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Abstract 

Live imaging is essential in visualizing biological processes such as normal 
tissue development, wound healing, and cancer — processes too small for the 
bare human eye to observe. Optical microscopy has enabled the 
magnification of these processes, and the integration of sensitive digital 
cameras has enabled the acquisition of images for subsequent observation 
and analysis. For these reasons, microscopy has become an indispensable 
tool in studying cells. 

However, extracting meaningful information from live imaging poses several 
challenges. Living cells are fragile and should be imaged in controlled 
environments and using low doses of light, often leading to the generation of 
noisy images. Low signal-to-noise ratios often hinder accurate object 
detection and tracking, while sample drifting complicates video analysis. 
Although several tools to improve the analysis of live cell imaging exist, many 
of them remain unreachable for life scientists as their usage requires 
programming skills or they lack proper documentation and user-friendly 
interfaces. These hinder their usability and reproducibility. 

To address these issues, we have developed user-friendly live cell image 
analysis tools for biologists. First, Fast4DReg, a Fiji plugin developed to 
swiftly correct drift in 4D images, enhances the quality of live imaging. 
Second, DL4MicEverywhere allows life scientists to implement deep learning 
on various computational platforms to improve and segment live cell imaging 
data. Third, TrackMate v7 is a sophisticated tracking software integrating 
cutting-edge segmentation algorithms into tracking pipelines, facilitating 
robust and precise cell tracking. To ensure the usability of these tools, we 
have written extensive documentation and step-by-step guides 
complemented with openly available test datasets. We incorporate these 
tools to enable quantitative analysis of the interaction between pancreatic 
cancer cells and endothelium during metastasis and in a study of cancer cell 
drug resistance. 

In summary, our user-friendly image analysis tools offer efficient and 
accessible solutions for processing and analyzing live cell imaging data, thus 
benefiting researchers across various fields and contributing to our 
understanding of cell behavior and disease processes.  
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Sammanfattning (Abstract in Swedish) 

Cellmigration är en väsentlig process för hälsa och sjukdom och är involverad 
i processer som utveckling, sårläkning och cancermetastas. Avbildning av 
levande celler spelar en avgörande roll vid observation av dessa processer 
och när den kombineras med moderna verktyg för bildanalys blir 
visualisering och kvantifiering av cellens liv möjligt. Att extrahera 
meningsfulla data från avbildning av levande material innebär dock flera 
utmaningar. Levande celler är känsliga och bör avbildas i kontrollerade 
förhållanden och med låg ljusintensitet, vilket leder till generering av brusiga 
och oskarpa bilder. Ofta försvårar den låga signal-till-brusförhållanden exakt 
objektdetektion och cellspårning, medan provdrift komplicerar 
videoanalysen. Trots att det finns flera verktyg för att förbättra analysen av 
levande cellavbildning, förblir många av dem otillgängliga för forskare 
eftersom användning kräver programmeringsfärdigheter eller de saknar 
grundlig dokumentation och användarvänliga gränssnitt. Detta begränsar 
deras användbarhet och reproducerbarhet. 

För att lösa dessa problem har vi utvecklat tre användarvänliga verktyg för 
bildanalys av levande celler. Bildanalysprogrammet Fast4DReg är ett Fiji-
tillägg utvecklad för att snabbt korrigera drift i 4D-bilder och för att förbättra 
kvaliteten på avbildning av levande celler. DL4MicEverywhere tillåter 
livsvetenskapsmän att implementera djupinlärning för att förbättra och 
segmentera avbildningsdata från levande celler på olika beräknings-
plattformar. TrackMate v7 är en sofistikerad spårningsprogramvara som 
integrerar toppmoderna segmenteringsalgoritmer i spårningspipelines, 
vilket underlättar robust och exakt cellspårning. För att förbättra 
användbarheten av dessa verktyg har vi skrivit omfattande dokumentation, 
steg-för-steg guider kompletterade med fritt tillgängliga testdatasatser. Vi 
har utnyttjat dessa verktyg för att möjliggöra kvalitativ och kvantitativ analys 
av interaktionen mellan bukspottkörtelcancerceller och endotelceller under 
metastas, och i studier av läkemedelsresistens. 

Sammanfattningsvis erbjuder våra användarvänliga bildanalysverktyg för 
driftborttagning och cellspårning effektiva och tillgängliga lösningar för 
bearbetning och analys av avbildningsdata från levande celler, vilket gynnar 
forskare inom olika områden och bidrar till vår förståelse av cellbeteende och 
sjukdomsprocesser. 
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Abstrakti (Abstract in Finnish) 

Elävien solujen kuvantamisella on keskeinen rooli solubiologiassa. Sen avulla 
voidaan tutkia terveyden ja sairauden kannalta tärkeitä prosesseja, kuten 
yksilön kehitystä, haavan paranemista sekä syöpää. Kun elävien solujen 
kuvantamiseen tarkoitetut mikroskooppitekniikat yhdistetään moderneihin 
kuva-analyysityökaluihin, tulee elämän kvantitatiivinen mittaaminen mah-
dolliseksi.  

Merkityksellisen tiedon tuottaminen mikroskoopeilla kuvatuista soluvide-
oista aiheuttaa kuitenkin monia haasteita. Elävät solut ovat hauraita ja niitä 
tulee kuvantaa kontrolloiduissa ympäristöissä käyttäen vähäistä valon 
määrää. Tämä aiheuttaa usein videoihin kohinaa, joka puolestaan vaikeuttaa 
kohteiden havaitsemista taustasta ja näin ollen niiden seurantaa. Lisäksi 
mikroskoopin tai näytteen liikkumisen aiheuttama heilunta vaikeuttaa 
videon kohteiden seuraamista. Vaikka soluvideoiden analysoimiseksi on jo 
olemassa useita työkaluja, monet niistä eivät ole tutkijoiden saavutettavissa, 
sillä niiden käyttö vaatii usein ohjelmointitaitoja tai niissä ei ole 
asianmukaisia dokumentaatioita ja käyttäjäystävällisiä käyttöliittymiä. 

Näiden ongelmien ratkaisemiseksi olemme kehittäneet käyttäjäystävällisiä 
työkaluja luonnontieteilijöille soluvideoiden käsittelyyn ja analysointiin. 
Näistä ensimmäinen, Fast4DReg, on Fiji-liitännäinen, joka on kehitetty 
nopeasti korjaamaan heiluntaa 4D-kuvissa, vakauttaen näin kuvaa. Toinen 
työkalu, DL4MicEverywhere, mahdollistaa syväoppimisen käyttämisen 
soluvideoiden laadun parantamiseksi ja niissä olevien kohteiden 
tunnistamiseksi. Kolmas työkalu on TrackMate v7, jonka avulla voidaan 
mitata elävien solujen liikettä. Tämä työkalu pystyy integroimaan moderneja 
segmentointi- ja analyysialgoritmeja osaksi soluvideoiden mittaamista, 
mahdollistaen tarkan ja toistettavan solujen seurannan. Työkalujen 
käytettävyyttä on pyritty parantamaan kirjoittamalla kattava dokumentaatio 
ja jakamalla testidataa avoimesti. Lisäksi tässä väitöskirjatutkimuksessa 
sovellettiin kehitettyjä työkaluja solubiologisessa tutkimuksessa kahden 
esimerkin kautta. Näistä ensimmäisessä tutkittiin haimasyöpäsolujen ja 
endoteelisolujen vuorovaikutusta pahanlaatuisen syövän etenemisen aikana, 
ja toisessa selvitettiin, miten tietyt mutaatiot vaikuttavat syöpäsolujen 
lääkeresistenssiin.  

Tutkimuksien tulokset osoittavat, että kehitetyt käyttäjäystävälliset työkalut 
soveltuvat soluvideoiden laadun parantamiseen ja solujen seurantaan ja ne 
tarjoavat tehokkaita ja saavutettavia ratkaisuja soluvideoiden käsittelyyn ja 
analysointiin. Nämä työkalut auttavat eri alojen tutkijoita ymmärtämään 
solujen käyttäytymistä ja prosesseja, erityisesti syöpätutkimuksessa. 
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images in light microscopy 
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Introduction 

Live imaging is essential in visualizing processes such as normal tissue 
development, wound healing and cancer — processes too small for the bare 
human eye to observe. Optical microscopy has enabled the magnification of 
these processes, and the integration of sensitive digital cameras has 
enabled the acquisition of images for subsequent observation and analysis. 
For these reasons, microscopy has become an indispensable tool in 
studying cells. 

Cells are fragile units of life. During microscopy experiments, they must be 
kept in controlled environments that retain their viability. Imaging cells 
using brightfield light, it is possible to observe their behavior for long 
periods of time. However, observation of cellular proteins and processes 
typically requires the usage of fluorescent markers and therefore the usage 
of intense illumination using monochromatic or near-monochromatic light. 
To study cells’ movement undisturbed under such conditions, the light 
dosage and exposure times should be kept at a minimum. Consequently, low 
dosages of light and short acquisition times may result in noisy images, 
limiting object detection and complicating downstream analysis. 
Furthermore, even modern instruments can cause the acquired image data 
to drift, posing additional challenges in following cell movements. Many of 
these issues can be solved post-acquisition using software specialized for 
bioimage analysis. Therefore, bioimage analysis has become integral to life 
sciences research, providing tools to extract meaningful information from 
image data. 

The literature review of this thesis focuses on introducing imaging methods 
and requirements for live imaging, as well as how to process and analyze the 
data acquired from live cell experiments. This thesis resulted in three user-
friendly and accessible image analysis tools we developed to facilitate live 
cell imaging data processing and analysis. These tools are Fast4DReg (I), a 
fast and reproducible drift correction and channel alignment tool for 4D 
image datasets, TrackMate (II), a user-friendly tracking and track analysis 
tool, and DL4MicEverywhere (III), a non-code environment for training and 
deployment of DL models on multiple computational platforms. These tools 
are presented in the original publications in this thesis, and my contribution 
is further highlighted in the aims, methods, results, and discussion sections. 
Additionally, two unpublished projects (unpublished 1 and unpublished 2) 
are included in this thesis to showcase how I incorporated these tools in a 
user-friendly way to extract quantitative information from live cell imaging 
experiments.   
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These three software tools are available under open-source licenses, come 
with comprehensive documentation, and provide intuitive, user-friendly 
interfaces. They contribute to accelerating research in life sciences, 
ultimately saving more time for scientific discoveries.  
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Review of the Literature 

1 Live cell imaging in biological research 
Understanding the behavior of living cells has interested researchers for 
decades. Due to the small size of cells, they are not visible to the human eye 
and require a microscope for magnification. The first microscopes date back 
to the 16th century. Antonie van Leeuwenhoek was the first person to use 
microscopes for scientific discoveries. Among his discoveries, he was the first 
person to describe red blood cells. The first analysis of living cells using video 
microscopy goes back to the 1950s when Michael Abercrombie showed the 
behavior of normal and cancer cells in cell culture 
(https://wellcomecollection.org/works/z6h7jzv4, 14.3.2024). While 
microscopy as a field is not novel, advances in technology continually give 
rise to new techniques, especially enabling gentle long-term imaging of living 
samples with higher resolution using methods such as lattice sheet 
microscopy (Chen et al., 2014). 

Although the selection of available techniques for cell imaging is vast (Lemon 
and McDole, 2020), in this first chapter of my thesis, I focus on introducing 
microscopy in the context of imaging living biological samples. I focus on 
giving an overview of the microscopy techniques I have used in this thesis 
and introducing challenges that live cell imaging introduces.  

1.1  Basic concepts of optical microscopy 

Optical microscopy seeks to enhance human vision by enlarging objects that 
would otherwise remain below the resolution of the human eye. A 
microscope consists of one or more aligned lenses that magnify and resolve 
light as it passes through. The magnifying power of a microscope depends on 
several factors, including the magnifying power of the objective lens and 
adjacent lenses on the light path, including the eyepiece, and the distance 
between the lens and the object (Pawley, 2006).  

The resolution of the microscope refers to its ability to distinguish between 
two closely spaced point objects surrounded by diffraction rings, called the 
Airy disk, as separate objects. This disk is generated when light waves unite 
and interfere at the focal point, producing a diffraction pattern of circular 
rings surrounding a brighter central disk. This diffraction of light is what 
limits the separation of the objects from each other. The extent and 
magnitude of the diffraction pattern are affected by both the wavelength of 
light (λ), the refractive material used to manufacture the objective lens, and 
the objective lens's numerical aperture (NA). Therefore, there is a finite limit 
beyond which it is impossible to resolve individual points in the field of 

https://wellcomecollection.org/works/z6h7jzv4
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interest, known as the diffraction limit. This limit was first described by Ernst 
Abbe in 1873 (Abbe, 1873) and is often referred to as the Abbe diffraction 
limit. He reported that the smallest resolvable distance between two point-
objects captured using an optical microscope can never be smaller than half 
the wavelength of the imaging light. The diffraction limit is a central concept 
in optical microscopy and affects both bright-field and fluorescence 
microscopy (Figure 1).  

 
Figure 1: Resolution in microscopy. The resolution of the microscope refers to its 
ability to distinguish between two closely spaced point objects from each other. The 
separation ability is limited by the diffraction of light, resulting in an airy disc pattern 
generated when light waves unite and interfere at the focal point, producing a 
diffraction pattern of circular rings that surround a brighter central disk. The image 
of the diffraction pattern can be represented as an intensity distribution. If the point 
light sources are further from each other than the length of the full width at half 
maximum (FWHM) of the intensity distribution, the points are still resolvable.  

Mathematically, the diffraction limit is defined by Abbe’s equation (Figure 2) 
where Abbe's diffraction limit (d) describes that the resolution of an optical 
microscope is limited to roughly half the wavelength (λ) of the light being 
used. 
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Figure 2: Abbe's equation. Abbe’s equation is used to calculate the theoretical 
resolution limit of an optical microscope. d is the minimum resolvable distance 
between two objects (resolution), λ is the wavelength of light used for imaging and 
NA is the numerical aperture of the microscope objective. 

In live cell imaging, the selection of the appropriate magnification resolving 
power is essential as light can be toxic for cells and may alter their behavior, 
therefore affecting the imaged phenomenon. This is discussed in more detail 
in chapter 1.2.2.  

1.1.1 Microscopy techniques and methods for live cell imaging  

The number of existing microscopy techniques is vast and keeps growing, 
and choosing the correct technique for a particular experiment can remain 
challenging. When selecting a microscopy technique, it is essential to ask the 
question: “What is my biological question, and what must I measure to answer 
it?” (Senft et al., 2023). When selecting an instrument for live-cell imaging, 
the first step is to know the structure of interest and how it is labeled, if at all, 
and if it should be imaged in 2D or 3D. Next, the desired resolution is defined, 
keeping in mind that the selected microscope must be compatible with live 
cell imaging (Lemon and McDole, 2020). Additionally, the microscope's 
acquisition speed plays an important role as some biological phenomena can 
occur very fast and might be missed by a microscope with a slow acquisition 
speed (Kiepas et al., 2020; Jonkman et al., 2020). 

To visualize the structures of interest, living cells can be labeled using 
fluorescence probes, or they can stably express fluorescent proteins. This 
allows visualization of substructures of cells using fluorescence light and 
allows, for example, studies in organelle trafficking inside cells (Miihkinen et 
al., 2021) and observation of dynamic processes, such as signaling pathways 
(Conway et al., 2023).  

1.1.2 Widefield Microscopy 

In widefield microscopy, the entire sample on the microscope stage is 
exposed to a light source and the whole image is captured at once. The 
resulting image can be viewed through the microscope eyepiece or acquired 
through a digital camera. The sample illumination can occur from below 
(inverted microscope) or above (upright microscope) the sample. Commonly 
for live cell imaging, the sample must be illuminated from below as the 
sample dish usually contains liquid media.  
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The light source in a widefield microscope can be a transmitted or 
fluorescent light. In a transmitted light microscope, a white unfiltered light, 
usually from a lamp or light-emitting diodes (LEDs), is directed to the sample 
through the microscope optics. Köhler alignment plays an important role 
when aligning the microscope light path. Correct Köhler alignment ensures 
that the incoming light is uniform and focused correctly on the entire field of 
view (Keller, 2007). Contrast-enhancing techniques, such as differential 
interference contrast (DIC) (Salmon and Tran, 1998) or Phase contrast 
imaging (Zernike, 1942), have been developed to enhance the contrast, as 
when imaging transparent or low-contrast specimens, such as living cells, the 
contrast in the resulting images may be insufficient for data extraction.  

When imaging fluorescently labeled cells, the microscope needs to be 
equipped with filter cubes that allow only the optimal wavelength to excite 
the fluorophore. Dichroic mirrors further direct the excitation light to the 
sample, and as this light interacts with the fluorophores in the sample, the 
fluorophore is excited. Eventually, the fluorophore is released from the 
excited state, emitting light of a lower energy and, therefore, a longer 
wavelength, which can then be visualized or captured using a digital camera. 
The difference between the emission and excitation peaks called the Stoke’s 
shift, is caused by the energy loss as heat or vibration during the excitation 
process (Sanderson, 2020). 

1.1.3 Confocal Microscopy 

Compared to widefield microscopy, confocal microscopy allows more 
detailed fluorescent image acquisition and is, therefore, broadly used to 
resolve the detailed structure of specific objects within the cell, such as 
filopodia tips (Popović et al., 2023). Compared to widefield microscopy, 
where the entire sample signal is simultaneously collected, in confocal 
microscopy, the sample is excited point-by-point. Additionally, the confocal 
microscope takes advantage of a pinhole placed at the conjugate focal plane 
of the objective. This pinhole effectively blocks out-of-focus light from above 
and below the focal plane from reaching the detector, therefore greatly 
improving the contrast of the acquired image. The pinhole also enables 
optical sectioning, thus allowing 3D imaging. As the sample excitation occurs 
point-by-point, the signal is also produced point-by-point. This signal is 
collected using photon counters, such as a photomultiplier tube, which can 
further enhance the detected signal (Wolf, 2007).  

Spinning disk confocal microscopy is commonly used to achieve faster and 
more delicate sample illumination. In this technique, a disk containing 
thousands of micro-lenses and a disk with thousands of small pinholes 
arranged in a spiral pattern is placed on the light path (Gräf et al., 2005). The 
excitation light travels through both disks, and the emission light is directed 
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to the camera-based detector after passing again the pinhole disk. This setup 
allows high-speed and gentle scanning of the sample and makes this system 
especially suitable for imaging dynamic processes in living cells (Stehbens et 
al., 2012). 

1.1.4 Super-resolution Microscopy 

In conventional microscopy techniques such as widefield and confocal 
microscopy, described above, the resolution of the resulting image is limited 
to the diffraction of light used for exciting the sample and the NA of the used 
objective. Using ultra-violet (UV) light, it is possible to distinguish objects 
that are maximally 250 nm apart. There have been numerous successful 
efforts to break the diffraction limit, such as stimulated emission depletion 
microscopy (STED) by Stefan Hell (Hell and Wichmann, 1994), 
photoactivated localization microscopy (PALM) (Betzig et al., 2006), and 
stochastic optical reconstruction microscopy (STORM) (Rust et al., 2006) by 
Erik Betzig and William E. Moerner. They shared a Nobel Prize in Chemistry 
in 2014 for their work in super-resolution microscopy.  

While super-resolution imaging has revolutionized our ability to observe tiny 
cellular structures with unprecedented detail, it is important to acknowledge 
certain limitations when applying super-resolution techniques to live cell 
imaging. The use of intense illumination in super-resolution techniques can 
lead to phototoxicity and photobleaching, potentially affecting cell viability 
and sample integrity over time. Balancing high spatial resolution with 
temporal resolution remains a challenge, as some methods may require 
prolonged acquisition times, thus limiting their ability to capture fast 
dynamic processes (Jacquemet et al., 2020). 

In our work, we have used a super-resolution technique called structured 
illumination microscopy (SIM) (Neil et al., 1997). SIM is a wide-field based 
microscopy technique commonly used for live-cell imaging as it can double 
the resolution compared to conventional widefield techniques (Gustafsson, 
2000) and allow fast acquisition (Huang et al., 2018). In SIM, a movable 
diffraction grating is inserted into the excitation beam path. The resulting 
striped images interfere with each other at the focal plane of the objective, 
creating a striped pattern called the Moiré pattern. To reconstruct the final 
super-resolved image, several of the striped raw images must be collected, 
each acquired at a different orientation of the structured illumination, which 
are then combined by a computer algorithm to reconstruct a super-resolved 
image (Schermelleh et al., 2019; Jacquemet et al., 2020).  
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1.2 Requirements and limitations for live cell imaging 

Creating a stable environment for live cell imaging is crucial to ensure that 
cells preserve their natural behavior. The additional stress imposed by 
imaging experiments has the potential to alter cellular characteristics. 
Unstable imaging conditions, coupled with excessively intense light, can 
compromise the accuracy of observations,  leading scientists to observe and 
report the cellular responses to the unideal environment or light-induced cell 
damage (Magidson and Khodjakov, 2013). In this chapter, I highlight the 
importance of proper experimental planning for successful live cell imaging.  

1.2.1 Microscope requirements and sample preparation  

When examined outside of their natural environment, cells are fragile and 
easily affected by external conditions. To mitigate external factors that might 
affect the cell's health, live cell imaging experiments are performed in a 
microscope set-up that includes a special live cell imaging chamber that 
controls the temperature, pH, CO2 levels, and humidity during the imaging 
experiment (Jensen, 2013). Fortunately, such chambers are common in 
modern microscopes, allowing long-term live-cell imaging.  

Sample preparation is one of the most critical steps in any fluorescence 
microscopy experiment. For live cell imaging, cells should be placed in a 
special imaging chamber, usually with a glass bottom to match the NA of the 
microscope objective and kept in their growth medium to ensure cell health. 
Cell growth medium often contains a colorful pH indicator, such as phenol 
red, which might cause excitation and emission of light to be absorbed by the 
medium, reducing the signal or causing autofluorescence. Ideally, a clear 
medium should be used for fluorescence imaging of living cells (Waters, 
2007).  

One of the biggest challenges in live cell imaging is labeling structures and 
molecules of interest and imaging them without compromising cellular 
processes or health. Recombinant fluorescent proteins conjugated to the 
protein of interest can be directly expressed in an organism or a cell. A 
variation of organelle-specific dyes can also be added to the imaging medium 
before imaging. In our lab, we commonly use sir-DNA dye (Lukinavičius et al., 
2015) or Lifeact  (Riedl et al., 2008) to visualize cells.   

1.2.2 Phototoxicity 

In optical light and fluorescence microscopy, the sample is illuminated by 
light to visualize and acquire images. High fluorescence light exposure can 
induce reactive oxygen species (ROS) formation in the cell, which in excess 
can lead to cellular changes (Sies and Jones, 2020), whereas low exposure to 
light usually causes minimal and reversible effects on the cells (Wäldchen et 
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al., 2015). In more severe cases, the impact of light can cause cells to be 
permanently changed or even lead to cell death (Laissue et al., 2017). 

While ongoing efforts in hardware development persist to achieve milder 
illumination and enhance detector sensitivity to mitigate phototoxicity, 
(Castello et al., 2019; Schmidt et al., 2011) modern microscopes still have 
their limitations. This leads to necessary optimization and trade-offs in 
spatial and temporal resolution, illumination power, and image quality. 
Image quality and spatial and temporal resolution are co-dependent. 
Optimization of these factors is often coupled with increased exposure to 
light, which usually comes at a cost to sample health (Laissue et al., 2017). No 
single factor can be changed without affecting the other; therefore, these 
factors form the pyramid of frustration (Figure 3). 

 
Figure 3: The pyramid of frustration. The integrity of the sample is of the highest 
priority when conducting a live cell imaging experiment and therefore placed in the 
middle of the pyramid. Image quality, spatial and temporal resolution are co-
dependent and directly affect the sample's health. Enhancing resolution and image 
quality often leads to heightened light exposure, which, in consequence, 
compromises the well-being of the sample. On the other hand, efforts to retain the 
sample health during acquisition typically lead to decreased resolution and noisy 
images. Therefore, careful balancing between these factors is essential when 
conducting live cell imaging experiments. Modified from (Lemon and McDole, 2020). 

To acquire meaningful data, sample health holds the highest priority in live 
cell imaging. If the effect of fluorescence microscopy on sample health is not 
minimized, the images might be falsely interpreted, leading to mistaken 
conclusions. In situations where using low illumination power is the only way 
to image the interested process, the image quality can be significantly 
improved by using image post-processing methods, which are further 
discussed in the chapters 2.2.2 and 2.3.2. 

1.2.3 Photobleaching 

Photobleaching is a process where fluorophores irreversibly lose their 
fluorescent capacities due to excessive light exposure over prolonged 
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excitation. In their excited state, fluorophores can react with oxygen and 
become degraded (Laissue et al., 2017). As many live cell image 
quantifications rely on the detection of fluorescence intensities, avoiding 
photobleaching enables improved visualization, processing, and analysis of 
the acquired image data.  

To overcome the problem of photobleaching, instrument environment, image 
acquisition, and sample preparation can be adjusted. Selecting a suitable 
fluorophore, employing anti-fading agents, utilizing lower laser excitation 
power, enhancing detector sensitivity, and extending the time interval for 
live image capturing all contribute to reducing photobleaching during 
imaging (Waters, 2007). Alternatively, photobleaching can be minimized by 
using gentler illumination techniques, such as light sheet microscopy (Wu et 
al., 2011). In situations where photobleaching cannot be completely 
eradicated, post-acquisition image processing plays an important role. These 
are further discussed in the chapter 2.2.1.  

1.2.4 Sample stabilization 

In addition to the above-discussed challenges in live cell imaging, imaging is 
prone to drifting: the inability of a microscope to maintain the selected focal 
plane over an extended period. Drifting can be caused, for example, by 
temperature changes leading to thermal expansion of the microscope 
mechanical components or moving of the sample. Drifting primarily affects 
the focus but can also lead to lateral drifting. To minimize drift, it is essential 
to allow the microscope to achieve thermal equilibrium before starting time-
lapse experiments and use auto-focus systems to maintain the focus.  

Drift can be corrected in several ways during image acquisition. During image 
acquisition, microscopes can be equipped with an autofocus system that uses 
infrared light that is reflected on the glass-sample interface and captured by 
a detector (e.g., Leica's Adaptive Focus Control or Nikon's Perfect Focus 
System). Lateral drift can be compensated in real-time by tracking algorithms 
that follow the sample and correct the stage position accordingly (von 
Wangenheim et al., 2017; Fox et al., 2022). However, drifting is rarely 
completely eliminated at the acquisition stage, especially when acquiring 
multiple positions for an extended period of time or when the sample itself 
moves, thus, post-processing of the image data is required before 
visualization and downstream analyses. Methods for post-acquisition drift 
removal are discussed in the chapter 3.1. 

1.2.5 Local image data infrastructure  

Live cell imaging data is often large in size and can easily exceed the petabyte 
(1 PB = 1000 TB) scale at a single institution level (Ouyang and Zimmer, 
2017). Therefore, it is crucial to establish an organized data infrastructure to 



Review of the literature 
  

11 

handle this data. Such infrastructures facilitate seamless image data transfer 
from the microscope computers, where it is initially stored during 
acquisition, to users for efficient analysis, enabling streamlined image data 
utilization for scientific discoveries. 

The image data transfer from the microscope computer to users can be 
handled for example using institutional network drives or dedicated image 
handling servers such as Open Microscopy Environment Remote Objects 
(OMERO) (Allan et al., 2012) or the Acquifer HIVE (Acquifer) (Muehlboeck et 
al., 2014). Data management solutions and storage solutions can also provide 
additional features. For example, the OMERO servers support multiple image 
data file formats and store the image metadata (Li et al., 2016), which is 
essential for image data management and further downstream analysis. 
Additionally, OMERO allows the usage of image analysis software to access 
images on OMERO and save results back to the server (Burel et al., 2015). 
With OMERO.figure (https://github.com/ome/omero-figure, 12.03.2024) it 
is possible to create figure panels for scientific publications that trace back to 
the original data on the server ensuring efficient data management and 
traceability. These features greatly reduce the hurdle in image data handling 
streamlining the efficient use of image data. 

Despite the available technologies, storing and sharing this data still remains 
a bottleneck in many institutions. Data transfer through such networks or 
servers requires fast network connections and an established infrastructure, 
which are still lacking in many institutions. Consequently, numerous 
researchers continue to rely on external hard drives for the transmission of 
their image data (Andreev and Koo, 2020).  

1.2.6 Skills to conduct and report image analysis 

Bioimage analysis skills have become an essential part of cell biology. With 
microscopes capable of generating a large amount of multi-dimensional live 
cell imaging data, automated analysis has become necessary. Bioimage 
analysis is an emerging research field that has rapidly progressed over the 
last couple of decades, introducing multiple new tools especially for multi-
dimensional image data, such as live cell imaging data (Pylvänäinen et al., 
2023b). This rapid development has led to confusion among life scientists in 
identifying and utilizing suitable tools, mainly due to a lack of basic image 
analysis knowledge, incomplete documentation, lack of coding skills or 
insufficient communication between developers and life scientists 
(Schlaeppi et al., 2022). The imaging community has reported a growing need 
for training in image analysis skills (Sivagurunathan et al., 2023).  

To keep up with the developing field and to be able to harness image data 
more efficiently, continuous training in the field is required. Local support in 

https://github.com/ome/omero-figure
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image analysis is already incorporated through many MSc and PhD level 
courses, but these courses typically only scratch the surface of what is needed 
for in-depth bioimage analysis. NeuBIAS initiative has successfully breached 
this gap by organizing training schools for early career investigators, 
bioimage analysts and core facility personnel. These training schools have 
played a vital role in enhancing researchers' comprehension of image 
analysis and disseminating knowledge about novel tools for image analysis, 
thereby directly influencing their experimental design for live cell imaging 
studies. (Martins et al., 2021).  

