

Master’s thesis in Computer engineering

Supervisor: Annamari Soini

Åbo Akademi

Faculty of Science and Engineering

February 2024

The importance of data validation

and parsing when working with

external data sources

Alexander Gallen

Abstract

Working with data from external sources often revolves around combining

data from multiple sources to analyse or process it in new ways to generate

value. The developer is often faced with uncertainties in the retrieved data due

to lacking or non-existent documentation. In this thesis the praxis of parsing,

validating and transforming the data will be explored in depth to showcase

how these challenges can be tackled to obtain a robust data fetching pipeline,

and keep the backend free from unknowns and extra validation that is not part

of the business logic that is being developed.

The focus will be on TypeScript and more specifically the Zod library. The

language and technology were chosen based on their popularity, relevance in

the modern programming field, and previous experience in production

environments by the author. The data that is examined to showcase the

benefits and a minimal setup to achieve a robust parsing and validation flow

are ledger receipts in Procountor, a widely used Finnish bookkeeping system.

By implementing these best practices and data fetching techniques it is

possible to eliminate unknowns from the backend of the application under

development. All the parsing, validation and transformation of the external

data are handled in a single place of the data processing pipeline and are in

their entirety extracted from the business logic of the application. These

functions can also be re-used to manifest uniform practicalities throughout the

application to easily scale the system to facilitate data from more integrations.

Handling of common problems such as miss-matching data types and different

ways to portray certain information such as “nullish” values or dates becomes

trivial and uniform and the type of data that enters the backend, business logic

of the application is fully known and robust.

Taking advantage of these learnings will allow developers to increase the

productivity, robustness and maintainability of their applications, specifically

when dealing with large or complex data from third party applications. Typical

issues such as various string representations of types e.g. dates or currencies

become an issue of the past and the types of all the fields can be managed

uniformly in the application to allow the developers responsible for the

business logic, data analysis, or data processing to focus on the problem at

hand, instead of the wrangling of the unknown external data to deal with

unknown edge cases.

Table of Contents

1 Introduction .. 1

2 Programming languages ... 3

2.1 Statically typed languages ... 3

2.1.1 Key Characteristics .. 3

2.1.2 Benefits .. 4

2.1.3 Issues .. 4

2.2 Dynamically typed languages .. 4

2.2.1 Key Characteristics .. 5

2.2.2 Benefits .. 5

2.2.3 Issues .. 5

2.3 Gradually typed languages .. 5

2.3.1 Key characteristics .. 6

2.3.2 Benefits .. 6

2.3.3 Issues .. 6

2.4 Differences .. 7

2.5 Criteria to consider when weighing the different approaches 7

2.5.1 Error handling ... 7

2.5.2 Development time ... 8

2.5.3 Reliability .. 9

2.5.4 Maintenance... 9

2.6 Conclusion ... 10

3 Complex data structures... 12

3.1 Determine importance of structural integrity in data 12

3.1.1 Different types of data ... 12

3.2 Dealing with external data sources ... 14

3.2.1 Data types ... 15

4 Schema validation libraries ... 23

4.1 General characteristics ... 23

4.1.1 Data validation .. 24

4.1.2 Data transformation ... 25

4.1.3 Data normalisation .. 27

4.2 Common schema validation libraries ... 27

4.2.1 JavaScript/TypeScript .. 28

4.2.2 Python .. 29

4.2.3 Java .. 30

5 Case study .. 31

5.1 Scope of the case study ... 31

5.2 Tools and technologies ... 32

5.3 Relevance of the data in the system .. 34

5.4 Validation schema .. 36

5.4.1 Initial implementation ... 36

5.4.2 Improving implementation with real data... 40

5.5 Using the validation schemas .. 42

6 Conclusion .. 43

7 Sammanfattning ... 45

8 Bibliography .. 48

1

1 Introduction

In modern programming, it is very common to sooner or later have to deal

with data from external sources. Regardless of whether this data arrives from

files, external APIs or loosely integrated legacy systems, one will at some point

have to deal with the fact that it is not possible to be certain about the state or

structure of the data when it arrives to the system.

Most modern programming languages are either statically typed or at

least provide ways to give type hints during development to reduce iterations

and development time [1]. This solves most of the problems when working

with complex data structures, but it falls short when the actual type or

structure of the data that enters the system is not fully known.

The naive way of solving the issue is to assume the type to the best of

one's knowledge and then validate the data when required at different stages

of the backend processes of the system. Over time, this will lead to a complex

structure of data validation at different places in the code base which, in turn,

increases the complexity and decreases the maintainability and debuggability

of the code [2]. Furthermore, the structure of the data that enters the system

is at no point in time fully understood, typed, or known.

This can be solved by parsing the data that enters the system, so that

the structure of the data one is dealing with is always known. By applying a

parsing function at the point of entry for the external data, one is able to

pinpoint the exact structure of the data that is being dealt with, and for

statically typed languages, the type of the parsing function can be reused

throughout one’s system to achieve full end-to-end type safety for the external

data.

 The goal of this thesis is to investigate all the different types of issues

one usually has to deal with when working with complex external data sets

and how parsing functions can be implemented to ensure full end-to-end type

safety for all the data that is being processed in the backend of the system. Any

2

individual or team working with complex data sets that arrive from external

sources, where the type of the data cannot be fully relied on or known, will

hopefully find something new and enlightening to take away from this thesis

that can increase the productivity and robustness of the development teams

and the code base they deal with.

For the purpose of this thesis, I will focus on showing how to solve these

problems in TypeScript. As a statically typed language, TypeScript can already

deal with full type safety with internal data, but since the types of external data

will only be validated at runtime, it is required that the data is parsed when it

enters a system. A schema validation library can be used to handle this. The

most popular ones for TypeScript are Zod and Yup, with Joi being a third

option native to JavaScript that also has a TypeScript version. In this thesis, the

popular Zod library [3] will be presented and used. Zod provides an easy-to-

read syntax to define validator functions with infinite possibilities of

refinement and transformation to deal with the worst possible source data, so

that the data can be conformed to one’s needs. It allows for easy type

extraction from the validator function, so it can be reused throughout the

system [2]. In the interest of keeping the explanations and examples concise,

the thesis will focus on dealing with data from external APIs, but this is of

course applicable to data from any external systems, and all takeaways and

paradigms offered and explained here can be applied to any such data.

3

2 Programming languages

The choice of programming language and how they deal with typing has a

significant impact on how well the type of structured data can be enforced, and

they assist the developer during the development process of the system. An

overview of the key aspects of the different types of typed languages is

presented below.

2.1 Statically typed languages

Statically typed languages are languages where variable types are determined

at compile time and cannot change during runtime. Some popular examples

include Java, C++, C#, Rust, and TypeScript.

2.1.1 Key Characteristics

Most statically typed languages share the following key characteristics. Types

are checked at compile time, leading to type mismatches or errors being

caught before the program is executed, minimising the chance of errors being

caught late in the development process or in production. Explicit type

declarations, which require the developer to specify the type of the variable or

the parameters and return values of functions, assist the development of the

system by providing useful support to the developers and ensuring that trivial

errors are caught as early as possible. Some modern languages, such as

TypeScript, allow for partially implicit variable declaration which can speed

up development but is also more error prone when the implicit declaration is

not what one expects. Type safety improves code readability and greatly

enhances the developer experience when working in larger projects with

multiple developers and older code bases. Statically typed languages also often

compile to more efficient code, since the compiler has complete knowledge of

the types. This can also greatly vary between languages. TypeScript, for

example, compiles the vanilla JavaScript and has no knowledge of types.

4

2.1.2 Benefits

The nature of statically typed languages offers some general advantages.

Errors in data are caught at compile time, reducing the chance of runtime

crashes and errors, which are often more difficult to track down and correct.

Code readability is greatly improved, since explicit type declarations function

as a kind of self-documentation, helping other developers to understand how

functions and variables are and can be used. These two major advantages

combined also lead to greatly increased possibility to refactor the code base

down the line, since many of the errors are caught already during the

refactoring phase, with only more specific business logic-related issues having

to be unit tested or manually tested more in depth.

2.1.3 Issues

While there are several benefits with statically typed languages, they also

present some common challenges. When the data sets can include multiple

data types or dynamic elements, the code to handle these types can be very

verbose and unintuitive. The up-front development cost can be increased

since types must be explicitly written, which for larger data sets can be

extremely time consuming. Dynamic behaviour might not be so well

supported, e.g., dealing with unstructured data or highly flexible data

structures. Last, but not least, the risk for overhead might grow considerably

when defining explicit types for complex or large data structures.

