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1. Introduction

’Cause we are living in a material world
And I am a material boy
You know that we are living in a material world
And I am a material boy

paraphrasing Madonna’s ”Material Girl”

Since the dawn of civilization, mankind has explored the properties of the
different materials found in nature in the interest of survivability and comfort.
For instance, natural resources such as wood, stone, and wool have distinct
physical properties, which makes them more or less suitable for different appli-
cations. We did not limit ourselves to existing natural materials. We proceeded
to modify their properties and even create new materials. The development of
pottery, the invention of bronze, and later steel are fine examples of milestones
in materials manufacture. Over the ages, discovering and mastering materials
and their properties have played a critical role in shaping societies and driving
technological advancements - we live in a materials world.

Nowadays, this pursuit for better materials continues. Perhaps even more
intensively than ever, as we direct our efforts on developing new technologies
and improving the current ones, with a focus on energy efficiency, such as
cooling/refrigeration devices. Cooling devices encompass familiar appliances
in our daily lives, such as freezers, fridges for cold processing and refrigera-
tion, and air conditioning units (AC) for space cooling. These devices hold a
significant percentage of domestic energy consumption, with refrigeration rep-
resenting around 4% of the total usage (4.2% Germany [1], 3.7% USA [2], 5%
Hong Kong [3]), while space cooling can reach a higher portion of the energy
consumption 5.9 [4] (0.2% Germany [1], 9.1% USA [2], 26% Hong Kong [3]).
With the improvement of infrastructure and standard of living, especially in hot-
ter regions of the world, the adoption of AC is rising. This rise is augmented by
the increasing frequency of extreme heat events and record-high temperatures
worldwide due to global climate change. As a result, the demand for space
cooling solutions is reaching unprecedented levels, translating to a substantial
increase in energy requirements.

Innovating and developing energy-efficient cooling technologies is crucial
to address the escalating energy demand. Today, one of the most promising al-
ternatives is the application of caloric materials in cooling technology. Caloric
materials are a class of materials that show a large and reversible thermal re-
sponse under an externally applied field. In simpler terms, these materials can
switch back and forth between two temperatures when an external force is ap-
plied and then removed. Depending on the nature of the applied field, caloric
materials can be classified into several subclasses:
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• Electrocaloric: responds to an electric field.
• Barocaloric: responds to pressure application.
• Elastocaloric: responds to mechanical stress.
• Magnetocaloric: responds to a magnetic field.
It is important to note that caloric materials do not necessarily belong exclu-

sively to a single subclass. They can simultaneously exhibit multiple responses.
Among caloric materials, magnetocalorics materials were the focus of research
and shown to be a solid alternative for building cooling devices, capable of
reaching an improvement of energy efficiency near to 30% compared to con-
ventional vapour-compression devices [5, 6]. In addition, the adoption of this
technology allows to avoid greenhouse gases, making the devices more envi-
ronmentally friendly and cooling more sustainable.

While this technology offers numerous advantages, it has not yet become an
integral part of our daily lives. The primary obstacles to its widespread adop-
tion lie in the cost and operative limitations of magnetic cooling devices. This
challenge has attracted research efforts aimed at enhancing affordability and
accessibility to domestic use. One crucial avenue of investigation in this field,
followed in this work, revolves around the discovery of novel magnetocaloric
materials.

1.1 Magnetocaloric Effect
The thermal response of a magnetic material in an applied magnetic field is
known as the magnetocaloric effect (MCE). This effect was reported first1 by
P. Weiss and A. Piccard in 1917 [8], who measured the temperature variation
induced by changing the magnetic field applied in nickel samples close to their
Curie temperature. The reversible temperature change (∆Tad) produced upon
a magnetic field variation, as observed in the experiment, fully characterizes
the MCE in an adiabatic process [9].

On the other hand, in the context of an isothermal process, the MCE is
characterized by an entropy change (∆Siso) [9]. Since entropy can be seen
(roughly) as a quantifier of the disorder, we can also associate the MCE to a
change in the ’magnetic disorder’ as a response to an applied magnetic field.
While∆Tad provides a more intuitive metric that can be directly measured, the
indirect measurement of∆Siso is often preferred in the literature for comparing
the MCE in different materials. This preference can be attributed, in part, to the
challenge of maintaining adiabatic conditions necessary for reliable∆Tad mea-
surements [10], making∆Siso the preferable option within the magnetocaloric
community. Nevertheless, both quantities are important when quantifying the
performance of the MCE [11].

Though the MCE is present in all magnetic materials, generally, it is too
small to be used in practical applications. Yet, the effect can be enhanced when
1Curiously in the last 20-year period [7], the discovery has been misattributed to Warburg in
1881.
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the system is near a phase transition. Materials exhibiting amplified MCE hold
a particular interest and relevance for technological applications. Those mate-
rials are classified as magnetocaloric. Note that magnetocaloric materials to be
functional through theMCE, need to be operated close to their phase transitions,
defining a (very) limited temperature range where the MCE can be explored.
Thus, the magnetocaloric material must be chosen according to the cooling
range of the application.

In light of these material properties, magnetocaloric materials have at-
tracted attention for their potential applications in magnetic hyperthermia
therapy, waste heat conversion, and magnetic refrigeration [12]. For instance,
magnetic hyperthermia therapy is a medical technique which makes use of
magnetic nanoparticles to deliver drugs within the body or to target tumour
cells. These nanoparticles generate heat under alternating magnetic fields,
enabling controlled drug release or targeted destruction of cancer cells through
controlled overheating [13]. Given the localized nature of magnetic fields,
this technique offers a noninvasive and precise method for heat delivery.
The enhanced thermal response of magnetocalorics makes them an appealing
choice for the composition of the nanoparticles [14].

Additionally, magnetocalorics can be integrated into thermomagnetic (py-
romagnetic) devices to harvest the heat generated as a waste byproduct of e.g.
industrial processes and convert it into electrical energy, either directly or indi-
rectly via mechanical energy [15]. This approach is still in its early stages but
holds significant potential for sustainable energy recovery.

While magnetocaloric materials have found other applications, magnetic re-
frigeration always has been a primary focus and a driving force behind their
study. Magnetic refrigeration, with its potential for efficient and environmen-
tally friendly cooling, has not only motivated rigorous investigation into these
materials, which significantly contributed to our understanding of their unique
properties. Within magnetic refrigeration, a special focus has been given to
the development of room-temperature technologies to bring the benefits of this
technology to daily use.

1.2 Magnetic Refrigeration
In magnetic cooling devices, the MCE is explored using combinations of ther-
modynamic processes such as adiabatic, isothermal and isofield magnetiza-
tions. The optimal magnetic refrigeration system, following the principles of
the Carnot cycle, operates using two adiabatic and two isothermal processes, as
depicted in Figure 1.1:

• Adiabatic (partially) magnetization (A - B): the process begins with
the application of a magnetic field, which can be adiabatically increased
(or ifH0 ̸= 0, intensified). This aligns the magnetic moments parallel to
the field, causing the temperature of the magnetocaloric material to rise
(point B).
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• Isothermal heat release (B - C): Subsequently, the heat is allowed to
flow (lifting the adiabatic conditions), and the magnetocaloric material
is brought into contact with a hot sink (isothermal conditions). As the
magnetic field continues to increase, the magnetic moments align further
with the field, resulting in a reduction of entropy (point C) as the magnetic
moments become more ’ordered’.

• Adiabatic (partially) desmagnetization (C - D): Once the maximum
magnetic field (H1) is reached, the contact with the hot sink is re-
moved. The magnetic field is then reduced adiabatically, causing the
magnetocaloric material’s temperature to decrease. This reduction in
temperature occurs as the orientation of the magnetic moments starts to
deviate from their aligned configuration (point D).

• Isothermal heat absorption (D - A): In the final process isothermal con-
ditions are re-established, this time with a cold reservoir (the system to
be refrigerated). The magnetic field is gradually decreased, causing the
magnetic moments to become less ordered and leading to an increase in
entropy (point A).

A

BC

D

Heat 
expelled

Heat
absorbed

B

A

C

D

Figure 1.1. Representation of the Carnot cycle for magnetic refrigeration in a conven-
tional ferromagnetic material.
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In ideal conditions in the Carnot cycle the heat (Q) exchanged between the
cold and hot sink is given byQ = ∆Tad∆Siso. While, in theory, this thermody-
namic cycle is the most efficient one possible, in practice its application in room
temperature devices is limited and inefficient [16], since it needs to be oper-
ated in a temperature range equal to∆Tad. In the context of room-temperature
refrigeration, other simplified thermodynamics cycles are discussed instead
[17, 16, 18] as the Ericsson cycle which operates within two isofield and two
isothermal processes, and the Brayton cycle that consists of two adiabatic pro-
cesses and two isofield processes. Using these as bases, more complex and
efficient cycles have been proposed, such as the magnetic cascade cycle [16]
and the active magnetic regenerator cycle [16, 18].

Taking into account the operation of magnetic thermodynamics cycles, we
can in general list four elements essential for a magnetic refrigerator [10, 16]:

• magnetocaloric material (the refrigerant)
• a source of the magnetic field and mechanism to regulate its application
in the magnetocaloric

• hot and cold heat exchangers that handle the heat transfer to the hot and
cold sink respectively

• heat transfer fluid, which pumps the heat between the magnetocaloric and
the exchangers.

In the development of householdmagnetic cooling devices essential to optimize
and integrate these elements, while keeping cost-efficiency in mind. This opti-
mization raises different challenges in the realms of engineering, physics, and
material science [12]. Within the context of physics, one of the main focuses
has been dedicated to exploring the properties of the magnetocaloric material.

Although the concept of magnetic refrigeration devices is not new and has
been applied long ago in paramagnetic salts at cryogenic temperatures [19, 20,
21], its development at room temperature is more recent. Historically, magnetic
refrigeration at room temperature was developed aroundGd-basedmaterials. In
1976, Gerald V. Brown proved that magnetic refrigeration was feasible at room
temperature with his, first of its kind, magnetic refrigerator with Gd asmagnetic
refrigerant [22]. Slowly, this field started capturing the attention of the scien-
tific community till 1997, when Pecharsky and Gschneidner observed a giant
MCE in the Gd5(Si2Ge2) [23], establishing an important development of the
field and attracting further investigation which led to a quick raise of scientific
publications related with magnetocaloric refrigeration [24, 25]. In that work
[23], Pecharsky and Gschneidner verified that Gd5(Si2Ge2) has a first-order
transition at 276K, and an entropy variation of 14 J/kg/K under application of a
magnetic field of 2T was measured, considerably higher than other compounds
known at the time. Gd5(Si2Ge2) has shown a small thermal hysteresis, ideal
for application in refrigeration devices. Unfortunately, being based on Gd, the
commercialization of this material for domestic use is not economically appeal-
ing, which motivated the search for other materials. Despite its commercial
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limitations, due to their great properties, Gd-based magnetocalorics are often
used in prototypes and demonstrators of magnetic cooling devices [17].

1.3 Magnetocaloric Materials
As mentioned above, the performance of magnetocaloric materials in refrig-
eration cycles depends on both the ∆Siso and ∆Tadi parameters [26]. How-
ever, both quantities only have significant values in a limited temperature range
around the magnetic phase transition. This makes the temperature at which the
magnetic phase transition occurs the first parameter to consider when evaluat-
ing the applicability of a specific magnetocaloric material.

Figure 1.2. Magnetocaloric properties under cycling 2T field conditions. The colours
indicate the temperature of the transition (Ttr) associated with the magnetocaloric ef-
fect, while the different symbols group the compounds of the same class. Data extracted
from Ref. [27].

Currently, within the most promising magnetocaloric materials for room-
temperature applications, we find compounds related to MnAs, La(Fe,Si)13,
Fe2P, FeRh, NiMn-based Heusler alloys, LaMnO3-like perovksites, Gd-based
(and other rare earths) intermetallics [14, 27]. In Figure 1.2 we can get an idea
of the magnitudes of ∆Siso and ∆Tadi for interesting candidates within these
classes [27]. In the context of this figure, the ideal magnetocaloric would be in
the upper right corner to have a great MCE and be coloured with a tone between
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yellow and orange coloured. Unfortunately, few compounds match those con-
ditions, only the FeRh alloy and the MnFe0.95P0.585Si0.34B0.075 for the Fe2P
family. In the figure, it is evident from a comparison of similar compounds,
that the magnetocaloric properties are tunable to a certain degree. This moti-
vates the continuation of research into these families, in an attempt to optimise
the materials for a room-temperature application. Moreover, current investiga-
tions in Ni-Co-Mn-Ti Heuslers and Mn0.5Fe0.5NiSi1−xAlx alloys have shown
to be promising and are gathering more attention [28].

It is alsoworthmentioning the existence of some research onmagnetocaloric
amorphous materials [29] and high-entropy alloys [30, 31] as the Fe-Mn-Ni-
Ge-Si [32]. These materials usually show a smaller entropy variation, but an
increased adiabatic temperature variation which can make their performance
competitive with the compounds discussed earlier. A practical advantage that
the materials offer is that their physical properties can be easily tuned [29].

Besides thementioned figures of merit (temperature of the transition,∆Siso,
∆Tadi) [16, 18] there are other keys properties desirable to be present in a mag-
netocaloric for integration in cooling device:

• low Debye temperature
• low thermal or magnetic hys-
teresis

• low specific heat and high ther-
mal conductivity

• high electrical resistance

• resistance to corrosion
• mechanically resilient and tough
• non-toxic
• low manufacturing costs and
scalable production

• low environmental impact

Discovering a material that reunites (almost) all these properties, with a high
∆Siso and ∆Tadi at room temperature constitutes the holy grail on the search
of magnetocalorics for room temperature devices.

Challenges
Despite the promising characteristics of the candidates depicted in Figure 1.2
there exist significant hurdles preventing their integration intomagnetic cooling
devices.

One notable example is the utilization of FeRh alloys, which exhibit re-
markable MCE properties. However, rhodium (Rh) is exorbitantly expensive
making it impractical to use [14, 27]. Similarly, the price of elements like ger-
manium (Ge), gallium (Ga), and indium (In) wouldmake compoundswith these
elements too expensive to be integrated into devices for commercial production
[14].

Further limiting the pool of viable options, rare-earth-based compounds, like
Gd alloys, while displaying attractive properties, are hindered by their costs [14,
27]. More importantly, the geopolitical sensitivity surrounding the mining and
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processing of these compounds, due to their limited availability in economically
significant quantities, discourages their application.

Taking into account these considerations the pool of viable magnetocalorics
becomes very limited, underscoring the interest in finding new magnetocaloric
materials, in order to make the technology commercially competitive.

Another crucial challenge to the development of magnetic cooling devices
is the issue of hysteresis [33, 25]. Magnetocalorics with sharp magnetic tran-
sitions, which inherently yield the desired high ∆Siso and ∆Tadi, inevitably
have hysteresis losses. When subjected to cyclic conditions, hysteresis leads to
a reduction in the effective∆Siso and∆Tadi, resulting in compromised perfor-
mance.

Recently [33, 34, 35] an innovative solution to this challenge was proposed:
incorporating materials that exhibit not only magnetocaloric effects but also
demonstrate barocaloric responses (pressure-response) should overcome the
problems above described. Exploring multiple caloric responses in the thermo-
dynamics cycles, coupled with strategic alloying or doping to fine-tunematerial
properties, holds exceptional promise in mitigating the performance decay of
magnetocaloric materials under cyclic conditions.

1.4 Scope of the Thesis
This thesis explores the intricate world of magnetocaloric materials, focusing
on the entropy variation linked to the MCE using first-principles calculations.
More exactly, it investigates the feasibility of a theoretical high-throughput
search for new magnetocaloric materials, detailing the initial steps of such an
approach.

The theoretical framework is established in the first few chapters (Chapters
2-4). Chapter 2 introduces the fundamental principles of the MCE. Chapter 3
describes the ab-initio methods utilized in this research, while Chapter 4 de-
tails the methodology for conducting magnetic simulations. This chapter also
introduces and discusses a novel scheme proposed in Paper II.

The following chapters (Chapters 5-6) summarize the main results and mod-
els proposed in the Papers included in the thesis. Chapter 5 presents a summary
of benchmark tests conducted on FeRh (as detailed in Paper I) and Gd (as in
Paper II). In Chapter 6, the focus shifts to the interaction between lattice and
magnetic subsystems. This interaction is explored in greater depth for Gd (in
Paper IV) and for Mn0.5Fe0.5NiSi0.95Al0.05 (in Paper III).

Furthermore, Chapter 7 offers an overview of the preliminary results from
ongoing high-throughput calculations, with these findings being directly dis-
cussed in the thesis (manuscript in preparation).

In conclusion, the thesis encapsulates the key findings, drawing together the
significant conclusions from the study.
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2. Elements of Thermodynamics and Physical
Statistics

Order, entropy; a never-ending cycle.

Heimerdinger

In this chapter, the theoretical background needed to understand the MCE
is outlined.

2.1 Thermodynamics of MCE
A good start is the beginning so we start with the first law of thermodynamics:
[9, 36]

dU = δQ− δW (2.1)

with U, Q and W as the internal energy, the heat flux and the performed work
respectively. In the standard formulation, W often includes exclusively the
mechanical work δWmec = pdV . However, in magnetic materials, it is also
convenient to add the magnetic work δWmag = −µ0Hdm, which describes
the change in the magnetic moment (m) under the application of an external
magnetic field (H). If we consider a reversible process, the second law of
thermodynamics tells us that δQ = TdS. Then we can expand Equation (2.1)
to:

dU = TdS − pdV + µ0Hdm . (2.2)

We have now a working expression for the internal energy, capable of describ-
ing the magnetocaloric effect. However, this differential equation is a function
of entropy, volume and magnetic moment while it would be more convenient
to have this relation in terms of the temperature, pressure and magnetic field,
after all these are the parameters that we can easily measure and control experi-
mentally. In order to do so, we can use a Legendre transformation to a different
thermodynamic potential than U . A common choice is to use the Gibbs energy,
that given Equation (2.2), would be defined as:

G = U − TS + pV −mµ0H (2.3)

dG =

(
G

∂p

)
T,H

dp+

(
G

∂T

)
p,H

dT +

(
G

∂H

)
p,T

dH (2.4)

= V dp− SdT −mµ0dH . (2.5)
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By comparing (2.4) with (2.5), and taking into account the equality between
mixed second partial derivatives (Schwarz’s theorem) ∂2G

∂T∂H = ∂2G
∂H∂T we get

the Maxwell’s relation, which relates the entropy with the magnetic moment:(
∂S

∂H

)
p,T

= µ0

(
∂m

∂T

)
p,H

(2.6)

dS =

(
∂S

∂T

)
H,p

dT +

(
∂S

∂H

)
T,p

dH . (2.7)

In an isothermal process (dT = 0) Equation (2.7) is reduced to :

dSiso =

(
∂S

∂H

)
T,p

dH (2.8)

then, combiningMaxwell’s relation with Equation (2.6) one obtains the entropy
variation induced by the application of a magnetic field:

∆Siso = S(T,Hf )− S(T,Hi) =

∫ Hf

Hi

µ0

(
∂m

∂T

)
H,p

dH . (2.9)

In a reversible adiabatic process (δQ = 0), the entropy of a system is con-
served (dS=0), thus Equation (2.7) give us the following equality:

(
∂S

∂T

)
H,p

dT = −
(
∂S

∂H

)
T,p

dH

dT = −
(
∂S

∂T

)−1

H,p

(
∂S

∂H

)
T,p

dH . (2.10)

Taking Maxwell’s relation in Equation (2.6) and the definition of heat ca-
pacity,

C = δQ/dT = T

(
dS

dT

)
(2.11)

the previous relation can be rewritten as:

dT = −µ0
T

CH,p

(
∂m

∂T

)
H,p

dH (2.12)

thus:

∆Tadi = −µ0
∫ Hf

Hi

T

CH,p

(
∂m

∂T

)
H,p

dH (2.13)

From Equation (2.13), follows that the adiabatic temperature is enhanced
in materials with low heat capacity provided the magnetic entropy change
and temperature remain the same. Further, comparison of Equation (2.9) and
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(2.13), tells us (as long as CV > 0) that ∆Tadi peak is always opposite to
∆Siso.

Note that the term ∂m/∂T appears in Equations (2.9) and (2.13). Since
large variations in the magnetic moment are often found in the vicinity of mag-
netic phase transitions, the dependence from this term of ∆Siso, explains the
enhancement of the MCE. In the case of ferromagnetic materials, for exam-
ple, the MCE will be larger at the magnetic (Curie) ordering temperature and
is bigger for materials with large magnetization and/or sharp variations in the
magnetization as in first-order transitions.

Since the field dependence is not explicit in
(
∂m
∂T

)
H,p

it is convenient to
rewrite it such that the relation becomes more evident. To couple the change
of the magnetic moment explicitly to the magnetic field, one can make use of
the magnetic susceptibility (χ). In general terms, magnetic susceptibility is a
measure of the magnetization response to an applied magnetic field:

M = χH . (2.14)

Calculating the partial derivative of this gives us:

1

V

∂m
∂T

=
∂χ

∂T
H+ χ

∂H
∂T(

∂m

∂T

)
H

= V
∂χ

∂T
H . (2.15)

Equation (2.15) makes it evident how ∆Siso and ∆Tadi increase with the
magnetic field applied. Moreover, the general behaviour of ∂χ/∂T is known
for different magnetic orderings (see Figure 2.1), allowing us to identify the
cases where MCE is enhanced for conventional magnetic materials. As illus-
trated in Figure 2.1, ∂χ/∂T reaches its maximum close to the magnetic order-
ing temperature (Curie temperature for ferromagnetic, TC , and Néel tempera-
ture for anti-ferromagnetic TN systems), varying slowly (≈ 1/T in the high-
temperature limit). This explains the enhancement of the MCE close to phase
transitions in conventional order-disorder transformations. The order of mag-
nitude of χ is also relevant for the MCE, as materials with higher χ will have
a bigger ∂χ/∂T in the transition. Thus, ferromagnetic (FM) and ferrimagnetic
(FiM) materials are of special interest for magnetocaloric applications since in
general, theirχ is an order of magnitude bigger than paramagnetic (PM) and an-
tiferromagnetic (AFM) materials, as seen in Figure 2.1. Analysing the χ slopes
in Figure 2.1 clarifies the exploration of the MCE from paramagnetic salts at
cryogenic temperatures. Additionally, given the slow variation of the suscep-
tibility even at low temperatures, it becomes clear that a weak MCE should be
expected for conventional antiferromagnetic materials.

The discussion above highlights the importance of a large variation of(
∂m
∂T

)
H
or ∂χ

∂T for an enhanced MCE, explaining while the effect is stronger in
the vicinity of a phase transition. While the absolutes values of m or χ play a
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Ferro(i)magnet

Antiferromagnet

Paramagnet

Figure 2.1. Illustration of the temperature dependence of the magnetic susceptibility
for different magnetic orders. Ferrimagnets have a susceptibility that qualitatively re-
sembles a ferromagnet, in particular, close to TC .

role for these quantities, an equally important feature is the sharpness of the
magnetic transitions.

Order of the transition
The sharpness of a transition is closely related to its order. Phase transitions
can be classified (Ehrenfest classification) according to the lowest derivative of
temperature or generalized force (e.g. magnetic field, pressure) of the free en-
ergy that is discontinuous. Thus, a first-order transition has ∂G

∂x (x = T, P,H)
discontinuous at the transition. Comparing Equations (2.5) and (2.4), we see
these derivatives correspond, to the entropy, volume and magnetic moment,
meaning that in first-order transitions these physical quantities change discon-
tinuously. In a similar way, second-order transitions have discontinuities in
∂2G
∂x2 , which manifests as discontinuous changes in the heat capacity, compress-
ibility and differential magnetic susceptibility [37]. In real materials, these
quantities are not exactly discontinuous but present sharp variations.

Due to these distinct properties between the 1st and 2nd order transitions
different considerations are needed to calculate ∆Sadi, see Figure 2.2. One
convenient way (for both theoretical and experimental studies), is to explore the
thermodynamic relation between heat capacity and entropy (Equation (2.11))
and integrate the heat capacity measured at two different magnetic fields H1

and H2:

∆S(T ) =

∫ T

0

C(T )H2
− C(T )H1

T
dT . (2.16)

20



A)

B)

Temperature

Temperature

E
nt
ro
p
y

E
nt
ro
p
y

Figure 2.2. Illustrative T-S diagram of a magnetic system in the vicinity of first-order
(a) and second-order (b) phase transition in two magnetic fields, H1 and H2. a) Values
of entropies at critical points are marked.

While this relation is valid for both first and second-order transitions, in first-
order transitions, the discontinuity in the entropy implies an infinite spike in
the heat capacity at the phase transition. This infinite spike refers to the latent
heat (L, also known as heat/enthalpy of transformation) absorbed or emitted
by the system during the transformation, as the temperature of the system will
not change until the transformation is completed1. This mathematical singular-
ity does not allow for direct integration of the heat capacity in the expression
above. Instead, we need to reformulate Equation (2.16) to include the disconti-
nuity of the entropy above the transition temperature, keeping in mind that the

1Just as we explore in a Bain-marie to melt e.g. chocolate.
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transition temperature depends on H . For temperatures within the range de-
fined by both transition temperatures forH = H1, andH = H2 the analogous
of Equation (2.16) for first-order transitions can be approximated to [38, 37]:

∆S(T ) =

∫ T

0

C(T )H2
− C(T )H1

T
dT +∆Str(H) (2.17)

where ∆Str(H) is the discontinuous jump in entropy given by the difference
between the entropies of the low and high-temperature states (see Figure 2.2a).
The term ∆Str(H) is a temperature-independent constant related to the la-
tent heat associated with the first-order transition as L/Ttr. Since it has a
weak dependence on the magnetic field, it is often reasonable to approximate
∆Str(H1) ≈ ∆Str(H2) [38].

Comparing Equation (2.16) and (2.17) we can understand that first-order
transitions have inherently a bigger entropy variation due to the additional
term2. In fact, first-order transitions have often ∆Str big enough so this term
is the major contribution to the entropy change. For such cases, the main role
of the magnetic field is not so much to change the heating properties as it is
shifting the phase transition temperature.

Although it is out of the scope of this work, it is important to note that first-
order transitions have always a hysteresis associated, which leads to losses of
performance in magnetocaloric materials under cyclic conditions. While ∆S
is not very strongly affected by hysteresis, the different transition temperatures
at H1 and H2 get closer, reducing effectively ∆Tadi and the amount of heat
exchange on the magnetocaloric refrigeration cycle.

2.2 Entropy
Entropy is a thermodynamic variable often associated with the ’disorder’ of
the system. Such association can provide a good illustration when comparing
high and low entropy states for example the spins configurations (A) and (C)
in Figure 2.3.

However, it can mislead in some cases and its physical interpretation is very
limited. In statistical physics, entropy quantifies the number of distinct config-
urations (microstates, Ω) available to a system in a particular thermodynamic
state:

S = kB ln(Ω) (2.18)

where kB is the Boltzmann constant. From this definition, we can relate entropy
with the different degrees of freedom of the system. To illustrate this point, let
us revisit spin configurations (A) and (B) in Figure 2.3. On spin configuration
(A), where the system is disordered and there is high entropy, we could rear-
range the spins in different ways, equally disordered, without changing any of

2Note that∆Str > 0 so the transition happens spontaneously.

22



A B

Figure 2.3. Illustration of spin configurations with different levels of disorder: the high
entropy state (A) and the low entropy entropy state (B).

the (macroscopic properties of the system) as the total magnetic moment and
energy. These multiple possible configurations imply a high entropy value. In
contrast, we have case (B) where the spins align along the direction of the ex-
ternal magnetic field. In such a case, there is only one way of rearranging the
spins’ orientation while keeping them aligned with the magnetic field. Hence
resulting in a low entropy value.

The entropy of a system is closely related to fluctuations from the ground
state. Fluctuations can be thought of as the system randomly exploring different
microstates. As a system fluctuates and explores different configurations, its
entropy tends to increase, since the number of accessible configurations grows.
It seems logical that, during this exploration, the system is more likely to be
found in the macrostate that has more microstates. Hence, entropy plays an
important role in the stabilization of the state of a system. This clarifies why
higher temperatures lead to increased thermal fluctuations, driving the system
towards states with higher entropy, often characterized by greater ’disorder’.
As is the case e.g. for ferromagnetic systems that become magnetically dis-
ordered above the Curie temperature. This role of the entropy to stabilize a
state becomes evident in the TS term of the Gibbs (see Equation (2.4)) and
Helmholtz energies.