Further breaching this gap, the number of online training resources has 
peaked in past years (Whiting et al., 2022), including for example video series 
such as the NeuBIAS Academy (https://eubias.org/NEUBIAS/training-
schools/neubias-academy-home, 06.03.2024), iBiology 
(https://www.ibiology.org/?s=image+analysis, 06.03.2024) and online 
books such as the Introduction to Bioimage Analysis -gitbook 
(https://bioimagebook.github.io/index.html, 08.03.2024). For example, the 
NeuBIAS academy has provided multiple training videos for the processing 
and analysis of live cell image data 
(https://www.youtube.com/@NEUBIAS/videos, 12.03.2024). These videos, 
viewed by thousands of people, have encouraged the integration of novel 
methods into life sciences research. Together with the in-person workshops, 
online training resources have played a crucial role in the knowledge 
acquisition of bioimage analysis, consequently reducing the barriers for 
researchers to experiment with new bioimage analysis tools for their 
research. 

The support from the image analysis community, such as the image.sc forum 
(https://forum.image.sc/, 08.03.2024), further enhances the acquisition of 
image analysis skills and proves particularly useful in troubleshooting 
(Jamali et al., 2021). Based on common issues in the field, community efforts 
have led to the establishment of international recommendations on how to 
report image analysis in scientific articles (Schmied et al., 2024) and how to 
ensure that image analysis is reproducible (Aaron and Chew, 2021). These 
guidelines aim to guide life scientists to accurately analyze, report and share 
their work. 

  

https://eubias.org/NEUBIAS/training-schools/neubias-academy-home
https://eubias.org/NEUBIAS/training-schools/neubias-academy-home
https://www.ibiology.org/?s=image+analysis
https://bioimagebook.github.io/index.html
https://www.youtube.com/@NEUBIAS/videos
https://forum.image.sc/
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2 Microscopy image processing 
In optical microscopy, after light has reached the sample, it is directed 
through the optical system to a detector. Depending on the microscope 
modality used, the detector can be a camera that records color or grayscale 
images or a photomultiplier tube (PMT). This detector then translates the 
image into a digital image, which can then be viewed using a computer screen 
(Sanderson, 2020). While the acquired images are usually beautiful to look 
at, they also contain enormous amounts of useful information for life sciences 
research. In this chapter, I introduce images and how information can be 
extracted from them using classical and artificial intelligence (AI) boosted 
image analysis. The primary focus is on elucidating methods and applications 
specifically tailored for live cell imaging. 

2.1 Images are just pixels 

At their simplest, digital images are 2D arrays that are composed of picture 
elements called pixels. Each pixel holds a numeric value that represents its 
gray value. The gray values are essential in visualizing digital images, while 
pixel values are crucial for in-depth image analysis (Figure 4). 

 
Figure 4: An image is a collection of pixels, where each pixel has a numerical 
value that represents its gray value. Here, an 8-bit image of an MDA-MB-231 cell 
is cropped to an 8x8 region, and its corresponding pixel values are visible in the 2D 
array on the right. Scale bar 10 µm. 

Grayscale image pixels can take different values depending on the image 
type, for example, an 8-bit image, each pixel can take values from 0-255, and 
a 16-bit image from 0-65535. The image bit depth defines the dynamic scale 
of the image; the greater the bit depth, the greater the number of tones that 
can be represented in the images. A greater bit depth might be beneficial in a 
situation where the signal-to-noise ratio (SNR) is low, though storing such 
images requires more space. Red-green-blue (RGB) images, on the other 
hand, are composed of three images: red, green, and blue overlayed. 
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Therefore, each pixel in the RBG image has three values, one for each layer. 
In this thesis, I focus only on grayscale images. 

The display of grayscale images can be enhanced using look-up-tables (LUTs) 
that provide a way to alter the appearance of an image without changing the 
pixel values. Choosing an appropriate LUT can improve the 
understandability of the image contents, although, for single-channel images, 
grayscale color schemes are preferred for unbiased interpretation of the 
image (Schmied et al., 2024). 

2.2 Classical image processing methods and applications 

Image processing refers to the modification or enhancement of digital images 
using various operations such as filtering, segmentation and geometric 
transformations. Classical image processing operations can be applied to 
microscope images to remove bleaching from live cell videos, to reduce noise 
and to improve object segmentation. Image processing enhances the image 
for downstream analysis, where meaningful information is extracted from 
the image (Gonzalez and Woods, 2018).  

In the simplest analyses, the image intensity of the whole image frame is 
measured, or the objects of interest are manually counted. To extract 
information about the morphology or intensity of the objects in the image, 
they are first segmented using for example thresholding followed by 
connected components labeling. These methods translate the image to a 
computer-readable mask, highlighting regions of interest (ROI) for 
downstream analysis (Peng, 2008). Image modification and enhancement 
play a key role in improving the accurate segmentation of objects. 

Due to many different biological specimens and microscopy methods, 
captured images vary enormously. As technology advances, so does the 
complexity and sophistication of image processing methods, offering new 
solutions to improve image analysis tasks. For these reasons, it is not possible 
to find one correct way to process images; rather, look for the least wrong 
approach. 

2.2.1 Bleach correction 

Bleach correction is a process where the light-induced photobleaching is 
corrected computationally post-acquisition. Usually, bleach correction 
algorithms compare the average intensity of the entire image at each point in 
time to define the amount of bleaching, followed by matching the intensity of 
the following frames to the intensity of the first frame. More advanced 
methods use the information acquired from the image histogram to compute 
a similar histogram for each time point, taking the first frame as the reference 
(Miura, 2020).  
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The performance of intensity ratio-based bleach correction algorithms relies 
on the estimated intensity of the background.  Variations of the background 
may cause unsuccessful bleach correction. The histogram matching method 
assumes a stable distribution of fluorescence throughout the video. Changes 
in the signal distributions or cell shapes typically cause changes in the image 
histogram, leading to unsuccessful bleach correction. To choose the best 
bleach correction method, these limitations and the observed biological 
phenomenon should be considered. Successful bleach correction can 
improve sample visualization, processing, and downstream analysis of the 
acquired live cell imaging data (Miura, 2020). 

2.2.2 Noise and denoising 

Live-cell imaging is always a compromise between image quality and sample 
health (Figure 3) and retaining the sample health usually comes at the cost of 
image quality. Live cell imaging using fluorescent light requires low 
illumination power and fast capturing, often leading to the acquisition of 
noisy images.  

In microscopy, Gaussian and Poisson noise can be considered as the two 
major sources of noise (Rasal et al., 2022). These noises are random in nature 
and equally plague the entire image. Gaussian noise is mainly caused by 
electronic thermal vibration inside the detector and arises at the stage of 
quantifying the number of photons detected for each pixel. Therefore, 
Gaussian noise is also called the read noise. On the other hand, Poisson noise 
is caused by the photons arriving randomly at the microscope detector; 
therefore, it is also called photon noise. To reduce image noise, it is necessary 
to increase the illumination power to ensure that an adequate quantity of 
photons reaches the detector. However, the increase in illumination power 
can negatively impact the sample's health (Laissue et al., 2017). 

Image denoising methods offer a powerful way to recover high-quality 
images and facilitate downstream processes such as image segmentation. In 
successful noise reduction, certain aspects should be considered: areas 
expressing similar signals should be smooth, edges should be protected 
without blurring, and textures should be preserved. In addition, noise 
reduction should not introduce new artifacts (Fan et al., 2019).  

Filtering the image in the spatial domain, where the image is presented in its 
coordinate space (each pixel or sample corresponds to a specific position in 
the image), is a classical method to remove noise. In filtering, a kernel of a 
specific size is moved across the original image, calculating a new gray value 
for each pixel based on the surrounding pixels within the kernel (Li et al., 
2010). The new pixel values are calculated differently based on the selected 
filter type. Linear filters, transform the pixel values based on a defined 
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mathematical kernel. For example, the mean filter averages the pixel values 
in the defined neighborhood of each pixel, resulting in a smoothing or 
blurring effect. It helps reduce noise and highlight larger-scale features and 
is commonly used to remove Gaussian or Poisson noise (Gonzalez and 
Woods, 2018). Non-linear filters, such as the median filter, can help with the 
detection of edges that have a steep increase or decrease in the signal 
(Anoraganingrum, 1999). The median filter moves the kernel across the 
image and calculates the new gray value for each pixel by first sorting all the 
pixel values within the kernel to numerical order and replacing the pixel 
being considered with the middle (= median) value. In images with high 
impulses of noise, the median filter gives better denoising compared to the 
mean filter, as it is not significantly affected by unrepresentative pixel values 
in the neighborhood. Furthermore, since the new median value corresponds 
to an actual value from the target pixel environment, not a newly calculated 
value, the median filter is much better at preserving sharp edges and texture 
than the mean filter. 

Image denoising can also be performed using image transforms. These 
methods first transform the given noisy image to another domain, such as the 
frequency domain, where the image is represented in terms of its frequency 
components, and then apply a denoising procedure on the transformed 
image before returning it to the spatial domain. Among these, the wavelet 
domain methods such as block-matching 3D (BM3D) (Dabov et al., 2007) 
have been widely used (Chen et al., 2013). Although deep learning (DL) 
methods have gained popularity in denoising in recent years (discussed in 
chapter 2.3.2) some newer wavelet transform methods can still outperform 
these when working, especially with microscopy images (Silberberg and 
Grecco, 2024). 

2.2.3 Image segmentation  

The human brain is excellent at separating objects from their background, 
while computers struggle with this task, especially in the presence of an 
irregular background. Therefore, before a computer can automatically 
measure anything, it first needs to separate the image into foreground, 
including the objects of interest and background, a process called image 
segmentation. Using segmentation methods, it is possible to detect objects 
such as cells or nuclei from their background. 

The easiest way to segment an image is by using histogram-based 
thresholding, where a global threshold is applied to the whole image. This 
threshold identifies pixels that are above or below a selected threshold value, 
giving a binary image as the output (Figure 5). Global thresholding assumes 
the presence of two classes of pixels in the image: the foreground above the 
selected threshold and the background pixels below the selected threshold. 
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Manual selection of the threshold easily introduces bias; therefore, the usage 
of segmentation algorithms is recommended. One of the most applied 
thresholding algorithms is the Otsu method (Otsu, 1979), which uses the 
grayscale histogram of an image to find an optimal threshold value that 
separates two classes with minimum intensity variance within each class. 

Uneven illumination of a sample is a frequent problem in fluorescence 
microscopy, which can be caused, for example, by misaligned microscopy 
optics or stage or issues in the sample mounting. Uneven illumination leads 
to varied background intensities in the image and further problems in 
segmentation. In such situations, a local thresholding, which generates a 
threshold for each pixel value relative to the local background, can be used. 

The output of the segmentation is called a mask, which can be used to assess 
various features of the entire foreground quantitatively. To comprehensively 
analyze each object in the image, it is necessary to assign a unique label to 
each object (Figure 5). This labeled image can be easily generated directly 
from the image mask using connected component labeling, which groups 
connected foreground pixels into distinct objects. Alternatively, different 
regions with specific features can be classified using semantic segmentation 
(Figure 5). 

 
Figure 5: Types of image segmentation. Images can be segmented using 
thresholding, which results in a binary mask image. To analyze individual objects in 
an image, a unique identifier needs to be assigned for each object, an operation called 
instance segmentation. Different regions of the image can be classified using 
semantic segmentation. Here, the green color is classified as the background; the 
objects are purple, and the object edges are yellow. 

However, in some cases, objects in the original image may be too close to each 
other, causing the thresholding process to combine them into one single 
object. In such situations, it's crucial to refine the mask further using binary 
operations before connected component labeling. These operations include 
tasks like reducing or expanding the masked area, which can help separate 
objects or remove small objects in the background. One popular method to 
separate touching nuclei masks involves using a watershed algorithm (Figure 
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6). This algorithm is particularly effective at separating closely touching 
objects, provided valleys (or ridges) with different binary pixel values exist 
between them. 

 
Figure 6: Image segmentation. In image segmentation, foreground, including the 
objects of interest and background, are defined. A histogram-based thresholding 
(Otsu) has been applied to the original image to create an image mask containing the 
objects of interest. A binary operation watershed was applied to the mask to separate 
touching objects. Connected components labeling was applied to the watershed 
image to create a label image. The resulting label image can be used for measuring 
object features such as object area or roundness. Scale bar 50 μm. 

2.3 Deep learning boosted image processing 

In the past years, the amount and complexity of image data have dramatically 
increased, leading to a need for more complex and computationally 
expensive processing and analysis tools. Artificial intelligence (AI), machine 
learning (ML) and especially their subgroup deep learning (DL) have 
provided a powerful solution for tackling these issues. AI is a field of 
computer science that focuses on developing intelligent machines that can 
perform tasks that typically require human intelligence. ML is a subset of AI 
that focuses on the development of algorithms that can learn patterns and 
insights from data and then use this knowledge to make predictions or 
decisions. In cell biology, ML algorithms, such as the random forest classifier, 
are used to perform pixel-based classifications based on extracted image 
features and for interpretation of classification and feature importance (Berg 
et al., 2019; Arganda-Carreras et al., 2017). DL is a subset of ML that uses 
multi-layered neural networks, called DL networks, to simulate the complex 
decision-making power of the human brain. In cell biology, DL methods are 
commonly used for tasks such as image segmentation, object detection, 
feature extraction, denoising, and image restoration (Moen et al., 2019; 
Pylvänäinen et al., 2023b). DL methods have been shown to outperform 
traditional image processing and analysis algorithms frequently 
(Ronneberger et al., 2015; Krizhevsky et al., 2012).  
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In this chapter, I discuss the usage of DL methods, highlighting tools and DL 
networks I have found most usable for my research in the context of live cell 
imaging. 

2.3.1 Deep learning algorithms and models 

A standard DL workflow involves training a multi-layer artificial neural 
network, commonly referred to as a deep neural network (DNN) or DL 
network for short. This network generates a DL model capable of executing 
a particular task. The DL network has hidden layers that allow the network 
to learn features from the input data. In more detail, a DL network takes raw 
data as input at the lowest layer and uses the first layer to learn the simplest 
features of the data. This information is then passed to the next layer and 
used to learn more complex features. This is repeated throughout all the 
layers of the DL network to learn the most complex features. The UNET DL 
network architecture was one of the first proposed networks designed for 
biomedical image segmentation tasks (Ronneberger et al., 2015). It has 
played a crucial role in advancing the application of DL for segmentation 
tasks, and its architecture's versatility has led to its widespread adoption in 
various segmentation applications across different domains. Figure 7 
explains the U-Net DL network architecture in more detail. 

Figure 7: U-Net DL architecture for semantic segmentation. U-Net consists of 
contracting and expansive paths. The contracting path consists of applications of two 
3x3 convolutions, each followed by a rectified linear unit (ReLU) and a 2x2 max 
pooling operation. At each down-sampling step, the number of feature channels is 
doubled. The expansive path consists of an up-sampling of the feature map followed 
by a 2x2 up-convolution, copying the corresponding cropped feature map from the 
contracting path, and two 3x3 convolutions, each followed by a ReLU. At each up-
sampling step, the number of feature channels is halved. As the final step, a 1x1 
convolution is applied to map each 64-component feature vector to the desired 
number of classes. In total, the network has 23 convolutional layers. Scale bar 10 µm. 
The input and output images are from (Spahn et al., 2022). 

To effectively train a DL model, DL networks require specific types of training 
data tailored to the task that the network is expected to perform. Proper 
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training using appropriate input data is of the highest importance, as it 
directly influences the DL model's performance. In image processing, training 
is typically approached through three main methods: supervised, 
unsupervised, or self-supervised training (LeCun et al., 2015). During 
supervised DL training (Figure 8A), the network is exposed to paired source 
and target images. Using this prior information, the network learns how to 
transform the source image into the target image. In contrast, in 
unsupervised DL training (Figure 8B), unpaired source and target images are 
introduced to the network. The network discovers patterns, structures, or 
representations within the data to learn how to transform the source image 
to its target. In the self-supervised approach (Figure 8C), the network learns 
inherent image features to perform the desired image transformation task 
without the need for training data. One big advantage of using DL in image 
analysis is its ability to extract features not visible to the human eye and, 
therefore, minimize human bias (Hinton and Salakhutdinov, 2006). 

 
Figure 8: Deep learning algorithms. Training of a DL model can be done using a 
supervised, unsupervised or self-supervised approach. In the supervised DL 
approach (A), paired source and target images are introduced to the network 
whereas in unsupervised training (B) unpaired source and target images are 
introduced. Using this prior information, the DL network learns how to transform 
the source image into the target image. In the self-supervised approach (C), networks 
learn inherent patterns in the images to perform the desired task. Image modified 
from (Pylvänäinen et al., 2023b). 

Training DL models is computationally demanding and time and data 
expensive. Additionally, it is difficult to estimate a sufficient number of 
training rounds (epochs) and images. To optimize the training process, it is 
common to use pre-trained models as a starting point and improve them 
using own image data via transfer learning (Pan and Yang, 2010). In transfer 
learning, the used model is improved by introducing additional images, 
image augmentation, and training for additional epochs to generate an 
improved model for a desired task (von Chamier et al., 2021).  

There are numerous pre-trained DL models to conduct different DL tasks 
openly available in model zoos such as the Bioimage model zoo (Ouyang et 
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al., 2022). One of the most popular pre-trained segmentation models for 
nuclei segmentation is the StarDist versatile nuclei model trained with a 
subset of 670 nuclei images from diverse modalities of the DSB 2018 nuclei 
segmentation challenge dataset (Schmidt and Weigert, 2022; Caicedo et al., 
2019). I have used this model as such and as the basis for generating my 
custom StarDist models in several DL tasks in this thesis.  

There are multiple initiatives to help life scientists train their models and 
incorporate pre-trained models into their research without having to learn 
programming. ZeroCostDL4Mic platform (von Chamier et al., 2021) has 
democratized DL training by providing an extensive collection of DL 
networks through user-friendly Google Colab notebooks, which can utilize 
the graphics processing units (GPUs) provided by Google for faster model 
training. The Cellpose 2.0 (Pachitariu and Stringer, 2022) allows interactive 
human-in-the-loop training of Cellpose models. These trained models can 
then be directly utilized as part of a complete image analysis workflow, for 
example, in Fiji using the DeepImageJ plugin (Gómez-de-Mariscal et al., 2021) 
or in QuPath (Pettersen et al., 2022).  

2.3.2 Deep learning to remove noise  

Live cell imaging data encounters various challenges, typically arising from 
the necessity to find a balance between image quality and sample health, 
leading to the acquisition of images with low SNR (Icha et al., 2017). There 
has been substantial progress in how SNR can be improved with the help of 
denoising DL networks (Figure 9A). 

Denoising DL networks can significantly improve image quality and allow the 
usage of lower illumination power for imaging. Supervised denoising 
networks such as CARE (Weigert et al., 2018) and 3D-RCAN (Chen et al., 
2021) can effectively improve the SNR of microscopy images. Clever planning 
of the experiment and training datasets enables efficient restoration of image 
quality and can even enhance the resolution when trained with an 
appropriate dataset (Laine et al., 2021a). Usually, the training is performed 
using a paired dataset of fixed samples imaged with a higher resolution and 
illumination power and then in expected low SNR conditions (Spahn et al., 
2022). Depending on the selected DL network and the instrument set-up, in 
some cases, the training datasets can be generated simultaneously during the 
image acquisition (Wagner et al., 2021). 

In cases where no paired training data is available, it is also possible to utilize 
self-supervised DL networks, such as Noise2Void, for DL-enabled denoising. 
This network learns directly from the input image, and in the case where the 
noise is random, it can even perform equally well when compared to 
networks that require paired training datasets (Krull et al., 2019). DL-
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enabled denoising methods are efficient in denoising image data for 
morphological or spatial analyses. However, they, nor classical denoising 
methods, should not be used prior to image intensity analyses, as they may 
introduce artifacts and distort pixel intensities, potentially leading to 
erroneous intensity quantification (Laine et al., 2021b).     

2.3.3 Deep learning for artificial labeling 

In cases where it is necessary to label a structure of interest in a cell, but the 
fluorescent illumination severely damages the cells, alters their behavior, or 
in the absence of access to suitable dyes or instrumentation, artificial labeling 
can help. Artificial labeling in the context of microscopy typically involves the 
application of generative adversarial networks (GANs) for image-to-image 
translation, enabling the prediction of cellular structures. Artificial labeling 
employs DL models, such as pix2pix (Isola et al., 2017), that have been 
trained, for example, with pairs of brightfield and fluorescent images, to 
predict the fluorescent staining in unseen brightfield images (Figure 9B) 
(Christiansen et al., 2018; Ounkomol et al., 2018).  

2.3.4 Deep learning for improvement of spatiotemporal resolution  

The spatial resolution of light microscopes is usually limited to 250 nm due 
to the diffraction of light, hindering the possibility of observing the dynamics 
of small objects. Various super-resolution strategies have tried to break the 
diffraction limit (Jacquemet et al., 2020), although usually at the expense of 
the sample's health. Classical image processing methods, such as 
deconvolution (Soulez et al., 2012) or Wiener filtering, are commonly used to 
enhance the resolution of fluorescent microscopy images.  Additionally, DL 
networks can be used to improve the spatial resolution of fluorescent 
microscopy images (Figure 9C). For example, single-frame deep-learning 
super-resolution microscopy (SFSRM) super-pixelates an image and predicts 
missing details, reaching up to 30 nm spatial resolution (Chen et al., 2023). 
The Fourier channel attention network (DFCAN) deploys the Fourier domain 
for robust SIM reconstruction, even under low SNR imaging conditions and 
high noise, achieving comparable image quality to SIM (Qiao et al., 2021). 
Other DL networks can aid the reconstruction of images acquired using 
super-resolution techniques. Such networks can successfully reconstruct, for 
example, SIM (Jin et al., 2020) or single-molecule localization microscopy 
(SMLM) images (Speiser et al., 2021).  

DL networks can also be used to improve the temporal resolution of the video 
(Figure 9D). This is especially useful when long acquisition times are 
required for imaging a certain process, but the sample health is compromised 
by light or the sample bleaches easily. Slower imaging also allows cells to 
recover from possible light-induced cellular damage. A content-aware frame 
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interpolation (CAFI) network can predict missing frames to improve 
downstream analysis, for example, tracking (Priessner et al., 2021).   

 
Figure 9: Deep learning for improving live cell imaging data. A) Noisy images of 
nuclei acquired using a spinning disk confocal microscope, denoised using a CARE 
2D model. Scale bar: 50 μm. B) Brightfield microscopy was used to image migrating 
breast cancer cells, and the nuclei image was digitally generated from the brightfield 
image using a Pix2pix model. Scale bar: 100 μm. C) Cells labeled with Life-Act were 
imaged using a widefield microscope. The increased image resolution was achieved 
using the DFCAN DL network. Scale bar: 5 μm. D) Illustration of how a DL network 
like CAFI can enrich the temporal resolution of a live cell imaging dataset through 
smart interpolations. Image adapted from (Pylvänäinen et al., 2023b). 

2.3.5 Machine and deep learning for segmentation 

In live cell imaging, the goal is often to learn about cell movements and their 
behavior using tracking. Tracking commonly relies on successful object 
recognition, which has been greatly aided by ML and DL algorithms (Lucas et 
al., 2021). Although this chapter mainly describes DL methods for image 
segmentation, some ML methods and tools deserve to be mentioned in this 
context.  

In ML approaches for microscopy, a user annotates an image by labeling and 
assigning the annotations to two or more classes. The image features in the 
annotations are passed on to a powerful algorithm, the classifier. Based on 
the user annotations, the classifier builds a decision surface in feature space 
and projects the class assignment back to pixels and objects of the whole 
image. The user can further optimize the annotations interactively to 
improve the classifier. ML learning algorithms are available for life scientists,  
for example, through the Weka trainable segmentation Fiji plugin (Arganda-
Carreras et al., 2017) and ilastik (Berg et al., 2019). Both these tools provide 
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non-coding environments for training ML algorithms for pixel classification. 
Ilastik also extends the pixel classification to enable object classification and 
segmentation of objects based on their boundary information. 

Preparing data for subsequent downstream analysis often involves the 
segmentation of nuclei or entire cells. In this context, two DL models, namely 
StarDist and Cellpose, provide excellent segmentation capabilities (Figure 
10). StarDist DL network (Figure 10A) is designed to detect Star-convex 
polygons and, therefore, is well suited for nuclei segmentation (Schmidt et 
al., 2018). On the other hand, the Cellpose algorithm, commonly used for 
whole-cell segmentation (Figure 10B), employs a DL network that first 
detects and segments cells by identifying their boundaries and then assigns 
labels to each segmented cell based on learned patterns and features 
(Stringer et al., 2021). Segment anything for microscopy algorithm is one of 
the newer additions to the DL segmentation networks, allowing training of 
generalist models for multiple imaging modalities (Archit et al., 2023). All 
these above-mentioned algorithms output label images, allowing robust 
analysis using analysis software such as Fiji (Schindelin et al., 2012) or 
CellProfiler (Stirling et al., 2021) and can be directly integrated into cell 
tracking tools such as TrackMate (Ershov et al., 2022). 

 
Figure 10: Deep learning enabled image segmentation. A) Cell nuclei were 
imaged using a widefield microscope and segmented using the Versatile nuclei 
StarDist model. Scale bar 50 μm. B) Cells expressing a cytoplasmic reporter were 
imaged using a widefield microscope and segmented using a custom-made Cellpose 
model based on the Cyto2 model. Scale bar 50 μm. 

2.3.6 Quality assessment of deep learning models 

Quality control of the trained DL models is essential in any DL pipeline. A 
common problem when applying DL to image data is that the quality control 
is done by visual inspection rather than quantitative analysis. In this chapter, 
I focus on the quality control metrics and tools that I have used in my thesis.  

Segmentation is an essential step in multiple image analysis workflows. 
Commonly used DL networks such as StarDist (Schmidt et al., 2018) and 
Cellpose (Stringer et al., 2021) usually provide excellent segmentation 
results that can be further improved by transfer learning. Often, the question 
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is, “When is my deep learning model good enough?”. In DL, quality control is a 
two-step process. First, the loss functions over the number of epochs trained 
are inspected to monitor the training. Second, image quality metrics, between 
the model predictions and manually annotated ground truth, are typically 
compared (von Chamier et al., 2021). Ground truth images play a significant 
role in training supervised DL models and when assessing the trained 
model’s performance. The ground truth images can be generated directly at 
a microscope or annotated manually. Manual annotation is a slow and 
laborious process, but fortunately, there are several tools available to help in 
the generation of manual annotations (Arzt et al., 2022; Schindelin et al., 
2012; Bankhead et al., 2017; Gupta et al., 2022).  

During DL model training, part of the labeled training data is set aside as 
validation data. At the end of each epoch, the model performance is compared 
to this validation data to generate two losses, a training and a validation loss. 
These are calculated by computing the difference, for example, calculating 
the MSE values between the predicted and the actual images at the end of 
each epoch. During training, the goal is to minimize the loss function; a 
smaller loss function indicates that the model's predictions are closer to the 
actual target image. Training loss tells how well the model performs on the 
training data, whereas the validation loss tells how well the model performs 
on the validation data. If the training loss and validation curves are both 
decreasing at the end of the training, typically the model should be trained 
for more epochs, whereas a flattened curve indicates that no more training is 
needed (Figure 11A). In a case where the validation loss increases while 
training loss simultaneously decreases (Figure 11B), the network is 
overfitting, meaning that it remembers the exact patterns from the training 
data and no longer generalizes well to unseen data. In such a case, the 
training dataset should be increased, or the training parameters should be 
adjusted. Overall, a comparison between the development of the validation 
loss with the training loss can give insights into the model's performance. 
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Figure 11: Assessment of training and validation loss during training. During 
training, a DL model part of the training data is set aside for validation. At the end of 
each epoch, the model performance is compared to this validation data to generate 
two scores, a training, and a validation loss. Training loss tells how well the model 
performs on the training data whereas the validation loss tells how well the model 
performs on the validation data. A) If both training and validation loss curves are 
flattened no more training is needed. B) In a case where the validation loss increases 
while training loss simultaneously decreases, the network is overfitting, meaning 
that it remembers the exact patterns from the training data and no longer generalizes 
well to unseen data. In such a case, the training dataset should be increased. 

In segmentation models, the overall model performance can be evaluated by 
comparing the ground truth images to the prediction of the DL model. One of 
the most used metrics is the Jaccard index (Jaccard, 1901) also called the 
intersection over union (IoU), which measures the overlap between objects 
on a scale from 0 (no overlap) to 1 (perfect overlap). This metric can be used 
to assess the quality of the used DL model to accurately predict structures of 
interest. 

For instance segmentation, it is useful to evaluate the model performance in 
a level of individual objects, by comparing true and false objects between the 
ground truth and the prediction (Figure 12). True positive objects (TP) are 
objects that have an IoU above a given threshold between the ground truth 
and the segmentation result. False positives (FP) are not present in the 
ground truth but are in the segmentation result, and finally, the false 
negatives (FN) are present in the ground truth but missing in the 
segmentation result. Out of these values, accuracy, precision, and recall can 
be calculated. The accuracy score displays the ratio of the sum of TP and TN 
out of all predictions indicating how well the segmentation result performs 
in separating the foreground and background. The precision score is the 
count of TP out of all positive predictions. Recall score (or sensitivity) 
measures the count of TP out of all actual positive values. F1 score is the 
harmonic mean between precision and recall score (Laine et al., 2021, 
https://focalplane.biologists.com/2023/04/13/quality-assurance-of-
segmentation-results, 06.03.2024). 
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Figure 12: Segmentation quality control. The ground truth image (green) is 
compared with the output predictions (pink). When the predicted segmentation is 
close to the ground truth, IoU and F1 scores are high (prediction 1), whereas in cases 
where the prediction differs from the ground truth, the IoU and F1 scores are low 
(prediction 2). In the context of instance segmentation, the segmentation 
performance of a DL model can be assessed by comparing the numbers of 
overlapping objects above a given IoU and non-overlapping objects between the 
prediction and the ground truth images. This comparison yields additional insights 
into the model's segmentation capabilities. 

