

Low-Latency Digital Guitar Effects Using Signal

Processing with Python in Real Time

Benjamin Åberg

Master’s Thesis in Computer Engineering

Supervisor: Jerker Björkqvist

Faculty of Science and Engineering

Åbo Akademi

2024

Abstract

This thesis presents a comprehensive exploration of implementing common guitar

effects in real time, using signal processing techniques with Python and some of its

libraries. One key focus of the thesis is latency reduction using Cython.

The thesis begins with an overview of digital signal processing (DSP) fundamentals

and common effects for the electric guitar, such as distortion, delay and reverberation.

Some effects’ algorithmic implementation is also discussed, highlighting the main

components and parameters required for real-time processing.

Subsequently, the thesis introduces Python as a powerful tool for prototyping and

implementing DSP algorithms. Utilising libraries such as NumPy, Sounddevice and

Librosa, the feasibility of real-time guitar effects processing within the Python

environment is demonstrated. Moreover, the flexibility of Python, facilitating rapid

experimentation and algorithm refinement crucial for achieving desired sound

characteristics, is also highlighted.

To address the challenge of latency inherent in software-based signal processing, the

benefits of Cython, a superset of Python designed to optimise code performance, are

explored. Through Cython's capability of compiling Python code to native machine

code, significant latency reductions are achieved without compromising computational

efficiency.

Experimental results demonstrate the effectiveness of the proposed approach in

achieving low-latency digital guitar effects processing in real time. Comparative

latency measurements reveal improvements over traditional Python implementations,

highlighting the potential adequacy as well as importance of Cython optimisation for

latency-sensitive applications.

Keywords: Python, Cython, digital guitar effects, audio processing, signal processing,

latency reduction

Abbreviations

A/D Analogue-to-Digital

API Application Programming Interface

CD Compact Disc

CPU Central Processing Unit

D/A Digital-to-Analogue

DAW Digital Audio Workstation

DFT Discrete Fourier Transform

DSP Digital Signal Processing

EQ Equaliser

FFT Fast Fourier Transform

FIR Finite Impulse Response

IEM In-Ear Monitoring

IFT Inverse Fourier Transform

IIR Infinite Impulse Response

I/O Input / Output

LPC Linear Predictive Coding

LSB Least Significant Bit

OS Operating System

PCM Pulse Code Modulation

STFT Short-Time Fourier Transform

VM Virtual Machine

Table of Contents

1. Introduction .. 1

1.1 Guitar Effects – A Brief History .. 2

2. Digital Signal Processing ... 3

2.1 Digital Audio Processing as a Concept ... 3

2.2 A/D – D/A Conversion .. 4

2.2.1 Quantisation .. 6

2.2.2 Dithering ... 8

2.3 The Fourier Transform .. 9

2.4 Filters ... 11

2.4.1 Low-Pass Filters ... 12

2.4.2 High-Pass Filters .. 13

2.4.3 Band-Pass Filters .. 14

2.4.4 Band-Stop Filters .. 14

2.4.5 Digital Filters: FIR and IIR .. 15

2.5 Digital Audio Formats ... 17

2.6 Audio Quality & Data Rate ... 19

3. Latency Reduction ... 21

3.1 Latency of DSP Systems in General.. 23

3.2 Real-Time Audio Processing in Python .. 27

3.2.1 PyAudio .. 27

3.2.2 Cython .. 29

4. Visualisation of Common Guitar Effects ... 31

4.1 Overdrive (Distortion) ... 34

4.2 Reverberation .. 35

4.3 Delay ... 36

4.4 Phaser .. 37

4.5 Wah-wah .. 38

5. Python Experimentation ... 39

5.1 Signal Chain .. 40

5.2 Audio Analysis in Python .. 41

5.3 Implementation of Guitar Effects .. 44

5.3.1 Overdrive .. 45

5.3.2 Reverberation and Echo ... 46

5.3.3 Harmoniser ... 47

5.4 Latency Reduction Using Cython ... 50

6. Results .. 52

6.1 Evaluation of Guitar Effect Implementations.. 52

6.2 Latency Reduction ... 54

7. Discussion .. 55

8. Conclusion.. 57

9. Summary in Swedish – Svensk sammanfattning 59

References .. 62

Appendices ... 67

Appendix A – Yamaha Pacifica 112J Technical Specifications 67

Appendix B – Focusrite Scarlett 2i2 Technical Specifications 68

Appendix C – AMD Ryzen 7 7800X3D Technical Specifications.......................... 70

Appendix D – Audiovisual Presentation of Implemented Effects........................... 71

1

1. Introduction

Throughout the history of music, there has been a constant drive for innovation among

musicians to explore new sounds and techniques when it comes to playing, recording

and mixing. Guitar effects have played a crucial role in obtaining new sounds and have

opened endless possibilities for guitarists wanting to explore their musical abilities.

With the help of computers and digital signal processing solutions in recent years, an

even broader spectrum of options for audio experimentation is now available.

Digital signal processing solutions have brought consistency and reliability for

musicians, allowing effects to be replicated, tweaked and combined in ways not

possible using their analogue counterparts [1]. Worth noting is also the availability of

highly powerful processors in today’s world, allowing more advanced effects to be

discovered through experimentation, that has not been possible to implement in real

time previously.

An important aspect of audio processing to take into consideration is latency and

minimising its presence as well as impact. In compliance with the precedence effect,

also known as the Haas effect, identical sounds separated by less than 50 ms cannot be

distinguished between by the human ear and are instead perceived as a single source

[2]. For a live musical performance, keeping latency below this threshold is key for

optimal sound and feedback.

This master’s thesis explores the world of signal processing relevant to audio

processing and manipulation by highlighting key concepts, techniques and solutions

available, as well as briefly discussing latency reduction on a theoretical level. The

thesis is divided into two theory parts and one experimental part: digital sound

processing theory, latency reduction theory and experimentation with audio signals in

Python.

The main goal of this thesis is to introduce the signal processing side of Python for

implementing real-time guitar effects by presenting hands-on solutions. The thesis also

aims to highlight the versatility of digital solutions by implementing an effect not viable

to implement using traditional, analogue methods. The focus of the thesis is on giving

basic implementations of common guitar effects alongside reducing signal processing

latency using Cython.

2

1.1 Guitar Effects – A Brief History

Audio effects for the electric guitar have been an essential part of not just the instrument

but the music industry as a whole throughout history. Effects for the electric guitar were

originally discovered shortly after the invention of the electric guitar amplifier back in

the 1930s, when guitarists noticed that turning up the amplifier would result in an

extorted “overdrive” sound [3]. During the 40s and 50s, effects such as reverb, echo

and tremolo became standard effects built into guitar amplifiers with the help of

transistor technology. In the 60s and the 70s, the guitar effect market took off with

numerous new effects such as chorus, flanger and ring modulation entering the market

[3]. At this time, standalone guitar effects built into pedals that could be operated

separately from the amplifier while standing or sitting became popular [2]. During the

80s and the 90s, digitalised solutions enabled manufacturers to start creating all-in-one

effect pedals and devices that set the foundation for modern guitar effect systems. In

the early 2000s, these pedals increased heavily in popularity and became a common

choice among many guitarists [3].

In modern times, guitar effects remain an essential part of every guitar player’s toolbox

and are becoming more and more both versatile and affordable. From 2005 to 2021,

the sales of guitar effect pedals sold in the United States saw a steady increase from

around 1.1 million units sold in 2005 to around 1.5 million units sold in 2021 [4].

Today, digital solutions for amplifiers exist with built-in effects such as the Vox Air GT

that supports simulating the sound of different amplifier brands and models as well as

a wide range of effect pedals [5].

3

2. Digital Signal Processing

The concept of digital signal processing (DSP) has been key for the development of

new technologies across many fields since digital computers became available in the

1960’s, with some of the original applications being radar systems, space exploration

and medical equipment to name a few [1]. Today’s digital world relies more than ever

before on DSP, with modern applications such as telecommunication, image processing

as well as audio processing, the main topic of this thesis.

Section 2.1 discusses DSP applied to audio signals on a theoretical basis, highlighting

key concepts and techniques used. The topics of Sections 2.2 and 2.3 respectively, are

A/D (analogue to digital) & D/A (digital to analogue) conversion as well as the Fourier

transform. Sections 2.4 and 2.5 respectively discuss filtering as well as digital audio

formats. Audio quality and data rate are the topics of Section 2.6.

2.1 Digital Audio Processing as a Concept

As defined in [6, p. 1], digital audio processing refers to “the digital representation of

signals and the use of digital hardware to analyse, modify or extract information from

these signals.” As also mentioned in [6], the key benefits of digital signal processing

solutions are:

1. Flexibility: digitally modified signals can easily be modified while analogue

signals often require hardware changes.

2. Reproducibility: digital signals can be identically reproduced from one system

to another while analogue signals rely on hardware that may vary in

performance.

3. Reliability: digital solutions do not change over time as electrical components

of analogue systems may do.

4. Complexity: processing-heavy applications such as machine learning-based

solutions in modern times would not be feasible on analogue systems.

Within the field of music, DSP plays an important role during the whole process from

the recording session to the final mix, with features such as filtering, equalisation and

compression being key. Today’s musical world also relies more heavily on modern

4

technology than ever before, with machine learning-based solutions finding their way

into audio processing and mixing. A recent example of this, at the time of writing this

thesis, is separating different instruments and voice recordings from a single track into

separate tracks (e.g. the song “Now And Then” by The Beatles, November 2023).

2.2 A/D – D/A Conversion

Converting an analogue signal to a digital signal and vice versa is what makes digital

audio processing possible in the first place. Audio signals as they exist in nature are

analogue, continuous signals and need to be converted into digital, discrete signals in

order to be processed digitally (A/D) [1]. Vice versa, obtaining the processed signal for

listening requires the digital signal to be converted to analogue (D/A).

A continuous or continuous-time signal is a signal with a parameter that can obtain

values over a continuous range (e.g. voltage) related to time and can be expressed as a

function 𝑥(𝑡) [1] [7]. This continuous signal can be converted into a sequence of

numbers known as a discrete, or discrete-time, signal expressed as 𝑥(𝑛) by sampling

and the same process can be performed in reverse [7]. This is the idea of A/D & D/A

converters in their simplest forms. An illustration of a typical, generalised DSP system

can be found in Figure 2.1 below.

 Figure 2.1: Block diagram of a general DSP system.

Furthermore, low-pass filters are often applied to the input signal as well as to the

output signal according to Figure 2.2 below. This is done in order to eliminate high

frequencies outside the spectrum of interest that could result in aliasing, the

overlapping of frequency components in the sampled signal [8]. Filters are discussed

in more detail in Section 2.4.

5

Figure 2.2: Block diagram of a general DSP system with filters .

The sampling of a continuous signal with the highest frequency component 𝑓𝑚𝑎𝑥 can

be done according to the Nyquist-Shannon Sampling Theorem, which states that the

minimum sampling rate 𝑓𝑠 should be at least double the size of 𝑓𝑚𝑎𝑥 , or 𝑓𝑠 > 2𝑓𝑚𝑎𝑥,

while still keeping the signal’s information content intact [7] [8]. 𝑓𝑚𝑎𝑥 is known as the

Nyquist frequency at which point aliasing occurs if the signal is sampled with a

sampling rate less than 2𝑓𝑚𝑎𝑥 [8].

The amplitude of the signal during the sampling period 𝑇𝑆 = 1/𝑓𝑠 needs to be

quantised, meaning converted into a number sequence 𝑥(𝑛) by a quantiser (see Section

2.2.1). This number sequence is used during the digital signal processing of the signal.

Figure 2.3 by [7] below shows a schematic diagram of the analogue-to-digital, as well

as back-to-analogue, conversion process.

Figure 2.3: Schematic diagram of the A/D – D/A process [7].

6

Digital-to-analogue conversion is required post-processing if the goal is to reproduce

the signal sonically, for example, by driving a speaker. Below is an example of a D/A

converter producing the analogue output signal by mapping the digital code to the

corresponding analogue value [8]. This produces a staircase-like shape of the signal, as

illustrated below in Figure 2.4 by [8], since the value is held during the time 𝑇 for each

converted value. This effect, known as imaging, can be reduced with a low-pass filter

functioning as an anti-imaging filter to smooth out the steps [8].

Figure 2.4: Digital-to-analogue conversion process [8].

This type of D/A converter is known as zero-order hold, meaning that the converter

holds each value during the duration of a time sample until the next sample is received

[8]. To overcome this drawback of zero-order hold D/A converters, a digital processor

can be used to interpolate the signal between the different samples.

2.2.1 Quantisation

The idea behind quantisation is approximating the analogue signal’s amplitude using

the discrete samples in order to digitise the signal [9]. A continuous signal with an

amplitude consisting of values ranging from −∞ to +∞ can be modelled discretely by

approximating the amplitude from a finite set of real numbers at each sample of the

7

signal, with a maximum error of ±½ LSB (Least Significant Bit) [1] [8] [9]. A

quantiser’s precision is measured in bits that are used for representing the output signal

in binary words according to 𝑁 = 2𝑛, where 𝑁 is the number of output points and 𝑛 is

the bit precision [1] [9]. For example, a 12-bit quantiser has 212 = 4096 possible

output values.