As mentioned above, in magnetocaloric systems the entropy variation in-
duced by the magnetic field is a figure of merit for the characterization of the
MCE and for the performance in magnetic refrigeration. Commonly, the elec-
tronic, the structural (lattice) and the magnetic degrees of freedom enter the
entropy and are treated as independent contributions, Sele, Slat, Smag respec-
tively. The total entropy is then given by [39]:

Stot = Sele + Slat + Smag . (2.19)

It’s important to note that assuming the decoupling of contributions can be
a significant simplification in many cases. For example, in materials with itin-
erant magnetism or/and magnetism lead by 3d-electrons, there is a strong cou-
pling between the different degrees of freedom, so the description of the entropy
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as in Equation (2.19) can lead to double counting of entropy contributions [38].
Moreover, most of the magnetocaloric systems of interest (e.g. FeRh, Fe2P
and Heusler alloys) display magnetostructural transitions, hinting at a strong
coupling between lattice and magnetic components. Unfortunately, the cur-
rent knowledge on the accurate treatment of these couplings is limited, so often
models are tailored to specific materials. In fact, the absence of a description
that is both general and accurate is one of the main challenges in the study of
magnetocaloric materials.

In general (while using Equation (2.19)) it is often considered that the ap-
plication of the magnetic field has a direct effect only on Smag, playing no part
in Sele and Slat [38]. In such scenarios, we can deduce that during adiabatic
processes, the change in magnetic entropy (∆Smag) induced by the magnetic
field is absorbed by the electronic and lattice subsystems:

∆Stot = 0 (adiabatic process)
−∆Smag(T,H) = ∆Sele(T ) + ∆Slat(T )

explaining the constant entropy in the adiabatic processes A→B and C→D in
Figure 3.1) despite alterations in the alignment of the spin moments. While this
’proof’ is trivial, it provides us with physical insight into how the change of the
magnetic order leads to a temperature change.

Before diving into individual entropy contributions, let’s first compare
their relative magnitudes. In magnetocaloric materials, as it might have been
expected, the dominant term is ∆Smag. In the following terms, ∆Slat usually
dominates over∆Sele. For materials undergoing magnetostructural transitions,
∆Slat can become comparable in magnitude to the magnetic contribution.
Since electronic entropy is usually considerably smaller in magnetocaloric
materials is often omitted in the description.

2.2.1 Electronic Entropy
Electronic entropy arises from the occupation of vacant electronic states by
electrons within a system. At T = 0 the system is in its ground state and
Sele = 0. At finite temperatures, thermal fluctuations allow the electrons to oc-
cupy excited states increasing the possible electronic configurations and thus
the electronic entropy. Formally, Sele is defined as the mixing entropy of oc-
cupied and unoccupied states [40]:

Sele =− kB

∫
D(ϵ)

[(
1− f(ϵ, T )

)
ln
(
1− f(ϵ, T )

)
+ f(ϵ, T )ln

(
f(ϵ, T )

)]
dϵ . (2.20)

Here,D(ϵ) represents the electronic density of states, and f(ϵ, T ) is the Fermi-
Dirac distribution function:
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f(ϵ, T ) =

[
exp

(
ϵ− µ

kBT

)
+ 1

]−1

(2.21)

Nele =

∫
D(ϵ)f(ϵ, T )dϵ (2.22)

where µ is the electronic chemical potential (the energy gain/cost of adding or
removing one electron). At T=0, µ corresponds to the Fermi energy (ϵF ) but for
T > 0 the chemical potential differs from ϵF and has to be calculated in order
to accurately compute Sele at a given T . Thus to accurately compute Sele using
Equation (2.20) at a given temperature T , one needs to calculate the respective
µ. For a solid, one can explore Equation (2.22), since the number of electrons
must be kept constant [40].

Given its popular use, it is worth noting that Sommerfeld’s approximation
allows to simplify the dependence of the entropy on the temperature to a linear
relation. In this approximation, it is assumed thatD(ϵ) varies slowly close to ϵF
(i.e. no peaks inD(ϵ) near ϵF ) and that the temperature is low (T << ϵF /kB).
When such conditions are met, Equation (2.20) can be simplified to:

Sele =
π2

3
k2BD(ϵF )T . (2.23)

While in theoretical studies, there aremethods that allow estimatingD(ϵ), in
experiments it is not possible to determineD(ϵ), and therefore it is not straight-
forward to determine accurately ∆Sele using the definition (Equation (2.20)).
In such cases, Sommerfeld’s approximation provides a valuable approach for
estimating this contribution. This estimation involves conducting linear fits to
heat capacity measurements at low temperatures.

2.2.2 Lattice Entropy
Similarly, in the context of entropy variation in magnetocaloric materials, we
identify various contributions to lattice entropy. Among these contributions
is configuration entropy, a term that quantifies the potential arrangements of
atoms within a crystal lattice, encompassing both spatial distribution (lattice
type) and chemical compositions (commonly referred to as mixing entropy in
high-entropy alloys) [41]. This contribution is crucial for phase stability, but
since does not depend explicitly on temperature [41], it plays nearly no role in
temperature-dependent properties, hence it has a small interest in the context
of this work. Yet, another crucial, perhaps the most significant, contribution
to lattice entropy is vibrational entropy, denoted as Svib, which characterizes
the dynamic behaviour of atoms. This term has an explicit dependence on
the temperature and plays a fundamental role in most temperature-dependent
physical properties of solids [42, 41]. As the name suggests, Svib measures
the vibrational degrees of freedom of the atoms in a given structure. In
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solid-state physics, vibrations are effectively described using phonons, bosonic
quasi-particles that represent the quantization of crystal vibrational modes.
To calculate vibrational entropy, one can compute the entropy of phonons.
Similarly as for electrons but attending to their bosonic nature, the entropy of
phonons is related to the occupation of the respective density of states:

Svib =kB

∫ ∞

0
g(ω)

[(
1 + n(ω, T )

)
ln
(
1 + n(ω, T )

)
− n(ω, T ) ln

(
n(ω, T )

)]
dω (2.24)

with:

n(ϵ, T ) =

[
exp

(
h̄ω

kBT

)
− 1

]−1

(2.25)

where g(ω) is the vibrational density of states (VDOS) and n(ω, T ) is the Bose-
Einstein distribution (with chemical potential equal to zero)3. In the treatment
of phonons, a common approximation made is the use of the harmonic model.
This model assumes that phonons are independent of each other and indepen-
dent of other sources of dynamical entropy, being successful at describing low-
temperature properties where these conditions are often fulfilled. To consider
thermal effects as the volume expansion, the model can be extended in the
quasiharmonic model, which assumes independent phonons with altered fre-
quencies [41].

The main challenge of computing Svib thought Equation (2.24) is needed
knowledge of VDOS, which can be far from trivial to determine either theoret-
ically or experimentally. The effort required to fully determine VDOS highly
motivated the wide use (and misuse) of the Debye model [42]. In the limit
q → 0 (long wavelength) a continuum behaviour is achieved, and phonons be-
have as sound waves, displaying a linear relationship between the frequency,
ω, and the wave number |q| [41]. The constant of such relation is the speed of
sound of the medium, vsound. In the Debye model the behaviour of the q → 0
limit is assumed to all frequencies:

ω = vsound|q|, |q| <= qD (2.26)

till a maximum wave number qD (Debye wave number) defined by normal-
isation conditions of g(ω)[42]. As a consequence of this linear relation, we
can determine the explicit expression of the vibrational density of states, with
a quadratic dependence of ω:

g(ω) =
9h̄3ω2

(kBΘD)
3 (2.27)

3By convention, for phonons, the energy is expressed in angular frequency units according to
E = h̄ω.
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where ΘD is the Debye temperature, an important parameter of the model,
given by [42]:

ΘD =
h̄vsound
kB

(
6π2NNAρ

M

)1/3

(2.28)

with N being the number of atoms in the compound/molecule, M the mass of
a mole of the material, NA the Avogadro’s constant and ρ the mass density.

It becomes clear then that the Debyemodel reduces the problem of determin-
ing the full phonon spectrum of a material, to the determination of the Debye
temperature (or more precisely, the speed of sound) of the material. Moreover,
since g(ω) has an analytical expression, it allows the creation and exploration
of simple models of the thermophysical properties of the materials. If Equa-
tion (2.24) is combined with Equation (2.27) the vibrational entropy of the De-
bye model is given by [43]:

Svib = 12NAkB

(
T

ΘD

)3 ∫ ΘD/T

0

x3

ex − 1
dx− 3NAkB ln

(
1− e−ΘD/T

)
.

(2.29)
The Debye model significantly simplifies the experimental and theoreti-

cal characterization of phonons, explaining its widespread use and popular-
ity. Nevertheless, the Debye model has its limitations. The assumption of a
linear dispersion (ω(q)) does not work for optical phonons (incoherent vibra-
tions modes) and is inaccurate when q approaches a reciprocal lattice vector
i.e. when the vibration mode has the wavelength close to the interatomic dis-
tances, breaking the picture of a continuum medium. Hence the Debye model
is accurate in the limit T → 0, but fails close to ΘD. In the high-temperature
limit, T ≫ ΘD, the Debye model replicates the asymptotic behaviour expected
as the system approaches the classical behaviour.

A source of lattice entropy usually discussed in the context of magnetocalo-
ric materials is the elastic entropy, Sela, associated with changes in the volume
[44, 43]. As discussed before, first-order transitions are accompanied by a dis-
continuous variation in the volume. If this variation is large enough, we are
in the presence of an isostructural transformation, and it might be important to
consider the elastic entropy variation [44]:

∆Sela =
B

2T

(∆V )2

V
(2.30)

where B is the bulk modulus of the material. This entropy contribution is re-
lated to the vibrational entropy and can be seen as the entropy associated with
changes in the phonon frequencies by variation of the volume, being then a
quasi-harmonic correction [41, 43]. This is important to consider when calcu-
lating the lattice entropy for two phases, if Svib already includes the effect of
volume change, e.g. by calculating the VDOS of the phases with the respective
different volumes, or not. Otherwise, a careless sum of ∆Svib and ∆Sela can
lead to double counting.
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2.2.3 Magnetic Entropy
The magnetic entropy is expected to be the dominant contribution for the MCE
since this effect reflects changes in the magnetic degrees of freedom under the
application of a magnetic field. At the atomic scale, the magnetic moment is
characterized by the spin magnetic moment, which possesses two degrees of
freedom: its magnitude and direction. Perturbations in magnitude are known
as longitudinal fluctuations, and can be described by models such as the Stoner
model, while the perturbations in the direction are known as transversal fluctua-
tions and can be treated within a simplified Heisenberg model. Typically, longi-
tudinal fluctuations are linked to weakly correlated magnetism, while transver-
sal fluctuations are related to strongly correlated magnetism, such as in the case
of 4f orbitals. Transition metals can display both types of fluctuations and ide-
ally, both descriptions should be included for a complete description of such
magnetic systems [45]. Yet, when it comes to characterizing properties at fi-
nite temperatures, the Stoner model proves to be of limited applicability, at best
serving as an adjustment for collective excitations [46]. Furthermore, disentan-
gling the entropy contribution of Stoner fluctuations from the electronic density
of states (DOS) is a challenging task. To simplify matters, we can assume that
the entropy contribution from longitudinal fluctuations is accounted for within
Sele[28]. As a result, our focus shifts to transversal fluctuations when calcu-
lating ∆Smag. This choice is motivated by the fact that all the materials that
possess a magnetic order have, eventually, an order-disorder transition caused
by transversal fluctuations.

Although the spin magnetic moment is of quantum nature by origin, it is
often more convenient and intuitive to describe it in a semi-classic picture. An
aspect of its quantum nature is that the observable spin projection along a direc-
tion (by default the z-axis), denotedms, is quantized. It spans from -s to +s in
one-unit increments with s being the spin quantum number of the particle. Con-
sequently, the projected spin magnetic moment is also discretized as gsmsµB ,
with gs as the spin g-factor (≈ 2) and µB as the Bohr magneton constant. We
can interpret the multiplicity ofms, 2s+1, as the number of possible directions
the spin moment can take, as illustrated in Figure 2.4a. In this context, when
a system transitions from a fully ordered state, where all spins align in one of
these projections, to complete disorder at zero field (H = 0), the maximum
possible variation in magnetic entropy is [39]:

∆Smag = NkB ln(2s+ 1) (2.31)

where N is the number of independent spins. A quick analysis of Equa-
tion (2.31) tells us that ∆Smag would be maximized for higher spin moments,
with the maximum being reached for s = 7/2 (highest spin quantum number
available according to Hund’s rule). This explains the high MCE in Gd, and
the interest in rare-earths compounds. When accounting for longitudinal fluc-
tuations, the value of s fluctuates, consequently altering the number of possible
projections forms. Thus, the entropy variation would depend on the variations
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Figure 2.4. Space phase for transversal spin fluctuations in a quantum a) and classic b)
description. In c) longitudinal fluctuations are included for the classic description.

in thems multiplicities, resulting in:

∆Smag = NkB ln
(
2sf + 1

2si + 1

)
(2.32)

with sf and si being the final and initial spin respectively. Note that the entropy
variation in Equation (2.32) is always smaller or equal to the one predicted in
Equation (2.31), with the equality being reached when si or (exclusively) sf
equals to zero.

This quantum description holds at low temperatures, far from the order-
disorder magnetic transition. However, it starts to break down at higher temper-
atures as the fluctuations increase and the energy scale changes. In this regime,
a classical description becomes appropriate, as the previously quantizedms be-
comes continuous. The classical estimate for the maximal ∆Smag is given by
[47]:

∆Smag = NkB ln(4π) . (2.33)
This expression refers to the entropy of a spherical surface in the space-phase
of the spin moment versor as illustrated in Figure 2.4b. Note that the classic
limit does not depend on the magnitude of the magnetic moment, since we only
considered changes in the direction of the spin moment. Moreover, this esti-
mative is always higher than in the quantum description, Equation (2.31), since
s ≤ 7/2. When considering continuous changes in magnitude, the maximum
∆Smag becomes dependent on the spin moment. For instance, if a material un-
dergoes a magnetic phase transition from an ordered state to a fully disordered
state with spin moments spanning any value between 0 and the initial spin, s,
the entropy variation can be expressed as:

∆Smag = NkB ln
(
4

3
πs3
)
. (2.34)

This would correspond to a spherical space-phase as illustrated in Figure 2.4c.
Note that the dependence on the spin moment magnitude is recovered. For
s = 7/2 this scenario corresponds to the maximal magnetic entropy variation
that can be achieved.
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The approximations discussed above for ∆Smag provide valuable insight
into how the magnetic subsystem contributes to ∆S, but they do not predict
the actual ∆Smag in the MCE, instead, they can be views as upper limits i.e.
the maximal possible value that∆Smag takes. These estimates overlook finite
temperature effects and only compare extreme states (fully ordered or fully dis-
ordered), leading to an overestimation of entropy variation to the point where it
becomes unreasonable. A more accurate form of ∆Smag including finite tem-
perature effects can be done by resorting to Monte Carlo simulations and the
Heisenberg model to describe fluctuations of the magnetic ordering. The in-
teratomic exchange describes the interactions between localised spin moments
and can be expressed as:

H = −1

2

∑
i ̸=j

JijSi · Sj − µ0
∑
i

H · Si (2.35)

where Jij are the exchange parameters, S the spin moment vectors, and H the
magnetic field applied. The exchange parameters Jij originate from the quan-
tum mechanical properties of electrons, which are indistinguishable fermions.
These parameters take positive values for parallel spin alignment (FM interac-
tion) and negative values for anti-parallel spin alignment (AFM interaction).
In the Heisenberg Hamiltonian, Jij quantifies the interactions between spins
located on different lattice sites, reflecting the tendency of these spins to either
align or oppose each other, depending on the sign and magnitude of Jij [46].

From the Hamiltonian the internal energy, U , of the magnetic subsystem
can be derived and used to compute∆Smag from the following thermodynamic
relations:

CV =

(
∂U

∂T

)
V

(2.36)

where CV is heat capacity at constant volume. This thermodynamic quantity is
related to the entropy by:

∆Smag(T ) =

∫ T

0

∆CV

T
dT . (2.37)

It is important to stress that the ∆Smag(T ) calculated in such an approach is
slightly different from the one measured experimentally. This is because for
simplification, in theoretical calculations the volume is often considered con-
stant, so CV is computed, while in experimental conditions pressure is the con-
stant instead, soCP is measured. These two quantities should be equal at T=0K
but their difference increases with temperature [41]:

CP − CV = 9Bvα2T (2.38)

where B is the bulk modulus, v is the specific volume, and α is the linear
coefficient of thermal expansion. The relation above, tells us that for T > 0 the
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Equation (2.37) underestimates the magnetic entropymeasured experimentally.
In practice, other factors, including impurities, defects, and hysteresis - factors
not considered in the theoretical model - contribute to the reduction of∆Smag.
Consequently, the theoretical∆Smag often exceeds the experimental values.

Note that we used a classic description of the spins in the Heisenberg Hamil-
tonian, Equation (2.35). A different approach can also be obtained from the
quantum description. In a quantum treatment, the magnetic fluctuations be-
have as spin waves i.e. as collective excitations of the spin subsystems, which
propagate as waves. Instead of individual changes in the direction of magnetic
moment of the sites, a small perturbation on the magnetic moment direction
is propagated. Analogous to phonons, the lattice vibration modes, magnons
quantize the spin waves. As phonons, magnons are bosonic quasi-particles and
the entropy associated is given by Equation (2.24) but with g(E) being the
magnon density of states (MDOS) instead. While theoretically, this approach
is more accurate than the physical treatment, in practice, its use is limited to
low temperatures or, more precisely, at temperatures much smaller than the
order-disorder transition. This is because, with the increase in temperature, the
magnetic fluctuations start to have more of a local nature instead of the collec-
tive one described by magnons. In principle, one would only need to calculate
a temperature-dependent MDOS to include such behaviour. However, in prac-
tice, this is not a straightforward calculation.
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3. First-principles Calculations

Give me a CIF file and a DFT code on which to
place it, and I shall calculate the crystal properties.

paraphrasing Archimedes

In this chapter, the fundamental ideas behind the methods used for the first-
principles calculations performed in this work are briefly described.

3.1 Basics of Density Functional Theory
Density functional theory (DFT) is a very successful and widely used ab-initio
method for solving the electronic structure problem using the variational prin-
ciple. The fundamental basis of the theory was established by Hohenberg and
Kohn [48], who proposed that the ground-state properties of a system of many
interacting particles could be rewritten as a functional of the charge density
n(r). In its original formulation, DFT starts from the Born-Oppenheimer ap-
proximation, where the nuclei of the atoms are pictured as frozen/fixed. Thus,
their kinetic energy can be neglected, the electrostatic interactions between ions
are a constant, and the interaction between electrons and ions are equivalent to
the electrons moving in an electrostatic field generated by theM nuclei situated
at the sites Ri :

Ve−ion(r) =
M∑
i=1

eZi

|r− Ri|
(3.1)

where Zi denotes the atomic charge of the ion at site i. The relevant terms of
the Hamiltonian for a system of N interacting electrons in this field will then
be [49]:

H = −1

2

N∑
i=1

∇2
i +

1

2

N∑
i ̸=j

e2

|ri − rj |
−

N∑
i=1

Ve−ion(ri) . (3.2)

The first theorem of Hohenberg and Kohn states that for a system of interact-
ing particles in an external potentialVext, like e.g. Ve−ion, there is a ground state
density, n0(r), which determines uniquely, except for a constant, the Hamilto-
nian system. In other words, this theorem establishes a mapping between n0
and the external potential. Once the Hamiltonian is determined, but for a con-
stant shift in potential energy, it follows that the many-body wavefunctions for
all states are determined i.e. as corollary of this theorem, we have that all the
properties of the system are determined if n0 is given [49].
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As second theorem, Hohenberg and Kohn established the existence of a uni-
versal functional of the energy in terms of the charge density, valid for any ex-
ternal potential. This functional is defined in such a way that in principle for a
given external potential, the ground state energy is the global minimum of the
functional and the density, which minimizes it, is the ground state density n0.
As corollary, this functional is sufficient to determine the ground state energy
and density.

The combination of these two theorems constitutes the logical basis of DFT.
Proof of the theorems can be easily found in literature (e.g. Refs. [49, 50]) and it
is worth mentioning that there is a more general and abstract formulation of the
functional described above, made by Levy and Lieb, which addresses problems
related to the functional representability. Their description guarantees an one-
to-one mapping between the external potential and n0.

It is important to stress that rewriting the many-body problem in terms of
the charge density:

n(r) =
N∑
i=1

|ϕi(r)|2 (3.3)

brings a huge numerical simplification of the problem since it reduces a problem
of 3N (at the simplest cases) variables to 3 variables. In practice this means
the many-body problem is reduced into an effective one-particle description.
This is the key feature that allows DFT to treat quantum mechanical systems
more efficiently than other methods and made it so attractive and popular for
studying the electronic structure.

Although Hohenberg and Kohn proved the existence of a universal energy
functional dependent on n(r), its analytical form is unknown and a guess of the
functional seems equally hopeless as a direct guess of the ground state density
and energies. The key problem in writing such functional (and studying the
electronic structure in general) is to address the interaction between electrons
(2nd term of Equation(3.2)). Since electrons are quantum particles with spin,
two new effects arise from the Coulomb interaction - exchange and correlation.
While the explicit form of the exchange potential is known for the uniform
electron gas under the Hartree-Fock approximation, the same does not apply to
correlations in many-body systems.

The development that made DFT a success was proposed by Sham and
Kohn [51], who replaced the original many-body problem with an auxiliary
independent particle problem, which is assumed to have the same ground state
density. In their approach, all the difficulties arising from many-body terms are
swept into an exchange-correlation functional of the density:

Exc[n] = EHK [n]− T0[n]−
1

2

∫
n(r)n(r′)
|r− r′|

d3r d3r′ −
∫
Vext(r)n(r)d3r

(3.4)
where EHK [n] is the Hohenberg and Kohn functional, T0[n] is the kinetic en-
ergy of an effective one-electron system and the latter term is the Hartree en-
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ergy. Essentially Exc is the difference between the interactions and kinetic
energies of the true interacting system from those of an auxiliary independent-
particle system. The advantage of such approximation is that all unknown/dif-
ficult terms of many-body interactions are gathered in one term, which can be
approximated as a local (as in the Local Density Approximation - LDA) or
nearly local (as in the Generalized Gradient Approximation - GGA) functional
[49]. Thus, the auxiliary Kohn-Sham functional EKS [n] is given by:

EKS [n] = T0[n] +
1

2

∫
n(r)n(r′)
|r− r′|

d3r d3r′ +

∫
Vext(r)n(r)d3r + Exc[n].

(3.5)
Minimizing the functional in Equation(3.5) with respect to the charge density
is equivalent to minimising it to the one-particle wave-functions ϕ∗i gives1:

∂EKS [n]

∂ϕ∗i
= 0 (3.6)

−∇2

2
ϕi +

∂EHartree

∂n

∂n

∂ϕ∗i
+
∂Eext

∂n

∂n

∂ϕ∗i
+
∂Exc

∂n

∂n

∂ϕ∗i
− ϵiϕi = 0(

−∇2

2
+ VHartree(r) + Vext(r) + Vxc(r)

)
ϕi − ϵiϕi = 0 (3.7)

where ϵi are the Lagrange multipliers for handling the normalization con-
straints. Equation (3.7) is the well-known Kohn-Sham equation, which can be
solved in a self-consistent way to find the groundstate density and the Lagrange
multipliers ϵi also known as the Kohn-Sham eigenvalues. A sketch of a typical
DFT cycle is shown in Figure 3.1. Using this approach, the electronic structure
can be estimated from first principles with an accuracy determined only by the
approximations considered in the exchange-correlation functional.

Since the fundamentals of DFT theory were proposed, there were multiple
developments that allowed the extension of the theory beyond its fundamentals
as e.g. extension to excited states, time-dependent calculations, spin-polarized
calculations and relaxing the Born-Oppenheimer approximation [50]. There
are currently a multitude of different DFT-based methods, which differ mainly
on the choice of the wave-functions basis and the approximations for the elec-
tronic potential. In the work here presented, most of the DFT calculations
were made using three distinct methods, the Linear-Muffin-Tin-Orbital, the
Korringa-Kohn-Rostoker, and the Projected-AugmentedWave methods, which
are briefly introduced in the following sections.

1In Rydberg atomic units
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Figure 3.1. Scheme of a typical DFT self-consistent loop.

3.2 Linear-Muffin-Tin-Orbitals (LMTO) method
Muffin-Tin-Orbitals (MTO) method
In the MTO and related methods there is an artificial division of the space into
atomic regions, often muffin-tin (MT) or Wigner-Seitz (WS) spheres, and the
interstitial space. This division is motivated by the different behaviour of the
wave-function within an atomic structure: smooth between atoms, and rapidly
varying near the nuclei. Such contrasting behaviour can be better described if
the basis is constructed with functions that have alike behaviour. Methods with
this spatial division are called augmented.

The MTO method was proposed by Andersen [52], with the goal of pro-
viding an accurate electronic structure in terms of a minimal basis. Like in
the KKR method (to, which, MTO is closely related), the basis is constructed
from solutions of the Schrödinger equation inside MT spheres, χMT

lm , which
are propagated within the interstitial region by envelope functions, χInt

lm . In the
MTO theory, the former functions (inside the MT) are commonly designated as
the heads of the MT orbital while the latter functions (in the interstitial region)
are known as tails of the MT orbital. Continuity of the basis functions must
be assured at the boundary of the MT spheres between the head functions of
the local MT and the tails of the surrounding MTs. This approach results in
an energy-dependent basis, χlm(ϵ), with Kohn-Sham eigenvalues determined
by solving the matching conditions at the MT surfaces. The fundamental dif-
ference between these methods is the construction of the envelope functions.
In the KKR method, χInt

lm must be a solution of the Helmholtz equation [50],
which describes the diffusion of spherical wavefunctions with wavenumber κ
through the interstitial space. As a consequence, the χInt

lm functions are only
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properly defined at energies corresponding to the Kohn-Sham eigenvalues. By
contrast, in the MTO method, Andersen proposed a set of functions, which de-
pend separately on κ (κ2 referred to as tail energies in the MTO formalism)
and ϵ [52]. This way, simpler envelope functions can be defined for any energy
value obtained and κ can be carefully fixed to obtain a minimal and yet accurate
basis for solving the electronic structure [49]:

χlm(ϵ, κ, r) = ilYl,m(r)

{
Rl(ϵ, r) + κ cot ηl(ϵ)jl(κr), r < MT

κnl(kr), r > MT
(3.8)

where ηl and jl, in the region inside theMT spheres, are spherical Neumann and
Bessel functions. For practical reasons in the interstitial region, nl function is
often constructed using spherical Hankel or Neumann functions (as is the case
in the RSPt code [50]).

Linearization
The key idea of linear methods in DFT is the linearization of non-linear func-
tions around selected reference energies in order to lift the energy dependence
of the basis in augmented methods [49] allowing it to be solved numerically
more efficiently. Andersen [53] proposed an orbital function Φl,m to be con-
structed from two augmented functionsϕl,m(ϵ, r) and ϕ̇l,m(ϵ, r) calculated each
one at a chosen reference energy ϵv:

Φl,m(D, r) = ϕl,m(ϵv, r) + ω(D)ϕ̇l,m(ϵv, r) (3.9)

where the factor ω(D) assures that the basis function has logarithmic derivative
equal to D. The logarithmic derivative D is determined by the tails of the sur-
rounding MT and by the local MT heads functions, and can be used to specify
the functions of the energy-dependent basis.

The full-potential LMTOmethod (FP-LMTO) is a highly efficient approach
for solving the electronic structure problem in a transparent way, while using
as well, an intuitive and correct physical description of the problem. The RSPt
(Relativistic Spin Polarized toolkit) [50] is a DFT code based in the FP-LMTO
method, which allows for spin-polarized and spin-orbit calculations. The avail-
able features implemented, as the exchange parameters calculation, make this
code very suitable for solving the electronic structure of the systems of interest
for this project. However, being an all-electron method with a site-dependent
basis set, it is difficult to implement the evaluation of the linear response and
the stress tensor. As a consequence, for structural relaxation of the system and
phonon calculations, it is necessary to use another method (and code).

3.3 Korringa-Kohn-Rostoker (KKR) method
In its original formulation [54, 55], the KKRmethod was analogous to theMTO
method, sharing the same limitations, such as the use of energy-dependent basis

36



functions and the need to seek solutions through a secular equation. Despite
these challenges, the integration of KKR within scattering theory facilitated a
natural transition to Green’s functions (GF) formalism.

The KKR approach can be reformulated into a multiple-scattering frame-
work, where electrons are considered to propagate freely between atomic sites,
which serve as scattering centres. The Green’s function G(E, r, r′) represents
the propagation of an independent particle with energy E from point r to r′.