Pix2Pix (Isola et al., 2017) is a type of conditional GAN designed to perform 
image-to-image translation tasks. To assess the performance of a pix2pix 
model, unlike in segmentation models, inspection of the loss curves is not 
useful. Pix2Pix introduces adversarial training, where a generator learns to 
create realistic-looking images, while a discriminator tries to learn to 
distinguish between real and generated images. The generator is guided by an 
adversarial loss, which calculates the difference between real and generated 
images produced by the generator. The discrimination is guided by a pixel-
wise loss, which measures the difference between corresponding pixels in the 
generated and real images. This game-like competition might lead to the 
generation of realistic-looking images, which fool the discriminator but don’t 
capture the true characteristics and details of the target image. Instead of 
comparing these loss functions, it is more useful to incorporate image 
similarity metrics and visual inspection between the ground truth and the 
predicted image to ensure the performance of the generated pix2pix model. 
Most used image similarity metrics are structure similarity (SSIM) (Wang et al., 
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2004), learned perceptual image patch similarity (lpips) (Zhang et al., 2018), 
root squared error (RSE), normalized root mean squared error (NRMSE) and 
peak signal-to-noise ratio (PSNR) (Laine et al., 2021a).  

SSIM metric is a commonly used normalized measure for assessing whether 
two images share the same structures. The similarity of the two images is 
indicated by how close the SSIM value is to 1. Additionally, the SSIM maps can 
be used to visually represent the SSIM value. These maps are generated by 
calculating the SSIM metric for each pixel while considering the surrounding 
structural similarity in the pixel's neighborhood. RSE map visually 
represents the square root of the squared difference between the normalized 
predicted and ground truth images. A smaller RSE value indicates a higher 
similarity. The NRMSE calculates the average difference between all pixels in 
the compared images. Higher similarity is shown when the scores are lower. 
PSNR is a metric that quantifies the difference between the ground truth and 
prediction in decibels. This is done using the peak pixel values of the 
prediction and the Mean Squared Error (MSE) between the images. Better 
agreement is indicated by a higher PSNR score. Lastly, a score that is more 
aligned with human perception is provided by the lpips (Zhang et al., 2018), 
a metric used to measure the perceptual similarity between two images. It 
captures the differences in visual perception as perceived by humans and is 
trained using natural images. 

There are several tools for evaluating DL models. For example, the 
ZerocostDL4Mic platform (von Chamier et al., 2021) integrates useful quality 
control metrics as a part of the training workflow. Additionally, the napari 
plugin called the segmentation game (Haase and Schätz, 2022) allows 
quantitative comparison of segmentation results against ground truth 
annotations. It is possible to fine-tune parameters and even compare 
different segmentation algorithms to find the best possible parameters for a 
particular dataset. 

2.4 Feature extraction 

Feature extraction refers to a process where image data is transformed into 
numerical non-image data. Image features can be divided into three main 
categories of information: intensity-based features, shape or spatial features, 
and spatio-temporal features (Nketia et al., 2017). Intensity-based features 
can be derived directly from the image's pixel values, such as the mean or 
total intensity of the object or image or object texture. Shape features are 
extracted from a segmented object and can describe, for example, the object's 
area, volume, roundness, or information about the object's coordinate 
location. Spatio-temporal features consider the time dimension and can 
describe, for example, the overall features, such as the mean speed of the 
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object or local features, such as acceleration. Additionally, when studying 
images that have two or more channels, features such as colocalization or 
signal overlap can be measured. 

Fiji (Schindelin et al., 2012) is probably the most widely used tool for feature 
extraction as it comes with a built-in feature extraction function coupled with 
the possibility to manage and store ROIs. Fiji extends the feature extraction 
to 3D data by using the 3D ImageJ Suite plugin (Ollion et al., 2013) and 
provides specialized tools, such as the OrgaMapper (Schmied et al., 2023), for 
measuring spatial relationships between objects. Additionally, tracking 
plugins such as TrackMate (Ershov et al., 2022; Tinevez et al., 2017) allows 
the extraction of spatiotemporal information, which can be directly linked to 
object intensity or shape features for elegant live cell imaging data analysis.  

3 Image processing and analysis for live cell imaging 
Live cell imaging provides a means for the visualization recording of central 
biological processes, such as cell migration and proliferation, which both 
have a key role in health and disease (Franz et al., 2002). Although live cell 
imaging methods are powerful, the generated image data can suffer from 
issues, such as sample drifting or bleaching, making the downstream analysis 
difficult. Therefore, the images usually need to be processed and analyzed 
using computational image analysis methods to extract quantitative 
information from the produced image data. In this chapter, I introduce 
common image processing and analysis methods, applications, and tools for 
live cell imaging analysis that are relevant to the work we conduct in our 
laboratory.  

3.1 Image registration and drift correction 

3.1.1 Image registration problem 

Image registration is the process of transforming two images into one 
coordinate system. Registration is essential when combining image data 
from different imaging modalities, allowing their comparison and analysis. 
Matching the observed areas between modalities has long been a major issue, 
especially in the medical imaging field, but also becomes relevant in life 
science research, for example, in correlative light and electron microscopy, a 
combination of fluorescence microscopy and high-resolution electron 
microscopy (de Boer et al., 2015). Channel misalignment can also be 
considered a registration problem. Small shifts in the channel alignment can 
cause problems, especially in multichannel super-resolution imaging, such as 
STORM (Øvrebø et al., 2023). 
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Sample drifting is introduced to live image data from an unstable microscope 
environment or the sample movements. Drift correction between frames can 
essentially be considered an image registration problem, but instead of 
matching images from different modalities, matching now needs to be 
performed between images at different time points. Drift correction allows 
alignment and stabilization of sequential images for reliable quantitative 
downstream analysis. Image drifting, which is impossible to remove during 
acquisition, must be removed post-processing.  

Most of the post-acquisition image registration methods consist of four steps. 
First, extrinsic or intrinsic features of the image are extracted. Second, 
detected features in the moving and reference images are matched. Third, a 
suitable image transformation is defined, and the transformation is applied 
to the moving image (Zitová and Flusser, 2003). In the following chapters, I 
give an overview of these four steps in the context of drift correction in live 
cell imaging.  

3.1.2 Image feature detection 

For the estimation of drift between frames, two types of information can be 
extracted from images: extrinsic or intrinsic information. For example, one 
can place static fiducial markers like fluorescent beads or micropatterns on 
the sample before imaging. These markers can then function as reference 
points during the frame alignment process. They can be manually or 
computationally identified (i.e., segmentation), and the drift between frames 
can be calculated by measuring the displacement of these markers (Lee et al., 
2012).  

In live cell videos, frames are usually highly alike; therefore, it is possible to 
use intrinsic image features to find similarities between frames. Intrinsic 
image information refers to characteristics inherent to the images 
themselves, which can be extracted directly without the need for static 
markers. Intensity distributions or computationally extracted local features, 
such as corners or blobs, can be considered intrinsic features (Gonzalez and 
Woods, 2018). The challenges in utilizing intrinsic image information for 
drift correction live cell imaging arise from the movement of cells during the 
imaging process. It is useful to use a reference channel labeled with a non-
moving object and use the previous frame as a reference rather than the first 
frame of the video for frame matching. 

Image features can also be extracted in the frequency domain. In this 
technique, images are usually transformed into the frequency domain by 
using the Fourier transformation, and registration involves manipulating and 
matching the frequency components to achieve alignment. This approach is 
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beneficial when dealing with images affected by distortions, noise, or 
variations in intensity or contrast (Tong et al., 2019). 

3.1.3 Feature matching 

After detecting relevant features in different images, the next step in 
registration is feature matching. Feature matching involves finding the 
correspondence between the identified features in the images being 
registered (Gonzalez and Woods, 2018). Matching ensures that the same 
biological structures or landmarks are correctly identified in each image, 
forming the basis for subsequent alignment. 

Scale-invariant feature transform (SIFT) combines the feature detection 
feature matching in one step. It matches frames by extracting local features 
that are invariant to image scale and rotation. A corresponding feature of the 
moving image is recognized by individually comparing each feature between 
the reference and the moving image based on Euclidean distances and finding 
its nearest neighbor. SIFT is resistant to noise, which makes it usable for live 
cell imaging (Lowe, 2004). Like SIFT, speeded-up robust features (SURF) is 
designed for fast detection of key points independent of scale, rotation, and 
changes in illumination of the image. It is computationally more efficient than 
SIFT (Bay et al., 2008).  

Compared to feature-based methods, correlation-based methods consider 
the overall structural similarity of the image and, therefore, are not limited 
to extracting features in local areas (González, 2011). Cross-correlation is a 
frequently used drift correction technique for live cell image data (Wester et 
al., 2021; Mlodzianoski et al., 2011; Wang et al., 2014). It measures the 
similarity between two images by computing the cross-correlation of their 
intensity values. Cross-correlation is usually applied in the frequency domain 
and has been used for image registration of 2D (Laine et al., 2019) and 3D 
image data (McGorty et al., 2013). Phase correlation is a subset of cross-
correlation techniques commonly used for image registration (Parslow et al., 
2014; Preibisch et al., 2009). It isolates the phase information from the 
frequency representation of the image and analyzes the phase difference 
between them to estimate the required transformation. Both cross-
correlation and phase-correlation methods are best suited for linear 
transformations, where the entire image undergoes the same 
transformation.  

Block matching in image registration aligns two images by dividing them into 
smaller blocks or patches and finding corresponding blocks between the 
images by searching for the best matching block in the moving image within 
a neighborhood of the same size in the reference image. This approach is 
particularly useful when dealing with rigid transformations and local 
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deformations and has been widely used for medical image registrations 
(Commowick et al., 2012), although applications for live cell image data also 
exist (Fernandez and Moisy, 2021; Fernandez et al., 2022). 

3.1.4 Transformation models 

Image registration operations come in different types; though they all 
perform a similar task, they move one image in relation to the reference 
image. Different transformation models are used to complete this task based 
on the differences between images. Linear transformation models include 
rotation, scaling, translation, and affine registration transformations (Figure 
13). Linear transformations consider the image as a whole and cannot correct 
local geometric differences between images. Elastic or non-rigid 
transformation models can be used to correct local geometric differences. 
These transformations can locally warp the moving image to align it with the 
reference image (Gonzalez and Woods, 2018). 

Linear shift is a frequently encountered form of shift where the moving image 
is shifted solely in the x-, y-, and z-directions. This type of shift can be 
corrected using translational transformation models. When a rotational shift 
is introduced into the moving image, a rigid body transformation model is 
used for the correction. In the case of the moving image having a different 
scale, the scaling transformation model is used, and when skewing is 
incorporated into the mix, an affine transformation model can be used 
(Figure 13).  

In live cell imaging, the scale and the geometry of the images usually remain 
constant, but lateral and axial drifting pose significant challenges, 
particularly in long-term multi-position imaging experiments. In some cases, 
rotation can also be observed, for example, when imaging living organoids 
(Gsell et al., 2023). Linear transformation models are usually sufficient for 
correcting drift in live cell imaging.  
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Figure 13: Linear transformation models. Linear shifts between images can be 
divided into four different types. In the first column, a linear shift in the xy-direction 
is corrected using a translational transformation model. In the second column, a rigid 
body transformation model is used to correct image rotation. In the third column 
images of different sizes are transformed using a scaling transformation model. In 
the last column, an image with translation, rotation, scaling, and skewing is corrected 
using an affine transformation model. 

In the case of rotation, scaling, affine, or non-rigid transformations, the 
moving image needs to undergo image interpolation to match the coordinate 
system of the reference image. The selection of the suitable interpolation 
method relies on the requirement of interpolation precision. In most cases, 
the nearest-neighbor or bilinear interpolation provides sufficient results; 
however, some applications require more precise methods (Zitová and 
Flusser, 2003). 

3.1.5 Deep learning methods for image registration 

As many modern image processing methods include the use of DL, image 
registration is no different. DL registration methods include both supervised 
and self-supervised approaches. Supervised approaches, for example, 
FlowNet (Dosovitskiy et al., 2015), usually rely on the use of convolutional 
neural networks (CNNs) that learn how to transform the moving image to the 
reference image by being first trained on pairs with known transformation. 
This way, when new images are introduced to the network, they can be 
similarly aligned. Although supervised methods can achieve high accuracy in 
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image registration, they rely on available training data which might be 
challenging or expensive to acquire. Self-supervised methods, for example, 
VoxelMorph (Balakrishnan et al., 2019), on the other hand, use inherent 
information within the images and are therefore independent of training 
data.  

DL methods for image registration can also be categorized into feature 
detection methods and end-to-end methods. Feature detection methods 
involve finding distinct features in images followed by matching and aligning 
these features (Kuppala et al., 2020), for example, by using flow estimation 
(Dosovitskiy et al., 2015). They are robust to changes in image appearance 
and illumination but only in the presence of distinctive features uniformly 
distributed in all images. In end-to-end methods, the networks learn the 
optimal transformation directly from the images and they can usually handle 
complex and non-linear transformations. These methods are 
computationally demanding and may require large amounts of training data 
(Zhao et al., 2020). One example of an end-to-end DL method is Matchnet, 
which uses image similarity metrics to match two images (Han et al., 2015). 

DL methods used for drift correction in live cell imaging usually aim to align 
consecutive frames, compensating for any translational or rotational shifts. 
Some specialized networks have been developed to specifically correct 
drifting in live cell imaging data. For example, DenoiseReg incorporates a 
denoising step to end-to-end unsupervised DL-enabled affine registration of 
live cell microscopy data (Celikay et al., 2022).  

Applying DL-enabled registration to image data usually requires coding 
experience and thus remains unavailable for most life scientists. The 
exception to this is the DRMIME (Nan et al., 2020), an unsupervised end-to-
end network that uses mutual information as a metric, which was made 
available through the ZeroCostDL4Mic platform (von Chamier et al., 2021). 
Although, in some cases, DL-based registration methods outperform 
traditional registration algorithms, they are still slow in speed (Fischer et al., 
2014), difficult to use, and sometimes require large amounts of training data, 
causing life scientists often to look for more traditional image registration 
methods. 

3.2 Tracking 

Tracking is a part of live imaging experiments, allowing us to understand 
dynamic cellular movements and processes, providing crucial insights into 
various aspects of cell biology, physiology, and pathology. As cells are the 
fundamental units of life and are involved in numerous physiological and 
pathological phenomena, tracking their behavior over time through imaging 
techniques has become indispensable in modern biological research.  
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Spot tracking focuses on monitoring movements of a specific point or feature, 
such as a filopodia tips (Miihkinen et al., 2021), while object tracking involves 
the monitoring of entire objects, such as cell nuclei (Peuhu et al., 2022). In 
this chapter, I introduce the basic concepts of object tracking using cells as 
an example, how the acquired data can be interpreted, and how tracking 
performance can be assessed. 

3.2.1 Object tracking principle 

To extract biological insights from time-lapse microscopy videos, it is 
essential to identify objects, such as cells, and subsequently link their 
motions to create cell tracks. Once the tracks have been created, it becomes 
possible to monitor cell movements over time, which offers valuable details 
about cell velocities, trajectories, and the identification of cell-lineage 
relationships (Figure 14). 

 
Figure 14: Basic concept of segmentation and tracking. On the top row are six 
sequential frames from fluorescently labeled nuclei. In the middle row are binary 
segmentation masks of these nuclei. These masks help to locate nuclei from the 
background. A linking algorithm has been used on the bottom row to find 
correspondences between the masks. From the location of the nuclei in consecutive 
frames, it is possible to determine the trajectory of each nucleus and its velocity and 
cell division events (for example, cell C1 divides into two daughter cells, C11 and 
C12). On the right is a graph-based representation of the generated cell lineages 
found by the tracking algorithm. These graphs can be used to learn, for example, 
about cell division events. Redrawn based on (Ulman et al., 2017). 

3.2.2 Cell proliferation 

During cell proliferation, a cell grows and divides into two daughter cells, 
eventually leading to exponential growth in cell number. This process is 
essential in development and in maintaining cellular homeostasis. Cell 
proliferation is controlled by the cell-cycle control system, and when the 
system malfunctions, excessive cell division can result in cancer (Alberts et 
al., 2022).  
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Live cell imaging and image analysis play an important role in cell 
proliferation studies. In the most basic experiment, the cells are imaged using 
brightfield microscopy at different time points, and the total area covered by 
the cells between the time points is quantified, or the movement of the entire 
cell population is tracked. In many cases, measuring the total cell area in 
every time frame is sufficient to provide information about cell proliferation. 
The cell number can also be quantified by labeling the nuclei followed by 
manual or automated counting frame by frame using suitable image analysis 
software. 

Proliferating cells can also be identified using cell stains that bind to specific 
cell cycle markers, for example, the fluorescence ubiquitin cell cycle indicator 
(FUCCI) sensors (Zielke and Edgar, 2015). The FUCCI sensors highlight cells 
in the G1 phase with red fluorescence, while cells in S/G2/M are highlighted 
in green. During a short period at the G1/S transition, both probes are 
present. Therefore, the cells appear yellow (Sakaue-Sawano et al., 2008). The 
acquired images can then be quantified by measuring the amount of each 
signal over time or by using specialized FUCCI image analysis pipelines 
(Ghannoum et al., 2021; Taïeb et al., 2022). 

3.2.3 Object detection for tracking 

In live cell image data, objects, for example, cells, can be manually detected, 
involving a human observer manually marking the positions of cells in each 
frame. Manual detection is time-consuming, so automated detection 
approaches are commonly used. Although manual annotation is slow, it plays 
an essential role in the validation of cell tracking performance (Maška et al., 
2023). There are many available methods for automated cell detection that 
can be used to accelerate and standardize the cell detection process. 

For optical imaging, especially when working with fluorescent images, 
objects of interest are usually identified by using detectors. For roundish 
fluorescent objects of equal size, traditional filters such as Laplacian of 
Gaussian (LoG) or Difference of Gaussians (DoG) detectors can be used 
(Tinevez et al., 2017). These detectors use the frequency space of the image 
to identify local maxima and then further compute coordinates for the 
detected spots in the original image but without shape information. LoG and 
DoG detectors perform well when detecting blob-like objects of similar sizes, 
such as nuclei (Xu et al., 2017) or Myosin-X labeled filopodia tips (Miihkinen 
et al., 2021), but perform less efficiently when objects have irregular shapes, 
like whole cells.  

To learn about cell morphology or changes in their intensity over time, cells 
need to be identified from their backgrounds, or segmented in other words. 
Cells can be tracked by first performing segmentation in all frames, followed 
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by linking these in time. Segmentation is typically done by filtering the image 
followed by thresholding. The created mask can be improved by applying 
morphological operations such as closing holes or watersheding and labeling 
using connected component labeling (Zimmer et al., 2006, Figure 6). 
However, when segmenting non-fluorescent cells, simple intensity-based 
thresholding commonly fails and raises the importance of more sophisticated 
cell segmentation methods such as ML algorithms like random forest 
classifier (Breiman, 2001) or DL methods, such as Cellpose (Stringer et al., 
2021). Segmentation methods and algorithms are discussed in more detail in 
chapters 2.2.3 and 2.3.5. 

In a situation where cells express a high fluorescent signal compared to the 
background and retain consistent shape, it is possible to perform cell tracking 
without segmentation using methods such as correlation-based template 
matching (Perez-Careta et al., 2008). In this method, first, the object's 
neighborhood is defined, and the pixel whose neighborhood maximizes the 
correlation with the object's neighborhood in the previous frame or a 
manually defined reference frame is then considered the corresponding 
object in the following frame.  

3.2.4 Object linking  

Regardless of the detection methods, the objects need to be linked over time 
to track the detected objects to form trajectories. Among the more basic 
object linking approaches is the nearest neighbor algorithm (Crocker, 1996; 
Pietzsch et al., 2012), which assigns an object to the one closest object in the 
same trajectory within a user-defined distance. The nearest neighbor tracker 
performs quickly as it depends on a K-dimensional-tree technique, ensuring 
efficient tracking of many particles. However, the nearest neighbor tracker 
cannot perform frame-to-frame linking. Therefore, any cell division or a 
missing frame will be considered as the beginning of a new track.  

As cell division is an essential part of understanding cell behavior, more 
sophisticated algorithms are needed. For example, the linear assignment 
problem (LAP) algorithm (Jaqaman et al., 2008), available in TrackMate, 
addresses this problem by a two-step track-building process. First, detected 
cells or spots are linked between frames and track segments are built. These 
track segments are then investigated in a second step to identify missing 
detections, splitting, and merging events. This tracker overlooks the 
Brownian motion, and tracks with similar features can be favored. 

Another example of a linking algorithm featured in TrackMate is the Kalman 
tracker (Figure 15), which is best suited when tracking objects that move at 
a constant velocity. This tracker first links the two first frames using the LAP 
tracker and uses the Kalman filter (Kalman, 1960) to predict the most 
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probable position of a particle in the following frame, assuming that it moves 
with a constant velocity. In case of a missing spot in the defined radius, the 
Kalman tracker will predict the following frame and re-iterate the search. In 
addition to bridging gaps, the Kalman tracker has also been extended to 
detect track splitting and merging, which is essential for studying cell lineage.  

 
Figure 15: The Kalman tracker. The Kalman tracker relies on the Kalman filter to 
A) first predict the most probable position of a particle moving at a constant velocity 
and B) then the predicted positions are linked against the actual spot positions in the 
frame. Modified from (Tinevez, 2016).    

Tracks can also be generated by forming links between spots that overlap 
between consecutive frames using IoU. In the TrackMate v7, (Ershov et al., 
2022) this tracker is implemented so that the area of an object can be up or 
downscaled before the IoU calculation. If this scaled area overlaps with the 
scaled object in the consecutive frame by user-defined IoU, a link is created.  
As a bonus, this tracker can be used to generate 3D labels from image stacks 
by first flipping the z- and time dimensions, in other words tracking the slices 
as time. To generate the 3D image, the objects on the tracks are exported and 
time flipped back to z-slices (Ershov et al., 2022).    

The cell contour detection method brings another solution to study cell 
morphological dynamics. In this method, the cells are first identified by a cell 
contour evolution method, where the cells are segmented in the first frame, 
and these contours are then evolved into consecutive frames. Tracking by 
contour evolution performs the segmentation and tracking steps 
simultaneously. This method assumes spatiotemporal overlap between 
objects between frames and is not suitable for fast-moving objects 
(Chaumont et al., 2012; Dufour et al., 2011). 
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3.2.5 Available tracking tools 

There are numerous cell-tracking tools available that use classical 
approaches or DL-enabled cell tracking. Here, I introduce a few commonly 
used tools covering different cell tracking and analysis approaches.   

MaMuT (Manual Tracking for Multi-object) (Wolff et al., 2018) is a plugin for 
Fiji, designed for manual annotation and tracking of objects in multi-
dimensional time-lapse images. It provides a user-friendly interface to 
facilitate the tracking of multiple objects, such as cells, in microscopy data. 

TrackMate (Tinevez et al., 2017) is a popular tracking tool in Fiji, which we 
have used in this thesis. TrackMate allows LoG or DoG detector-based object 
detection, multiple tracking algorithms, and analysis tools for quantification 
of cell migration. I contributed to the development of  TrackMate (v7) 
(Ershov et al., 2022), which incorporates various segmentation methods for 
cell detection and new tracking and analysis features. I further discuss these 
developments in the results and discussion sections.  

In live cell imaging, the resulting image data can be several terabytes in size. 
Dealing with these large datasets and creating annotations for them is 
difficult. Mastodon (https://github.com/mastodon-sc/mastodon, 
06.03.2024) is a tracking and track-editing framework for large and multi-
view images, allowing automated cell or particle tracking, manual curation 
and correction of tracking results, and manual and semi-automatic tracking. 
It allows interactive browsing of the data by storing it in small chunks 
corresponding to a neighborhood. As the Mastodon viewer shows a slice 
through the image, the required chunks are loaded on demand and cached. 
The image is also stored as a multi-scale pyramid to speed up interactive 
zooming. 

A recent Python-based cell-tracking tool, Ultrack (Bragantini et al., 2023), 
simultaneously computes cell tracks and segments using a hierarchy of 
segmentation hypotheses and selects separate segments by maximizing the 
overlap between adjacent frames. This tool can track terabyte-scale datasets 
with high precision, allowing tracking of thousands of objects in 3D image 
data.  

Cell tracking can be enhanced using DL. Most tracking tasks handle 
segmentation and linking steps as consecutive tasks, and few incorporate 
these two steps in one workflow. One such tool is the btrack Python package 
(Ulicna et al., 2021). btrack approach consists of a U-NET-based cell detection 
step, where individual cells are segmented from fluorescent live-cell images, 
which are then cropped to patches. These patches are extracted from the 
corresponding cell positions in both transmission and fluorescence channel 
images and used as inputs to a CNN-based cell state classifier to label the cell 

https://github.com/mastodon-sc/mastodon
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cycle phase of each segmented object. The segmented and classified objects 
are then tracked using a Bayesian tracking algorithm to reconstruct 
individual cell trajectories. With all the acquired information, btrack finally 
assembles parent-children relationships into lineage trees. 

Similar to btrack, the DeepSea network (Szabó et al., 2023) uses a two-step 
process where it first segments cells and then applies another DL network 
that extracts convolutional information from two consecutive frames to 
localize and detect the same target cell or its daughter cells among the 
segmented cells in the second frame by generating a binary mask. DeepSea 
allows the following of multiple cellular phenotypes and cell division cycles 
across the video and generates lineage trees (Zargari et al., 2023).  

To ease the generation of training data by enhancing human interaction 
during training new tools such as ELEPHANT (Efficient learning using sparse 
human annotations for nuclear tracking) (Sugawara et al., 2022) are 
developed. ELEPHANT is implemented as an extension of Mastodon and it 
implements two algorithms optimized for incremental DL using sparse 
annotations, one for detecting nuclei in 3D and a second for linking these 
nuclei across time points in 4D image datasets. Incremental learning allows 
DL models to be trained step-by-step, starting from sparse annotations that 
are incrementally enriched by human proofreading.  

3.2.6 Evaluation of tracking performance 

Although cell tracking algorithms have been available for a long time, they 
still usually consist of two consecutive tasks: cell detection and linking. The 
quality of cell detection and segmentation is greatly dependent on the quality 
of the image data produced. Low SNR, cell division, and long gaps between 
image frames greatly affect the tracking quality, bringing challenges to 
reliably tracking the cells. The diversity of available algorithms, life scientists 
often struggle to decide which algorithm to use in their experiment. An open-
source community effort known as the Cell Tracking Challenge (CTC) 
(http://celltrackingchallenge.net, 11.03.2024) has emerged to address this 
issue. Its primary goal is to establish an unbiased assessment framework for 
cell segmentation and tracking algorithms. This initiative offers valuable 
guidance to biologists in selecting suitable algorithms for their specific 
datasets while also assisting developers in enhancing their tracking 
algorithms (Ulman et al., 2017; Maška et al., 2023).  

The TrackMate-Helper tool (Ershov et al., 2022) was developed to help 
evaluate which tracking parameters (detectors and tracking algorithms), 
output tracking results closest to the ground truth. It provides a tool to first 
create the segmentation and tracking ground truths on a representative 
movie. Next, the TrackMate-Helper segments and tracks the same movie 

http://celltrackingchallenge.net/
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using different detection algorithms, linking algorithms, and parameter 
combinations. These are compared then with the ground truth, and 8 CTC-
metrics (Table 1) are computed defining the optimal tracking parameters.  
The identified optimal settings can then be used on the whole dataset. 

Table 1: TrackMate-helper metrics (Ulman et al., 2017). 

Metric Explanation Scale 
Segmentation 
accuracy 
measure (SEG) 

Evaluates the average amount of overlap 
between the segmentation and the ground 
truth. 

0-1 (1 is best) 

The tracking 
accuracy 
measure (TRA) 

Normalized weighted distance between the 
tracking solution selected by the user and 
the reference tracking ground truth. 

0-1 (1 is best) 

The detection 
accuracy (DET) 

How accurately each given object has been 
identified.  0-1 (1 is best) 

Complete tracks 
(CT) 

Measures the fraction of ground truth cell 
tracks that a given method can reconstruct 
from the frame they appear into the frame 
they disappear.  

0-1 (1 is best) 

Track fractions 
(TF) 

Averages the fractions of the longest 
continuously matching algorithm-generated 
track concerning the reference track.  

0-1 (1 is best) 

Cell cycle 
accuracy (CCA) 

Measures how accurately an algorithm 
reconstructs the length of the cell cycles. 0-1 (1 is best) 

Branching 
correctness 
(BC) 

Measures how efficient a selected tracking 
method is at detecting division events.  0-1 (1 is best) 

Execution time 
(TIM) Time of algorithm execution 

Seconds. 
Lower is 
better. 

 

3.3 Cell tracking analysis 

Phenotypic and behavioral information extracted from live cell imaging 
experiments is growing due to the easier availability of high throughput 
imaging systems and the development of automated cell tracking algorithms 
and tools. In many cases, some analysis tools are integrated with object 
detection or tracking software (Ershov et al., 2022; Hu et al., 2021; Al-Zaben 
et al., 2019; Aragaki et al., 2022; Ulicna et al., 2021), while newer tools are 
built to incorporate outputs of tracking software to complement the tracking 
software analysis (Wiggins et al., 2023; Wortel et al., 2021). Here I present a 
few tools I familiarized with during my thesis work, that can be used to 
understand how cells behave.  
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CellTrackerR (Wortel et al., 2021) is an R package published as a Shiny app 
called the MotilityLab  (http://www.motilitylab.net/startpage.php, 
08.03.2024). It can be used to manage tracking data, perform quality control, 
extract and visualize migration statistics and clustering tracks, and simulate 
cell migration of both 2D and 3D cell tracks. Tracking data provided by 
TrackMate data can be exported as a MotilityLab spreadsheet, which can be 
directly uploaded to the MotilityLab app for further analysis and 
visualization. In our work, we use it,  for example, for visualization of cell 
track direction and changes in signal intensities over time (Ershov et al., 
2022). 

To further complement the TrackMate (Ershov et al., 2022) analysis, a 
CellPhe (Wiggins et al., 2023) toolbox can be used. This toolbox can use the 
output of TrackMate or Phasefocus (Phasefocus Limited, Sheffield, UK) and 
recognize patterns to characterize changes in the cells’ appearance and 
behavior over time. The common downside in high throughput analysis is the 
uncertainty of segmentation and tracking quality, and error might add to the 
analysis. CellPhe uses decision trees to detect segmentation and tracking 
errors so that they can be removed from the analysis. CellPhe also 
interpolates possible missing tracks in cases where the cell might leave the 
field of view to prevent abrupt data.  