2.2 Dynamically typed languages

Dynamically typed languages are languages where variable types are

determined at runtime, and the types can change during the execution of the

program. The most popular dynamic languages today are Python, JavaScript,

Ruby, and PHP.

5

2.2.1 Key Characteristics

Types are only checked during runtime, and the types can change throughout

the execution of the program. Variables do not have explicit type declaration,

but rather the type is determined by the value the variable holds. Dynamically

typed languages are very flexible and have low overhead from a developer’s

perspective due to not requiring explicit definition of variable or function

types.

2.2.2 Benefits

The above characteristics allow for rapid development and iteration. The code

can be very lean and concise with full focus given to logic. Dynamically typed

languages are generally well suited for programs where the data structure is

not known in advance or may change during runtime, such as data processing

and scripting.

2.2.3 Issues

The lack of type safety leads to type-related errors only surfacing during the

execution of the program which, in turn, leads to more challenging debugging

and increased development cost and time. The absence of explicit types also

causes the code to be less self-documenting, which requires developers to rely

more heavily on comments and external documentation. Code maintenance

may become increasingly difficult once the program grows, making it difficult

to keep track of variable types and unexpected behaviour when the data

structures are large or complex.

2.3 Gradually typed languages

While languages are commonly grouped into the two major categories

statically typed and dynamically typed, for the purposes of this thesis we shall

also briefly describe the characteristics of a third type of paradigm or typing,

which can be achieved, at least partially, in most popular modern

6

programming languages. This approach is commonly referred to as “Gradually

typed” or “Optionally typed” languages, sometimes also referred to as “Hybrid

typing”. Some examples of this would be TypeScript, with a looser typing

approach allowing the use of the Any type when strict typing is not necessary,

and Python, by partially using the Mypy static type checker.

2.3.1 Key characteristics

Gradual typing allows the developer to seamlessly blend static and dynamic

typing in a single language.

2.3.2 Benefits

The developer has the flexibility to gradually add explicit types to parts of the

codebase where strict types are required. This aims to strike a natural balance

between the reliability of static type checking and the flexibility of dynamic

typing. Most programs have different requirements on the reliability of data

structures, depending on the actual data that is being processed and how it is

being processed. Not all datasets might be processed so heavily, and might just

flow semi-loosely through the program, thus requiring minimal to no type

safety, while still functioning properly in all situations. A common example of

this might be reading data from an input or a function and storing it in a file.

2.3.3 Issues

The main issues with gradually typed languages are the difficulty to enforce

best practices and not letting the developers grow “lazy”. The rules and best

practices must be set up in such a way that it is easy to understand when and

where to explicitly type the data structures, and not just omit the types for the

sake of indolence, eliminating the benefits of gradually typed languages.

7

2.4 Differences

Statically typed languages require more up-front development but lead to

earlier error detection, improved code readability, optimised performance [1]

and greater refactoring support.

 Dynamically typed languages offer rapid development and flexibility

but can cause issues due to type-related bugs, lack of explicit documentation

and code maintenance, and difficult debuggability when dealing with large or

complex data structures.

 Gradually typed languages attempt to bridge the gap between statically

and dynamically typed languages by allowing developers to add explicit static

types when necessary while retaining the advantages of dynamic typing in

parts of the program where explicit declaration of types is not necessary.

2.5 Criteria to consider when weighing the different

approaches

There are several different criteria to consider when deciding what kind of

programming language to use for one’s project. Apart from the non-technical

aspects, such as development team expertise and personal preferences, and

business specific reasons, such as legacy systems and language specific

libraries that simplify the problem at hand, there are also several technical

criteria that depend on the nature of the language used that should be

considered. Some of the general aspects are described more in detail below to

give a broader understanding of what is worth considering before starting the

development of a software project.

2.5.1 Error handling

If the project is likely to grow large and include a large amount of complicated

business logic and large complex data structures, it will become increasingly

important to catch errors and bugs in the system at early stages. Many of the

8

errors related to complex data structures can be caught already during

development, during compile time, if a statically or gradually typed language

is to be used.

 If the bounds of the project are well known in advance and the

functionality and scope are relatively limited, the advantages of choosing a

statically typed language for a project might become outweighed by the rapid

iterative development allowed by dynamically typed languages.

2.5.1.1 Cost of catching errors early vs. late in the development process

Detecting and resolving errors early in the software development lifecycle

have several advantages which can significantly improve project efficiency

and productivity. If errors are identified early on during development, the cost

of correcting them is relatively low [4].

Another key benefit of catching errors and edge cases early is not to let

uncertain states flow through the codebase. This is one of the aspects where

explicitly typing complex data structures can greatly reduce development cost

in the long run.

Finding the different scenarios that need to be dealt with early during

development also pushes the structure of the code to conform and deal with

all these special cases early on, reducing the possibility of requiring a major

rewrite of the codebase later in the development process, when the cost of

having to do so would be drastically increased.

2.5.2 Development time

The development time and cost of a project can be divided into three major

categories: First is the up-front development cost that is required to develop a

minimum viable product for the customer. The second category is iterating an

initial deployed production version. The third is fixing bugs, maintaining the

system, and adding new features as required. These categories

unquestionably vary immensely depending on the size and the specifications

of a project.

9

 It is, however, important to try to recognise the attributes of the project

that is about to be developed to try to determine in which of these categories

much of the development time will be spent. If the bulk of the work will be

spent in the initial development phase and the complexity of the data that is

dealt with is relatively low, there is a probability that a dynamically or

gradually typed language is favourable, since the extra benefits of complete

type safety will be lost due to the extra overhead and initial development time

this requires.

 However, if the better part of the work will go into continuously

improving the software over a longer period, or if the project is expected to

grow large or complex in size, a statically typed approach might be preferred.

2.5.3 Reliability

The significance of a reliable and robust application does not so much depend

on the size of the codebase or the complexity of the data structures that are

dealt with, but more so on the industry, or the actual tasks that the application

is touching. Regardless of the complexity of the data being worked with or the

size of the application in production, these kinds of applications usually have

an immense cost tied to errors and discrepancies that occur when in

production. It might even affect people's lives, such as the cases with medical

or legal applications. In these instances, the reliability of the software might

outweigh all other key factors combined, and the only reasonable approach

might be to choose a statically typed approach where much effort and time are

invested to ensure that every step of the application is thoroughly tested

before entering the hands of the end users.

2.5.4 Maintenance

The time spent on maintenance in a software development project often

depends on the initial scope of the project and a few other factors of varying

importance. Factors such as the existence of third parties that are involved in

10

the data flow, needs for feature development, and the rigidity of the scope of

the project all play a major role.

 Third-party applications, be they sending or receiving parties, might

lead to continuous demands for feature development or bug fixing. These can

include changes in the data structure from a third-party API, new functionality

that is available to be incorporated into the application due to improvements

in a third-party application, or a sudden change in some API or data source

that completely breaks the current functionality in the system at hand.

 Sometimes the scope of a project is quite ambiguous in the beginning,

and only after some time in production with continuous feedback from the end

customer, the final form of the application starts to take shape.

 The optimal solution to these kinds of challenges depends greatly on

what kind of data and system is being dealt with. See sections 4.2 and 4.3

below for a more in-depth explanation of issues to consider. Broadly speaking,

however, if the correctness of the system is not so crucial and the data

structures are relatively simple a more dynamic approach might be beneficial,

while otherwise a statically, explicitly typed approach might lead to great time

savings down the line.

2.6 Conclusion

The choice between whether to use a statically typed language, dynamically

typed language, or gradually typed language depends on several factors,

including the nature of the project, personal preferences, and specific

requirements.

Statically typed languages tend to be more beneficial when strong type

safety is crucial, performance matters, the codebase might grow large and

complex, or there might be a frequent need for modifications and refactoring.

Some examples of such projects might be financial software or critical system

components where high type safety is crucial to catch any unintended

behaviour or discrepancies already during compile time. Others are game

11

engines or real-time systems that are highly performance-critical, or any large

or vaguely scoped project where the code base might grow indefinitely, and

the requirements might change over time when the program is already in

production.