Instead of employing a variational approach to solve the Kohn-Sham single-
particle equation (see Equation (3.7)), the GF formalism modifies the problem
to compute the single-particle Green’s function G(r, r′, E) associated with the
HamiltonianH:

(E −H)G(r, r′, E) = δ(r− r′) . (3.10)
This Green’s function shares eigenfunctions (ϕi) with the Hamiltonian [56],
allowing for its expansion in terms of these eigenfunctions:

G(r, r′, E) =
∑
i

ϕ∗i (r)ϕi(r′)
E − ϵi

. (3.11)

The eigenvalues of H emerge as the poles of the GF, illustrating that both the
Hamiltonian and its associated Green’s function contain equivalent informa-
tion. So the GF is defined in the polesG(r, r′, ϵi), the domain of E is extended
into the complex plane, approaching the pole through the imaginary compo-
nent. In the vicinity of a pole E + iδ (where δ is a positive infinitesimal), the
Green’s function expands as follows:

G(r, r′, E + δ) = P
∑
i

ϕ∗i (r)ϕi(r′)
z − ϵi

− iπ
∑
i

ϕ∗i (r)ϕi(r′)δ(E − ϵi) (3.12)

where P denotes the Cauchy principal part. The electronic density, a critical
aspect of any DFT method, is then defined by:

ρ(r) = − 1

π

∫
C
Im [G(r, r, z)] dz . (3.13)

While it is evident that density and energy-related quantities can be derived
from the single-particle GF, the rationale for preferring this method over the
variational approach is not obvious, in particular since generally, GF methods
demand more computational effort than variational methods. However, the
significant advantage of GF approaches lies in the application of the Dyson
equation:

G(r, r′, E) = G0(r, r′, E)

+

∫
G0(r, r′′, E)V (r′′)G(r′′, r′, E)dr′′ (3.14)
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or in operator notation:

G = G0 [1− VG0]
−1 . (3.15)

This equation links the Green’s function of a perturbed system (H = H0 +
V (r)) with that of a reference system (G0), thereby allowing for the treatment
of systems with defects (such as vacancies or impurities) and excited states.

The Spin-Polarized Relativistic KKR (SPR-KKR) [57] is a well-established
DFT code that employs the KKR method within the GF formalism. By default,
SPR-KKR utilizes the Atomic Sphere Approximation (ASA), wherein the po-
tential is expanded in overlapping spheres. However, the code also supports
full-potential calculations. Similar to RSPt, SPR-KKR facilitates the compu-
tation of exchange parameters. Both tools share a limitation in structural re-
laxations due to their reliance on a site-centered basis. The main reason for
considering SPR-KKR in this project is its efficiency in handling systems with
chemical or/and magnetic disorders. The code’s ability to handle such com-
plexities makes it particularly valuable for studying alloys and the properties of
the paramagnetic phase.

3.4 Projected-Augmented-Wave (PAW) method
Similarly, to the MTO, PAW [58] is also an augmented method with a spacial
division of the problem into interstitial and augmentation spheres around the
nuclei, although a plane wave (PW) basis is used instead. The use of plane
waves simplifies greatly the implementation and numerical effort of the calcu-
lations, allowing e.g. to calculate easily the atomic forces. These functions are
smooth, thus, ideal to describe the wavefunctions in the interstitial space. How-
ever, near the nucleus the wavefunctions oscillate rapidly and the brute force
expansion of plane wave functions in this region is unsustainable.

In the PAWmethod two different sets of basis are used to construct the wave-
functions. A pseudo basis (ψ̃) with plane-wave functions (ϕ̃) for the smooth
part of the valence wave function, and a basis with all-electron valence func-
tions (ψ) that is related to the pseudo-basis for a linear transformation ψ = T ψ̃.
The idea is to construct a wavefunction for the whole space as:

|ψn⟩ =
∣∣∣ψ̃n

〉
−
∑
i

∣∣∣ϕĩ〉〈pĩ∣∣∣ψ̃n

〉
+
∑
i

|ϕi⟩
〈
pĩ

∣∣∣ψ̃n

〉
(3.16)

where pĩ is a projection operator related to the linear transformation T . The
second term ”cuts” the planewave basis from the augmentation sphere while the
third term ”fills” the spheres with the projection of ψ in ψ̃. As in the previous
methods, the continuity in the boundary of the augmentation region must be
guaranteed.

Using this construction with localized functions in the augmented spheres
allows to retain the nodal structure near the nuclei that PW basis sets fail to
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describe. In practice, the localized basis is pre-calculated from frozen-core
calculations, and only ψ̃ has to be solved. The problem then resembles a pseu-
dopotential method (which can be derived formally from [49]) carefully built to
preserve the nodal structure of the wavefunctions near the nuclei. The method-
ology for the PAW method can be viewed as a mixture of the pseudopotential
approach and the LMTO method.

VASP is a commercial PAW code [59, 60, 61], widely used in the scien-
tific community for solving the electronic structure. One of the most interest-
ing features is the ability to calculate forces, stress and linear responses. This
motivated the choice of using VASP to calculate the atomic forces either for
structural relaxation or for computation of the phonons.

3.5 Simulating Disorder
The physical properties of systems with chemical or magnetic disorder, such as
in alloys ormagnetic phases, can be estimated using first-principles calculations
with various levels of approximation:
Virtual Crystal Approximation (VCA) VCA [62] is a mean-field approach

that simplifies chemical disorder as a compositionally weighted aver-
age [63]. In an alloy system AxB1−x, each site is treated as if it was
occupied by a virtual atom C, whose properties are a weighted average
of A and B. For instance, the atomic number of the virtual atom ZC is
calculated as ZC = xZA + (1 − x)ZB . This method can be extended
to model an alloy as a mixture of pure crystals, with properties like the
phonon spectrum derived as weighted averages from these crystals [64].
VCA’s simplicity offers a quick initial estimate of an alloy’s properties
but is best suited for elements close in the periodic table (e.g., Fe-Co,
Co-Ni).

Coherent Potential Approximation (CPA) CPA adds complexity to the VCA
model by calculating an effective potential that simulates the alloy’s elec-
tronic properties [65, 66]. In the CPA, often formulated using Green’s
functions, mixed composition sites are treated within a single-site im-
purity approximation, i.e. the presence of the impurity atom does not
affect the potentials at neighbouring sites. The coherent potential is cal-
culated to average out the scattering caused by impurities, e.g., A and B
in AxB1−x. This integration leads to an ’effective medium’ in which the
average scattering effect of the impurities is represented.
The treatment performed in CPA is more suitable for elements with simi-
lar atomic sizes and allows for the detailed study of properties of different
species in the alloy. It is particularly useful in describing PM configura-
tions within disordered local moment approximations (DLM). In DLM,
the magnetic disorder is emulated by considering an alloy AxB1−x with
A and B belonging to the same atomic species but retaining opposing spin
moments.
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Special Quasi-random Structures (SQS) Unlike VCA and CPA, which de-
scribe chemical or magnetic disorder as an isotropic ideal alloy, SQS ac-
counts for local environmental effects. SQS are supercells designed to
mimic the correlations in an infinite random alloy [67]. This involves
generating various supercells with different occupations for the AxB1−x

sites. Then, the atomic arrangements on the different configurations are
discretized into clusters of order k (k=2 being pairs of atoms, k = 3 be-
ing trios,...) and coordination shell m. The correlations Πmk, calculated
as products of a ’spin’ variable identifying the species (e.g. 1 for A, -1
for B), are averaged. For a fully random alloy, these averages are deter-
mined asΠm,k

¯ = (2x− 1)k, band the aim of the SQS approach is then to
generate supercells with correlations matching these target correlations.
The more cluster (mk) types included, the more accurate the description
of a random alloy is, but at a higher computational cost. Thus a balance, in
function of the physical property of interest, must be made in the expan-
sion of the clusters. For instance, in studying magnetic properties within
the Heisenberg model, pair clusters might suffice, as the model focuses
on pair interactions. Unlike the previous methods, the SQS approach is
not limited by the difference in the chemical properties of the elements
alloyed.

These methods vary in their detail and computational demands, with SQS
being the most comprehensive but also the most resource-intensive. Generat-
ing and evaluating a representative SQS, although facilitated by tools like mc-
sqs [68], can be time-consuming. CPA is often limited to Green function-based
methods like KKR. VCA is the most versatile option, simplicity allows for easy
implementation and revision [63]. In general, both VCA and CPA are capable
of reproducing experimental trends for alloying effects being comparable with
the results from SQS [69, 70] for alloying elements close in the periodic table.

In the present work, these approaches are applied in various contexts. SQS
was used in Paper III to investigate the formation of local environments during
structural relaxation. CPA, implemented with the SPR-KKR code, was applied
in Papers II and IV to describe disordered local magnetic moments and in
Paper III to calculate the magnetic properties of alloyed compounds.

3.6 DFT+U
DFT is a mean-field theory, which is very adequate to describe the ”sea of elec-
trons” from metallic bonding. However, some d and most f transition metals
present strongly correlated electrons which cannot be successfully described in
standard DFT methods since they require a more localized description of the
states. The DFT plus interaction term U (DFT+U or LSDA+U/GGA+U ac-
cording to the exchange-correlation potential) approach is an ”on top of DFT”
modification which allows to treatment of strongly correlated materials. To
describe localized d and f states an additional repulsion term U describing an
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intra-atomic Hubbard interaction is included in the Coulomb interaction. This
term drives correlated orbital occupation numbers (ni) to integer values 0 or 1
[71]. In a simple version of DFT+U method, the shift on the DFT eigenvalues
is [72]:

ϵi = eDFT
i + U(

1

2
− ni) (3.17)

that is, more than half-filled bands are shifted down in energy, while less than
half-filled bands are shifted up. The addition of a Hubbard U interaction also
introduces the need for ”double counting” correction terms in the energy func-
tional since the Coulomb energy was already included in the functional. This
means that the DFT+Umethod is sensitive to the choice of the double-counting
term.

3.7 Applications
3.7.1 Phonon Calculations
The study of lattice dynamics of crystals can be simplified by focusing on the
movement of the nuclei, as they contain the majority of an atom’s mass [41].
This approach is in line with the Born-Oppenheimer approximation, which ef-
fectively decouples the energy of the electronic system from the kinetic energy
of the nuclei. As a result, the equations of motion for the nuclei are predomi-
nantly determined by their positions, denoted asR, the electrostatic interactions
between nuclei and the total energy E(R) of the electronic system for the respec-
tive nuclear configuration. In this context, a general Hamiltonian for the nuclei
can be formulated to capture these dynamics:

Hn =
∑
jl

p2jl
2mj

+ ϕ(R) (3.18)

with characteristics of the atom vibrations determined by the potential energyϕ.
Expanding ϕ(R) in respect of the atomic displacement ujl = R0

jl − Rjl where
R0
jl are the equilibrium positions of the atoms, j, j′ is the index of the atom in the

unit cell, and l, l′ is the index of the unit cell. For convenience, the displacement
vector ujl is expressed in Cartesian coordinates with its components expressed
by the α, β indices.

ϕ(u) =ϕ0 +
∑
αjl

(
∂ϕ

∂uαjl

)
0

uαjl

+
1

2

∑
αjl

∑
α′j′l′

(
∂2ϕ

∂uαjl∂uα′j′l′

)
0

uαjluα′j′l′ + ... (3.19)
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The first derivative of the total energy with respect to the nuclei corresponds
to the forces and the second derivative to the second-order force constants
Φαβ(jl, j

′l′)uαjl. In equilibrium, the forces acting on any atom must vanish
[41]: (

∂ϕ

∂uαjl

)
0

= 0 . (3.20)

Including the expanded ϕ in Equation (3.18):

Hn =
∑
jl

p2jl
2mj

+ ϕ0 +
1

2

∑
βjl

∑
α′j′l′

Φαβ(jl, j
′l′)uαjluβj′l′ . (3.21)

This Hamiltonian defines the equations of motion, which correspond to New-
ton’s second law. To solve this system, an ansatz with the form of plane waves
with wavevector q and angular frequency ω can be used [73]:

uα(jl, t) =
1

√
mj

∑
q
Uα(j, q) exp

(
i[q · R0

jl − ωt]
)
. (3.22)

Replacing this ansatz in the equation of motion, the dynamics of the system are
reduced to an eigenvalue problem:

ω2Uα(j, q) =
∑
j′β

Dαβ(jj
′,q)Uβ(j

′,q) (3.23)

where Dαβ is the dynamic matrix:

Dαβ(jj
′,q) =

1
√
mjmj′

∑
l′

Φαβ(jl, j
′l′) exp

(
iq · [R0(j′l′)− R0(jl)]

)
.

(3.24)
The eigenvectors of the dynamical matrix correspond to the normal modes of
vibration, and the respective eigenvalues correspond to the squared phonon fre-
quencies.

To calculate phonons from first-principles, usually the finite displacement
method is used. In this method, one or more atoms are shifted by finite displace-
ments∆rjl from their equilibrium positions. This shift induces variations in the
forces between atoms (F(jl)) that are approximated to the force constants[74]:

Φαβ(jl, j
′l′) ≃ −

Fβ(j
′l′;∆rα(jl))− Fβ(j

′l′)

∆rα(jl)
. (3.25)

As suggested by the sum over the unit cells in equation (3.24), it is generally
necessary to calculate the forces in a large supercell to include all meaning-
ful contributions. A rule of thumb is to observe whether the forces calculated
on the atoms further away from the displaced ones are small enough. In the
work discussed in this thesis, the calculations of phonons were performed with
the Phonopy package [74] as an auxiliary tool for post-processing the forces
calculated in DFT and calculating the phonon spectra and density of states.
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3.7.2 Elastic Properties
Full phonon calculations provide a comprehensive description of the vibrational
properties at T = 0K. However, they are resource-intensive, whichmakes them
impractical for large structures. Furthermore, for compounds undergoing struc-
tural transitions, the high-temperature phase often exhibits dynamic instability,
manifested as imaginary phonon modes corresponding to a static distortion that
minimizes the system’s energy. In these scenarios, the Debye model emerges
as a suitable alternative for describing vibrational properties, with parameters
such as sound velocity vsound (see Equation (2.28)) derived from the elasticity
constants.

Hooke’s law establishes a relationship between an applied force, the elastic
strain tensor ( δ) and the system’s response, the stress tensor ( σ) [42]:

σi =
6∑

j=1

cijξjδj . (3.26)

Here, the Voigt notation was used for the components of the tensor2, and ξi is
a factor to account for the symmetry of the δ tensor:

ξi =

{
1 for i = 1, 2, 3

2 for i = 4, 5, 6
. (3.27)

The constants cij represent the elastic stiffness or second-order elastic con-
stants. Due to their symmetry, cij = cji, 21 independent constants exist, which
are reduced further based on structural symmetry [42]:

• Cubic (3 constants): c11, c12, c44
• Hexagonal (5 constants): c11, c12, c13, c33, c44
• Orthorhombic (9 constants): c11, c12, c13, c22, c23, c33, c44, c55, c66

The constants cij are linked to the slopes of long-wavelength acoustic phonon
branches (q → 0), thus associating with sound wave velocities in various
modes (transversal or longitudinal) along certain directions [42].

In polycrystalline samples, comprising multiple single crystals oriented in
different directions, these samples exhibit statistical isotropy and homogene-
ity, making cij less effective as elastic descriptors. Alternatively, the polycrys-
talline bulkmodulusB and shear modulusG aremore appropriate, representing
the average elastic properties of an isotropic assembly of single crystals [75].
Commonly used averaging methods include Voigt (isostress), Reuss (isostrain),
and Hill (an average of Voigt and Reuss).

The average sound velocity can be approximated from these moduli [76]:

vsound =
√
ρ

(
1

3

[
2

G3/2
+

1

(B + 4
3G)

3/2

])−1/3

(3.28)

21, 2, 3, 4, 5, and 6 correspond to xx, yy, zz, yz, xz, and xy, respectively.

43



where ρ is the density of the materials (volumetric mass).
The internal energy E of a crystal under strain δ can be expanded using the

Taylor series in terms of the strain tensor, relative to the initial energy of an
unstrained crystal. Considering the relations

σi =
1

V0

∂E

∂δi
(3.29)

cij =
∂σi
∂δj

=
1

V0

∂2E

∂δi∂ϵj
(3.30)

the harmonic approximation (2nd order) of the Taylor expansion is given as
[75]):

E(V, δ) = E0 + V0

(∑
i

σiξiδi

)
+

1

2

∑
ij

cijδiξiδjσ . (3.31)

Reference [75] details the process to determine cij from first principles cal-
culations, by fitting DFT energies for various strains δ in Equation (3.31). Dif-
ferent distortions are needed to calculate distinct cij values. Small, volume-
conserving strains are preferable for accuracy, except when determining c11,
c22, and c333. Once the independent stiffness constants are determined, the full
matrix c can be constructed, and the elastic stiffness matrix s is calculated as
s = c−1. With s and c, the bulk and shear moduli are obtainable, allowing for
first-principles determination of vsound.

3.7.3 Exchange Parameters (Jij)
The Heisenberg Hamiltonian (Equation (2.35)) is often a starting point to de-
scribe magnetic subsystems. However, a first-principles estimate of the Jij
can be troublesome since the magnitude of these parameters is relatively small,
around 1 or 2 mRy in strong couplings, requiring an additional effort in the ac-
curacy of the calculations. From DFT, the parameters can be estimated from
total energy variation for small deviations of some magnetic moments relative
to the magnetic ground state [77]. This can be done using the so-called frozen-
magnons approach, or using the more mathematically involved approach sug-
gested by Liechtenstein-Katnelson-Antropov-Gubanov (LKAG) [78]. In the
latter, a rigorous approach for calculating the Jij is formulated within DFT ap-
proach (more exactly using Local Spin Density Functional Theory) using KKR
Green functions formalism. The key idea of this approach is to calculate the
pair interaction Jij from the energy variation caused by small rotations (θ → 0)
on opposite angles ±θ/2 of two spin moments at sites i and j [78]:

Jij ≈ 2
δEij − δEi − δEj

θ2
(3.32)

as illustrated in Figure 3.2.
3Such volume-conserving distortions would require more than one strain to be applied
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Figure 3.2. Illustration of the spin moments rotation considered in the LKAG approach.

For small enough angles, the magnetic force theorem should be valid, and
the problem can be simplified to the computation of perturbations instead of cal-
culating total energy variation. The LKAG method describes this perturbation
in the multiple scattering formalism leading to an expression for the exchange
parameters [77]:

Jij = − 2

π

∫
Im
{
TrL

{
∆iG

↑
ij∆jG

↓
ji

}}
dϵ (3.33)

where G↓/↑
ij are the Green’s functions that operate the small θ rotation, and ∆

is the exchange spin splitting matrix. In this formulation, the exchange param-
eter is determined by the inter-atomic interactions between sites with the Jij
parameters depending on ∆ in a more complex way than in the Stoner model,
which is closely related to the intra-atomic exchange interaction.

In the RSPt code, the LKAG method is implemented as described in
Ref. [79], with ∆ calculated, for pure DFT calculations, as the difference
between spin, and site projected Kohn-Sham Hamiltonian. In SPR-KKR the
LKAG method is also implemented for the calculation of Jij .
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4. Magnetic Monte Carlo Simulations

Mix it all together and you know that it’s the best of
both worlds

Hannah Montana’s ”Best Of Both Worlds”

This chapter describes the Monte Carlo method employed in the magnetic
simulations to determine the magnetic entropy and magnetic ordering tempera-
ture. Additionally, it offers a more detailed explanation of the rescaling scheme
introduced in Paper II, providing context and detailed insights into its applica-
tion.

4.1 Metropolis Monte Carlo
For most realistic systems, the exact analytical solution of the Heisenberg
Hamiltonian is unknown and remains a significant challenge, particularly
to determine magnetic properties at finite temperatures since it requires the
evaluation of the partition function and expectation values, which becomes
impractical for problems with many degrees of freedom. Monte Carlo (MC)
techniques offer a powerful alternative in this context [80]. These encompass
a class of methods used for randomly selecting a set of representative states,
i.e. sampling, from a larger distribution. By taking a large number of samples,
MC methods can estimate probabilities and expectation values (averages),
thereby providing a practical solution for calculating equilibrium properties in
systems where direct analytical approaches are not feasible.

Typically, MC simulations involve state sampling supported by a dis-
tribution that determines the acceptance probability, which varies based
on the chosen sampling method. Within statistical physics, the Metropolis
algorithm [81] employs the Boltzmann distribution for sampling, making it
suitable for classical physics problems. For the magnetic simulations described
in this thesis, the algorithm functions as follows [82]:
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1. Initialize the magnetic configuration.
2. Randomly propose a new trial configuration by altering the direction of
magnetic moments at one or more sites within the simulation box.

3. Compute the energy of the trial configuration.
4. Accept the new configuration if it reduces the system’s energy (∆E ≤

0). If ∆E > 0, the new configuration is accepted with a certain proba-
bilityW given by:

W =

{
exp
(
− ∆E

kBT

)
, if ∆E > 0

1 , otherwise
(4.1)

5. Repeat steps 2 to 4, constituting a MC step, until convergence of certain
quantity, e.g. the ⟨E⟩ or other stop criteria are met. Often the number of
MC steps is considered.

The Metropolis algorithm has proven to be effective in solving the Heisen-
berg Hamiltonian and accurately calculating equilibrium properties such as
magnetization [83, 84, 80], heat capacity, magnetic susceptibility, and other
thermal averages. It is also popularly employed to predict magnetic transition
temperatures for Jij values derived ab-initio calculations. However, its
performance diminishes at low temperatures where quantum effects dominate,
and the Boltzmann distribution becomes invalid. This limitation manifests
in a faster variation in comparison with measurements of the temperature-
dependent magnetization curves at low temperatures (see Figure 4.1), due
to the treatment of the energy spectrum as continuous. Additionally, the
calculated limT→0Cmag = kB for bulk systems contradicts the third law of
thermodynamics’ expectation of limT→0Cmag → 0.

4.2 Quantum Rescaled Monte Carlo
At low temperatures, magnetic fluctuations are predominantly governed by
magnons that adhere to the Bose-Einstein distribution. Although current quan-
tum Monte Carlo methods can accurately describe the quantum Heisenberg
Hamiltonian, they are computationally intensive and thus limited to simpler
problems [83, 84]. For more complex systems, more practical approaches
have been proposed, involving rescaling conventional Monte Carlo simulations
to mimic quantum behaviour at low temperatures [84, 83, 86]. The approach
proposed in parallel byWooC.H. et al [86] and Evans R.F.L et al [83] are partic-
ularly interesting for its simple implementation as it only involves adjusting the
temperature within the Metropolis algorithm. This rescaling of the temperature
can be done using semi-empirical parameters along with a phenomenological
model [83], or using a theoretical approach based on the Bose-Einstein distri-
bution [86]. In this work, the latter is chosen, as it has fewer free parameters.
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Figure 4.1. Comparison of the mixed (α as a linear function) rescaling of the reduced
magnetization and magnetic heat capacity with the quantum rescaling and the con-
ventional curves from the (classic) Boltzmann distribution. Experimental data from
Ref. [85].

The Boltzmann distribution, characterized by the factor βclassic =
(kBT )

−1, sets an energy scale for variations in energy (see Equation (4.1)).
In Ref. [86] a quantum equivalent, βquantum, derived from the Bose-Einstein
distribution is introduced as follows:

βquantum =

[∫ ∞

0
g(E, T )

E

exp(E/kBT )− 1
dE

]−1

. (4.2)

Here, g(E, T ) represents the magnon density of states (MDOS). By
equating βquantum with βclassic, this model effectively redefines tem-
perature, introducing a quantum temperature, Tquantum, calculated as
Tquantum =

[
kBβquantum(Tclassic))

]−1. Note that β−1
quantum is equivalent

to the average magnon energy at a given temperature, which is intuitively
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consistent with the average energy kBT in a classic system (equipartition
theorem).

This approach promises an accurate description of the system’s statistics
across the whole temperature range, unlike conventional Monte Carlo meth-
ods. However, deriving MDOS at finite temperatures from first principles, es-
pecially near magnetic-ordering temperatures, remains challenging [80]. Thus
for a practical application of quantum rescaling, a simpler approach must be
made to determine g(E, T ). In Ref. [86] a magnon quasi-harmonic approxi-
mation (MQHA) is proposed in order to include the softening of the magnon
modes due to anharmonic effects. Thus, this MQHA approach can be applied
to the adiabatic MDOS, in order to extend it to finite temperatures according
to [80]:

Ec(T ) = Ec(0)

(
1− T

TC

)βc

(4.3)

where Ec is the cut-off energy of MDOS, i.e. the highest energy with a fi-
nite contribution to the MDOS, TC the magnetic ordering temperature, and βc
which is the critical exponent associated with the magnetization (in the calcu-
lations presented here βc=0.365 was considered as in Ref. [80]). As illustrated
in Figure 4.2, this approach is a shape-conserving rescaling of MDOS [80, 86].
In the limit T → TC , MDOS approaches a singularity with all magnon modes
with the same energy, aligning with a classic statistic which is insensitive to the
frequency distribution [86].
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Figure 4.2. Softening of the bulk hcp Gd adiabatic magnon density of states under the
shape-conserving magnon quasi-harmonic approximation (as indicated in the text) for
different temperatures. Data from Gd calculations performed for Paper II.

By combining Equations (4.2) and (4.3), we can compute the rescaled tem-
perature, Trescaled, which allows the Boltzmann distribution to replicate the
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thermodynamic averages of the Bose-Einstein distribution. As shown in Fig-
ure 4.3, Trescaled is consistently lower than its classical counterpart. This tem-
perature rescaling significantly improves system descriptions at low tempera-
tures, as is evident from the comparison to the experiment in Figure 4.1. Note
that for the simple Heisenberg Hamiltonian, see Equation (2.35), the equilib-
rium magnetization should be a state function of the temperature. Thus no ad-
ditional calculations are necessary in order to apply this temperature rescaling
to the results of the MC simulations, offering a very practical on-top correction.

Nonetheless, near the magnetic transition temperature, this scheme diverges
from experimental results, and conventional Monte Carlo simulations perform
better. The limitations of this approach near TC arise partly from the simplistic
MQHA used, which causes a discontinuous temperature change at TC between
βquantum and βclassic, artificially sharpening the magnetic transition.
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Figure 4.3. Rescaled temperature used internally in the MC simulations as a function
of the input temperature for different recalling schemes. Data from Gd calculations
performed for Paper II.

4.3 Mixed Rescalling
In Paper II, a novel scheme has been proposed to avoid this discontinuous
change by interpolating between βquantum and βclassic. Instead of sampling
the statistic distribution of the system with a classic or a ’quantum’ Boltzmann
distribution, it was proposed to consider their mixture, with the transition prob-
ability between MC steps then given by:

Wmixed = α exp(βclassic∆E) + (1− α) exp(βquantum∆E) (4.4)
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here 0 < α < 1 is a weight factor that balances the classic and quantum con-
tributions. Physically this distribution can be interpreted as describing the co-
existence of local fluctuations (spin-flip like), described by classic statistics,
and non-local fluctuations, described by the magnons with quantum statistics.
Within this interpretation it is clear that α must be chosen so its temperature
dependence ensures that the quantum effects dominate at low temperatures,
while classic statistics becomes more significant near the critical temperature
TC. With this in consideration, α(T ) is defined as linear function of temperature
in Paper II, to avoid abrupt transitions between the two statistical regimes:

α(T ) =

{
T
TC

, T ≤ TC

1 , T ≥ TC
. (4.5)

For convenience and easier interpretation Equation (4.4) can be rewritten
using the conventional Boltzmann distribution:

Wmixed = exp(βmixed∆E) (4.6)

where the scaling term βmixed is defined by:

βmixed =
ln [α exp(βclassic∆E) + (1− α) exp(βquantum∆E)]

∆E
. (4.7)

Notably, Equation (4.7) shows a dependence of the scaling factor on the en-
ergy difference between MC steps, not allowing for an intuitive guess of its
magnitude. However, at thermal equilibrium, the system fluctuates around the
average energy, ⟨E⟩, and thus the average energy difference between the trial
configurations tends to approach zero. In this limit, Equation (4.7) simplifies
to:

lim
⟨∆E⟩→0

βmixed = αβclassic + (1− α)βquantum (4.8)

or in a more convenient form:

Tmixed =
TquantumTclassic

αTquantum + (1− α)Tclassic
. (4.9)

This formulation allows for a clearer understanding of the temperature used
in rescaling. As for the previous quantum scheme, Tmixed can be used as an
on-top correction to the conventional MC simulations. The application of this
rescaling scheme, has the benefits of both the quantum and the classic statistics,
being able to describe correctly both limits T → 0 and T → TC , see Figure 4.1.
Moreover, the scheme improves the description in the intermediate temperature
range, closing the gap between the experimental data [85] and the calculated
temperature-dependent magnetization for Gd.
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Other Mixing Functions
The linear choice for α offers simplicity and a solid starting point for inter-
polation without presupposing specific physical behaviours. However, other
functional forms for α that meet the requisite conditions are also worth consid-
ering. In order to explore how the mixed rescaling reacts for different choices
of α, two common relations in physics were considered: a logistic function,
and a generalization of (4.5) to a power law.

The logistic function f(T ) was parametrized so the following conditions
were respected to suffice the requirements of α:

f(TC) = 1− tol
f(0) = tol (4.10)

with ’tol’ represents a numerical tolerance (set to 10−6 for these calculations),
to handle the asymptotic behaviour of the logistic function. Within these con-
ditions α is defined as:

α =
1

1 + exp
[
−2 ln

(
1
tol − 1

) (
T
TC

− 1
2

)] . (4.11)

This logistic blending leads to a distinct kink in the rescaled magnetization,
indicative of a rapid transition from quantum to classic regimes (Figure 4.4).
This abrupt transition also results in an unphysical peak in the heat capacity,
indicating that the logistic function is not an ideal choice for the mixing factor.