Furthermore, TrackMate data can be analyzed using a recent Python-based 
tool, CellTracksColab (Jacquemet, 2023), which operates in Google Colab 
with a user-friendly GUI for life scientists without coding experience. 
CellTracksColab is optimized to handle large datasets and allows track 
visualization, cell population analysis, statistical assessments, and exploring 
tracking data through dimensionality reduction techniques. CellTracksColab 
was originally developed to use TrackMate data as input but was later 
extended so that it can use any csv files as input as long as certain column 
requirements are filled.  

CellPLasticityAnalysisTOol (cellPLATO) (Shannon et al., 2023) is a Python-
based software that can measure and classify cell behavior. It uses cell 
morphology and motility parameter clustering to group cells into behavioral 
subtypes and generates a phenotypic fingerprint for each experimental 
condition. Finally, representative cells from each subtype can be graphically 
displayed. CellPLATO can use outputs from btrack (Ulicna et al., 2021), 
TrackMate (Ershov et al., 2022), or Usiigaci (Tsai et al., 2019) as input. 

3.3.1 Lineage tracing  

While cells migrate, they face different fates. Lineage tracing allows following 
these fates at the level of individual cells to further understand complex 
biological processes.  Live cell imaging data, when combined with cell 

http://www.motilitylab.net/startpage.php
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tracking, allows for the reconstruction of cell lineages, offering insights into 
the entire cell division history over several generations. In development, 
lineage tracing can provide information on how cells form distinct cell types 
found in various tissues and organs (Wolf et al., 2021). Cell lineages are 
usually visualized in the form of lineage trees, where the relationship of 
different generation cells can be understood (Figure 14) (Sandler et al., 
2015).  

3.4 Choosing a suitable image analysis tool 

There is a high number of image analysis software available and choosing the 
best for your purpose is difficult. The choice of the bioimage analysis 
software is closely related to the purpose of a given research project (Cimini 
and Eliceiri, 2023), the institute's availability of tools, for example, in the case 
of commercial software, and the skillset of the researcher (Haase et al., 2022).  

Commercial software such as Aivia (Leica Microsystems GmbH) and Imaris 
(Oxford Instruments) are commonly offered by imaging facilities, but open-
source software with intuitive user interfaces such as ImageJ/Fiji (Schindelin 
et al., 2012), CellProfiler (Stirling et al., 2021), Icy (Chaumont et al., 2012) or 
TissUUmaps (Pielawski et al., 2023) are also popular. Additionally, the 
Python image processing community has grown rapidly due to the 
availability of scientific Python software packages (van der Walt et al., 2014; 
Virtanen et al., 2020; Harris et al., 2020). To improve the usability of these 
packages, a napari project (Ahlers et al., 2023) has implemented a user-
friendly graphical user interface (GUI) that incorporates scientific Python 
packages and includes an n-dimensional image viewer and plugin 
development tools. Napari has also implemented a napari-ImageJ, based on 
the PyImageJ project (Rueden et al., 2022), which provides an accessible 
solution to access the ImageJ ecosystem via napari (Selzer et al., 2023). 
Similarly, TissUUmaps, a software specialized for the analysis of spatial 
transcriptomics data, can be run through napari through the napari-
tissuumaps plugin (https://github.com/TissUUmaps/napari-tissuumaps, 
06.03.2024)  

The usage of modern image analysis software and management of image 
analysis workflows require computational skills, which can be a struggle for 
an individual life scientist to master. Therefore, the developers of image 
analysis software must make significant efforts to develop user-friendliness 
and documentation of the software and build intuitive user interfaces to aid 
in the selection of suitable image analysis tools (Carpenter et al., 2012).  

https://github.com/TissUUmaps/napari-tissuumaps
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3.5 Image analysis workflows 

Most of the time, standalone components cannot solve complex bioimage 
analysis problems on their own. For this reason, bioimage analysis 
workflows need to be assembled. A bioimage analysis workflow can be 
described as a sequence of computational tools arranged in a particular order 
to process and analyze bioimages and calculate parameters that are relevant 
to the biological system being investigated (Paul-Gilloteaux et al., 2021).  

Most modern image analysis software, such as Fiji (Schindelin et al., 2012), 
Icy (Chaumont et al., 2012), and CellProfiler (Stirling et al., 2021) allow the 
combining of image processing, analysis, and even data visualization tools 
into a customizable image analysis pipeline. Fiji uses its recordable macro 
language for easy workflow construction, while a recent Fiji plugin called 
Modular Image Analysis (MIA) (Cross et al.) aims to provide a code-free 
graphical environment in which complex automated analysis workflows can 
be constructed and distributed. Worth mentioning is also the CLIJ (OpenCL - 
ImageJ bridge) Fiji plugin (Haase et al., 2020) that allows users with no 
coding skills to build GPU-accelerated workflows to speed up their image 
processing and segmentation workflows. These workflows can then be 
exported as Fiji macro language or as human-readable language.  

Python programming has increased usage for bioimage analysis due to its 
numerous available scientific libraries for image processing, ML, DL, analysis, 
and data visualization. Nowadays, Python scripts are often bundled in web-
based interactive computational environments, such as Jupyter or Google 
Colaboratory notebooks, providing user-friendly installation of 
dependencies and bioimage analysis in different operating systems (Levet et 
al., 2021). Similarly to CLIJ above, napari provides an assistant tool (Haase et 
al., 2023), which allows easy construction of image analysis workflows and 
their direct export to a Jupyter notebook. Omega (Royer, 2023) is a new and 
exciting tool to help life scientists build image analysis workflows. It is an 
interactive conversational agent based on large language models. Upon user 
request, Omega can perform image processing tasks, analyze images, or even 
provide step-by-step advice and instructions on how to build an image 
analysis workflow. Omega can create on-demand user interface widgets to 
create automated image analysis workflows. Omega is integrated as a plugin 
to napari (Ahlers et al., 2023), allowing users to instruct complex tasks 
without requiring prior programming knowledge. 

Despite the exciting advancements in bioimage analysis and workflows, 
researchers still face challenges when it comes to collaboration, data sharing, 
and the implementation of diverse analysis approaches (Soltwedel and 
Haase, 2023). Traditionally, image analysis workflows have been run on local 
computers, where software installation and hardware requirements can 
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become a headache, especially when working with large datasets. Local 
workflows are also difficult in collaborative projects and might not be 
reproducible due to varying software versions and platform dependencies 
(Ouyang et al., 2023).  

Therefore, the availability of web-based image processing and analysis tools, 
such as DeepCell Kiosk (Bannon et al., 2021) and ZeroCostDL4Mic (von 
Chamier et al., 2021), has been increasing and provides improved user 
experience, accessibility, and efficiency of biological research, allowing more 
time spent on biomedical discoveries (Ouyang et al., 2023). The software can 
be packed into a container to further enable the reproducibility and 
portability of bioimage analysis workflows. Containerization involves 
embedding a piece of software and all its dependencies and specific 
configurations in a container image file. Using this container image, it is 
possible to run the software consistently across different computing 
environments, including Google Colaboratory, one's own computational 
resources, or possibly available high-performance computing systems 
(Hidalgo-Cenalmor et al., 2023; Paul-Gilloteaux et al., 2021). 
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Aims of the Study 

Live cell imaging plays a crucial role when observing biological processes, 
such as normal development, wound healing, and cancer metastasis. Live cell 
imaging data is prone to several issues originating from unstable 
instruments, and the cells' sensitivity to light, thus complicating the 
downstream analysis. Bioimage analysis tools have become an integral part 
of the improvement and analysis of live cell imaging data, providing tools for 
extracting meaningful information in life science research.  

In this thesis, I aim to solve some of the issues in live cell imaging through the 
development of image processing and analysis tools specifically intended to 
improve and analyze live cell imaging data. I also aim to highlight the 
usability and modularity of these tools by applying them to two case 
examples where I incorporate the developed tools in image analysis pipelines 
to extract quantitative information from live cell imaging experiments.   

The specific aims of my thesis were as follows:  

Aim 1: To develop user-friendly image analysis tools for live cell 
imaging. To achieve this aim, I contributed to the development 
of:  

• Fast4DReg: a tool for fast and reliable video registration 
tool to correct drifting in 4D image data (work I) 

• TrackMate v7: a sophisticated cell tracking tool that can 
quantify morphological features during cell migration 
(work II)  

• DL4MicEverywhere: a tool that provides flexible 
training and deployment of DL models across diverse 
computational environments (work III) 

 
Aim 2: To incorporate image analysis tools in life science research. To 

achieve this aim, I contributed to creating image analysis 
pipelines to analyze live-cell imaging data using the tools 
developed in Aim 1. Using these pipelines, I aimed to: 

• study how circulating pancreatic cancer cells adhere to 
endothelial cells during cancer metastasis 
(unpublished work 1).  

• investigate how specific mutations affect cancer cell 
behavior and drug resistance (unpublished work 2). 
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Experimental Procedures 

1 Summary of dataset, tools, and methods 
Experimental procedures used in this thesis publications I-III are 
summarized in Table 2. Tools developed in this thesis have been applied to 
two ongoing unpublished works, unpublished 1 and 2, abbreviated u1 and 
u2, respectively. The original publications and the following chapter have 
detailed descriptions of my contributions to methods. 

Table 2: An overview of the experimental procedures used in this thesis. 

Experiment name Study 
Algorithm development I, II*, III* 
Dataset generation I, II, III 
Deep learning enabled segmentation II, III, u1, u2 
Deep learning enabled virtual staining III, u1, u2 
Documentation I, II, III 
Live cell image data processing and analysis I, II, u1, u2 
Live cell imaging I, II, III, u1*, u2* 
Microfluidics to study extravasation u1* 
Object tracking II, u1, u2 
Quality assessment I, II, u1, u2 

*experiment performed by collaborators  

Image analysis software and tools used in this thesis. Several different 
image analysis software and tools were created and used in this thesis.  These 
are summarized in Table 3. 

Table 3: An overview of the image analysis software and tools used in this thesis. 

Image analysis software 
and tools  Reference Study 

DL4MicEverywhere (Hidalgo-Cenalmor et al., 2023) III 
Fast4DReg (Pylvänäinen et al., 2023c) I, u1 
Fiji (Schindelin et al., 2012) I, II, u1, u2 
LOCI https://imagej.net/orgs/loci II, u1, u2 
StackReg (Thevenaz et al., 1998) u2 

TrackMate (Ershov et al., 2022; Tinevez et 
al., 2017) II, u1, u2 

ZeroCostDL4Mic (von Chamier et al., 2021) II, u1, u2 
Drift correction quality 
control notebook (Pylvänäinen et al., 2022) I 

Drift generator (Pylvänäinen et al., 2022) I 
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Datasets used in this thesis. In this thesis, we used several openly available 
datasets as well as generated new datasets to fit our purposes. These datasets 
are summarized in Table 4. Datasets generated for this thesis are described 
in more detail later. 

Table 4: An overview of datasets used in this thesis. u1 = unpublished project 1, u2 = 
unpublished project 2. 

ID Dataset name Reference of dataset Study 

D1 Datasets with 
synthetic drift* Zenodo: (Pylvänäinen et al., 2022)  I 

D2 DeepSTORM dataset (Leterrier and Laine, 2020) III 

D3 ERK dataset (BF)* Zenodo: (Pylvänäinen and 
Jacquemet, 2023) III 

D4 ERK dataset 
(fluorescent)* 

Zenodo: (Tinevez and 
Pylvänäinen, 2021) 
Zenodo: (Pylvänäinen et al., 
2023a)3/27/2024 2:33:00 PM 

II 

D5 Focal adhesion dataset Zenodo: (Jacquemet et al., 2022a) II 
D6 FUCCI dataset unpublished u2 

D7 Glioblastoma dataset http://celltrackingchallenge.net/ 
Zenodo: (Jacquemet et al., 2022b) II 

D8 LIVECell dataset (Edlund et al., 2021) III 

D9 MCF10 DCIS.com 
spheroid dataset Zenodo: (Tinevez et al., 2021b) II 

D10 Microfluidics dataset unpublished u1 

D11 Mouse hematopoietic 
stem cells http://celltrackingchallenge.net/ II 

D12 Neisseria 
meningitidis dataset Zenodo: (Le Blanc et al., 2021) II 

D13 Noisy synthetic drift 
datasets * Zenodo: (Pylvänäinen et al., 2022) I 

D14 T-cell dataset Zenodo: (Tinevez et al., 2021a) II 

D15 The calibration slide 
dataset Zenodo: (Pylvänäinen et al., 2022) I 

D16 The DCIS.com 
filopodia dataset Zenodo: (Pylvänäinen et al., 2022) I 

D17 The filopodia dataset Zenodo: (Pylvänäinen et al., 2022) I 

D18 The HUVEC 
monolayer dataset unpublished  u1 

D19 The mouse lung 
dataset Zenodo: (Pylvänäinen et al., 2022) I 

*datasets generated by me 
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Deep learning models used in this thesis. Both pre-trained and custom-
made deep learning (DL) models were used in this thesis (Table 5). All 
custom-made DL models used in this work were trained using the 
ZerocostDL4Mic platform (von Chamier et al., 2021).  

Table 5: An overview of DL models used in this thesis. u1 = unpublished work 1, u2 
= unpublished work 2 

ID DL models  Training 
dataset Reference Study 

M1 Cellpose Cyto model - (Stringer et al., 
2021) II 

M2 Cellpose Cyto2 model - (Stringer et al., 
2021) II, u1 

M3 Pix2Pix custom model 1 
(BF -> nuclei) * D10 unpublished u1 

M4 Pix2pix custom model 2 
(BF ->PECAM) * D10 unpublished u1 

M5 StarDist BF cancer cells D10 unpublished u1 

M6 StarDist custom model 
(U2OS) * D2 (Ershov et al., 

2022) II 

M7 StarDist fluorescent 
endothelial nuclei * D10 unpublished u1 

M8 StarDist MCF10DCIS.com D9 (von Chamier et 
al., 2021) II 

M9 StarDist T-cell model D14 (Fazeli et al., 
2020) II 

M10 StarDist Versatile nuclei - (Schmidt and 
Weigert, 2022) 

II, III, 
u1, 
u2 

M11 Pix2pix custom model 3 
(BF -> nuclei) * D3 (Pylvänäinen et 

al., 2023b) III 

M12 StarDist custom model 
(FUCCI) * D6 unpublished u2 

M13 Pix2pix custom model 4 
(FUCCI) * D6 unpublished u2 

M14 Stardist custom model  
(FUCCI – round cells) * D6 unpublished u2 

M15 DeepSTORM model D2 (von Chamier et 
al., 2021) III 

M16 Cellpose for LIVECell D8  III 
*models generated by me  
 



Experimental procedures 
  

50 

In this thesis, we also used machine learning algorithms trained using ilastik 
(Berg et al., 2019) or Trainable Weka Segmentation (Arganda-Carreras et al., 
2017) in Fiji (Schindelin et al., 2012). 
 
Table 6: An overview of ML models used in this thesis. 

ID Machine learning 
models  

Training tool 
and dataset Reference Study 

M17 Neisseria meningitidis 
model* Ilastik, D12 (Ershov et al., 

2022) II 

M18 Focal adhesions 
model* 

Weka (Fiji), 
D5 

(Ershov et al., 
2022) II 

*models generated by collaborators 

2  Benchmarking the performance of Fast4DReg (I)  
The inspiration to develop a new tool for fast 3D drift correction of live cell 
videos arose from the need of the lab to analyze live cell imaging data, which 
suffered from drifting and made downstream analysis difficult. Our lab had 
previously used other tools, such as Correct 3D Drift (Parslow et al., 2014) or 
Fijiyama (Fernandez and Moisy, 2021), which did not provide sufficient drift 
correction for our data (Study I: Fig. 4A-C) and were slow in performance 
(Study I: Fig. 4D). For 2D time-lapse data, we successfully used the drift 
correction tool from the NanoJ toolbox (Laine et al., 2019). We wanted to 
extend this algorithm to 1) allow drift correction in 3D time-lapse data, 2) 
allow alignment of 3D images with misaligned channels, 3) allow application 
of estimated drift parameters to another dataset, and 4) allow batch 
processing. All these needed to be packaged in a user-friendly pipeline and 
operate fast. Here, I focus on how we benchmarked the drift correction 
performance and speed against other similar tools.  

2.1 Development of the Fast4DReg algorithm 

The development of the Fast4DReg algorithm was inspired by the NanoJ 
tools, which allowed drift correction of 2D images using cross-correlation 
(Laine et al., 2019). Briefly, as described before (Sun, 2002), the cross-
correlation between two images is calculated by first performing a discrete 
Hartley transform on the reference and the moving image, followed by a 
multiplication of one of the transformed images by the complex conjugate of 
the other. The result of this multiplication is then inversely transformed back 
to real space, generating a cross-correlation map (CCM). A bicubic spline 
interpolation is then used to upscale the CCM and achieve subpixel precision. 
The upscaled CCM is normalized by calculating the Pearson's correlation 
coefficient between the two images shifted according to the minimum and 
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maximum values of the upscaled CCM. Finally, the linear shift between the 
reference and the moving image is then calculated by taking the global 
maximum peak of the normalized up-scaled CCM (Laine et al., 2019). To allow 
3D images as an input, we added a step that created z- or y-intensity 
projections to create a 2D representation of each frame and applied the 
above-described algorithm to those. In the case of aligning channel 
alignment, we first convert the channels into time frames. Fast4DReg is 
written using a combination of an ImageJ macro and Java and is distributed 
via an ImageJ update site. 

To allow smooth operation for all life scientists, we designed Fast4DReg for 
Fiji (Schindelin et al., 2012) and added a user-friendly UI that allows the 
import of various image file formats using Bio-Formats (Linkert et al., 2010), 
and allows batch processing. In the case of large datasets and a computer 
with limited resources, the user can use a random-access memory (RAM) 
saving mode, which saves the output images in the same bit depth as the 
source image instead of an upscaled 32-bit image.  

As the output, Fast4DReg creates a new folder with the experiment number 
(inserted in the UI) and the date of the experiment. This folder contains the 
corrected files, drift tables, drift plots, and a settings file, which can be applied 
to another dataset to correct similar drift.  

2.2 Generation of benchmarking datasets 

2.2.1 Datasets with synthetic drift (D1) 

3D image of a single fixed pancreatic ductal adenocarcinoma cell (AsPC1, 
American Type Culture Collection, CRL-1682) expressing Lifeact–mScarletI 
migrating inside the vasculature of a zebrafish embryo grown in Roswell 
Park Memorial Institute medium (Thermo Fisher Scientific, 11875093) 
supplemented with 10% fetal bovine serum (FBS) (Biowest, S1860). The 
image was acquired using a 3i CSU-W1 spinning disk confocal microscope 
equipped with a 40× water immersion objective (NA 1.15) and a Hamamatsu 
sCMOS Orca Flash camera and controlled by the Slidebook 6 software 
(Intelligent Imaging Innovations, Inc.). The synthetic drift dataset was 
created by multiplying this image 25 times while adding a known amount of 
x-, y- and z-drift (Table 7) between each frame, by using the Drift generator 
script (Pylvänäinen et al., 2022). After the drift was simulated, the image 
background was made homogeneous via pixel intensity subtraction and by 
adding specified noise using Fiji (‘add specified noise’ function). 
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Table 7: Drift table indicating the known amount of drift added between frames. 
Values are in pixels. 

Frame X-drift Y-drift Z-drift 
1 -0.1846 -0.842 0.7736 
2 1.1534 0.69 -1.0418 
3 0.3099 1.261 -0.5265 
4 1.3837 1.961 -2.517 
5 2.8785 1 -3.3751 
6 3.221 -0.072 -4.0643 
7 4.83 -2.012 -2.4789 
8 6.2691 -4.293 -4.9687 
9 7.1845 -7.21 -5.6736 
10 8.8191 -11.375 -7.2127 
11 12.1096 -13.948 -6.6842 
12 13.6142 -18.579 -7.6793 
13 15.5335 -25.244 -7.4236 
14 18.8507 -32.933 -7.7894 
15 21.5718 -37.042 -9.3144 
16 25.3066 -45.681 -8.9694 
17 28.4077 -52.989 -9.1761 
18 32.8398 -60.376 -9.9103 
19 34.7591 -71.216 -10.8287 
20 40.0535 -79.337 -10.9413 
21 42.8704 -90.376 -11.5039 
22 47.4757 -100.918 -13.4116 
23 51.8525 -112.391 -14.2919 
24 56.8755 -124.903 -14.3824 
25 62.7437 -137.609 -14.8706 

 

2.2.2 Noisy synthetic drift datasets (D13) 

To test how susceptible to noise Fast4DReg is, we generated a series of noisy 
images. This dataset consists of 12 images of Dataset with synthetic drift with 
12 levels of added Gaussian noise with standard deviations of 0, 5000, 10000, 
15000, 20000, 25000, 30000, 35000, 40000, 45000, 50000 and 60000. The 
noise was added using the “add noise function” in Fiji (Schindelin et al., 2012) 
and yielded images with SNR of 30.053, 5.586, 2.964, 2.111, 1.686, 1.478, 
1.327, 1.227, 1.196, 1.127, 1.119 and 1.070, respectively. The SNR was 
calculated by dividing the mean cell signal by the mean background signal. 
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2.2.3 Other datasets  

Four other datasets were used in this project: The HUVEC monolayer dataset 
(D18), the mouse lung dataset (D19), the calibration slide dataset (D15), the 
filopodia dataset (D17), and the DCIS.com filopodia dataset (D16), described 
in detail in work I. These datasets were raw files directly from a microscope, 
and no post-processing was done before drift correction experiments. These 
datasets were used to demonstrate 1) the speed of Fast4DReg, 2) how the 
drift table can be applied to another dataset, and 3) how misaligned channels 
can be re-aligned.  

2.3  Benchmarking the Fast4DReg Performance  

The xy- and z-drift in the synthetic dataset was corrected using Fast4DReg, 
Correct 3D Drift (Parslow et al., 2014), and Fijiyama (Fernandez and Moisy, 
2021), using the parameters that provided the best possible drift correction 
performance (used settings are described in I, ST1). After drift correction, the 
images were first cropped to be the same size (352×275 pixels, 69 z-slices, 
25 frames) using Fiji. To quantitatively assess the drift-correction 
performance of Fast4DReg against Correct 3D Drift, we first visually assessed 
the data using time projections of slice 51 (middle of the cell) and a standard 
deviation projection of the same slice to visualize the standard deviation of 
the pixel intensities through time. To quantify the correction performance, 
we measured the mean signal of the standard deviation image of each z-slice 
and created boxplots using PlotsOfData (Postma and Goedhart, 2019). To 
further quantify the correction performance, four image-similarity metrics 
between frames (the reference frame was the first frame) of a selected z-slice 
(z-slice 51) were used: Pearson's correlation coefficient (PCC), mean 
structural similarity index (mSSIM) (Wang et al., 2004), peak signal-to-noise 
ratio (PSNR), and normalized root mean squared error (NRMSE) (Table 8). 
These metrics were calculated using a custom-made Google Colaboratory 
notebook (modified from Laine et al., 2021). This notebook is available on 
Zenodo (https://zenodo.org/record/7514913, 06.03.2024). 

Table 8: Image similarity metrics used to assess drift correction quality. 

Metric Explanation Scale 

PCC Measures the linear correlation between two 
images.  0-1 (1 is best) 

mSSIM Evaluates the similarity of two images based on 
their contrast, luminance, and structural content 0-1 (1 is best) 

PSNR Compares the peak signal amplitudes of two 
images and is typically expressed in decibels. Higher is better. 

NRMSE Measures the average difference between the pixel 
intensity in two images. Lower is better. 

https://zenodo.org/record/7514913
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The xy- and z-drift in all the noisy synthetic datasets images were corrected 
using Fast4DReg, using the parameters that provided the best possible drift 
correction performance (used settings are described in Study I, ST1). The 
generated drift tables were then used to correct the original large drift 
dataset (Fig. 3A, B). Corrected images were then cropped to be the same size 
(192×192 pixels, 69 z-slices, 25 frames) using Fiji. The drift-correction 
performance was then quantified by measuring image-similarity metrics 
between frames (Table 8) (the reference frame was the first frame) of a 
selected z-slice in the middle of the cell (z-slice 51). These metrics were 
calculated using a custom-made Google Colaboratory notebook (modified 
from Laine et al., 2021). This notebook is available on Zenodo 
(https://zenodo.org/record/7514913, 06.03.2024). 

The HUVEC monolayer dataset (D18) was used to benchmark the speed of 
Fast4DReg against Correct 3D Drift and Fijiyama. Two computers were used 
to compare the execution times of all compared methods: computer 1 
(operating system, Windows; processor, AMD Ryzen 7 5800X 8-Core; 
graphics card, GeForce GTX 3080; RAM, 32 GB; Fiji version 1.53q) and 
computer 2 [operating system, macOS; processor, M1 chip (8-core CPU, 8-
core GPU); RAM: 16 GB; Fiji (version 1.53q). Times of three replicates using 
each tool and both computers, in the regular and RAM saving mode (only for 
Fast4DReg), were compared.  

3 Analysis and visualization of ERK activity in migrating cells 
over time using the ERK dataset (II)  

3.1 Cell lines and imaging  

MDA-MB-231 and U2OS cells were engineered to stably express clover-ERK-
KTR according to the manufacturer's protocol (Kudo et al., 2018; Regot et al., 
2014). These cells were seeded on fibronectin-coated (1 µg /ml) Ibidi 8-well 
slides (Ibidi) 1 day before imaging. Four hours before imaging, the medium 
was supplemented with 250 nM sir-DNA (Cytoskeleton) and 25 mM HEPES 
(Sigma). Cells were then imaged live (37 °C, 5% CO2) using a Nikon Eclipse 
Ti2-E microscope (Nikon) equipped with an sCMOS Orca Flash4.0 camera 
(Hamamatsu) and controlled by the NIS-Elements software (Nikon, v 
5.11.01). MDA-MD-231 cells were imaged using a 20× Nikon CFI Plan Apo 
Lambda objective (NA 0.75), either 1 frame per minute for 2 hours or 1 frame 
every 5 minutes for 17 hours. U2OS cells were imaged using a 10× Nikon CFI 
Plan-Fluor objective (NA 0.3) every 5 minutes for 3 hours. In these 
experiments, a camera binning of 2 × 2 was used. 

https://zenodo.org/record/7514913
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3.2 Tracking of MDA-MB-231 cells  

MDA-MB-231 cells were tracked using the “Versatile nuclei” StarDist model 
(M10) (Schmidt and Weigert, 2022) directly in TrackMate (Tinevez et al., 
2017; Ershov et al., 2022), using the following settings: (score threshold = 
0.41; overlap threshold = 0.5) and the LAP tracker (linking max distance = 
40 µm; track segment splitting = 30 µm). Tracks were filtered in TrackMate 
so that only the tracks spanning the whole video were included for further 
analysis. The average ERK-reporter intensity was measured over time using 
TrackMate, normalized between 0 and 1 and visualized using heatmaps using 
the PlotTwist shiny app (Goedhart, 2020). 

3.3 Tracking of U2OS cells  

For tracking the U2OS cells, a custom StarDist model (M6) was first trained 
using the ZerocostDL4Mic platform (von Chamier et al., 2021). First, a 
ground truth dataset was created by manually annotating the nuclei of 24 
images of U2OS cells expressing clover-ERK-KTR (dimensions: 2048 × 2048 
px) using the LOCI plugin in Fiji (Schindelin et al., 2012). The ground truth 
data was augmented to improve the model performance by generating a 
dataset of 120 paired images by using the Augmentor ZeroCostDL4Mic 
notebook (von Chamier et al., 2021; Bloice et al., 2019) by randomly 
cropping it into 1024 x 1024, rotating, flipping and multiplying the number 
of the images by 5. Using the new 120 ground truth images (1024 x 1024 
px), a custom StarDist model was trained using the StarDist 2D 
ZeroCostDL4Mic notebook (v1.12.2) with the following parameters: 200 
epochs, patch size: 1024 × 1024 with a batch size of 2 and a mae loss 
function.  Key Python packages used included TensorFlow (v1.15), Keras 
(v2.3.1), CSBdeep (v0.6.1), NumPy (v1.19.5), and CUDA (v11), a C/C++ 
library for GPU programming. The training was accelerated using a Tesla 
P100GPU. The performance of the generated model was assessed using the 
built-in quality assessment metrics of the notebook. The generated StarDist 
model showed high performance, resulting in an average F1-score of 0.918 
when tested with 2 image pairs previously unseen by the network. The 
generated model was used directly in TrackMate using the custom StarDist 
detector with the following parameters: score threshold = 0.41, overlap 
threshold = 0.5, and the LAP tracker linking max distance = 20 µm; track 
segment gap closing = 25 µm, gap closing max frame gap = 10 frames. 
Tracks lasting less than 34 frames (2 hours and 40 minutes) were excluded. 
The average ERK-reporter intensity was measured over time using 
TrackMate, normalized between 0 and 1 and visualized using heatmaps 
using the PlotTwist shiny app (Goedhart, 2020). 
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4 Deep learning model and dataset to showcase 
DL4MicEverywhere (III) 

To showcase how nuclei can be predicted from brightfield images, we trained 
a pix2pix model (M11) (Isola et al., 2017). To train this model, we prepared 
1600 paired brightfield and nuclei images of MDA-MB-231 cells (1022x1024 
px) extracted from live cell imaging data. The nuclei were labeled using sir-
DNA (Cytoskeleton). Cells were imaged live (37 °C, 5% CO2) using a Nikon 
Eclipse Ti2-E microscope (Nikon) equipped with an sCMOS Orca Flash4.0 
camera (Hamamatsu) and controlled by the NIS-Elements software (Nikon, v 
5.11.01). The cells were imaged using a 20× Nikon CFI Plan Apo Lambda 
objective (NA 0.75), either 1 frame per minute for 2 hours or 1 frame every 
5 minutes for 17 hours. This framerate was sufficient to monitor the cells' 
movements without affecting the cell behavior. In these experiments, a 
camera binning of 2 × 2 was used to reduce photobleaching. For generating a 
DL model, all frames were separated as individual images. 

The pix2pix model was first trained from scratch with the following settings: 
300 epochs, patch size: (512,512) with a batch size of 1, and a vanilla GAN 
loss function, using the pix2pix ZeroCostDL4Mic notebook (v 1) (von 
Chamier & Laine et al., 2020). Key Python packages used include TensorFlow 
(v 2.9.2), NumPy (v1.21.6), torch (v1.12.1), and CUDA (v 11.2.152) C/C++ 
library for GPU programming. The training was accelerated using a Tesla T4 
GPU. The model was re-trained with 100 additional epochs to enhance the 
model performance. To assess the quality of the final pix2pix model, we 
prepared a quality control dataset of 15 paired images using the built-in 
quality assessment metrics of the notebook. 