Dynamically typed languages can be used when rapid prototyping is

essential and flexibility is needed, while scripting or automating manual tasks,

in small or medium-sized projects, and during web development and

prototyping machine learning models. [5]

 To get the best of both worlds a gradually typed or hybrid approach

can be used. This does, however, add its own challenges, relying more heavily

on the developers to make the correct decision about when to add or not to

add explicit types to build a robust and flexible system.

Ultimately, there is no definite correct answer, and the choice of

language should be considered based on the specific needs of the project at

hand, the expertise of the development team, and the trade-offs between

development speed, performance, and maintenance and robustness. The

choice is often not so clear-cut, and the requirements differ from project to

project.

12

3 Complex data structures

Most applications rely on one or multiple more complex data sets that are

fundamental to the functionality of the application. These datasets are

commonly frequently accessed or created by the users of the application. Since

they play such a crucial role in the application it is important to manage and

structure the data accordingly to ensure that the functionality surrounding the

data is both easily maintainable and robust.

3.1 Determine importance of structural integrity in data

Oftentimes a system will consist of multiple types of data which might have

different requirements on the structural integrity. There are datasets that are

critical for the overall functionality of the system that require very precise

definition, and then there are less crucial components which might just flow

through the system without much input or modification from the application.

To optimise the robustness while keeping development time and complexity

to a minimum it is important to distinguish between these different types of

data. Managing to define the importance of different data well will, in addition

to keeping down development costs, also accumulate benefits over time by

keeping the codebase clean and endorsing flexibility in the system where

robustness is not required.

3.1.1 Different types of data

Not all data are equal when it comes to deciding on the importance of strict

typing, validation, or parsing. There might be very simple small data

structures that are crucial to the functionality of the application or that require

a very strict structure within major functions in the software. These data

structures might seem simple at a first glance but, depending on the language

one is dealing with, edge cases might still arise that are difficult to foresee up

13

front. On the other hand, there might be large complex data structures, which

only flow through the system from external APIs and are pumped out on the

other end to the client, without being processed at all within the system. While

these datasets might seem important at first, the validity, or more precisely

the structure, of this data might be quite insignificant for the system.

 Technical aspects of the data and how different types of data can

present their own challenges in particular programming languages due to

language-specific quirks and limitations will not be described here, but rather

the data structure itself and what role the data plays in the system. The

language-specific limitations are out of the scope of this thesis, and these are

more of programmatic questions, while the focus here will be on the general

concepts.

While contemplating whether the data one is dealing with requires

explicit typing, there are a few factors that should be considered: the

importance of the data structure, the role of the data in the system, and how

the data is being processed in it. Below we will review a few common scenarios

and types of data to give a better understanding of how one should approach

the problem, helping one make an informed decision about how to deal with

said data sets.

3.1.1.1 Critical data

Critical data is usually data that in some manner, or form, is essential for the

correct functioning of the system. This data can be characterised by it playing

a key role in the major or critical functionality of the system (e.g., credentials,

forms), and main data structures that the system is dealing with and

processing (e.g., invoices in an accounting software).

3.1.1.2 Non-critical data

Non-critical data can be any data that requires very limited to no processing

within the application. This data, even though it might be large and complex,

often does not require a strict structure. An example might be a reporting

14

application which shows aggregates of complex data that are fetched via an

external API. While the data might seem complex it can be displayed on a UI

with minimal processing, leading to a much more flexible system without the

need for excessive typing and data processing, which would be error prone

depending on the degree of reliability of an external system.

3.2 Dealing with external data sources

Up to this point, we have mainly touched on the benefits of dynamic vs.

statically typed languages and the hybrid approach of gradually, or optionally,

typed languages. While these paradigms all have their place depending on the

application that is being developed, there is a scenario that typing is unable to

deal with, and that is common in most modern applications.

 This scenario concerns data arriving from external sources. This

encompasses data that is fetched from external APIs and various types of user

input (e.g., command line interface, loosely defined UIs, files, and web-scraped

data). While the structure of this type of data usually can be partially known,

as is the case with external APIs, where there is documentation that at least to

some extent describes the structure and type of the data that is fetched or

uploaded, one can be almost certain that the exact structure of the data is

unknown. When this external data is critical for a properly functioning system,

it suddenly presents several substantial challenges. The type of this data can

only be assumed, thus rendering explicit types only vaguely helpful, so when

typing alone is unable to solve the issues that this kind of data presents, a

different solution must be explored.

 The approach is the same whether one is working with a statically or

dynamically typed language, and that is parsing the data when it enters the

system. This ensures that the type of the data is entirely known and that no

surprises arise down the line in a different part of the system in production.

This approach also gives the added benefit of being able to provide the types

(for statically typed languages) directly from the parsing function used, either

15

by defining them by custom or by using third-party libraries which provide

easier-to-use syntax and added functionality around these kinds of parsing

functions.

3.2.1 Data types

In addition to the inherent problem with uncertain data structures, there is

also the problem of the actual types of the data that are received from external

sources. External data from files, the command line, or a legacy user interface

will most likely always initially be interpreted as text, i.e., strings, when

entering the backend of an application. Data from APIs, in turn, can take many

different shapes, with edge cases being treated in multiple different ways

depending on the underlying application. How this data should be treated to

some extent depends on the language of the application and its limitations, but

in general the problem cases listed below are generic and should be

considered when building a robust application that relies on external data.

 For the purpose of keeping this chapter concise, the specifics of

different data sources will not be covered. Instead, the focus will be on the

specific data types and in what format they are usually fetched, as well as key

aspects to consider when validating and parsing this kind of data.

 The most common data types that are dealt with on an individual

field/property level when dealing with any more complex data structure from

external sources are the following: text, numbers, dates, Boolean, lists, and

enumerations. In addition to these generic types for individual fields, the fields

might, or might not, also be optional.

 In the following subchapters, the special cases of each data type will be

more thoroughly examined. The data will be considered from the perspective

of what the type of the data, or field, is considered to be, and not what it is

returned as from the external data source. This is an important distinction that

will greatly increase the robustness of the system under development.

16

3.2.1.1 Text

The most common data type that is encountered when dealing with data is

text, commonly referred to as strings in most programming languages. Data

that is considered a string will almost always arrive from any external source

as a string, regardless of it originating from user input, files, or external APIs.

The only circumstance where this would not be the case is some

identifier, or identification number, i.e., fields which might commonly be

returned from APIs as numbers. The decision whether these kinds of fields

should be considered text or numbers is individual and both can be correct

depending on the format of the data. Most notably, they could still be treated

as numerical data if the size of the numerical value is of interest.

The most common edge case for text data is the empty string, or “”,

which is quite commonly returned from APIs and should be treated as a nullish

value [6] in the system under development. Leaving empty strings in the

system will greatly decrease the robustness and might lead to several

unexpected problems which might be difficult and expensive to track down.

3.2.1.1.1 Strictly formatted strings

While it is usually enough to just validate and parse text as a generic string,

there are a few cases where this might not be enough. One of these cases is the

generic enumeration-like type, which will be examined more in depth in a

separate section below, but additionally there are also a vast number of types

of data that could, and possibly should, be strictly formatted.

 These types of fields are generally recognised by them having a specific

pattern that they must conform to in order to be valid. Common examples of

this would be phone numbers, emails, personal identification numbers,

business identification numbers, and so on. If this type of data and its validity

is crucial for the functionality of the system at hand, it might be beneficial to

run it through a parsing function that validates that the data is, in fact, correct.

Since the topic of this thesis is not strictly about parsing data, these

different examples will not be examined more in depth, but it is important to

17

understand the existence of this type of data and when it might be beneficial

to strictly parse the data, to ensure the validity of it when it enters the system.

3.2.1.2 Numerical

Numerical data can take several different forms and should be treated slightly

differently depending on the programming language that the system is built

with. In general, numerical data can be divided into three main categories:

generic numerical data, percentual values, and currency-like data.

3.2.1.2.1 Generic numerical data

In general, numerical data usually arrive as either some type of numerical

value (e.g., integer or floating-point number) or a string. The most common

issue that one is faced with is when numerical values are fetched as strings

from third-party systems and the formatting of the number can differ based

on the language [7]. These differences usually arise when the numbers grow

large (i.e., to the thousands), or when the numerical value is a floating-point

number.