Quantisation of a signal 𝑥 in practice is equivalent to the addition of a uniform

distributed random noise signal 𝑒 (error) and the unquantised input signal 𝑥 [1] [7]. As

a result, this model of quantisation is only applicable if the error can be treated as

random, meaning the signal does not remain the same over numerous consecutive

samples. This is illustrated in Figure 2.5 by [1] below, where (a) represents the original

analogue signal, (b) represents the sampled analogue signal, (c) represents the digitised

signal and (d) represents the quantisation error. The output of the A/D converter in this

example is the signal represented by (c), where noise (d) has been added to the sampled

signal (b). For slowly varying signals, dithering can be utilised (see Section 2.2.2) [1].

Figure 2.5: Example of the digitisation process [1].

8

2.2.2 Dithering

Digitising a signal using the quantisation error is not feasible if the signal is of slowly

varying nature, meaning that it remains around the same value across many samples

[1]. To overcome this, a technique known as dithering can be used to introduce random

noise to the signal. As illustrated in Figure 2.6a by [1] below, the digitised signal values

do not follow the analogue signal due to the original signal varying less than ±½ LSB.

By introducing noise to the signal, as shown in Figure 2.6b by [1], the changes in the

original signal become more apparent in the digitised signal, as shown in Figure 2.6c

by [1]. The noise introduced in this case is normally distributed and has a standard

deviation of ⅔ LSB, which results in a peak-to-peak amplitude of 3 LSB [1].

Figure 2.6: Illustration of signal dithering [1].

9

2.3 The Fourier Transform

One key aspect of signal processing is analysing the frequency spectrum of signals for

the purpose of, for example, extracting frequencies of interest, analysing the behaviour

of the signal or making sure that the signal behaves as expected. For continuous,

periodic waveforms (Figure 2.7), the Fourier series has traditionally been used to

model the signals mathematically. However, most waveforms found in nature are non-

periodic (Figure 2.8), meaning that the Fourier series in its basic form is not applicable

for signal analysis. As a result, one of the most fundamental and most widely used

concepts of signal processing was formed, the Fourier transform – a modified version

of the Fourier series [8] [10].

Figure 2.7: Example of a periodic waveform [11].

Figure 2.8: Example of a non-periodic waveform [11].

10

Simply put, the Fourier transform is a function for extracting the frequencies present

in a signal by analysing the amplitude and phase components of each sinusoid [12]. It

can be used to convert a function of time ℎ(𝑡) to a function of frequency 𝐻(𝑓) and is

described mathematically in Equation 2.3.1 [8] [10].

𝑯(𝒇) = ∫ 𝒉(𝒕)𝒆−𝟐𝝅𝒋𝒇𝒕
∞

−∞

𝒅𝒕 = 𝑯(𝒋𝝎) = ∫ 𝒉(𝒕)𝒆−𝒋𝝎𝒕
∞

−∞

𝒅𝒕

 (2.3.1)

Similarly, its inverse (IFT) can be used to convert a function of frequency 𝐻(𝑓) back

to time-space ℎ(𝑡), as described mathematically in Equation 2.3.2 [8] [10].

𝒉(𝒕) = ∫ 𝑯(𝒇)𝒆𝟐𝝅𝒋𝒇𝒕
∞

−∞

𝒅𝒇 = 𝒉(𝒕) = ∫ 𝑯(𝒋𝝎)𝒆𝒋𝝎𝒕
∞

−∞

𝒅𝒇

 (2.3.2)

Due to the nature of analogue signals containing infinitely many data points, applying

the Fourier transform directly on analogue signals is highly impractical [8]. For this

reason, the Discrete Fourier Transform (DFT) was developed for use on discrete data

instead of the standard Fourier transform that can only be used on continuous data. As

a result, the signal to be examined must first be sampled into discrete data points, as

previously discussed in Section 2.2 [8]. A commonly used algorithm for calculating the

DFT is the Fast Fourier Transform (FFT). The DFT formula is described

mathematically in Equation 2.3.3.

𝑭[𝒏] = ∑ 𝒇[𝒌]𝒆−𝒋
𝟐𝝅
𝑵

𝒏𝒌

𝑵−𝟏

𝒌=𝟎

 (𝒏 = 𝟎, 𝟏, … , 𝑵 − 𝟏)

(2.3.3)

𝐹[𝑛] is the DFT of the sequence 𝑓[𝑘] and 𝑛 represents the harmonic number of the

transform component [8]. Similarly as for the standard Fourier transform, the inverse

DFT can be expressed mathematically, as shown in Equation 2.3.4.

𝒇[𝒌] =
𝟏

𝑵
∑ 𝑭[𝒏]𝒆𝒋

𝟐𝝅
𝑵

𝒏𝒌

𝑵−𝟏

𝒏=𝟎

 (2.3.4)

11

2.4 Filters

Filtering is an essential part of both analogue and digital signal processing. Analogue

filters work by running the signal through individual, electrical components that

interact with the signal in the desired way while digital filters work by manipulating

the signal digitally, for example, by using mathematical algorithms on signal data

stored in computer memory [8] [13]. Signal filtering can be useful during the whole

signal processing phase, as previously shown in Figure 2.2, and can, for example, be

used for (1) filtering of the raw, analogue signal, (2) filtering of the digitally replicated

signal and (3) filtering of the reconstructed, analogue signal.

Analogue and digital filters each have advantages and disadvantages over the other,

depending on various factors. The main advantages of digital filters, as presented in

[8], are:

1. Can implement certain features that are practically impossible using analogue

filters due to inconsistencies in electrical components.

2. Performance is independent of external factors such as temperature, which

eliminates the need for periodic calibration.

3. Filter variables such as frequency response can be adjusted programmatically.

4. Data can be stored in memory for future use, both filtered and original.

5. Filter performance is reproducible, as it does not depend on electrical

components which may have slight inconsistencies.

Analogue filters may, however, be preferred in certain situations, with the main

advantage over digital filters presented in [8] being speed. Digital filters depend on the

speed of the underlying processor while analogue filters do not. Hence, this factor has

to be considered, especially for real-time signal processing.

Filters are generally classified based on their frequency selectivity, meaning the

frequencies they let through. Depending on the frequency selectivity, filters can have

(1) low-pass, (2) high-pass, (3) band-pass or (4) band-stop response, as described in

[13] as:

(1) Only passes through low frequencies and high frequencies are significantly

reduced.

(2) Only passes through high frequencies and low frequencies are significantly

reduced.

12

(3) Only passes through frequencies in the middle band of the frequency range,

while frequencies outside the band are significantly reduced.

(4) Only passes through frequencies outside the middle band of the frequency

range, while frequencies inside the band are significantly reduced.

Frequency selective filters are an essential tool within the music industry and are

commonly used in equalisers (EQs) for elevating or cutting specific frequency bands

in the audio signal [2]. For this reason, digital solutions have become widely available

and are a standard in most Digital Audio Workstations (DAWs) today [2]. For guitarists,

EQ pedals are available that allow the player to directly tune the frequency bands

present in the signal coming from the guitar. These are essential as they allow the player

to mix the frequency in real time according to the environment.

The above-mentioned filter types are described more in detail and visualised in

Sections 2.4.1 – 2.4.4. Section 2.4.5 gives an introduction to the two main digital filter

types, namely finite impulse response filters (FIR) and infinite impulse response filters

(IIR).

2.4.1 Low-Pass Filters

The frequency plane can typically be divided into three areas: the passband, the

stopband and the transition area. The passband defines the frequency range included

in the filtered signal, the stopband defines the frequency range excluded from the

filtered signal and the transition area is the frequency range between these [13]. The

low-pass filter, as previously mentioned, filters out frequencies above the defined

passband edge frequency 𝑓𝑝𝑎𝑠𝑠, with the stopband ranging from 𝑓𝑠𝑡𝑜𝑝 to infinity. The

preferred signal gain in the passband should be between 0 dB and 𝑎𝑝𝑎𝑠𝑠 while the gain

in the stopband should be between −∞ and 𝑎𝑠𝑡𝑜𝑝 [13]. Low-pass filters are typically

used when it is of interest to eliminate frequencies of a signal above a certain threshold.

During A/D & D/A conversion, low-pass filters are commonly used both before the

sampling process to keep the signal frequency below the Nyquist frequency and after

the D/A conversion to eliminate imaging, as previously discussed in Section 2.2. Figure

2.9 by [13] below illustrates an example of a low-pass filter specification.

13

Figure 2.9: Example of a low-pass filter specification [13].

2.4.2 High-Pass Filters

Similarly to the principle of low-pass filters, high-pass filters allow frequencies in the

range of 𝑓𝑝𝑎𝑠𝑠 to infinity to pass, while filtering out frequencies in the range 0 to 𝑓𝑠𝑡𝑜𝑝

and keeping the signal gain below 𝑎𝑝𝑎𝑠𝑠 in the passband and 𝑎𝑠𝑡𝑜𝑝 in the stopband. As

previously mentioned, high-pass filters are used to eliminate frequencies of a signal

below a certain threshold, for example, unwanted low-frequency noise such as engine

rumble. An example of a high-pass filter specification is illustrated in Figure 2.10 by

[13] below.

Figure 2.10: Example of a high-pass filter specification [13].

14

2.4.3 Band-Pass Filters

As previously mentioned, band-pass filters filter out frequencies outside the defined

band, with a frequency range of 𝑓𝑝𝑎𝑠𝑠1 to 𝑓𝑝𝑎𝑠𝑠2. The band-pass filter has two

stopbands, namely 0 to 𝑓𝑠𝑡𝑜𝑝1 and 𝑓𝑠𝑡𝑜𝑝2 to infinity [13]. Similarly to the other filters,

the band-pass filter also implements the defined gain parameters 𝑎𝑝𝑎𝑠𝑠 and 𝑎𝑠𝑡𝑜𝑝 for

determining signal attenuation. For certain applications, it can be useful to define

separate stop-band gain parameters 𝑎𝑠𝑡𝑜𝑝1 and 𝑎𝑠𝑡𝑜𝑝2, in order to have different

attenuation depending on stopband [13]. Stopbands are used to keep the frequencies of

a signal between 𝑓𝑝𝑎𝑠𝑠1 and 𝑓𝑝𝑎𝑠𝑠2 and an example of this is voice recordings, as the

human voice typically ranges from 300 Hz to 3000 Hz [13]. An example of a band-

pass filter specification is illustrated in Figure 2.11 by [13] below.

Figure 2.11: Example of a band-pass filter specification [13].

2.4.4 Band-Stop Filters

Finally, band-stop filters are used to filter out frequencies in the defined band between

𝑓𝑝𝑎𝑠𝑠1 and 𝑓𝑝𝑎𝑠𝑠2. The frequencies allowed to pass are 0 to 𝑓𝑝𝑎𝑠𝑠1 as well as 𝑓𝑝𝑎𝑠𝑠2 to

infinity. Opposite to the band-pass filter, the band-stop filter has a single defined gain

parameter 𝑎𝑠𝑡𝑜𝑝 for the stopband while the passband may have individual gain

parameters 𝑎𝑝𝑎𝑠𝑠1 and 𝑎𝑝𝑎𝑠𝑠2 if necessary [13]. Band-stop filters are typically used to

15

filter out undesired signal noise at a certain frequency (notch filters). Figure 2.12 by

[13] below illustrates an example of a band-stop filter specification.

Figure 2.12: Example of a band-stop filter specification [13].

2.4.5 Digital Filters: FIR and IIR

Digital filters are typically categorised based on their impulse response, which in

simple terms can be described as how the output signal is affected when the filter reacts

to an input signal impulse. Finite Impulse Response (FIR) filters are digital filters that

only depend on past and current values of the input signal by calculating the filter

coefficients directly, based on the preferred frequency response of the filter. As a result,

the filter is said to be of non-recursive nature [13]. The impulse response ℎ(𝑘) of these

filters is generally finite, hence the name. The impulse response of a FIR filter, as

presented by [8], is described mathematically in Equation 2.4.1, where 𝑦(𝑛) is the

output signal.

𝒚(𝒏) = ∑ 𝒉(𝒌) 𝒙(𝒏 − 𝒌) 𝒌 = 𝟎, 𝟏, …

𝑵−𝟏

𝒌=𝟎

 (2.4.1)

Another type of digital filter is the Infinite Impulse Response (IIR) filter, meaning that

the impulse response in theory can be infinite. IIR filters depend on not just previous

16

and current values of the input signal but also previous values of the output signal and

are, as a result, recursive in nature [13]. Similarly to FIR filters, IIR filters can in theory

be mathematically modelled according to Equation 2.4.2 below [8].

𝒚(𝒏) = ∑ 𝒉(𝒌) 𝒙(𝒏 − 𝒌) 𝒌 = 𝟎, 𝟏, …

∞

𝒌=𝟎

 (2.4.2)

In practice, however, it is not practical to compute the output using Equation (2.4.2)

due to its infinite nature. Instead, the output of IIR filters can be computed recursively

according to Equation 2.4.3 below [8]. Note that the output signal of the filter depends

on both (previous and current) input and output signals.