5 Deep learning pipeline to segment and track cancer cell 
attachment to endothelial cells (unpublished 1) 

My lab studies how different Pancreatic Ductal Adenocarcinoma (PDAC) cell 
lines adhere to and arrest endothelium during cancer metastasis under 
physiological flow speeds. He generated a dataset (D10) in his research 
where these events were imaged using a microfluidics setup. My role in the 
work was to generate DL models for the pipeline to detect cancer cells 
migrating on top of the endothelium (M5), endothelial cell-cell junctions 
(Pix2pix BF -> PECAM + Cyto2) (M4 + M2), and endothelial nuclei (M3+M7).  

5.1 The HUVEC monolayer dataset (D18) 

Microfluidic channels (IBIDI) were coated with 10 µg/ml of fibronectin and 
seeded with endothelial cells to form an endothelial monolayer. Three 
different PDAC cell lines (AsPC1, MiaPaca-2, PANC10.05) were perfused at 
different speeds to study their capacity to adhere on top of the endothelial 
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monolayer. Brightfield images of the cancer cells and the endothelium under 
flow were acquired using a Nikon Eclipse Ti2-E microscope (Nikon) 
equipped with an sCMOS Orca Flash4.0 camera (Hamamatsu) and controlled 
by the NIS-Elements software (Nikon, v 5.11.01) with an exposure time of 5 
ms and a frame rate of 40 frames per seconds 2 minutes per flow speed. The 
resulting 8-minute-long movies were composed of a continuous acquisition 
of 2 minutes at 4 perfusion speeds: 400, 200, 100 and 400 µm/sec (mean 
speed measured at the level of the endothelial cells), resulting in 
approximately 12,000 frames. Raw movies were then cut into 4 standardized 
extracts of 2250 frames to be analyzed using our DL pipeline. 

5.2 Detection and analysis of migrating cancer cells 

To detect cancer cells in the brightfield images, a custom StarDist model, 
StarDist BF cancer cells (M5), was trained. For this model first, a 20 image 
ground truth dataset was created by manually annotating all the cancer cells 
floating on top of the endothelium (dimensions: 1024 × 1022 px) using the 
LOCI plugin in Fiji (Schindelin et al., 2012). Each image had 10-50 
annotations. The ground truth data was augmented to improve the model 
performance by generating a dataset of 160 paired images by using the 
Augmentor ZeroCostDL4Mic notebook (von Chamier et al., 2021; Bloice et al., 
2019) by randomly cropping it into 992 x 992, rotating, flipping and 
multiplying it by 8. Using the new 160 ground truth images (992 x 992 px), a 
custom StarDist model was trained using the StarDist 2D ZeroCostDL4Mic 
notebook (v1.12.2) with the following parameters: 400 epochs, patch size: 
992 x 992 with a batch size of 2 and a mae loss function. Key Python packages 
used include TensorFlow (v2.11.0), CSBdeep (v0.7.3), and CUDA (v11.8.89) 
C/C++ library for GPU programming. The training was accelerated using a 
Tesla T4 GPU. The performance of the generated model was assessed using 
the built-in quality assessment metrics of the notebook. The generated 
StarDist model showed high performance, resulting in an average F1-score 
of 0.923 when tested with 4 image pairs previously unseen by the network. 
The detected cells were Tracked using the TrackMate label detector using the 
Simple LAP tracker with the following settings: Linking max distance: 15.0 
pixels, Gap-closing max distance: 15.0 pixels, Gap-closing max frame gap: 2. 
The tracks were filtered so that only tracks that had a minimum of 50 spots 
were considered for the analysis. To analyze the adhesion rate, we included 
tracks that have a speed of 5 µm/sec or less using TrackMate. For the analysis 
of the distances between nuclei and the cell-cell borders, we filtered tracks 
that had an instant velocity above 20 µm/sec at the beginning of the track 
and 5 µm/sec at the end of the track. This filtering was done using custom 
Python code. The filtered tracks were analyzed using CellTracksColab 
(Jacquemet, 2023).  
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5.3 Detection and analysis of endothelial nuclei and cell-cell junctions 

Two DL models were used to detect endothelial nuclei. First, a custom 
Pix2pix model, Pix2Pix BF -> nuclei (M3), was trained to predict all nuclei, 
including nuclei of the cancer cells in the brightfield images. For the training 
ground truth data was created by acquiring 258 paired images 
(1022x1024 px) of the fixed endothelium with cancer cells stained using sir-
DNA (Spirochrome) under brightfield and fluorescence and augmented 8 
times by rotating, flipping, randomly zooming, and distorting, shearing, and 
skewing to generate 2064 unique images. Using these ground truth images, 
the model was trained from scratch using the following settings: 400 epochs, 
patch size: (512,512) with a batch size of 1, and a vanilla GAN loss function, 
using the pix2pix ZeroCostDL4Mic notebook (v 1) (von Chamier et al., 2021). 
Key Python packages used include TensorFlow (v 2.12.0), NumPy (v1.22.4), 
torch (v2.0.0), and CUDA (v11.8.89) C/C++ library for GPU programming. The 
training was accelerated using a Tesla T4 GPU. The performance of the 
generated model was assessed using the built-in quality assessment metrics 
of the notebook. The resulting model predicted each nucleus of endothelial 
and cancer cells in the original brightfield images.  

Second, a custom StarDist model (M7) was trained from scratch to segment 
only the endothelial nuclei from the pix2pix predictions. For this, ground 
truth data of 17 images were first segmented using the StarDist Versatile 
nuclei model in Fiji, and the nuclei of cancer cells were manually removed 
using Fiji, and the dataset was augmented by 4. The custom StarDist model 
(was trained for 200 epochs), patch size: 1024,1024 with a batch size of 2 
and a mae loss function, using the StarDist 2D ZeroCostDL4Mic. notebook 
(v1) (von Chamier & Laine et al., 2020). Key Python packages used include 
TensorFlow (v 0.1.12), Keras (v2.3.1), CSBdeep (v 0.6.3), NumPy (v 1.19.5), 
and CUDA (v 11.0.221) C/C++ library for GPU programming. The training was 
accelerated using a Tesla K80 GPU. The performance of the generated model 
was assessed using the built-in quality assessment metrics of the notebook. 
The generated StarDist model showed high performance, resulting in an 
average F1-score of 0.952 when tested with 4 image pairs previously unseen 
by the network. 

To artificially label PECAM in the cell-cell junctions, we trained a pix2pix 
model (M4). The pix2pix model was trained in three rounds due to long 
processing times, first with 85 epochs and then the model was re-trained for 
twice 80 epochs. All trainings were performed using 484 paired image 
patches (1022x1024px), patch size: (512,512), augmented 6 times using 
rotation, flipping, random zoom magnification, random distortion, image 
shearing, and image skewing, resulting in 2904 unique images. The model 
was trained from scratch with a batch size of 1 and a vanilla GAN loss 
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function, using the pix2pix ZeroCostDL4Mic notebook (v1) (von Chamier & 
Laine et al., 2021). Key Python packages used include TensorFlow (v 2.12.0), 
NumPy (v1.22.4), torch (v2.0.0), and CUDA (v11.8.89) C/C++ library for GPU 
programming. The training was accelerated using a Tesla T4 GPU. The 
performance of the generated model was assessed using the built-in quality 
assessment metrics of the notebook. To further outline the cell-cell borders, 
we first summed all the pix2pix predictions in one frame and then used the 
Cellpose Cyto2 model (M2) to detect the endothelial cell. Cell-cell borders 
were extracted using CLIJ2 (Haase et al., 2020), using the detectLabelEdges-
function followed by thresholding in Fiji. The model performance was 
visually assessed against a ground truth image where the cell-cell junctions 
were manually drawn. 

To apply the trained DL models to the actual data, a custom-made Google 
Colaboratory notebook was created. This notebook takes original videos and 
applies the optimized models and operations in the correct order to generate 
the desired outputs. For the analysis of the distances between nuclei and the 
cell-cell borders, we filtered tracks that had an instant velocity above 
20 µm/sec at the beginning of the track and 5 µm/sec at the end of the track. 
This filtering was done using custom Python code. The filtered tracks were 
analyzed using CellTracksColab (Jacquemet, 2023).  

6 Deep learning pipeline to understand drug resistance 
(unpublished 2) 

6.1 The FUCCI dataset (D6) 

To study how mutations in cells affect cell motility and cell cycle under drug 
treatment, we received a live cell imaging dataset from our collaborators. 
This dataset consisted of videos of non-mutated and mutated PC-9 cells 
under drug treatment. The specific drug and mutation details are not 
disclosed here as the data remains unpublished. In the selected dataset, the 
mutations were performed using CRISPR/CAS9 technology. The first five 
control wells, C2-C6, served as pooled controls, while wells C7-C11 
originated from a single-cell clone derived from the pooled control. The 
mutation 1 (wells F2-F6) and mutation 2 (wells F7-F11) were single-cell 
clones originating from CRISPR/CAS9 edited mutation pool and composed of 
biallelic mutation of a pro-apoptotic signaling pathway protein. All cells were 
treated with drug A, labeled using the FUCCI cell cycle indicator (Zielke and 
Edgar, 2015) and imaged using the Incucyte (Stratorius) using phase 
contrast, green and red channels. Images from three different fields of views 
per well were captured every 2 hours for 24 days, generating a total of 60 
videos with 292 frames. The generated videos were chopped at the time 
point where cells reached full confluency. The fluctuation of the fluorescent 
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signal caused by the addition of media to the sample was first removed by 
using the Bleach correction Fiji plugin (method: simple ratio) (Miura, 2020). 
Data drifting was then corrected by using first generating a sum image of the 
green and red channels, an image I called “both”. The amount of drift was 
estimated using the StackReg Fiji plugin (Thevenaz et al., 1998) and applied 
to the other channels by using a custom-made Fiji script.  

6.2 DL pipeline to detect nuclei 

To segment the cells, a multistep DL pipeline was generated using Google 
Colaboratory. In this pipeline, we combined five different DL models which 
output we then combined to a new image I called the “final mask”. To segment 
nuclei of the cells, in the first StarDist model (M12) we used the Versatile 
nuclei (M10) as a starting point and re-trained the model for 200 epochs by 
using 10 “both” images paired with manually annotated ground truths 
(image dimensions: (972, 1296), patch size: (944,944) with a batch size of 2 
and a mae loss function, using the StarDist 2D ZeroCostDL4Mic notebook (v 
1) (von Chamier & Laine et al., 2020). The data was augmented by a factor of 
4. Key Python packages used include TensorFlow (v 2.11.0), Keras (v2.3.1), 
CSBdeep (v 0.7.3), NumPy (v 1.21.6), and CUDA (v 11.6.124) C/C++ library 
for GPU programming. The training was accelerated using a Tesla T4 GPU. 
The performance of the generated model was assessed using the built-in 
quality assessment metrics of the notebook. The model yielded an average 
F1 score of 0.92, when tested with 2 image pairs previously unseen by the 
network. 

Using this model, we were unable to segment the nuclei of young daughter 
cells, as the FUCCI reporter does not express any color when cells undergo 
cell division at the beginning of G1. Therefore, we used 1740 paired images 
(image dimensions: (971,972) of bright field and both to train a pix2pix 
model from scratch to predict all nuclei in the image (M13). The training was 
done in three iterations using a total of 385 epochs (140+145+100) and using 
the following parameters: patch size: (512,512) with a batch size of 1 and a 
vanilla GAN loss function, using the pix2pix ZeroCostDL4Mic notebook (v 1) 
(von Chamier & Laine et al., 2021). Key Python packages used include 
TensorFlow (v 2.12.0), NumPy (v1.22.4), Torch (v 2.0.0), and CUDA 
(v11.8.89) C/C++ library for GPU programming. The training was accelerated 
using a Tesla T4 GPU. The performance of the generated model was assessed 
using the built-in quality assessment metrics of the notebook. We selected 
checkpoint 50 from the third training to be used for the pipeline. We used the 
same StarDist model from step one (M12) to segment the nuclei from these 
predictions.  
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As we still did not reach good enough segmentation quality, we trained 
another StarDist model to detect rounded cells from the BF image (M14). I 
trained this model from scratch by using 20 paired images of BF and 
manually annotated ground truths (972x1296px) using the following 
parameters: 200 epochs, patch size: (944,944) with a batch size of 2 and a 
mae loss function, using the StarDist 2D ZeroCostDL4Mic notebook (v 1.18) 
(von Chamier & Laine et al., 2021). Key Python packages used include 
TensorFlow (v 2.12.0), CSBDeep (v 0.7.3), and CUDA (v 11.8.89) C/C++ 
library for GPU programming. The training was accelerated using a Tesla T4 
GPU. The performance of the generated model was assessed using the built-
in quality assessment metrics of the notebook. The model yielded an average 
F1 score of 0.71 when tested with 4 image pairs previously unseen by the 
network. 

Finally, we combined the output labels of the three segmentation models and 
applied the StarDist versatile nuclei segmentation model to form an image 
we called the “final mask” achieving a sufficient segmentation of the nuclei. 

To streamline image processing, we combined all the used models into a 
single pipeline using a Google Colaboratory notebook. This notebook expects 
the drift-corrected fluorescent videos as input, applies the models onto the 
image in the correct order and exports the “final mask” videos for the 
subsequent tracking step.  

6.3 Tracking and analysis 

For cell tracking, we merged the final mask with the original phase contrast, 
red and green channels to form a new image we called the tracking image. 
We used TrackMate using the label detector to detect the cells before tracking 
and discarding objects below 59 px. For tracking, we used the LAP detector 
with settings: linking max distance = 25 px; track segment max gap distance 
= 30 px, track segment max frame gap = 3, track segment splitting = 20 px. 
These results were used for the track analysis. We generated another set of 
results with the same settings, except we didn’t allow segment splitting. 
These results were used for the peak analysis.  

To analyze cell tracks, we used a custom-made Google Colaboratory 
notebook to analyze the track duration and the division times between 
conditions directly from the TrackMate output. Next, we extracted the red 
signal peaks (G1-phase) by using the scipy.signal.find_peaks python function 
(Virtanen et al., 2020). We then measured the FWHM of the red signal peaks 
to calculate the duration of the G1-phase, and the distance between the red 
signal peaks to measure the cell cycle duration. These measurements allowed 
us to understand the cell movements, division times, if the cell cycle of the 
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treated cells was delayed and if the cells remained longer time in the G1-
phase.  
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Results 

1 Fast4DReg helps in the correction of drifty 3D image data 

1.1 The Fast4DReg pipeline 

Fast4DReg was developed to process drifty 3D video data acquired in our lab. 
As we produce large numbers of image files that need to be corrected for 
further analysis, our lab needed a quick and robust tool for removing drift in 
3D image data. Previously, in our lab, we used tools such as NanoJ (Laine et 
al., 2019) for drift correction in 2D data. In the case of 3D data, we have 
employed Correct 3D Drift (Parslow et al., 2014). We acquired good results 
with NanoJ, but the need to extend the drift correction to 3D data remained. 
The starting point for the first publication in this thesis (I) started as a 
collaboration with the developers of the NanoJ tool and our need to extend 
the tool to correct drift in 3D data.  

The development started with identifying the need for biologists to correct 
3D data. Identified needs were 1) the tools need to be flexible and allow 
selective correction of axial or lateral drift, or both, 2) the need to be able to 
apply the measured drift to another dataset, for example, another channel, 
and 3) a user-friendly GUI with the availability of test datasets and 
documentation. Considering these requirements, we developed a tool that 
breaks the drift-correction task into two steps: Fast4DReg first estimates an 
optimal transformation that corrects the drift, followed by applying the 
determined parameters to produce a corrected image. We called these tasks 
“time-estimate and apply” and “time-apply”, respectively. The “time-estimate 
and apply” step first creates intensity projection along the z-axis (Figure 16A, 
Study I: Fig. 1). Then, it creates intensity projections along the y- or x-axis and 
estimates and corrects the axial drift. Both steps can also be utilized 
individually, which can be particularly useful when only one type of drift 
needs to be corrected. As an output, Fast4DReg creates a new folder with a 
unique identifier defined by the user and the date of the experiment. This 
folder contains the corrected images, drift plots (graphs indicating the 
amount of drift detected), a drift table (drift detected in numerical values), 
and a settings file containing the selected parameters. Using the “time-apply” 
tool, the drift table can then be applied to correct other images using the same 
parameters. The estimation of drift between the reference and moving 
frames is calculated based on their cross-correlation matrix (CCM). The peak 
intensity in the CCM then defines the linear shift between the two images 
(Figure 16B). Fast4DReg allows sub-pixel accuracy by upscaling the CCM via 
bicubic spline interpolation (Laine et al., 2019).  
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Figure 16: The Fast4DReg pipeline A) Fast4DReg first creates intensity projections 
along the z-axis, corrects the drift, and repeats the same along the y- or x-axis. The 
drift between the reference and moving frames is calculated by their cross-
correlation matrix (CCM). The location of the peak intensity in the CCM (pink 
asterisk) defines the linear shift between the two images (as highlighted by the pink 
double-headed arrow). Fast4DReg outputs the corrected images, the drift plots, a 
drift table, and a settings file containing all selected parameters and paths to the drift 
table. B) The settings file inducing the used parameters and path to the drift table can 
be applied to correct other datasets (i.e., another channel) directly (Study I: Fig. 1). 

1.2 The Fast4DReg graphical user interface 

To improve user-friendliness, an intuitive GUI was created (Study I: Fig. S2), 
alongside detailed documentation for each option in the GUI 
(https://github.com/guijacquemet/Fast4DReg). When optimizing the drift 
estimation step, several settings can be used. To help the user keep track of 
the tested metrics and to avoid overwriting the results folder, we included an 
option to enter numerical experiment numbers in the GUI. This way, the user 
can always return to the outputs of each experiment to find the optimal 
parameters. The GUI also allows the selection of the drift correction type 
(lateral, axial, or both), the projection type (average or maximum), or the 
reference frame (first or previous). Selecting the reference frame is 
dependent on the type of video to be corrected. When the reference frame is 
set to ‘first frame (default, better for fixed), every frame will be compared to 
the first frame to calculate the drift. This option is preferable in videos where 
there is slow scale drift overlaying the faster motion of the sample, for 
example, moving cells. In cases where the sample structure is assumed to be 

https://github.com/guijacquemet/Fast4DReg
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static, selecting the first frame as a reference is better to avoid generating 
additional drift.  

Batch processing or scalability of the analysis tools is essential when the aim 
is to produce new scientific discoveries. To respond to this need, we 
incorporated a batch processing option into Fast4DReg GUI. In the 
“estimate+apply” GUI, it is possible to drag-and-drop one or multiple files and 
correct them in batch using identical parameters. In the “apply” GUI, one 
settings file is selected, and similarly to the “estimate+apply” functions, all 
images that need to be corrected in those settings can be dragged and 
dropped to the GUI. This is especially useful when applying the correction to 
other channels or when a drift table from a registration slide is applied to 
biological images to correct multiple misaligned channels.  

1.3 Fast4DReg can quickly and reliably remove drift in 3D image data 

Live cell imaging data can have multiple features that make downstream 
analysis difficult; it can, for example, be noisy and have multiple channels. To 
benchmark Fast4DReg’s capability to correct drift, we compared its 
performance to two openly available drift correction tools, Correct 3D Drift 
(Parslow et al., 2014) and Fijiyama (Fernandez and Moisy, 2021). We 
selected these tools as they have been used in our projects before to remove 
drift on 4D image data.  

To first try the performance of Fast4DReg in a controlled environment, we 
generated a dataset with synthetic drift with a known amount of drift. We 
corrected this dataset using Fast4DReg, Fijiyama, and Correct 3D Drift. We 
showed that Fast4DReg outperformed the other tools (Figure 17, Study I: Fig. 
2A-C).  

To quantitatively assess the drift correction ability, we generated a Jupyter 
notebook that measures image similarity metrics between frames of a 
selected slice. We showed that in the quantitative measurements, Fast4DReg 
performed better than Correct 3D Drift or Fijiyama on our synthetic dataset 
(Study I: Fig. 2C).   
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Figure 17: Fast4DReg benchmarking with synthetic drift dataset. Standard 
deviation time projection was taken of slice 51 (middle of the cell), taking the 
standard deviation of the pixel intensities through time. Pixels with large intensity 
through the stack appear brighter in this projection. And black pixels show no 
variation between the frames over time. For quantification, the standard deviation 
projection of each z-slice over time was generated and quantified using Fiji, and the 
results are shown as boxplots created by PlotsOfData (Postma and Goedhart, 2019).  
The boxes show the 25th and 75th percentiles, the whiskers represent the minimum 
and maximum values, and the median is marked with a line. No drift shows a high 
baseline value as specified noise was added during background homogenization. 
(Study I: Fig. 2 C) 

As live cell imaging often suffers from noise, we wanted to test how well the 
Fast4DReg can correct drift in noisy images.  To do this, we generated a series 
of noisy videos and corrected them using Fast4DReg. To assess the drift 
correction performance, we applied the estimated drift correction of every 
noisy image to the original drifty dataset and assessed the corrected images 
using the Jupyter Notebook measuring image similarity metrics. We showed 
that Fast4DReg was not affected by noise when the SNR was above 2. With 
SNR below 2, the drift correction performance decreased. We also found that 
with very noisy images (SNR below 1.6), Fast4DReg performed much better 
when using average-intensity projections compared to maximum-intensity 
projections (Figure 18A-B, Study I: Fig. 3C–F). These findings show that 
Fast4DReg is relatively resistant to noise and that in cases where high noise 
levels are inevitable, average intensity projections provide a better drift 
correction. 
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Figure 18: Fast4DReg performance on noisy images. Fast4DReg drift-correction 
performance for the twelve noisy datasets was assessed using image-similarity 
metrics. The PCC (A) and PSNR (B) between the first and subsequent frames were 
calculated for each noise amount. Fast4DReg performance was not affected by noise 
when the SNR was above 2. With SNR below 2, the drift correction performance 
decreased. Very noisy images with an SNR below 1.6 Fast4DReg performed better 
when using average-intensity projections compared to maximum-intensity 
projections. Higher values in both graphs indicated a better correction ability. (Study 
I: Fig. 3F). 

Next, we wanted to test the drift correction ability of Fast4DReg on a 3D video 
of a biological sample. We used a long 3D video of a human umbilical vein 
endothelial cell (HUVEC) monolayer labeled with silicon rhodamine (SiR)-
actin and imaged using an Airyscan confocal microscope. This dataset 
suffered from significant drift in all x-, y- and z-directions mainly due to the 
unstable microscopy stage. We removed the drift using Fast4DReg, Correct 
3D Drift, and Fijiyama. We showed that both Fast4DReg and Correct 3D Drift 
reduced the amount of axial drift, although the correction was not perfect 
(Study I: Fig 4 B). We believe that this might be due to a situation where a 
segment of the data repeatedly exited the imaging volume. The lateral drift 
in the original dataset was not too severe, but Fast4DReg still improved the 
data (Study I: Fig. 4A). Interestingly Correct 3D Drift processing led to the 
monolayer slowly sinking over time, introducing lateral drift rather than 
removing it (Study I: movie 3). These findings were also quantitatively 
presented (Study I: Fig. 4C). We failed to obtain reasonable results using 
Fijiyama as it caused the video to drift even more than the raw data. 

Finally, we showed that Fast4DReg can register multichannel 3D videos. We 
used a movie of cancer cells migrating inside the lung vasculature, which was 
imaged ex vivo using an Airyscan confocal microscope (Study I: Fig. 5A; 
movies 4 and 5). These videos suffered from significant drift caused by the 
sample floating in the sample dish. We used the vasculature images to first 
estimate the drift and then applied the correction to both channels (Study I: 
Fig. 5). We showed that this approach can successfully create a 3D video 
without drift. The ability of Fast4DReg to apply drift tables to other datasets 
significantly simplifies the drift removal workflow of multichannel data. 
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1.4 Fast4DReg can align misaligned multichannel images 

Images are arrays of data organized in dimensions. In 4D image data, the x-, 
y-and z-dimensions hold spatial intensity information of the image whereas 
the time dimension can be used to explore the changes of these intensities 
over time. Multichannel images are also considered 4D data, but in this case, 
the channels represent the fourth dimension. As Fast4DReg is designed to 
correct drift in 4D data, its drift correction function can also be extended to 
correct drift between misaligned 3D images. To do this, Fast4DReg uses the 
same pipeline as described for time series but first converts the channels into 
time frames. We called these functions “channel estimate-apply” and 
“channel-apply”. 

Commonly, microscopes suffer from misalignment of channels when 
acquiring images. This can be caused by chromatic aberrations and when 
using different cameras for image acquisition. To test the Fast4DReg’s ability 
to correct misalignment between channels we first acquired a 3-channel 
image of a calibrations slide followed by an image of a biological sample. Both 
these raw images displayed significant xyz-misalignment. We first used the 
“channel estimate-apply” function of Fast4DReg to estimate the amount of 
drift between the channels and then applied the drift correction using the 
“channels-apply” function. We used line-intensity profiles to visualize the 
correction ability and we found that Fast4DReg could successfully register 
this dataset laterally and axially (Figure 19, Study I: Fig. 6A, B). Combined 
with the Fast4DReg batch-processing mode, this allows automated high-
throughput correction of image data acquired in one imaging session.  
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Figure 19: Fast4DReg can align misaligned channels using a calibration slide. A 
drift table was generated using a calibration slide (Study I: Fig. 6A-B). This drift table 
was used to correct a 3D SIM image of a U2-OS cell expressing GFP-tagged 
lamellipodin (RAPH1, red) and MYO10–mScarlet (green), and labeled to visualize its 
actin cytoskeleton (blue). Line-intensity profiles over the dashed lines show that 
Fast4DReg could successfully register this dataset laterally (A) and axially (B). 

Fast4DReg’s ability to correct misaligned channels becomes useful when 
preparing training data for DL. To test this, we used a dataset acquired to 
train a supervised image-restoration DL algorithm. This dataset has two 
channels, one acquired with high and the other with low SNR. As these 
channels were acquired using different cameras on the same microscope 
setup, they had a small shift. We used the “channels estimate-apply” tool to 
correct the channels and by using line projections we showed that Fast4DReg 
was able to remove the shift between the channels (Study I: Fig. 6E–F). We 
envision that by using such pre-processing steps before DL training, the 
performance of DL models for image restoration can be significantly 
improved. This approach should be used with caution as Fast4DReg requires 
structural overlap between the channels to successfully perform the 
registration. 

1.5 Fast4DReg accelerates drift correction tasks 

Drift removal from 3D image data, using previously available tools, has been 
tedious and a slow task. Often the image data is corrected file by file requiring 
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hours of work. We improved the speed of corrections by first performing the 
drift estimation step by using intensity projections rather than the whole 
image volume and secondly implementing batch processing.   

We used two different computers to assess the time required for Fast4DReg, 
Correct3DD, and Fijiyama to process the HUVEC dataset. The first computer 
was a high-performance desktop and the second one a laptop. We found that 
Fast4DReg was four to nine times faster than Correct 3D Drift and 20 to 90 
times faster than Fijiyama when correcting the HUVEC dataset (Table 9, 
Study I, Fig. 4D, S1D). We also compared the Fast4DReg speed against the 
RAM saving mode of Fast4DReg, which can be used with computers with 
limited resources. This mode retains the original bit depth of the image, 
instead of upscaling it to a 32-bit image. We found that the RAM saving mode 
performs 1.3 times faster than the regular mode (Table 9). In addition, when 
using Fijiyama, the file preparation step brings an additional time-consuming 
step to the process, and all time points need to be separated as individual files 
before the correction. Overall, in addition to drift correction performance, 
Fast4DReg also outperformed both, Correct 3D Drift and Fijiyama in speed 
when correcting the HUVEC dataset. 

Table 9: Fast4DReg Correct 3D Drift and Fijiyama processing times. Fast4DReg 
execution times are much faster compared to the Correct 3Ddrift and Fijiyama. When 
using the RAM saving mode, which retains the image bit depth, the execution time 
can be further decreased. The times are the average of three repeats.  

 Fast4DReg Fast4DReg 
(RAM save mode) 

Correct 3D 
Drift Fijiyama 

Computer 1 1.5 min 1.15 min 12.6 min 123 min 
Computer 2 5.9 min 4.5 min 24.2 min 124 min 

 

2 TrackMate v7 enhances tracking analyses (II) 

2.1 Integration for improved detectors and analysis tools to TrackMate 
improves tracking 

In life sciences, tracking is commonly used, to follow single particles, 
subcellular organelles, bacteria, cells, and whole animals to further 
understand their behavior. In a typical tracking workflow, the objects are 
first detected and then linked to form tracks. The previous version of the 
TrackMate (Tinevez et al., 2017) based the detection step LoG and DoG 
detectors suitable for tracking round blob-like structures, such as filopodia 
tips (Popović et al., 2023), but performs poorly for textured objects, objects 
with irregular shapes, and imaging modalities other than fluorescence. These 
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detectors also only measure the objects’ position and are not able to measure 
objects' shape or signal intensity information. 

We extended the new TrackMate to incorporate several different 
segmentation strategies, including the ilastik (Berg et al., 2019) Weka 
(Arganda-Carreras et al., 2017), Cellpose (Stringer et al., 2021), MorphoLibJ 
(Legland et al., 2016), and StarDist (Schmidt et al., 2018) detectors, all 
commonly used in segmentation workflows. TrackMate can also import 
segmentation results generated by any other segmentation algorithm, 
allowing the tracking of mask or label images. Additionally, the TrackMate v7 
detects object contours in every frame, allowing tracking of changes in the 
objects’ morphological features or signal intensities (Study II: Fig 1). 

To improve the usability of the new functions, extensive user documentation 
(https://imagej.net/plugins/trackmate/detectors/trackmate-v7-detectors, 
11.03.2024) was written to complement the original documentation of 
TrackMate (https://imagej.net/plugins/trackmate, 11.03.2024).   

