟎

 
 

                     (2.4.2) 

 

In practice, however, it is not practical to compute the output using Equation (2.4.2) 

due to its infinite nature. Instead, the output of IIR filters can be computed recursively 

according to Equation 2.4.3 below [8]. Note that the output signal of the filter depends 

on both (previous and current) input and output signals. 

 

𝒚(𝒏) = ∑ 𝒉(𝒌) 𝒙(𝒏 − 𝒌) =

∞

𝒌=𝟎

∑ 𝒂𝒌 𝒙(𝒏 − 𝒌) −

𝑵

𝒌=𝟎

∑ 𝒃𝒌 𝒚(𝒏 − 𝒌)

𝑵

𝒌=𝟎

 

        

(2.4.3) 

 

Parameters 𝑎𝑘 and 𝑏𝑘 denote the filter coefficients, which are the main components for 

filter calculations for IIR filters, whereas ℎ(𝑘) is of interest for FIR filter calculations 

[8]. It should also be noted that when 𝑏𝑘 is set to zero in Equation 2.4.3, the equation 

becomes equivalent to Equation 2.4.1 for FIR filters. 

FIR filters are in some DSP applications preferred over IIR filters due to their main 

advantage of being able to implement exactly linear phase response, due to their finite 

structure [14]. FIR filters are generally also stable in nature if they are realised non-

recursively according to Equation 2.4.1 [8]. IIR filters are, therefore, not guaranteed to 

be stable.  FIR filters do, however, have the disadvantage of being more computation 

heavy, due to having more filter coefficients required for processing [14]. Another 

benefit of IIR filters is that analogue filters can in many cases be directly transformed 

into IIR filters with similar specifications, due to their infinite nature [8]. 

As a conclusion, FIR filters are preferred when the number of filter coefficients are few 

and limiting phase shifting is important [8].  IIR filters, in turn, are typically preferred 

when sharp frequency cut-offs and high throughput is desired [8]. 
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2.5 Digital Audio Formats 

 

The process of converting an analogue signal to a digital signal, as described in Section 

2.2, is known as Pulse Code Modulation (PCM) [15]. PCM allows for representing the 

signal digitally using discrete signal samples according to the sampling rate (see Figure 

2.13 below). As previously discussed, the advantages of digital audio are consistency 

as well as opportunity for easy modification through DSP solutions. 

 

 

Figure 2.13: Principle of Pulse Code Modulation (PCM) visuali sed [15].  

 

Due to digital audio just being numbers representing the original audio signal, it can be 

stored on practically any digital media with storage capabilities. One of the largest 

breakthroughs in digital audio history was the Compact Disc (CD), released in 1982 

[15]. The CD is a digital optical disc which can be read with a laser by detecting change 

in the reflected light coming from the disc. The detected reflections can then be 

converted into binary 1s and 0s in order to reconstruct the audio signal digitally [15].  
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CDs can generally be categorised into three main categories, namely CD-ROM 

(Compact Disc – Read Only Memory), CD-R (Compact Disc – Recordable) and CD-

RW (Compact Disc – Rewritable) [16]. CD-ROMs are discs containing pre-written 

data that cannot be altered. CD-Rs are discs that allow for writing once, while CD-RWs 

are rewritable discs [16]. CDs are written by focusing a laser on the turning disc in 

order to create marks in the physical discs. Depending on the disc type, different 

technologies are used in order to permanently or temporarily create the marks [15]. 

CDs support 44.1 kHz 16-bit PCM audio with no musical degradation compared to the 

original digital recording, since it carries the identical series of numbers as those 

recorded [15]. 

When digital audio grew even more popular with computers becoming mainstream, a 

huge variety of audio file formats evolved due to different performance needs, 

especially in computer games [17]. Over time, system manufacturers developed 

standard audio formats optimised for their own systems, such as: 

• AIFF (Audio Interchange File Format) – Uncompressed audio data format 

developed by Apple for usage in MacOS-based systems. The file format 

contains a header with information about the number of channels, sampling 

rate, bits per sample etc. The related format AIFF-C (AIFC) allows for storing 

compressed data [17]. 

• WAV (Waveform Audio File Format), also known as RIFF WAVE – 

Uncompressed audio data format developed by Microsoft and IBM for usage 

in Windows-based systems. WAV also contains a header with similar 

information about the data as AIFF [17].  

Due to the size of raw, uncompressed audio data (PCM) and limitations in storage 

capacity, compression has been used to shrink the audio data, with the consequence of 

quality reduction. An example of a common compressed audio format is MPEG 

(Moving Picture Experts Group), commonly associated with MP3 files. The MPEG 

audio format uses lossy compression by removing data points with the compression 

type noted in the file header [17].  The MPEG data consists of frames in sequence 

where each frame consists of a 32-bit header with information about the data such as 

sampling frequency, a 16-bit CRC check word for error detection, the layered audio 

data, as well as, an ancillary data field carrying optional data [17]. An example of a 

typical MPEG frame is illustrated in Figure 2.14 by [17] below, where (a) illustrates 

the whole MPEG frame, (b) illustrates the audio data in layer 1 and (c) illustrates the 

audio data in layer 2. 
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Figure 2.14: MPEG frame format [17].  

 

2.6 Audio Quality & Data Rate 

 

The importance of audio quality varies from application to application depending on 

the desired end result. For example, telephone communication requires high enough 

audio quality for the speech to sound natural, while at the same time maintaining low 

data rate. Meanwhile, high audio quality is one of the most important aspects within 

the music industry, which means that avoiding degradation of audio quality is essential 

and must be taken into consideration during audio processing. 

The generally defined hearing range for humans is 20 Hz – 20 kHz, meaning that a 

high sampling frequency, resulting in a high data rate, is required in order to capture 

and reproduce all sounds within the human hearing spectrum at high quality (sampling 

rate of at least 40 kHz according to the Nyquist-Shannon sampling theorem) [1]. As 

previously mentioned, CDs support a sampling rate of 44.1 kHz with 16-bit precision 

per sample, resulting in a data rate of 44.1 kHz × 16 bits × 2 channels (stereo) = 

1 411 200 bits/sec, or 1.411 kbits/sec. This is generally considered more than enough 

for the human hearing to not be able to notice any degradation in audio quality. For 

telecommunication, a sampling frequency of 8 kHz is commonly used, since natural 

sounding speech only requires a bandwidth of around 3.2 kHz [1]. Sample-precision is 

also generally reduced to 12 bits (or even 8 bits using a technique known as 

companding by making the quantisation levels unequal) in telecommunication systems, 
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resulting in minimal noticeable drop in audio quality while keeping the data rate low 

[1]. 

It is possible to reach lower levels of required data rates using compression, resulting 

in low data rates but poorer quality. This is typically used when very low data rates are 

required and a noticeable drop in quality is tolerated, for example, in certain military 

communication systems [1]. One way to achieve this is using Linear Predictive Coding 

(LPC) for estimating audio samples based on previous samples [1] [18]. LPC can be 

mathematically modelled according to Equation 2.6.1 below, where 𝑛 is the model 

order and 𝑦 denotes the predictor coefficients [18]. 

 

𝒙(𝒊) = ∑ 𝒚𝒌𝒙(𝒊 − 𝒌)

𝒏

𝒌=𝟏

 
        

(2.6.1) 

 

Table 2.1 by [1] sums up the relation between the required audio quality and bandwidth, 

sampling rate, number of bits per sample and data rate (bits/sec). 

 

 

Table 2.1: Relation between audio quality, bandwidth, sampling rate,  

number of bits and data rate [1]  
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3. Latency Reduction 

 

As previously mentioned, the threshold for humans being able to distinguish between 

two separate audio sources is around 50 ms (the Haas effect). In practice, this means 

that audio played back in, for example, a stereo setting will be perceived as one source, 

as long as the maximum delay between the two channels is 50 ms [2]. This number, 

however, is derived from experiments conducted on a random sample of the general 

population and could in practice be lower for trained musicians [19]. The Haas effect 

also generally only applies to audio playback, not live performance. When producing 

the audio yourself in a live setting, a delay between hitting the strings on a guitar and 

hearing it played through a speaker introduces the element of cognitive dissonance - 

how the sound is perceived as feedback to physical contact with the instrument. 

In an experiment presented by [19], the subjects, who were professional musicians, 

were presented with eight different latency levels introduced to an audio channel 

coming from a musical instrument played by the subject. The different latency levels 

were then graded by the subject on a scale from “Excellent” to “Horrible” depending 

on the auditory feedback received, where the grades were described in [19, p. 3] as: 

• “Excellent: Artefacts are imperceptible. Delay as well as artefacts cannot be 

identified. 

• Good: Some artefacts are perceptible, but not necessarily delay. The artefacts, 

though perceptible, are not annoying and do not contribute badly to the 

musician’s performance. 

• Fair: Delay and/or artefacts are perceptible. The delay and/or artefacts are 

slightly annoying, but in most cases would not affect the musician’s 

performance. 

• Bad: A considerable amount of delay is perceptible. The delay is annoying and 

is detrimental to the musician’s performance. 

• Horrible: A musician cannot work under these conditions.” 