𝒚(𝒏) = ∑ 𝒉(𝒌) 𝒙(𝒏 − 𝒌) =

∞

𝒌=𝟎

∑ 𝒂𝒌 𝒙(𝒏 − 𝒌) −

𝑵

𝒌=𝟎

∑ 𝒃𝒌 𝒚(𝒏 − 𝒌)

𝑵

𝒌=𝟎

(2.4.3)

Parameters 𝑎𝑘 and 𝑏𝑘 denote the filter coefficients, which are the main components for

filter calculations for IIR filters, whereas ℎ(𝑘) is of interest for FIR filter calculations

[8]. It should also be noted that when 𝑏𝑘 is set to zero in Equation 2.4.3, the equation

becomes equivalent to Equation 2.4.1 for FIR filters.

FIR filters are in some DSP applications preferred over IIR filters due to their main

advantage of being able to implement exactly linear phase response, due to their finite

structure [14]. FIR filters are generally also stable in nature if they are realised non-

recursively according to Equation 2.4.1 [8]. IIR filters are, therefore, not guaranteed to

be stable. FIR filters do, however, have the disadvantage of being more computation

heavy, due to having more filter coefficients required for processing [14]. Another

benefit of IIR filters is that analogue filters can in many cases be directly transformed

into IIR filters with similar specifications, due to their infinite nature [8].

As a conclusion, FIR filters are preferred when the number of filter coefficients are few

and limiting phase shifting is important [8]. IIR filters, in turn, are typically preferred

when sharp frequency cut-offs and high throughput is desired [8].

17

2.5 Digital Audio Formats

The process of converting an analogue signal to a digital signal, as described in Section

2.2, is known as Pulse Code Modulation (PCM) [15]. PCM allows for representing the

signal digitally using discrete signal samples according to the sampling rate (see Figure

2.13 below). As previously discussed, the advantages of digital audio are consistency

as well as opportunity for easy modification through DSP solutions.

Figure 2.13: Principle of Pulse Code Modulation (PCM) visuali sed [15].

Due to digital audio just being numbers representing the original audio signal, it can be

stored on practically any digital media with storage capabilities. One of the largest

breakthroughs in digital audio history was the Compact Disc (CD), released in 1982

[15]. The CD is a digital optical disc which can be read with a laser by detecting change

in the reflected light coming from the disc. The detected reflections can then be

converted into binary 1s and 0s in order to reconstruct the audio signal digitally [15].

18

CDs can generally be categorised into three main categories, namely CD-ROM

(Compact Disc – Read Only Memory), CD-R (Compact Disc – Recordable) and CD-

RW (Compact Disc – Rewritable) [16]. CD-ROMs are discs containing pre-written

data that cannot be altered. CD-Rs are discs that allow for writing once, while CD-RWs

are rewritable discs [16]. CDs are written by focusing a laser on the turning disc in

order to create marks in the physical discs. Depending on the disc type, different

technologies are used in order to permanently or temporarily create the marks [15].

CDs support 44.1 kHz 16-bit PCM audio with no musical degradation compared to the

original digital recording, since it carries the identical series of numbers as those

recorded [15].

When digital audio grew even more popular with computers becoming mainstream, a

huge variety of audio file formats evolved due to different performance needs,

especially in computer games [17]. Over time, system manufacturers developed

standard audio formats optimised for their own systems, such as:

• AIFF (Audio Interchange File Format) – Uncompressed audio data format

developed by Apple for usage in MacOS-based systems. The file format

contains a header with information about the number of channels, sampling

rate, bits per sample etc. The related format AIFF-C (AIFC) allows for storing

compressed data [17].

• WAV (Waveform Audio File Format), also known as RIFF WAVE –

Uncompressed audio data format developed by Microsoft and IBM for usage

in Windows-based systems. WAV also contains a header with similar

information about the data as AIFF [17].

Due to the size of raw, uncompressed audio data (PCM) and limitations in storage

capacity, compression has been used to shrink the audio data, with the consequence of

quality reduction. An example of a common compressed audio format is MPEG

(Moving Picture Experts Group), commonly associated with MP3 files. The MPEG

audio format uses lossy compression by removing data points with the compression

type noted in the file header [17]. The MPEG data consists of frames in sequence

where each frame consists of a 32-bit header with information about the data such as

sampling frequency, a 16-bit CRC check word for error detection, the layered audio

data, as well as, an ancillary data field carrying optional data [17]. An example of a

typical MPEG frame is illustrated in Figure 2.14 by [17] below, where (a) illustrates

the whole MPEG frame, (b) illustrates the audio data in layer 1 and (c) illustrates the

audio data in layer 2.

19

Figure 2.14: MPEG frame format [17].

2.6 Audio Quality & Data Rate

The importance of audio quality varies from application to application depending on

the desired end result. For example, telephone communication requires high enough

audio quality for the speech to sound natural, while at the same time maintaining low

data rate. Meanwhile, high audio quality is one of the most important aspects within

the music industry, which means that avoiding degradation of audio quality is essential

and must be taken into consideration during audio processing.

The generally defined hearing range for humans is 20 Hz – 20 kHz, meaning that a

high sampling frequency, resulting in a high data rate, is required in order to capture

and reproduce all sounds within the human hearing spectrum at high quality (sampling

rate of at least 40 kHz according to the Nyquist-Shannon sampling theorem) [1]. As

previously mentioned, CDs support a sampling rate of 44.1 kHz with 16-bit precision

per sample, resulting in a data rate of 44.1 kHz × 16 bits × 2 channels (stereo) =

1 411 200 bits/sec, or 1.411 kbits/sec. This is generally considered more than enough

for the human hearing to not be able to notice any degradation in audio quality. For

telecommunication, a sampling frequency of 8 kHz is commonly used, since natural

sounding speech only requires a bandwidth of around 3.2 kHz [1]. Sample-precision is

also generally reduced to 12 bits (or even 8 bits using a technique known as

companding by making the quantisation levels unequal) in telecommunication systems,

20

resulting in minimal noticeable drop in audio quality while keeping the data rate low

[1].

It is possible to reach lower levels of required data rates using compression, resulting

in low data rates but poorer quality. This is typically used when very low data rates are

required and a noticeable drop in quality is tolerated, for example, in certain military

communication systems [1]. One way to achieve this is using Linear Predictive Coding

(LPC) for estimating audio samples based on previous samples [1] [18]. LPC can be

mathematically modelled according to Equation 2.6.1 below, where 𝑛 is the model

order and 𝑦 denotes the predictor coefficients [18].

𝒙(𝒊) = ∑ 𝒚𝒌𝒙(𝒊 − 𝒌)

𝒏

𝒌=𝟏

(2.6.1)

Table 2.1 by [1] sums up the relation between the required audio quality and bandwidth,

sampling rate, number of bits per sample and data rate (bits/sec).

Table 2.1: Relation between audio quality, bandwidth, sampling rate,

number of bits and data rate [1]

21

3. Latency Reduction

As previously mentioned, the threshold for humans being able to distinguish between

two separate audio sources is around 50 ms (the Haas effect). In practice, this means

that audio played back in, for example, a stereo setting will be perceived as one source,

as long as the maximum delay between the two channels is 50 ms [2]. This number,

however, is derived from experiments conducted on a random sample of the general

population and could in practice be lower for trained musicians [19]. The Haas effect

also generally only applies to audio playback, not live performance. When producing

the audio yourself in a live setting, a delay between hitting the strings on a guitar and

hearing it played through a speaker introduces the element of cognitive dissonance -

how the sound is perceived as feedback to physical contact with the instrument.

In an experiment presented by [19], the subjects, who were professional musicians,

were presented with eight different latency levels introduced to an audio channel

coming from a musical instrument played by the subject. The different latency levels

were then graded by the subject on a scale from “Excellent” to “Horrible” depending

on the auditory feedback received, where the grades were described in [19, p. 3] as:

• “Excellent: Artefacts are imperceptible. Delay as well as artefacts cannot be

identified.

• Good: Some artefacts are perceptible, but not necessarily delay. The artefacts,

though perceptible, are not annoying and do not contribute badly to the

musician’s performance.

• Fair: Delay and/or artefacts are perceptible. The delay and/or artefacts are

slightly annoying, but in most cases would not affect the musician’s

performance.

• Bad: A considerable amount of delay is perceptible. The delay is annoying and

is detrimental to the musician’s performance.

• Horrible: A musician cannot work under these conditions.”

The experiment was conducted using both floor wedges and In-Ear Monitors (IEMs)

for playback of six different instruments (vocal, saxophone, drums, keyboard, electric

bass & electric guitar). The floor wedges were placed 120 – 180 cm away from the

subject, introducing an initial delay of circa 4.5 – 6.75 ms due to the speed of sound in

air at room temperature.

22

Looking at the results and focusing on the electric guitar, as it is most relevant to this

thesis, shows a perceived latency of up to only 4.5 ms using IEMs graded as “Good”

with 85% confidence (see Figure 3.1 and Table 3.1 below). For floor wedges, a latency

of up to 6.5 ms (plus additional latency due to placement as mentioned earlier) is

perceived as “Good” with 85% confidence. For a “Fair” grade, the numbers are 14.5

ms for IEMs and 16 ms for floor wedges respectively. This is significantly lower than

the Haas effect threshold of 50 ms.

Figure 3.1: Instrument comparisons at 85% confidence level [19].

Table 3.1: Instrument comparison table at 85% confidence level [19]

As can be concluded by looking at the results of the experiment presented above,

latency plays a crucial role in musical perception and playability of instruments. This

is an important aspect to take into account in the experimental part further down in this

thesis.

23

3.1 Latency of DSP Systems in General

The general DSP chain consists of a handful of steps that each contributes to the overall

latency. These main steps are presented and discussed in [20]:

• Analogue-to-digital conversion

• Digital-to-analogue conversion

• Digital sample rate conversion

• Digital signal processing

An alternative method for A/D and D/A conversion to PCM in real-time systems is

delta-sigma modulation (ΔΣ), which is an oversampling technique used where the

performance of Nyquist-rate converters (e.g. PCM-based) is not sufficient, such as for

higher resolution and linearity [21]. The typical ΔΣ-based converters have a latency of

0.25 – 1 ms, depending on the performance of the internal filters [20]. The digital

sample rate conversion process consists of several up- and down-sampling filters, again

introducing a latency of 0.5 – 10 ms, depending on filter performance [20]. Finally,

digital signal processing mainly depends on processing power and clock speed for

block-based processing, with typical buffer sizes ranging from 64 – 2048 samples [20].

This generally introduces a latency of 5 – 10 ms, depending on DSP performance [20].

For computer-based signal processing, such as in the experimental part of this thesis,

hardware performance plays a major role in achieving satisfying results. Apart from

the central processing unit’s (CPU) clock speed, the overall CPU load may also impact

the DSP performance negatively [20]. One way of overcoming this challenge is using

multi-threaded solutions. The usage of proper soundcards is another way of upping

processing performance, by introducing audio application programming interfaces

(APIs) that may eliminate factors affecting system latency [20].

Apart from hardware-related factors, the operating system (OS) scheduling on kernel-

level can also heavily affect latency, which is something that must be accounted for.

According to [20], buffering incoming audio samples prior to audio processing is a

method of reducing the computational load. Our implementation will rely on a similar

block-based sample processing, using trial and error to determine the minimum buffer

size the system can handle without affecting audio quality. The technical details of the

audio processing solution for digital guitar effects in real time presented in this thesis

will be discussed in more detail in Chapter 5.

24

Another major factor related to software is the choice of DSP algorithm. According to

[20], the three main latency sources related to the DSP algorithm are:

1. Block-based processing – Audio processing using FFT blocks may introduce

noticeable latency to the system. This can generally be solved by adaption of

the Short-Time Fourier Transform (STFT) by separating time segments into

smaller segments of equal length. Audio effects, such as convolutional

reverberation based on impulse responses of FIR filters, are not feasible using

only the FFT, due to latency. A solution for efficient convolution without

input/output delay has been proposed by [22].

2. Phase delay – The signal latency of a linear response FIR filter is directly

proportional to the number of filter coefficients 𝑁 in accordance with the

expression 𝑑 = (𝑁 − 1) / 2, where 𝑑 is the signal latency. Latency introduced

by digital filters is discussed in more detail below.

3. Architecture delay – Algorithm implementation architecture is a contributing

factor to overall DSP latency. A common approach in real-time processing is

delaying the audio stream by the same amount as the look-ahead buffer.

Simplified block diagrams of block-based processing systems based on FFT and STFT,

such as the ones mentioned above, are represented in Figures 3.2 and 3.3 below

respectively.

Figure 3.2: Block diagram of block -based audio processing (no time segmentation) .

Figure 3.2: Block diagram of block -based audio processing (time segmentation) .