2.2 Analysis of ERK signaling in motile cancer cells 

In this work, one of my contributions was to show how ERK signaling can be 
measured in timelapse videos of motile MDA-MB-231 and U2OS cells 
expressing an ERK-KTR activity reporter (Kudo et al., 2018). This reporter 
shuffles between the nucleus and cytoplasm depending on the activation 
state of ERK (Figure 20). The nuclei were labeled with SiR-DNA.  

 
Figure 20: Schematic of the ERK-KTR activity reporter. High ERK activity leads 
to an increase in phosphorylation and inactivation of the bNLS and shuttling out of 
the nucleus. Modified from (Conway et al., 2023). 

We tracked the nuclei of MDA-MB-231 using the SiR-DNA labeling by using 
the pre-trained Versatile nuclei model directly in TrackMate. U2OS cells were 
very sensitive to light and died after only a short acquisition, forcing us to use 
very low excitation power. The dying cells showed high levels of SiR-DNA 
which was picked up by the pre-trained Versatile nuclei model. We did not 
want to include the dying cells in the analysis, so we trained a custom StarDist 
model using the ZeroCostDL4Mic platform (von Chamier et al., 2021) to track 

https://imagej.net/plugins/trackmate/detectors/trackmate-v7-detectors
https://imagej.net/plugins/trackmate
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the nuclei of U2OS directly in TrackMate. This new model only detected the 
SiR-DNA labeled nuclei of healthy cells, with a very low fluorescence signal. 
In both cell lines, the SiR-DNA signal was used for segmentation, and then 
measured the average intensity of the ERK reporter (in another channel) 
over time and the instant velocity of the cells directly in TrackMate. For 
visualization, we used heat maps by using PlotTwist (Goedhart, 2020) 
(Figure 21, Study II: Fig. 2 C-D, Study II: Fig. S1 A-B). 

 
Figure 21: Tracking MDA-MB-231 and U2OS cells using TrackMate. A) MDA-MB-
231 cells stably expressing an ERK activity reporter (ERK-KTR-Clover) and labeled 
using SiR-DNA were recorded live using a widefield fluorescence microscope over 
17 hours. Cell nuclei were automatically tracked over time using the Versatile nuclei 
StarDist model available in TrackMate. B) For each tracked cell, the average intensity 
of the nuclear ERK reporter was measured using TrackMate. Changes in ERK activity 
and instant velocity are displayed as heatmaps (blue, high; yellow, low). C) U2OS cells 
stably expressing an ERK activity reporter (ERK-KTR-Clover) and labeled using SiR-
DNA were recorded live using a widefield fluorescence microscope over 3 hours. A 
custom StarDist model was trained to detect the low-signal U2OS nuclei using the 
ZeroCostDL4Mic platform. D) For each tracked cell, the average intensity of the ERK 
reporter was measured in their nucleus over time using TrackMate. Changes in ERK 
activity are displayed as heatmaps (blue high, yellow low). (Study II: Fig 2 C, Study 
II: Fig S1 A-B). 

This experiment demonstrated how effortless combining DL-powered object 
detection and tracking can be. Crucially, it also demonstrated the DL models 
trained in external environments, such as ZeroCostDL4Mic, are compatible 
with TrackMate. This feature enables users to develop and refine their own 
DL models and enhances the flexibility of TrackMate by allowing a thorough 
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analysis of diverse morphological and intensity-based metrics throughout 
different time points. To extend this case study, it would be interesting to 
include whole cell segmentation in the pipeline, for example, by using 
Cellpose (Stringer et al., 2021). If the whole cell volume is segmented, it is 
possible to subtract the nuclei from the whole cell and quantify the ERK 
signal. By measuring the cytoplasmic and nuclear ERK ratio and 
incorporating this to track behavior, more information on the ERK shuttling 
during cell migration could be understood. 

2.3 TrackMate helper streamlines the optimization of object detection and 
tracking algorithms 

Cell tracking consists of two consecutive tasks: detection and linking. The 
quality detection and lining greatly influence the tracking result. Therefore, 
biologists often struggle with a diversity of available algorithms to decide 
which algorithm to use in their experiments. We added a TrackMate-Helper 
module (Ershov et al., 2022) to the TrackMate v7 to help users evaluate 
which tracking parameters (detectors and tracking algorithms) output a 
tracking result closest to the ground truth. This module performs parameter 
sweeps over any combination of detectors and particle-linking algorithms 
defined by the user. The outputs are then compared with the ground truth 
and 8 CTC metrics (Table 1) to define the optimal tracking parameters. These 
parameters can then be used on the whole dataset. In a nutshell, the 
TrackMate helper systematically optimizes the tracking parameters for a 
whole dataset. 

Being able to optimize cell tracking parameters plays an important role in 
advancing scientific research, making research processes more reliable, 
reproducible, and less prone to human error. Overall, the TrackMate helper 
provides biologists confidence in trusting their tracking results, which 
directly contributes to advancements in cell biology and biomedical research. 

2.4 TrackMate Batcher allows batch processing of cell migration videos 

Cell migration data is often produced in a high throughput manner, 
producing tens or even hundreds of videos. Tracking these videos one by one 
is by far one of the most tedious and time-consuming tasks. TrackMate 
Batcher is an extension of TrackMate that allows batch processing of videos 
using pre-defined tracking parameters. The TrackMate Helper module can 
manually define or generate these parameters. TrackMate batcher outputs 
segmentation and tracking results for each input file in .csv files and images. 
It can also output a tracking file for each file that can later be linked to the 
original video. TrackMate Batcher saves time and reduces the risk of errors 
that can occur when processing datasets individually, streamlines the 
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analysis process, and ensures a consistent and reproducible approach to 
tracking and data analysis.  

In this thesis, the TrackMate batcher was used to generate tracking results 
for the PDAC cells migrating on top of a layer of endothelial cells in the 
publication unpublished work 1 and to track the final masks of drug-treated 
cells in the unpublished work 2.  

3 Deep learning enables understanding of cancer cell 
adhesion (unpublished 1) 

During the metastatic cascade, cancer cells first leave the primary tumor, 
intravasate to lymphatic or vascular circulation, arrest onto the endothelium, 
and successfully extravasate for a new tumor at a distal site.  This is a multi-
step process, where the cancer cells are affected by numerous challenges, and 
therefore, only a few cancer cells successfully manage to metastasize (Follain 
et al., 2018). In our lab, we are interested in the metastatic cascade, especially 
at the points where cancer cells first interact with the endothelium. During 
this first contact, it has been suggested that the cancer cell adheres to the 
endothelium using weak transient bonds and then rolls or migrates to find a 
spot where it adheres using higher adhesion force and prepares to 
extravasate. Successful intravascular arrest and extravasation are influenced 
by flow-mediated forces (Follain et al., 2018). Cancer cells must 
simultaneously resist the shear stress generated by the intravascular flow 
during the adhesion and retain their contact with the endothelium. If the 
cancer cell adhesion force is weaker than the shear stress, the cancer cells 
cannot adhere and are washed away. For the cells to be able to arrest, the 
cancer cell adhesion force needs to be stronger than the shear stress (Follain 
et al., 2018; Osmani et al., 2019). It has been shown that membrane proteins 
CD44 and β1 integrin are key mediators of cancer cell arrest (Osmani et al., 
2019), and the cancer cells that successfully adhere to the endothelium 
extravasate by squeezing through endothelial cells or by integrating into the 
endothelium (Follain et al., 2018; Arvanitis et al., 2014). The exact 
mechanism of how cancer cells extravasate remains under further 
investigation.  

To study how and where PDAC cells adhere to endothelial cells, we perfused 
three different PDAC cell lines using different physiological flow speeds and 
captured the events using brightfield microscopy. We designed a custom DL 
and tracking-based analysis pipeline, which allowed us to extract 
information on the behavior of the perfused PDAC cells.  My role in the work 
was to generate DL models for the pipeline. Here, I highlight how the analysis 
pipeline was designed and showcase some tentative results. This pipeline 
and results are not yet published. 
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3.1 Different PDAC cell lines adhere with different rates under changing 
flow conditions 

To understand how PDAC cells, MiaPaca-2, AsPc1 and Panc10, adhere and 
migrate on endothelial cells under changing flow conditions, a 4-step flow 
microfluidics setup was designed based on a system described in (Follain et 
al., 2018). In our approach, three different PDAC cell lines were perfused 
using high (H, 400 µm/sec), medium (M, 200 µm/sec), and low (L, 100 
µm/sec) speed on top of a HUVEC endothelium, and finally, the cells were 
washed (400 µm/sec) to ensure that the PDAC cells have truly adhered to the 
endothelium. A flow velocity of 400 µm/sec matches the flow rate measured 
in capillary-like vessels and is favored by the extravasation of tumor cells in 
zebrafish embryos (Follain et al., 2018). The videos were captured using a 
bright field microscope. 

To quantify adhesion events, we first trained a StarDist model (M5) that can 
detect cancer cells from the captured brightfield images (Figure 22A). As all 
three PDAC cell lines showed similar appearance, it was possible to use a 
single StarDist model for all three cell lines (Figure 22B). 

 
Figure 22: Tracking of adhered cancer cells. A) On the left is a bright field image 
of PDAC cells (round lighter blobs) migrating on HUVEC endothelium (flat cells on 
the background). On the right, the PDAC cells were segmented using a custom 
StarDist model (M5) and tracked using TrackMate. Purple blobs are the segmented 
cancer cells and colorful lines represent the recorded tracks. B) Quality assessment 
metrics of the custom StarDist model used to segment PDAC cells were measured 
using four ground truth images from different cell lines. The model yielded an 
average F1 score of 0.92. Table abbreviations: img = image, IoU= intersection over 
union, FP = false positive, TP = true positive, FN = false negative, PR = precision, RC 
= recall, AC = accuracy, ntp = number of true objects, npr = number of predicted 
objects, MTS = mean true score, MMC mean matched score.  
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To remove fast moving, non-adherent cells from the tracking results, we 
filtered the tracks with a minimum of 50 spots and whose mean speed was 
5 µm/sec or less. The number of remaining tracks was plotted over time. We 
found that the number of adhered MiaPaca-2 and AsPc1 cells increased as the 
flow rate decreased (Figure 23A). We also found that AsPc1 cells started 
adhering to the endothelium at medium speed and their adhesion rate 
increased as the speed decreased (Figure 23A, B). Interestingly, MiaPaca-2 
cells showed no dependency on the flow speed, as they started adhering 
already at the high speed and their adhesion rate remained constant (Figure 
23A, B). The final washing step did not wash away the AsPc1 or MiaPaca-2 
cells indicating that they were adhered to the endothelium rather than 
passively arrested (Figure 23A). Panc10 cells did not adhere to the 
endothelium under any flow conditions (Figure 23A, B).  

 
Figure 23: PDAC adhesion to endothelial cells under changing flow conditions. 
A) The number of AsPc1 (blue), MiaPaca-2 (pink), and Panc10 (green) tracks under 
high (H), medium (M), and low (L) flow followed by a washing step plotted over time. 
Tracks were analyzed and the plots were generated using a modified version of 
CellTracksColab (Jacquemet, 2023). B) Attachment rates of PDAC cells. The change 
of the curve in A was linearly fitted for every flow speed. Higher values indicated a 
larger change in the attachment rate between the beginning and the end of a certain 
speed. 

We concluded that the tested DPAC cell lines have unique adhesion 
characteristics under changing flow conditions. With the overall higher 
number of adhered cells and independence of flow speed, MiaPaca-2 cells 
have the most aggressive phenotype over the three compared cell lines. 
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3.2 Image processing pipeline to study PDAC adhesion to endothelial 
cells 

To study in more detail where the PDAC cell adhesion occurred on the 
endothelium, we aimed to segment the endothelial cell-cell junctions and the 
endothelial nuclei. Due to the high speed of acquisition using the lowest 
possible exposure time, fluorescence-based acquisition was not possible. 
Additionally, fluorescence illumination can cause phototoxicity, thereby 
altering the cell’s behavior. To overcome this problem, we employed a 
multistep DL pipeline, which I refer to as the PDAC pipeline in this text. In 
this pipeline, we trained a pix2pix model to predict the endothelial nuclei 
(M3) which we further segmented using a custom StarDist model (M7). To 
find the cell-cell junctions, another StarDist model was trained (M4) and from 
the summed cell-cell junction predictions, we outlined the endothelial cells 
using the Cyto2 Cellpose model (M2). We also incorporated the custom 
StarDist model, which segments the cancer cells (M5) into the pipeline 
(Figure 24A). We applied these models to the perfusion videos by combining 
them into a single pipeline using a custom-made Google Colaboratory 
notebook, which applies all the described operations to the original videos. 
Using this pipeline, we were able to generate image masks from the original 
videos in one go for further downstream analysis of the adhesion of PDAC 
cells (Figure 24B).  

Construction of this pipeline demonstrated seamless collaboration with 
image analysis experts and life science researchers. Here I, as an image 
analysis expert, used my expertise to guide the researcher to plan the 
pipeline, generate appropriate training data for the training of DL models 
and trained the models. As a result, this pipeline allows the researcher to 
independently process their own data, without the need for continuous 
support from an image analyst. This is a significant achievement in terms of 
the efficiency and autonomy of the researcher and aligns with my objective 
of providing user-friendly analysis tools for life science researchers. This 
collaboration showcases the potential impact of combining specialized 
expertise with user-friendly tools in advancing bioimage analysis 
workflows, yielding results that would not been possible to extract without 
this pipeline. 
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Figure 24: PDAC DL pipeline to study the localization of PDAC cells migrating 
on top of HUVEC endothelial cells. A) This pipeline allowed us to 1) predict and 
segment cell-cell junctions using the custom pix2pix (M4) and Cellpose Cyto2 model 
(M2), 2) predict and segment endothelial nuclei using the custom pix2pix (M3) and 
custom StarDist model (M7), and 3) segment migrating cancer cells on top of the 
endothelium (M5). All these models were trained using the ZerocostDL4Mic platform 
(von Chamier et al., 2021). B) The PDAC pipeline was put together using a custom 
Google Colaboratory notebook that expects original videos as inputs and outputs 
images with segmented endothelial nuclei (blue), segmented cell-cell junctions 
(green), and PDAC cells (yellow). 

3.3 Quality assessment of the endothelial nuclei and cell-cell junction 
detection 

As my contribution to this project was to train some of the DL models, I want 
to describe further how I assessed the quality of each trained model used in 
the PDAC pipeline (M3, M4, M1). I generated ground truth images for each 
step and used the built-in assessment tools of the ZeroCostDL4Mic 
notebooks. 

During training, the ZeroCostDL4Mic pix2pix notebook saves model 
checkpoints every five epochs. Due to the stochastic nature of GAN networks, 
the last checkpoint is not always the best one to use. GANs are known to 
hallucinate, which can lead to a mismatch between the generated images and 
the expected output. Therefore, choosing the most suitable checkpoint to use 
to make predictions is challenging. By comparing the SSIM and lpips values 
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between the predicted and ground truth images at each checkpoint, followed 
by a visual inspection, we selected checkpoint 275 to be the best to predict 
endothelial nuclei (Figure 25A, B). Assessment of the StarDist model for 
endothelial nuclei segmentation after pix2pix showed high model 
performance, reaching an average F1 score of 0.972 (Figure 25C). 

 

Figure 25: Quality assessment for endothelial and PDAC nuclei predictions and 
segmentation. A) The performance of the endothelial cell-cell junction predicting 
pix2pix model (M3) was assessed by first observing the SSIM and lpips values 
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calculated between the predicted and ground truth images at each checkpoint. 
Checkpoints with high SSIM and low lpips were visually assessed, and checkpoint 
275 (B) was selected for the DPAC pipeline. B) Visual assessment of the checkpoint 
275. In the first column is the BF image from which nuclei were predicted using M3. 
The second column (real) shows the ground truth image and truth image, and the 
third column (fake) shows the image predicted by M3, checkpoint 275. The last 
column overlays the real (green) and fake (magenta). The bottom row shows a 
cropped region for easier visualization. C) The performance of the StarDist model, 
which detected the endothelial nuclei from the pix2pix predictions (M7), was 
assessed by computing different segmentation quality metrics. Table abbreviations: 
img = image, IoU= intersection over union, FP = false positive, TP = true positive, FN 
= false negative, PR = precision, RC = recall, AC = accuracy, ntp = number of true 
objects, npr = number of predicted objects, MTS = mean true score, MMC = mean 
matched score. 

We used the same approach to determine the best checkpoint for the pix2pix 
model that predicts the location of endothelial cell-cell junctions and found 
that the best prediction was generated using the third training round, 
checkpoint number 60. 

We concluded the trained DL models yielded a satisfactory performance and 
could be combined in one pipeline to generate image data for further 
downstream analysis of adhesion events in the endothelium.  

3.4 PDAC cells adhere in proximity to endothelial cell-cell junctions rather 
than on top of endothelial nuclei 

To understand the initial steps of the PDAC adhesion on endothelial cells, we 
first tracked the PDAC cells from the perfusion data. Then, we identified 
complete tracks of cells that at first made contact with the endothelium and 
then remained adhered by selecting tracks that exhibited an initial velocity 
above 20 µm/sec and a final velocity below 5 µm/sec and had a minimum of 
50 spots. We measured the distances of these tracks from the cell-cell 
junctions and the endothelial nuclei at the beginning of the track, where the 
cancer cell first made contact with the endothelium, and at the end of the 
track, where the cell had adhered. We found that both MiaPaca-2 and AsPc1 
cells preferably landed in areas closer to the cell-cell junction rather than 
closer to the nuclei (Figure 26). Neither MiaPaca-2 nor AsPc1 cells (Figure 
26) showed the change in the distances to nuclei or cell-cell borders between 
the beginning and the end of the track, indicating that they landed directly in 
preferred areas. 

We concluded that both MiaPaca-2 and AsPc1 cells make first contact and 
then adhere close to the endothelial cell-cell junctions.   
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Figure 26: Cancer cells arrest and adhere close to endothelial cell-cell 
junctions. Quantification of MiaPaca-2 (A) and AsPc1 (B) adhesion to the 
endothelium at the beginning and the end of the track.  

4 Deep learning enables understanding the drug resistance of 
cancer cells (unpublished 2) 

Drug resistance in cancer refers to the ability of cancer cells to survive and 
continue growing despite exposure to anti-cancer drugs. Despite the initial 
cancer treading effect, when exposed to a drug for a long time, cancer cells 
can acquire genetic or non-genetic alterations that make them less 
responsive to the effects of the used drug. These alterations may affect the 
drug target directly or the cellular pathways involved in drug response 
(Alberts et al., 2022).  

Our collaborators study the role of phosphorylation of a pro-apoptotic 
signaling pathway protein (name left out due to the data is yet to be 
published) in cell migration and the cell cycle under drug treatment. Our 
collaborators provided us with a dataset where they labeled PC-9 cells using 
a FUCCI cell cycle reporter, followed by a live cell imaging experiment (Figure 
27A). We used a subset of this dataset, in which we could visually observe 
changes in the cell behavior to design a custom image analysis pipeline. This 
subset included 10 wells of PC-9 control cells (wells C2-C11) and two 
monoclonal cell lines originating from CRIPR/CAS9 mediated knock-in, 
which I call here mutation 1 (wells F2-F6) and mutation 2 (wells F7-F11). All 
cells were treated with drug A for multiple days. Here, I describe the DL 
pipeline we created to segment the PC-9 nuclei and show how we extracted 
information from the segmented nuclei. I also show some results from the 
selected data. The complete data will be published later by our collaborators.  
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4.1 Image processing pipeline to study cancer cell behavior under drug 
treatment 

From the dataset received from our collaborators, we wanted to extract 
information that would give us insight into how the wild-type and mutated 
cells behave under drug treatment. We first wanted to quantify how fast the 
cells move and what their mean division time is. We also wanted to use the 
information provided by the FUCCI reporter. As the FUCCI reporter changes 
color to indicate the cell cycle phase, we could use this information to 
measure the duration of a complete cell cycle and the duration of individual 
cell cycle phases (Figure 27A).  We chose to follow the G1 phase as its signal 
was more stable. To conduct these analyses, we needed to be able to detect 
every nucleus, track them and measure the G1 signal inside the tracked 
objects over time. 

The dataset that we received from our collaborators had multiple limitations. 
First, the dataset suffered from translational drift, which complicated the 
tracking process, and unstable signal levels caused by the opening of the 
incubator door to add cell culture media. Second, in the dataset, the cells were 
labeled only using the FUCCI reporter, which is not fluorescent at the 
beginning of the G1 phase, where the mother cell divides into two daughter 
cells (Figure 27A). It is not possible to close track gaps and follow track 
splitting simultaneously, and therefore, the lack of signal at this crucial point 
of the cell cycle further complicated cell tracking. Although there are a few 
available pipelines for automated FUCCI analysis (Taïeb et al., 2022; 
Ghannoum et al., 2021), they were not applicable to our data, as they do not 
include pre-processing steps for drift or bleach removal, and they rely on 
long-term nuclear staining. Additionally, although these tools are openly 
available, they require the use of MATLAB, a resource that is not routinely 
used in our lab. 

To overcome these issues, we designed a multistep image analysis pipeline, 
which I later refer to as the FUCCI pipeline. Briefly, in this pipeline, the 
acquired videos were first corrected for bleaching and drifting, and then a 
multistep DL pipeline was applied to the segmentation of the cell nuclei 
(Figure 27B, C). Generated nuclei labels were combined with the original BF, 
red, and green channels (Figure 27D), tracked using TrackMate, and finally, 
the tracks were analyzed using a custom-made Google Colaboratory 
notebook.  

The development of the DL pipeline to segment nuclei from the FUCCI data 
was a laborious process. As the cells were only labeled using the FUCCI 
reporter, which changes color from green to red depending on the cell cycle 
phase, we started by combining the green and red channels, resulting in an 
image I call “both” later in the text. We tried classical segmentation methods 
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and the Versatile Nuclei model to segment the nuclei from “both” images, but 
the generated segmentation results were inadequate. Therefore, we trained 
our own custom StarDist model to segment the nuclei from the “both” images. 
As neither green nor red signal is visible when the tracks split (Figure 27A), 
the generated StarDist model was not able to find nuclei at points where the 
cells divide (Figure 27C, DL task 1). As it’s not possible for TrackMate to close 
track gaps and follow track splitting simultaneously, we could not generate 
complete cell tracks. Therefore, we complemented the segmentation pipeline 
by training a pix2pix model using the original brightfield images and the 
“both” images to predict the location of the nuclei of dividing cells. We 
segmented the generated predictions using the same StarDist model we 
generated to be used directly with the “both” image (Figure 27C, DL task 2). 
As some dividing nuclei were still not detected, we further complemented the 
segmentation pipeline with a StarDist model that detected rounded cells 
from the brightfield images (Figure 27C, DL task 3). The output labels from 
each task were combined, and the Versatile nuclei StarDist model was used 
to create the final mask. The final mask was then combined with the original 
images to form a tracking image for further downstream analysis (Figure 
27D). 

We found that the combination of the pre-processing steps was essential and 
sufficient in providing us with usable nuclei labels to be able to conduct 
reliable cell tracking and analysis using the TrackMate v7 (Ershov et al., 
2022). 

Similarly, to the PDAC pipeline, the above-described DL pipeline steps were 
combined to a single Google Colaboratory notebook to generate the “final 
mask” -image in one go. This integration ultimately enables researchers to 
independently process their own data, eliminating the need for ongoing 
assistance from an image analyst. I would find it interesting to test such 
notebooks combining DL models in the hands of life scientists, as currently 
this combined analysis is still run by me.  

The FUCCI project illustrates the integration of user-friendly open-source 
methods developed in this thesis, resulting in the generation of novel 
discoveries that were previously inaccessible, which I further highlight in the 
following chapters 4.2 and 4.3. 
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Figure 27: Image analysis pipeline for PC-9 cells expressing a FUCCI reporter. 
A) CRIPR/CAS9 mediated knock-out PC-9 cells were stained using the FUCCI 
reporter, which expresses a different combination of fluorescent proteins depending 
on the cell cycle phase. Cells were images for 6 days using the Incucyte with red and 
green channels and brightfield. B) Overview of the FUCCI pipeline. First, bleaching in 
the fluorescent images was removed, followed by drift removal. A DL-based 
segmentation pipeline was applied to the cells to detect their nuclei, and the 
generated labels were tracked and the red signal in them was quantified using 
TrackMate. The tracking results were analyzed using a custom-made Google 
Colaboratory notebook. C) The cell nuclei were detected using four DL approaches. 
First, the combined image from the fluorescent channels was segmented using a 
custom-made StarDist model (M12). Second, a pix2pix model was trained to detect 
nuclei from brightfield images (M13), and from the predictions, the cell nuclei were 
detected using the same StarDist model as above (M12). Third, the rounded cells 
from the brightfield images were segmented using another custom-made StarDist 
model (M14). The output label images from these three steps were combined, and 
from those images, the final mask was created using the StarDist Versatile nuclei 
model (M10). D) The original BF, green, and red images were combined with the final 
mask to create a tracking image that was then used for tracking. 

4.2 Migration and division times are altered in cells harboring mutation 1 

To learn how the used drug A affected the cell migration speed and the 
duration of cell proliferation we tracked the labels of the tracking images 
(Figure 27D) and analyzed the track mean speed and the time that it took for 
cells to divide. For this analysis, we used the TrackMate tracks output, in 
which we allowed track splitting. To compare the conditions, we first 
calculated the p-values between the conditions and the control. As the 
number of data points was over 1 million, the p-values were extremely low. 
Therefore, to better understand the degree of variance between the groups, 
we calculated Cohen’s d value, which quantifies the effect size between 
groups. A notable advantage of Cohen’s d value is its insensitivity to effect 
sizes. The closer the absolute value of Cohen's d is to 1, the larger the effect 
is. 

We found that the cell migration speed was reduced in the cells harboring 
mutation 1 (Cohen’s d = 1.06) and that mutation 2 did not impact cell 
migration speed (Cohen’s d = 0.05) (Figure 28A, C). 

To understand if the mutations affected the cell division, we plotted the 
division times from the TrackMate tracks output (Figure 28B). We found that 
mutation 1 slows down the division time (Cohen’s d = -0.92, Figure 28C), 
indicating that these cells are affected by the drug. Mutation 2 showed a small 
difference (Cohen’s d = 0.16, Figure 28C), indicating that PC-9 cells harboring 
mutation 1 can divide slightly faster than the non-mutated cells. When 
plotting for the division time, I also wanted to see how well the results of the 
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three fields of view correspond to each other and found that the results 
within all three fields of view were highly similar, ensuring us that the 
analysis pipeline gives consistent results (Figure 28B).      

 
Figure 28: Change in cell migration speed and division times. Track mean speed 
(A) and mean division times (B) of the tracked cells were plotted using a custom-
made Google Colaboratory notebook. C) Cohen’s d values for the track speed and 
track division times were calculated between the control and the mutation groups.  
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4.3 Cell cycle is delayed and slower in cells harboring mutation 1 

We performed a peak analysis to further investigate how the mutations affect 
the cell cycle under drug treatment. In this analysis, we first quantified the 
G1 signal in the segmented nuclei over time. As the G1 signal oscillates during 
the cell cycle, we could use the G1 signal peaks to measure the duration of a 
complete cell cycle and the duration of the G1 phase. We extracted this 
information by using the scipy.signal.find_peaks python function (Virtanen et 
al., 2020). To measure the cell cycle duration, we explored the frequency of 
the red peaks during tracks to measure how often the cells divide. We found 
that the average peak distance is longer in the cells harboring mutation 1 
(Cohen’s d = -0.72, Figure 29A, C), indicating that the cell cycle occurs less 
frequently. Cells harboring mutation 2 show slightly shorter cell cycle times 
compared to the control, indicating that they divide faster (Cohen’s d = 0.5, 
Figure 29A, C).  

To learn about the duration of the G1 phase, we measured the FWHM of the 
G1 peaks. We found that the duration of the G1 phase was increased in the 
mutation 1 cells (Cohen’s d = -0.49, Figure 29B, C), and with mutation 2, we 
saw no change (Cohen’s d = -0.09, Figure 29B, C).  

Taken together, these results indicate that cells with mutation 1 are more 
affected by the drug treatment, whereas the mutation 2 cells show resistance 
to the tested drug.  
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Figure 29: Cell cycle frequency and duration. Average distances (A) and the 
average duration G1 peaks (B) of the tracked cells were plotted using a custom-made 
Google Colaboratory notebook. C) Cohen’s d values for the G1 peak distances and the 
peak duration (fwhm) calculated between the control and the mutation groups.  
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Discussion 

Live cell image analysis is challenging, but fun. Despite multiple efforts in the 
past decades, including the enhancement of instrumentation stability, 
improvements in detectors and illumination pathways, and the development 
of new dyes, live cell imaging data still drifts, the dyes still bleach, and the 
sample health is often compromised. As live cell imaging is an essential part 
of modern cell biology research, addressing these challenges is crucial for 
extracting meaningful data from live microscopy experiments. 
Computational bioimage processing and analysis emerge as promising 
solutions to solve many of these issues. 

The quick development of computational resources has led to the 
development of more advanced bioimage analysis methods. Despite the 
rapid creation of new analysis tools, they frequently encounter usability 
challenges. A significant number of these tools remain inaccessible to life 
scientist due to their demand for advanced computational skills, which are 
not typically covered in a standard life science education.  Moreover, there 
are limitations in the proper reporting, documentation, and usability through 
interactive GUIs, consequently limiting their applicability in life sciences. 

My thesis's main objective was to develop user-friendly tools for analyzing 
live cell imaging data to meet our lab's analysis needs. This resulted in three 
tools: 1) Fast4DReg, a drift correction tool for 4D live cell imaging data, 2) 
TrackMate v7, a sophisticated cell tracking tool, and 3) DL4MicEverywhere, 
a platform for flexible training and deployment of DL models across diverse 
computational environments. My contribution to each project varied from 
tasks such as software development, creating datasets and documentation, 
alpha testing, and addressing issues with the tools. Additionally, I 
demonstrated the practicality of the developed tools through two case 
examples where I focused on applying these (and other) tools to create 
automated image analysis workflows to study cancer biology. To reflect on 
my diverse experiences throughout these projects, I organized the discussion 
into key aspects of software development, with a particular emphasis on the 
user-friendliness of the software.  