The experiment was conducted using both floor wedges and In-Ear Monitors (IEMs) 

for playback of six different instruments (vocal, saxophone, drums, keyboard, electric 

bass & electric guitar). The floor wedges were placed 120 – 180 cm away from the 

subject, introducing an initial delay of circa 4.5 – 6.75 ms due to the speed of sound in 

air at room temperature. 
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Looking at the results and focusing on the electric guitar, as it is most relevant to this 

thesis, shows a perceived latency of up to only 4.5 ms using IEMs graded as “Good” 

with 85% confidence (see Figure 3.1 and Table 3.1 below). For floor wedges, a latency 

of up to 6.5 ms (plus additional latency due to placement as mentioned earlier) is 

perceived as “Good” with 85% confidence. For a “Fair” grade, the numbers are 14.5 

ms for IEMs and 16 ms for floor wedges respectively. This is significantly lower than 

the Haas effect threshold of 50 ms. 

 

Figure 3.1: Instrument comparisons at 85% confidence level [19].  

  

 

Table 3.1: Instrument comparison table at 85% confidence level [19]  

 

 

As can be concluded by looking at the results of the experiment presented above, 

latency plays a crucial role in musical perception and playability of instruments. This 

is an important aspect to take into account in the experimental part further down in this 

thesis. 
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3.1 Latency of DSP Systems in General 

 

The general DSP chain consists of a handful of steps that each contributes to the overall 

latency. These main steps are presented and discussed in [20]: 

• Analogue-to-digital conversion 

• Digital-to-analogue conversion 

• Digital sample rate conversion 

• Digital signal processing 

An alternative method for A/D and D/A conversion to PCM in real-time systems is 

delta-sigma modulation (ΔΣ), which is an oversampling technique used where the 

performance of Nyquist-rate converters (e.g. PCM-based) is not sufficient, such as for 

higher resolution and linearity [21]. The typical ΔΣ-based converters have a latency of 

0.25 – 1 ms, depending on the performance of the internal filters [20]. The digital 

sample rate conversion process consists of several up- and down-sampling filters, again 

introducing a latency of 0.5 – 10 ms, depending on filter performance [20]. Finally, 

digital signal processing mainly depends on processing power and clock speed for 

block-based processing, with typical buffer sizes ranging from 64 – 2048 samples [20]. 

This generally introduces a latency of 5 – 10 ms, depending on DSP performance [20].  

For computer-based signal processing, such as in the experimental part of this thesis, 

hardware performance plays a major role in achieving satisfying results. Apart from 

the central processing unit’s (CPU) clock speed, the overall CPU load may also impact 

the DSP performance negatively [20]. One way of overcoming this challenge is using 

multi-threaded solutions. The usage of proper soundcards is another way of upping 

processing performance, by introducing audio application programming interfaces 

(APIs) that may eliminate factors affecting system latency [20]. 

Apart from hardware-related factors, the operating system (OS) scheduling on kernel-

level can also heavily affect latency, which is something that must be accounted for. 

According to [20], buffering incoming audio samples prior to audio processing is a 

method of reducing the computational load. Our implementation will rely on a similar 

block-based sample processing, using trial and error to determine the minimum buffer 

size the system can handle without affecting audio quality. The technical details of the 

audio processing solution for digital guitar effects in real time presented in this thesis 

will be discussed in more detail in Chapter 5.  
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Another major factor related to software is the choice of DSP algorithm. According to 

[20], the three main latency sources related to the DSP algorithm are: 

1. Block-based processing – Audio processing using FFT blocks may introduce 

noticeable latency to the system. This can generally be solved by adaption of 

the Short-Time Fourier Transform (STFT) by separating time segments into 

smaller segments of equal length. Audio effects, such as convolutional 

reverberation based on impulse responses of FIR filters, are not feasible using 

only the FFT, due to latency. A solution for efficient convolution without 

input/output delay has been proposed by [22]. 

2. Phase delay – The signal latency of a linear response FIR filter is directly 

proportional to the number of filter coefficients 𝑁 in accordance with the 

expression 𝑑 = (𝑁 − 1) / 2, where 𝑑 is the signal latency. Latency introduced 

by digital filters is discussed in more detail below. 

3. Architecture delay – Algorithm implementation architecture is a contributing 

factor to overall DSP latency. A common approach in real-time processing is 

delaying the audio stream by the same amount as the look-ahead buffer. 

Simplified block diagrams of block-based processing systems based on FFT and STFT, 

such as the ones mentioned above, are represented in Figures 3.2 and 3.3 below 

respectively.  

 

Figure 3.2: Block diagram of block -based audio processing (no time segmentation) .  

 

 

Figure 3.2: Block diagram of block -based audio processing (time segmentation) .  
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Filter performance plays a significant role for reducing latency in the overall DSP 

system. Professional-grade A/D and D/A converters today are typically based on the 

multi-bit ΔΣ architecture, which is commonly implemented using linear phase FIR 

filters [20]. As mentioned above, the general signal latency 𝑑 of a linear phase FIR 

filter can be defined as 𝑑 = (𝑁 − 1) / 2. This is due to the fact that 𝑑 is closely linked 

to the system group delay 𝐷(𝜔) (Equation 3.1.2), which can be derived from the phase 

delay 𝑃(𝜔) (Equation 3.1.1) of the linear time invariant system, where 𝛳(𝜔) denotes 

the phase response of the filter [23]. 

 

𝑷(𝛚) = −
𝜭(𝛚)

𝛚
 

                                         

(3.1.1) 

𝑫(𝛚) = −
𝒅

𝐝𝛚
𝜭(𝛚) 

                                         

(3.1.2) 

 

The group delay becomes constant when the phase response is a linear function of the 

frequency 𝜔. This delay is the main cause of latency in the ΔΣ-based A/D and D/A 

conversion process [20]. 

For non-recursive (FIR), linear phase digital filters with order 𝑁, the transfer function 

𝐻(𝑧) can be written as in Equation 3.1.3, and in its difference equation form as in 

Equation 3.1.4 according to [20]. 

 

𝑯(𝒛) = ∏(𝒛 − 𝒛𝒊) = 𝒛𝑵 + 𝒉𝟏𝒛𝑵−𝟏 + 𝒉𝟐𝒛𝑵−𝟐+. . . +𝒉𝑵

𝑵

𝒊=𝟏

 

                                         

(3.1.3) 

 
𝒚(𝒏) = 𝒃𝟎𝒙(𝒏) + 𝒃𝟏𝒙(𝒏 − 𝟏) + 𝒃𝟐𝒙(𝒏 − 𝟐)+. . . +𝒃𝑵𝒙(𝒏 − 𝑵) 

                                         

(3.1.4) 

 

In Equation 3.1.4, 𝑦(𝑛) denotes the output signal and 𝑥(𝑛) the input samples. The filter 

coefficients 𝑏𝑛 also function as the impulse response of the FIR filter (compare with 

Equation 2.4.1) [20]. Figure 3.3 by [20] below illustrates the filter components 

(impulse response) for a generic FIR filter. 



 

26 

 

 

Figure 3.3: Filter coefficients  (impulse response)  for a generic FIR filter [20].  

 

As can be seen from Equation 3.1.2, the group delay is a function of the phase response 

𝛳(ω), which is defined as the phase (angle) of the frequency response and described 

mathematically in Equation 3.1.5 [20]. 

 

𝜭(𝛚) = ∠(𝑯(𝒆𝒋𝛚)) (3.1.5) 

The filter’s magnitude response is defined as the absolute value of the transfer function 

as well as the function of ω, as described in Equation 3.1.6 below [20]. 

 

𝑮(𝛚) = |𝑯(𝒆𝒋𝛚)| = |∏ 𝒛 − 𝒛𝒊

𝑵

𝒊=𝟏

| 

   

 

(3.1.6) 

 

Filters used in professional-grade audio conversion are typically very high in order, 

which results in a common practice of implementing multi-staging to reduce order and, 

thereby, required computational power. This is done by separating the filtering across 

different stages of sampling frequencies [24]. This process, however, does not reduce 

overall filter group delay [20]. 



 

27 

 

3.2 Real-Time Audio Processing in Python 

 

The Python programming language has in recent years grown to a popular choice 

among programmers, partly due to its short prototyping time and readability of code 

[25]. For real-time applications, however, compiled languages, such as C and C++, 

have for a long time been preferred due to efficiency [26]. Historically, the challenges 

with implementing real-time solutions in Python stem from slow language 

interpretation during execution time, which is common among interpreted languages 

in general [25] [26]. Due to an active community of developers, however, today 

numerous Python-based solutions exist for real-time audio processing, such as the 

audio libraries PyAudio [27] and Sounddevice [28], which provide easily accessible 

Python support for the multi-platform library PortAudio [29] for audio Input/Output 

(I/O) [25]. PyAudio is presented in more detail in Section 3.2.1 to give an introduction 

to audio processing in Python. Sounddevice will, however, be used in the experimental 

part of this thesis, as discussed in Section 5.2.  

A solution for improving execution efficiency in Python is the Cython programming 

language, a compiled language based on Python for running Python code at the speed 

of C [25] [30]. Cython allows, for example, implementing low-level numerical loops 

running at C speeds, which is infeasible using traditional Python [30]. The Cython 

language will be utilised for improving DSP efficiency in the experimental part of this 

thesis and is discussed in more detail in Section 3.2.2. 

 

3.2.1 PyAudio 

 

PyAudio, as previously mentioned, is an audio library for Python providing bindings 

for the PortAudio library. PyAudio handles audio I/O streams in real time and allows 

for grouping audio samples at low level into chunks (buffers) for processing [25]. 