25

Filter performance plays a significant role for reducing latency in the overall DSP

system. Professional-grade A/D and D/A converters today are typically based on the

multi-bit ΔΣ architecture, which is commonly implemented using linear phase FIR

filters [20]. As mentioned above, the general signal latency 𝑑 of a linear phase FIR

filter can be defined as 𝑑 = (𝑁 − 1) / 2. This is due to the fact that 𝑑 is closely linked

to the system group delay 𝐷(𝜔) (Equation 3.1.2), which can be derived from the phase

delay 𝑃(𝜔) (Equation 3.1.1) of the linear time invariant system, where 𝛳(𝜔) denotes

the phase response of the filter [23].

𝑷(𝛚) = −
𝜭(𝛚)

𝛚

(3.1.1)

𝑫(𝛚) = −
𝒅

𝐝𝛚
𝜭(𝛚)

(3.1.2)

The group delay becomes constant when the phase response is a linear function of the

frequency 𝜔. This delay is the main cause of latency in the ΔΣ-based A/D and D/A

conversion process [20].

For non-recursive (FIR), linear phase digital filters with order 𝑁, the transfer function

𝐻(𝑧) can be written as in Equation 3.1.3, and in its difference equation form as in

Equation 3.1.4 according to [20].

𝑯(𝒛) = ∏(𝒛 − 𝒛𝒊) = 𝒛𝑵 + 𝒉𝟏𝒛𝑵−𝟏 + 𝒉𝟐𝒛𝑵−𝟐+. . . +𝒉𝑵

𝑵

𝒊=𝟏

(3.1.3)

𝒚(𝒏) = 𝒃𝟎𝒙(𝒏) + 𝒃𝟏𝒙(𝒏 − 𝟏) + 𝒃𝟐𝒙(𝒏 − 𝟐)+. . . +𝒃𝑵𝒙(𝒏 − 𝑵)

(3.1.4)

In Equation 3.1.4, 𝑦(𝑛) denotes the output signal and 𝑥(𝑛) the input samples. The filter

coefficients 𝑏𝑛 also function as the impulse response of the FIR filter (compare with

Equation 2.4.1) [20]. Figure 3.3 by [20] below illustrates the filter components

(impulse response) for a generic FIR filter.

26

Figure 3.3: Filter coefficients (impulse response) for a generic FIR filter [20].

As can be seen from Equation 3.1.2, the group delay is a function of the phase response

𝛳(ω), which is defined as the phase (angle) of the frequency response and described

mathematically in Equation 3.1.5 [20].

𝜭(𝛚) = ∠(𝑯(𝒆𝒋𝛚)) (3.1.5)

The filter’s magnitude response is defined as the absolute value of the transfer function

as well as the function of ω, as described in Equation 3.1.6 below [20].

𝑮(𝛚) = |𝑯(𝒆𝒋𝛚)| = |∏ 𝒛 − 𝒛𝒊

𝑵

𝒊=𝟏

|

(3.1.6)

Filters used in professional-grade audio conversion are typically very high in order,

which results in a common practice of implementing multi-staging to reduce order and,

thereby, required computational power. This is done by separating the filtering across

different stages of sampling frequencies [24]. This process, however, does not reduce

overall filter group delay [20].

27

3.2 Real-Time Audio Processing in Python

The Python programming language has in recent years grown to a popular choice

among programmers, partly due to its short prototyping time and readability of code

[25]. For real-time applications, however, compiled languages, such as C and C++,

have for a long time been preferred due to efficiency [26]. Historically, the challenges

with implementing real-time solutions in Python stem from slow language

interpretation during execution time, which is common among interpreted languages

in general [25] [26]. Due to an active community of developers, however, today

numerous Python-based solutions exist for real-time audio processing, such as the

audio libraries PyAudio [27] and Sounddevice [28], which provide easily accessible

Python support for the multi-platform library PortAudio [29] for audio Input/Output

(I/O) [25]. PyAudio is presented in more detail in Section 3.2.1 to give an introduction

to audio processing in Python. Sounddevice will, however, be used in the experimental

part of this thesis, as discussed in Section 5.2.

A solution for improving execution efficiency in Python is the Cython programming

language, a compiled language based on Python for running Python code at the speed

of C [25] [30]. Cython allows, for example, implementing low-level numerical loops

running at C speeds, which is infeasible using traditional Python [30]. The Cython

language will be utilised for improving DSP efficiency in the experimental part of this

thesis and is discussed in more detail in Section 3.2.2.

3.2.1 PyAudio

PyAudio, as previously mentioned, is an audio library for Python providing bindings

for the PortAudio library. PyAudio handles audio I/O streams in real time and allows

for grouping audio samples at low level into chunks (buffers) for processing [25].

Buffer size is selected based on system capacity and performance requirements, and

optimal values can be determined using trial and error, typically ranging from 64 to

2048 samples [26]. PyAudio supports both blocking and non-blocking read and write

operations for multi-threaded solutions using asynchronous callbacks [26]. An example

of an asynchronous callback for processing an audio buffer of a sample file at a given

sampling rate is presented in Listing 3.1 by [26] below.

28

Listing 3.1: Asynchronous callback for audio buffer processing [26].

In the example given by [26] in Listing 3.1, the relevant variables are frame_count,

data, samples, y and out, where frame_count represents the buffer size, data

represents the available samples read from the file (wavefile.readframes()), samples

represents the samples read, converted from the raw PCM format to float values

(pcm2float()), y contains the processed data (process()), and out stores the final,

processed data converted back to raw PCM data (float2pcm()).

The example presented in Listing 3.1 processes samples from a pre-recorded audio file,

thus, does not represent real-time processing. For live audio processing, a stream can

be opened using PyAudio, according to Listing 3.2 below, instead of using a file

(wavefile in Listing 3.1).

Listing 3.2: Example of PyAudio live data stream.

The example for opening a live data stream with PyAudio given in Listing 3.2 contains

parameters format, channels, rate, input, frames_per_buffer and

input_device_index, where format is the audio data format, channels is the number

of audio channels (1 = mono, 2 = stereo), rate is the sampling rate, input represents

stream type (input stream true/false), frames_per_buffer represents buffer size and

input_device_index is the index of input audio device to use.

The audio processing in the experimental part of this thesis will be based on the above-

mentioned fundamentals using the audio library Sounddevice.

def callback(i_d, frame_count, t_info, f):

 data = wavefile.readframes(frame_count)

 samples = pcm2float(data)

 y = process(data)

 out = float2pcm(y)

 return (out, pyaudio.paContinue)

stream = pyAudio.open(

 format = pyaudio.paInt16,

 channels = 2,

 rate = 44100,

 input = True,

 frames_per_buffer = 1024,

 input_device_index = 0

)

29

3.2.2 Cython

For efficiency-critical, real-time applications one of the largest challenges when using

Python is execution speed. This is due to it being an interpreted language, meaning that

the application bytecode is interpreted at runtime by the Python virtual machine (VM)

and converted into machine code [26] [31]. Compiled languages such as C do not

require a VM or interpreter since the C code is already converted into machine code at

the compilation stage [31].

The Cython programming language is an extension of the Python language, with the

purpose of integrating the speed of C in Python code [30] [32]. Cython works as a

bridge between the two, where Cython code can be compiled into machine code and

utilised by Python as an extension module, a pre-compiled module that can be run by

the Python VM without interpretation needed [31]. This provides a solution for mostly

keeping the high-level nature and flexibility of Python, while utilising the performance

benefits of C [31]. Python code is for the most part already valid Cython code with

very few exceptions, which allows for optimising already existing Python code using

Cython at a later stage [32].

An example presented by [31] illustrates the similarities and differences between

Python (Listing 3.3), C (Listing 3.4) and Cython (Listing 3.5) code, as well as the

execution times (Table 3.2), for the different implementations of the function fib(n)

for computing the n:th Fibonacci number.

Listing 3.3: Python implementation of fib(n) [31].

Listing 3.4: C implementation of fib(n) [31].

def fib(n):

 a, b = 0.0, 1.0

 for i in range(n):

 a, b = a + b, a

 return a

double fib(int n) {

 int i;

 double a = 0.0, b = 1.0, tmp;

 for (i = 0; i < n; ++i) {

 tmp = a; a = a + b; b = tmp;

 }

 return a;

}

30

Listing 3.5: Cython implementation of fib(n) [31].

As can be seen from Listings 3.3 and 3.5, the original Python implementation of fib(n)

has been modified to implement declaration of the static C variables i, a and b (Listing

3.4). The execution times for the different implementations are summarised in Table

3.2 by [31] below.

Table 3.2: Execution time (ns) for the different implementations of fib(n) [31]

The “fib(0)” column measures the call overhead of the function, meaning how long

purely the function call takes [31]. The “Pure Python” and “Pure C” rows contain

results for running the function in Python and C respectively. The “C extension” row

contains results for using an extension module for the implementation written in C and

the “Cython” row contains results for the Cython-based implementation. These require

conversion of Python objects to C data, computation of the Fibonacci number and

conversion back to Python data. The Cython-based solution, however, has a call-

overhead of about 2.5 times less than the extension-based implementation, and

provides a speedup up to a factor of about 50 over the implementation based on pure

Python for “fib(90)”.

In the experimental part of this thesis, the fundamental concepts of Cython will be

utilised to explore the potential performance improvement when using Cython over

pure Python, for the real-time implementations of guitar effects.

def fib(int n):

 cdef int i

 cdef double a = 0.0, b = 1.0

 for i in range(n):

 a, b = a + b, a

 return a

31

4. Visualisation of Common Guitar Effects

Plucking a guitar string results in a standing wave, sounding at its fundamental

frequency 𝑓1 as well as harmonic frequencies (overtones) 𝑓𝑛 = 𝑛𝑓1, 𝑛 = 1, 2, 3 … [33].

These harmonics are produced at different relative intensities across different guitars,

distinguishing one instrument from another [33]. The low E string on a guitar plucked

individually produces the E2 note with a fundamental frequency of 82.4 Hz alongside

its harmonics E3 (164.8 Hz), B3 (247.2 Hz), E4 (329.6 Hz), G#4 (412 Hz), B4 (494.4

Hz), D5 (576.8 Hz) etc. [34]. This is visualised in Figures 4.1 – 4.3 below using the

open-source, digital audio editor Audacity [35], when plucking the low E string (E2)

of an electric guitar. The recording process chain consists of the Yamaha Pacifica 112J

electric guitar (Appendix A) played through the Focusrite Scarlett 2i2 (3rd Gen) audio

interface (Appendix B) and recorded with Audacity. Figure 4.1 below shows the

waveform of the recorded guitar signal when the low E string is plucked, with a signal

length of approximately 2.5 s.

Figure 4.1: Waveform of the plucked low E string (E2) on the electric guitar.

The spectrum in Figure 4.2 below utilises Audacity’s frequency analysis tool for

plotting the spectrum. The selected algorithm chosen is “Spectrum” and a buffer size

of 8192 samples is used, with a window function of type “Hanning”.

32

Figure 4.2: FFT of the plucked low E string .

Analysing the frequency spectrum of the signal shows the frequency magnitudes of the

signal (Figure 4.2). The fundamental frequency 82.4 Hz is of largest magnitude and the

harmonic frequencies are clearly visible. Similar results are seen from the spectrogram

of the signal using Audacity’s spectrogram tool, as seen in Figure 4.3 below, using

identical settings as in Figure 4.2.

Figure 4.3: Spectrogram of the plucked low E string.

33

Audacity’s spectrogram tool will be further utilised for visualising energy across the

frequency band in Sections 4.1 – 4.5, where guitar effects are analysed for a strummed

E chord. These sections introduce five popular guitar effects using visualisation of the

signal waveform as well as signal spectrogram for the five common guitar effects:

• Overdrive (distortion)

• Reverberation

• Delay

• Phaser

• Wah-wah

Figure 4.4 below illustrates the approximately three-second-long signal waveform of

an open E chord with clean sound (raw guitar input) and Figure 4.5 illustrates the

spectrogram of the same signal. This is the reference audio used in Sections 4.1 – 4.5,

for signal processing using Audacity’s built-in effects.

Figure 4.4: Guitar signal (clean) .

Figure 4.5: Spectrogram of guitar signal (clean).

34

4.1 Overdrive (Distortion)

The Overdrive effect is one of the most popular guitar effects used, especially in rock

music. It is classified as a non-linear effect and, from a technical point of view, it can

be described, according to [36, p. 117], as: “a first state where a nearly linear audio

effect device at low input levels is driven by higher input levels into the non-linear

region of its characteristic curve.” The main cause of the distinct sound is, therefore,

the non-linear part of the signal [36].

The effect is generally divided into three different types, namely overdrive, distortion

and fuzz. Overdrive typically operates in the linear as well as non-linear region,

resulting in a warm and smooth sound [36]. Distortion operates for the most part in the

non-linear region reaching the upper limits, resulting in sounds all the way from warm

overdrive to heavy, metallic sounds, typically associated with metal and grunge [36].

Fuzz is another type of distortion as a result of completely non-linear behaviour of the

signal [36].

Figures 4.6 and 4.7 below describe the signal waveform and spectrogram respectively

for the signal processed using Audacity’s “Distortion” effect. As can be seen from

Figure 4.6, non-linear amplification has been applied to the signal, resulting in a

distorted sound and higher energy output (Figure 4.7).