With floating-point numbers, the most commonly found difference is

how decimal points are separated from the whole numbers. For many English-

speaking countries, the decimal points are separated by a dot “.”, while for

most other European languages they are separated by a comma “,”. Many of

the programming languages expect the decimals of floating-point numbers to

be separated by a dot, which in practice means that the comma has to be

replaced by a dot before the string is parsed to a numerical value.

 Large numbers (i.e., values over 1000) might include additional

country specific formatting. The most common ones encountered are either a

dot “.”, a comma “,” or a space between every three whole numbers, separating

each thousand to make the number more readable. These also must be

18

removed in order to properly parse the string into a numerical value in most

programming languages.

 It is very important to be sure about the specific formatting of the

numbers that are fetched to the system, since improper formatting prior to

parsing might lead to incorrect values existing in the system. This is

specifically important when working with large floating-point numbers,

where commas and dots might coexist, requiring specific formatting to ensure

that the string will be parsed correctly.

For example, with German formatting (e.g., 4 294 967.295,000) the

spaces and dots would have to be removed and the comma replaced by a dot,

while in American formatting (e.g., 4,294,967,295.00) the commas should be

removed.

3.2.1.2.2 Percentages

Percentages follow the same rules as generic numerical data with the possible

further addition of a percentage symbol “%”. Except for the possible need of

removing the percentage symbol for the percentage to be converted to a

numerical value, the same rules apply as for the generic numerical data type.

3.2.1.2.3 Currency-like data

The same principles apply for currency-like data, but they also include a few

other important nuances that should be considered. The actual currency

symbol might be included, and while the currency information usually exists

separately in the data it is important to make sure that this is the case, since

this can be important information that should be stored if it is not the case.

The other important difference is the number of digits that exist after the

decimal point, i.e., 1.21 and 1.211 might be identical when the number is

rounded to an accuracy of two decimals, but an external resource might have

an issue with the rounding that occurs.

 While the number of digits after the decimal point might not always be

crucial, there are some specific use cases that can cause difficult-to-track-

down issues that might arise from how some programming languages deal

19

with floating-point numbers (i.e., most use IEEE 754 [8] which can lead to

inconsistencies when portraying decimal numbers due to the nature of how

these values are stored) where elementary arithmetic operations might not

lead to the expected outcome. A simple example would be in JavaScript where

the arithmetic operation 0.1+0.2 ==! 0.3 due to the nature of floating-point

values and how they are stored in memory, leading to some values not being

able to be precisely portrayed. Inconsistencies such as this one can be very

difficult to track down in production and might lead to several unexpected

states in the system. There are numerous ways to circumvent this problem.

One is to simply round the numbers to 2 decimal places before and after doing

operations on them and then compare those values. The other is to store

decimal numbers in separate variables (on the backend) and columns (in the

database), completely circumventing the issue of floating-point numbers

altogether. What this means in practice is that the integer part and the

fractional part of a decimal value are stored as integers as separate values,

completely eliminating the issues that can be encountered while dealing with

floating-point values. This is a common practice in many financial systems

where exact portrayal of the data is of significant importance.

3.2.1.3 Dates

While some structures, such as XML, support “date” as a property type it is also

common to encounter dates as strings and, depending on the language, they

might have to be formatted as strings before being parsed back to dates for

storage. One example of this is JSON data structures. Dates can exist in a

multitude of different formats and should always be investigated on a case-by-

case basis. The most common format is the ISO-8601 [9] standard, i.e., dates

portrayed as “2023-10-24” and dates with time portrayed as “2023-10-

24T19:04:31Z” for UTC times and “2023-10-24T12:04:31−07:00” if there is a

time offset.

20

 In addition to just parsing the date correctly depending on its format,

one should also keep in mind that time zones might differ between different

third parties. If data is retrieved from multiple different sources and

comparisons are made between the different dates in these datasets, it can be

beneficial to convert all of them to a standardised format in the system. This

might be either local time zone, if the system only operates within one time

zone, or UTC to be more robust and future proof.

3.2.1.4 Boolean

Boolean-like values can exist in various forms depending on the third-party

source. The ones commonly encountered are explicit Boolean values, such as

“true” and “false”, the numeral “1” and “0”, and language-specific variations on

the explicit Boolean values.

3.2.1.5 Lists

While lists, or arrays, in themselves are very self-explanatory and require zero

parsing, there are a few specific cases that should be considered when parsing

data that is expected to come as a list. More specifically, they usually have two

common edge cases that might require separate parsing logic; these are the

empty value and a list with one value.

 Especially when working with REST or SOAP APIs it is common to

encounter different structures in the retrieved data depending on whether the

list includes multiple values, one value, or no values. The parsing function

needs to cover all these cases not to incorrectly return a parsing error.

Furthermore, it should be decided on a case-by-case basis whether there

should be a separation between the empty list and a “nullish” value.

3.2.1.6 Enumeration-like data

In most data structures, some kind of status or type fields exist that take on a

value from a finite number of predefined values, which might or might not be

known beforehand. Whether these should be considered enumerations in the

21

system or not greatly depends on how these values are dealt with. If they are

accessed frequently either in-code or by the end user, it might be beneficial to

parse them as enumerations to obtain a more explicit and strict type that can

be reused throughout the system.

3.2.1.7 “Nullish” data

Regardless of what type the data is, there are cases where some fields or

properties of a data structure take on “non-existent” values, usually denoted

as “nullish” or undefined values in the popular programming languages. How

these values are portrayed in external systems can vary greatly depending on

the underlying implementation. It is important to parse them correctly in one’s

system to properly know what kind of data is being worked with and to be able

to individually solve the nullish states on a functional level for each property.

For example, some legacy API implementations and user interfaces might not

have an explicit nullish state but, instead, it has to be understood from the

context and parsed and transformed in the system not to have faulty true

values in the system.

 When working with strings the common nullish state is the empty

string, or “”. Leaving such values in the codebase might lead to unforeseen

errors due to the assumption that the value exists when, in fact, it might be

preferred to have a different functionality in such cases.

 For numerical values, a particularly difficult case to parse properly is

the one where “0” has been used as a nullish value. In such cases, it is

important to properly understand the property of the data and be certain that

this is the case and that it is not just a record-like data type where the index 0

is referred to.

 For Boolean values and for lists, it should be decided on a case-by-case

basis whether the nullish value is of importance to the system. The distinction

between a null value, an undefined value, and false might be relevant for the

system in the case of Boolean values. For lists, cases might exist where the

22

difference between a nullish value and an empty list might be relevant for the

system; in such cases the differences should be conserved.

23

4 Schema validation libraries

A schema validation library is beneficial when working with third-party data,

since it enhances data quality, security, and structure. It enables a smooth

integration of external data sources while mitigating the challenges and risks

commonly encountered in unpredictable data from third parties.

4.1 General characteristics

Schema validation libraries can validate any incoming data, checking for

correct syntax, missing or malformed elements, and other anomalies. This

assists in ensuring that the data is correct and reliable before being

incorporated into one's system. This practice is crucial when dealing with

systems that require precise data and communication with third parties, e.g.,

financial systems, personal information, and forms.

Especially when working with larger datasets or a larger system, it is

common to run into efficiency and scalability issues at some stage during the

development cycle. Schema validation libraries assist in streamlining this

process from the data standpoint, minimising the risk of running into

unforeseen issues when parsing large datasets, both from inefficient functions

and the ability to reuse blocks of validation and parsing code to be used

throughout the system. The possibility to manage and maintain reusable

validation and parsing functions that can be used throughout the system both

when dealing with data from multiple third parties and when having a large

developer team will greatly assist in normalising the properties of the data

structures that exist in the system.

There are three distinct types of functionalities that are expected from

a schema validation library: data validation, data transformation, and data

normalisation.

24

4.1.1 Data validation

4.1.1.1 Syntax checking and schema compliance

The schema validation library assists in providing easy-to-use functionality for

the developer to define functions that validate the external data when it enters

the system. The functions analyse the input data and ensure that it conforms

to the expected structure. They can identify syntax errors, missing elements,

or improper formatting, helping the developer to catch issues before they lead

to runtime errors later in the development process. For example, when

parsing JSON or XML data, the schema validation library can detect missing or

mismatched brackets, tags, or quotation marks, ensuring that the data is well

formed.

 Schema compliance goes a step further than syntax checking by

validating data against a user-defined schema or structure. A schema defines

the rules, constraints, and data types that the data must adhere to, ensuring

that it meets the specific business and technical requirements of the project.