The power law version of α, introduced in Paper II, generalizes the linear
relation:

α =

{(
T
TC

)γ
, T ≤ TC

1 , T ≥ TC
. (4.12)

Here, the exponent γ (satisfying γ > 0) dictates the curvature of the Tmixed.
It can serve as an adjustable parameter, offering flexibility in fitting the data.
For instance, when fitting the simulated magnetization curves to experimen-
tal data [85] for bulk Gd, a γ value of 0.549 was determined. Interestingly,
the magnetization curve corresponding to this γ value shows a small devia-
tion from that derived from a linear mixing, as illustrated in Figure 4.5. This
observation lends support to the choice of a linear α as a robust initial assump-
tion. Nonetheless, to solidify this conclusion, additional investigations across
diverse systems are necessary.
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Figure 4.4. Comparison of the mixed (α as a logistic function) rescaling of the reduced
magnetization and magnetic heat capacity with the quantum rescaling and the conven-
tional curves from the (classic) Boltzmann distribution.
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Figure 4.5. Comparison of the mixed (α as a power function) rescaling of the re-
duced magnetization for γ=1 (linear mixing) and the γ fitted against the experimental
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4.4 Remarks and Outlook
The mixed rescaling proposed in Paper II offers a quick and parameter-free
approach to model the temperature-dependent magnetization curves obtained
in conventional magnetic Monte Carlo simulation in order to describe correctly
simultaneously low temperatures and the classic statistic close to the magnetic
ordering temperature. For the moment the choice of mixing function is not
backed by a physical explanation, and as shown for the (T/TC)γ power law
case it can be used as a fitting parameter.

Conceptually, this scheme can be seen as a correction to the magnon
quasiharmonic approximation in order to estimate the temperature-dependent
MDOS. In principle, if the exact MDOS(T) was known, the quantum rescaling
proposed in Ref. [86] would be sufficient to calculate the magnetic behaviour
in the whole temperature [0-TC] range. With this in mind, it would be
interesting to explore the behaviour of the mixing function in several different
magnetic systems and find a phenomenological model to describe universally
the temperature evolution of the MDOS, in a similar way as was done by
Ref. [87] for the magnetization.

Moreover, it would also be interesting to extend this scheme to atomistic
spin dynamics (ASD) calculations to investigate if it is capable of improving
such calculation for temperatures far from the low-temperature limit and from
the magnetic ordering temperature.
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5. Benchmarking Entropy Calculations

If you know the enemy and know yourself,
you need not fear the results of hundred battles.

Sun Tzu, ’The Art of War’

The theoretical background for the entropy calculations has been laid out in
previous sections, including, some approximations for Slat, the Debye Model,
and Sele, the Sommerfeld’s approximation. These approximations simplify the
calculation of the entropy contribution, which is of interest for calculations on
a large scale. However, it is important to first evaluate their performance in
describing∆S in the context of theMCE.Moreover, since DFT is a groundstate
theory, by using it to calculate physical parameters, we are blind to fluctuations
such as the ones from finite temperature effects. Does this have a meaningful
impact on calculating ∆S?

Phase transitions often have intermediate stages. Is it reasonable to only
consider the initial and final states?

This chapter summarises the results of benchmarking studies for∆S calcu-
lation to explore the effect of commonly used approximations. The benchmark
tests were made for two systems, FeRh and Gd, well-known magnetocalorics,
to cover the aspects of the different nature of the transition (1st and 2nd order,
respectively).

5.1 FeRh
The main aim of this project was to test the performance of well-known meth-
ods for the entropy estimation of the electronic, lattice, and magnetic subsys-
tems while discussing their applicability in a high-throughput scheme, in which
the balance between accuracy and the computational effort is a key point. To
benchmark the different approximations, the metamagnetic AFM→FM transi-
tion of FeRh was considered as a test case for the entropy estimations. This
material is a well-known magnetocaloric with broad and detailed information
available in the literature, which is convenient for comparison of results. Also,
FeRh has a simple crystalline structure (CsCl) that eases the computational ef-
fort required and allows for a careful treatment of its complex behaviour.

In literature, the Debye model is commonly used as an approximation
to estimate the vibrational entropy, which motivates a detailed discussion
about the advantages and limitations of this model. Conveniently, the Debye
model avoids the need to calculate cumbersome full phonon calculations,
being a cheap approach to estimate the thermodynamic properties of the
structure, which makes it an attractive option for application in HT schemes.

55



A systematic treatment of the Debye model has been made, different elastic
properties for the distinct magnetic phases and even extending the model to the
Debye-Grüneisen approach was considered [88]. This resulted in an increase
of the elastic properties to values closer to the ones measured experimentally.
Nevertheless, the approximated ∆Slat diverges in sign and magnitude from
the one calculated from full phonon calculations, as is represented in Figure
5.1. This deviation of the Debye model, in FeRh, can be justified by the
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Figure 5.1. Comparison of approximations for the lattice entropy variation between
FM and AFM phases using the Debye Model (blue) and full phonon calculations (red).
Data from Paper I.

presence of soft vibration modes on the phonon spectrum, which are not
included in the model. In magnetic materials, these softenings usually hint
at the existence of possible phase transitions and even (if imaginary) predict
structural instability. It is reasonable to assume that potential candidates for
magnetocaloric materials show similar features in their phonon spectrum,
since the existence of a magnetostructural transition 1 appears to be key to
achieve the desired high ∆Stot for application in refrigeration. Thus, full
phonon calculations are necessary for a reliable estimation of Slat in this class
of materials.

However, if we assume that the ∆Slat derived from Debye’s estimate is
correct, then, according to Equation(2.19), a huge contribution of the magnetic
subsystem to the total entropy variation is estimated, so ∆Stot is close to the
observed result. In Ref.[89], the magnetic contribution to the entropy variation
was extracted following this assumption. That result of ∆Smag = 43 J/kg/K,
is not reliable and contrasts with other theoretical predictions.

The metamagnetic transition in FeRh differs significantly from the conven-
tional order-disorder transition displayed by popular magnetocaloric materials
1in FeRh the transition is isostructural, existing a discontinuous variation of the volume

56



(except for MnAs which have a similar transition). The conventional Heisen-
berg Hamiltonian, see Equation (2.35), fails to describe the magnetic ground-
state of FeRh correctly, i.e. an expansion of the model is necessary to capture
the AFM ground-state [90, 91, 92]. The use of a tailored model is not practi-
cal for the HT approach so the Smag was computed from the adiabatic magnon
spectra, as performed in Ref. [93]. Following this approach, the magnetic fluc-
tuations are addressed directly, avoiding the problem above. The calculation of
Smag from the FeRh magnon spectra is achievable since the transition happens
at lower temperatures (≈340K) well below the Curie temperature (≈ 675 K),
where it is reasonable to assume spin-wave excitations.
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Figure 5.2. Total entropy variation and respective components estimated for the AFM
→ FM transition of FeRh. Temperature is normalized according to the entropy peak
temperature of the experimental (312) and calculated (373) data. Adapted from Paper I
with experimental data from Ref. [27].

The estimated total entropy variation between the FM and the AFM phase
and respective contributions (lattice, electronic and magnetic) for the entropy
are represented in Figure 5.2. All entropy contributions are comparable in mag-
nitude and add with the same sign, which explains the high entropy variation for
the order-order transition in FeRh. The highest contribution is from the mag-
netic subsystem which is responsible for the peak of the total entropy variation
at 373 K, in the expected range for AFM→FM transition to happen. Associat-
ing the entropy peak to the phase transition, the estimated value of∆Stot = 24.8
J/K/kg is close to experimental findings [12 - 19] J/K/kg [94]. The fact that
the peak is produced by ∆Smag hints that the transition is driven by the mag-
netic subsystem. More specifically, it hints that the metamagnetic transition
in FeRh is driven by small magnetic fluctuations in agreement with previous
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works [90, 95, 93, 92], since this result is obtained in the magnon description
which is characterized by small magnetic perturbations.

The results discussed above were calculated at the relaxed volumes for the
two magnetic phases without consideration of thermal expansion effects. The
inclusion of such effects might improve the physical description and lead to
more accurate entropy estimations. To verify that, a new estimate for the en-
tropy was performed within the quasiharmonic approximation.

No significant improvement of the calculated values due to the quasihar-
monic approximation has been observed, which would justify from a high-
throughput point of view, the extra numerical effort. It is observed that although
the volume expansion favours an increase in the lattice contribution for the en-
tropy, this happens at the cost of a decrease in the magnetic contribution, which
keeps the total variation value nearly constant. The total entropy peak in the
quasiharmonic approximation is now located at 316 K, with a value of ∆Stot
= 24.4 J/K/kg. Qualitatively, the physical description becomes more accu-
rate, since the entropy peak becomes sharper, as expected from a first-order
transition. Thus, from the obtained results, it can be stated that calculations at
the relaxed volumes balance in a very satisfactory way the accuracy and the
computational effort, which is key for high-throughput applications.

5.2 Gadolinium
Metamagnetic transitions like the one in FeRh are uncommon around room
temperature. More commonly, the MCE is explored around the ferromagnetic
(and ferrimagnetic) to paramagnetic transition. Thus, it is pertinent to bench-
mark the entropy calculations in this context.

Elemental Gd (metal) serves as a reference system in characterising
magnetocalorics for room-temperature applications. Gadolinium undergoes a
FM↔ PM transition around 298K, with a significant magnetocaloric response
∆Siso = 5.2J/K/kg and ∆Tadi = 4.7K (cyclic conditions under a field of 2T).
Then, Gd is a natural choice as a benchmark system for the entropy calculations
for a conventional MCE. Moreover, since its magnetic ordering has a 2nd
order transition nature, we must use a different treatment than the previously
used in FeRh, to accommodate the continuous phase transformation. This
need was also shown in Ref. [96], where an analogous calculation of ∆Smag

from the MDOS for Gd resulted in an overestimate.
This continuous evolution between FM and PM behaviour can be simulated

for the magnetic subsystem with MC simulations. In contrast to the meta-
magnetic transition of FeRh, the simple Heisenberg Hamiltonian (see Equa-
tion 2.35) performs very reasonably in describing the continuous variation of
the magnetization with temperature. The magnetic entropy contribution to the
MCE can then be calculated by comparing the magnetic heat capacities com-
puted for tor two different applied magnetic fields, as in Equation (2.16).
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However, the calculation of ∆Slat and ∆Sele is not as straightforward as
∆Smag. The direct comparison of the initial and final states Sx,FM and Sx,PM ,
as done for FeRh, does not take into account the continuous variation of the
magnetization with the temperature. Thus, following that approach, one would
overestimate the alterations in physical properties during the transition. For an
accurate calculation, it is necessary to consider the intermediate stages, which
translate into additional computations. As an alternative, to save resources, we
can explore the smooth nature of 2nd order transitions and estimate Sx of the
intermediate phase as a weighted (by α) average of the initial and end stages:

Sx,inter = αSx,FM + (1− α)Sx,PM . (5.1)

This approximation is analogous to the use of VCA to calculate alloy properties.
Instead of chemical species, wemix two distinct magnetic phases: the FM, fully
ordered with the magnetization equal toM0 and the PM phase, fully disordered
with zero magnetization. In this sense, at a given temperature, the intermediate
state can be characterized by its magnetization, which varies betweenM0 and
0. Thus, the normalized magnetization, M(T )/M0 is a natural choice for the
weight α:

Sx =
M(T )

M0
Sx,FM +

(
1− M(T )

M0

)
Sx,PM . (5.2)

In practice, this approach is equivalent to using a linear interpolation of the
vibrational/electronic density of states to describe the intermediate states, as
illustrated in Figure 5.3. Combining Equation (5.2) with the magnetization
curves simulated with MC for different fields, the ∆Sele and ∆Slat contribu-
tions to the MCE can be calculated.
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In Figure 5.4, the results of a 2nd-order description can be compared against
the first-order treatment (SFM −SPM ) performed in FeRh. It becomes evident
that the latter overestimates ∆S by the value of ∆Slat, which is twice as big
as the total∆S measured. The performance of the VCA-like approximation in
Equation (5.2) was tested against the proper calculation of the physical prop-
erties of the intermediates states (using CPA-DLM) for the ∆Sele within the
Sommerfeld approximation. As seen in Figure 5.4a, the VCA-like approxi-
mation captures the behaviour and the same order of magnitude as the more
complete approach, motivating its use in HT calculations. While Sele calcula-
tions are not resource intensive, since the intermediate states and the PM phase
can be described easily with CPA-DLM, the same does not hold for Slat. The
calculation of full-phonons is resource intensive and often performed on codes
with plane waves basis, in which the magnetic disorder must be mimicked with
SQS that also needs to be computed. Therefore for Slat the VCA-like scheme
has the optimal balance between accuracy and cost.

Comparing the entropy contributions calculated with each other and their
sum (the total entropy variation) with the experimental values, in Figure 5.5,
offers a better insight into the accuracy of the calculations. In the literature, the
MCE of Gd is often associated exclusively with the magnetic subsystem since
no structural transformation is observed. In Figure 5.5, we can observe that
Smag is the dominant term and Sele has a negligible contribution, in agreement
with the expectations. However, the calculated∆Slat is unexpectedly large for
a pure magnetic transition. Since the calculated∆Smag is close values reported
in similar calculations [97], it is possible to determine the overestimation of the
total entropy contribution with the high∆Slat.

To investigate the unexpected value of ∆Slat, the respective estimate from
Debye’smodel,∆SDebye, was calculatedwith experimental inputs of the elastic
properties of Gd under different temperatures and magnetic fields [98]. While
the calculations were in good agreement for∆SDebye based on low-temperature
properties, for elastic constants at room temperature, the∆SDebye estimated is
considerably smaller. In that case, the entropy contribution is predicted to be
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smaller, and the ∆Stot becomes close to the experimental value. Such results
hint at two important insights. The first is the calculated∆Slat is overestimated
by the lack of inclusion of the finite temperature effects, which have a greater
impact than the change of magnetic phase. The second is that contrary to what
is usually assumed for Gd, ∆Slat has a finite non-neglectable contribution to
the entropy variation in the MCE.
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tween the PM and FM configuration at a magnetic field change of 2T. Temperature is
normalized according to the entropy peak temperature of the experimental (291K) and
calculated (317K) data. Adapted from Paper II, experimental data from Ref. [27]

5.3 Remarks
The results from the benchmark tests suggest that is possible to calculate the
entropy variation associated with the MCEwithout tailoring a material-specific
model. This suggests using ∆S as a screening parameter in high-throughput
calculations to search for newmagnetocaloric materials. It is dangerous to gen-
eralize the conclusions from two tests, but it seems sensible to expect that:

• individual contributions ∆Si are overestimated when calculated from
first-principles.

• the vibrational/elastic properties of both phases magnetic phases involved
should always be considered.

• VCA-like schemes for mixing phases seem reasonable.
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• in 1st-order transitions the inclusion of thermal effects via a quasi-
harmonic treatment is less important for a reasonable estimate of ∆S,
but it could be more relevant in the treatment of 2nd-order transitions.

It is important to note that in the phonon calculations for the PM of Gd, a
simplification was made by treating the f-electrons as core states without spin-
polarization. While this treatment is reasonable for Gd [99], its application is
limited to rare-earth elements. In general, it is necessary to generate a SQS and
calculate the forces. However, since the magnetic disorder breaks the symme-
try, this requires a bigger effort to do full phonon calculations than the ordered
configuration. In the literature, there are proposed averaging schemes that re-
duce the computational effort [100, 101], but nevertheless, the heavy cost of
these calculations should be kept in mind when planning for HT calculations.
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6. Magnetism and Lattice Coupling

Prepare for trouble!
And make it double!

intro of Team Rocket’s motto

It is generally accepted in the field that the coupling between the lattice and
the magnetic subsystems plays a crucial role in the MCE [43]. The description
of this coupling is not trivial and often requires some system-tailored approach.
This chapter explores the magnetic properties’ dependence on the structural
properties. More specifically, it discusses how volume changes, structural
changes and phase mixing can affect the magnetism in systems such as FeRh,
Gd, and Mn0.5Fe0.5NiSi0.95Al0.05, respectively.

The analysis of FeRh expands upon the findings presented in Paper I. For
Gd, the discussion is based on Paper IV and for Mn0.5Fe0.5NiSi0.95Al0.05 on
Paper III.

6.1 FeRh
Most promising magnetocaloric materials exhibit magnetostructural transi-
tions, indicating a strong coupling between lattice and magnetic components.
The quasiharmonic calculations for FeRh (see Supplement of Paper I), suggest
an interplay between ∆Smag and ∆Slat, which motivates further analysis.

Table 6.1 presents the volume-dependent variation of the stronger exchange
coupling parameters Jij in the quasiharmonic calculations (for V > V0). The
trend in the FM state suggests an increase in the Curie temperature with volume
expansion. This is due to the FM coupling between Fe and Rh atomsweakening
more slowly than the AFM coupling between Fe atoms, aligning with experi-
mental data [102], see Figure 6.1. In the AFM phase, while the exchange cou-
plings follow a similar trend, their impact on the transition temperature is less
clear. The quasiharmonic indicates a lower transition temperature for larger
volumes, consistent with measurements [102], but free energy results observe
a different trend, precluding definitive conclusions.

The results highlight the sensitivity of Fe-Fe coupling to volume changes,
particularly in the FM phase where the interplay of FM (Fe-Rh) and AFM (Fe-
Fe) couplings is crucial. At the relaxed volume, Fe-Rh couplings predominate,
but AFM Fe-Fe couplings change more rapidly with volume variation, suggest-
ing potential magnetic configuration changes under pressure.

Subsequent calculations for compressed FeRh volumes corroborate these
findings (see Figure 6.1a). MC simulations at T=1K predict pressure-induced
alterations in the magnetic arrangement.
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Coupling Jij (mRy) ∂Jij/∂V (mRy/Å3)
AFM FM AFM FM

Fe-Fe1st -0.54 -0.08 0.14 0.07
Fe-Fe3rd -0.46 -0.42 0.04 0.14
Fe-Rh - 0.94 - -0.04

Table 6.1. Stronger exchange couplings calculated for FeRh’s AFM and FM phases
and their volume variation. Includes interactions between Fe atoms at nearest and
third-nearest neighbours.
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Figure 6.1.b shows the averaged magnetic moment for Fe sites decreasing at
pressures above 6 GPa, hinting at a disordered phase. Rh atommoments remain
constant, but the deviation of the direction of Fe moments around Rh suggests
a competition between FM (Fe-Rh) and AFM (Fe-Fe) couplings, leading to a
non-collinear configuration (see Figure 6.2) and a reduced total magnetic mo-
ment.

Figure 6.2. Cross-sectional (a) and transversal (b) view of the magnetic configuration
along a x-plane at 22.6 GPa. Blue and red arrows represent magnetic moments of Fe
and Rh, respectively.

Literature references to such non-collinear configurations are sparse. Gu
et al. [93] predicted a non-collinear ground state in LDA calculations, but this
was deemed unstable with non-local corrections. Zhou et al. [103] hinted at a
non-pure FM state, while Sandratskii et al. [104]) confirmed a non-collinear
configuration.

6.2 Gadolinium
The benchmarking tests for hcp Gd show that∆Slat has a non-negligible con-
tribution (Paper II), due to the alteration of the vibrational properties induced by
the change of the magnetic phase. Experimentally, the link between lattice and
structure for hcp Gd is evidenced by the behaviour of the C33 elastic constant,
which displays a sharp variation around the Curie temperature [98].
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In Paper IV, the interplay between the magnetic properties and structure
of Gd was further explored, specifically focusing on how pressure affects its
magnetic ordering temperature. Experimental data reveals that as pressure in-
creases, the Curie temperature undergoes a roughly linear decrease, reaching a
reduction of about 22% at 6 GPa [105, 106, 107]. Beyond this critical pressure
threshold, the magnetization collapses.

Unlike the previous case of FeRh, volume changes in Gd have minimal im-
pact on its magnetic properties, being insufficient to replicate the experimental
trend observed under pressure. This aligns with the established model where
the half-filled 4f shell leads to well-localized 4f spin moments. While the ap-
plication of pressure often reduces the localization of states, potentially altering
the magnetic properties, literature consensus holds that this is not the case for
the Gd f-states within the considered pressure range [108]. In Ref. [109] it is
advanced that the decrease of the lattice by pressure lowers the bottom of the
conduction band, causing a decrease in the density of states at Fermi energy,
D(ϵF ), and thus weakening the exchange parameters between spin moments,
which results in the decrease of TC . However, DFT calculations and the pres-
sure dependence shown in Figure 6.3 challenge this view, showing neither a
consistent decrease of D(ϵF ) with pressure nor a positive correlation between
D(ϵF ) and TC1.
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energy (right, red) dependence with pressure, calculated for the hcp Gd considering
exclusively volumetric effects,

Like other rare-earth metals, Gd undergoes pressure-induced polymor-
phism, transitioning through structural phases from hcp to 9R (Sm-type)
around 2 GPa and then to dhcp around 6.5 GPa. These structural transforma-
1Estimated in the mean-field approximation with calculated Jij
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tions are important for the change of the magnetic properties. In experimental
studies of Gd, neutron diffraction patterns have revealed different magnetic
orderings in the Sm-type (AFM) and hcp (FM) structures [105] confirming the
expectations. There are also indications that the dhcp phase may have a distinct
(AFM) magnetic character, although the observations are not conclusive [105].

Table 6.2. Crystallographic properties of Gd polymorphs: comparison between the
layer multiplicities, symmetries, and distances between Nearest Neighbours (NN) for
fcc and hcp environments.

Structure Spacegroup Layer environment Site symmetry 1st NN 2nd NN 3rd NN

hcp 194 2 × hcp -6m2 6 6 6

Sm-type (9R) 166 6 × hcp 3m 3 3 6
3 × fcc -3m 3 6 6

dhcp 194 2 × hcp -6m2 6 6 6
2 × fcc -3m. 6 6 6

The polymorphs of Gd within the 0-6.5 GPa pressure range can be described
as hexagonal stacked structures with different repeating patterns of A, B, and C
hexagonal layers as illustrated in Figure 6.4. According to the pattern formed,
the layers have face-centred-cubic (fcc) or hcp environment environments,
which possess different site symmetries (see Table 6.2). Within these 3 struc-
tures, the Sm-type stands out by its lower symmetry. The different coordination
of fcc sites found in the Sm-type structure is explained by a small difference
in separation between the first and second nearest neighbours (≈ 0.014 Å),
which are grouped to the same coordination shell in the other structures. Aside
from the symmetry considerations, the main distinction between the structures
centres on the ratio between hcp and fcc layers, as shown in Figure 6.4 and
Table 6.2.

Figure 6.4. Illustration of polymorph structures of Gd. Sites with fcc environment are
coloured red while sites with hcp environment are coloured blue.
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Groundstate and magnetic properties
While FM order is well-established for bulk Gd hcp under standard temperature
and pressure conditions2, the magnetic orderings of its Sm-type and dhcp struc-
tures remain an open debate. Considering the magnetic behaviour of similar
rare-earth metals and the fact that pressure within the discussed range does not
delocalize the 4f orbitals, it is anticipated that these structures exhibit AFM or-
dering between hexagonal planes. Neutron diffraction patterns from Ref. [105]
and first-principles calculations [108] for the Sm-type structure support this ex-
pectation but also indicate some magnetic frustration. For the dhcp structure,
the diffraction data from Ref. [105] remains inconclusive, although there are
indications of a complex AFM ordering, accompanied by magnetic frustration.

The magnetic configuration for the Sm-type structure as proposed by
Ref. [105] is a 2-layer hcp block that aligns anti-ferromagnetically in a peri-
odic pattern, with fcc sites in between characterised by magnetic frustration,
see Figure 6.5. If we assume a static configuration, this frustration implies
that the fcc layer sites are either completely disordered (PM) or they are
ordered within the layer without forming a periodic pattern along the stacking
direction. The findings in Paper IV support the latter scenario.

Figure 6.5. Diagram of the magnetic configurations along the hexagonal stacks. The
circles represent sites with frustrated magnetic while the colours indicate fcc (red) and
hcp (blue) environments.

To identify the ground state, the energies from DFT calculations for various
magnetic configurations in the Sm-type and dhcp structures were compared.
The frustration was considered by an AFM pattern between the frustrated sites
to ensure a net magnetic moment of zero, see Figure 6.5. Under these con-
strains, the ground state of the Sm-type structure was found to be a 3-layer block
AFM, i.e. the variant in Figure 6.5 with ordered moments at the frustrated sites,
while the ground state of the dhcp structure is a 2-layer block AFM.

The Jij exchange parameters calculated in Paper IV for the ground states of
the considered structures exhibit a common trend: the nearest in-plane and out-
of-plane interactions are FM, while the second and third nearest out-of-plane
interactions are AFM. Additionally, the stronger interactions seem to be con-
fined in the range within two hexagonal planes/layers. In both the Sm-type and
the dhcp structures, the Jij involving fcc sites (fcc− fcc, fcc−hcp) are gen-
erally weaker than pure hcp − hcp interactions. This trend could account for

2273.15 K and 100 kPa (≈ 1 atm)
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the transition from FM to AFM orderings under pressure due to the formation
of fcc layers during the structural transformations. The diminished FM cou-
plings at fcc sites amplify the effects of AFM couplings, resulting in an AFM
ordering. This scenario of competing AFM and FM couplings is supported by
the small difference in energy obtained in DFT for most considered magnetic
configurations and by the non-collinear configurations obtained in MC simu-
lations for the Sm-type, using these Jij as input. Similarly, MC simulations
for the dhcp phase indicate unexpected configurations, evidencing strong FM-
AFM coupling competition, in line with this paradigm.

A key question remains regarding the magnetic ordering of the Sm-type
structure in Gd. While there is a consensus in the literature about its AFM or-
dering, supported by both theoretical and experimental evidence, a puzzle re-
mains: how to account for the observed finite magnetization in Gd up to about
6 GPa, well beyond the hcp to Sm-type transition? Diffraction techniques indi-
cate the presence of hcp domains even above the transition pressure, suggesting
that these domains contribute to the magnetization in the mixed hcp + Sm-type
phase until it eventually collapses [110, 106, 105]. In Paper IV, MC simula-
tions have been used to investigate whether the Sm-type structure could adopt
a magnetic configuration with a finite magnetization under the influence of a
magnetostatic field generated by the hcp phase, or when the frustrated fcc sites
are modeled with FM ordering. However, these simulations yield a small fi-
nite magnetization, not in line with the magnitude observed experimentally,
suggesting that a more comprehensive description is needed to accurately rep-
resent the interaction between these phases.

Stacking fault model
Since the different structures of Gd are closely related, the structural transitions
among these Gd polymorphs can be understood as variations in the fcc− hcp
ratio. Then, the emergence of fcc layers during e.g. the hcp → Sm-type
transition is comparable to the formation of period stacking faults in the hcp
structure. Consequently, a key question emerges about the nature of pressure-
induced transformations [111]: Do two-phase regions distinctly separate hcp
and Sm-type structures, as well as Sm-type and dhcp structures, with pressure
favouring the growth of one phase over the other? Or do fcc stacking faults
build up and order to form the new phase?

Though the formation and accumulation of fcc stacking faults occur in both,
in the first scenario, these processes take place at the interface between phases,
whereas in the second, they lead to the creation of periodic structures with in-
termediate ratios of fcc − hcp layers. Distinguishing between a two-phase
system and an intermediate structure using diffraction patterns poses a signif-
icant challenge since intermediate structures, such as those between hcp and
Sm-type, may exhibit characteristics of both ends of the spectrum.
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The attractiveness of a gradual transformation between the polymorph struc-
tures due to stacking fault formation/accumulation as a perspective lies in its
capacity to provide a simplified framework for understanding the structural
transformations in Gd. It reframes the issue, focusing on how magnetic prop-
erties correlate with the presence of fcc stacking faults, which, as discussed
earlier, have exchange couplings weaker than the hcp layers, likely stabilising
the AFM ordering with their accumulation. In Paper IV, a simplified model is
presented to demonstrate how the formation of fcc stacking faults influences
the magnetic ordering temperature.

In systems with a single magnetic sub-lattice, the mean-field approximation
applied to the Heisenberg Hamiltonian yields the magnetic ordering tempera-
ture (Tcritical) given by [79, 46]:

Tcritical =
2J0
3kB

. (6.1)

Here, J0 denotes the sum of exchange interactions at a magnetic site, defined
as J0 =

∑
k J0k. In the previous analysis of the Jij parameters it was possible

to identify two sets of Jij parameters according to the environment of the layer,
suggesting two distinct J0 values. The first, Jhcp

0 , is based on a hcp site and
includes interactions between hcp−hcp and hcp−fcc pairs. The second, Jfcc

0 ,
is centered on a fcc site and accounts for fcc−fcc and fcc−hcp interactions.