Buffer size is selected based on system capacity and performance requirements, and 

optimal values can be determined using trial and error, typically ranging from 64 to 

2048 samples [26]. PyAudio supports both blocking and non-blocking read and write 

operations for multi-threaded solutions using asynchronous callbacks [26]. An example 

of an asynchronous callback for processing an audio buffer of a sample file at a given 

sampling rate is presented in Listing 3.1 by [26] below. 
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Listing 3.1: Asynchronous callback for audio buffer processing [26].  

 

In the example given by [26] in Listing 3.1, the relevant variables are frame_count, 

data, samples, y and out, where frame_count represents the buffer size, data 

represents the available samples read from the file (wavefile.readframes()), samples 

represents the samples read, converted from the raw PCM format to float values 

(pcm2float()), y contains the processed data (process()), and out stores the final, 

processed data converted back to raw PCM data (float2pcm()). 

The example presented in Listing 3.1 processes samples from a pre-recorded audio file, 

thus, does not represent real-time processing. For live audio processing, a stream can 

be opened using PyAudio, according to Listing 3.2 below, instead of using a file 

(wavefile in Listing 3.1). 

 

 

 

 

 

Listing 3.2: Example of PyAudio live data stream.  

 

The example for opening a live data stream with PyAudio given in Listing 3.2 contains 

parameters format, channels, rate, input, frames_per_buffer and 

input_device_index, where format is the audio data format, channels is the number 

of audio channels (1 = mono, 2 = stereo), rate is the sampling rate, input represents 

stream type (input stream true/false),  frames_per_buffer represents buffer size and 

input_device_index is the index of input audio device to use. 

The audio processing in the experimental part of this thesis will be based on the above-

mentioned fundamentals using the audio library Sounddevice. 

def callback(i_d, frame_count, t_info, f): 

 data = wavefile.readframes(frame_count) 

 samples = pcm2float(data) 

 y = process(data) 

 out = float2pcm(y) 

  

 return (out, pyaudio.paContinue) 

stream = pyAudio.open( 

            format = pyaudio.paInt16, 

            channels = 2, 

            rate = 44100, 

            input = True, 

            frames_per_buffer = 1024, 

            input_device_index = 0 

            ) 
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3.2.2 Cython 

 

For efficiency-critical, real-time applications one of the largest challenges when using 

Python is execution speed. This is due to it being an interpreted language, meaning that 

the application bytecode is interpreted at runtime by the Python virtual machine (VM) 

and converted into machine code [26] [31]. Compiled languages such as C do not 

require a VM or interpreter since the C code is already converted into machine code at 

the compilation stage [31].  

The Cython programming language is an extension of the Python language, with the 

purpose of integrating the speed of C in Python code [30] [32]. Cython works as a 

bridge between the two, where Cython code can be compiled into machine code and 

utilised by Python as an extension module, a pre-compiled module that can be run by 

the Python VM without interpretation needed [31]. This provides a solution for mostly 

keeping the high-level nature and flexibility of Python, while utilising the performance 

benefits of C [31]. Python code is for the most part already valid Cython code with 

very few exceptions, which allows for optimising already existing Python code using 

Cython at a later stage [32]. 

An example presented by [31] illustrates the similarities and differences between 

Python (Listing 3.3), C (Listing 3.4) and Cython (Listing 3.5) code, as well as the 

execution times (Table 3.2), for the different implementations of the function fib(n) 

for computing the n:th Fibonacci number. 

 

 

  

 

Listing 3.3: Python implementation of fib(n) [31].  

 

 

 

 

 

Listing 3.4: C implementation of fib(n) [31].  

def fib(n): 

    a, b = 0.0, 1.0 

    for i in range(n): 

        a, b = a + b, a 

    return a 

double fib(int n) { 

    int i; 

    double a = 0.0, b = 1.0, tmp; 

    for (i = 0; i < n; ++i) { 

        tmp = a; a = a + b; b = tmp; 

    } 

    return a; 

} 
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Listing 3.5: Cython implementation of fib(n) [31].  

 

As can be seen from Listings 3.3 and 3.5, the original Python implementation of fib(n) 

has been modified to implement declaration of the static C variables i, a and b (Listing 

3.4). The execution times for the different implementations are summarised in Table 

3.2 by [31] below. 

 

 

Table 3.2: Execution time (ns) for the different implementations of fib(n) [31]  

 

 

 

 

The “fib(0)” column measures the call overhead of the function, meaning how long 

purely the function call takes [31]. The “Pure Python” and “Pure C” rows contain 

results for running the function in Python and C respectively. The “C extension” row 

contains results for using an extension module for the implementation written in C and 

the “Cython” row contains results for the Cython-based implementation. These require 

conversion of Python objects to C data, computation of the Fibonacci number and 

conversion back to Python data. The Cython-based solution, however, has a call-

overhead of about 2.5 times less than the extension-based implementation, and 

provides a speedup up to a factor of about 50 over the implementation based on pure 

Python for “fib(90)”. 

In the experimental part of this thesis, the fundamental concepts of Cython will be 

utilised to explore the potential performance improvement when using Cython over 

pure Python, for the real-time implementations of guitar effects.  

def fib(int n): 

    cdef int i 

    cdef double a = 0.0, b = 1.0 

    for i in range(n): 

        a, b = a + b, a 

    return a 
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4. Visualisation of Common Guitar Effects 

 

Plucking a guitar string results in a standing wave, sounding at its fundamental 

frequency 𝑓1 as well as harmonic frequencies (overtones) 𝑓𝑛 = 𝑛𝑓1, 𝑛 = 1, 2, 3 … [33]. 

These harmonics are produced at different relative intensities across different guitars, 

distinguishing one instrument from another [33]. The low E string on a guitar plucked 

individually produces the E2 note with a fundamental frequency of 82.4 Hz alongside 

its harmonics E3 (164.8 Hz), B3 (247.2 Hz), E4 (329.6 Hz), G#4 (412 Hz), B4 (494.4 

Hz), D5 (576.8 Hz) etc. [34]. This is visualised in Figures 4.1 – 4.3 below using the 

open-source, digital audio editor Audacity [35], when plucking the low E string (E2) 

of an electric guitar. The recording process chain consists of the Yamaha Pacifica 112J 

electric guitar (Appendix A) played through the Focusrite Scarlett 2i2 (3rd Gen) audio 

interface (Appendix B) and recorded with Audacity. Figure 4.1 below shows the 

waveform of the recorded guitar signal when the low E string is plucked, with a signal 

length of approximately 2.5 s. 

 

 

Figure 4.1: Waveform of the plucked low E string (E2) on the electric guitar.  

 

The spectrum in Figure 4.2 below utilises Audacity’s frequency analysis tool for 

plotting the spectrum. The selected algorithm chosen is “Spectrum” and a buffer size 

of 8192 samples is used, with a window function of type “Hanning”. 
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Figure 4.2: FFT of the plucked low E string .  

 

Analysing the frequency spectrum of the signal shows the frequency magnitudes of the 

signal (Figure 4.2). The fundamental frequency 82.4 Hz is of largest magnitude and the 

harmonic frequencies are clearly visible. Similar results are seen from the spectrogram 

of the signal using Audacity’s spectrogram tool, as seen in Figure 4.3 below, using 

identical settings as in Figure 4.2. 

 

 

Figure 4.3: Spectrogram of the plucked low E string.  
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Audacity’s spectrogram tool will be further utilised for visualising energy across the 

frequency band in Sections 4.1 – 4.5, where guitar effects are analysed for a strummed 

E chord. These sections introduce five popular guitar effects using visualisation of the 

signal waveform as well as signal spectrogram for the five common guitar effects: 

 

• Overdrive (distortion) 

• Reverberation 

• Delay 

• Phaser 

• Wah-wah 

 

Figure 4.4 below illustrates the approximately three-second-long signal waveform of 

an open E chord with clean sound (raw guitar input) and Figure 4.5 illustrates the 

spectrogram of the same signal. This is the reference audio used in Sections 4.1 – 4.5, 

for signal processing using Audacity’s built-in effects. 

 

 

Figure 4.4: Guitar signal (clean) .  

 

 

Figure 4.5: Spectrogram of guitar signal (clean).  
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4.1 Overdrive (Distortion) 

 

The Overdrive effect is one of the most popular guitar effects used, especially in rock 

music. It is classified as a non-linear effect and, from a technical point of view, it can 

be described, according to [36, p. 117], as: “a first state where a nearly linear audio 

effect device at low input levels is driven by higher input levels into the non-linear 

region of its characteristic curve.” The main cause of the distinct sound is, therefore, 

the non-linear part of the signal [36].  

The effect is generally divided into three different types, namely overdrive, distortion 

and fuzz. Overdrive typically operates in the linear as well as non-linear region, 

resulting in a warm and smooth sound [36]. Distortion operates for the most part in the 

non-linear region reaching the upper limits, resulting in sounds all the way from warm 

overdrive to heavy, metallic sounds, typically associated with metal and grunge [36]. 

Fuzz is another type of distortion as a result of completely non-linear behaviour of the 

signal [36]. 

Figures 4.6 and 4.7 below describe the signal waveform and spectrogram respectively 

for the signal processed using Audacity’s “Distortion” effect. As can be seen from 

Figure 4.6, non-linear amplification has been applied to the signal, resulting in a 

distorted sound and higher energy output (Figure 4.7). 

 

 

Figure 4.6: Guitar signal (overdrive).  