Schema validation libraries assist in schema validation by parsing the data into

a structured representation, which can then be compared against the schema

definition. In the context of JSON validation, for example, schemas created

through the schema validation library can verify that the JSON data conforms

to these specifications, preventing invalid or incompatible data from being

processed. This provides full control to the developer of the type of the data

once it has entered the system and been parsed by the schema, eliminating the

risk of having unknown fields, unexpected field types, or missing elements

existing in the system.

4.1.1.2 Error detection and handling

If the data contains any errors or unexpected formats, the schema validation

library assists in providing robust error-handling mechanisms to make

debugging efficient. In addition to simple error handling, they also provide

functionality to skip problematic records in the data sets, or trigger alerts.

25

 When the data fails to meet the syntactic or schematic requirements,

these libraries can generate informative error messages, allowing developers

to easily identify the issue and take the appropriate corrective action. This

usually involves improving the schema to fit the requirements of the third

party and transforming the data to fit the needs of one’s own internal system.

This kind of proactive error handling saves time and effort during

development and troubleshooting phases and, additionally, allows the

developer to have greater control of the error messages, which is especially

beneficial when these error messages are displayed to the end user via the

user interface.

 Additionally, the problematic data can be sanitised and validated to

protect against potential security vulnerabilities such as SQL injection attacks

[10] or code execution exploits [11]. While many modern frameworks and

libraries provide such protecting out-of-the-box it is always good to consider

these threats when building a custom application that allows unstructured

user input. This is especially important if the user input would communicate

directly with the database of the system, or allows for defining custom

functions that are run on the back-end of the application.

4.1.2 Data transformation

4.1.2.1 Data transformation and mapping

Schema validation libraries can take unstructured or semi-structured data and

convert it into a structured representation that fits the needs of the language

being used by the system. This structure is then easily accessible for

manipulation and transformation, for example, converting XML data to JSON

data to make it more developer friendly when dealing with the data in a

language that natively supports structured JSON data, such as JavaScript or

TypeScript.

26

 When dealing with external data the developer often needs to extract

specific elements from it. Schema validation libraries can simplify this process

by providing simple-to-use methods to navigate through the external data

structure. They also assist in mapping the data from one format to another,

allowing developers to define how different elements should be transformed

or mapped.

A regularly occurring practical example of this is dealing with SOAP

APIs that return data in XML format, which needs to be converted to a

structure that is easily managed in one’s language of choice, be it a custom

class or a JSON structure. The different data structures seldom have

completely identical data types and naming conventions, naturally leading to

greater benefits of such transformation functionality early in the development

process, allowing the data that is being actively dealt with to be consistent with

the rest of the data in the backend of the system under development.

4.1.2.2 Content validation and sanitization

When transforming the data, it is also important to validate and sanitise the

content to ensure that it is easy to work with in the backend of the system and

stays coherent with the rest of the data that is being dealt with. In addition to

simply transforming and mapping the data, the schema validation libraries are

also able to verify that the data adheres to the specific schema and its content

rules. They allow developers to apply validation logic to the data on a field-by-

field basis, ensuring that the data meets the requirements of each and every

field to be able to be used in the system. They can also notify the developer as

soon as possible in the runtime that the data is not as expected, disallowing

such data to enter the system and giving a clear error message to developers,

so these are able to fix the schema and improve the functionality around the

errored fields, prior to the next deployment.

For example, when validating an email field from a dataset originating

from an API request that will be used later in the process to actually send an

email, it might be beneficial to actually validate that the string received

27

conforms to a general email address, so that such a state never exists in the

system that it repeatedly attempts to send an email to an incorrect email

address. Errors like these can be extremely difficult to track down and might

incorrectly give a sense that everything is working as expected.

4.1.3 Data normalisation

Another key aspect of schema validation libraries are robust and reusable data

validation and transformation functions, which allow the developers to define

reusable blocks of validation and transformation functions to normalise the

process. This approach assists in aligning an external data set with the internal

data structures and requirements of the data, focusing on dealing with

discrepancies in the data at the earliest possible stage of the process from the

system perspective. When working with multiple third parties this modularity

also provides greater security throughout the system.

The reusable parsing and validation blocks also ensure consistency

throughout the whole system, for example, by standardising different datasets

from multiple third-party sources. In addition to solely standardising the

format between datasets from multiple sources, they also help in aligning and

standardising the format between the developers of the system. Many data

fields such as dates, currencies, and structured strings, such as phone numbers

or identification data, greatly benefit from having these predefined functions,

normalising the data throughout the system.

4.2 Common schema validation libraries

There are multiple alternatives for choosing a schema validation library. In

addition to depending on the programming language that the system is built

on, the different aspects and characteristics should also be weighed according

to their importance for the system that is being developed.

28

 A short introduction to the most popular schema validation libraries

for the three most popular programming languages will be given below. The

programming languages have been determined based on the most recent

yearly Stack Overflow developer survey [12]. The languages have been limited

to only backend programming languages (eliminating SQL and HTML/CSS),

and JavaScript and TypeScript have been combined to one language, since

most packages for these languages can be used interchangeably, leaving us

with JavaScript/TypeScript, Python, and Java as the languages for which we

will explore the most popular schema validation libraries. The two most

popular schema validation libraries for each of these languages have been

chosen based on the number of stars on Github [13].

4.2.1 JavaScript/TypeScript

JavaScript and TypeScript are two of the most used programming languages

[12] and will be the example language used in the case study of this thesis.

They provide a lot of flexibility for the developer and due to having large

communities also provide a wide variety of libraries and packages that can

assist the development teams when managing non-standard use cases.

4.2.1.1 Zod

Zod [3] is a TypeScript first schema validation library, meaning that it has

originally been developed for TypeScript and not been ported over from

JavaScript to be compatible with TypeScript, leading to improved integration

with the native type system of Typescript. The main goal of Zod is to eliminate

duplicative type declarations. Zod allows the developer to declare a validation

function once and it automatically infers the static TypeScript type from it.

 Zod also supports a wide range of predefined validations such as date,

IP, and email validation on strings, covering the vast majority of the commonly

encountered specific cases that must be resolved when dealing with external

data. Custom refinements are also supported for any edge cases that are not

covered by the predefined set.

29

 Data transformation is also a built-in part of Zod, reducing the need of

separate transformation functions post-validation, which also significantly

increases the validity and usability of the automatically inferred type that Zod

provides.

4.2.1.2 Yup

Yup [14] is a schema builder for runtime parsing and validation originally built

for JavaScript that also offers support for TypeScript.

 Yup schemas allow the developer to create easy to read schemas for

validation and value transformation of complex data structures.

4.2.2 Python

Python is a versatile, high-level programming language known for its

readability and simplicity. Its syntax allows developers to express concepts in

fewer lines of code than languages such as C++ or Java. Python's extensive

libraries and frameworks support a wide range of applications, including web

development, data analysis, artificial intelligence, and automation. Its

popularity in these fields has made it a relevant language across various

industries.

4.2.2.1 Pydantic

Pydantic [15] is a fast and extensible data validation library for Python. The

schemas are defined by Python type hints, allowing for seamless integration

with widely used static typing tools such as Mypy and Pyright, as well as

commonly used IDEs such as Pycharm and Visual Studio Code.

 Pydantic provides functionality to serialise the data into either native

Python dictionaries or JSON. Together with the possibility to generate JSON

schemas for any Pydantic defined schemas this allows for easy integration

with a wide variety of other tools which support JSON schemas.

30

4.2.2.2 Cerberus

Cerberus [16] is a simple and lightweight data validation tool. Cerberus

schemas are built on top of the vanilla Python types and much of the most

common validation and normalisation rules are predefined as part of the

package.

 Error handling is highly customisable and by default it provides a

clearly structured output that makes debugging of large, complex data sets

with multiple errors easily manageable.

4.2.3 Java

Java is a robust, object-oriented programming language designed for

portability and platform independence. Java is widely used for enterprise-

level applications, mobile development (Android), and web development.

Its strong emphasis on reliability, security, and scalability has made it

a cornerstone in the development of large-scale, mission-critical systems.

4.2.3.1 Jackson

Jackson [17] is a suite of data-processing tools for Java. Jackson consists of a

vast number of individual modules for processing data in a wide range of

different structures including JSON, XML, and YAML.