1 My experience as a software developer 
To guide the development of usable image analysis tools, Carpenter et al. 
defined a list of requirements for usable bioimage analysis software 
(Carpenter et al., 2012), which included aspects such as user and developer-
friendliness, interoperability, modularity and validation of the software. 
These guidelines are further defined by Levet et al. in the context of software 
development, especially for the use of life scientists (Levet et al., 2021). 
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Throughout the development of Fast4DReg, TrackMate v7, and 
DL4MicEverywhere, I drew inspiration from these publications, making my 
best effort to fulfill the listed requirements. My particular focus was on 
incorporating user-friendly features from their work into my image analysis 
tools. 

While in many cases, software development is a lonely process where a single 
person acts as the developer and a user (Levet et al., 2021), the development 
of Fast4DReg, where I was the main developer, was a dynamic and interactive 
process that involved weekly discussions with my supervisor and our 
collaborators. The work was further supported by the training materials 
provided by NEUBIAS training schools (Martins et al., 2021) and the image.sc 
forum (https://forum.image.sc/, 13.03.2024), providing me with the basic 
knowledge and support to improve the tool. Fellow researchers and the 
bioimage community can support the development process by providing 
feedback on the available functionalities, providing examples, and writing 
documentation (Levet et al., 2021). In the Fast4DReg development, most 
troubleshooting was conducted by fellow researchers in urgent need of the 
tool, and valuable information, such as software bugs and illogical order of 
commands, was acquired to improve the tool. In the case of the development 
of TrackMate and DL4MicEverywhere, my role was to contribute from a 
biologist's point of view, providing insights into the needs of biologists to 
extract useful information from image data.  

The development of Fast4DReg started with a test ImageJ macro, where our 
collaborators helped us to create an intensity projection-based 3D 
adaptation of a similar method they used for the correction of  2D data (Laine 
et al., 2019). Although the code worked for our 3D data, it had not yet been 
validated or widely tested, and it lacked several essential features, such as 
GUI, before it could be considered a usable image analysis tool. As a result, 
we developed a drift correction tool for 4D image datasets, which we called 
Fast4DReg (Pylvänäinen et al., 2023c). This tool can correct drifting or align 
misaligned channels in 3D image data using intensity projections and cross-
correlation. Projection-based 3D drift correction methods have also been 
reported before in super-resolution microscopy (Mlodzianoski et al., 2011; 
Huang et al., 2008).  

The first version of Fast4DReg was only suited for 3D data. Based on the 
comments of fellow researchers participating in the Fast4DReg testing phase, 
we improved the tool to allow the user to use the same tool for both 2D and 
3D drift correction. Fast4DReg automatically reads the image dimension and 
skips the step where it creates intensity projections if a 2D image is detected. 
In some cases, it is useful to allow selective correction of axial or lateral drift 

https://forum.image.sc/
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instead of both. We included activating tick boxes in the user interface to 
enable users to select between lateral, axial correction, or both.  

The need for batch processing of multiple files arose from our group 
members, who wanted to apply the same correction parameters for multiple 
images. Inspired by this, we further improved Fast4DReg to process multiple 
image files in batch and export a settings file that could be applied to other 
datasets with similar drift. To do this, we incorporated a code that saves the 
correction setting and path to the generated drift tables in a csv file, which 
can then be applied to another dataset. To avoid overwriting the drift 
correction results, I wanted to implement an option where a user can give a 
unique identifier to the correction parameters used. This feature prevents 
accidental overwrites and allows retracing steps back to the specific settings 
employed, enhancing reproducibility and traceability, as identified by 
(Carpenter et al., 2012; Aaron and Chew, 2021). These additions significantly 
improved the functionality and user-friendliness of the Fast4DReg, making it 
more versatile and applicable to a broader range of research problems. 

During the development of TrackMate v7, a similar need for batch processing 
arose from our work with multiple live-cell imaging videos where we aimed 
to apply identical tracking parameters across the datasets. We 
communicated this need to the leading developer of TrackMate, who 
implemented the TrackMate batcher tool, which allows batch processing of 
multiple image files and analyses without the need to code (Ershov et al., 
2022). The TrackMate batcher has become the go-to tool for our image 
analysis pipelines and was used in both unpublished works in this thesis.   

A recent effort from the Quality Assessment and Reproducibility for 
Instruments & Images in Light Microscopy (Quarep-Limi) community 
summarizes best practices for reporting image analysis workflows (Schmied 
et al., 2024). Quarep-Limi and (Jamali et al., 2021) recommended that all 
source code be stored in version-controlled repositories, such as GitHub, to 
ensure the workflow and code availability, and the code at the time of the 
original publication to be stored in a data repository, such as Zenodo. We 
followed these recommendations for all three developed software. 

2 User-friendly image analysis software 
Life science training usually includes courses in biology fundamentals 
rather than focusing on learning computational skills. On the contrary, 
image analysis development is commonly driven by computer scientists. 
This, combined with the fast development of the image analysis field, has 
created a gap between tool developers and life scientists, introducing 
problems in communication and tool usability (Schlaeppi et al., 2022). To 
successfully navigate in this field requires knowledge of biology, 
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microscopy, and image analysis methods - skills that may not be easily 
mastered by an individual researcher alone. Therefore, collaboration and 
common language between software developers and life scientists is 
essential (Schlaeppi et al., 2022). The search for usable software for 
biologists has pushed the development of image analysis software in the 
past decade (Carpenter et al., 2012). This has been improved by developing 
ontologies (Lindblad et al., 2020) to improve communication and 
development of guidelines for best practices in publishing image analysis 
workflows (Schmied et al., 2024), improved documentation, and FAIR 
sharing image data (Kemmer et al., 2023).   

Drawing from existing literature and personal experiences with my favorite 
user-friendly image analysis tools, such as Cellpose 2.0 (Pachitariu and 
Stringer, 2022) and ZeroCostDL4Mic (von Chamier et al., 2021), I established 
my own criteria for the user-friendliness of software, prioritizing their 
fulfillment for Fast4DReg, TrackMate and DL4MicEverywhere. These 
included 1) easy and intuitive installation to ensure software adoption and 
dissemination, 2) intuitive GUI with a logical order of functions and a 
minimum number of steps required to complete a task, and 3) detailed 
documentation to minimize the learning curve. These requirements align 
with earlier published recommendations (Levet et al., 2021) and further 
endorsed by a community survey where life scientists were asked how 
software creators could make image analysis more accessible (Jamali et al., 
2021). 

My first criterion for developing user-friendly software was ensuring that the 
analysis tools were easily accessible through simple installation. Both 
Fast4DReg (Pylvänäinen et al., 2023c) and TrackMate (Ershov et al., 2022) 
are distributed as Fiji plugins (Schindelin et al., 2012). Fiji was selected as the 
platform, as it is amongst other point-and-click type software most used by 
life scientists (Jamali et al., 2021). We set up a Fiji update site to ensure easy 
installation, software adoption, and dissemination of Fast4DReg and 
TrackMate. Fiji's update sites automatically check for updates, making it easy 
to adopt any changes made to the code and further enhancing user-
friendliness.  

During the initial stages of DL4MicEverywhere development, the installation 
required some manual steps, and the software was launched using the 
terminal. Subsequently, the installation process was streamlined by 
packaging all required dependencies into a single Docker container and 
generating executable files compatible with various operating systems. 
These improvements allow users to launch the software effortlessly by 
simply double-clicking on the executable file, thereby reducing the initial 
hurdles and facilitating a smoother start to using the software. 
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Secondly, I wanted to create user-friendly GUIs to ensure an easy user 
experience. A well-designed GUI that allows users to interact with the 
software platform can maximize the impact and usability of image analysis 
tools (Levet et al., 2021). Without a GUI, the code needs to be manually 
adjusted in a situation where any parameters need to be tweaked. Modifying 
the code without computational skills can be difficult, and several versions of 
the code make the workflow irreproducible. In the case of Fast4DReg, the GUI 
needed to be built from scratch. I created a user-friendly GUI that allows the 
user to tweak any required parameters without coding experience, which can 
be saved in a separate settings file. This helps when retracing steps back to 
the used settings. In the case of TrackMate, the previous version (Tinevez et 
al., 2017) already had a very intuitive GUI, which was extended to provide 
the new functionalities of the new TrackMate v7. Like TrackMate, 
DL4MicEverywhere had a basic user interface when I joined the project. In 
the first version, the user needed to navigate to the software repository 
through the interface to find the notebook to run. This was later improved so 
that the notebook paths were incorporated into the GUI as drop-down menus 
for easier usage. 

Lastly, creating detailed documentation is one of the best ways to minimize 
the learning curve and improve the adoption and dissemination of software 
(Levet et al., 2021). It can be a time-saver when the documentation indicates 
whether the software is suited to handle particular image file formats, 
imaging modalities or analyses. It additionally aids both users and 
developers in comprehending, replicating, and even expanding the software 
for analyses performed on their biological images. Adequate documentation 
ensures transparency, reproducibility, and collaboration within the research 
community (Carpenter et al., 2012). The documentation for the three 
presented tools is extensive and made available through the original 
publications and the publication repositories. Further user support has been 
provided through the image.sc forum (for example: 
https://forum.image.sc/t/regarding-error-with-the-stack-in-fast4dreg-
drift-tool/92084, 07.03.2024). 

In addition to my user-friendliness criteria, some interoperability and 
modularity features deserve to be mentioned in the context of the developed 
software's user-friendliness. The modularity of software refers to the design 
and organization of software that promotes the division of its functions into 
independent modules, which can then be individually called (Carpenter et al., 
2012). In the case of Fast4DReg, we extracted the original 2D drift correction 
function also used in NanoJ (Laine et al., 2019) as an independent macro-
recordable function that can later be integrated into a new piece of software, 
allowing researchers to create their workflows for their specific purposes. I 
also demonstrate interoperability in this thesis in both unpublished works, 

https://forum.image.sc/t/regarding-error-with-the-stack-in-fast4dreg-drift-tool/92084
https://forum.image.sc/t/regarding-error-with-the-stack-in-fast4dreg-drift-tool/92084


Discussion 
  

94 

where multiple image processing steps were integrated into a single 
notebook that outputs the desired image for further tracking experiments 
and analyses. Using such compiled notebooks enhances workflow efficiency 
and reproducibility. They also allow researchers without coding experience 
to apply complex analysis pipelines to their data without continuous support 
from image analysis experts. 

Interoperability of software, on the other hand, refers to the ability of 
different software systems to work together effectively regardless of their 
origin (Carpenter et al., 2012). This is especially important when moving 
from one software to another (Dobson Ellen et al., 2021), as is required when 
using tools developed in this thesis for live cell imaging studies. To ensure 
that Fast4DReg can read multiple microscopy file formats, it uses Bio-
Formats (Linkert et al., 2010) to load images. Interoperability is also a central 
feature of TrackMate, which can make use of commonly used ML and DL 
segmentation models generated using, for example, the DL4MicEverywhere 
platform (Hidalgo-Cenalmor et al., 2023), ilastik (Berg et al., 2019) or Weka 
(Arganda-Carreras et al., 2017) and use them directly in TrackMate for object 
detection. This feature significantly enhances the seamless integration of 
DL4MicEverywhere and TrackMate, facilitating the user-friendly 
incorporation of DL and ML models into tracking pipelines. 

3 Benchmarking 
Image analysis software benchmarking is a process where predetermined 
ground truth datasets and well-defined performance metrics are used to 
assess the performance of a particular software and compare it to other 
similar software. In systematic benchmarking, the software is tested using 
different operating systems, and aspects like reproducibility, speed and 
functionality are tested. The goal of software benchmarking is to provide a 
basis for performance analysis, enabling users to make informed decisions 
about selecting, optimizing, or improving the software (Kozubek, 2016). 
Additionally, benchmarking promotes a culture of continuous improvement 
by helping in software optimization and guiding in finding issues in the 
software. 

One of the main assumptions of benchmarking is that the software being 
tested should be able to produce expected results consistently and 
reproducibly under the same conditions. To test this assumption, example 
datasets that resemble real experiments need to be provided along with 
well-defined performance metrics (Carpenter et al., 2012). A great example 
is the Cell Tracking Challenge (Maška et al., 2023), which provides 
annotated datasets evaluation of segmentation-and-tracking and 
segmentation-only workflows and performance metrics. We implemented 
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the performance metrics in the TrackMate Helper module and used some of 
these datasets to assess the TrackMate v7 performance. Another well-
annotated test dataset, particularly useful for live cell and DL 
benchmarking, is the LIVECell dataset, which provides a high-quality, 
manually annotated and expert-validated datasets of phase-contrast 
images consisting of over 1.6 million cells from a diverse set of cell 
morphologies and culture densities (Edlund et al., 2021). This dataset was 
used to showcase the usability of Cellpose in the DL4MicEverywhere 
project. The Broad Bioimage Benchmark Collection is worth mentioning. It 
provides a publicly available collection for testing and validating automated 
image-analysis algorithms that are particularly useful for high-throughput 
experiments (Ljosa et al., 2012). 

Benchmarking Fast4DReg against other tools was a central part of my thesis 
work. For benchmarking, I chose two commonly used 3D drift correction 
tools, Correct 3D Drift (Parslow et al., 2014) and Fijiyama (Fernandez and 
Moisy, 2021). These two were selected because we used them previously in 
the lab, and they were openly available through Fiji. Unfortunately, we could 
not find any available datasets that could be used to benchmark Fast4DReg. 
To overcome this problem, we created a synthetic drifting dataset with a 
known amount of drift between frames. This dataset consisted of 25 copies 
of a 3D image of a single cell. We used this dataset to evaluate the drift 
correction performance and reproducibility between different operating 
systems and compared these to other similar tools. We also used a longer 
video to benchmark the speed and stability of these three software. We 
evaluated the drift correction performance by comparing different image 
similarity metrics between consecutive frames before and after drift 
correction. We showed that Fast4DReg outperforms the other two selected 
tools in drift correction ability and in speed.  

3.1 Fast4DReg usability compared to Correct 3D Drift and Fijiyama 

Although we showed that Fast4DReg outperforms Correct 3D Drift and 
Fijiyama in drift correction performance and speed, each method has unique 
features. While Correct 3D Drift did not reach as good drift correction results 
as Fast4DReg, it still had some benefits over Fast4DReg. First, Correct 3D 
Drift allows input of multichannel 4D data, a feature still missing from 
Fast4DReg. Adding this to Fast4DReg would make the drift correction 
process smoother. I considered adding this function to Fast4DReg, but 
finding the best correction parameters requires optimization; one channel 
correction is usually enough to assess when the correction ability is 
sufficient. Then, the correction can be added to the second channel using the 
setting file generated during optimization. Second, Correct 3D Drift 
incorporates an edge enhancement option to improve the drift detection. 
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This very specific operation can work with certain datasets, but denoising or 
bleach correction algorithms can provide better image enhancement. Pre-
processing options were not added to Fast4DReg because I did not want to 
restrict users from using the selected pre-processing methods. Third, Correct 
3D Drift allows the selection of the top and bottom slices to be considered 
when considering the drift correction. This feature can be handy when 
performing drift correction directly on 3D data, but as Fast4DReg estimates 
the drift using intensity projections, the possibility of discarding top and 
bottom images becomes futile when using maximum intensity projections. In 
the case of average intensity projections, this feature could prove useful. 
Lastly, Correct 3D Drift allows adding an ROI to the image, which will be used 
as a reference for the correction. This feature is extremely useful when using 
fiducial markers for feature matching. In Fast4DReg, it is possible to add an 
ROI in x-y-direction, but as this feature still needs to be properly tested, it is 
not currently included in the documentation. If an x-y ROI is created, it 
corrects the lateral drift according to the contents of the ROI. I failed to adopt 
the code so that I could also consider the same ROI for axial correction; 
despite multiple tries, the axial correction still considered the whole x- or y-
projection for estimating the drift. I would like to develop Fast4DReg in the 
future so that it can correct both lateral and axial drift correction considering 
a user selected ROI. 

Benchmarking with Fijiyama was not a great experience. Fijiyama was not 
initially developed for time-lapse images, and therefore, it required splitting 
the image into individual frames before correction, and the frames needed to 
be named in a specific way. Already, this step reduced the usability of the tool. 
The Fijiyama user interface is complicated and requires multiple clicks to run 
even the automatic correction algorithms. Additionally, once the correction 
pipeline is running, its execution times are very long, and the resulting 
correction does not reach the performance of Fast4DReg. From my 
experience, I would not recommend using Fijiyama for 3D drift correction 
tasks.   

Neither Correct 3D Drift nor Fijiyama supports batch processing, a feature 
we greatly value. Images need to be corrected one by one, and the acquired 
correction cannot be applied to another dataset. The parameters must be 
listed manually or through screenshots, which does not align with the 
recommended image analysis reporting and reproducibility (Aaron and 
Chew, 2021). 

4 Data availability 
Bioimage analysis has reached the era of big data, introducing several 
difficulties in the consistency of data handling, analysis, and management 
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practices. Poor documentation and disorganized management are currently 
hindering the usage and sharing of image data, DL models, analysis tools, and 
workflows to their full potential (Kemmer et al., 2023). The imaging 
community has joined forces and developed FAIR principles to address the 
challenges in making image data available. These principles provide 
guidelines to improve the Findability, Accessibility, Interoperability, and 
Reusability (=FAIR) of data so that it can be shared, lead to new discoveries 
and used for the development of new tools (Wilkinson et al., 2016). 

To ensure data availability, I followed the FAIR principles of image data 
publishing (Kemmer et al., 2023). We looked into available data storage 
options for data, such as OMERO (Allan et al., 2012) and the produced DL 
models, such as the BioImage Model Zoo (Ouyang et al., 2022), but finally, due 
to previous experiences and a less cumbersome uploading process, we 
decided to store all image data used in the publications in properly annotated 
dataset-specific Zenodo repositories (https://zenodo.org/, 11.03.2024). To 
ensure findability, the repositories, or links to existing datasets elsewhere, 
were included to the original publication and the GitHub repositories. From 
the Zenodo repositories, it is possible to download the images and reuse 
them in any other software.  

5 Limitations of Fast4DReg, TrackMate and 
DL4MicEverywhere, and future prospects 

Software development is never fully complete; it is an ongoing, iterative 
process involving numerous improvements and adaptations to address 
emerging challenges. The continuous evolution of the software ensures its 
relevance alongside advancements in bioimage analysis. Although the tools I 
presented in this thesis are all openly available for the bioimaging 
community, they still have their limitations.  

We showed that Fast4DReg has superior performance in correcting drift in 
time-lapse image data compared to two other selected tools. Additionally, 
it has been well accepted by the imaging community, some labs have 
adapted it as part of their image analysis pipelines (10046 Fiji update site 
downloads, https://imagej.net/update-sites/stats, 04.03.2024), and it has 
one pre-print citation (Rakhymzhan et al., 2023). It has even been proposed 
as one of the go-to drift correction tools by Andor 
https://andor.oxinst.com/learning/view/article/drift-and-drift-correction-
in-time-lapse-microscopy, 06.03.2024). Despite the performance, Fast4DReg 
still has several limitations. First, Fast4DReg can only perform translations 
when correcting a dataset and rotation, scaling or shearing transformations 
are not available, corrections which, for example, Fijiyama can offer. In most 
cases, time-lapse data does not suffer from rotation, scaling, or shearing, so 

https://zenodo.org/
https://imagej.net/update-sites/stats
https://andor.oxinst.com/learning/view/article/drift-and-drift-correction-in-time-lapse-microscopy
https://andor.oxinst.com/learning/view/article/drift-and-drift-correction-in-time-lapse-microscopy
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we did not try to accommodate these at this point. Second, Fast4DReg expects 
the frames to have structural similarity between them. This limitation 
became evident in unpublished work 2, where we created a workflow 
involving drift correction. Initially, I attempted to employ Fast4DReg for drift 
removal, but as the intensities of the nuclei varied throughout the video, I was 
not able to remove the drift. Therefore, I chose StackReg (Thevenaz et al., 
1998) for drift correction, successfully achieving the necessary correction. 
Finally, in the case of channel correction, Fast4DReg requires a calibration 
slide to estimate the amount of drift. Channel alignment conducted on an 
original multi-channel image may yield for example in false colocalization, as 
Fast4DReg tries to register regions with the highest intensities.  

After publishing Fast4DReg, it was improved by the community effort to 
be compatible with headless execution 
(https://github.com/guijacquemet/Fast4DReg/pull/6, 06.03.2024). 
Additionally, I envision the following aspects to improve Fast4DReg. First, 
Fast4DReg does not yet support cropping functions, for example, the 
selection of a fiducial bead in 3D. Second, as Fast4DReg was developed to 
work intensity projections, it would be interesting to assess the suitability of 
using cross-correlation directly to 3D data. Although, in some cases, this 
might produce better correction results, it will likely increase processing 
times. Third, Fast4DReg was originally built in the core functions of NanoJ 
(Laine et al., 2019), which were later implemented in Python through 
NanoPyx (Saraiva et al., 2023). NanoPyx does not yet incorporate the 3D drift 
correction, and there are plans to include Fast4DReg as part of NanoPyx. 

TrackMate has gained popularity as a tracking tool, and the latest iteration, 
TrackMate v7, represents a significant leap forward in cell tracking analysis. 
TrackMate v7 has been cited 318 times (07.04.2024), which can be 
considered a direct measure of the usability of the software. Despite its 
widespread recognition and use, the new TrackMate still has limitations. 
While it supports 3D tracking, it cannot currently track the shapes of 3D 
objects. Recognizing this gap, the next version of TrackMate is already being 
planned. The new version will incorporate this crucial feature to enhance its 
versatility and support 3D analysis. 

We recently published DL4MicEverywhere (preprint by Hidalgo-Cenalmor et 
al., 2023, accepted for publication in Nature Methods in March 2024), which 
is a major improvement of the popular ZeroCostDL4Mic framework (von 
Chamier et al., 2021). ZeroCostDL4Mic democratized DL to the use of life 
scientists without coding skills, and it has been cited 379 times (12.03.2024), 
demonstrating that it has been well incorporated into life sciences research. 
DL4MicEverywhere broadens the applicability of the ZeroCostDL4Mic by 
enabling the deployment of DL for microscopy data across diverse 

https://github.com/guijacquemet/Fast4DReg/pull/6
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computational environments. This was accomplished by using Docker 
containers that include all necessary software dependencies and an intuitive 
GUI. Installation of DL4MicEverywhere is made easy through simple step 
executable files. DL4MicEverywhere is still in the development phase, and 
therefore some bugs remain, for example, when running DL4MicEverywhere 
on the Windows operating system. Additionally, each notebook generates its 
own Docker image, which require large amounts of space and can quickly 
clutter the computer's hard drive. Although there are relatively simple ways 
to clear unnecessary container images from a computer, these need the use 
of the command line, which is not an evident skill for life scientists. We are 
looking into modularization to combine Docker images of some notebooks 
that share similar functions to reduce space requirements. 

I envision that all three tools, Fast4DReg, TrackMate, and 
DL4MicEverywhere, will collectively contribute to advancing the field of 
bioimage analysis by providing robust and versatile solutions for spatial and 
temporal analysis, tracking, and DL applications, as already shown in the 
unpublished scientific work in this thesis. These software tools will provide 
life scientists with a user-friendly approach to analyzing their live-cell 
imaging data, enabled by comprehensive documentation and open-source 
frameworks, fostering a collaborative and comprehensive environment 
where users can easily address diverse biological questions and challenges 
in the field of microscopy and image analysis. Through continuous 
development, community engagement, and following the best practices, 
these tools will become integral components in the toolkit of live cell image 
analysis, ultimately accelerating scientific discoveries and innovations in the 
life sciences. 
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Concluding remarks 

Live cell imaging plays a crucial role when observing multiple biological 
processes, such as normal development, wound healing, and cancer 
metastasis, and when combined with modern bioimage analysis tools, 
visualization and quantification of life become possible. Indeed, bioimage 
analysis has become an integral part of live cell imaging experiments, 
providing tools for the extraction of meaningful information from live cell 
imaging data.  

In this thesis, we developed three user-friendly tools for processing and 
analyzing live cell imaging data. Fast4DReg (I) allows fast and reproducible 
drift correction and channel alignment for 4D microscopy datasets. 
DL4MicEverywhere (III) provides a non-code environment for the training 
and deployment of DL models on multiple computational platforms. 
TrackMate (II) allows user-friendly tracking and track analysis. Together, 
these tools create a seamless image analysis workflow for live cell imaging 
(Figure 30). I further showcased their usability using two cancer biology case 
examples (unpublished 1 and unpublished 2). These software tools, together 
with their comprehensive documentation and open-source frameworks, 
provide life scientists with a user-friendly and intuitive approach to live-cell 
imaging analysis, allowing new discoveries in life sciences. 

 
Figure 30: Fast4DReg, DL4MicEverywhere and TrackMate image analysis tools 
for live cell imaging. These tools provide an easy and user-friendly combination of 
tools to extract meaningful data from live cell imaging experiments. 
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TOOLS AND RESOURCES

Fast4DReg – fast registration of 4D microscopy datasets
Joanna W. Pylvänäinen1,2,3, Romain F. Laine4,5,*, Bruno M. S. Saraiva6, Sujan Ghimire1,3, Gautier Follain1,3,
Ricardo Henriques6 and Guillaume Jacquemet1,2,3,7,‡

ABSTRACT

Unwanted sample drift is a common issue that plagues microscopy
experiments, preventing accurate temporal visualization and
quantification of biological processes. Although multiple methods
and tools exist to correct images post acquisition, performing drift
correction of three-dimensional (3D) videos using open-source
solutions remains challenging and time consuming. Here, we
present a new tool developed for ImageJ or Fiji called Fast4DReg
that can quickly correct axial and lateral drift in 3D video-microscopy
datasets. Fast4DReg works by creating intensity projections along
multiple axes and estimating the drift between frames using
two-dimensional cross-correlations. Using synthetic and acquired
datasets, we demonstrate that Fast4DReg can perform better
than other state-of-the-art open-source drift-correction tools and
significantly outperforms them in speed. We also demonstrate that
Fast4DReg can be used to register misaligned channels in 3D using
either calibration slides or misaligned images directly. Altogether,
Fast4DReg provides a quick and easy-to-use method to correct 3D
imaging data before further visualization and analysis.

KEY WORDS: 3D drift correction, Live imaging, Image analysis,

ImageJ, Fiji

Introduction

Live imaging is essential in biomedical research, enabling scientists

to follow biological processes over time. Despite being heavily

used, performing live-imaging experiments using fluorescence

microscopy remains technically challenging. The user must

carefully balance illumination power and acquisition speed

while maintaining specimen health. In addition, imaging is often

prone to drift. Drift can be caused, for example, by temperature

changes leading to thermal expansion of the microscope mechanical

components or by the movement of the sample itself.

Multiple software and hardware solutions have been developed to

minimize drifting during acquisition. For instance, axial drifting can

be limited using an infrared light that is reflected on the glass-

sample interface and captured by a detector (e.g. Leica’s Adaptive

Focus Control or Nikon’s Perfect Focus System). Lateral drift due to

sample movement can also be compensated by tracking algorithms

that follow the sample over time and move the microscope stage

accordingly (Fox et al., 2022; von Wangenheim et al., 2017). Yet,

drifting is rarely entirely eliminated at the acquisition stage,

especially when acquiring multiple positions for an extended

period. Therefore, it is often necessary to perform drift correction

(via image registration) as a post-processing step before image

visualization and quantification. Beyond live imaging, drift

correction and/or channel registration is a crucial processing step

for multiple image-analysis pipelines, including colocalization

analysis (using calibration slides) or the reconstruction of super-

resolution microscopy images.

Most drift-correction/registration algorithms work sequentially

by comparing a reference image to a moving image and estimating

the movement between these two images to correct the drift.

Multiple open-source tools capable of correcting four-dimensional

(4D) datasets already exist. Popular tools include, for instance,

Insight ToolKit (McCormick et al., 2014), elastix (Klein et al.,

2010), Multiview Reconstruction (Preibisch et al., 2010; 2014),

Fijiyama (Fernandez and Moisy, 2021) or Correct 3D drift

(Correct3DD) (Parslow et al., 2014). However, except for

Multiview Reconstruction and Correct3DD, these tools are

geared toward correcting medical imaging datasets and can be

impractical to use for the correction of long three-dimensional (3D)

videos. Multiview Reconstruction, which was designed to register

large light-sheet fluorescence microscopy datasets, uses interest

points (e.g. fluorescent beads, nuclei or membrane markers) in the

imaging volume to perform the 3D registration, which are not

always available (Preibisch et al., 2010; 2014). Although we

routinely use Correct3DD, we felt limited by its speed and available

features.

Here, prompted by a need to correct our 3D videos more easily

and more efficiently, we developed Fast4DReg, a fast two-

dimensional (2D) and 3D video drift-correction tool. Using

multiple datasets, we show that Fast4DReg can outperform two

state-of-the-art 3D video drift-correction tools available in Fiji,

namely, Correct3DD (Parslow et al., 2014) and Fijiyama (Fernandez

and Moisy, 2021). In addition, we show that Fast4DReg can register

misaligned channels in 3D using either calibration slides or

misaligned images directly. Fast4DReg is fast and has an easy-to-

use graphical interface. These features make Fast4DReg a versatile

and easy-to-use open-source 2D/3D drift-correction tool.

RESULTS

The Fast4DReg pipeline

Fast4DReg breaks the drift-correction task into two steps: image

registration (estimation of a transformation that corrects the drift

optimally) followed by image transformation (applying the

determined parameters to produce a corrected image). To estimate
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the drift of a 3D video in the x-, y- and z-coordinates, Fast4DReg

sequentially estimates the lateral drift, corrects the lateral drift, then

estimates and corrects the axial drift (Fig. 1). Lateral and axial drift

corrections can also be performed independently, which can be

particularly useful when only the axial drift needs to be corrected.

As an output of the drift estimation step, Fast4DReg creates a new

folder containing the corrected images, drift plots (graphs indicating

the amount of drift detected), a drift table (drift detected in

numerical values) and a settings file containing the selected

parameters. Notably, the drift table can then be applied to correct

other images using the same parameters (i.e. to correct another

channel). Indeed, when correcting multichannel 3D videos, the user

needs to choose one channel to use to estimate the drift. The other

channel(s) can then be corrected using the same drift table (Fig. 1).