 

 

Figure 4.7: Spectrogram of guitar signal (overdrive).  
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4.2 Reverberation 

 

Reverberation, or reverb, falls into the category of spatial effects, which refers to 

modification of the audio signal localisation cues [37]. Audio signals are typically 

affected by the environment, as they travel to the listener from the source, reflecting 

off various objects on the way in various directions, and the resulting effect is generally 

referred to as reverberation [36]. Reverberation is affected by the size and shape of the 

surrounding environment as well as the objects within it that interact with the audio 

signal [36].  

Artificial reverberation has existed since the 1960s and was originally initiated by 

Manfred Schroeder, inventor of the Schroeder Reverberator [38]. This reverberator 

consists of a series of connected all-pass filters, parallel feedback comb filters (IIR) as 

well as a mixing matrix [38]. The signal waveform and spectrogram, illustrated in 

Figures 4.8 and 4.9 below, show the results of Audacity’s “Reverb” effect, which is 

based on the “Freeverb” algorithm by “Jezar at Dreampoint”, based on the Schroeder 

Reverberator. The algorithm uses eight parallel feedback comb filters followed by four 

all-pass filters in series [38]. As can be seen from Figure 4.9, the signal energy contains 

more variation across the audio spectrum due to the artificial reverberation effect. This 

results in a larger sound perceived compared to the original clean sound.  

 

 

Figure 4.8: Guitar signal (reverb).  

 

 

Figure 4.9: Spectrogram of guitar signal (reverb).  
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4.3 Delay 

 

Delay, or echo, is the effect of audio waves echoing for an extended period of time. 

This happens naturally similarly to the reverberation effect, where sound waves are 

reflected back to the source with time delay. Over large distances this results in an 

audible echo. Delay pedals typically offer the ability to tune delay time (how often the 

sound is echoed) and duration (how long the echoing lasts). 

Since reverberation is a form of delay, the implementation of echo can be done using 

comb filters [36]. FIR comb filters work by adding a time-delayed signal back to the 

input signal while IIR comb filters implement a feedback loop, feeding the delayed 

signal back to the input signal [36]. The two tuning parameters typically used are for 

tuning time delay as well as relative amplitude of the delayed signal to control how fast 

the echo fades out [36]. 

Figures 4.10 and 4.11 below illustrate the waveform and spectrogram of a signal 

processed with Audacity’s “Echo” effect, using a time delay of 0.6 seconds and delay 

factor of 0.5, reducing the amplitude by half each time. In Figure 4.11, it is clearly 

visible when the audio is echoed at equal intervals.  

 

 

Figure 4.10: Guitar signal (delay).  

 

 

Figure 4.11: Spectrogram of guitar signal (delay).  
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4.4 Phaser 

 

The phaser effect is an effect of time-varying filters and is typically realised using 

notch filters, a type of band-stop filter that filters out select frequencies [13] [36]. 

Typically, the input signal is processed by a set of notch filters and then combined with 

the unprocessed signal, causing phase cancellations and enhancements that result in a 

clearly audible effect known as phasing [36]. The phaser signal chain is illustrated in 

Figure 4.12 by [36] below. 

 

 

 

 

 

 

Figure 4.12: Phaser signal chain [36].  

 

Figures 4.13 and 4.14 below illustrate the signal waveform and spectrogram for a signal 

processed using Audacity’s “Phaser” effect. The phase cancellation is clearly visible in 

the spectrogram of the signal, illustrated in Figure 4.14. 

 

 

Figure 4.13: Guitar signal (phaser).  

 

 

Figure 4.14: Spectrogram of guitar signal (phaser).  
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4.5 Wah-wah 

 

Another effect based on time-varying filters is the wah-wah effect. This effect is the 

result of a low-bandwidth band-pass filter with variable cut-off frequency [36]. Wah-

wah pedals allow the player to shift the cut-off frequency of the filter on the input signal 

up and down using the foot [36]. The filtered signal is finally added to the input signal, 

as illustrated in Figure 4.15 below, resulting in the typical wah-wah sound. 

 

 

 

 

 

 

Figure 4.15: Wah-wah signal chain [36].  

 

Figures 4.16 and 4.17 below illustrate the signal waveform and spectrogram for a signal 

processed using Audacity’s “Wah-wah” effect. The effect on the frequency spectrum is 

clearly visible in Figure 4.17. 

 

 

Figure 4.16: Guitar signal (wah-wah).  

 

 

Figure 4.17: Spectrogram of guitar signal (wah-wah).  
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5. Python Experimentation 

 

This chapter contains the experimental part of this thesis. The main focus is 

implementing low-latency guitar effects in real time, using the concepts presented 

above, with the goal of answering the three following questions: 

 

1. How can common guitar effects such as overdrive, reverberation and delay be 

implemented digitally using Python? 

2. How can signal latency be reduced during the DSP process using Cython? 

3. How can a guitar effect be implemented digitally that would not be feasible 

using traditional, analogue methods? 

 

The first question aims to implement the already existing guitar effects overdrive, 

reverberation and delay using Python, in order to give a foundation for the rest of the 

experiment to build upon. The goal is to overcome any challenges related to the digital 

implementation of the effects at an early stage. Python offers numerous libraries for 

signal processing, such as NumPy [39] and Librosa [40], which both will be used for 

audio processing. 

One of the most essential parts of real-time signal processing is minimising signal 

latency, as discussed in Chapter 3. The aim is to integrate Cython to optimise the 

sections responsible for DSP computations to address this challenge. The overall 

latency for the processed signal is measured using both the Focusrite Control [41] 

software, as well as using Python’s Time library, both before and after processing and 

optimisation. 

The final goal of the experiment is to implement a signal harmoniser that lowers or 

raises the signal frequency in octaves. Frequency manipulation has proven to be 

difficult using traditional, analogue methods but can effortlessly be done digitally. 

Digital solutions also offer more versatility than their analogue counterparts and allow 

for continuous modification and tuning. 

The gear and libraries used, as well as their parts in the system chain, are listed and 

described in Section 5.1. The underlying OS on the computer used in the experiment is 

Microsoft’s Windows 11 [42]. 
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5.1 Signal Chain 

 

The signal chain of the experiment consists of both hardware and software. The main 

hardware used in the experiment include: 

• Yamaha Pacifica 112J electric guitar (Appendix A) 

• Focusrite Scarlett 2i2 audio interface (Appendix B) 

• AMD Ryzen 7 7800X3D CPU (Appendix C) 

The electric guitar features an HSS (humbucker, single coil & single coil) pickup 

arrangement, with a combination of the neck and middle pickups used for the 

recordings in the experiment. The signal is amplified and run through an A/D converter 

in the audio interface and forwarded to the CPU. 

The software used in the experiment (including Python libraries) include: 

• Python (Sounddevice, Time, NumPy & Librosa) 

• Cython 

• Focusrite Control 

• Audacity 

Python is the main programming language used for implementation, with use of Cython 

to optimise DSP computations. Audacity is mainly used for spectrum analysis as well 

as spectrogram visualisation of the processed signal. The Focusrite Control software is 

used to measure signal latency, in addition to Python’s Time library. The hardware and 

software system chains are visualised in Figures 5.1 and 5.2 below respectively. 

 

Figure 5.1: Hardware signal chain used in the experiment [43] [44].  
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Figure 5.2: Software signal chain used in the experiment.  

 

 

5.2 Audio Analysis in Python 

 

The Sounddevice audio library provides bindings to the PortAudio library much 

similarly to PyAudio, as discussed in Section 3.2.1. The reason Sounddevice is chosen 

over PyAudio is mainly due to the better support for live audio capture using 

Sounddevice, whereas PyAudio is better suited for reading audio files. Setting up a 

continuous I/O audio stream in Python using Sounddevice in its most basic form can 

be done as shown in Listing 5.1, using a modified version of the example code given 

by [28]: 

 

 

 

 

 

 

 

 

Listing 5.1: Required Python code for opening a continuous I/O stream  

using the Sounddevice audio library [28].  

def callback(indata, outdata, frames, time, status): 

    if status: 

        print(status) 

    

    outdata[:] = indata 

 

          

sd.Stream(device=(input_device, output_device),  

          samplerate=samplerate,  

          blocksize=blocksize,  

          latency=latency,  

          channels=channels,  

          callback=callback) 
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Sounddevice’s Stream class opens a PortAudio stream for simultaneous input and 

output using NumPy arrays [28]. The parameters required are device, samplerate, 

blocksize, latency and channels, where device specifies which input and output 

device to use (by index), samplerate specifies the signal sampling rate, blocksize 

specifies the block (buffer) size of the stream, latency specifies the desired latency 

between input and output signal in seconds, and channels specifies the number of 

channels to use (mono/stereo). The Stream class also takes a function callback as input 

parameter for consuming the stream. This is where the signal processing is applied on 

the continuous stream. 

Apart from minimising latency introduced by the signal processing, the focus in 

Section 5.4, eliminating other sources of latency at this stage is key. This mainly 

includes reducing system-induced latency stemming from the OS and audio APIs. As 

shown by [45], the usage of the Audio Stream I/O (ASIO) API [46] by Steinberg can 

significantly reduce latency, especially on Windows-based operating systems. The 

ASIO protocol enables communication directly between the hardware and the software 

in question, bypassing OS-specific audio APIs, which in turn can significantly reduce 

latency [46]. ASIO is supported by both the Focusrite Scarlett 2i2 audio interface and 

the Sounddevice audio library out of the box and is utilised in the experiment for low-

latency audio I/O. 