4.2.3.2 Gson

Gson [18] is a library for converting Java objects into their JSON representation

and vice versa. Gson offers full support of Java Generics [19], allowing for

support of more flexible data conversions. In addition to this Gson also does

not require the source code of the Java objects, allowing for JSON conversion

of Java objects from external applications.

31

5 Case study

This case study will focus on creating a robust implementation of a data pipe

between a system and a third-party API where the main data that is being

processed in the system is retrieved from.

 The implementation will include data validation, transformation, and

normalisation, so that it will fit in a system regardless of its scale and the state

of the third party where the data is retrieved from.

5.1 Scope of the case study

The focus of the study will lie completely on the actual processing of the data

and how it is validated, transformed, and normalised to build a robust and

error-free implementation that is easily scalable and maintainable regardless

of the size of the system. A full implementation towards the external system

including authentication and all relevant endpoints will not be explored, as it

is outside of the scope of this case study.

How the data is dealt with after successfully fetching, validating, and

normalising it from the external party is also beyond the scope of this study.

In a real-world scenario the data would commonly be stored in a database,

possibly through the assistance of an ORM [20] (An Object-relational mapping

framework works as a conversion layer between a database and the objects

within a programming language, assisting the developer in dealing with

entries from the database from the backend of the system) , or simply instantly

processed and sent back to the external party with the help of their PUT/POST

endpoints.

To create a concrete example that is easily applicable to real-world

scenarios this implementation will be based on a hypothetical system dealing

with automating ledger receipts from an already existing third-party

bookkeeping software, in this case Procountor [21]. The emphasis will be on

32

the GET /ledgerreceipts/{receiptId} endpoint in the Procountor API [22],

which returns the full ledger receipt data from Procountor.

Figure 1: Diagram showcasing the Ledger receipt data pipe between Procountor and
the case study application.

5.2 Tools and technologies

For the purposes of this case study TypeScript will be used. The language of

choice is not relevant for such an implementation, and it should be decided on

a case-by-case basis depending on the needs of the system and the previous

experience of the development team. See chapter 3 above for a more in-depth

explanation of what to look for when deciding on a programming language for

a system.

Zod will be used as the schema validation library, since it allows for

excellent customisation and flexibility. Zod includes several helper functions

for validating and parsing the data. These offer considerable help when

dealing with large and complex data structures from external APIs. Zod also

natively supports data transformation, which will greatly improve the

33

developer experience when reusing the automatically inferred static type

provided by it throughout the system.

34

5.3 Relevance of the data in the system

Figure 2: Example ledger receipt taken from the Procountor API documentation. [22]

35

The data being retrieved are the ledger receipts. The structure of the ledger

receipt can be examined in Figure 2. The functionality of the system

completely relies on them and on the processing of them, requiring full

structural knowledge of them as a data structure, and any future updates and

changes to the API must be caught as early as possible in the system so that no

data is unknowingly lost.

 Depending on the functionality required by the system some of the

fields might be of greater importance than others. Fields that will continuously

be modified by the system as a part of the functionality provided by the system

should be treated in such a way that they are easy to process both by the

developers on the backend, as well as the end users through the user interface

of the system if applicable. Sometimes this information is hard to know before

hand, but some qualified guesses can be made early on to improve the usability

down the line and limit the migration needs later in the development process.

Two immediate characteristics that come to mind from looking at this example

data are that dates are stored as strings (due to the nature of JSON) and that

there are enumeration-like fields that should be treated as such instead of a

generic string. The solution to both these observations will be described in

section 5.4 below.

 The schema validation should be built in such a way that nothing

unknown can exist in the data from the external API, and the types of each field

should be as narrow as possible so that the possible state of the data is as close

to reality as possible. In addition to improving the robustness of the system,

this also assists the developers by narrowing down the possibilities of the

types of each field, reducing the need for unnecessary checks and steps in the

functions in the system and giving a clearer overview of what can and cannot

be modified on the data and which fields might be more relevant than others.

36

5.4 Validation schema

5.4.1 Initial implementation

The initial implementation is done based on the API documentation that is

available from the third party, since this is the only information that is known

to the developer. The documentation is seldom complete and usually either

describes the structure too loosely, or is in some cases even completely lacking

information about the existence of certain properties.

 Since the full structure and all properties are of great importance to the

system, it is essential that the validation function catches such discrepancies

as early as possible. This is resolved by creating a schema validation function

for the data that is as strict as possible, leading to it catching all unknowns as

soon as they are encountered.

37

Figure 3: The initial schema for the Procountor Ledger receipt and its children, based
solely on the Procountor API documentation. [22]

38

 The initial schema is presented in Figure 3. All the fields are defined

exactly as described in the API documentation [22]. Some important decisions

have been made to improve the robustness of the system from a developer

standpoint.

Figure 4: Helper functions that are reused throughout the schema validation functions.

Several of the status and identification fields in the API are returned as

integers, and it has been determined that the numerical properties of such

fields are not of importance, and they should be treated as strings in our

system, to minimise the risk of running into unforeseen issues. A common

example of such an issue is if the fields are optional and could take on the

numerical value 0. A true/false check on such a value would lead to unintended

results. Helper functions for dealing with these fields have been created

(Figure 4) and are reused through the schema validation functions to

normalise the types. The helper function simply converts the integer to a

string, and also takes into account the special case of the value of the field

being undefined, explicitly checking against the undefined value so that the

value 0 is also treated correctly.

The date and date time fields are returned from the API as strings. A

helper function (Figure 4) has also been created for these fields that validates

that the string is in fact a date, and then parses the field to an actual Date

object.

39

Figure 5: Enumerations for the Procountor Ledger receipt

Several of the fields have a specific set of values they can take and are

defined in the API documentation as such. These enumerations have been

40

defined separately (Figure 5) and are reused throughout the schemas. When

expanding on the system and using more API resources from this specific

source this will offer great reusability.

An explicit “.strict()” check has also been added to the whole schema.

This will throw an error as soon as an unknown property exists on the data

structure. This allows the developer to catch this new information as soon as

possible, eliminating the possibility of overlooked updates to the external API

that could be of importance to the system.

5.4.2 Improving implementation with real data

Once the initial implementation of the validation function is developed, it can

be tested by using it to validate data fetched from the external source. All

inconsistencies between the API documentation and the actual, real-world

data will be caught by the schema validation function, alongside a descriptive

error message, clearly guiding the developer as to what the faulty data looked

like and what the expected state was. This allows for rapid iteration of the data

validation function, ensuring that the structure of the data is known as

precisely as possible without including any guesswork from the developer.

 After running the initial validation schema against tens of thousands of

real-life ledger receipts in Procountor, several errors were thrown. What this

in practice means is that the API documentation was not completely

transparent regarding the actual functionality of the API and how the data is

returned.

41

Figure 6: Finalised schema based on parsing thousands of ledger receipts.

The schema was iteratively improved once each error was

encountered, and the final version is presented in Figure 6. The most notable

difference between the initial schema and the finalised version is the

possibility for many of the properties of the data structure to be undefined.

This has been handled in the validation schema by giving these fields the

“.optional()” property.

 Note specifically the optional arrays that are returned from the API.

These are already in the schema transformed from undefined to empty arrays.

42

Functionality-wise, undefined and an empty array mean the same in this case,

but this pre-emptive conversion greatly improves the developer experience

when working with such data, since no explicit checks on undefined values will

have to be performed when working with this dataset in the system.

5.5 Using the validation schemas

The validation schemas are now completed and can be used to validate and

parse the data that arrives to the system from the external API.

Figure 7: Example usage of the validation schemas and type extraction from them.

Input and output types are easily extracted from the validation schema

(Figure 7), providing the developer with full type safety and a reusable type

that can easily be extended or iterated on by improving and modifying the

validation schemas when changes occur in the third-party system.

43

6 Conclusion

The first step to building a robust and uniform system is ensuring that the data

that moves through the system is known. When working with third party

applications, through APIs, data scraping, RPA (Robot process automation), or

even just user input within the application under development, the

importance of proper parsing or validation quickly becomes apparent.