This distinction in principle corresponds to the presence of two magnetic
sub-lattices, making Equation (6.1) inapplicable (except for the hcp structure),
however, the similarities between hcp and fcc structures, particularly in terms
of magnetic moment and coordination, allow for an alternative approach. In
Paper IV it is proposed to calculate a mixed J0 as a weighted average, similar
to a VCA approach, of the two environment-specific J0:

J0 = xJhcp
0 + (1− x)Jfcc

0 (6.2)

where x is the proportion of hcp sites in the unit cell. For the hcp, Sm-type,
and dhcp structures, the value of x is 1, 2/3, and 1/2, respectively. Applying
Equation (6.2) in Equation (6.1) one obtains a relation linking Tcritical with the
fcc stacking faults:

Tcritical = 2
xJhcp

0 + (1− x)Jfcc
0

3kb
. (6.3)

Note that Jhcp
0 and Jfcc

0 are structure-specific values. Thus, Equation (6.2) is
most accurate when x closely aligns with the hcp ratio inherent to the structure
under consideration. However, for simplification purposes and to discern gen-
eral trends, in Paper IV is introduced a practical simplification, where Jhcp

0 and
Jfcc
0 are fixed to values characteristic of the Sm-type structure.
Further Equation (6.3) must be reformulated to relate x to the pressure. As-

suming a constant rate of fcc stacking faults formation between the hcp→Sm-
type and Sm-type→ dhcp transformation, one obtains that x varies at the rates
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-0.16 GPa and -0.037 GPa respectively. This leads to a linear interpolation for
the proportion of hcp layers in the unit cell:

x =

{
1− 1

6P, for P ≤ 2.0 GPa
2
3 − 1

27P, for 2.0 < P < 6.5 GPa .
(6.4)

Combining Equations (6.3) and (6.4) one obtains a simple model describing
the dependence of the magnetic ordering temperature on the formation of fcc
layers.

hcp Sm-type

hcp (MFA)

Sm-type (MFA)

MFA stacking fault model

hcp  (MC)

Sm-type (MC)

M. Tokita et al. (2004)
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Figure 6.6. Magnetic ordering temperature variation (TCritical) with pressure of Gd.
Open circles represent experimental data taken from Ref. [109]. Filled circles denote
TCritical values derived from mean-field approximations using ab-initio exchange pa-
rameters. Triangles illustrate critical temperatures obtained from Monte Carlo simula-
tions. The solid line in the figure signifies the mixing model for hcp and fcc stacks.
Extracted from Paper IV.

The results of this model are in good agreement with experimental findings
reported in Ref. [109], as shown in Figure 6.6. Such agreement in the pres-
sure range of the Sm-type structure (2-6.5 GPa) supports the hypothesis of the
formation of fcc stacking faults under pressure as the primary mechanism for
the variation of Tcritical observed experimentally. In the region between 0-2
GPa, the model does not follow so closely the experimental data, since it pre-
dicts a sharper decrease of Tcritical compared to the observed value. While
the estimated trend aligns with the data points closer to hcp →Sm-type transi-
tion, where the application of Equation (6.3) should be more accurate, for lower
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pressures the experimental trend is closer to the calculations of Tcritical based
solely on volumetric effects (depicted as blue circles in Figure 6.6). Intuitively,
it sounds reasonable that the hcp structure would withstand some volume con-
traction before entering the regime of formation of fcc environments.

The model distinctly highlights two different rates of change in Tcritical with
pressure: one during the hcp →Sm-type transformation and another during
the Sm-type→ dhcp transition. This trend is visible also in experimental data
and supports the hypothesis of fcc stacking fault accumulation as a primary
mechanism for the pressure-induced variation in Tcritical. More precisely, the
experimental observation of two trends aligns with Equation (6.4) where it is
estimated that fcc stacks form at a different rate between the polymorphs in the
transition chain, and thus variating TC differently.

However, themodel has limitations due to its simplicity (based onMFA) and
the use of fixed Jhcp

0 and Jfcc
0 values. It doesn’t predict the collapse of magne-

tization near the transition to the dhcp phase. The inclusion of x dependence
on the Jhcp

0 and Jfcc
0 is an obvious and fairly simple extension of the model

but requires calculating Jij parameters for theoretical intermediate structures,
which poses challenges in validating magnetic configurations. Furthermore,
the observed competition between FM and AFM couplings, particularly in the
Sm-type structure, results in non-collinear configurations in MC calculations
and potential magnetic frustration in the dhcp structure, complicating the inter-
pretation of calculated Tcritical values in terms of magnetization.

6.3 Mn0.5Fe0.5NiSi0.95Al0.05
Intermetallic MnTX compounds (where T = Co or Ni, and X = Si or Ge) are
an interesting class of materials, due to the possibility of magnetostructural
transitions [112]. At room temperature, these compounds typically exhibit
an orthorhombic TiNiSi type structure. However, as temperatures increases,
they generally transition to a hexagonal, ordered Ni2In type structure, as de-
picted in Figure 6.8. This transformation is diffusionless and classified as first-
order [112].

The parent compound, MnNiSi, undergoes a structural transition at approxi-
mately 1200K [113] and a magnetic transition at around 600K. The presence of
both transitions spurred the interest in this compound in the search for new
magnetocaloric and shape-memory materials, due to the possibility of cou-
pling the magnetic and structural transitions through alloying. Alloys such
as Mn1−xFexNiSi1−yAly are particularly promising, as they not only enable
tuning and coupling of these transitions but also exhibit significant magne-
tocaloric potential due to the large entropy change associated with their first-
order transition. Moreover, these alloys have a structural transition tempera-
ture (Tst) close to room temperature. In Paper III, the magnetic properties of
Mn1−xFexNiSi0.95Al0.05 are examined, focusing on compositions near x =
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Figure 6.7. Hexagonal phase of Mn0.5Fe0.5NiSi0.95Al0.05 represented in the Ni2In
type and TiNiSi type (dashed) structures. Adapted from Paper III

Figure 6.8. Hexagonal and orthorhombic phases of Mn0.5Fe0.5NiSi0.95Al0.05. The
colours represent the site occupation by different chemical elements: Mn (pink), Fe
(orange), Ni (grey), Si (blue) and Al (green). Adapted from Paper III

0.5. This study also delves into the underlying mechanisms of the magne-
tostructural transition.

Magnetic properties of the phases
Although the orthorhombic and hexagonal phases share structural similarities,
as illustrated in Figure 6.8, their magnetic properties differ significantly. Pa-
per III reveals minimal differences in local magnetic moments, but the Jij val-
ues, as shown in Figure 6.9, exhibit distinct characteristics. Notably, in the
hexagonal phase, the third and fourth nearest neighbours exhibit AFM cou-
pling, while in the orthorhombic phase, these couplings are FM. This leads to a
competition between FM and AFM couplings in the hexagonal phase, resulting
in a non-collinear magnetic configuration with an ordering temperature of 265
K inMC simulations. In contrast, the orthorhombic phase stabilizes into an FM
configuration with a Curie temperature of 625 K.

The hexagonal phase can be described within a TiNiSi type structure, see
Figure 6.7. This representation highlights small differences in lattice parame-
ters between the phases, while in the hexagonal phase the atoms populate high
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Table 6.3. Variation of the mean-field Curie Temperature with the structural parame-
ters of the phases. Adapted from Paper III

Phase Wyckoff
positions

a
(Å) b/a c/a MFA TC

(K)

hexagonal hex 6.88 0.74 0.58 305
intermediate ort 6.88 0.74 0.58 611
intermediate ort 6.94 0.74 0.58 617
orthorhombic ort 6.94 0.81 0.53 823

symmetry sites, in the orthorhombic phase the atoms are slightly displaced from
these sites. Analysis of hypothetical structures combining geometric proper-
ties (sites, lattice parameters and respective ratios) from both phases indicates
that lattice ratios and site displacements significantly influence their magnetic
characteristics, as detailed in Table 6.3. The analysis of the Jij , see Figure 6.9,
suggests that AFM coupling increases with lattice ratio variations, possibly due
to expanded distances between hexagonal planes. Furthermore, atom displace-
ments in the orthorhombic phase contribute to stronger FM couplings, partic-
ularly around d =4.8Å. These couplings correspond to the furthest couplings
from the splitting of the hexagonal phase’s in-plane nearest neighbour coupling
into three distinct interactions.

Since the high-temperature hexagonal phase has its TC below the structural
transition Ttr, experimental confirmation of its non-collinear state is difficult.
Therefore, the description of the magnetic properties of this compound pre-
dominantly focuses on the orthorhombic phase. The observed ferromagnetic
configuration and magnetization (2.2µB/f.u.) closely align with experimental
findings (≈2.0µB/f.u.), although the Curie temperature predicted by Monte
Carlo simulations (625K) is significantly higher than the experimentally mea-
sured value (≈300K). Intriguingly, this predicted TC is closer to that of the
parent compound MnNiSi (600K [113]) and the similar alloy Mn0.5Fe0.5NiSi
(475 K [114]). Note that the TC for the latter case differs unexpectedly from
the compound studied in Paper III, Mn0.5Fe0.5NiSi0.95Al0.05, considering the
small dopping with Al, a non-magnetic species.

Magnetic composite
Reference [115] shows that increasing Al doping in Mn0.6Fe0.4NiSi1−xAlx al-
loys favours the hexagonal phase, consequently lowering the temperature of the
magnetostructural (MST) transition. Supporting this, X-ray powder diffraction
(XRPD) data from Paper III and other studies (e.g., [116, 117]) reveal the co-
existence of orthorhombic and hexagonal phases in similar compounds, even
at temperatures far from the MST transition. In these cases, the minority phase
typically constitutes 10%-15% of the total. Given the gradual increase in the
minority phase’s proportion until the first-order transition and the significant
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Figure 6.9. Calculated exchange parameters Jij for Mn0.5Fe0.5NiSi0.95Al0.05 in the
hexagonal, orthorhombic phases and an intermediate structure corresponding to the
orthorhombic phase with the lattice parameters ratio c/a of the hexagonal phase

difference in magnetic properties (TC and ordering) between the phases, Pa-
per III suggests the need for accounting for phase mixture to accurately calcu-
late TC .

A similar situation is described in the model proposed by Skomski and Sell-
myer [118] for nanocomposites. Despite the different Curie temperatures of
the phases within these composites, nanocomposites generally exhibit a singu-
lar TC [118]. The findings of Ref. [118] reveal that TC is influenced by the
microstructure, typically exceeding the average of the transition temperatures
of the constituent phases. Building on these insights, Paper III investigates the
magnetic properties of Mn0.5Fe0.5NiSi0.95Al0.05 by describing it as a magnetic
composite comprising both phases.

Existing experimental data does not provide clear insight into the existence
of a microstructure in the magnetic composite. In Paper III, for simplification,
the mixture of phases was modelled as atomic-like mixing, treating the mag-
netic sites (Mn and Fe)3 as a quaternary high-entropy alloy. In practice, as
Figure 6.10 illustrates, both phases and their exchange couplings were mapped
in the idealized TiNiSi structure, containing exclusively Mn/Fe sites. Each site
was associated with a composition of Mnhexy/2 , Fe

hex
y/2 , Mnort(1−y)/2, and Fe

ort
(1−y)/2,

where y is the concentration of the hexagonal phase in the magnetic compos-
ite. The UppASD code handles chemical disorder by randomly occupying N
of the sites with the disorder in the simulation box, with N proportional to

3The magnetic moment of Ni is found to behave as an induced magnetic moment, not having an
active role in the magnetic order.
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the species occupancy. This approach can yield a microstructure with specific
magnetic properties. To ensure the results are not dependent on the randomised
structure, three independent calculations with y = 0.5 and different seeds for
the random number generator were performed, showing no indication of mi-
crostructure effects.

Mapping both structures into the same simulation box presents challenges in
describing their interactions since inter-phase coupling constants JFeort−Fehex ,
JMnort−Mnhex , JFeort−Mnhex , and JMnort−Fehex are unknown and difficult to
calculate from first principles. Therefore the Jij from the pure phases were
used and two calculations were performed: one treating inter-phase couplings
as within-phase interactions in the hexagonal phase (e.g. JFeort−Fehex =
JFehex−Fehex ), and another treating them as within-phase interactions in the
orthogonal phase (e.g. JFeort−Fehex = JFeort−Feort). This method aims to
delimit the range of magnetic properties, assuming the correct inter-phase
coupling lies between these two extremes.

The MC simulations show a decrease in the magnetization and the magnetic
ordering temperature for increasing hexagonal presence in composites majorly
orthorhombic. In hexagonal dominant composites, the competition between
FM and AFM couplings results in non-collinear configurations, explaining the
divergent trends for the two sets of J inter

ij used. Even though these findings
indicating a clear variation in magnetic properties with different fractions of
hexagonal and orthorhombic phases, the calculated TC remains higher than ex-
perimental values for hexagonal fractions before transition (12%-31%) at 316
K.

This necessitates accounting for both phase fractions and their temperature
variation in simulations. Temperature-dependent magnetizationM(T ) curves
for various hexagonal fractions were bilinearly interpolated to create a magne-
tization surfaceM(T, y) as a function of temperature and hexagonal fraction,
see Figure 6.11. Then, the experimental y(T ) from X-ray powder diffraction
analysis was used to trace a path on this surface, reflecting the growth of the
hexagonal phase and the structural transition in MC simulation results. The
resultant magnetization curves closely align with experimental data, see Fig-
ure 6.12, suggesting the MST is driven by structural changes. This is further
supported by the relative indifference of TC to the set of J inter

ij used, and the
sharp magnetization drop at TC observed experimentally.

The nature of the MST seems analogous to the one reported for Heusler
alloys of the Ni–Mn–X(–Co) (X=Al,Ga) [120], in which it is observed a sharp
variation of the magnetization caused by the structural transition. However, in
that case, the high-temperature phase is FM and the lower-temperature phase
PM.

The MST apparent structural dominance raises questions about the mech-
anism behind the high MCE observed. This is particularly intriguing given
the small predicted ∆Smag using a method similar to that for the magnetiza-
tion curves to calculate the magnetic heat capacity with and without an applied
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Figure 6.10. Schemization of the setup used for the magnetic composite in the Monte
Carlo simulations. The colours represent the site occupation by the different chemical
elements: Mn (pink), Fe (orange), Ni (grey), Si (blue) and Al (green). The illustrations
of the structures were made with VESTA [119]
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Figure 6.11. Magnetization surface in function of the temperature and the fraction of the
hexagonal phase. On the top (bottom) panel are the results from the simulation with the
interphase couplings equal to interactions within the orthorhombic (hexagonal) phase.
Red circles correspond to the experimental temperature-dependent hexagonal fraction
which defines the path taken along the magnetization surface. Adapted from Paper III.
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Figure 6.12. Calculated (solid lines) and measured (dotted line) curves for the
temperature-dependent normalized magnetization. The results from the MC simula-
tions for the pure orthorhombic (blue) are compared with the results from the mag-
netic composite combined with the experimental temperature-dependent fraction of the
hexagonal phase. The red (yellow) curve is the result of taking the interphase couplings
equal to interactions within the orthorhombic (hexagonal) phase. Adapted from Paper
III.

78



magnetic field. The calculated∆Smag of 0.36 J/K/kg contrasts sharply with the
total entropy variation measured at 20.2 J/K/kg, indicating a minimal response
to the magnetic field. Experimental data validates this small response, with no
alteration of TC under the application of a magnetic field.

In Paper III, this discrepancy is associated with treating the composition
of the composite y(T ) as independent of the magnetic field due to the lack
of relevant experimental data. Given the distinct magnetic properties of the
phases, it is plausible that the magnetic field could stabilize one phase over the
other. While rigorous free energy calculations are necessary for confirmation,
it is reasonable to hypothesize that the magnetic field favours the orthorhombic
phase, which shows higher magnetization.

To test this conjecture, the ∆Smag was calculated in Paper III at the transi-
tion temperatureTst (316K), considering a sharp change in the initial hexagonal
fraction y in the magnetic composite to a final fraction of 84.6%, representative
of the high-temperature (T > Tst) composition:

∆Smag(Tst) =

∫ Tst

0

Cmag(T, y = 84.6%)− Cmag(T, y = yi)

T
dT . (6.5)

This calculation captures the effects of both magnetic field and temperature.
With yi=12.2%, the approach mimics a first-order magnetic entropy calcula-
tion, similar to the one performed previously for FeRh.

The resulting ∆Smag values suggest that sharp changes in the hexagonal
fraction significantly impact magnetic entropy. The values are comparable to
the total measured entropy variation (around 20 and 50 J/K/kg for magnetic
fields of 2T and 5T, respectively), indicating that MCE in this material likely
results from the stabilization of one phase over another by an external magnetic
field. The fact that substantial∆Smag is generated even for minor shifts in the
fraction of the hexagonal phase, corroborates the proposed paradigm since it
only relies on the sharpness of the induced structural transformation. Moreover,
such behaviour also has practical implications, being advantageous for cyclic
applications, as it implies appreciable MCE despite potential hysteresis.

Thus, the mechanism behind the significant MCE observed for the
Mn0.5Fe0.5NiSi0.95Al0.05 compound seems to be the competition between the
coexistent hexagonal and orthorhombic phases which possess very distinct
magnetic properties. Specifically, the substantial MCE near the first-order
structural transition arises from the fact that in a magnetic field one phase is
favoured4. This, in turn, affects the growth rate and the initial/final fractions of
the hexagonal phase. The model introduced in Paper III provides for the first
time a relatively straightforward framework for describing the MCE in this
compound. A more comprehensive validation of this model can be achieved
through free energy calculations and by comparing the temperature-dependent
phase fractions measured under various magnetic field strengths. Neverthe-

4Likely the orthorhombic phase.
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less, this model contributes toward comprehending the impact of interactions
between multiple magnetic phases on the MCE at the atomistic scale.

6.4 Remarks
In the systems explored here, the intricate relationship between magnetic prop-
erties and structural characteristics is evident. This connection spans from volu-
metric impacts to minor lattice distortions and encompasses transitions between
closely related structures. Particularly in systems exhibiting both AFM and
FM interactions in neighbouring shells, we observe that even slight structural
variations can significantly amplify the competition between these interactions,
leading to notable changes in the magnetic configuration.

While a strong coupling between lattice and structural properties is advan-
tageous for maximizing the magnetocaloric effect ∆S, it also introduces a
complexity that complicates our understanding and interpretation of calculated
and experimental data. This complexity is well exemplified in the case of
Mn0.5Fe0.5NiSi0.95Al0.05, where integrating experimental and theoretical in-
sights is crucial for comprehending the mechanisms that contribute to a pro-
nouncedMCE. This underscores the challenge of predicting the∆S using first-
principles calculations without prior information.
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7. High-throughput Calculations

The first 90 percent of the code accounts for the
first 90 percent of the development time.
The remaining 10 percent of the code accounts for
the other 90 percent of the development time.

Tom Cargill (aka the ninety-ninety rule)

With the surge in computational capabilities and the growth of extensive
databases, high-throughput (HT) calculations have become fundamental in the
realm of new materials discovery. This paradigm harnesses the power of vast
computational resources, being centred on the rapid evaluation and prediction
of properties for a wide dataset of materials. Through effective screening of
thousands of potential candidates with screening parameters carefully selected,
HT calculations pinpoint those materials most likely to excel in specific ap-
plications. In collaboration with experimental validation, this process aims to
speed up the discovery of new novel materials. Additionally, the data amassed
through HT calculations are crucial for augmenting current databases or estab-
lishing new ones [121]. This data production through HT is crucial, particularly
for employing techniques like neural networks in materials science.

The success of the computational HT has already been verified for several
applications of high technological interest, e.g. in the search of 2D materi-
als [122, 123] and of new permanent magnets [124, 125, 126, 127, 128, 129].In
the search for magnetocaloric materials, various flavours of HT approach have
been applied and discussed [130, 131, 132, 133, 134, 28, 133, 135].

Zarkevich et al. (2018) proposed a general approach for an HT-guided
search of caloric materials [134]. Their workflow starts with selection criteria
based on known properties such as structure and composition. The materials
are then screened to determine their physical properties through heuristic fast
estimates and ab initio calculations. Later, Zarkevich et al. (2019) discuss the
HT approach more specifically in view of magnetocaloric materials, propos-
ing thermodynamic estimates for assessing caloric properties [28]. This work
emphasized the entropy change, the isothermal enthalpy change, the transition
temperature and respective compositional sensitivity and field dependence.

The calculation of thermodynamic predictors from first principles is a com-
plex and computationally intensive task. This challenge has motivated the
search for alternative predictors that could correlate withmagnetic entropy vari-
ation. For instance, Tantillo et al. (2021) suggested to use the presence of
sharp peaks near the Fermi energy as a screening parameter, a potential indica-
tor of itinerant-electron metamagnetism, as observed in MnFe(P,As) alloys and
La(Fe,Si)13 [135, 136].

Examining current promising magnetocaloric materials (Figure 1.2), it be-
comes evident that the presence of a magnetostructural transition is strongly
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beneficial for effective performance. Such transitions imply a strong coupling
between magnetic and lattice degrees of freedom, with signatures that can be
assessed more easily from first principles. Bocarsly et al. (2017) and Garcia et
al. (2020) considered the distortion of the lattice between relaxed structures in
magnetic and non-magnetic calculations as a screening parameter, finding it a
good correlation with experimental entropy variations [130, 131]. While this
approach identifies some potential candidates, it overlooks isostructural tran-
sitions, such as those observed in FeRh. In contrast, Batashev et al. (2021)
discussed and applied the magnetoelastic response as a screening parameter
[133], offering the advantage of encompassing isostructural transitions.

A more direct HT calculation of thermodynamic properties for magneto-
caloric materials was performed by Fortunato et al. (2023) [132]. This study
concentrated on identifyingmagnetostructural transitions of the martensite type
between orthorhombic and hexagonal structures in MM’X (M/M’ = metal, X
= main group element) alloys. It involved calculating structural transforma-
tion temperatures (if a transition is present) andmagnetic ordering temperatures
from first principles.

While the HT studies conducted on magnetocaloric materials have not yet
calculated the entropy associated with the MCE to evaluate the material’s per-
formance, undertaking these computationally intensive calculations, as previ-
ously discussed, would enable a realistic identification of potential candidates.
This represents an exciting opportunity for advancing our understanding and
application of these materials.

This chapter presents ongoing efforts of a HT calculation to identify new
magnetocaloric materials, using as a screening parameter one of the main pa-
rameters of theMCE - the entropy variation. Aworkflow strategically designed
for the entropy calculations and preliminary results is briefly presented.

7.1 Workflow
In the previous projects, the discussion focused on the performance of the meth-
ods to calculate the different entropy contributions of theMCE (∆Sele,∆Smag,
∆Slat). This benchmarking provided essential insights for developing an effi-
cient HT workflow to identify new magnetocaloric materials based on entropy
variation. The proposed workflow, illustrated in Figure 7.1, consists of three
primary stages: initial database screening, followed by the calculation of mag-
netic properties, and finally, the calculation of∆Slat. The design of this work-
flow escalates in computational demand, incorporating a screening process at
each stage to ensure only the most promising candidates proceed, thus assuring
an efficient use of the computational resources.

Applying a HT approach blindly to a vast database is inefficient. The first
step in an HT workflow is to narrow the search scope using simple screening
parameters [134], allowing for an initial reduction in the dataset without com-
putational effort. For instance, structures might be filtered based on chemical
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Figure 7.1. Diagram of the high-throughput workflow proposed for the search of mag-
netocaloric materials.

composition to exclude harmful elements. These parameters can be adjusted
if expanding the search space becomes necessary. The choice of database(s)
is crucial. In this project, the Materials Project [137] database was considered
due to its comprehensive electronic structure data and accessible API, which
eases data retrieval. The pre-relaxed structures in this database also eliminate
the need to include structural relaxation in the workflow.

Once the search space is defined, the magnetic properties are calculated us-
ing the RSPt code, determining local magnetic moments and Jij (Stage 1 in
Figure 7.1). These parameters are then used as input for MC atomistic mag-
netic simulations in UppASD to find the magnetic ordering temperature and
the magnetic entropy contribution under a magnetic field of 2T. These figures
serve as criteria for intermediate screening, indicating potential applications
and the primary entropy variation.

The magnetic configurations obtained from MC simulations also provide
an assessment of the assumed magnetic order in DFT calculations of Jij . If
inconsistencies arise, a thorough analysis of the exchange parameters and con-
figurations helps in hypothesizing the magnetic ordering corresponding to the
groundstate in DFT. This iterative approach, while not definitive, aids in iden-
tifying the magnetic ground state.

The final stage of the workflow is dedicated to computing the remaining en-
tropy contributions (Stage 2 in Figure 7.1), focusing on ∆Slat. This involves
calculating the phonon density of states using the Phonopy package and VASP
for computing Hellmann-Feynman forces, performed twice for each magnetic
phase. The high computational effort required for the phonon calculations is
unreasonable for high-throughput calculations, in particular since for each com-
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pound, two phases must be considered, and big supercells might be required to
describe PM and AFM configurations. Therefore this step is reserved only for
candidates that pass the previous screening parameters. From the electronic
DOS of both phases, ∆Sele is calculated, setting the stage to determine the
total ∆S.

As evidenced in our benchmark tests (Papers I and II), the model to calculate
∆S varies depending on the nature of the transition. In cases of magnetostruc-
tural transitions, it is reasonable to assume a first-order transition. However,
subsequent experimental measurements should allow us to develop a more tai-
lored model, enhancing our understanding of the associated MCE mechanism.

7.2 Screening parameters
In the screening process of a crystallographic database, the chemical composi-
tion of the compounds is determined first. First, the focus is on”binary (MX1)
and ternary (MX1X2) compounds, where M denotes a magnetic element, es-
sential for inducing or carrying the magnetic properties of the compounds. Due
to the criticality associated with rare-earth elements [5], emphasis was on 3d
metals known for magnetism: Cr, Fe, Ni, Mn, and Co1. For an initial high-
throughput search, the scope is limited to binary and ternary alloys/compounds
including 3d, 4d, and some p-block elements, excluding prohibitively expen-
sive, radioactive, or highly toxic elements like As, Se, Cd, Hg[14], and other
heavy-metal elements. Oxide compounds, usually requiring methods beyond
DFT for their strongly correlated electronic structures, are not considered in this
initial search due to computational constraints. Considering thus the elements
highlighted in Figure 7.2, it is obtained a starting dataset with 3050 structures.

Additional screening parameters are then applied to the initial dataset of
3050 structures:
Space group ≥ 75 (3050→ 1866) High symmetry structures (cubic, hexago-

nal, tetragonal) are selected for their enhanced lattice contribution to the
entropy variation in magnetostructural transitions and reduced computa-
tional efforts. Despite closed-packed structures (bcc, fcc, hcp) tenden-
tiously having lower magnetic moments and being less likely associated
with potential magnetocalorics [14], their inclusion is justified as known
magnetocalorics such as Ni2MnGa or Gd possess these structures. Addi-
tionally, magnetocaloric material performance does not necessarily scale
with the magnetic moment, as shown in Figure 1.2.

Energy above hull ≤ 1000 kB and Formation energy ≤ 0 (1866→ 1071)
These criteria assess structure stability at 0K, ensuring compounds are
bound to form and include structures that become stable up to 1000K,
allowing for multiple structures per compound.

1Co is also a critical element [5], but its partial substitution by Ni and Fe is considered to decrease
Co usage
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Figure 7.2. Periodic table highlighting elements considered in the screening parame-
ters, with magnetic elements in blue.

Has a magnetic order (1071→ 488) The MCE requires the system to have
a magnetic order. In principle for collinear magnetic orders, only the
FiM and FM configurations should display a field-response. However, to
include as well possiblemetamagnetic transitions FiM-AFMor FM-AFM
(as for FeRh in Paper I), AFM configurations were also included.

Number of magnetic sub-lattices > 1 (488→ 345) A high magnetic mo-
ment is important, but a sharp variation at the transition temperature,
often linked to multiple magnetic sublattices, is critical for enhanced
entropy contribution. This is observable in compounds like FeRh and
Fe2P [138]. The existence of multiple magnetic sublattices is predicted
by analyzing the presence of different magnetic elements or varying
coordination numbers of magnetic elements in the composition.

This pool of 345 structures is a promising starting point for new magne-
tocaloric discoveries, evidenced by the inclusion of known magnetocalorics
like La(Fe,Si)13, Fe2P, and Ni2MnGa.

For materials undergoing magnetostructural transitions, an additional re-
quirement is set: at least two structures for the compound must be found in
the database. This criterion serves as a rudimentary filter and does not ensure
the occurrence of a structural transition. Also, it is partially blind to isostruc-
tural transitions, as structural relaxation in the Materials Project database may
obscure higher energy phases. Applying this filter results in 34 structures cor-
responding to 16 different compositions, forming the pool for subsequent cal-
culations.

7.3 Preliminary results
Despite the relatively limited scope of structures covered, technical challenges
inherent to HT calculations in magnetic systems were encountered [124, 132].
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The introduction of magnetic order as a new degree of freedom can lead DFT
calculations to local minima, a behaviour more likely in systems with multiple
magnetic sub-lattices. This potential issue was accounted for in the workflow
design, yet some systems demanded more meticulous approaches to accurately
describe their magnetic properties. The discrepancies between calculated and
experimental values of TC can be seen in Table 7.1. A significant proportion
of structures in the pool converged to non-collinear configurations during MC
simulations, necessitating further analyses to ascertain whether these configu-
rations are inherent to the structures or a consequence resulting from Jij being
calculated in a metastable configuration in DFT.