Signal latency can further be reduced by choosing a high enough sampling rate along 

with a small enough buffer size. The Focusrite Scarlett 2i2 audio interface supports 

sampling rates between 44.1 kHz and 192 kHz, with buffer sizes between 16 and 1024 

samples. Testing different combinations of sampling rate and buffer size can be done 

to determine system capability and performance, with the goal being as high as possible 

sampling rate, combined with as low as possible buffer size for minimal latency. 

The latency test is performed by opening the stream using different combinations of 

sampling rates and buffer sizes. The latency reported by Focusrite Control is the round-

trip latency for the signal, meaning the time taken between input and output of the 

signal [47]. The sampling rates used are 48 kHz, 96 kHz, 176.4 kHz and 192 kHz, with 

buffer sizes of 32, 64, 128, 256 and 512 samples. Figure 5.3 below shows the Focusrite 

Control software, with latency information listed at the bottom. The results of the 

latency measurement are presented in Table 5.1 below, highlighting the latency 

measured at each sampling rate and buffer size. 
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Figure 5.3: Focusrite Control user interface.  

 

 

Table 5.1: Latency (ms) using different combinations of sampling rate and buffer size  

Sample Rate (Hz) Buffer Size (samples) Latency (ms) 

48 000 32 4.5 

48 000 64 6.9 

48 000 128 13.5 

48 000 256 24.9 

48 000 512 45.5 

96 000 32 3.4 

96 000 64 4.0 

96 000 128 6.4 

96 000 256 13.0 

96 000 512 24.4 

176 400 32 3.0 

176 400 64 3.3 

176 400 128 4.1 

176 400 256 6.5 

176 400 512 13.4 

192 000 32 2.9 

192 000 64 3.2 

192 000 128 3.9 

192 000 256 6.2 

192 000 512 12.9 
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None of the tests performed above, with results listed in Table 5.1, showed signs of 

negatively impacting audio quality, such as introducing crackling or distortion, 

meaning that the CPU and audio interface seemingly can keep up with all sampling 

rates and buffer sizes included in the tests. For this reason, a balanced solution with 

low enough latency and high enough buffer size is a sampling rate of 96 kHz with a 

buffer size of 128 samples. This combination is used for the DSP in Section 5.3 below. 

 

5.3 Implementation of Guitar Effects 

 

Using the code highlighted in Listing 5.2 below, a continuous audio I/O stream can be 

opened for signal processing. The parameters used are listed below: 

• Sampling rate: 96000 Hz 

• Buffer size: 128 samples 

• Channels: 2 (stereo) 

• Latency: 0 seconds (Sounddevice internal latency between I/O) 

 

 

 

 

 

Listing 5.2: Python code used for opening continuous I/O stream.  

 

A general overdrive effect is implemented in Section 5.3.1 and a combined 

reverberation and delay effect is implemented in Section 5.3.2. The attempt of 

implementing a signal harmoniser is described in Section 5.3.3. Time and latency 

measurements are not the focus of this section and are instead presented in Section 5.4. 

The main focus of this thesis is not the implementation of the guitar effects themselves 

but rather low-latency, real-time audio processing and streaming using Python. The 

effects presented below are not full-fledged effects but rather implemented in their 

simplest form, without proper filtering that would normally be used before and after 

processing the input signal. 

Sounddevice.Stream(device=(self.input_device, self.output_device),  

             samplerate=self.rate,  

             blocksize=self.block,  

             latency=self.latency,  

             channels=self.channels,  

             callback=self.callback, 

             dtype=numpy.float32)          
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5.3.1 Overdrive 

 

The audible overdrive effect, as mentioned in Section 4.1, is the result of non-linear 

behaviour of the audio signal. A common approach for emulating the analogue 

overdrive effect digitally is using the non-linear, trigonometric function hyperbolic 

tangent 𝑡𝑎𝑛ℎ [48]. Using a gain variable for input signal amplification and threshold 

variable for limiting the upper- and lower signal values (clipping), a generic overdrive 

effect can be implemented as described in Listing 5.3 below. 

 

 

 

Listing 5.3: Python implementation of  the overdrive effect.  

 

The implemented overdrive effect works by amplifying the signal according to the 

provided gain and returns the values of the hyperbolic tangent of the input signal 

values, with clipping at the provided threshold. The waveform of the processed signal, 

using a gain parameter of 10 with a threshold value of 0.5, is visualised in Figure 5.4 

below for a three-second-long strummed E chord. The spectrogram for the processed 

signal is illustrated in Figure 5.5. Reference audio is presented in Appendix D. 

 

 

Figure 5.4: Waveform of signal with implemented overdrive effect.  

 

 

Figure 5.4 clearly shows that the signal has been amplified and clipped at a level of 

0.5, resulting in the desired overdrive sound. Similar signal behaviour was previously 

observed in Figure 4.6. 

def overdrive(self, input_signal, gain, threshold): 

    output_signal = numpy.tanh(input_signal * gain) * threshold 

 

    return output_signal 
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Figure 5.5: Spectrogram of signal with implemented overdrive effect.  

 

Comparing the spectrograms visualised in Figure 5.5 and Figure 4.7, similar behaviour 

can be observed, where the signal energy is significantly larger compared to the 

spectrogram for the clean signal visualised in Figure 4.5.  

 

5.3.2 Reverberation and Echo 

 

As previously discussed in Section 4.3, the reverberation and delay (echo) effects can 

be realised using FIR comb filters, which work by adding the time-delayed signal back 

to the input signal. Due to a small buffer size of 128 samples and a sampling rate of 

96000 Hz, the buffer can only store the last, approximately, 1.3 ms of audio data. This 

can be overcome using a circular buffer of length c_buffer_max that is continuously 

updated with audio samples to store for further processing [49]. The implementation of 

the echo effect is described in Listing 5.4 below. The circular buffer’s length determines 

the length of the repeated echo. 

 

 

 

 

 

 

 

 

 

Listing 5.4: Python implementation of the combined reverberation and echo effect.  

def reverb_and_echo(self, input_signal, delay, decay): 

    delay_samples = int(delay * self.rate) 

    num_samples = len(input_signal) 

    output_signal = numpy.zeros_like(input_signal) 

    i = 0 

 

    while i < num_samples: 

        delayed_index = (self.buffer_index - delay_samples)  

                        % self.c_buffer_max 

output_signal[i] = input_signal[i] + self.c_buffer[delayed_index] 

self.c_buffer[self.buffer_index] = input_signal[i] + decay  

                               * self.c_buffer[self.buffer_index] 

        self.buffer_index = (self.buffer_index + 1) % self.c_buffer_max 

   i += 1 

 

    return output_signal          
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The implementation echoes the input signal with a given delay in seconds as well as 

amplitude decay between 0 and 1. The spectrogram for the processed signal, using a 

delay of 0.5 seconds with decay 0.5, is presented in Figure 5.6 below for a three-

second-long strummed E chord. Reference audio is presented in Appendix D. 

 

 

Figure 5.6: Spectrogram of signal with implemented reverberation and echo effect.  

 

The spectrogram for the implemented echo effect in Figure 5.6 clearly shows the echo 

effect repeating the signal at equal intervals of the given delay of 0.5 seconds. 

 

5.3.3 Harmoniser 

 

The final guitar effect to be implemented is the harmoniser, an effect based on pitch 

shifting. Pitch shifting is the procedure of changing the signal pitch while keeping the 

original signal length [50]. The reason this effect is chosen is that real-time pitch 

shifting for the electric guitar has proven to be difficult using analogue methods [50]. 

Digital solutions, however, can be implemented effortlessly, as will be highlighted 

below. 

For this experiment, the pitch-shifting technique will be used to increase the signal 

pitch one octave while also keeping the original signal untouched. The original guitar 

signal in mono will then be assigned to one channel of the output signal while the pitch- 

shifted signal will be assigned to the other channel, resulting in the fundamental 

frequency as well as the first overtone sounding simultaneously in stereo. It should be 

noted, however, that the goal of the experiment is to showcase a working, but basic, 

implementation of the harmoniser effect using pitch shifting in Python and not an 

entirely acoustically pleasing ensemble. 
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The pitch shifting in this experiment is inspired by [51] and implemented using time 

stretching as well as time-domain-based resampling. Time stretching is the operation 

of changing signal duration while keeping the original pitch, and is, therefore, 

essentially the opposite of pitch shifting [50]. Since the focus of the experiment is not 

on the implementation itself but rather a real-time solution for a harmoniser effect, the 

DSP algorithms utilised are implemented by the Python library Librosa. 

Pitch shifting the signal up one octave requires resampling the signal at half the original 

sampling rate 𝑓𝑠 / 2 [51]. The original buffer size is kept intact if the signal is first time-

stretched to double its length. For these operations, Librosa offers the functions 

time_stretch(y, rate) (where y is the input array to be stretched and rate is the 

stretch factor, which indicates if the signal should be slowed down or sped up) and 

resample(y, orig_sr, target_sr) (where y is the input array to be resampled, orig_sr 

is the original sampling rate and target_sr is the target sampling rate). For the 

algorithms to work properly, the input signal buffer size must be increased to 512 

samples, resulting in a round-trip latency, as reported by Focusrite Control, of 24.4 ms. 