Figure 4.6: Guitar signal (overdrive).

Figure 4.7: Spectrogram of guitar signal (overdrive).

35

4.2 Reverberation

Reverberation, or reverb, falls into the category of spatial effects, which refers to

modification of the audio signal localisation cues [37]. Audio signals are typically

affected by the environment, as they travel to the listener from the source, reflecting

off various objects on the way in various directions, and the resulting effect is generally

referred to as reverberation [36]. Reverberation is affected by the size and shape of the

surrounding environment as well as the objects within it that interact with the audio

signal [36].

Artificial reverberation has existed since the 1960s and was originally initiated by

Manfred Schroeder, inventor of the Schroeder Reverberator [38]. This reverberator

consists of a series of connected all-pass filters, parallel feedback comb filters (IIR) as

well as a mixing matrix [38]. The signal waveform and spectrogram, illustrated in

Figures 4.8 and 4.9 below, show the results of Audacity’s “Reverb” effect, which is

based on the “Freeverb” algorithm by “Jezar at Dreampoint”, based on the Schroeder

Reverberator. The algorithm uses eight parallel feedback comb filters followed by four

all-pass filters in series [38]. As can be seen from Figure 4.9, the signal energy contains

more variation across the audio spectrum due to the artificial reverberation effect. This

results in a larger sound perceived compared to the original clean sound.

Figure 4.8: Guitar signal (reverb).

Figure 4.9: Spectrogram of guitar signal (reverb).

36

4.3 Delay

Delay, or echo, is the effect of audio waves echoing for an extended period of time.

This happens naturally similarly to the reverberation effect, where sound waves are

reflected back to the source with time delay. Over large distances this results in an

audible echo. Delay pedals typically offer the ability to tune delay time (how often the

sound is echoed) and duration (how long the echoing lasts).

Since reverberation is a form of delay, the implementation of echo can be done using

comb filters [36]. FIR comb filters work by adding a time-delayed signal back to the

input signal while IIR comb filters implement a feedback loop, feeding the delayed

signal back to the input signal [36]. The two tuning parameters typically used are for

tuning time delay as well as relative amplitude of the delayed signal to control how fast

the echo fades out [36].

Figures 4.10 and 4.11 below illustrate the waveform and spectrogram of a signal

processed with Audacity’s “Echo” effect, using a time delay of 0.6 seconds and delay

factor of 0.5, reducing the amplitude by half each time. In Figure 4.11, it is clearly

visible when the audio is echoed at equal intervals.

Figure 4.10: Guitar signal (delay).

Figure 4.11: Spectrogram of guitar signal (delay).

37

4.4 Phaser

The phaser effect is an effect of time-varying filters and is typically realised using

notch filters, a type of band-stop filter that filters out select frequencies [13] [36].

Typically, the input signal is processed by a set of notch filters and then combined with

the unprocessed signal, causing phase cancellations and enhancements that result in a

clearly audible effect known as phasing [36]. The phaser signal chain is illustrated in

Figure 4.12 by [36] below.

Figure 4.12: Phaser signal chain [36].

Figures 4.13 and 4.14 below illustrate the signal waveform and spectrogram for a signal

processed using Audacity’s “Phaser” effect. The phase cancellation is clearly visible in

the spectrogram of the signal, illustrated in Figure 4.14.

Figure 4.13: Guitar signal (phaser).

Figure 4.14: Spectrogram of guitar signal (phaser).

38

4.5 Wah-wah

Another effect based on time-varying filters is the wah-wah effect. This effect is the

result of a low-bandwidth band-pass filter with variable cut-off frequency [36]. Wah-

wah pedals allow the player to shift the cut-off frequency of the filter on the input signal

up and down using the foot [36]. The filtered signal is finally added to the input signal,

as illustrated in Figure 4.15 below, resulting in the typical wah-wah sound.

Figure 4.15: Wah-wah signal chain [36].

Figures 4.16 and 4.17 below illustrate the signal waveform and spectrogram for a signal

processed using Audacity’s “Wah-wah” effect. The effect on the frequency spectrum is

clearly visible in Figure 4.17.

Figure 4.16: Guitar signal (wah-wah).

Figure 4.17: Spectrogram of guitar signal (wah-wah).

39

5. Python Experimentation

This chapter contains the experimental part of this thesis. The main focus is

implementing low-latency guitar effects in real time, using the concepts presented

above, with the goal of answering the three following questions:

1. How can common guitar effects such as overdrive, reverberation and delay be

implemented digitally using Python?

2. How can signal latency be reduced during the DSP process using Cython?

3. How can a guitar effect be implemented digitally that would not be feasible

using traditional, analogue methods?

The first question aims to implement the already existing guitar effects overdrive,

reverberation and delay using Python, in order to give a foundation for the rest of the

experiment to build upon. The goal is to overcome any challenges related to the digital

implementation of the effects at an early stage. Python offers numerous libraries for

signal processing, such as NumPy [39] and Librosa [40], which both will be used for

audio processing.

One of the most essential parts of real-time signal processing is minimising signal

latency, as discussed in Chapter 3. The aim is to integrate Cython to optimise the

sections responsible for DSP computations to address this challenge. The overall

latency for the processed signal is measured using both the Focusrite Control [41]

software, as well as using Python’s Time library, both before and after processing and

optimisation.

The final goal of the experiment is to implement a signal harmoniser that lowers or

raises the signal frequency in octaves. Frequency manipulation has proven to be

difficult using traditional, analogue methods but can effortlessly be done digitally.

Digital solutions also offer more versatility than their analogue counterparts and allow

for continuous modification and tuning.

The gear and libraries used, as well as their parts in the system chain, are listed and

described in Section 5.1. The underlying OS on the computer used in the experiment is

Microsoft’s Windows 11 [42].

40

5.1 Signal Chain

The signal chain of the experiment consists of both hardware and software. The main

hardware used in the experiment include:

• Yamaha Pacifica 112J electric guitar (Appendix A)

• Focusrite Scarlett 2i2 audio interface (Appendix B)

• AMD Ryzen 7 7800X3D CPU (Appendix C)

The electric guitar features an HSS (humbucker, single coil & single coil) pickup

arrangement, with a combination of the neck and middle pickups used for the

recordings in the experiment. The signal is amplified and run through an A/D converter

in the audio interface and forwarded to the CPU.

The software used in the experiment (including Python libraries) include:

• Python (Sounddevice, Time, NumPy & Librosa)

• Cython

• Focusrite Control

• Audacity

Python is the main programming language used for implementation, with use of Cython

to optimise DSP computations. Audacity is mainly used for spectrum analysis as well

as spectrogram visualisation of the processed signal. The Focusrite Control software is

used to measure signal latency, in addition to Python’s Time library. The hardware and

software system chains are visualised in Figures 5.1 and 5.2 below respectively.

Figure 5.1: Hardware signal chain used in the experiment [43] [44].

41

Figure 5.2: Software signal chain used in the experiment.

5.2 Audio Analysis in Python

The Sounddevice audio library provides bindings to the PortAudio library much

similarly to PyAudio, as discussed in Section 3.2.1. The reason Sounddevice is chosen

over PyAudio is mainly due to the better support for live audio capture using

Sounddevice, whereas PyAudio is better suited for reading audio files. Setting up a

continuous I/O audio stream in Python using Sounddevice in its most basic form can

be done as shown in Listing 5.1, using a modified version of the example code given

by [28]:

Listing 5.1: Required Python code for opening a continuous I/O stream

using the Sounddevice audio library [28].

def callback(indata, outdata, frames, time, status):

 if status:

 print(status)

 outdata[:] = indata

sd.Stream(device=(input_device, output_device),

 samplerate=samplerate,

 blocksize=blocksize,

 latency=latency,

 channels=channels,

 callback=callback)

42

Sounddevice’s Stream class opens a PortAudio stream for simultaneous input and

output using NumPy arrays [28]. The parameters required are device, samplerate,

blocksize, latency and channels, where device specifies which input and output

device to use (by index), samplerate specifies the signal sampling rate, blocksize

specifies the block (buffer) size of the stream, latency specifies the desired latency

between input and output signal in seconds, and channels specifies the number of

channels to use (mono/stereo). The Stream class also takes a function callback as input

parameter for consuming the stream. This is where the signal processing is applied on

the continuous stream.

Apart from minimising latency introduced by the signal processing, the focus in

Section 5.4, eliminating other sources of latency at this stage is key. This mainly

includes reducing system-induced latency stemming from the OS and audio APIs. As

shown by [45], the usage of the Audio Stream I/O (ASIO) API [46] by Steinberg can

significantly reduce latency, especially on Windows-based operating systems. The

ASIO protocol enables communication directly between the hardware and the software

in question, bypassing OS-specific audio APIs, which in turn can significantly reduce

latency [46]. ASIO is supported by both the Focusrite Scarlett 2i2 audio interface and

the Sounddevice audio library out of the box and is utilised in the experiment for low-

latency audio I/O.

Signal latency can further be reduced by choosing a high enough sampling rate along

with a small enough buffer size. The Focusrite Scarlett 2i2 audio interface supports

sampling rates between 44.1 kHz and 192 kHz, with buffer sizes between 16 and 1024

samples. Testing different combinations of sampling rate and buffer size can be done

to determine system capability and performance, with the goal being as high as possible

sampling rate, combined with as low as possible buffer size for minimal latency.

The latency test is performed by opening the stream using different combinations of

sampling rates and buffer sizes. The latency reported by Focusrite Control is the round-

trip latency for the signal, meaning the time taken between input and output of the

signal [47]. The sampling rates used are 48 kHz, 96 kHz, 176.4 kHz and 192 kHz, with

buffer sizes of 32, 64, 128, 256 and 512 samples. Figure 5.3 below shows the Focusrite

Control software, with latency information listed at the bottom. The results of the

latency measurement are presented in Table 5.1 below, highlighting the latency

measured at each sampling rate and buffer size.

43

Figure 5.3: Focusrite Control user interface.

Table 5.1: Latency (ms) using different combinations of sampling rate and buffer size

Sample Rate (Hz) Buffer Size (samples) Latency (ms)

48 000 32 4.5

48 000 64 6.9

48 000 128 13.5

48 000 256 24.9

48 000 512 45.5

96 000 32 3.4

96 000 64 4.0

96 000 128 6.4

96 000 256 13.0

96 000 512 24.4

176 400 32 3.0

176 400 64 3.3

176 400 128 4.1

176 400 256 6.5

176 400 512 13.4

192 000 32 2.9

192 000 64 3.2

192 000 128 3.9

192 000 256 6.2

192 000 512 12.9

44

None of the tests performed above, with results listed in Table 5.1, showed signs of

negatively impacting audio quality, such as introducing crackling or distortion,

meaning that the CPU and audio interface seemingly can keep up with all sampling

rates and buffer sizes included in the tests. For this reason, a balanced solution with

low enough latency and high enough buffer size is a sampling rate of 96 kHz with a

buffer size of 128 samples. This combination is used for the DSP in Section 5.3 below.

5.3 Implementation of Guitar Effects

Using the code highlighted in Listing 5.2 below, a continuous audio I/O stream can be

opened for signal processing. The parameters used are listed below:

• Sampling rate: 96000 Hz

• Buffer size: 128 samples

• Channels: 2 (stereo)

• Latency: 0 seconds (Sounddevice internal latency between I/O)

Listing 5.2: Python code used for opening continuous I/O stream.

A general overdrive effect is implemented in Section 5.3.1 and a combined

reverberation and delay effect is implemented in Section 5.3.2. The attempt of

implementing a signal harmoniser is described in Section 5.3.3. Time and latency

measurements are not the focus of this section and are instead presented in Section 5.4.

The main focus of this thesis is not the implementation of the guitar effects themselves

but rather low-latency, real-time audio processing and streaming using Python. The

effects presented below are not full-fledged effects but rather implemented in their

simplest form, without proper filtering that would normally be used before and after

processing the input signal.

Sounddevice.Stream(device=(self.input_device, self.output_device),

 samplerate=self.rate,

 blocksize=self.block,

 latency=self.latency,

 channels=self.channels,

 callback=self.callback,

 dtype=numpy.float32)

45

5.3.1 Overdrive

The audible overdrive effect, as mentioned in Section 4.1, is the result of non-linear

behaviour of the audio signal. A common approach for emulating the analogue

overdrive effect digitally is using the non-linear, trigonometric function hyperbolic

tangent 𝑡𝑎𝑛ℎ [48]. Using a gain variable for input signal amplification and threshold

variable for limiting the upper- and lower signal values (clipping), a generic overdrive

effect can be implemented as described in Listing 5.3 below.

Listing 5.3: Python implementation of the overdrive effect.

The implemented overdrive effect works by amplifying the signal according to the

provided gain and returns the values of the hyperbolic tangent of the input signal

values, with clipping at the provided threshold. The waveform of the processed signal,

using a gain parameter of 10 with a threshold value of 0.5, is visualised in Figure 5.4

below for a three-second-long strummed E chord. The spectrogram for the processed

signal is illustrated in Figure 5.5. Reference audio is presented in Appendix D.

Figure 5.4: Waveform of signal with implemented overdrive effect.