Another challenge relates to the data in the database. The structures pre-
sented do not always correspond to experimental observations, as compounds
with a chemical disorder or vacancies are often modelled in ordered structures.
A notable example is MnCoSb, for which the modulation of vacancies in a
superstructure was required [139] to correctly determine the TC , as shown in
Figure 7.3.

Figure 7.3. Comparison between the experimentally modelled structure for CoMnSb
(right) and the idealized structure in the Materials Project database (left). Illustration
prepared with VESTA code [119].

The magnetic entropy calculations in Table 7.1 reflect the pure magnetic re-
sponse of the compounds under a 2T magnetic field application, analogous to
calculations performed for Gd (Paper II). This approach excludes the potential
for magnetostructural transition, often resulting in a more gradual variation of
entropy, as seen in low ∆Smag calculated for Co2NiGa, which in experiments
displays high ∆S from a sharp magnetic transition [140]. As demonstrated
in Table 7.1, such an approach yields mixed results compared to experimen-
tal data. This demonstrates one of the primary challenges in high-throughput
searches for magnetostructural transitions: many systems require sophisticated
modelling to predict ∆Smag. However, most ∆Smag calculations are within a
reasonable order of magnitude.
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7.4 Remarks and Outlook
Currently, efforts are underway to investigate and fix, where possible, the non-
collinear configurations relaxed in MC simulations and discrepancies with ex-
perimental results. While some level of disagreement is anticipated in HT cal-
culations within an automated workflow, halting this approach to examine each
system in detail helps to optimize the workflow for future searches involving
a larger pool of structures. This detailed examination also contributes to the
development of more generalized models for calculating entropy in magne-
tostructural transitions.

Additionally, investigations are being conducted to determine whether the
multiple structures identified for each compound are related by a structural
transformation and, if so, to identify the low and high-temperature phases. The
objective is to estimate ∆Smag associated with magnetostructural transitions,
akin to the methodology used in Paper III.

Looking ahead, there is an interest in a moderate expansion of the search
pool by including additional chemical species or incorporating orthorhombic
structures, particularly those with lattice parameter ratios (b/a or c/a) close to
1.0. This expansion aims to accommodate small deformations from tetragonal
cells that may occur during structural relaxation, thereby broadening the scope
of the search.

The consideration of an additional figure of merit for the MCE, namely
∆Tadi, is of interest. When examining Equation 2.13, it is evident that calcu-
lating ∆Tadi requires further computation of Cmag in varying magnetic fields2.
The absence of a straightforward method to accurately compute Cmag across
a broad temperature range likely hindered such interest. However, the mixed
rescaling scheme introduced in Paper II aids in this effort, and it becomes perti-
nent to explore the viability of∆Tadi as HT screening parameter, and to assess
the alignment of such calculations with experimental data. It is important to
note that, while first-principle calculations assume isochoric conditions, exper-
imental procedures often occur under isobaric conditions.

2This assumes the simplest case where Clat and Cele are independent of the magnetic field.
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8. Conclusions

[we see that] science is eminently perfectible, and
that each theory has constantly to give way to a
fresh one.

Jules Verne, ’A Journey to the Center of the Earth’

In this thesis, the characterization of magnetocaloric materials is explored
through first-principles calculations, with a specific emphasis on the entropy
variation associated with the MCE. The focus on entropy arises from its poten-
tial as a key screening parameter in high-throughput calculations to search for
novel magnetocaloric materials. Magnetocaloric materials of interest typically
show a strong interplay between structural and magnetic properties. In light of
this, the coupling was studied with different approaches and materials, with the
aim of not only refining the theoretical framework of magnetocaloric materials
but also deepening the understanding of their physical properties. Additionally,
it was developed of a new renormalization scheme for magnetic Monte Carlo
simulations. This advancement is noteworthy for enhancing the precision of
these simulations over a wide temperature range.

The benchmarking of the calculations associated with the entropy contribu-
tions in the magnetocaloric effect involved analyses of two distinct systems:
FeRh and Gd, as detailed in Papers I and II, respectively. FeRh undergoes
a first-order metamagnetic antiferromagnetic-ferromagnetic (AFM-FM)
transition, whereas Gd exhibits a conventional second-order ferromagnetic-
paramagnetic (FM-PM) transition. In FeRh, the entropy change was calculated
by comparing the entropies of the high-temperature and low-temperature
phases, excluding the impact of the magnetic field. Conversely, the second-
order transition in Gd necessitated a different approach. Here, ∆S was
determined through a gradual process that incorporated the effects of the
magnetic field. The validity of these procedures is supported by their close
alignment with experimental data. Additionally, a similar calculation of
the first-order transition was applied to the Mn0.5Fe0.5NiSi0.95Al0.05 system
(discussed in Paper III). This analysis successfully predicted ∆Smag values
that are in the same order of magnitude as the experimental observations.

The results of the tests presented in Papers I and II reveal distinct vibra-
tional properties in the magnetic phases involved in the magnetic transition ex-
plored by the MCE. These properties significantly influence the lattice contri-
bution to the entropy, as demonstrated in both studies. As a consequence, it be-
comes essential to calculate the vibrational properties of the various magnetic
phases to accurately estimate the lattice contribution to the entropy change.
Moreover, the effect of alterations of the structure on the magnetic proper-
ties was also investigated. Notably, Paper II explores this relationship in the
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context of pressure-induced polymorphs in Gd. Similarly, Paper III exam-
inesMn0.5Fe0.5NiSi0.95Al0.05, focusing on the interplay of coexistent structural
phases. In the case of Gd, it was concluded that variations in magnetic ordering
temperature under pressure could be explained through a model based on the
formation and accumulation of stacking faults, describing a gradual transition
between structures. For the Mn0.5Fe0.5NiSi0.95Al0.05 system, the adoption of a
magnetic composite model, in conjunction with experimental data, allowed to
determine that the magnetostructural transition in these compounds is predomi-
nantly driven by the lattice subsystem. The observed collapse in magnetization
is attributed not to a typical FM→PM transition but to a sharp phase transition
between low and high-temperature phases, each exhibiting distinctly different
magnetic properties.

The insight obtained from these projects led to the development of a system-
atic workflow for estimating entropy in a high-throughput manner. This work-
flow incorporates additional screening parameters designed to limit the pool of
materials and reduce the computational effort. The initial results obtained from
implementing this workflow have beenmixed when compared with existing ex-
perimental data. This inconsistency suggests that certain systems may require
a more careful approach. In response to these preliminary findings, current ef-
forts are focused on investigating these specific cases. The aim is to refine the
accuracy of the calculated quantities and to gain insights into further routines
that need to be integrated into the workflow, to handle in a more systematic
way complex systems.

The findings presented in this thesis allow us to affirm the feasibility of using
first-principles estimates of the entropy change related to the MCE as an effec-
tive screening tool in high-throughput studies. This conclusion is supported
by the close correlation observed between the calculated and experimental data
for the studied systems. Note that these results were obtained using general
methodologies that are readily adaptable across different systems. It is crucial
to note, however, that while the employed models were not specifically tailored
for each material, they were carefully selected to align with the characteristics
of the magnetic(-structural) transitions being investigated. For instance, FeRh
andMn0.5Fe0.5NiSi0.95Al0.05 were analyzed as first-order transitions, while Gd
was treated as a second-order transition. This distinction underscores a poten-
tial limitation in high-throughput studies since the nature of a material’s tran-
sition may not be known in advance. To address this challenge, two strategies
emerge: either conducting estimates for both first-order and second-order tran-
sitions for each candidate material or narrowing the focus to a specific family of
compounds. This latter approach assumes that these compounds share similar
characteristics and can be effectively modelled using a systematic approach.

Finally, the scaling scheme introduced in Paper II presents a promising im-
provement for conventional Monte Carlo simulations. Since it effectively al-
lows to capture the correct behaviour of equilibrium properties across two criti-
cal temperature limits: at temperatures approaching zero, where quantum statis-
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tics governed by the Bose-Einstein distribution are dominant, and near the mag-
netic ordering temperature, where classical statistics, as dictated by the Boltz-
mann distribution, prevail. In its essence, the proposed scheme interpolates
between these two statistical distributions using a mixing function, which, in
Paper II, is represented as a linear function of temperature. It is important to
highlight that the choice of this linear relationship was primarily for its simplic-
ity and does not stem from underlying physical principles. In the future would
be interesting to apply this scaling scheme to many other magnetic systems.
Such exploration could potentially reveal whether a universal mixing function
exists, one that could be also formally derived from theoretical principles. This
would offer deeper insight into the underlying physics of the proposed scheme.
Furthermore, extending this scaling scheme to spin-dynamics simulations and
evaluating its efficacy there would also be an interesting endeavour.
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Popular Science Summary

Since the dawn of civilization, humans have harnessed the properties of ma-
terials found in nature like wood, stone, and wool to make their lives easier.
We have not only utilized these natural resources for various purposes, but also
developed new materials such as pottery, bronze, and steel. Today, our search
for groundbreaking materials, particularly for energy-efficient technologies, is
more intense than ever. A prime example of this innovation is in the realm of
cooling and refrigeration technology.

In the pursuit of sustainable and efficient cooling methods, researchers are
focusing on a novel class of materials called magnetocaloric materials. These
materials demonstrate a significant and reversible thermal response when ex-
posed to external magnetic fields. Their potential as a greener alternative for
cooling technologies is particularly exciting.

The magnetocaloric effect is a phenomenon where a material’s temperature
changes in response to alterations in an external magnetic field. While typi-
cally subtle, this effect is markedly stronger in magnetocaloric materials near a
phase transition, where their magnetic properties shift. This phenomenon is the
basis for magnetic refrigeration, a technology leveraging themagnetocaloric ef-
fect in a thermodynamic cycle for cooling, offering an eco-friendly alternative
to traditional vapour-compression methods. This technology is already used
at cryogenic temperatures, but in the last two decades, there has been an in-
creasing effort to apply it in room-temperature devices. Despite its promise of
efficient (with a performance increase of 30% compared to traditional devices)
cooling, adapting this technology for domestic use poses significant engineer-
ing challenges. Currently, this technology is being refined, with one of the
main focuses in the search for the ideal magnetocaloric materials that are ef-
ficient, cost-effective, and environmentally benign for household applications.
Ongoing research, including extensive large-scale computational studies, is key
to advancing more efficient, affordable, and environmentally friendly cooling
technologies. This exploration not only paves the way for integrating magnetic
refrigeration into everyday life but also deepens our understanding of these
unique materials.

This thesis explores the complex world of magnetocaloric materials, fo-
cusing on entropy variation linked to the magnetocaloric effect using ab-initio
calculations. This approach has refined theoretical models for large-scale cal-
culations and enhanced our understanding of the physical properties of these
materials. The primary focus is on investigating the properties of FeRh and
Gd, well-established magnetocaloric materials, and Mn0.5Fe0.5NiSi0.95Al0.05,
an emerging candidate for room-temperature refrigeration applications.

The study closely analyzed FeRh and Gd, each exhibiting distinct magnetic
transitions. FeRh shows a first-order transition with abrupt property changes,
while Gd displays a second-order transition with a more gradual change. These
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analyses provided vital insights into calculating entropy variation accurately
and confirmed the strong coupling between magnetic and structural properties
in these materials. This interplay was especially crucial in understanding the
magnetocaloric effect in Mn0.5Fe0.5NiSi0.95Al0.05, where the magnetic charac-
teristics are influenced by two coexistent structural phases with different mag-
netic properties.

Building on the findings from FeRh and Gd, the thesis developed a system-
atic workflow for high-throughput estimation of entropy changes. This method
is essential for screening potential magnetocaloric materials, though ongoing
studies indicate the need for more nuanced approaches in complex systems.

In parallel, the thesis presents a novel correction scheme for Monte Carlo
simulations, a prominent method for simulating magnetic systems. In its con-
ventional formulation, the method performs poorly for simulations at low tem-
peratures. This correction builds up on top of similar corrections by rescaling
the effective temperature in simulations to accurately reflect statistical distri-
butions at low temperatures, where quantum behaviour dominates, and at high
temperatures, governed by classical physics.

The research presented in this thesis highlights the potential of using ab-
initio estimates of entropy change to identify promising magnetocaloric mate-
rials. As the global demand for environmentally friendly alternatives grows,
the study of magnetocaloric materials becomes increasingly critical, holding
the promise of a cooler, more sustainable future.
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Populärvetenskaplig samanfattning

Sedan civilisationens gryning har människan utnyttjat egenskaperna hos mate-
rial som finns i naturen, som trä, sten och ull, för att göra livet enklare. Vi har
inte bara använt dessa naturresurser för olika ändamål utan också utvecklat nya
material som keramik, brons och stål. Idag är vår jakt på banbrytande materi-
al, särskilt för energieffektiva teknologier, intensivare än någonsin. Ett viktigt
exempel på denna innovation finns inom kyl- och värmeteknik.

I strävan efter hållbara och effektiva kylmetoder fokuserar forskare på en ny
klass av material som kallas magnetokaloriska material. Dessa material uppvi-
sar en betydande och reversibel termisk respons när de utsätts för yttre mag-
netfält. Deras potential som ett grönare alternativ för kylteknik är särskilt spän-
nande.

Magnetokalorisk effekt är ett fenomen där ett materials temperatur ändras
som svar på förändringar i ett yttre magnetfält. Även om effekten vanligtvis är
liten, är den markant starkare i magnetokaloriska material nära en fasövergång,
där deras magnetiska egenskaper förändras. Detta fenomen är grunden för mag-
netisk kylning, en teknik som utnyttjar magnetokalorisk effekt i en termodyna-
misk cykel för kylning, och erbjuder ett miljövänligt alternativ till traditionel-
la vätska-gas-cykler. Magnetokalorisk teknik används redan vid kryogeniska
temperaturer, men under de senaste två decennierna har ökade ansträngningar
gjorts för att tillämpa den vid rumstemperatur. Trots att tekniken utlovar pre-
standaökningar på upp till 30% jämfört med traditionella enheter, finns bety-
dande utmaningar då den ska anpassas för hushållsbruk. För närvarande är ett
av huvudfokusen sökandet efter idealiska magnetokaloriska material som är ef-
fektiva, kostnadseffektiva och miljövänliga för hushållsapplikationer. Pågåen-
de forskning, inklusive omfattande storskaliga beräkningsstudier, är avgörande
för att utveckla mer effektiva, prisvärda och miljövänliga kylteknologier. Detta
banar inte bara väg för integration av magnetisk kylning i vardagslivet, utan
fördjupar också vår förståelse av dessa fascinerande material.

Denna avhandling utforskar de magnetokaloriska materialens komplexa
värld, med fokus på entropivariationen kopplad till den magnetokaloriska
effekten med ab initio-beräkningar. Teoretiska modeller för storskaliga beräk-
ningar har förfinats och förbättrat vår förståelse för de fysikaliska egenskaperna
hos dessa material. Primärt undersöks egenskaperna hos FeRh och Gd, väl
etablerade magnetokaloriska material, samt Mn0.5Fe0.5NiSi0.95Al0.05, en
kandidat för kylning vid rumstemperatur.

Studien analyserade noggrant FeRh och Gd, som båda uppvisar distinkta
magnetiska övergångar. FeRh har en första ordningens övergång med abrupta
egenskapsförändringar, medan Gd har en andra ordningens övergång med mer
gradvis förändring. Dessa analyser gav insikter i hur entropivariationen kan
beräknas med större precision och bekräftade det starka sambandet mellan
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magnetiska och strukturella egenskaper i dessa material. Denna växelver-
kan var särskilt avgörande för att förstå den magnetokaloriska effekten i
Mn0.5Fe0.5NiSi0.95Al0.05, där de magnetiska egenskaperna påverkas av två
samexisterande strukturella faser med olika magnetiska egenskaper.

Med utgångspunkt i fynden från FeRh och Gd utvecklar avhandlingen ett
systematisk arbetsflöde för högkapacitetsberäkning av entropiförändringar.
Denna metod är avgörande för att screena potentiella magnetokaloriska
material, även om pågående studier tyder på ett behov av mer nyanserade
tillvägagångssätt i komplexa system.

Dessutom presenterar avhandlingen ett nytt korrigeringsschema för Mon-
te Carlo-simuleringar, en kraftfull metod för att simulera magnetiska system. I
dess konventionella formulering presterar metoden dåligt för simuleringar vid
låga temperaturer. Korrigeringen bygger på tidigare föreslagna skeman för att
justera den effektiva temperaturen i simuleringarna för att korrekt återspegla
den statistiska distributionen vid låga temperaturer, där kvantmekaniskt bete-
ende dominerar, och vid höga temperaturer, som styrs av klassisk fysik.

Forskningen som presenteras i denna avhandling lyfter fram möjligheten att
använda ab initio-uppskattningar av entropiförändring för att identifiera lovan-
de magnetokaloriska material. I takt med att den globala efterfrågan på miljö-
vänliga alternativ växer, blir studiet av magnetokaloriska material allt viktigare,
med löften om en svalare, mer hållbar framtid.
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t r a c t

to predict newmaterials for magnetic refrigeration from high-throughput calculations asks for an
te, transferable, and resource-wise balanced approach. Here, we analyze the influence of various
imations on the calculation of key properties of magnetocaloric materials, while revisiting the
own FeRh system for benchmarking our approach. We focus on the entropy change and its
utions from the electronic, lattice, and magnetic degrees of freedom. All approximations
ered are based on first-principles methods and have been tested, and compared for FeRh. In
lar, we find that in this context, the Debye approximation for the lattice entropy fails, due to the
ce of soft phonon modes in the AFM phase. This approximation is frequently used in the literature
mple alternative to full phonon calculations. Since soft modes are likely to occur also among
ing magnetocaloric materials where structural transformations are common, the use of the Debye
imation should be discarded for these systems treatment. This leaves the calculations of the lattice
ution the most demanding task from the computational point of view, while the remaining
utions can be approximated using more efficient approaches. The entropy change DS shows a
round 370 K, for which the total entropy change is given by 24.8 JK�1kg�1 (DSele ¼ 7.38,
7.05, DSmag ¼ 10.36 JK�1kg�1) in good agreement with previous theoretical and experimental
s.
20 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction be characterized by the refrigerant capacity, RC ¼ DSisoDTadi, where

DS is the isothermal entropy variation and DT is the adiabatic

re ch
m fi

ore
mp
ntro
appr
eld
con

al sm
phas
riati
plifi
pen
ntro
cat
ate
ind
ees

C BY
The idea of replacing convectional room temperature cooling
devices by solid-state magnetic devices, which have the potential
for better energy efficiency without producing harmful greenhouse
gases, has promoted the interest in magnetocaloric materials. The
search for new materials with a more attractive performance/cost
ratio or tuning of known compounds is crucial in order to use such
devices in mass production and everyday applications [1e5].

First principles high-throughput calculations can be a powerful
approach to identify suitable candidates with desired properties by
screening a large body of data. To be able to do that, large databases
and screening parameters, which are carefully selected to achieve a
balance between the accuracy and the cost of the computation are
required [6,7].
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ange. None of these parameters can be easily esti-
rst principles electronic structure calculations,
tailored approach is necessary to take into account

erature effects. Analogous to Ref. [8], we propose the
py variation between the involved magnetic phases
oximation of DSiso. In this way, the transition itself
contribution are not included on the description,
siderably the calculation. The magnetocaloric effect
all unless it is operated at temperatures in the vi-
e transition, whereas it is strongly enhanced by the
on of a transition, which justifies our approach [2,9].
ed model, entropy can be described by the sum of
dent contributions: the electronic entropy, the
py and the lattice entropy: S ¼ Sele þ Smag þ Slat . This
ion of the real processes, since most of the magne-
rials show magnetostructural or magnetoelastic
icating strong coupling between lattice and mag-
of freedom. A consequence of neglecting these
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coupling terms (or taking them as constants) is that, their contri-
bution are “double-counted” when summing the three contribu-
tions. However, as shown here, the simplified approach still
provides a reliable estimation for DS without overburdening the
calculations [1,10].

By using DS as a screening parameter, we are likely limiting our
search to materials with first order transitions, since they have
enhanced entropy variation [2,4,10]. These materials show better
magnetocaloric performance but can also be more challenging to
operate in practice, due to hysteresis losses. As pointed out in
Ref. [4], first order transitions have hysteresis that can reduce
drastically the performance inmulti-cycle processes and thusmake
the materials less attractive for real cooling devices applications.
However, evenwith the above-mentioned limitations inmind, DS is
a natural choice for screening potential magnetocaloric materials,
when attempting high-throughput approaches.

In order to be used in high-throughput calculations we need to
explore the degree of complexity needed to get reliable estimations
for the different contributions for DS. Therefore, FeRh, a well-
known magnetocaloric system, is used as a test case keeping in
mind that the approach should be as general as possible in order to
be transferable to other systems. Starting from simple models, the
different conventional approaches are compared relatively to their
performance and applicability for high-throughput calculations.
We would like to stress that the focus of our study is on the
methodology used for first-principles entropy estimations and not
on the test material, FeRh, itself that was chosen by thorough
studies available in the literature [8,11e22].

Over the years, the unusual metamagnetic first-order transition
of ordered FeRh alloys with CsCl structure has caught huge attention,
which is reflected, in a larger number of experimental and theoret-
ical studies [11e13,18,23e31]. An isostructural transition from a low-
temperature antiferromagnetic (AFM) phase to a high-temperature
ferromagnetic (FM) phase occurs near room temperature (around
340K), accompanied by a volume increase of about 1%. The transition
is also characterized by the considerable gain of the magnetic
moment of the Rh atoms (z 1 mB) from a nonmagnetic state in the
AFM phase (type G), which stabilizes the FM phase [13].

Early attempts to determine the origin of the transition e.g.
using the exchange-inversion model of Kittel [32,33] were incom-
patible with the large entropy variation observed in FeRh. Based on
the measured electronic contribution to the entropy variation Tu
et al. proposed that the transitionmight be driven by changes in the
electronic structure [23], however this explanation did not
compare to previous results for Ir doped FeRh [34]. Later, it was
proposed by Gruner et al. that the transition is driven by magnetic
fluctuations [13], and the same conclusionwas obtained by Gu et al.
[18] and Staunton et al. [16] using different approaches.

Nowadays, there is a renewed interest in these compounds due
to their magneto- and barocaloric properties. Examples of such
studies are e.g. the performance of the magnetocaloric effect (MCE)
under cyclic conditions [29] and the variation of themagnetocaloric
response between FeRh based ternary compounds [35]. Very
recently, the existence of an orthorhombic low-temperature phase
of FeRh has been predicted from first-principles calculations
[12,14,36] as well as a martensitic transformation under strain
[14,15,37].

The existence of such broad knowledge and detailed informa-
tion in the literature together with the complex metamagnetic
behaviour that demands a careful treatment makes FeRh an ideal
test system for our purpose to identify amethod that can be applied
in a high-throughput study for finding new magnetocaloric
materials.

The discussion in the present work is divided in two parts. In the
first part, we discuss thoroughly the single entropy contribution in
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nic, lattice and magnetic components. This is done
ifferent approximations, albeit without considering
on the structure. In the second part, we include
ion/contraction from thermal effects and compare
us results, using the approximations we found to be
scribe the system. From this we are able to conclude
st viable approach to be applied in high-throughput

nal details

ral properties as well as structure relaxations were
g the VASP (PAW) code [38e40] with PAW poten-
ile the PHONOPY [43] code was used to obtain the
sity of states and the phonon spectra. Magnetic and
erties needed for entropy calculations were derived
ential linear muffin-tin orbital method (FP-LMTO)
code [44], and respective temperature dependent
as the adiabatic magnon density of states or the

ure were computed using the UppASD code [45]. In
culations, the functional GGA-PBE [46] was used,
in general a good performance in transition metals
s, which represents the substantial part of the future
een.
AFM phases were relaxed on cubic cells of 16 atoms
s, 4p, and 3d for Fe as well as 5s, 5p and 4d orbitals
e states. A kinetic energy cutoff of 500 eV, roughly 2
an the default value, was used. For sampling the
we used a k-mesh 12� 12� 12 generated with the
k scheme in combinationwith a smearing of 0.05 eV
e Methfessel-Paxton scheme (2nd order). Tests with
the Fe 3p and Rh 4p semi-core states in the valence,
ge of a higher cutoff energy (750 eV) revealed that
s are converged with respect to these parameters.
tice parameters of 2.99 Å (AFM) and 3.01 Å (FM) are
ent with previous calculations, e.g. 2.99 (3.01) Å

) Å [8] for the AFM (FM) phase. They are also in good
experimental measurements, 3.00 Å [47], and 2.98

the AFM (FM) phase. For these volumes, the mag-
obtained from these calculations are mFe ¼ 3.21 mB
mB in the FM phase, andmFe ¼ 3.12 mB andmRh ¼ 0.0
phase. These results are close to the experimentally
s of an alloy with 48% Rh in the FM phase,mFe ¼ 3.2
.9 mB [49,50], as well as to the measurements for the
a stoichiometric compound, mFe ¼ 3.3mB [50]. The
s are also in close agreement with previous calcu-
e ¼ 3.18mB [12], 3.15mB [11] and mRh ¼ 1.06mB [12],
the FM phase and mFe ¼ 3.12mB [12], 2.98mB [11] in
. At T ¼ 0K, the AFM phase is lower with 26.9 meV/
lculation1) compared to the metastable FM phase.
calculations were performed within the harmonic
employing the finite displacement method in a
s used on the structural relaxation. We used dis-
0.01 Å for these calculations. A 2� 2� 2 supercell
d structures with 128 atoms (64 f.u.) was employed.
cell we used a coarser k-mesh 6� 6� 6. No
was observed by increasing the cutoff energy to
ither a significant change of the phonon spectrum
ion of 3p (Fe) and 4p (Rh) orbitals in convergence
for cells of 16 atoms. To make it easier to compare

revious calculations [8,12], we employed also a
ith a cutoff of 500 eV and the inclusion of the semi-

e analogous RSPt calculation.
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core states in all phonon calculations.
For calculations performed with the RSPt code, we used fcc-like

structures of 4 atoms (2 f.u.), with the previously relaxed lattice
parameter on a 36� 36� 36 k-mesh with related integrated
quantities broadened by Fermi smearing of 1 mRy. The exchange
parameters Jij were calculated using the Liechtenstein method
[51,52], implemented in the RSPt code, as described in Ref. [53]. The
Curie temperature (TC) calculated via mean field theory according
to the obtained values of Jij for the FM phase is of 804 K, which is
comparable to the experimentally measured value of 675 K [33,47].
This agreement is good, given the fact that mean-field theory tends
to overestimate TC about �20% (as discussed e.g. in Ref. [45]). For
analysis of the long range behaviour with distance, the exchange
parameters were calculated on a denser k-mesh of 64� 64� 64 to
assure convergence of the results.

3. Results

As initial approach, anharmonic effects raised by thermal
expansion were neglected and we consider only the DFT ground-
state volumes for both magnetic phases. We extend the use of
this terminology for elastic/structural properties for this approach
to distinguish clearly that the volumes were fixed. The assumption
of purely harmonic forces between atoms is insufficient to describe
the thermal expansion or contraction of a material, and it may be
important to consider anharmonic effects, for accurate calculations
of phase stability and entropy estimates. To compare improvements
obtained by this description, relatively to the previous “Harmonic”
approach, we used the quasiharmonic approximation (QHA) to
include the effects of thermal expansion on the entropy estimates
(see more details further) [54].

3.1. Electronic structure, and its contribution to the entropy

The density of states (DOS) of FeRh is shown in Fig.1a, for the FM
and AFM configuration. Note that for the AFM configuration we
show the spin-polarized DOS of only one Fe atom.

The figure shows the atom with more spin-down electrons
occupied, representing a Fe atom with a negative atomic moment.
The Fe atom with positive moment has exactly the same DOS,
although with opposite spin-projection to that shown in Fig. 1. In
agreement with previous findings in the literature, a strong hy-
bridization between iron and rhodium orbitals is observed [17]. In
particular, a strong hybridization between Fe t2g and Rh eg orbitals
near the Fermi energy (EF � E ¼ 2 meV) occurs in the AFM phase,
where it also can be assumed some hybridization between Fe eg
and Rh t2g orbitals in the peak around EF � E ¼ 2 meV, see Fig. 1a.
For the FM state the hybridization seems to weaken, and be
confined on the minority spin channel, mainly observed between
t2g orbitals of Fe and Rh near the Fermi energy. This observation
may emphasize the picture of quenched Rhmagnetic moments due
to the competing influence of neighbouring iron atoms on the AFM
phase. The hybridization that is diminished between FeeRh on the
FM phase can be directly ascribed to the lifting of the anti-parallel
alignment of the surrounding iron atoms. On the other hand, it can
also be related to the increased volume, which can reduce orbital
superposition or a combination of both effects.