The implementation for the pitch-shifting algorithm is described in Listing 5.5 below, 

utilising the time-stretch implementation described in Listing 5.6. 

 

 

 

 

 

 

 

Listing 5.5: Python implementation of  the pitch shifting function.  

 

 

 

 

 

 

 

Listing 5.6: Python implementation of  the time stretching function.  

def pitch_shift(self, input_signal, shift): 

    target_sampling_rate = self.rate * shift 

    stretched_signal = self.time_stretch(input_signal, shift) 

    resampled_signal = librosa.resample( 

                            stretched_signal,  

                            orig_sr=self.rate, 

                            target_sr=target_sampling_rate) 

 

    return resampled_signal 

 

  

def time_stretch(self, input_signal, stretch_factor): 

    output_signal = librosa.effects.time_stretch( 

                         input_signal,  

                         rate=stretch_factor) 

     

    return output_signal  
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This implementation produces a pitch-shifted output signal one octave higher than the 

input signal. However, as also discovered in [51], the resampling process introduces 

data loss, which results in uneven transitions between audio segments at equal intervals 

the size of the buffer. These discontinuities are visualised in Figure 5.6 and result in 

audible clicks. 

 

 

Figure 5.7: Output signal discontinuity in lower (right)  channel  

marked with a red line .  

 

The artefacts can be partially eliminated using the same approach as utilised in [51], 

known as crossfading. This approach involves scaling the resampling of the signal up 

by a factor of two once more before creating two signals phase-shifted by 180 degrees, 

as shown in Listing 5.7 [51]. The next step is modulating the signal by a triangular 

distribution, as also shown in Listing 5.7, before finally combining the signals [51]. 

Crossfading improves the audio quality substantially but the crossfade modulation is 

still obvious in the output signal, as can be heard from the reference audio presented in 

Appendix D. 

 

 

 

 

 

 

 

 

Listing 5.7: Python code for crossfading (inside  the pitch_shift() function).  

# Create two signals phase-shifted by 180 degrees 

signal1 = resampled_signal[::2] 

signal2 = resampled_signal[1::2] 

         

# Modulate amplitude using triangular distribution 

fade_in = numpy.linspace(0, 1, len(signal1) // 2) 

fade_out = numpy.linspace(1, 0, len(signal1) // 2) 

fade = numpy.concatenate((fade_in, fade_out)) 

         

signal1 *= fade 

signal2 *= fade[::-1]  # Reverse fade for second signal 

 

output_signal = signal1 + signal2 
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5.4 Latency Reduction Using Cython 

 

Due to Python’s interpreted nature, loops are where the largest performance gains can 

be seen when utilising Cython [30]. For the implementation of guitar effects presented 

in Sections 5.3.1 – 5.3.3, this means that the largest optimisations can be achieved for 

the combined reverberation and echo effect, as it is the only effect implemented using 

loops. The other effects rely on library-specific implementations of the algorithms, 

such as NumPy’s tanh() and Librosa’s resample(). This approach was chosen, since the 

main focus of this thesis is not on the actual implementation of the guitar effects in 

itself but rather on the concept of real-time audio processing in Python as a whole. 

Optimising the implementation of the combined reverberation and echo effect 

algorithm, described in Listing 5.4, using Cython mainly requires setting data types for 

the variables. This can be done using the custom Cython syntax cdef. Setting data types 

significantly reduces execution time by eliminating the Python overhead otherwise 

required for wrapping Python objects during runtime [52]. The Cython-optimised 

implementation of Listing 5.4 is given in Listing 5.8 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Listing 5.8: Cython-optimised implementation of Listing 5.4.  

DYTPE = np.float32 

ctypedef np.float32_t DTYPE_t 

 

cpdef np.ndarray[DTYPE_t, ndim=2] echo(np.ndarray[DTYPE_t, ndim=2] 

input_signal, double delay, double decay, int rate, 

np.ndarray[DTYPE_t, ndim=2] c_buffer, int buffer_index,  

int c_buffer_max): 

 

    cdef int delay_samples = int(delay * rate) 

    cdef int num_samples = input_signal.shape[0] 

    cdef int i, delayed_index 

    cdef np.ndarray[DTYPE_t, ndim=2] output_signal 

 

    output_signal = np.zeros_like(input_signal) 

 

    while i < num_samples: 

        delayed_index = (buffer_index - delay_samples) %                     

                         c_buffer_max 

        output_signal[i] = input_signal[i] +  

                           c_buffer[delayed_index] 

        c_buffer[buffer_index] = input_signal[i] + decay *  

                                 c_buffer[buffer_index] 

        buffer_index = (buffer_index + 1) % c_buffer_max 

        i += 1 

 

    return output_signal 



 

51 

 

Execution time measurements are done using the function perf_counter() from 

Python’s Time library. This method returns the system-wide time taken (in seconds) to 

perform the execution between two points in the code [53]. Execution time is measured 

for both the combined reverberation and echo effect algorithm (Listing 5.4) and the 

Cython-optimised algorithm (Listing 5.8), using different buffer sizes to compare 

execution time over loops with different numbers of iterations. The mean execution 

time (MET) over 500 method calls, for both the non-optimised Python implementation 

of the algorithm and the optimised implementation, is given in Table 5.2 below, for 

varying buffer sizes between 128 and 1024 samples. 

 

Table 5.2: Execution time for the Python and Cython implementations of the combined 

reverberation and echo effect algorithm using different buffer sizes  

 

 

As can be seen from the results, the Cython implementation is significantly faster than 

its counterpart implemented in Python. The real-world impact of this speedup using the 

Cython-optimised algorithm is further discussed in Chapter 6.   

  

Buffer Size (Samples) Python MET (ms) Cython MET (ms) 

128 0.382435 0.006452 

256 0.758102 0.007027 

512 1.469831 0.007394 

1024 2.858569 0.007854 
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6. Results 

 

This chapter presents the subjective and objective results of the experiment performed 

in Chapter 5. The results of the experiment can be evaluated separately for the guitar 

effect implementations in Section 5.3 and for the latency reduction in Section 5.4. 

Section 6.1 below discusses the guitar effect implementations from both a subjective 

and objective point of view, as it is difficult to evaluate the effects implemented strictly 

objectively. The result of the latency reduction is presented in Section 6.2.  

 

6.1 Evaluation of Guitar Effect Implementations 

 

One focus of the thesis was implementing the three common guitar effects overdrive, 

reverberation and delay in Python using real-time signal processing. This was achieved 

using audio libraries Sounddevice, NumPy and Librosa, since the focus was not strictly 

limited to the actual implementations but rather the concept of implementing real-time 

effects as a whole. The reverberation and delay effects were implemented as a single 

algorithm due to their similar nature, as discussed in Sections 4.2 and 4.3. 

The implementations, as illustrated in Listings 5.3 and 5.4, were tested on the AMD 

Ryzen 7 7800X3D CPU (Appendix C) with a sampling rate of 96 kHz and a buffer size 

of 128 samples for minimum latency, using the Focusrite Scarlett 2i2 audio interface 

(Appendix B). This resulted in an initial latency, as reported by Focusrite Control, of 

6.4 ms.  

Using the Time library from Python, the mean execution time (MET) for each effect 

was monitored (Table 6.1). For the overdrive effect implementation, the MET over 500 

method calls was reported as approximately 0.000016 seconds, or 0.016 ms. This delay 

is so insignificant that it can be omitted from the results. Similarly, for the combined 

reverberation and delay effect, a MET over 500 method calls of approximately 

0.000382 seconds, or 0.382 ms, was reported. This adds up to a total delay of 6.78 ms, 

without taking other factors such as OS-level scheduling and other processing delays 

into account. This delay is well below the Haas threshold and would most likely be 

graded somewhere between “Good” and “Fair” in a similar test as the one performed 

in [19], as discussed in Chapter 3. As this effect is loop-based it was later the target for 

latency reduction, as discussed in Section 5.4.  
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Another focus of the thesis was implementing a harmoniser effect, due to the difficulty 

of realising it using analogue methods. The goal was to show a basic, but working, 

digital implementation of a harmoniser. The harmoniser implementation, based on time 

stretching and pitch shifting as shown in Listings 5.5 and 5.6, required a buffer size of 

512 samples, resulting in an initial latency of 24.4 ms as reported by Focusrite Control. 

The reported MET over 500 method calls was approximately 0.002152 seconds, or 

2.152 ms. This resulted in a total latency of approximately 26.35 ms, without counting 

external factors also contributing to latency. Although this latency is still below the 

Haas threshold, it would likely affect the performance of a professional musician 

negatively. 

 

Table 6.1: Mean execution time (MET) for each implemented effect  

 

 

As for the subjective evaluation of the implemented effects, satisfactory results were 

achieved regarding sound. As previously mentioned, perfect implementations of the 

effects were not the goal of the thesis. Instead, showing that it can be done at low 

latency using Python, was the focus. Audiovisual presentations of the implemented 

effects are listed in Appendix D.  

The implemented overdrive effect utilises the hyperbolic tangent tanh for creating a 

non-linear output signal. This yielded a distorted sound typical for the overdrive guitar 

effect. The implementation of the combined reverberation and delay effect also resulted 

in the desired effect. The harmoniser effect, however, did contain unwanted audible 

features due the attempt of eliminating signal discontinuities through crossfading, as 

described in Section 5.3.3. 