Figure 5.4 clearly shows that the signal has been amplified and clipped at a level of

0.5, resulting in the desired overdrive sound. Similar signal behaviour was previously

observed in Figure 4.6.

def overdrive(self, input_signal, gain, threshold):

 output_signal = numpy.tanh(input_signal * gain) * threshold

 return output_signal

46

Figure 5.5: Spectrogram of signal with implemented overdrive effect.

Comparing the spectrograms visualised in Figure 5.5 and Figure 4.7, similar behaviour

can be observed, where the signal energy is significantly larger compared to the

spectrogram for the clean signal visualised in Figure 4.5.

5.3.2 Reverberation and Echo

As previously discussed in Section 4.3, the reverberation and delay (echo) effects can

be realised using FIR comb filters, which work by adding the time-delayed signal back

to the input signal. Due to a small buffer size of 128 samples and a sampling rate of

96000 Hz, the buffer can only store the last, approximately, 1.3 ms of audio data. This

can be overcome using a circular buffer of length c_buffer_max that is continuously

updated with audio samples to store for further processing [49]. The implementation of

the echo effect is described in Listing 5.4 below. The circular buffer’s length determines

the length of the repeated echo.

Listing 5.4: Python implementation of the combined reverberation and echo effect.

def reverb_and_echo(self, input_signal, delay, decay):

 delay_samples = int(delay * self.rate)

 num_samples = len(input_signal)

 output_signal = numpy.zeros_like(input_signal)

 i = 0

 while i < num_samples:

 delayed_index = (self.buffer_index - delay_samples)

 % self.c_buffer_max

output_signal[i] = input_signal[i] + self.c_buffer[delayed_index]

self.c_buffer[self.buffer_index] = input_signal[i] + decay

 * self.c_buffer[self.buffer_index]

 self.buffer_index = (self.buffer_index + 1) % self.c_buffer_max

 i += 1

 return output_signal

47

The implementation echoes the input signal with a given delay in seconds as well as

amplitude decay between 0 and 1. The spectrogram for the processed signal, using a

delay of 0.5 seconds with decay 0.5, is presented in Figure 5.6 below for a three-

second-long strummed E chord. Reference audio is presented in Appendix D.

Figure 5.6: Spectrogram of signal with implemented reverberation and echo effect.

The spectrogram for the implemented echo effect in Figure 5.6 clearly shows the echo

effect repeating the signal at equal intervals of the given delay of 0.5 seconds.

5.3.3 Harmoniser

The final guitar effect to be implemented is the harmoniser, an effect based on pitch

shifting. Pitch shifting is the procedure of changing the signal pitch while keeping the

original signal length [50]. The reason this effect is chosen is that real-time pitch

shifting for the electric guitar has proven to be difficult using analogue methods [50].

Digital solutions, however, can be implemented effortlessly, as will be highlighted

below.

For this experiment, the pitch-shifting technique will be used to increase the signal

pitch one octave while also keeping the original signal untouched. The original guitar

signal in mono will then be assigned to one channel of the output signal while the pitch-

shifted signal will be assigned to the other channel, resulting in the fundamental

frequency as well as the first overtone sounding simultaneously in stereo. It should be

noted, however, that the goal of the experiment is to showcase a working, but basic,

implementation of the harmoniser effect using pitch shifting in Python and not an

entirely acoustically pleasing ensemble.

48

The pitch shifting in this experiment is inspired by [51] and implemented using time

stretching as well as time-domain-based resampling. Time stretching is the operation

of changing signal duration while keeping the original pitch, and is, therefore,

essentially the opposite of pitch shifting [50]. Since the focus of the experiment is not

on the implementation itself but rather a real-time solution for a harmoniser effect, the

DSP algorithms utilised are implemented by the Python library Librosa.

Pitch shifting the signal up one octave requires resampling the signal at half the original

sampling rate 𝑓𝑠 / 2 [51]. The original buffer size is kept intact if the signal is first time-

stretched to double its length. For these operations, Librosa offers the functions

time_stretch(y, rate) (where y is the input array to be stretched and rate is the

stretch factor, which indicates if the signal should be slowed down or sped up) and

resample(y, orig_sr, target_sr) (where y is the input array to be resampled, orig_sr

is the original sampling rate and target_sr is the target sampling rate). For the

algorithms to work properly, the input signal buffer size must be increased to 512

samples, resulting in a round-trip latency, as reported by Focusrite Control, of 24.4 ms.

The implementation for the pitch-shifting algorithm is described in Listing 5.5 below,

utilising the time-stretch implementation described in Listing 5.6.

Listing 5.5: Python implementation of the pitch shifting function.

Listing 5.6: Python implementation of the time stretching function.

def pitch_shift(self, input_signal, shift):

 target_sampling_rate = self.rate * shift

 stretched_signal = self.time_stretch(input_signal, shift)

 resampled_signal = librosa.resample(

 stretched_signal,

 orig_sr=self.rate,

 target_sr=target_sampling_rate)

 return resampled_signal

def time_stretch(self, input_signal, stretch_factor):

 output_signal = librosa.effects.time_stretch(

 input_signal,

 rate=stretch_factor)

 return output_signal

49

This implementation produces a pitch-shifted output signal one octave higher than the

input signal. However, as also discovered in [51], the resampling process introduces

data loss, which results in uneven transitions between audio segments at equal intervals

the size of the buffer. These discontinuities are visualised in Figure 5.6 and result in

audible clicks.

Figure 5.7: Output signal discontinuity in lower (right) channel

marked with a red line .

The artefacts can be partially eliminated using the same approach as utilised in [51],

known as crossfading. This approach involves scaling the resampling of the signal up

by a factor of two once more before creating two signals phase-shifted by 180 degrees,

as shown in Listing 5.7 [51]. The next step is modulating the signal by a triangular

distribution, as also shown in Listing 5.7, before finally combining the signals [51].

Crossfading improves the audio quality substantially but the crossfade modulation is

still obvious in the output signal, as can be heard from the reference audio presented in

Appendix D.

Listing 5.7: Python code for crossfading (inside the pitch_shift() function).

Create two signals phase-shifted by 180 degrees

signal1 = resampled_signal[::2]

signal2 = resampled_signal[1::2]

Modulate amplitude using triangular distribution

fade_in = numpy.linspace(0, 1, len(signal1) // 2)

fade_out = numpy.linspace(1, 0, len(signal1) // 2)

fade = numpy.concatenate((fade_in, fade_out))

signal1 *= fade

signal2 *= fade[::-1] # Reverse fade for second signal

output_signal = signal1 + signal2

50

5.4 Latency Reduction Using Cython

Due to Python’s interpreted nature, loops are where the largest performance gains can

be seen when utilising Cython [30]. For the implementation of guitar effects presented

in Sections 5.3.1 – 5.3.3, this means that the largest optimisations can be achieved for

the combined reverberation and echo effect, as it is the only effect implemented using

loops. The other effects rely on library-specific implementations of the algorithms,

such as NumPy’s tanh() and Librosa’s resample(). This approach was chosen, since the

main focus of this thesis is not on the actual implementation of the guitar effects in

itself but rather on the concept of real-time audio processing in Python as a whole.

Optimising the implementation of the combined reverberation and echo effect

algorithm, described in Listing 5.4, using Cython mainly requires setting data types for

the variables. This can be done using the custom Cython syntax cdef. Setting data types

significantly reduces execution time by eliminating the Python overhead otherwise

required for wrapping Python objects during runtime [52]. The Cython-optimised

implementation of Listing 5.4 is given in Listing 5.8 below.

Listing 5.8: Cython-optimised implementation of Listing 5.4.

DYTPE = np.float32

ctypedef np.float32_t DTYPE_t

cpdef np.ndarray[DTYPE_t, ndim=2] echo(np.ndarray[DTYPE_t, ndim=2]

input_signal, double delay, double decay, int rate,

np.ndarray[DTYPE_t, ndim=2] c_buffer, int buffer_index,

int c_buffer_max):

 cdef int delay_samples = int(delay * rate)

 cdef int num_samples = input_signal.shape[0]

 cdef int i, delayed_index

 cdef np.ndarray[DTYPE_t, ndim=2] output_signal

 output_signal = np.zeros_like(input_signal)

 while i < num_samples:

 delayed_index = (buffer_index - delay_samples) %

 c_buffer_max

 output_signal[i] = input_signal[i] +

 c_buffer[delayed_index]

 c_buffer[buffer_index] = input_signal[i] + decay *

 c_buffer[buffer_index]

 buffer_index = (buffer_index + 1) % c_buffer_max

 i += 1

 return output_signal

51

Execution time measurements are done using the function perf_counter() from

Python’s Time library. This method returns the system-wide time taken (in seconds) to

perform the execution between two points in the code [53]. Execution time is measured

for both the combined reverberation and echo effect algorithm (Listing 5.4) and the

Cython-optimised algorithm (Listing 5.8), using different buffer sizes to compare

execution time over loops with different numbers of iterations. The mean execution

time (MET) over 500 method calls, for both the non-optimised Python implementation

of the algorithm and the optimised implementation, is given in Table 5.2 below, for

varying buffer sizes between 128 and 1024 samples.

Table 5.2: Execution time for the Python and Cython implementations of the combined

reverberation and echo effect algorithm using different buffer sizes

As can be seen from the results, the Cython implementation is significantly faster than

its counterpart implemented in Python. The real-world impact of this speedup using the

Cython-optimised algorithm is further discussed in Chapter 6.

Buffer Size (Samples) Python MET (ms) Cython MET (ms)

128 0.382435 0.006452

256 0.758102 0.007027

512 1.469831 0.007394

1024 2.858569 0.007854

52

6. Results

This chapter presents the subjective and objective results of the experiment performed

in Chapter 5. The results of the experiment can be evaluated separately for the guitar

effect implementations in Section 5.3 and for the latency reduction in Section 5.4.

Section 6.1 below discusses the guitar effect implementations from both a subjective

and objective point of view, as it is difficult to evaluate the effects implemented strictly

objectively. The result of the latency reduction is presented in Section 6.2.

6.1 Evaluation of Guitar Effect Implementations

One focus of the thesis was implementing the three common guitar effects overdrive,

reverberation and delay in Python using real-time signal processing. This was achieved

using audio libraries Sounddevice, NumPy and Librosa, since the focus was not strictly

limited to the actual implementations but rather the concept of implementing real-time

effects as a whole. The reverberation and delay effects were implemented as a single

algorithm due to their similar nature, as discussed in Sections 4.2 and 4.3.

The implementations, as illustrated in Listings 5.3 and 5.4, were tested on the AMD

Ryzen 7 7800X3D CPU (Appendix C) with a sampling rate of 96 kHz and a buffer size

of 128 samples for minimum latency, using the Focusrite Scarlett 2i2 audio interface

(Appendix B). This resulted in an initial latency, as reported by Focusrite Control, of

6.4 ms.

Using the Time library from Python, the mean execution time (MET) for each effect

was monitored (Table 6.1). For the overdrive effect implementation, the MET over 500

method calls was reported as approximately 0.000016 seconds, or 0.016 ms. This delay

is so insignificant that it can be omitted from the results. Similarly, for the combined

reverberation and delay effect, a MET over 500 method calls of approximately

0.000382 seconds, or 0.382 ms, was reported. This adds up to a total delay of 6.78 ms,

without taking other factors such as OS-level scheduling and other processing delays

into account. This delay is well below the Haas threshold and would most likely be

graded somewhere between “Good” and “Fair” in a similar test as the one performed

in [19], as discussed in Chapter 3. As this effect is loop-based it was later the target for

latency reduction, as discussed in Section 5.4.

53

Another focus of the thesis was implementing a harmoniser effect, due to the difficulty

of realising it using analogue methods. The goal was to show a basic, but working,

digital implementation of a harmoniser. The harmoniser implementation, based on time

stretching and pitch shifting as shown in Listings 5.5 and 5.6, required a buffer size of

512 samples, resulting in an initial latency of 24.4 ms as reported by Focusrite Control.

The reported MET over 500 method calls was approximately 0.002152 seconds, or

2.152 ms. This resulted in a total latency of approximately 26.35 ms, without counting

external factors also contributing to latency. Although this latency is still below the

Haas threshold, it would likely affect the performance of a professional musician

negatively.

Table 6.1: Mean execution time (MET) for each implemented effect

As for the subjective evaluation of the implemented effects, satisfactory results were

achieved regarding sound. As previously mentioned, perfect implementations of the

effects were not the goal of the thesis. Instead, showing that it can be done at low

latency using Python, was the focus. Audiovisual presentations of the implemented

effects are listed in Appendix D.

The implemented overdrive effect utilises the hyperbolic tangent tanh for creating a

non-linear output signal. This yielded a distorted sound typical for the overdrive guitar

effect. The implementation of the combined reverberation and delay effect also resulted

in the desired effect. The harmoniser effect, however, did contain unwanted audible

features due the attempt of eliminating signal discontinuities through crossfading, as

described in Section 5.3.3.

Overall, the effects implemented resulted for the most part in the desired sound at low

latency. No real attempt, however, was made at monitoring the system-wide latency

from input signal to output signal. Therefore, it is impossible to determine the real-

world latency of the implementation.