In the FM phase (Fig.1b), it is possible to distinguish a significant
difference between t2g and eg orbitals of Fe at Fermi level which can
be an indication of different magnetic behaviour of these orbitals
similar as observed for bcc-Fe in Ref. [55]. There it was found that
t2g orbitals, with likewise bigger contribution for the electronic
density of states DOS(εF ), were related to the long-range Ruder-
maneKitteleKasuyaeYosida (RKKY) interactions while the eg were
associated with direct exchange with nearest neighbours. The

similarities
existence o
atoms of b

The con
by the mix

Sele ¼ � k

where

f ¼ ½expððε
Furthermo
dependent
below the
with the F
estimated

Sele ¼
p2

3
k2B

In Fig. 2
showing a
range the r

-4

-3

-2

-1

0

1

2

3

4

-4

-3

-2

-1

0

1

2

3

4

-6

D
O

S 
(s

ta
te

s/
eV

/u
.c

.)

Fig. 1. Electro
onto Fe 3d sta
metry. The de
pretation of th
Web version o

R.M. Vieira, O. Eriksson, A. Bergman et al.

3

me similarities between magnetic behaviour of Fe
compounds.
tion of electronic excitations to the entropy is given

entropy of occupied and unoccupied states:

DðεÞð½1� f ðε; TÞ�lnð1� f ðε; TÞÞþ f ðε; TÞlnðf ðε; TÞÞÞ
(1)

is the density of states and

=ðkBTÞÞ þ 1��1 is the Fermi-Dirac distribution.

B is the Boltzmann constant and m is the temperature
emical potential. For temperatures considerably
i temperature, it is reasonable to approximate m

i energy, EF . Then the electronic entropy can be
the Sommerfeld approximation [56].

FÞ: (2)

results obtained from both models are compared,
agreement for temperatures till 300K . Outside this

ts differ, resulting in a small deviation observed for



Fig. 2. Electronic contribution to the entropy variation DS ¼ SFM � SAFM according the
Sommerfeld approximation (black dotted line) and the mixing entropy in the har-

ted exchange parameters (Jij) calculated for FeRh, decomposed according
toms type a), and crystal field symmetry b). In b) are only plotted the
ractions between iron atoms along the <001> direction. For interpre-
eferences to color in this figure legend, the reader is referred to the Web

R.M. Vieira, O. Eriksson, A. Bergman et al. Journal of Alloys and Compounds 857 (2021) 157811
temperatures close to the transition temperature for the transition
from antiferromagnetism to ferromagnetism. The deviations arise
from the AFM phase and can be explained by the absence of peak
structures in DOS at the Fermi energy (Fig. 1) as the Sommerfeld
approximation assumes. Nevertheless, the deviation between the
discussed models for Sele estimation, in the range of the transition,
is small being the obtained difference of 1.84 J K�1 kg�1 for DSele,
and 26 K for the transition temperature (discussed in further sec-
tions). Although there is not significant loss of accuracy estimating
Sele using Eq. (2), using the definition of mixing entropy does not
imply extra computational effort. Thus to avoid eventual inaccur-
acies that may arise by using Sommerfeld approximation, we use
the definition in Eq. (1) as the standard method for calculating the
electronic entropy.

monic (blue solid line) and the quasi-harmonic (red dashed line) approaches. For
interpretation of the references to color in this figure legend, the reader is referred to
the Web version of this article.
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For materials with order-disorder magnetic transitions, the
maximum magnetic entropy variation between phases can be
roughly estimated from DSmag ¼ NkBln½2Sþ1� (in a quantum
description) with N being the number of magnetic atoms [24]. This
comes about since very few microstates are available for highly
ordered states, and the entropy of this configuration can be
neglected in the limiting case T/ 0. In contrast, for the disordered
configuration we have ð2Sþ 1ÞN arrangements for the spins for T
/∞, which results in the entropy change across the order-disorder
transition as described above.

According to the analysis above, it is expected that order-order
transitions at finite temperature have a considerably smaller en-
tropy change from the magnetic subsystem.

Based on this and the argument that considering the itinerant
nature of magnetism of FeRh, the magnetic contribution to DS is
already included in the electronic entropy computed from the DOS,
some reports argue that the magnetic contribution of the entropy
does not need to be considered separately [8]. To some extent, it is
possible that somemagnetic contribution is captured byDSele, since
some coupling between the degrees of freedom is expected.
However, taking into consideration the increase of the Rh magnetic
moment from 0 (AFM) to z1mB (FM), it seems that the magnetic
entropy for this transition must be considered specifically. A good
reason for that are the new two-site interactions between Fe and Rh
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hich should be considered for a proper system
e Fig. 3a). Interestingly, Fig. 3a shows that the close
eFe exchange is quite similar for the AFM and FM
The nearest neighbour interaction is anti-

in both phases, although the strength is larger for
uration. In addition, the general trend of the FeeFe
uite similar for both configurations. The interaction
the FM phase is hence not found in the FeeFe Hei-
ge. Instead, as Fig. 3a shows, the strong ferromag-
teraction is what makes the FM configuration stable
sents an interesting boot-strapping effect, when the
n is what allows for a sizeable Rh moment, and the
oment is what ensures a large FeeRh exchange
t makes the FM (meta-)stable [13].
the magnetic entropy variation we started by using
ximation analogous to the one used in Ref. [57] for
ys. From the fundamental thermodynamic relation
one can, for isochoric processes, approximate the

¼ DU=T . Although crude, this approximation should
ble estimate for the entropy variation in first-order
ere the entropy varies discontinuously at the tran-
ure. Using this and describing the magnetic energy
y the classic Heisenberg Hamiltonian:
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H¼
X
i< j

Jij Si
!
:Sj
!

(3)

a good starting point for DSmag estimation can, in principle, be
obtained, since energy differences between different magnetic
configurations are available from Eq. (3). For FeRh this results in
DSmag ¼ �26:78 JK�1kg�1 (at T ¼ 340 K), which has the wrong sign
from what is expected, a consequence of the use of a simplified
Heisenberg Hamiltonian, for which the FM phase is obtained as the
ground-state configuration. However, it was shown in
Refs. [13,25,58,59] that an extension of the Heisenberg exchange
model can be made, using e.g. higher-order interactions, to obtain a
proper magnetic description of the system with very satisfactory
results on Monte Carlo simulations. Here we took a different route
to avoid the use of a tailored model and evaluated the magnetic
entropy from spin-wave fluctuations, similar to the work in
Refs. [18]. This approach is possible since the AFM-FM transition
happens at considerable lower temperatures (z340 K) than the
Curie temperature of the FM phase and the spin fluctuations can
still be considered to be relatively small [12]. It is also necessary to
guarantee, in order to use this approach that Stoner excitations are
not dominating, as was shown in Refs. [17,18].

For this reason, we calculated the magnon density of states
(MDOS) from the adiabatic magnon spectrum. This calculation
relied on Heisenberg exchange parameters, Jij, estimated from DFT
calculations. Due to the bosonic nature, the entropy of the magnons
is given by:

Smag ¼ kB

ð∞
0

gðεÞ½ð1þnðε; TÞÞlnð1þnðε; TÞÞ�nðε; TÞlnðnðε; TÞÞ

� �dε;
(4)

where gðεÞ is the MDOS and n ¼ ½expðε=½kBT�Þ � 1��1 is the Bose-
Einstein distribution. For these calculations a perfectly aligned
configurationwas assumed for the spin moments when calculating
the magnon dispersion (m! k m!z). Analogous calculations per-
formed for a thermally relaxed (at 300K) magnetic configuration do
not deviate significantly from these results.

In contrast to the observation of the electronic entropy contri-
bution, a magnetic entropy maximum (10.92 JK�1kg�1) is obtained
at around 315 K, as it can be seen in Fig. 4. This peak is of major
importance since it hints to the existence of the phase transition. At
least, it shows that the magnetic entropy will favour the ferro-
magnetic phase. Also, the lack of similar peaked behaviour around
the transition temperature in the other entropy contributions (see
discussion of lattice contributions, below) suggests that the tran-
sition is triggered by the magnetic features of the system. Thus,
based on the applied magnetic model (spin-wave fluctuations) and
the obtained MDOS for the AFM phase, we suggest that at low
temperatures the Rh atoms are magnetically suppressed by the
anti-parallel alignment of the surrounding Fe atoms configuration.
This generates a vanishing local Weiss field on the Rh atom, that at
the transition temperature has its symmetry broken by the spin
fluctuations, which allow Rh to become magnetically polarized and
thus stabilizes the FM configuration. A similar picture of a transition
driven by small magnetic fluctuations, as the one described above,
is concluded in other works, both with similar methods [18] as well
as from different approaches [13,16,18,58].

It was already pointed out in the previous section, that iron
atoms in FeRh might possess some features that are similar to the
features they have in elemental form (bcc Fe). For instance, the
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of magnetic couplings Jij included in the calculation
DSmag and the peak temperature show a significant
the cutoff radius for the Jij such that a considerable
nteractions must be included to a fairly converged
is is a consequence of long-range magnetic in-
�Fe, visible on Fig. 3b) that oscillate significantly till a
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uded interactions up to 12 lattice parameters in our
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The fact that the sensitivity with respect to the range of the
interactions, is mainly due to interactions in the FM phase, reflect
that long-range oscillating interactions are stronger on this phase
(see Fig. 3b), and more significant on t2g orbitals, underpins the
similarity between bcc Fe and the FM phase of FeRh (see results for
bcc Fe in Ref. [55]), when it comes to understanding the Heisenberg
exchange. We point out that the sensitivity on the cutoff of the
Heisenberg interactions is important for many prospective mag-
netocaloric materials, since many of them are metallic and have Fe
as a key element, and the long-range magnetic interaction between
Fe atoms seems to be of particular importance.

Our results of the magnetic entropy change across the AFM - FM
transition are in agreement with previous calculations, see Table 1.
The quite large difference between our entropy calculation and the
results obtained by Gu et al., who used a similar computational
approach [18], are most likely caused by the shorter range of ex-
change interactions considered in their work. This might also partly
explain the small deviation between our results and the ones from
the models used in Refs. [13,58]. Relative to the transition tem-
perature, the higher result obtained by Staunton et al. stands out
from the remaining values [16]. Such deviation might be related
with the method itself - finite temperature spin density functional
theory is implemented in the disordered local moment approach -
which differs significantly from the other approaches. The calcu-
lations of Ref. [16] were done from an electronic structure theory
that allows a random distribution of spin-orientations, and there-
fore neglects short-range correlations. This approach is well
established and is argued [16] to describe better the electronic
structure at finite temperatures.

3.3. Lattice contribution

The calculation of properties related to the crystal lattice can
become very demanding regarding computational resources. In
order to calculate such properties in an efficient way, it is impera-
tive to minimize the numeric effort by using expedient models,
without compromising significantly the accuracy. To verify which
approximation is appropriate to estimate the lattice entropy, we
compare the results of models of various accuracy and complexity.
As contribution for the lattice entropy, only the vibrational entropy
was considered.

3.3.1. Debye model
In the Debye model the phonon dispersion relation is treated as

linear, u ¼ vsjkj, where vs is the speed of sound in the material.
Therefore, the vibrational density of states (VDOS) is given by:

gðuÞ¼ 3u2

2v3sp2 (5)
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DSmag 10.9 15.4 5.2 15a(8.2)b 13c

[J K�1 kg�1]
Ttr 316 353 268 300 495
[K]

a Result obtained from specific heat analysis, at presented Ttr .
b Result obtained by DEðTÞ=T at T ¼ 350K.
c Result under a 2T magnetic field.
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toff Debye’s frequency. The entropy then becomes

nð1� expð �Q=TÞ Þ þ 12
�
T
Q

�3 ðQ=T

0

x3

expðxÞ � 1
dx

#

(6)

Debye temperature. An important consequence of
at at a fixed temperature the variation of the Debye
between phases (DQ) has opposite sign to the
ation of lattice entropy, DQ=jDQj ¼ � DSlat=jDSlat j,
to understand the nature of the lattice entropy, i.e.,
tive (has same sign) or detrimental (opposite sign)
ther entropy contributions. The Debye temperature

ed asQ ¼ Zð6p2nÞ1=3vs=kB with the atomic density n
the average velocity of sound in the crystal. For
ls, the later is approximated as the average value of
ongitudinal sound velocity. It is generally expressed
bulk modulus (B), the density (r), and a correction
.e., vs ¼ x

ffiffiffiffiffiffiffiffi
B=r

p
.

on parameter x depends on the elastic properties of
wever, in Ref. [60] it was proposed that for a given
als x might be universal and can be derived from
ts. To verify if this approximation could be used in
magnetocaloric materials we extracted the shear
li, from data found in literature [61e65], for mag-
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compound.
We conclude that however inconvenient it is, the elastic prop-

erties have to be calculated for each material that one includes in
any data set for high-throughput calculations, when searching for
newmagnetocaloric materials. For FeRh this exercise leads to a very
interesting result when comparing the two magnetic phases (AFM
and FM). Since the two phases have the same crystal structure, one
might naively assume very similar elastic properties for both pha-
ses. However, this assumption leads to a lattice entropy contribu-
tion of 7.9 JK�1kg�1at 328 K, which deviates from a more accurate
calculation that takes into account the difference in elasticity of the
two systems (discussed more in detail below) that yield a value
of�30.1 JK�1kg�1at the same temperature. This later approach gets
closer to the extracted from calorimetric measurements z � 33
JK�1kg�1 (328K) using the same model [66].

In order to describe accurately the difference in elasticity of the
two phases of FeRh, we evaluated the elastic constants using the
RSPt software, for both phases. We used the stress-energy response
as described in Ref. [67,68]. The values of C11 ¼ 194.9 (257.1) C12 ¼
194.9 (165.2) and C44 ¼ 135.3 (115.6) GPa were estimated for the
AFM (FM) phase, with qualitative agreement with previous calcu-
lations [15].

Comparing the Debye temperatures derived by using the same
Poisson ratio (n) for both phases and from the calculation with the
different ratios for the AFM and FM phase, demonstrates the
sensitivity of this model for lattice entropy to small deviations
(Dn ¼ 0:05) of the elastic properties. Taking into account the dif-
ferences in the elastic behaviour of the AFM and FM phase, the
change in the Debye temperatureDQ is in good agreement with the
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3.3.2. The Debye-Grüneisen model
Taking a more sophisticated approach to estimate the lattice

entropy, by use of full phonon calculations [8,12], leads different
values of DSlat , compared to the findings from the Debye model.
This is discussed in detail in the following subsection. To investigate
whether a simplified approach can be improved, we first extended
the Debye model to the Debye-Grüneisen model, where effects of
volume variation are taken into consideration for the lattice prop-
erties. The Grüneisen parameter, needed for this model, is calcu-
lated from

g¼ � g þ 1
2
ð1þB0Þ; (7)

where B0 is the volume derivative of the bulk modulus. The
parameter g is an additive factor, usually taken as g ¼ 1 for low
temperatures and g ¼ 2=3 for high temperatures [60,69]. Consid-
ering the volume expansion, VAFM/VFM , an increase is obtained for
jDQj which implies an increase in the magnitude of the lattice
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Table 2
Comparison of different treatments for Debye temperature estimation and respec-
tive difference between phases, DQ ¼ QFM � QAFM , with experimental measure-
ments. For the case with equal elastic properties assumed for both phases, the
instability [8,12
This result w

competing low
Nevertheless, n
tween the AFM

calculated Poisson ratio nFM ¼ 0:32 of the FM phase was considered. For the
remaining cases the nAFM ¼ 0:36 was used.

[K] QAFM QFM DQ

nAFM ¼ nFM 412 401 �11
nAFMs nFM 362 401 39
Expt [66]. 340 393 53
Thermal effects a 352 417 65

a High temperature correction considered, g ¼ 2=3, very similar result is obtained
if the low temperature correction is taken. The volume of the FM (AFM) phase was
considered as altered volume for the AFM (FM) phase.
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on comparatively to the previous estimate, and does
oretical values closer to the observed data.
odel is known to be accurate in the limits T ≪ Q

utside this temperature interval it is less reliable. It is
ratures that the magnetic transition for FeRh hap-
rtly explains the difference obtained for Slat using
lculations. As the discussion in the next section
stence of soft vibration modes has a major role in
e contradictory results between the simple Debye

f states (VDOS, right) for the AFM (dashed red line) and FM (solid
or interpretation of the references to color in this figure legend, the
o the Web version of this article.
from full phonon calculations
e of soft phonon modes, reaching imaginary fre-
o a structural transition, which leads to enhance-
Even if these soft phonon modes do not reach
uency (indicating structural instability) they may
or possible transition. It is reasonable to expect that
f magnetocaloric candidates will show this behav-
s of the acoustic branch can give raise to energy peak
e vibrational density of states at low energies that
d by the Debye model and lead to inaccuracies even
tures. Since the Debye model fails to describe the
c properties of such materials, full phonon calcula-
least be tried in order to compare with more
ethods, and to assess if more efficient avenues exist
ion of the lattice entropy.
ed phonon dispersion, displayed in Fig. 7, shows that
reciprocal space, the acoustic modes of FeRh behave
in both the FM and AFM phase. However, the AFM
picuous soft modes that even become imaginary as
culations [8,12], which also showed imaginary fre-
d theM point. Such behaviour points to a dynamical
].
as thoroughly discussed for FeRh in Ref. [12] and a
temperature monoclinic structure was proposed.
ear the experimental transition temperature be-
and FM phase, the structure is known to be cubic,

effects are relatively small and the equipartion of energy is a
on. The high temperature limit of Debye model predicts the
stently with the empirical Dulong-Petit rule [54].
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possibly caused by an entropy driven stabilization of the cubic
phase, e.g. as discussed in Ref. [70]. Since the part of reciprocal
space that contains imaginary frequencies is very small, as
observed by their minor contributions to the VDOS in Fig. 7, its
influence on thermodynamic properties is expected to be negligible
[12]. We therefore neglected this contribution, to the estimation of
thermal properties to avoid numerical complications.

The entropy variation derived from the VDOS (using the same
expression as Eq. (4) but with gðεÞ as the VDOS) is shown in Fig. 8. It
has the same sign and order of magnitude as the electronic
contribution. To be precise the difference in calculated lattice en-
tropy is 7.05 J K�1 kg�1 at T ¼ 373 K.5

Comparing the estimates in Fig. 8 it is interesting to note that
the trends for DSmag between Debye model and the full-phonon
calculations start to differ around 40 K, when the result for the
later approach displays a small entropy peak. Tracing this to Fig. 7
we can relate it to the flattening of the phonon spectra around
0.8 THz for the AFM phase, which explains the small entropy peak
obtained for the full-phonons approach as the excitation of the soft
phonon branches [12]. The indicated observation also underlines
the role of the presence of the soft mode to the failure of the Debye
model application in this material.

The difference between entropy results for phonon calculations
and for Debye model in this material is as remarkable as surprising,
especially when considering that it is an isostructural transition we
consider. A priori there are no indications pointing to the need of a
more complex approach, and it is clear from the calculations dis-
cussed here for the lattice entropy, that the applicability of any
simplified method, such as the Debye model, should be carefully
verified for lattice contributions of the entropy variation. This
shortcoming of simplified models, should be taken into consider-
ation when estimating entropy variations of any material.

3.4. Total entropy variation

The sum of all hitherto discussed contributions to the entropy,
defines the total entropy variation between FM and AFM phases,
according to our model. In Fig. 9 (solid line) it is clear that the total
entropy difference between the FM and AFM phase has a
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mperature dependence. In addition, the figure
, broader peak around � 370 K with maximum en-
e, DSmax, of 24.8 J K�1 kg�1.
e list all calculated contributions to the entropy

n the FM and AF phase, at T ¼ 350K. It may be seen
that all contributions are collaborative and compa-
ude [12].
approach, both the type of phase transition and

of the compound are described without the exis-
, associated to the transition (e.g. coexistence of
thout defects of the material, and with this in mind,
ected that theory overestimates somewhat the en-
tions and therefore, in this case, the total entropy
s, it is important to note that experimentally is very
ieve the equiatomic concentration and very close
ured instead, for which the entropy variation varies
Nevertheless, the comparison between the here
e of DS and experimental results is quite satisfactory
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entropy contributions. In Table 3 the entropy con-
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from calorimetric measurements of Ref. [66]. Cooke
cted the lattice entropy by naively fitting the low-
ata to the Debye model. This approach fails for
sed above, and consequently, the estimated huge
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nusually high in magnitude, compared to the usual
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ructural nature of the volume expansion and the
ture of the magnetic transition. Taking into account
ations, it is more plausible that the high magnetic
on listed as an experimental values in Table 3, is
llaborative sum of all entropy contributions [10].
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Table 3
Comparison of estimated entropy contributions at Tz 350 K for the harmonic and quasi-harmonic approaches with previous calculations in literature and experimental
measurements. It is also indicated for the “Harmonic” (QHA) approach, estimated values at the temperature for which the entropy variation has a peak - T ¼ 373 (316) K.

½JK�1kg�1� Debye model Harmonic QHA Other Calc. Expt. a

T ¼ 350K T ¼ 373K T ¼ 350K T ¼ 316K

DSele e 7.05 7.38 7.16 6.60 11.7b, 11.9c 8± 1
DSlat �38.3 6.94 7.05 8.45 9.01 �33 ± 9

d
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/ FM phase transition, we compared the free energies of both
phases. However, we did not obtain an intersection of the free
energies, at least not in the considered range of temperatures
(0e500K). This is in agreement with results of Ref. [12], but in
disagreement with the data of Ref. [18]. Theoretically, our results
imply that no phase transition can be associated to the discussed
entropy peak, making it as pertinent and interesting as the minor
entropy dip around 40K . To our knowledge, the latter does not
indicate any known transition and most likely reflects the soft
phonons of the AFM phase. A comparison between our results and
calculations in Ref. [8,12] as well as [18] reveal that the later
reference achieves a significantly smaller energy difference be-
tween FM and AFM states, around 2.80 meV/atom in comparison to
our value; 27 meV/atom. This energy is 35.4 meV/atom in Ref. [12]
and 29.1 meV/atom in Ref. [8] for similar calculations. When
compared to experiments, the value of Ref. [18] is clearly closer to
experimental estimates, which lie around 2.7 meV/atom [26,66].
This improvement of the energy difference estimation between
magnetic phases seems to be due to the unique exchange and
correlation functional used in Ref. [18]. The authors of this work
employed the Langreth-Mehl-Hu functional [74,75], which appears
to have as a feature the reduction of energy between phases [76],
and suppression of the magnetic moment [77]. Although this
functional provides reasonable results for FeRh, it is a less tested
functional for general investigations that involve a large group of
compounds. In absence of a firm test, this functional is difficult to
apply in a predictive study. Another possibility for the too large
energy difference between the AFM and FM phase could be due to
dynamical correlations of the electronic structure.

If the estimated DE0 from DFT is used to estimate the entropy
variation as DS ¼ DU=T (as attempted for DSmag) we obtain a value
of 87.99 JK�1kg�1. This strong disagreement with experimental
measurements also underlines that DE0 is not properly estimated
by DFT.

An important point from this discussion is the difficulty to
predict with certainty the temperature for the AFM / FM phase
transition. Instead of comparing the free energies of the phases, it is
of interest to take a simpler approach and consider the transition to
be caused by thermal energy from T ¼ DE0=kB. Using this approach,
an estimate of 346 Kwas obtained in Ref. [8] and 350 K in Refs. [58].
Although this value is within the experimental value, applying the
same approach using data from the total energy calculations pre-
sented here, or from other calculations [11e13], reveals that this
simplifiedmethod is very sensitive to the details of the calculations,
meaning that its use introduces a non-negligible degree of uncer-
tainty while not describing necessarily the physical picture.

3.5. Quasiharmonic approximation

To account for anharmonic interactions we use the QHA, which

minimizes
energy:

GðV ; TÞ¼m
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thermal ex
from the v

The LTE
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difference
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compared
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the paper.

DSmag e 10.70 10.36 7.93
DS e 24.69 24.78 23.53

a From Ref. [66] at T ¼ 328 K.
b From Ref. [12]. Value estimated in a QHA calculation.
c From Ref. [8].
d From Ref. [18]. In parentheses value at estimated transition temperature, T ¼ 371 K.
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ach temperature the volume-dependent Gibbs free

ðV ; TÞþ PV �: (8)

oach we consider magnetic, electronic and lattice
o the free energy FðT; VÞ ¼ E0ðVÞþ FmagðV ; TÞþ
eðV ; TÞ. Contributions to the lattice and magnetic
btained at constant volume via a calculation of the
sity of states (gðεÞmag=lat) and Bose-Einstein distri-
(nðε;TÞ):

ðεÞmag=latnðε; TÞdε � TSmag=lat : (9)

e added the entropy contribution also to this term.
tions were evaluated, following the same procedure
series of volumes, and then fitted by cubic splines.
, 9 volumes were considered, including the relaxed
g the lattice parameter between 2.98 Å(3.00 Å) and
for the AFM (FM) phase. FeleðV ; TÞ was calculated
g instead the Fermi-Dirac distribution function,
s the temperature dependence of the energy.
sed as reference level for the electronic free energy
round state energies are already included in E0(V).
ies were fitted by the Murnaghan equation of state
ernal energy.
hermal expansion (LTE) obtained from the QHA is
0. It may be noticed that there is decent agreement
ntal measurements [47] and theory. Similar to the
ata, there is in our calculations a jump in the LTE at
hase transition.
hat contrary to the electronic and lattice contribu-
netic contribution to the free energy opposes the
sion. Nevertheless, the lattice is the dominant
the considered temperature range and dictates the
sion, and the observed behaviour arises dominantly
ional properties.
fficient al, can be estimated from a linear fit (Dl=l ¼
e temperature range as for the experimental data.
y, we obtain a slope of the Dl=l curve that for both
phase is similar to the experimental data. Themain
een theory and experiment is the size of the volume
emagnetic phase transition that is smaller in theory
e experimental values [47]. This disagreement is not
n the simplicity of the model used and how similar
between the magnetic phases.
and temperature dependent free energies of the
hases allow for the most accurate estimate of the
and entropy, among the calculations presented in
compare the QHA and Harmonic results in Table 3,

8.81 14.5 (15.4) 43 ± 9
24.42 z 26.3 17 ± 3
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Fig. 10. Variation of the linear thermal expansion with temperature for AFM phase
(blue line) and FM phase (orange line) obtained within the quasi-harmonic approxi-

R.M. Vieira, O. Eriksson, A. Bergman et al.
together with previously reported data. It may be seen that the total
entropy change of the AFM / FM phase transition is almost
insensitive to the level of approximation, while for the individual
contributions there is a more significant difference between the
QHA and Harmonic approximations.

We find that there is compensation of DSlat and DSmag , which
vary similarly but in opposite direction, as can be seen by
comparing the entropy contributions on Table 3. This is caused by
variation of

���Jij��� parameters with volume, which decreases for
bigger volumes. As reported also in Ref. [19], we also observe that
couplings between iron moments are significantly more sensitive
to this variation than couplings between iron and rhodium mag-
netic moments (data not shown).

The predicted volume variation in the AFM is responsible for the
loss of the monotonous behaviour of DSlat in the transition range.
Since the linear thermal expansion behaves as experimentally
measured, and the entropy peak reassembles more the disconti-
nuity expected for first order transitions, we consider that there is a
qualitative improvement of the physical description. Besides
becoming sharper, the broader entropy peak shifts from 373K to
316K when using the QHA, as seen in Fig. 9.

Our results are close to previous, similar first-principles calcu-
lations, combining the QHA results of Ref. [12] (or the ones from
Ref. [8]) for DSele þ DSlat with the results of Ref. [18]. Although there
is a small deviation, it is accurate enough to be used in high-
throughput calculations, keeping in mind that a more accurate
result would need a more tailored and computationally expensive
method. Also, we treated entropy contributions as independent,
which is a simplification of the problem.