Overall, the effects implemented resulted for the most part in the desired sound at low 

latency. No real attempt, however, was made at monitoring the system-wide latency 

from input signal to output signal. Therefore, it is impossible to determine the real-

world latency of the implementation. 

Effect Buffer Size 

(Samples) 

MET (ms) Total Latency (ms) 

Overdrive 128 0.016 6.42 

Reverb + Delay 128 0.384 6.78 

Harmoniser 512 2.152 26.35 
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6.2 Latency Reduction 

 

The experiment utilised Cython to optimise the Python implementations for faster 

execution speed. The combined reverberation and delay effect was the only effect 

optimised due to its loop-based implementation, as Cython’s largest improvements can 

be seen with loops. The speedup of the Cython-optimised implementation is presented 

in Table 6.2, an extended version of Table 5.2. 

 

Table 6.2: Extended version of Table 5.2 including speedu p     

 

 

As can be seen from the results, the speedup of the Cython-optimised implementation 

becomes increasingly significant when the number of loop iterations grows. For the 

implementation presented in Section 5.3.2, the number of iterations is equal to the 

buffer size used, resulting in an algorithmic complexity of 𝑂(𝑛). Without optimisation, 

this results in increasingly higher latency as the buffer size increases. 

Further optimisation could possibly have yielded additional speedup for the combined 

reverberation and delay effect implementation. However, since latency reduction was 

not the main focus of the thesis, more effort was not put into it. The thesis still presented 

a method for reducing latency in Python for real-time signal processing using Cython, 

and the results of the performed optimisation showed reduction in latency. The 

objective of the experiment concerning latency reduction was, therefore, satisfied. 

 

  

Buffer Size 

(Samples) 

Python MET  

(ms) 

Cython MET  

(ms) 

Speedup 

128 0.382435 0.006452 59.27 

256 0.758102 0.007027 107.88 

512 1.469831 0.007394 198.79 

1024 2.858569 0.007854 363.96 
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7. Discussion 

 

The goal of this thesis was to explore the feasibility of implementing real-time guitar 

effects at low latency using Python. The proposed solutions implemented in Section 

5.3, using Cython for latency reduction, as implemented in Section 5.4, yielded results 

that answer the proposed questions of Chapter 5:   

1. How can common guitar effects such as overdrive, reverberation and delay be 

implemented digitally using Python? 

2. How can signal latency be reduced during the DSP process using Cython? 

3. How can a guitar effect be implemented digitally that would not be feasible 

using traditional, analogue methods? 

The effect implementations in Section 5.3 satisfied the initial objective by 

implementing basic versions of the guitar effects overdrive, reverberation and delay. 

As presented in Section 6.1, the overall latencies of the implementations were well 

below the Haas threshold, with a system-wide latency of 6.42 ms for the overdrive 

effect and 6.78 ms for the combined reverberation and delay effect. This was further 

reduced to closer to 6.4 ms for the combined reverberation and delay effect using 

Cython. 

A basic harmoniser effect was implemented in Section 5.3.3 to highlight one of the 

benefits of using digital methods over traditional, analogue methods. As discussed in 

Section 5.3.3, real-time pitch shifting has proven difficult using analogue solutions, 

while digital solutions are effortlessly implemented using algorithms. The harmoniser 

implementation relied on a combination of time stretching and resampling, where the 

signal was doubled in length and resampled at half the sampling rate, resulting in a 

pitch-shifted signal one octave higher than the original signal. As also mentioned in 

Section 5.3.3, the resampling process introduced audible discontinuities between audio 

segments, which were eliminated using crossfading, as presented in [51]. 

The implementations of the guitar effects provided satisfactory results when evaluated 

on a subjective basis. The performance of the CPU and audio interface used in the 

experiment, at a sampling rate of 96 kHz with a buffer size of 128 samples, resulted in 

no audible artefacts, apart from the audible modulation for the harmoniser effect due 

to the crossfading process. Audiovisual presentations of the implemented effects are 

given in Appendix D. 
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Due to the focus of this thesis being the concept of low-latency, real-time guitar effects 

using Python, the implemented effects were not complete, sophistically implemented, 

effects. This was especially obvious for the harmoniser effect because of the audible 

modulation resulting from the implemented crossfading. Proper filtering could have 

been utilised on the input and output signal for each effect, resulting in a cleaner sound. 

This limitation was mentioned multiple times throughout the thesis. 

Another limitation of the experiment was the system-wide latency measurement. The 

latency measured only accounted for the reported round-trip latency reported by 

Focusrite Control, as well as, the reported execution time for each algorithm 

implementation. As discussed in Section 5.2, the usage of ASIO significantly reduced 

latency by allowing communication between audio sources and libraries to bypass OS-

specific APIs, as shown in [45]. 

The implementations in Chapter 5 resulted in unexpectedly low latency, even without 

latency reduction using Cython. This was probably due to the powerful CPU used, 

combined with the ASIO protocol, as mentioned above. A potential follow-up to this 

experiment would be investigating the latency using CPUs commonly used in digital 

audio effect pedals, such as SHARC processors [54]. The low latency was also a result 

of the high sampling rate of 96 kHz used, combined with a buffer size of only 128 

samples, which may not be feasible using a less powerful processor. 

In general, the experiment answered the proposed questions regarding implementing 

real-time guitar effects using Python, at acceptable latency. The experiment showed 

that low-latency, real-time digital signal processing is possible using Python, while also 

presenting new opportunities for research within the area. 
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8. Conclusion 

 

This thesis explored real-time signal processing in Python, with a focus on the 

implementation of common guitar effects digitally, including overdrive, reverberation 

and delay. Since implementing some guitar effects, such as real-time frequency 

shifting, has shown to be difficult using traditional, analogue techniques, this thesis 

also aimed to implement a signal harmoniser, an effect that pitch-shifts the signal up 

one octave. Furthermore, the thesis explored latency reduction using the programming 

language Cython, a superset of Python, with the goal of bringing the Python execution 

speed closer to that of C. 

Signal processing as a concept was presented and discussed in the theoretical part of 

the thesis, highlighting the basics and common techniques. Areas relating to the 

experiment conducted were introduced, such as filtering, audio quality and data rate. 

Latency reduction was also briefly discussed, presenting common sources of latency in 

general, as well as, introducing Cython and ASIO. 

Latency evaluation was performed based on the experiment conducted in [19], where 

professional musicians graded the perceived latency from “Horrible” to “Excellent” 

based on the auditory feedback received from a guitar at different latency levels. The 

threshold for a “Good” grade was 6.5 ms, using floor wedges for audio monitoring. 

Therefore, a sampling rate of 96 kHz with a buffer size of 128 samples was chosen for 

the experimental part of this thesis, resulting in an initial latency of 6.4 ms for the guitar 

effect implementations. The latency measurement, however, was one of the limitations 

of the thesis, since the total latency measured was only a measurement of the round-

trip latency reported by Focusrite Control, combined with the execution time of each 

effect implementation, as measured with Python’s Time library. 

The effects implemented performed at acceptable latencies, apart from the harmoniser 

effect. As presented in Table 6.1, the measured latency for the overdrive effect was 6.42 

ms and for the combined reverberation and delay effect 6.78 ms. The harmoniser 

implementation resulted in a measured latency of 26.35 ms, due to a higher buffer size 

of 512 samples required for audio processing. Although still significantly below the 

Haas threshold [2], this latency would be noticeable to a trained ear, as concluded by 

[19]. 
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Based on the results, it was concluded that Python implementations of low-latency 

guitar effects is possible, but highly dependent on hardware capabilities. Low latencies 

were received mostly due to a combination of high sampling rate and small buffer size, 

which may not be feasible to use on less powerful, more resource-limited systems. A 

topic for future research within the field was proposed, with the focus on implementing 

similar effects using Python as presented in this thesis on typical DSP processors, such 

as SHARC processors. 
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9. Summary in Swedish – Svensk sammanfattning 

 

Digitala gitarreffekter med låg latens genom användning av signalbehandling 

med Python i realtid 

 

Signalbehandling har historiskt sett spelat en viktig roll inom musiken, speciellt med 

tanke på ljudeffekter. I och med digitalteknikens framträdande har även många 

områden inom musiken till stor del digitaliserats. För elgitarrens del har digitala 

effekter under de senaste decennierna blivit alltmer vanliga, i och med utvecklingen av 

digitala realtidslösningar för traditionella, analoga effekter. Som nämns i [6] medför 

digitala metoder diverse fördelar, bland annat: 

1. Flexibilitet: digitala signaler kan enkelt modifieras medan analoga signaler ofta 

kräver hårdvaruförändringar. 

2. Reproducerbarhet: digitala signaler kan återskapas identiskt medan analoga 

signaler beror på de underliggande hårdvarukomponenterna. 

3. Pålitlighet: digitala system förändras inte med tiden på samma sätt som 

elektriska komponenter i analoga system kan göra. 

4. Komplexitet: komplexa system, såsom system baserade på maskininlärning, 

går inte enkelt att förverkliga med analoga system. 

Den främsta nackdelen med digitala lösningar att ta i beaktande, speciellt vad beträffar 

realtidsapplikationer, är latens, eller fördröjning. I och med konverteringsprocesserna 

för en signal från analog till digital (A/D) och digital till analog (D/A) uppstår 

fördröjning som beror på samplingsfrekvens och sampelbuffertstorlek [7]. Utöver 

denna fördröjning uppstår även fördröjning på grund av själva signalbehandlingen, 

med en storlek beroende på signalprocessorns prestanda.  