 While some of these issues can be partly mitigated by using strongly

typed programming languages and having good knowledge of the third-party

applications there will always exist cases when it is impossible to fully control

the data that enters the system. This can happen for various reasons but most

commonly it is impossible to fully be aware of the quirks and limitations of

third-party applications. While there might exist relatively good

documentation for APIs the information is seldom complete and will include

discrepancies when it comes to data format or nullability, or even lack of

information about certain fields in the data that is part of the request or

response that the API provides. For user input, RPA solutions or data scraping

the issues are much more prevalent since the assumptions are made

completely by the developer since there often are no communication channels

with the third party in these kinds of data integration solutions. In these cases,

the use of a schema validation library becomes crucial for maintaining a robust

and error-free backend and business logic in the system.

 The use of a schema validation library for parsing, validating, and

transforming the external data ensures that the data is fully typed and includes

no unknowns when entering the backend of the application under

development. This approach brings numerous improvements to the system

that allow for a more robust, easily maintained, well-documented, and unform

system. Some of the concrete improvements that this brings are the following:

- Explicitly defined schemas for third-party data pipes that act as

documentation and single point of entry to the backend under

development.

44

- Up-to-date documentation about the structure of the data that enters

the system.

- Unified approach to how to define and document the structure of

external data.

- Single point in the application where parsing and validation of external

data is done, which ensures that the backend code of the system

remains clean and can strictly focus on relevant business logic.

- Transformation of external data can be managed as a part of the

parsing and validation pipeline, providing reusable types and functions

to unify data from multiple different third parties.

The benefits of parsing or validation libraries quickly become apparent when

dealing with large and complex data structures, and the benefits mentioned

above are undeniable and instantly visible when implementing this approach

in a system under development.

45

7 Sammanfattning

I modern programmering är det vanligt att förr eller senare vara tvungen att

hantera data från externa system. Oberoende om dessa data härstammar från

filer, externa API:s eller vagt integrerade gamla system, kommer man vid

något skede att behöva ta itu med problemet att försöka komma underfund

med hur strukturen av dessa data ser ut.

 Det naiva sättet att ta itu med detta problem är att försöka gissa sig

fram till hur ens data kommer att se ut, antingen på basis av tidigare

erfarenhet eller någon existerande dokumentation som finns tillgänglig, och

sedan validera dessa data vid olika tillfällen i systemets kod när man stöter på

problem eller osäkerheter. Detta leder snabbt till mycket extra komplexitet

och ostrukturerad kodbas som är svår att upprätthålla.

 Man kan kringgå dessa problem genom att tolka alla externa data som

kommer till systemet, så att datans struktur alltid är känd. Genom att tillämpa

tolkningsfunktioner när extern information kommer in i systemet kan man

strukturera kodbasen bättre och fokusera all logik kring sådana data på ett och

samma ställe för att förbättra dokumentation och underhållbarhet, samt hålla

resten av ens kod och logik simpel och fri från annan logik.

 Målet med denna avhandling är att undersöka de problem som ofta

uppstår när man arbetar med komplexa externa data, samt hur

tolkningsfunktioner kan tillämpas för att förbättra hanteringen av dessa data.

Individer eller mjukvaruproduktionsteam som måste hantera externa data

med komplexa datastrukturer kommer förhoppningsvis att finna något nytt

och lärorikt i denna avhandling som kan förbättra deras produktivitet, samt

robustheten av system under utveckling.

 Fokuset i avhandlingen kommer att vara på hur en implementation av

ett tolkningsbibliotek kan se ut och vad dess tillämpning konkret kan ge för

nytta. Det är möjligt att göra en implementation av detta i vilket modernt

programmeringsspråk som helst, men fokuset här kommer att ligga på

TypeScript och tolkningsbiblioteket Zod. Anledningen till dessa val är att

46

TypeScript, som ett statiskt typat programmeringsspråk, gagnar av

användning av ett tolkningsbibliotek då typer av dess tolkningsfunktioner kan

återanvändas genom hela systemets kodbas efter att tolkningsscheman har

definierats. Zod erbjuder utvecklaren enkel syntax att definiera

valideringsfunktioner med, och nästan oändliga möjligheter för raffinemang

och transformationer av data, som möjliggör behandling av vilken som helst

typ av data. Externa data från API:s kommer att vara främst i fokus, men de

lärdomar och praxis som förklaras här kan förstås också tillämpas på data från

andra källor.

 System är ofta beroende av flera diverse typer av data som har olika

krav på integriteten av deras struktur. Det finns data som är kritiska för den

övergripande funktionaliteten av systemet, som kräver mycket precis

definition, samt mindre kritiska datakomponenter som kanske bara flödar

genom systemet utan mycket behandling. För att optimera robustheten

medan man håller utvecklingstiden och komplexiteten låg är det viktigt att

skilja på dessa olika datatyper som finns i ens system.

 Då man arbetar med data från externa system är strukturen sällan fullt

känd, och dokumentation är oftast bristfällig eller helt och hållet obefintlig.

Detta leder till att det inte är möjligt att veta hur data kommer att se ut då de

kommer in i systemet, vilket kan leda till problem senare i utvecklingen eller

då systemet redan har varit i användning i en längre tid, då något okänt format

plötsligt kommer in i systemets back-end kod och businesslogik. Dylika

problem, som är svåra att förutspå och som kan uppstå sent i utvecklingen

eller då systemet redan är i full användning, är dyra och tidskrävande att reda

ut och åtgärda. Ju tidigare problemen hittas, desto bättre och robustare system

har man åstadkommit att utveckla.

 Förutom otillräcklig kunskap om externa datas struktur innehåller

data ofta även skillnader i hur information visas eller dess format, vilket kan

bero på implementationen i fråga, som kan skilja sig från hur data ser ut i

programmeringsspråket i det egna systemet. Ofta förekommande exempel på

sådana problem är formatet på datum eller tidfält, hur tomma fält, såsom

47

“null” eller “odefinierat” hanteras, samt olika format på numeriska fält som

måste hanteras innan de kan hanteras korrekt i det aktuella systemet.

Dessa problem kan lösas med hjälp av tolkningsbibliotek, genom att

definiera tolkningsscheman för dessa okända externa datastukturer, som ser

till att strukturen på de data som kommer in i ens system är entydig och klart

definierad. Detta tillvägagångssätt ger flera konkreta förbättringar som direkt

syns i utvecklingen av systemet, exempelvis:

- Automatisk dokumentation på externa data och deras struktur

- Tolkning, validering och transformering av externa data sker på ett och

samma ställe, direkt då data kommer in i systemet.

- Resten av kodbasen hålls ren, dataspecifik logik hålls skild från

businesslogik.

- Enhetligt tillvägagångssätt på hur man ska definiera och behandla

strukturen av externa data.

- Transformering av externa data kan effektiviseras och dess

funktionalitet återanvändas för att förena data från flera olika externa

system.

Fördelarna av användning av tolknings- och valideringsbibliotek blir snabbt

tydliga då man måste behandla stora, komplexa datastrukturer som

härstammar från externa system. Implementation av detta tillvägagångssätt

förbättrar inte bara robustheten av systemet, utan fungerar också som

automatisk, aktuell dokumentation som förbättrar förståelsen och

kommunikationen mellan utvecklare i större team. Förutom dessa fördelar

hjälper den också utvecklarna att arbeta enligt samma mönster och bästa

praxis för att hålla strukturen bekant och förståelig för alla inblandade parter.