4. Conclusions

The aim of this paper is to derive a reliable approach based on
first principles calculations to determine the entropy change in
materials with first order phase transition that can be used in high
throughput studies. Thus we have to balance between computa-
tional effort and accuracy and a detailed study, concerning esti-
mates for electronic, lattice and magnetic entropy contributions
according to different models, was performed using the well-
known MCE system FeRh as test material. Based on the assump-
tion that we can treat the entropy as a sum of three independent
parts, i.e. handle the electronic, lattice, and magnetic contributions

influence.
order-disor
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tion with
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separately, we tested different approximations for
ontribution. It turned out that the entropy, or the
, in our test case, FeRh, is very sensitive to approx-
, e.g., even small alterations on elastic properties
omagnetic phases need to be taken into account for
ation of the entropy. This means that the Debye
equate and it should not be considered for the high-
plications. Although the simplicity of the Debye
ling in terms of computational efficiency, it fails to
ibrational entropy in the presence of soft phonon
lieve that this sensitivity regarding the vibrational
t exclusive to FeRh. Rather, we expect that many of
loric candidates will show similar behaviour, which
urate phonon calculations are necessary for a reli-
n of the entropy.
sults of the magnetic properties, we conclude that it
consider an appropriate cutoff for the exchange
en using a spin-wave description due to the pos-

-range interactions, which can have a considerable
ever, this aspect should be less relevant in case of
magnetic transitions where spin-flip like excitations
nd the Heisenberg model can be used in combina-
nte Carlo simulations to estimate the magnetic

an entropy peak around the expected transition
ised solely from the magnetic contribution, which
port the picture of a magnetism driven transition as
previous works using different approaches

DS peak is regularly observed in phase transitions, it
compare the free energies of the phases to associate
phase transition. For FeRh, it was not possible to
ssociation due to the overestimation of the energy
een magnetic phases by traditional DFT. Such dif-

ur awareness of this limitation in our first-principles
ertheless, beyond DFT methods offer tools for cir-
is problem, and can be used to improve DE0 esti-
y the transition occurrence, if needed.
he QHA approach allows for a more complete
the systems and a qualitative improvement of the
on is obtained, by the sharpening of the DS peak as
first-order transition. Despite this, no quantitative
f the entropy variation is obtained that justifies the
rease of computational effort required for this

t can be stated that the “Harmonic” approach bal-
satisfactory way the accuracy and the computational
tained results DSele ¼ 7:38 JK�1kg�1, DSlat ¼ 7:05
Smag ¼ 10:36 JK�1kg�1 are in good agreement with

lations and the total entropy variation DS ¼ 24:78
se to the experimental range. This establishes the
r a reliable entropy estimation at high-throughput
ions, while allowing for reasonable computational
s to avoid possible pitfalls of the calculations.
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1 MDOS variation
From the data in Figure S1 one can trace back the sensitivity of the mag-

netic entropy peak (Fig. 4 on the article) to changes on the magnon density
of states (MDOS) of the ferromagnetic phase (FM). For the anti-ferromagnetic
phase (AFM), the inclusion of magnetic exchange interactions with sites within
a radius of 6.0 lattice parameters seems to be already enough to have a con-
verged MDOS, comparatively to the result with a cutoff of 12.0 a. The same
behaviour is not found for the FM phase, where we can observe higher sensi-
tivity of MDOS to the cutoff of included exchange interactions, especially in
the lower energy region (< 150 meV). Besides the existence of small shifts on
the MDOS, there are significant alterations on the two first peaks, becoming
the first peak sharper at the cost of the second as more exchange interactions
are taken in consideration. We can justify such behaviour as a consequence of
the increase of weaker interactions included in the calculations which will allow
more magnon modes at low energies and therefore an increase of the first peak.

This initial peak in the FM phase might be closely associated to the mech-
anism which drives the meta-magnetic transition, since it occurs around 257 K
(22.15 meV), very close to the temperature of the estimated magnetic entropy
peak (316 K). While a more detailed analysis and careful calculations are nec-
essary to verify this association, it would be a strong argument in favour of
the current paradigm that small magnetic fluctuations are responsible by the
stabilization of the ferromagnetic phase of FeRh.
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Figure S1: Variation of the magnon density of states according with the cutoff
radius of included interactions (in lattice parameter units). Results calculated
for the FM (AFM) phase with a = 3.014Å (a = 2.998Å)
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ABSTRACT
We present an efficient computational approach to evaluate field-dependent entropy of magne-
tocaloricmaterials from ab-initiomethods. The temperature dependence is reported for the entropy
change, specific heat and magnetization for hcp Gd. To obtain optimal accuracy in the calculations,
a mixed-scheme for magnetic Monte Carlo simulations is proposed and found to be superior to
using pure quantum or classic statistics. It is demonstrated that lattice and magnetic contributions
play a role in the entropy change and that the dominating contribution comes from the magnetic
contribution. The total calculated entropy change agrees with measurements at room temperature.
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culations of the total entropy variation associated with the magnetic transition of Gd. Reproduction
of experimental data of entropy change.
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1. Introduction

Historically, Gd-based compounds were in the center
of the development of magnetic refrigeration devices
operating at room temperature. In fact, metallic Gd was
the magnetic refrigerant of the first magnetic refrigera-
tor device, a choice motivated by its Curie temperature
(TC ≈ 290K) close to room temperature and a great
magnetocaloric response [1]. Another important mark
of this field is the observation in 1997 of a giant mag-
netocaloric effect (MCE) in Gd5(Si2Ge2) by Pecharsky
and Gschneidner [2], which captured the attention of the
scientific community for the magnetic cooling technol-
ogy and pushed the field forward. Due to these landmark
results, and the availability of multiple studies in the liter-
ature, the magnetocaloric community takes bulk Gd as a
reference for comparing the performance of the MCE in
materials [3–6]. The entropy variation (�S) is the most
important parameter to characterize the MCE and the

CONTACT R. Martinho Vieira rafael.vieira@physics.uu.se Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala,
Sweden Physics, Faculty of Science and Engineering, Åbo Akademi University, FI-20500 Turku, Finland

Supplemental data for this article can be accessed here. https://doi.org/10.1080/21663831.2022.2033866

performance of magnetic materials in magnetic cooling
devices.

The MCE is a response of an applied field, and the
magnetic contribution to the entropy change (Smag) is
expected to be the dominant term, although it is estab-
lished that the lattice (Slat) and electronic (Sele) contribu-
tions are also relevant [7–9]. For this reason, the entropy
can be accurately described as the sum of three differ-
ent contributions viewed as independent terms: �S =
�Sele + �Smag + �Slat. However, note that for simplic-
ity, couplings between the system’s degrees of freedomare
not included in this approach, despite their relevance for
magnetocalorics.

In this work, we study the MCE in the hexagonal
closed packed form (hcp) of Gd, focusing on the calcu-
lation of�S from first-principles calculations andMonte
Carlo (MC) simulations. Along with these calculations,
we introduce and test the performance of a new scheme
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for MC simulations, which combines quantum and clas-
sic statistics to obtain an improved description over a
wide temperature range.

2. Materials andmethods

2.1. Mixed-statistics Monte Carlomethod

Traditionally, magnetic MC simulations use the Boltz-
mann distribution to emulate and regulate the thermal
fluctuations at finite temperatures.While this approach is
suitable to simulate order-disorder transitions, it neglects
quantum effects on the fluctuations, thus becoming less
accurate for lower temperatures. A well-known exam-
ple of such failure is the resulting heat capacity of

1 kB in the limit T → 0 (see Figure 1(a)), which is in
accordance with the classical equipartition theorem1,
but in disagreement with experimental observations.
At low temperatures, quantum effects become relevant
and must be included in fluctuations of any appropriate
approach.

With that intent, previous works have developed
methods to capture the correct behavior at low tempera-
tures. For example, in Ref. [10], a quantum scaling factor
of the probability density at temperature T is introduced
so the transition probability between MC states is driven
by quantum statistics. Effectively [11,12], this approach
corresponds to an effective rescaling of the simulation
temperature (T) defined from the average energy of the
magnons 〈Emag〉, calculated using the density of states of

Figure 1. Temperature-dependent magnetization derived from MC simulations of hcp Gd using different statistical approaches. Tem-
perature is normalized according to TC of the experimental (293 K) and calculated (315 K) data. Experimental data extracted from
Ref. [25].
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the magnons (MDOS) and Bose–Einstein statistics at a
certain T, as: Tqt = 〈Emag〉(T)/kB.

Despite a significant improvement at low temperatures
(shown in Figure 1), this quantum treatment sharpens
the systems behavior around TC, as is evident in the
resulting magnetization (Figure 1(b)) and heat capacity
peak (Figure 1(a)). Such effect is not exclusive of Gd as
similar results were obtained in analogous calculations
[10,11,13]. An explanation for these results might come
from the use of a quasi-harmonic approximation (see
more details in Refs. [10,11]) to calculate a temperature-
dependent MDOS from the adiabatic magnon spectra.
This approximation should only be valid at low tempera-
tures, while not being accurate close to TC [11].

Comparing the methods based on classic and quan-
tum statistics, we note that they are suitable in the T →
TC and T → 0 limits, respectively. However, both have
reduced accuracy when used outside these regions. These
limitations constitute a problem for simulations over
a wide temperature range. In particular, for quantities
derived from integration over the whole temperature
range, such as the entropy:

Smag(T) =
∫ T

0

Cmag

T
dT. (1)

To tackle this issue, we propose a simulation scheme that
combines quantum and classic statistics to improve the
practical issues observed.

Generally, in MC simulations, the sampling of mag-
netic configurations is performed using the transition
probability between MC states (W). This probability
depends on the sampling method. Commonly in MC
simulations, the Metropolis algorithm is considered,
where the state transition probability between configu-
rations is defined as:

W =
⎧⎨
⎩
exp

(
− �E
kBT

)
, if �E > 0

1, otherwise
(2)

with �E as the energy difference between states.
In the mixed method used here, we combine the tran-

sition probability calculated in the quantum scheme,
W(�E,Tqt), with the transition probability calculated in
the classical approachW(�E,T) as a weighted average:

Wmix(�E,T) = α W(�E,Tqt) + (1 − α) W(�E,T)

(3)

where α is the weight factor. This weight factor should be
temperature-dependent so that at low temperatures, the
W(�E,Tqt) quantumcontribution is dominant, and near
TC the W(�E,T) classic contribution becomes domi-
nant. Furthermore, α should be defined by a smooth

function to avoid a sharp transition between the two
statistics schemes. With this in mind, we propose an α

with the following temperature behavior:

α =
⎧⎨
⎩
1 − T

TC
, T ≤ TC

0, T ≥ TC

(4)

This choice is the most straightforward function that sat-
isfies the necessary conditions with the advantage of not
needing additional free parameters thanTC, which is also
required for the quantum simulations and can be cal-
culated using classic MC simulations. The factor α also
enters in the rescaling of the MDOS used for the pure
quantum statistics method [11].

2.2. Computational details

The half-filled 4f shell of Gd is responsible for its large
magnetic moment and strongly correlated electronic
structure. However, since these orbitals are highly local-
ized, the overlap between neighboring atomic sites is
negligible, being the magnetic interactions ruled by the
6s, 6p and 5d states [14]. Despite the high localization of
the 4f states, the correct treatment of these orbitals, in
first-principles calculations, is a topic of discussion since
standard calculations for the ferromagnetic configuration
(FM) predict a non-physical hybridization of these states
with the remaining valence states near the Fermi energy.
Some of themost efficient approaches in the literature are
treating the f -states as spin-polarized core states or using
the LDA+U correction [14,15].

In the paramagnetic configuration (PM), themagneti-
zation averages to zero while retaining the local magnetic
moment. Non-spin-polarized calculations fail to repro-
duce this picture since they constrain the degree of free-
dom of the spin. Usually, more sophisticated approaches
as the disordered local moments (DLM) approximation
are necessary to describe this magnetic state. However,
for Gd, it is reasonable to assume that a calculation with
the f -states treated as non-spin-polarized core states is a
good approximation since the dispersing valence electron
states are treated without a polarizing field generated by
the highly localized f -states, which is consistent with the
zero averaged magnetization of the PM state. Compari-
son of the density of states (DOS) calculated in this setup
against a DLM calculation supports the validity of this
approach (see Supplement).

Additionally, we know from the results of similar
calculations [15] that in Gd the electronic and mag-
netic properties are better described by LDA exchange-
correlation potentials. In contrast, the structural proper-
ties benefit from the use of GGA.
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The structural and magnetic properties of hcp Gd
were determined from first-principles calculations of the
electronic structure using the VASP package [16–19]
and RSPt software [20]. The PHONOPY [21] pack-
age was utilized to compute the vibrational density
of the states. For calculating the electronic struc-
ture of disordered magnetic phases, we considered the
DLM method by utilizing the SPR-KKR code [22].
From the DFT calculations, the magnetic moments
and the Jij exchange couplings (within the Lichten-
stein–Katsnelson–Antropov–Gubanov formalism [23])
were determined and used as input for the MC simula-
tions. We performed the magnetic MC simulations using
an atomistic Heisenberg Hamiltonian:

H = −
∑
i�=j

Jijmi · mj −
∑
i
H · mi (5)

in the UppASD code [24]. The Hamiltonian in Equation
(5) describes the pair exchange interactions between
atomic magnetic moments (m) in different sites and the
interaction of the magnetic moments with the magnetic
field (H), respectively. In the Supplement, we provide
more complete details on the setup of the calculations.

3. Results and discussion

3.1. Monte Carlo simulations

The proposed mixed scheme captures the behavior of
the quantum scheme at low temperatures and it correctly
describes the classical limit showing the same behavior
as the classical approach at T → TC as can be seen from
the MC simulation of the temperature-dependent mag-
netism, see Figure 1. Such convergence of results from
the mixed to the quantum scheme at T → 0 and conver-
gence to the classic scheme at T → TC is guaranteed by
the mixing weight choice (see Equation (4)).

The success of the mixed method becomes clear by
comparing the magnetization curves (Figure 1(b)) with
experimental results. In particular, it should be noted that
at intermediate temperatures the mixed-scheme calcula-
tions are very close to the experimental measurements
[25].

Comparing the magnetization obtained from simu-
lations with the experimental data allows to determine
the temperature ranges in which the quantum and clas-
sic descriptions are more adequate, see Figure 1. From
this figure, the existence of an intermediate regime in
which the actual magnetization lies between the clas-
sic and quantum regimes can be seen. This implies that
in this region the origin of the magnetic fluctuations
is different, and possibly that both quantum and classic
excitations co-exist. The success of the mixed-statistics

Figure 2. Temperature-dependent magnetic entropy variation
from MC simulations using different statistics schemes. For a
detailed description of the mixed scheme, see text.

scheme suggests that it is the latter case, or at least that
the experimental observations can be more satisfactorily
be reproduced by this description.

Since the primary goal of this study is to calculate
the entropy change of hcp Gd when an applied magnetic
field is present, it is worth discussing how the proposed
scheme compares with the conventional classic statistics
(see Figure 2). We calculated the variation of the entropy
of the MCE from the heat capacity difference between
a simulation without an applied magnetic field and a
simulation with an applied field of 2T:

�Smag(H,T) =
∫ T

0

Cmag(H,T) − Cmag(0,T)

T
dT (6)

As Figure 2 shows there is in all three methods a peak
of �Smag at the ordering temperature. This property is
of primary interest to this investigation. Although the
different approaches used here give different results of
the M(T) curves and the specific heat (see Figure 1) we
note that the observed variations of the entropy change
(Figure 2) are small. This suggests no significant reasons
to adopt themixed schemedescribed above, over the con-
ventional MC simulations. Nevertheless, it is important
to note the existence of substantial changes in the entropy
atT < TC, in the quantumandmixed regimes, which can
be crucial to consider in the study of phase stability in
more complex materials.

3.2. Electronic and lattice entropy contributions

Based on the conclusions from a previous study [26], the
electronic entropy, Sele, was calculated from the Som-
merfeld approximation while the lattice entropy, Slat, was
obtained from full phonon calculations using the ground
state properties of each magnetic phase.

It is necessary to consider all intermediate states
between the fully ordered and fully disordered magnetic
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configurations to describe the entropy variation accu-
rately. To achieve this, we determined the magnetization
dependence of Sele and Slat such that these quantities
could be related to themagnetization-temperature curves
from the MC simulations (Figure 1). For this purpose,
we calculated the Sommerfeld coefficient for intermedi-
ate magnetic configurations, by adjusting the net spin
moments of DLM calculations to coincide with the data
of Figure 1. Doing this, we obtained a continuous value of
the Sommerfeld coefficient, as a function of the magne-
tization, allowing us to calculate Sele(M), and from there
Sele(T). To avoid the appearance of numerical artifacts in
Sele, we applied a trend-conserving smoothing filter on
the original data, see more details in the Supplement.

We performed a similar treatment for Slat, but in this
case, for practical reasons of treating magnetic configu-
rations of intermediate disorder, we made use of the vir-
tual crystal approximation. This approximation is often
used to calculate phonon properties in alloys since it
simplifies the calculation of the properties of the alloy
to compositionally weighted averages of the properties
of the pure systems [27]. Similarly to chemically disor-
dered alloys, the intermediate magnetic configurations
between the PM and FM phases can be treated as mix-
ing of these phases (FMx + PM1−x). Within this picture,
we determine Slat as:

Slat(M,T) = M(T)

M0
SFM(T) +

(
1 − M(T)

M0

)
SPM(T)

(7)

where SFM and SPM were calculated from phonon den-
sity of states of the ferromagnetic spin-polarized and
the unpolarized DFT calculations, respectively. Having
derived a formalism for the Sele(M) and Slat(M), we com-
puted the entropy variation using the simulated magne-
tization curves for the H=0 and H=2 T cases: �S =
S(H = 2) − S(H = 0). The results are shown in Figure 3.
While the electronic contribution now becomes negligi-
ble in agreement with the expectations, the lattice contri-
bution is still surprisingly large for a 2nd order transition
without structural changes.

3.3. Total entropy variation

Comparison between the distinct entropy contributions,
see Figure 4, reveals that the magnetic term is domi-
nant, followed by a lattice contribution that is almost as
large. Together with the small electronic contribution,
they add up to the total entropy, that has a peak at the
transition temperature. When comparing to experimen-
tal data, we note a decent agreement: theory gives a value
of 7.56 J/kg/K at the ordering temperature (which is ∼
320K in the present calculations) while the measured

Figure 3. Temperature-dependent electronic and lattice contri-
butions for the entropy variation.

Figure 4. Variation of the total entropy change between the PM
and FM configuration at a magnetic field change of 2 T. Tempera-
ture is normalized according to the entropy peak temperature of
the experimental (291 K) and calculated (317 K) data. Experimen-
tal data from Ref. [6].

value is 5.2 J/kg/K, at the experimental Curie temperature
(292K) [6].

A surprising result of these calculations is the large
lattice contribution, and it is tempting to associate the
overestimate of the total entropy change, when compar-
ing to observations, to a theory that results in a too large
value of�Slat. One can relate this overestimation of�Slat
to the consequence of calculating the entropy from lat-
tice properties at T = 0K. In Ref. [28], measurements of
the elastic constants for Gd from 0 to 360K for the cases
H = 0 T and H = 2.5 T, allow us to examine the impor-
tance of finite temperature effects on the elastic properties
of the FM phase, and therefore also to estimate �Slat.

Applying the Debye model with the experimental
data of elastic constants as input, with and without an
applied field and at 300K [28], we estimate a value of
�Slat = 0.986 J/kg/K, at the Curie temperature (for a
more detailed comparison between our values and exper-
imental estimates, see the Supplement). When added to
the calculated electronic and magnetic contributions to
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the entropy change (gray diamond in Figure 4), we obtain
a Speak of 5.41 J/kg/K nearly perfect agreement with the
observed experimental value. This close agreement high-
lights the importance of including all the entropy con-
tributions for calculations of the magnetocaloric effect
under the risk of underestimating �S [29] the perfor-
mance of the material.

Despite some controversy in its calculation and use,
the relative cooling power (RCP) is a widely usedmagne-
tocaloric materials performance parameter [6]. It can be
calculated from the refrigerant capacity (q) [30]:

q =
∫ Thot

Tcold
�S(T) dT (8)

withThot andTcold approximated by the temperatures for
full width at half maximum of �S(T) [4,31]. Using this
definition on the calculated entropy with experimental
elastic constants, we estimate an RCP of approximately
219 J/kg in close agreement with experimental calcula-
tions (226.9 J/kg [6]), attesting to the accuracy of the
calculated �S curve.

4. Conclusions

We propose a new scheme for magnetic MC simula-
tions that reproduce the experimental measurements of
magnetism of hcp Gd, in a wide temperature range. The
success obtained stresses the importance of including
quantum and classic fluctuations to describe the mag-
netic state correctly in temperatures between limits T →
0 and T → TC, and from there an appropriate value of
the magnetic entropy change. Furthermore, based on the
simulated temperature-dependence of themagnetization
we calculate the entropy of the electronic and lattice
subsystems. Calculations of all entropy contributions, in
the absence and presence of an external magnetic field,
allow to estimate the magnetocaloric effect of Gd, with
encouraging agreement with experiments.

Note, that first-principles calculations of the �S con-
tributions are not a trivial task since lifting approxi-
mations imply a drastic increase in required computa-
tional resources. In addition, it is not always obvious
which finite temperature mechanisms are relevant. For
example, finite temperature effects could be included
in the lattice entropy calculation through the quasi-
harmonic approximation. However, other phenomena
like phonon-phonon interactions might be needed for
an accurate description. Moreover, there are hysteresis
losses in experimental measurements, which one cannot
account for in a first-principles approach dealing with
ideal systems.

Despite methodological and numerical challenges
and the need to introduce approximations, the present

work establishes a realistic procedure to calculate from
first-principles theory coupled to methods of statistical
physics, the entropy variation associated with the mag-
netocaloric effect. The method is applied to hcp Gd and
is demonstrated to accurately reproduce observations.

Note

1. At low temperatures, the magnetic fluctuations can only
happen in the directions transverse to the magnetization,
i.e. the system has 2 degrees of freedom.
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1. Computational details

We performed structural relaxation for the PM and FM phases with VASP, using
the hcp Gd conventional cell and an energy cutoff of 450 eV, and using supercells of
2× 2× 2 of the respective relaxed cells for the phonon calculations performed within
the finite displacements approach. The calculations made use of GGA based (PBE,
[1]) PAW potentials.

In these studies, the FM phase was described with f -electrons in the valence treated
with Hubbard correction with Ueff=6 eV (U=6.7 and J=0.7 eV), while for the PM
phase we used the setup of non-spin-polarized f -core-states.

For this set of calculations, the Brillouin zone was sampled using a Γ-centered k-
mesh 48×48×24 for the unit cell, and an accordingly smaller k-mesh 24×24×12 for
the supercell.

The Heisenberg exchange parameters of the FM phase were computed in LDA
(with Perdew-Wang parametrization [2]) calculations with RSPt using the Lichtenstein
method [3] implemented in RSPt as described in Ref. [4]. In this set of calculations,
we treated the f -electrons as spin-polarized core states, with a 20 × 20 × 11 k-mesh.
The resulting TC in MC simulations using this spin-Hamiltonian, is ∼ 315 K in close
agreement with the experimental value of 290 K (and previous calculations).

Electronic structure calculations were also performed in SPR-KKR within the
LDA+U approach (with the von Barth - Hedin parametrization [5]) using a con-
sistent U and J parameters with the VASP setup. SPK-KKR allows to describe the
magnetic disorder using the DLM approach within the Coherent Potential Approxi-
mation [6,7], which enables a more realistic description of the PM phase to compare
with the approximations used in previous setups (see Supplement) and also allowing
for calculation of the electronic properties for different levels of magnetic disorder.

To compute the density of states within the disordered local moments approach, we
used SPR-KKR code and performed using LDA+U with the same U and J parameters
mentioned above and a mesh with 1500 k-points.

The MC calculations were performed using the UppASD software, using the
Metropolis method to sample the phase space. For each temperature step, 160000
MC steps were performed, with the initial 10000 steps being reserved for achieving
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thermalization of the magnetic configuration and therefore they were not included in
the measurement of the thermodynamic quantities. For these computations, a simula-
tion box with 36 repetitions of the unit cells along all lattice vectors, was considered
with periodic conditions at the boundaries.

Following the results of benchmarking tests [8], we calculated the magnetic heat
capacity (Cmag) from the internal energy determined in the MC simulations according
to the thermodynamic relation:

Cmag =
∂Umag

∂T
=
∂〈Emag〉
∂T

, (1)

where Emag is the total energy of the atoms in the simulation cell.
The RSPt calculations for the Heisenberg exchange parameters we performed with

the f -electrons as spin-polarized core states, on a 20× 20× 11 k-mesh. The resulting
TC in MC simulations using this spin-Hamiltonian, is ∼ 315 K in close agreement with
the experimental value of 290 K (and previous calculations [9]).

2. DOS

In Figure 1, the computed Density of States (DOS) for the PM phase of Gd is
compared for the considered setups: non-spin-polarized core f -states and disordered
local moments within the Coherent Potential Approximation. The calculations were
performed in RSPt and SPR-KKR, respectively, with the LDA parametrizations men-
tioned earlier, being for SPR-KKR being necessary of a Hubbard correction (LDA+U)
on the f states.

We can see both approaches produce a reasonably similar DOS with the same
features, justifying the use of the non-spin-polarized core f -states setup for describing
the PM phase.

An interesting feature of the presented DOS would be the peak of p-states around the
Fermi energy that seem to follow a higher peak of d-states, suggesting a hybridization
of these orbitals.

3. Phonons and Elastic properties

The calculated phonon dispersions for both PM and FM phases is presented in Fig-
ure 2, alongside experimental results for Tb [10] and Gd [11] at room temperature. In
general, the phonon dispersion displayed the same feature in both magnetic phases,
with the FM showing modes with higher energy, and for lower energy modes (2.5 ¡
THz), there is a good agreement between first-principles calculations and measure-
ments. In contrast, there is a disagreement between calculations and measurement
for optical modes of higher energies, particularly in the Γ-M and Γ-A directions of
the Brillouin zone. However, the agreements generally seem reasonable and capable of
reliable estimation of the lattice entropy contribution.

Unfortunately, the surprising lack of data in the literature about the phonon disper-
sion for Gd makes it challenging to understand the reason for the mentioned disagree-
ments. Furthermore, experimentally, it seems challenging to investigate Gd phonon
properties since the material has a substantial neutron absorption cross-section, pre-
venting an efficient application of inelastic neutron scattering method [12]. Conse-

2



3 2 1 0 1 2 3
E-EF (eV)

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
DO

S 
(s

ta
te

s/
eV

/a
to

m
)

non-spin polarized f-core

DLM

s
p
d
f

Figure 1. Orbital-projected DOS for the paramagnetic phase of Gd, according with different descriptions.

quently, previous studies of Gd phonon dispersion were based on the results of the
neighbouring Tb, which also crystallizes in a hexagonal closed packed structure.

There are measurements of the elastic constant on a wide range of temperatures
(0-360K) with and without application of a magnetic field (2.5T) which allow us to
compare the experimental bulk modulus and lattice entropy (via Debye Model) with
our first-principles predictions. To do so, we consider two sets of elastic constants while
comparing the magnetic phases.

To do so, we consider two sets of elastic constants while comparing the magnetic
phases that differ on the FM phase description, while for the PM phase, we keep the
elastic constants at 300K ( ¿ TC) without an applied field. Firstly, we considered the
elastics constants at T=0K (without magnetic field) to exclude finite temperatures
effects, which is conceptually closer to our calculations. Then, to include temperature
effects, we considered the elastic constants at 300K under a magnetic field, which
should stabilize the ordered phase.

By comparing the ∆Slat estimated from these two sets, it becomes evident that
finite temperature effects play a significant role in Gd structural properties, see Figure
3. While the case with the elastics constants of the FM phase at T=0K is quite
close to our first-principles calculations supporting our calculations, including finite
temperature effects, we obtain a significantly smaller and more reasonable estimation
of the lattice entropy.

The experimental bulk modulus illustrates how significantly the elastic properties
of the FM phase change with temperature, compared with variation between magnetic
phases, see Table 1. Neglecting such thermal effects results in the overestimation of
the lattice entropy we present in the main work.

Comparing the bulk modulus computed from the experimental data with the ones

3
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Figure 2. Phonon dispersion (left) and vibrational density of states (right) for the FM and PM phase of hcp

Gd. Comparison with experimental data extracted from Refs.[10,11].

from first-principles, calculated from fitting the Murnaghan equation of state to energy-
volume data, we find a good agreement. Although the correct relation between FM and
PM phase is not captured, this difference is too small to be caught by the approach
taken, which is efficient in estimating the order of magnitude.

4. Electronic entropy

As shown in Figure 4 (bottom panel), calculation of ∆Slat from the raw gives rise
to strange peaks close to the Curie temperature. Not existing any physical reason for
their existence, we suspected that they had a numerical origin. By performing tests in
our data, we identified the primary source as the linear interpolation for the density
of states at the Fermi level (DOS(εF )) in function of the magnetization. Although the
original data does not show any prominent features (see Figure 4, upper panel), any
existing roughness is amplified by the fast drop of the magnetization as T → TC giving
rise to the mentioned peaks.

Note that a slight roughness on our interpolated DOS(εF ) is not reflective of the
quality of the calculations or even unexpected. We diligently calculated DOS(εF ) for a
dense series of magnetization values and obtained a clear trend with the magnetization,
but by working with so close DLM states, we approach the limit of CPA efficiency,
and minor deviations of the trend are obtained.
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Bulk modulus (GPa)

Phase
Expt. [13]

Calculated
T=0K, H=0T T=300K, H=2.5T T=300K, H=0T

FM 41.261 37.899 - 36.897
PM - - 37.882 37.855

Table 1. Comparison of elastic bulk modulus in different experimental conditions and first-principles calcu-

lations.

To solve this issue without affecting the accuracy of the calculations, we applied
a Savgol filter to the original data points and performed a cubic spline to obtain
a smoother interpolation. Such treatment results in a smoother curve with vestigial
deviations to the raw data, as shown in Figure 4 (upper panel).

Despite the minimal effect of this treatment on the data, the resultant electronic
entropy is significantly improved, see Figure 4 (bottom panel), which supports our
assumption of nature numerical for deviations initially calculated.
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