Huvudmålet med denna avhandling var att utforska de möjligheter Python erbjuder för 

signalbehandling, och med hjälp av dessa utveckla basimplementationer för några av 

de vanligaste gitarreffekterna: overdrive (distorsion), eko och reverb. I och med att 

Python är ett tolkat språk har man traditionellt sett föredragit kompilerade språk såsom 

C eller C++ för realtidsapplikationer, på grund av den fördröjning som härstammar från 

tolkningsprocessen [26]. I dagens läge finns ett brett utbud av ljudbibliotek i Python 

som fungerar som API (applikationsprogrammeringsgränssnitt, eng. application 

programming interface) för det C-baserade ljudbiblioteket PortAudio [29], bland annat 
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PyAudio [27] och Sounddevice [28]. PortAudio stöder också drivrutinen ASIO (Audio 

Stream Input/Output) [46], som är ett låg-latens alternativ till operativsystemets egna 

ljuddrivrutiner [45]. Sounddevice tillsammans med ASIO utnyttjades i denna 

avhandling för implementationen av gitarreffekter. 

Bortsett från implementationen av gitarreffekter var också latensreduktion ett mål med 

avhandlingen. För att reducera fördröjning som uppstår i samband med tolkningen av 

Python introducerades Cython, ett Python-baserat programmeringsspråk som 

möjliggör exekvering av kod skriven i Python med C-hastighet [30]. Detta uppnås 

genom kompilering av koden till C-kod som kan anropas direkt från Python. Cython 

användes främst för att optimera implementationen av eko- och reverbeffekterna, vars 

implementation utnyttjade en loop. 

Effekterna implementerades i Python med hjälp av signalbehandlingsbiblioteken 

NumPy [39] och Librosa [40]. En samplingsfrekvens på 96 kHz användes kombinerat 

med en buffertstorlek på 128 sampel. Overdrive-effekten förverkligades genom att 

tillämpa den hyperboliska funktionen tanh på signalen, på grund av dess icke-linjära 

natur, som resulterade i distorsion. Eko- och reverbeffekterna implementerades som en 

och samma algoritm på grund av deras liknande natur, med olika värden på parametrar 

för att uppnå det önskade ljudet. I och med buffertstorleken på endast 128 sampel 

krävdes en extern sampelbuffert för att spara ljuddata längre än de senaste cirka 1.3 ms 

(1 𝑠/
96000 𝐻𝑧

128
), vilket implementerades med hjälp av en loop. En audiovisuell 

presentation av de implementerade effekterna ges i Appendix D. 

Ett sista mål med avhandlingen var att implementera en gitarreffekt som traditionellt 

sett varit komplicerad att förverkliga med analoga metoder. För detta ändamål valdes 

en harmoniseringseffekt, som bygger på tonhöjdsförändring (eng. pitch shift) i realtid. 

Den implementerade effekten, som krävde en större buffert på 512 sampel, höjde 

gitarrsignalens tonhöjd en oktav. Implementationen förverkligades dessutom i stereo, 

med den oförändrade signalen i vänster kanal och signalen med en oktav högre tonhöjd 

i höger kanal. På grund av den filtrering som användes för att eliminera hörbara klick, 

som resultat av tonhöjdsförändringen, resulterade implementationen även i en hörbar 

modulation (se Appendix D). 

Resultaten av de implementerade gitarreffekterna sett från både ett subjektivt och ett 

objektivt perspektiv uppfyllde avhandlingens mål. Python-implementationer för de 

ovannämnda gitarreffekterna i realtid presenterades och latensreduktion med Cython 

förverkligades för den kombinerade eko- och reverbeffekten. Cython-
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implementationen visade sig vara mellan 59,27 (buffertstorlek på 128 sampel) och 

363,96 (buffertstorlek på 1024 sampel) gånger snabbare än dess motpart. De totala 

uppmätta fördröjningarna för de olika effekterna var 6,42 ms för overdrive-effekten, 

6,78 ms för den kombinerade eko- och reverbeffekten samt 26,37 ms för 

harmoniseringseffekten, på grund av den större buffertstorleken på 512 sampel 

gentemot 128 sampel för de andra effekterna. 

Den främsta bristen med experimentet var saknaden av mätning av fördröjning över 

hela signalkedjan från början till slut. I avhandlingen uppmättes för signalen endast den 

initiala tur och returtid som ljudgränssnittet rapporterade kombinerat med 

exekveringstiden för varje enskild effektimplementation. Detta gav endast en 

helhetsbild över den fördröjning som ljudgränssnittet bidrog till kombinerat med den 

fördröjning som introduceras av signalbehandlingen. Experimentet i avhandlingen 

utfördes inte heller på en typisk processor för ljudbehandlingsapplikationer, såsom en 

SHARC-processor [54], utan på en processor avsedd för skrivbordsdatorer (se 

Appendix C). Detta kunde vara ett framtida forskningsobjekt för vidare forskning inom 

området. 
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Appendices 

 

Appendix A – Yamaha Pacifica 112J Technical Specifications 

 

Technical specifications for the Yamaha Pacifica 112J electric guitar [55]. 

 

Construction: Bolt-on 

Scale Length: 25-1/2” (648 mm) 

Body Materials: Alder 

Neck Materials: Maple 

Fingerboard Materials: Rosewood 

Fingerboard Radius: 13-3/4” (350 mm) 

Fret Wire: Medium 

Number of Frets: 22 

Nut Materials: Urea 

Neck Width at 0 Fret / 12th Fret: 41/51.4 mm 

Thickness at 1st Fret / 12th Fret: 20.9/22.9 mm 

Neck Pickup: Single Coil/Ceramic 

Middle Pickup: Single Coil/Ceramic 

Bridge Pickup: Humbucker/Ceramic 

Controls: Master Volume, Master Tone 

Pickup Switch: 5-Position Lever Switch 

Bridge: Vintage-Style Tremolo 

String Spacing: 10.5 mm 

Tuning Machines: Die-Cast 

String Gauge: Ernie Ball Super Slinky 009-042 
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Appendix B – Focusrite Scarlett 2i2 Technical Specifications 

 

Technical specifications for the Focusrite Scarlett 2i2 (3rd Generation) USB Audio 

Interface [43]. 

 

Overview 

Protocol: USB 2.0 

Simultaneous I/O: 2x2 

A/D Resolution: 24-bit/192 kHz 

Number of Pre-Amps: 2 

Phantom Power: Yes 

Instrument Inputs: 2 

Line Inputs: 2 

Analogue Inputs: 2 

Headphone Outputs: 1 

Bus Powered: Yes 

Supported Sample Rates: 44.1, 48, 88.2, 96, 176.4, 192 kHz 

 

Microphone Inputs 

Frequency Response: 20 Hz – 20 kHz ± 0.1 dB 

Dynamic Range: 111 dB (A-weighted) 

Maximum Input Level: 9 dBu (at minimum gain) 

Gain Range: 56 dB 

Impedance: 3 kΩ 

 

Line Inputs 

Frequency Response: 20 Hz – 20 kHz ± 0.1 dB 

Dynamic Range: 110.5 dB (A-weighted) 

THD+N: < 0.002 % 



 

69 

 

Maximum Input Level: 12.5 dBu (at minimum gain) 

Gain Range: 56 dB 

Impedance: 60 kΩ 

 

Instrument Inputs 

Frequency Response: 20 Hz – 20 kHz ± 0.1 dB 

Dynamic Range: 110 dB (A-weighted) 

THD+N: < 0.03 % 

Maximum Input Level: 12.5 dBu (at minimum gain) 

Gain Range: 56 dB 

Impedance: 1.5 MΩ 

 

Line/Monitor Outputs 

Dynamic Range: 108 dB 

THD+N: < 0.002 % 

Maximum Output Level (0 dBFS): 15.5 dBu 

Impedance: 430 Ω 

 

Headphone Outputs 

Dynamic Range: 104 dB (A-weighted) 

THD+N: < 0.002 % 

Maximum Output Level (0 dBFS): 7 dBu 

Impedance: < 1 Ω 
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Appendix C – AMD Ryzen 7 7800X3D Technical Specifications 

 

Technical specifications for the AMD Ryzen 7 7800X3D CPU [56]. 

 

Overview 

# of CPU Cores: 8 

# of Threads: 16 

Max. Boost Clock: 5.0 GHz 

Base Clock: 4.2 GHz 

L1 Cache: 512 KB 

L2 Cache: 8 MB 

L3 Cache: 96 MB 

Default TDP: 120 W 
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Appendix D – Audiovisual Presentation of Implemented Effects 

 

Reference audio of the implemented guitar effects. 

 

Overdrive - Reference Audio 

https://youtu.be/wLSomkoesTo?si=ybWMvZJg-m5Nt0Or&t=5 

 

Delay & Reverberation - Reference Audio 

https://youtu.be/wLSomkoesTo?si=5EKQ5zMquOAsTf_5&t=73 

 

Harmoniser Using Pitch Shifting - Reference Audio 

https://youtu.be/wLSomkoesTo?si=QWME4bQmWTXqCY78&t=132 

 

https://youtu.be/wLSomkoesTo?si=ybWMvZJg-m5Nt0Or&t=5
https://youtu.be/wLSomkoesTo?si=5EKQ5zMquOAsTf_5&t=73
https://youtu.be/wLSomkoesTo?si=QWME4bQmWTXqCY78&t=132