Effect Buffer Size

(Samples)

MET (ms) Total Latency (ms)

Overdrive 128 0.016 6.42

Reverb + Delay 128 0.384 6.78

Harmoniser 512 2.152 26.35

54

6.2 Latency Reduction

The experiment utilised Cython to optimise the Python implementations for faster

execution speed. The combined reverberation and delay effect was the only effect

optimised due to its loop-based implementation, as Cython’s largest improvements can

be seen with loops. The speedup of the Cython-optimised implementation is presented

in Table 6.2, an extended version of Table 5.2.

Table 6.2: Extended version of Table 5.2 including speedu p

As can be seen from the results, the speedup of the Cython-optimised implementation

becomes increasingly significant when the number of loop iterations grows. For the

implementation presented in Section 5.3.2, the number of iterations is equal to the

buffer size used, resulting in an algorithmic complexity of 𝑂(𝑛). Without optimisation,

this results in increasingly higher latency as the buffer size increases.

Further optimisation could possibly have yielded additional speedup for the combined

reverberation and delay effect implementation. However, since latency reduction was

not the main focus of the thesis, more effort was not put into it. The thesis still presented

a method for reducing latency in Python for real-time signal processing using Cython,

and the results of the performed optimisation showed reduction in latency. The

objective of the experiment concerning latency reduction was, therefore, satisfied.

Buffer Size

(Samples)

Python MET

(ms)

Cython MET

(ms)

Speedup

128 0.382435 0.006452 59.27

256 0.758102 0.007027 107.88

512 1.469831 0.007394 198.79

1024 2.858569 0.007854 363.96

55

7. Discussion

The goal of this thesis was to explore the feasibility of implementing real-time guitar

effects at low latency using Python. The proposed solutions implemented in Section

5.3, using Cython for latency reduction, as implemented in Section 5.4, yielded results

that answer the proposed questions of Chapter 5:

1. How can common guitar effects such as overdrive, reverberation and delay be

implemented digitally using Python?

2. How can signal latency be reduced during the DSP process using Cython?

3. How can a guitar effect be implemented digitally that would not be feasible

using traditional, analogue methods?

The effect implementations in Section 5.3 satisfied the initial objective by

implementing basic versions of the guitar effects overdrive, reverberation and delay.

As presented in Section 6.1, the overall latencies of the implementations were well

below the Haas threshold, with a system-wide latency of 6.42 ms for the overdrive

effect and 6.78 ms for the combined reverberation and delay effect. This was further

reduced to closer to 6.4 ms for the combined reverberation and delay effect using

Cython.

A basic harmoniser effect was implemented in Section 5.3.3 to highlight one of the

benefits of using digital methods over traditional, analogue methods. As discussed in

Section 5.3.3, real-time pitch shifting has proven difficult using analogue solutions,

while digital solutions are effortlessly implemented using algorithms. The harmoniser

implementation relied on a combination of time stretching and resampling, where the

signal was doubled in length and resampled at half the sampling rate, resulting in a

pitch-shifted signal one octave higher than the original signal. As also mentioned in

Section 5.3.3, the resampling process introduced audible discontinuities between audio

segments, which were eliminated using crossfading, as presented in [51].

The implementations of the guitar effects provided satisfactory results when evaluated

on a subjective basis. The performance of the CPU and audio interface used in the

experiment, at a sampling rate of 96 kHz with a buffer size of 128 samples, resulted in

no audible artefacts, apart from the audible modulation for the harmoniser effect due

to the crossfading process. Audiovisual presentations of the implemented effects are

given in Appendix D.

56

Due to the focus of this thesis being the concept of low-latency, real-time guitar effects

using Python, the implemented effects were not complete, sophistically implemented,

effects. This was especially obvious for the harmoniser effect because of the audible

modulation resulting from the implemented crossfading. Proper filtering could have

been utilised on the input and output signal for each effect, resulting in a cleaner sound.

This limitation was mentioned multiple times throughout the thesis.

Another limitation of the experiment was the system-wide latency measurement. The

latency measured only accounted for the reported round-trip latency reported by

Focusrite Control, as well as, the reported execution time for each algorithm

implementation. As discussed in Section 5.2, the usage of ASIO significantly reduced

latency by allowing communication between audio sources and libraries to bypass OS-

specific APIs, as shown in [45].

The implementations in Chapter 5 resulted in unexpectedly low latency, even without

latency reduction using Cython. This was probably due to the powerful CPU used,

combined with the ASIO protocol, as mentioned above. A potential follow-up to this

experiment would be investigating the latency using CPUs commonly used in digital

audio effect pedals, such as SHARC processors [54]. The low latency was also a result

of the high sampling rate of 96 kHz used, combined with a buffer size of only 128

samples, which may not be feasible using a less powerful processor.

In general, the experiment answered the proposed questions regarding implementing

real-time guitar effects using Python, at acceptable latency. The experiment showed

that low-latency, real-time digital signal processing is possible using Python, while also

presenting new opportunities for research within the area.

57

8. Conclusion

This thesis explored real-time signal processing in Python, with a focus on the

implementation of common guitar effects digitally, including overdrive, reverberation

and delay. Since implementing some guitar effects, such as real-time frequency

shifting, has shown to be difficult using traditional, analogue techniques, this thesis

also aimed to implement a signal harmoniser, an effect that pitch-shifts the signal up

one octave. Furthermore, the thesis explored latency reduction using the programming

language Cython, a superset of Python, with the goal of bringing the Python execution

speed closer to that of C.

Signal processing as a concept was presented and discussed in the theoretical part of

the thesis, highlighting the basics and common techniques. Areas relating to the

experiment conducted were introduced, such as filtering, audio quality and data rate.

Latency reduction was also briefly discussed, presenting common sources of latency in

general, as well as, introducing Cython and ASIO.

Latency evaluation was performed based on the experiment conducted in [19], where

professional musicians graded the perceived latency from “Horrible” to “Excellent”

based on the auditory feedback received from a guitar at different latency levels. The

threshold for a “Good” grade was 6.5 ms, using floor wedges for audio monitoring.

Therefore, a sampling rate of 96 kHz with a buffer size of 128 samples was chosen for

the experimental part of this thesis, resulting in an initial latency of 6.4 ms for the guitar

effect implementations. The latency measurement, however, was one of the limitations

of the thesis, since the total latency measured was only a measurement of the round-

trip latency reported by Focusrite Control, combined with the execution time of each

effect implementation, as measured with Python’s Time library.

The effects implemented performed at acceptable latencies, apart from the harmoniser

effect. As presented in Table 6.1, the measured latency for the overdrive effect was 6.42

ms and for the combined reverberation and delay effect 6.78 ms. The harmoniser

implementation resulted in a measured latency of 26.35 ms, due to a higher buffer size

of 512 samples required for audio processing. Although still significantly below the

Haas threshold [2], this latency would be noticeable to a trained ear, as concluded by

[19].

58

Based on the results, it was concluded that Python implementations of low-latency

guitar effects is possible, but highly dependent on hardware capabilities. Low latencies

were received mostly due to a combination of high sampling rate and small buffer size,

which may not be feasible to use on less powerful, more resource-limited systems. A

topic for future research within the field was proposed, with the focus on implementing

similar effects using Python as presented in this thesis on typical DSP processors, such

as SHARC processors.

59

9. Summary in Swedish – Svensk sammanfattning

Digitala gitarreffekter med låg latens genom användning av signalbehandling

med Python i realtid

Signalbehandling har historiskt sett spelat en viktig roll inom musiken, speciellt med

tanke på ljudeffekter. I och med digitalteknikens framträdande har även många

områden inom musiken till stor del digitaliserats. För elgitarrens del har digitala

effekter under de senaste decennierna blivit alltmer vanliga, i och med utvecklingen av

digitala realtidslösningar för traditionella, analoga effekter. Som nämns i [6] medför

digitala metoder diverse fördelar, bland annat:

1. Flexibilitet: digitala signaler kan enkelt modifieras medan analoga signaler ofta

kräver hårdvaruförändringar.

2. Reproducerbarhet: digitala signaler kan återskapas identiskt medan analoga

signaler beror på de underliggande hårdvarukomponenterna.

3. Pålitlighet: digitala system förändras inte med tiden på samma sätt som

elektriska komponenter i analoga system kan göra.

4. Komplexitet: komplexa system, såsom system baserade på maskininlärning,

går inte enkelt att förverkliga med analoga system.

Den främsta nackdelen med digitala lösningar att ta i beaktande, speciellt vad beträffar

realtidsapplikationer, är latens, eller fördröjning. I och med konverteringsprocesserna

för en signal från analog till digital (A/D) och digital till analog (D/A) uppstår

fördröjning som beror på samplingsfrekvens och sampelbuffertstorlek [7]. Utöver

denna fördröjning uppstår även fördröjning på grund av själva signalbehandlingen,

med en storlek beroende på signalprocessorns prestanda.

Huvudmålet med denna avhandling var att utforska de möjligheter Python erbjuder för

signalbehandling, och med hjälp av dessa utveckla basimplementationer för några av

de vanligaste gitarreffekterna: overdrive (distorsion), eko och reverb. I och med att

Python är ett tolkat språk har man traditionellt sett föredragit kompilerade språk såsom

C eller C++ för realtidsapplikationer, på grund av den fördröjning som härstammar från

tolkningsprocessen [26]. I dagens läge finns ett brett utbud av ljudbibliotek i Python

som fungerar som API (applikationsprogrammeringsgränssnitt, eng. application

programming interface) för det C-baserade ljudbiblioteket PortAudio [29], bland annat

60

PyAudio [27] och Sounddevice [28]. PortAudio stöder också drivrutinen ASIO (Audio

Stream Input/Output) [46], som är ett låg-latens alternativ till operativsystemets egna

ljuddrivrutiner [45]. Sounddevice tillsammans med ASIO utnyttjades i denna

avhandling för implementationen av gitarreffekter.

Bortsett från implementationen av gitarreffekter var också latensreduktion ett mål med

avhandlingen. För att reducera fördröjning som uppstår i samband med tolkningen av

Python introducerades Cython, ett Python-baserat programmeringsspråk som

möjliggör exekvering av kod skriven i Python med C-hastighet [30]. Detta uppnås

genom kompilering av koden till C-kod som kan anropas direkt från Python. Cython

användes främst för att optimera implementationen av eko- och reverbeffekterna, vars

implementation utnyttjade en loop.

Effekterna implementerades i Python med hjälp av signalbehandlingsbiblioteken

NumPy [39] och Librosa [40]. En samplingsfrekvens på 96 kHz användes kombinerat

med en buffertstorlek på 128 sampel. Overdrive-effekten förverkligades genom att

tillämpa den hyperboliska funktionen tanh på signalen, på grund av dess icke-linjära

natur, som resulterade i distorsion. Eko- och reverbeffekterna implementerades som en

och samma algoritm på grund av deras liknande natur, med olika värden på parametrar

för att uppnå det önskade ljudet. I och med buffertstorleken på endast 128 sampel

krävdes en extern sampelbuffert för att spara ljuddata längre än de senaste cirka 1.3 ms

(1 𝑠/
96000 𝐻𝑧

128
), vilket implementerades med hjälp av en loop. En audiovisuell

presentation av de implementerade effekterna ges i Appendix D.

Ett sista mål med avhandlingen var att implementera en gitarreffekt som traditionellt

sett varit komplicerad att förverkliga med analoga metoder. För detta ändamål valdes

en harmoniseringseffekt, som bygger på tonhöjdsförändring (eng. pitch shift) i realtid.

Den implementerade effekten, som krävde en större buffert på 512 sampel, höjde

gitarrsignalens tonhöjd en oktav. Implementationen förverkligades dessutom i stereo,

med den oförändrade signalen i vänster kanal och signalen med en oktav högre tonhöjd

i höger kanal. På grund av den filtrering som användes för att eliminera hörbara klick,

som resultat av tonhöjdsförändringen, resulterade implementationen även i en hörbar

modulation (se Appendix D).

Resultaten av de implementerade gitarreffekterna sett från både ett subjektivt och ett

objektivt perspektiv uppfyllde avhandlingens mål. Python-implementationer för de

ovannämnda gitarreffekterna i realtid presenterades och latensreduktion med Cython

förverkligades för den kombinerade eko- och reverbeffekten. Cython-

61

implementationen visade sig vara mellan 59,27 (buffertstorlek på 128 sampel) och

363,96 (buffertstorlek på 1024 sampel) gånger snabbare än dess motpart. De totala

uppmätta fördröjningarna för de olika effekterna var 6,42 ms för overdrive-effekten,

6,78 ms för den kombinerade eko- och reverbeffekten samt 26,37 ms för

harmoniseringseffekten, på grund av den större buffertstorleken på 512 sampel

gentemot 128 sampel för de andra effekterna.