48

8 Bibliography

[1] J. Rinta-Filppula, IS STATIC TYPE CHECKING WORTH IT?, April 2021.

https://trepo.tuni.fi/bitstream/handle/10024/131013/Rinta-

FilppulaJaakko.pdf;jsessionid=A3C4F83CD89073600F8EC96B8522E1E

1?sequence=2 (Last read: 23.10.2023)

[2] V. Nurminen, Unification of form validation implementations in web

clients and servers, December 2022.

https://aaltodoc.aalto.fi/bitstream/handle/123456789/119373/maste

r_Nurminen_Valtteri_2023.pdf?sequence=1&isAllowed=y (Last read:

23.10.2023)

[3] Zod, https://zod.dev/ (Last read: 21.10.2023)

[4] J. C. Westland, The cost of errors in software development: evidence

from industry, February 2000.

https://pdf.sciencedirectassets.com/271629/1-s2.0-

S0164121200X00970/1-s2.0-S0164121201001303/main.pdf?X-Amz-

Security-

Token=IQoJb3JpZ2luX2VjEAUaCXVzLWVhc3QtMSJGMEQCIAtwkNgG9Y

yOuax9xLz1lSwlT%2BEcyzN5SO5apwbsSGBKAiBjB5dIVbffaGyES7WBs

G5DVaRO4EnUGIQfUok2BCb2xi (Last read: 23.10.2023)

[5] E. Engheim, Medium, January 2020. https://erik-

engheim.medium.com/the-many-advantages-of-dynamic-languages-

267d08f4c7 (Last read: 26.02.2024)

[6] Nullish value, https://developer.mozilla.org/en-

US/docs/Glossary/Nullish (Last read: 23.10.2023)

[7] Oracle documentation, decimal and thousands separators,

https://docs.oracle.com/cd/E19455-01/806-0169/overview-

9/index.html (Last read: 24.10.2023)

https://trepo.tuni.fi/bitstream/handle/10024/131013/Rinta-FilppulaJaakko.pdf;jsessionid=A3C4F83CD89073600F8EC96B8522E1E1?sequence=2
https://trepo.tuni.fi/bitstream/handle/10024/131013/Rinta-FilppulaJaakko.pdf;jsessionid=A3C4F83CD89073600F8EC96B8522E1E1?sequence=2
https://trepo.tuni.fi/bitstream/handle/10024/131013/Rinta-FilppulaJaakko.pdf;jsessionid=A3C4F83CD89073600F8EC96B8522E1E1?sequence=2
https://aaltodoc.aalto.fi/bitstream/handle/123456789/119373/master_Nurminen_Valtteri_2023.pdf?sequence=1&isAllowed=y
https://aaltodoc.aalto.fi/bitstream/handle/123456789/119373/master_Nurminen_Valtteri_2023.pdf?sequence=1&isAllowed=y
https://zod.dev/
https://pdf.sciencedirectassets.com/271629/1-s2.0-S0164121200X00970/1-s2.0-S0164121201001303/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEAUaCXVzLWVhc3QtMSJGMEQCIAtwkNgG9YyOuax9xLz1lSwlT%2BEcyzN5SO5apwbsSGBKAiBjB5dIVbffaGyES7WBsG5DVaRO4EnUGIQfUok2BCb2xi
https://pdf.sciencedirectassets.com/271629/1-s2.0-S0164121200X00970/1-s2.0-S0164121201001303/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEAUaCXVzLWVhc3QtMSJGMEQCIAtwkNgG9YyOuax9xLz1lSwlT%2BEcyzN5SO5apwbsSGBKAiBjB5dIVbffaGyES7WBsG5DVaRO4EnUGIQfUok2BCb2xi
https://pdf.sciencedirectassets.com/271629/1-s2.0-S0164121200X00970/1-s2.0-S0164121201001303/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEAUaCXVzLWVhc3QtMSJGMEQCIAtwkNgG9YyOuax9xLz1lSwlT%2BEcyzN5SO5apwbsSGBKAiBjB5dIVbffaGyES7WBsG5DVaRO4EnUGIQfUok2BCb2xi
https://pdf.sciencedirectassets.com/271629/1-s2.0-S0164121200X00970/1-s2.0-S0164121201001303/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEAUaCXVzLWVhc3QtMSJGMEQCIAtwkNgG9YyOuax9xLz1lSwlT%2BEcyzN5SO5apwbsSGBKAiBjB5dIVbffaGyES7WBsG5DVaRO4EnUGIQfUok2BCb2xi
https://pdf.sciencedirectassets.com/271629/1-s2.0-S0164121200X00970/1-s2.0-S0164121201001303/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEAUaCXVzLWVhc3QtMSJGMEQCIAtwkNgG9YyOuax9xLz1lSwlT%2BEcyzN5SO5apwbsSGBKAiBjB5dIVbffaGyES7WBsG5DVaRO4EnUGIQfUok2BCb2xi
https://pdf.sciencedirectassets.com/271629/1-s2.0-S0164121200X00970/1-s2.0-S0164121201001303/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEAUaCXVzLWVhc3QtMSJGMEQCIAtwkNgG9YyOuax9xLz1lSwlT%2BEcyzN5SO5apwbsSGBKAiBjB5dIVbffaGyES7WBsG5DVaRO4EnUGIQfUok2BCb2xi
https://erik-engheim.medium.com/the-many-advantages-of-dynamic-languages-267d08f4c7
https://erik-engheim.medium.com/the-many-advantages-of-dynamic-languages-267d08f4c7
https://erik-engheim.medium.com/the-many-advantages-of-dynamic-languages-267d08f4c7
https://developer.mozilla.org/en-US/docs/Glossary/Nullish
https://developer.mozilla.org/en-US/docs/Glossary/Nullish
https://docs.oracle.com/cd/E19455-01/806-0169/overview-9/index.html
https://docs.oracle.com/cd/E19455-01/806-0169/overview-9/index.html

49

[8] IEEE 754, https://en.wikipedia.org/wiki/IEEE_754 (Last read:

21.10.2023)

[9] ISO 8601 — Date and time format, February 2017.

https://www.iso.org/iso-8601-date-and-time-format.html (Last read:

21.10.2023

[10] kingtorin, OWASP: SQL Injection, https://owasp.org/www-

community/attacks/SQL_Injection (Last read: 02.12.2023)

[11] Y. Montoya, Vaadata, October 2023.

https://www.vaadata.com/blog/rce-remote-code-execution-

exploitations-and-security-

tips/#:~:text=Remote%20Code%20Execution%20(RCE)%20is,remotel

y%20with%20no%20physical%20access. (Last read: 02.12.2023)

[12] Stack Overflow Developer Survey 2023, June 2023.

https://survey.stackoverflow.co/2023/#technology-most-popular-

technologies (Last read: 21.10.2023)

[13] Github, https://github.com/ (Last read: 21.10.2023)

[14] Yup Github, September 2014. https://github.com/jquense/yup (Last

read: 21.10.2023)

[15] Pydantic, https://docs.pydantic.dev/latest/ (Last read: 02.12.2023)

[16] Cerberus, https://docs.python-cerberus.org/ (Last read: 02.12.2023)

[17] FasterXML/jackson: Main Portal page for the Jackson project,

https://github.com/FasterXML/jackson (Last read: 21.10.2023)

[18] google/gson: A Java serialization/deserialization library to convert Java

Objects into JSON and back, https://github.com/google/gson (Last

read: 21.10.2023)

[19] Oracle Java tutorials: Generic types,

https://docs.oracle.com/javase/tutorial/java/generics/types.html

(Last read: 02.12.2023)

https://en.wikipedia.org/wiki/IEEE_754
https://www.iso.org/iso-8601-date-and-time-format.html
https://owasp.org/www-community/attacks/SQL_Injection
https://owasp.org/www-community/attacks/SQL_Injection
https://www.vaadata.com/blog/rce-remote-code-execution-exploitations-and-security-tips/#:~:text=Remote%20Code%20Execution%20(RCE)%20is,remotely%20with%20no%20physical%20access
https://www.vaadata.com/blog/rce-remote-code-execution-exploitations-and-security-tips/#:~:text=Remote%20Code%20Execution%20(RCE)%20is,remotely%20with%20no%20physical%20access
https://www.vaadata.com/blog/rce-remote-code-execution-exploitations-and-security-tips/#:~:text=Remote%20Code%20Execution%20(RCE)%20is,remotely%20with%20no%20physical%20access
https://www.vaadata.com/blog/rce-remote-code-execution-exploitations-and-security-tips/#:~:text=Remote%20Code%20Execution%20(RCE)%20is,remotely%20with%20no%20physical%20access
https://survey.stackoverflow.co/2023/#technology-most-popular-technologies
https://survey.stackoverflow.co/2023/#technology-most-popular-technologies
https://github.com/
https://github.com/jquense/yup
https://docs.pydantic.dev/latest/
https://docs.python-cerberus.org/
https://github.com/FasterXML/jackson
https://github.com/google/gson
https://docs.oracle.com/javase/tutorial/java/generics/types.html

50

[20] Wikipedia: Object-relational mapping,

https://en.wikipedia.org/wiki/Object%E2%80%93relational_mapping

(Last read: 02.12.2023)

[21] Procountor, https://procountor.fi/ (Last read: 22.10.2023)

[22] Procountor API, https://dev.procountor.com/api-reference/ (Last

read: 22.10.2023)

https://en.wikipedia.org/wiki/Object%E2%80%93relational_mapping
https://procountor.fi/
https://dev.procountor.com/api-reference/