Den främsta bristen med experimentet var saknaden av mätning av fördröjning över

hela signalkedjan från början till slut. I avhandlingen uppmättes för signalen endast den

initiala tur och returtid som ljudgränssnittet rapporterade kombinerat med

exekveringstiden för varje enskild effektimplementation. Detta gav endast en

helhetsbild över den fördröjning som ljudgränssnittet bidrog till kombinerat med den

fördröjning som introduceras av signalbehandlingen. Experimentet i avhandlingen

utfördes inte heller på en typisk processor för ljudbehandlingsapplikationer, såsom en

SHARC-processor [54], utan på en processor avsedd för skrivbordsdatorer (se

Appendix C). Detta kunde vara ett framtida forskningsobjekt för vidare forskning inom

området.

62

References

[1] S. W. Smith, The Scientist and Engineer's Guide to Digital Signal Processing,

San Diego: California Technical Publishing, 1999.

[2] J.-M. Reveillac, Musical Sound Effects: Analog and Digital Sound Processing,

Hoboken, NJ: John Wiley & Sounds, Inc, 2018.

[3] C. Karren, “Analog Versus Digital Guitar Pedals, Shaping Guitar Tones and

Sparking Debates,” Digital Commons, 2020.

[4] “Number of guitar effects pedals sold in the United States from 2005 to 2021,”

Statista Research Department, March 2022. [Online]. Available:

https://www.statista.com/statistics/448499/number-of-guitar-effects-pedals-

sold-in-the-us/. [Accessed 7 November 2023].

[5] “VOX Adio Air GT,” [Online]. Available: https://voxamps.com/product/adio-air-

gt/. [Accessed 7 November 2023].

[6] M. S. Kuo and H. B. Lee, Real-Time Signal Processing, Chichester: John Wiles

& Sons Ltd., 2001.

[7] U. Zölzer, Digital Audio Signal Processing, Chichester: John Wiles & Sons, Ltd,

1997.

[8] E. C. Ifeachor and B. W. Jervis, Digital Signal Processing: A Practical Approach,

Addison-Wesley Publishing Company Inc., 1993.

[9] A. Gersho, “Principles of Quantization,” IEEE Transactions on Circuits and

Systems, vol. 25, no. 7, pp. 427-436, 1978.

[10] A. L. Schoenstadt, An Introduction to Fourier Analysis: Fourier Series, Partial

Differential Equations and Fourier Transforms, 2006.

[11] “Electronics Projects,” [Online]. Available:

https://electronicsprojects.in/signals_and_systems/periodic-and-non-periodic-

signal-difference-diagram-and-information/. [Accessed 16 November 2023].

63

[12] R. N. Bracewell, “The Fourier Transform,” Scientific American, vol. 260, no. 6,

pp. 86-95, 1989.

[13] L. Thede, Practical Analog and Digital Filter Design, Artech House, Inc., 2004.

[14] T. Saramäki, S. Mitra and J. Kaiser, Handbook for Digital Signal Processing,

John Wiley & Sons, Inc, 1997.

[15] J. Watkinson, The Art of Sound Reproduction, Focal Press, 1998.

[16] K. C. Pohlmann, The Compact Disc Handbook, Madison, Wisconsin: A-R

Editions, Inc., 1992.

[17] F. Rumsey, Desktop Audio Technology: Digital Audio and MIDI Principles, Focal

Press, 2004.

[18] M. W. Spratling, “A review on predictive coding algorithms,” Brain and

Cognition, vol. 112, pp. 92-97, 2017.

[19] M. Lester and J. Boley, “The Effects of Latency on Live Sound Monitoring,”

2007.

[20] Y. Wang, “Low Latency Audio Processing,” 2017.

[21] R. Schreier and G. C. Temes, Understanding Delta-Sigma Data Converters, John

Wiley & Sons, Inc, 2005.

[22] W. G. Gardner, “Efficient Convolution without Input-Output Delay,” Perceptual

Computing Section, MIT Media Lab, Cambridge, MA, 1995.

[23] J. O. Smith, Introduction to Digital Filters with Audio Applications, W3K

Publishing, 2007.

[24] Y. Wang and J. D. Reiss, “Time Domain Performance of Decimation Filter

Architectures for High Resolution Sigma Delta Analogue to Digital Conversion,”

Audio Engineering Society Convention 132, 2012.

[25] Y. D. Pra, F. Fontana and M. Simonato, “Development of Real-Time Audio

Applications Using Python,” in Machine Sounds, Sound Machines XXII

Collowuio di Informatica Musicale, 2018.

64

[26] Y. D. Pra and F. Fontana, “Programming Real-Time Sound in Python,” Applied

Sciences, 2020.

[27] PyPI, “PyAudio,” [Online]. Available: https://pypi.org/project/PyAudio/.

[Accessed 18 January 2024].

[28] “Python-sounddevice,” [Online]. Available: https://python-

sounddevice.readthedocs.io/. [Accessed 13 February 2024].

[29] PortAudio, “PortAudio,” [Online]. Available: https://www.portaudio.com/.

[Accessed 18 January 2024].

[30] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn and K. Smith,

“Cython: The best of both worlds,” IEEE Computing in Science and Engineering,

2011.

[31] K. W. Smith, Cython: A Guide for Python Programmers, Sebastopol, CA:

O'Reilly Media, Inc., 2015.

[32] M. I. WIlbers, H. P. Langtangen and Å. Odegård, “Using Cython to Speed up

Numerical Python Programs,” 2009.

[33] P. Perov, W. Johnson and N. Perova-Mello, “The physics of guitar string

vibrations,” 2015.

[34] I. Simola, “Tablature Notation From Monophonic Guitar Audio Using CNN,”

2023.

[35] “Audacity,” [Online]. Available: https://www.audacityteam.org/. [Accessed 30

January 2024].

[36] U. Zölzer, DAFX - Digital Audio Effects, Chichester: John Wiley & Sons, Ltd,

2002.

[37] A. Politis, T. Pihlajamäki and V. Pulkki, “Parametric Spatial Audio Effects,” in

Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK,

2012.

[38] J. O. Smith, Physical Audio Signal Processing for Virtual Musical Instruments

and Audio Effects, W3K Publishing, 2010.

65

[39] N. team, “NumPy,” [Online]. Available: https://numpy.org/. [Accessed 13

February 2024].

[40] Librosa, “Librosa,” [Online]. Available: https://librosa.org/doc/latest/index.html.

[Accessed 5 March 2024].

[41] Focusrite, “Focusrite Control,” [Online]. Available:

https://downloads.focusrite.com/focusrite/scarlett-3rd-gen/scarlett-2i2-3rd-gen.

[Accessed 20 February 2024].

[42] Microsoft, “Windows 11,” [Online]. Available: https://www.microsoft.com/en-

us/windows/. [Accessed 20 February 2024].

[43] “Focusrite Scarlett 2i2 (3rd Gen),” [Online]. Available:

https://focusrite.com/products/scarlett-2i2-3rd-gen. [Accessed 25 January 2024].

[44] F. Design, “Define C,” [Online]. Available: https://www.fractal-

design.com/products/cases/define/define-c/black/. [Accessed 13 February 2024].

[45] Y. Wang, R. Stables and J. Reiss, “Audio latency measurement for desktop

operating systems with onboard soundcards,” in Audio Engineering Society:

Convention Paper 8081, London, UK, 2010.

[46] Steinberg, “ASIO,” [Online]. Available: https://forums.steinberg.net/t/asio-what-

is-it/201552. [Accessed 20 February 2024].

[47] A. v. Powerlord, “Measurement of MIDI-to-Audio Latency and Jitter of

Synthesizer Plug-ins inside of Selected Live Performance Hosts at Different

ASIO Buffer Sizes,” 2021.

[48] D. T. Yeh, J. S. Abel and J. O. Smith, “Simplified, Physically-Informed Models

of Distortion and Overdrive Guitar Effects Pedals,” in Proc. of the 10th Int.

Conference on Digital Audio Effects (DAFx-07), Bordeaux, FR, 2007.

[49] E. Zeki, “Digital Modelling of Guitar Audio Effects,” 2015.

[50] T. Royer, “Pitch-shifting algorithm design and applications in music,” 2019.

[51] C. Alto and E. Cheveer, “Signal Harmonization by Resampling to Design a Guitar

Effect Pedal,” 2016.

66

[52] Cython, “Extension Types,” [Online]. Available:

https://cython.readthedocs.io/en/latest/src/tutorial/cdef_classes.html. [Accessed

9 March 2024].

[53] Python, “Time,” [Online]. Available:

https://docs.python.org/3/library/time.html#time.perf_counter. [Accessed 9

March 2024].

[54] A. Devices, “SHARC Audio Processors / SoCs,” [Online]. Available:

https://www.analog.com/en/product-category/sharc-audio-processors-socs.html.

[Accessed 19 March 2024].

[55] “Yamaha Pacifica 112J,” [Online]. Available:

https://usa.yamaha.com/products/musical_instruments/

guitars_basses/el_guitars/pacifica/specs.html. [Accessed 25 January 2024].

[56] AMD, “Ryzen 7800X3D,” [Online]. Available:

https://www.amd.com/en/products/apu/amd-ryzen-7-7800x3d. [Accessed 13

February 2024].

67

Appendices

Appendix A – Yamaha Pacifica 112J Technical Specifications

Technical specifications for the Yamaha Pacifica 112J electric guitar [55].

Construction: Bolt-on

Scale Length: 25-1/2” (648 mm)

Body Materials: Alder

Neck Materials: Maple

Fingerboard Materials: Rosewood

Fingerboard Radius: 13-3/4” (350 mm)

Fret Wire: Medium

Number of Frets: 22

Nut Materials: Urea

Neck Width at 0 Fret / 12th Fret: 41/51.4 mm

Thickness at 1st Fret / 12th Fret: 20.9/22.9 mm

Neck Pickup: Single Coil/Ceramic

Middle Pickup: Single Coil/Ceramic

Bridge Pickup: Humbucker/Ceramic

Controls: Master Volume, Master Tone

Pickup Switch: 5-Position Lever Switch

Bridge: Vintage-Style Tremolo

String Spacing: 10.5 mm

Tuning Machines: Die-Cast

String Gauge: Ernie Ball Super Slinky 009-042

68

Appendix B – Focusrite Scarlett 2i2 Technical Specifications

Technical specifications for the Focusrite Scarlett 2i2 (3rd Generation) USB Audio

Interface [43].

Overview

Protocol: USB 2.0

Simultaneous I/O: 2x2

A/D Resolution: 24-bit/192 kHz

Number of Pre-Amps: 2

Phantom Power: Yes

Instrument Inputs: 2

Line Inputs: 2

Analogue Inputs: 2

Headphone Outputs: 1

Bus Powered: Yes

Supported Sample Rates: 44.1, 48, 88.2, 96, 176.4, 192 kHz

Microphone Inputs

Frequency Response: 20 Hz – 20 kHz ± 0.1 dB

Dynamic Range: 111 dB (A-weighted)

Maximum Input Level: 9 dBu (at minimum gain)

Gain Range: 56 dB

Impedance: 3 kΩ

Line Inputs

Frequency Response: 20 Hz – 20 kHz ± 0.1 dB

Dynamic Range: 110.5 dB (A-weighted)

THD+N: < 0.002 %

69

Maximum Input Level: 12.5 dBu (at minimum gain)

Gain Range: 56 dB

Impedance: 60 kΩ

Instrument Inputs

Frequency Response: 20 Hz – 20 kHz ± 0.1 dB

Dynamic Range: 110 dB (A-weighted)

THD+N: < 0.03 %

Maximum Input Level: 12.5 dBu (at minimum gain)

Gain Range: 56 dB

Impedance: 1.5 MΩ

Line/Monitor Outputs

Dynamic Range: 108 dB

THD+N: < 0.002 %

Maximum Output Level (0 dBFS): 15.5 dBu

Impedance: 430 Ω

Headphone Outputs

Dynamic Range: 104 dB (A-weighted)

THD+N: < 0.002 %

Maximum Output Level (0 dBFS): 7 dBu

Impedance: < 1 Ω

70

Appendix C – AMD Ryzen 7 7800X3D Technical Specifications

Technical specifications for the AMD Ryzen 7 7800X3D CPU [56].

Overview

of CPU Cores: 8

of Threads: 16

Max. Boost Clock: 5.0 GHz

Base Clock: 4.2 GHz

L1 Cache: 512 KB

L2 Cache: 8 MB

L3 Cache: 96 MB

Default TDP: 120 W

71

Appendix D – Audiovisual Presentation of Implemented Effects

Reference audio of the implemented guitar effects.

Overdrive - Reference Audio

https://youtu.be/wLSomkoesTo?si=ybWMvZJg-m5Nt0Or&t=5

Delay & Reverberation - Reference Audio

https://youtu.be/wLSomkoesTo?si=5EKQ5zMquOAsTf_5&t=73

Harmoniser Using Pitch Shifting - Reference Audio

https://youtu.be/wLSomkoesTo?si=QWME4bQmWTXqCY78&t=132

https://youtu.be/wLSomkoesTo?si=ybWMvZJg-m5Nt0Or&t=5
https://youtu.be/wLSomkoesTo?si=5EKQ5zMquOAsTf_5&t=73
https://youtu.be/wLSomkoesTo?si=QWME4bQmWTXqCY78&t=132