To estimate the lateral or axial drift of a 3D video, Fast4DReg

creates z- or y-intensity projections for each time point to create a 2D

video. Fast4DReg then estimates the linear drift between the

reference and moving frames by calculating their cross-correlation

matrix (CCM) (see Materials and Methods for more details). The

location of the peak intensity in the CCM defines the linear shift

between the two images. Sub-pixel accuracy is accomplished

by upscaling the CCM via bicubic spline interpolation (as

demonstrated by Laine et al., 2019). Depending on their data,

users can choose the first frame (best for fixed data) or consecutive

frames from the movie (best for live-imaging data) as the reference

frame.

Fast4DReg outperforms Correct3DD or Fijiyama on our

synthetic dataset

To assess the capabilities of Fast4DReg to correct 3D videos, we

compared Fast4DReg results to two other state-of-the-art drift-

correction methods available in Fiji (Schindelin et al., 2012):

Correct3DD (Parslow et al., 2014) and Fijiyama (Fernandez and

Moisy, 2021). For this purpose, two synthetic videos with

known amounts of drift were created: one with no drift and

another with a large amount of drift (Fig. 2A; Fig. S1A). As

these videos were generated by duplicating an acquired single

3D stack and adding artificial drift, a perfect drift correction

should generate near identical time frames as only the background

noise will differ.

Visually, all three tools corrected the artificially drifting 3D

videos regardless of the amount of drift (Fig. 2B; Movie 1).

To carefully quantify the performance of these three software,

we selected a z-slice and plotted the standard deviation

projection of the corrected stack (Fig. 2C). Next, we calculated

multiple image-similarity metrics between the first and each

subsequent frame (Fig. 2D,E; Fig. S1B,C). Both assessment

methods indicated that Fast4DReg performed better than

Correct3DD or Fijiyama on our synthetic dataset (Movie 2;

Fig. 2B–E; Fig. S1B,C). Importantly, these results demonstrated

that using 2D intensity projections followed by 2D

cross-correlation is a suitable method to correct drifting 3D

videos.

Fig. 1. Drift correction of 3D videos using Fast4DReg. Scheme highlighting the Fast4DReg pipeline. (A) Fast4DReg sequentially estimates the lateral drift,
corrects the lateral drift, and then estimates and corrects the axial drift. Fast4DReg creates intensity projections along multiple axes and estimates the drift
between the reference and moving frames by calculating their cross-correlation matrix (CCM). The location of the peak intensity in the CCM (pink asterisk)
defines the linear shift between the two images (as highlighted by the pink double-headed arrow). Fast4DReg outputs the corrected images, the drift plots, a
drift table, and a settings file containing all selected parameters and paths to the drift table. (B) The settings file inducing the used parameters and path to the
drift table can then be applied to correct other datasets (i.e. another channel) directly.
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Fast4DReg is relatively resistant to noise

Live fluorescence imaging often requires using low illumination

levels to avoid harming the sample, which can result in the

acquisition of noisy images. In order to evaluate the sensitivity

of Fast4DReg to noise, synthetic datasets with varying levels

of noise were generated and processed using Fast4DReg. To assess

and compare the results using image-similarity metrics, we applied

the drift tables calculated by Fast4DReg to the original dataset,

then calculated the image-similarity metrics on these corrected

datasets (Fig. 3A,B). These analyses indicated that Fast4DReg

was not affected by noise when the signal-to-noise ratio (SNR)

was above 2. When the SNR was below 2, a decrease in

Fig. 2. See next page for legend.
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performance could be observed. Interestingly, when the images

started to be very noisy (SNR below 1.6), Fast4DReg performed

much better when using average-intensity projections instead of

maximum-intensity projections (Fig. 3C–F). Taken together, these

results indicate that Fast4DReg is relatively resistant to noise and

that, when correcting noisy data, it is more effective to use average-

intensity projections.

Fast4DReg is fast and successfully corrects drift from

acquired 3D videos

Next, we assessed the suitability of Fast4DReg to correct drifts in

acquired 3D biological images. We used a long 3D video of a

human umbilical vein endothelial cell (HUVEC) monolayer labeled

with silicon rhodamine (SiR)-actin and imaged using an Airyscan

confocal microscope. We also registered this dataset with

Correct3DD and Fijiyama. Although both Fast4DReg and

Correct3DD produced good results when assessed visually

(Movie 3), we failed to generate meaningful results with Fijiyama

as the processing made the video drift even more than the raw data

(data not shown).

To estimate the correction efficiency of Fast4DReg and

Correct3DD on this dataset, we first searched for a structure that

should remain immobile across multiple time points in the movie

and chose a large stress fiber. We then color-coded three

consecutive frames (one color per frame) and observed the

overlaps of this stable structure between frames using line profiles

(Fig. 4A). In the uncorrected movie, the stress fiber did not overlap

in these three frames, clearly indicating drift. In the movies

corrected by Fast4DReg and Correct3DD, the stress fiber overlap

between frames improved, showing that the drift correction worked

in both cases. Interestingly, the drift correction provided by

Fast4DReg was superior here as the stress fiber overlap between

the three frames was greater (Fig. 4A).

To visualize the axial drift-correction efficiency of Fast4DReg

and Correct3DD on this dataset, we generated kymographs from the

y-projections (Fig. 4B). In the original data, the kymograph showed

a clear band pattern due to the microscope stage jumping cyclically.

This banding pattern was improved in the movies corrected by

Fast4DReg and Correct3DD. Still, it did not entirely disappear,

indicating that although both registration methods worked well on

this dataset, the correction was not perfect (Fig. 4B; Movie 3). This

was perhaps because part of the datawent out of the imaging volume

several times. Of note, Correct3DD processing led to the monolayer

slowly sinking over time, which is less desirable.

To obtain a quantitative estimate of the performance of

Fast4DReg and Correct3DD on the HUVEC dataset, we measured

the image-similarity metric between each adjacent frame pair for a

selected z-plane in the corrected videos. Indeed, efficient drift

correction should make successive frames more similar despite the

inevitable biological changes. These biological changes would,

however, lead to lower image-similarity metrics than those

measured with our synthetic dataset (Figs 2 and 3), even if the

data was perfectly registered. Using these metrics, we found that

Fast4DReg and Correct3DD improved adjacent frame similarity on

this dataset and performed similarly (Fig. 4C).

Finally, we assessed the computing time required by Fast4DReg,

Correct3DD and Fijiyama to process the HUVEC dataset using two

different computers. We found that Fast4DReg was four to nine

times faster than Correct3DD and 20 to 90 times faster than

Fijiyama when correcting the HUVEC dataset (Fig. 4D). These

differences are relevant as the registration of datasets often requires

tweaking hyperparameters to obtain the best possible results.

Overall, Fast4DReg outperformed Correct3DD when correcting the

HUVEC dataset, as the corrected data did not sink over time and the

processing time was faster.

Fast4DReg can register multichannel 3D videos

Next, we assessed the ability of Fast4DReg to correct acquired

multichannel 3D videos. We used a movie of cancer cells migrating

inside the lung vasculature, which was imaged ex vivo using an

Airyscan confocal microscope (Fig. 5A; Movies 4 and 5). In this

dataset, both the cancer cells and the vasculature were labeled, and a

noticeable xyz-drift perturbated the visualization (Fig. 5; Movies 4

and 5). To correct these data with Fast4DReg, we first estimated

the drift using the vasculature images. Once the drift was

estimated, the same drift tables were then applied to the cancer

cell images (Fig. 5B). Visually, Fast4DReg corrected this

dataset very well (Movies 4 and 5). Using time projection of a

selected z-plane and line-intensity profiles, we found that

Fast4DReg could indeed successfully register the images of the

vasculature (Fig. 5C). Importantly, applying the same drift tables

also efficiently corrected the drift in the cancer cell images

(Fig. 5D). We believe that the ability of Fast4DReg to apply drift

tables to other datasets will significantly simplify the registration of

multichannel data.

Fast4DReg can also register misaligned 3D channel stacks

Finally, we tested whether Fast4DReg could be used to align 3D

multichannel images instead of 3D videos. In this case, Fast4DReg

uses the same pipeline as described for time series but first converts

the channels into time frames.

To test this approach, we registered, using Fast4DReg, a three-

channel 3D image of a calibration slide. In this dataset, the raw

images displayed significant xyz-misalignment owing to chromatic

aberrations and the fact that the channels were acquired using

different cameras (Fig. 6A,B). Using line-intensity profiles, we

found that Fast4DReg could successfully register this dataset

laterally and axially (Fig. 6A,B). Importantly, the drift tables

measured using the calibration slide could then be used to correct

any microscopy images acquired using the same conditions

(Fig. 6C,D). Combined with the Fast4DReg batch-processing

mode, we envision that the indirect channel alignment approach

Fig. 2. Fast4DReg outperforms Correct3DD and Fijiyama on a synthetic

dataset. (A) Two synthetic 3D video datasets were created, one with no drift
and another with a large amount of drift (see also Fig. S1). The large drift
dataset was then corrected using Fast4DReg, Correct3DD and Fijiyama. (B)
The drift-correction performance of the three algorithms was assessed using
temporal color projections of a selected z-slice (middle of the cell) and
kymographs (along the green dashed lines; dimensions, 25 μm × 25
frames). (C) Standard deviation time projection of the middle slice of the cell.
This projection takes the standard deviation of the pixel intensities through
time. Positions with large differences in the pixel intensities through the stack
appear brighter in this projection. Therefore, a black image highlights no
variation between the frames over time (perfect drift correction), whereas
signals highlight slight errors in the drift correction. For each z-slice, the
standard deviation projection over time was generated and quantified using
Fiji, and the results are shown as boxplots created by PlotsOfData (Postma
and Goedhart, 2019), in which the boxes show the 25th and 75th
percentiles, the whiskers represent the minimum and maximum values, and
the median is marked with a line. No drift shows a high baseline value as
specified noise was added during background homogenization. (D,E) The
Pearson’s correlation coefficient (PCC) (D) and peak signal-to-noise ratio
(PSNR) (E) between the first and each subsequent frame were calculated.
For PSNR, a higher value indicates a better drift correction. For Pearson’s
correlation coefficient, a value of 1 indicates perfect drift correction. For all
panels, scale bars: 10 μm.
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Fig. 3. See next page for legend.
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described here will be advantageous when performing

colocalization analyses.

However, not all datasets have a corresponding calibration slide

or bead image, so we also tested the ability of Fast4DReg to correct

misaligned channels directly. In this case, we used a two-channel

3D image that was acquired to train a supervised image-restoration

deep-learning algorithm (von Chamier et al., 2021; Weigert et al.,

2018). As with the previous example, Fast4DReg performed well in

registering this dataset (Fig. 6E,F). It is worth noting that a direct

channel alignment approach might only work for some datasets, as

Fast4DReg requires structural overlap between the channels to

perform the registration. Additionally, we do not recommend

directly aligning images aimed for colocalization analysis as it

might lead to artefactual results.

DISCUSSION

In live microscopy, sample drifting can be a significant challenge,

and implementing post-processing drift-correction pipelines is not

always fast or straightforward. Here, we developed Fast4DReg, an

ImageJ or Fiji-based tool that can quickly correct axial and

lateral drift in 2D and 3D videos. We show that Fast4DReg can

outperform two open-source 3D drift-correction tools on our test

datasets. A significant advantage of Fast4DReg is that it can

correct 3D videos in a fraction of the time compared to other tested

tools and comes with an easy-to-use graphical user interface

(Fig. S2). Fast4DReg speed is likely due to two factors: (1) using 2D

projections greatly simplifies the computations required and (2)

using CPU multithreading further accelerates the 2D cross-

correlation process. In the future, Fast4DReg speed could be

further improved by enabling graphic card acceleration.

Despite its performance, Fast4DReg has several limitations.

Firstly, Fast4DReg can only perform translations when correcting a

dataset. Rotation, scaling or shearing transformations are not

supported, although these should not be required to correct most

time-course video or multichannel microscopy datasets. Secondly,

the channel alignment is limited to images with structural

conservation between channels or requires calibration slides or

beads images to compute the shift maps.

With Fast4DReg, we demonstrate that using intensity projections

followed by 2D cross-correlation is a quick and efficient way to

register various multidimensional data types, including 3D videos

and 3D multichannel datasets. In the future, it would be interesting

to assess the suitability of using 3D cross-correlation directly to

register similar images. But using 3D cross-correlation will likely

impede processing times.

To promote adoption by the community, Fast4DReg is available

through a Fiji update site, GitHub and Zenodo. We also provide test

datasets and detailed step-by-step instructions. With Fast4DReg, we

hope to make the process of multidimensional data registration more

straightforward and faster, and, therefore, more accessible to the

community.

MATERIALS AND METHODS

Algorithms

To estimate the lateral or axial drift of a 3D video, Fast4DReg creates z- or y-

intensity projections for each time point to create a 2D video. Fast4DReg

then estimates the linear drift between the reference and moving frames by

calculating their CCM. In Fast4DReg, in a similar fashion to thework of Sun

(2002), the cross-correlation between two images is calculated by

performing a discrete Hartley transform on both images, followed by a

multiplication of one of the transformed images by the complex conjugate of

the other. The result of this multiplication is then inversely transformed back

to real space, generating the CCM. A bicubic spline interpolation is then

used to upscale the CCM and achieve subpixel precision. The upscaled

CCM is normalized by calculating the Pearson’s correlation coefficient

between the two images shifted according to the minimum and maximum

values of the upscaled CCM. Finally, the linear shift between the two

images is then calculated by taking the global maximum peak of the

normalized up-scaled CCM (as demonstrated by Laine et al., 2019).

Fast4DReg can also be used to register channels from misaligned 3D

stacks. In this case, Fast4DReg simply converts the channels into time

frames before applying the Fast4DReg drift-correction pipeline described

above. As a note of caution, cross-correlation only works well to register

channels in which similar structures or cells are labeled. Importantly

Fast4DReg can also register 2D video and 2D multichannel images either

one at a time or in batches.

Fast4DReg can run on any computer on which Fiji (Schindelin et al.,

2012) and the Bio-Formats (Linkert et al., 2010) plugin are installed.

Fast4DReg also has a memory-saving mode that allows the registration of

larger datasets using a computer with limited resources (processing time

available in Fig. S1D).

Fast4DReg expects as input one or multiple single-channel 2D or 3D

videos. Fast4DReg outputs corrected files, drift tables, drift plots and a

settings file. Owing to Bio-Formats (Linkert et al., 2010), Fast4DReg can

handle various image formats as input. Fast4DReg can be tested using our

test datasets available on Zenodo (https://zenodo.org/record/7514913).

Fast4DReg is written using a combination of an ImageJ macro and Java,

and is distributed via an ImageJ update site. The installation procedure and

up-to-date, step-by-step instructions are available on the Fast4DReg GitHub

page (https://github.com/guijacquemet/Fast4DReg).

Cells

AsPC1 cells (a pancreatic ductal adenocarcinoma cell line) were purchased

from American Type Culture Collection (CRL-1682) and grown in Roswell

Park Memorial Institute medium (Thermo Fisher Scientific, 11875093)

supplemented with 10% fetal bovine serum (FBS) (Biowest, S1860).

HUVECs were purchased from PromoCell (C-12203) and grown in

endothelial cell growth medium (PromoCell, C-22010). U2-OS

osteosarcoma cells were purchased from the Leibniz Institute DSMZ,

German Collection of Microorganisms and Cell Cultures (Braunschweig,

Germany; ACC 785) and grown in Dulbecco’s modified Eagle medium

(DMEM; Merck, D5671) supplemented with 10% FBS. MCF10DCIS.com

Lifeact–RFP cells were generated previously (Jacquemet et al., 2017) and

cultured in a 1:1 mix of DMEM and F12 (Merck, 51651C) supplemented

with 5% horse serum (Gibco, 16050122), 20 ng/ml human epidermal

growth factor (Merck, E9644), 0.5 mg/ml hydrocortisone (Merck, H0888-

1G), 100 ng/ml cholera toxin (Merck, C8052-1MG), 10 mg/ml insulin

(Merck, I9278-5ML) and 1% (vol/vol) penicillin/streptomycin (Merck,

P0781-100ML). All cell lines tested negative for mycoplasma. AsPC1 cells

were authenticated by DSMZ. All other cell lines were not authenticated.

Datasets with synthetic drift

The synthetic drift datasets were created by duplicating a 3D stack image

25 times and artificially adding a known amount of x-, y- and z-drift between

Fig. 3. Fast4DReg is relatively resistant to noise. Twelve synthetic 3D
video datasets with varying amounts of noise were created and corrected
using Fast4DReg, either using maximum- or average-intensity projections.
The drift tables were then applied to the original data to assess drift-
correction accuracy. (A,B) Schematic illustrating the pipeline used to assess
Fast4DReg sensitivity to noise. (C) Example of three noisy datasets used to
assess Fast4DReg sensitivity to noise. (D,E) Fast4DReg drift-correction
performance for three noisy datasets (C) was assessed using temporal color
projections of a selected z-slice (middle of the cell) and kymographs (along
the green dashed lines; dimensions, 25 μm × 25 frames). Note that
Fast4DReg fails to register the images with an SNR of 1.2 when using
maximum-intensity projections (E). (F) Fast4DReg drift-correction performance
for the twelve noisy datasets was assessed using image-similarity metrics.
The PSNR and PCC between the first and subsequent frames were
calculated for each noise amount. For all panels, scale bars: 10 μm.
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each frame. The original image was that of an AsPC1 cell expressing

Lifeact–mScarletI migrating inside the vasculature of a zebrafish embryo.

This image was acquired using a 3i CSU-W1 spinning-disk confocal

microscope equipped with a 40×water immersion objective (NA 1.15) and a

Hamamatsu sCMOS Orca Flash camera. The microscope was controlled

using the Slidebook 6 software (Intelligent Imaging Innovations, Inc.;

https://www.intelligent-imaging.com/slidebook).

The amount of drift added corresponds to the drift typically observed in

our live-cell imaging experiments. Using this method, two videos were

created: one with no drift (ground-truth video) and one with a large drift

(across the field of view) (see also Fig. S1A). After the drift was simulated,

the image background was made homogeneous via pixel intensity

subtraction and by adding specified noise using Fiji (‘add specified noise’

function). The xy- and z-drift in these synthetic datasets was corrected using

Fast4DReg, Correct3DD and Fijiyama. For each software, the parameters

providing the best possible drift correction were chosen (the settings used

are described in Table S1).

After correcting the drift in the synthetic datasets, the images were first

cropped to be the same size (352×275 pixels, 69 z-slices, 25 frames) using Fiji.

The drift-correction performance was then quantified by measuring image-

similarity metrics between frames (the reference framewas the first frame) of a

selected z-slice (z-slice 51) using a custom-made Jupyter notebook (available

in Zenodo). This z-slice was selected as it was in the middle of the cell.

The noisy synthetic drift dataset

To generate the 12 noisy synthetic drift datasets, a specified amount of

Gaussian noise was added to the original synthetically drifting dataset using

Fiji (‘add specified noise’ function). The added selected Gaussian noise had

Fig. 4. Fast4DReg can rapidly correct axial and lateral drift in 3D videos. A 3D video of HUVECs cells labeled with SiR-actin displaying a large xyz-drift
was corrected with Fast4DReg and Correct3DD. (A) A region of interest containing a stress fiber that should remain immobile across multiple time points was
chosen. Three consecutive frames were pseudo-colored blue, green and red, and merged. White indicates structural overlaps between the three frames. Line
profiles along the dashed white lines to further study the overlap between frames were drawn as shown. (B) A kymograph (dimensions, 15 μm × 7146 s) of a
selected line (monolayer ventral plane) in the y-projection was created to visualize the z-drift over time. (C) Image similarity metrics were calculated between
each consecutive frame pair. Values show the mean±s.d. PCC, Pearson’s correlation coefficient; mSSIM, mean structural similarity index; NRMSE,
normalized root mean squared error; PSNR, peak signal-to-noise ratio. N.D., not determined. (D) Two computers, computer 1 (a high-performance desktop)
and computer 2 (a laptop), were used to measure the speed of the correction methods. Shown values are the average times of three measurements.
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standard deviations of 0, 5000, 10,000, 15,000, 20,000, 25,000, 30,000,

35,000, 40,000, 45,000, 50,000 and 60,000, yielding images with SNR of

30.053, 5.586, 2.964, 2.111, 1.686, 1.478, 1.327, 1.227, 1.196, 1.127, 1.119

and 1.070, respectively. The SNR was calculated by dividing the mean cell

signal by the mean background signal. All 12 generated noisy synthetic

drifts were corrected using Fast4DReg using maximum- or average-intensity

projections (the settings used are described in Table S1). The generated drift

tables were then used to correct the original large drift dataset (Fig. 3A,B).

Corrected images were then cropped to be the same size (192×192 pixels, 69

z-slices, 25 frames) using Fiji. The drift-correction performance was then

quantified by measuring image-similarity metrics between frames (the

reference frame was the first frame) of a selected z-slice (z-slice 51) using a

custom-made Jupyter notebook (available in Zenodo). This z-slice was

selected as it was in the middle of the cell.

The HUVEC monolayer dataset

The HUVEC monolayer dataset consists of a 3D video of HUVECs labeled

with SiR-actin (Spirochrome). The video was acquired using a laser

scanning confocal LSM880 microscope (Zeiss) equipped with an

Airyscan detector (Carl Zeiss) and a 63× oil (NA 1.4) objective. The

microscope was controlled using Zen Black (2.3) (Zeiss), and the Airyscan

detector was used in standard super-resolution mode. This dataset has 200

frames (488×488 pixels) and 24 z-slices. This dataset was corrected using

Fast4DReg, Correct3DD and Fijiyama using the parameters providing the

best possible drift correction (the settings used are described in Table S1).

The correction performance was quantified by measuring image-similarity

metrics between adjacent frames (the reference frame was the previous

frame) of a selected z-slice (z-slice 8) using a custom-made Jupyter

notebook.

Fig. 5. Registration of a 3D multichannel video using Fast4DReg. A 3D multichannel video of cancer cells migrating inside the lung vasculature was
corrected using Fast4DReg. (A) 3D surface rendering of a selected time point (see also Movie 4) created using Arivis Vision4D. The lung vasculature is
shown in grey, and the cancer cell (AsPC1) is in green. The red rectangle indicates the clipping plane used to render the image. (B) Schematic illustrating the
pipeline used to correct a multichannel 3D video using Fast4DReg. For this dataset, the drift was first estimated using the vasculature images (channel 1),
and the resulting drift table was then applied to the cancer cell images (channel 2). (C–E) Three consecutive frames of the vasculature (C) and cancer cell
images (D) were pseudo-colored blue, green and red, and merged. White indicates structural overlaps between the three frames. Line profiles along the
dotted white lines to further study the overlap between frames were drawn as shown. (C,E) Z-projections are displayed to visualize the lateral misalignments
corrected by Fast4DReg. Scale bars: 10 μm. (D,F) Y-projections are displayed to visualize the axial misalignment corrected by Fast4DReg. Scale bars: 5 μm.
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Two computers were used to compare the execution times of all compared

methods: computer 1 (operating system, Windows; processor, AMD Ryzen

7 5800X 8-Core; graphics card, GeForce GTX 3080; RAM, 32 GB; Fiji

version 1.53q) and computer 2 [operating system, macOS; processor, M1

chip (8-core CPU, 8-core GPU); RAM: 16 GB; Fiji version 1.53q].

The mouse lung dataset

The mouse lung dataset (624×626 pixels, 55 z-slices, eight frames, two

channels) consists of a 3D video of an AsPC1 cell expressing Lifeact–

mNeonGreen migrating inside the lung vasculature. Briefly, labeled AsPC1

cells were injected into the tail vein of a 10-week-old immunocompromised

female mouse (Hsd: Athymic Nude-Foxn1nu strain). The mouse was

euthanized shortly after injection, and precision-cut lung slices were

prepared (Puttur et al., 2019). The National Animal Experiment Board

authorized all animal studies, and per The Finnish Act on Animal

Experimentation (animal license number 12558/2021). The lung

endothelial cells were labeled using an Alexa Fluor 488-conjugated anti-

PECAM antibody (1:100, BioLegend, 102413). The precision-cut lung

slices were then imaged using an Airyscan confocal LSM880 microscope

(Carl Zeiss) equipped with a 63× water (NA 1.15) objective. The xy- and z-

drift in this dataset was corrected with Fast4DReg using the PECAM

staining (settings used described in Table S1). The drift table generated by

Fast4DReg was then applied to the second channel (cancer cells),

after which these channels were merged using Fiji. Line-intensity profiles

of three consecutive frames of selected structures were measured using Fiji

to quantify the correction. Arivis Vision4D (v 3.5.0, Zeiss, https://www.

zeiss.com/microscopy/en/products/software/arivis-vision4d.html) was used

for the 3D reconstruction of the time-lapse movies. Surface rendering was

performed using the 'Extract Isosurface' function.

The calibration slide dataset

The calibration slide dataset (1024×1024 pixels, 25 z-slices, three channels)

was created by imaging a channel calibration slide (Argolight HM) using a

DeltaVision OMX v4 (GE Healthcare Life Sciences) microscope fitted with

a 60× Plan-Apochromat objective lens, 1.42 NA (immersion oil refractive

index of 1.516), used in wide-field illumination mode. The emitted light was

Fig. 6. Fast4DReg can align 3D multichannel images. (A,B) A three-channel 3D calibration slide image was aligned using Fast4DReg. Merged images
and line-intensity profiles (along the dashed white lines) are displayed to highlight the level of overlap between the three channels. (A) A z-projection is
displayed to visualize the lateral misalignment corrected by Fast4DReg. (B) A y-projection of one of the calibration slide spots is displayed to illustrate the
axial misalignment corrected by Fast4Dreg. (C,D) The drift table generated in A,B was then used to correct a 3D SIM image of a U2-OS cell expressing GFP-
tagged lamellipodin (RAPH1, red) and MYO10–mScarlet (green), and labeled to visualize its actin cytoskeleton (blue). (C) A z-projection is displayed to
visualize the lateral misalignment, evident in filopodia, corrected by Fast4Dreg. (D) A y-projection of one filopodium visualizes the axial misalignment corrected
by Fast4Dreg. (E,F) A 3D SIM image of MCF10DCIS.com cells expressing RFP–Lifeact (magenta) and stained to visualize F-actin (green) was aligned using
Fast4DReg directly. (E) A z-projection is displayed to visualize the lateral misalignment corrected by Fast4DReg. (F) A y-projection visualizes the slight axial
misalignment corrected by Fast4DReg.
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collected on a front-illuminated pco.edge sCMOS camera (pixel size

6.5 mm, readout speed 95 MHz; PCO) controlled by SoftWorx

(AppliedPrecision). The xy- and z-drift in this dataset was corrected using

Fast4DReg (the settings used are described in Table S1).

The filopodia dataset

The filopodia dataset (1024×1024 pixels, 17 z-slices, three channels)

consists of a 3D structured illumination microscopy (SIM) image of a

U2-OS cell expressing GFP-tagged lamellipodin and MYO10–mScarlet,

and labelled with SiR-actin (Popovic et al., 2023). This dataset was acquired

using a DeltaVision OMX v4 (GE Healthcare Life Sciences) microscope

fitted with a 60× Plan-Apochromat objective lens, 1.42 NA (immersion oil

refractive index of 1.516) used in SIM illumination mode (five phases and

three rotations). The emitted light was collected on a front-illuminated

pco.edge sCMOS camera (pixel size 6.5 mm, readout speed 95 MHz; PCO)

controlled by SoftWorx. The xy- and z-drift in this dataset was corrected

using Fast4DReg using the drift table computed using the calibration slide

dataset (the settings used are described in Table S1).

The DCIS.com filopodia dataset

The DCIS.com Filopodia dataset consists of a SIM image of

MCF10DCIS.COM Lifeact–RFP cells labeled with phalloidin. Briefly,

MCF10DCIS.COM Lifeact–RFP cells (Jacquemet et al., 2017) were grown

on high-tolerance glass-bottomed dishes (MatTek Corporation, coverslip

1.5). Cells were fixed and permeabilized simultaneously using 4% (wt/vol)

paraformaldehyde and 0.25% (vol/vol) Triton X-100 for 10 min. Cells were

then washed with PBS, quenched using a solution of 1 M glycine for

30 min, and incubated with Alexa Fluor 488 phalloidin (1:200 in PBS;

A12379, Thermo Fisher Scientific) at 4°C overnight until imaging. Samples

were washed three times in PBS, mounted in Vectashield (Vectorlabs), and

imaged using a DeltaVision OMX v4 (GE Healthcare Life Sciences) used in

SIM illumination mode (five phases and three rotations). The microscope

was fitted with a ×60 Plan-Apochromat objective lens (1.42 NA, immersion

oil refractive index of 1.516). The fluorescent light was collected using

front-illuminated pco.edge sCMOS camera (pixel size 6.5 μm, readout

speed 95 MHz; PCO). The high SNR ratio images were acquired from the

phalloidin-488 staining using acquisition parameters optimal to obtain high-

quality SIM images (50 ms of exposure time, 10% laser power). The low

SNR ratio images were acquired from the Lifeact-RFP channel using

acquisition parameters more suitable for live-cell imaging (100 ms of

exposure time, 1% laser power). The xy- and z-drift in this dataset was

corrected using Fast4DReg (the settings used are described in Table S1).

Metrics

To quantitatively assess the drift-correction performance of Fast4DReg and

the other tools tested, four image-similarity metrics were used. These

metrics were calculated using a custom-made Jupyter notebook (modified

from Laine et al., 2021). This notebook is available on Zenodo (https://

zenodo.org/record/7514913).

Pearson’s correlation coefficient (PCC) measures the linear correlation

between two images. A PCC value of 1 indicates a perfect linear relationship,

or perfect similarity, between the two images. The mean structural similarity

index (mSSIM) evaluates the similarity of two images based on their contrast,

luminance and structural content. AnmSSIM value of 1 indicates that the two

images are perfectly similar. The peak SNR ratio (PSNR) is a metric that

compares the peak signal amplitudes of two images and is typically expressed

in decibels. A higher PSNR value indicates greater similarity between the two

images. The normalized root mean squared error (NRMSE) measures the

average difference between the pixel intensity in two images. A lower

NRMSE value indicates greater similarity between the images.

Fast4DReg downloads and source code

Fast4DReg, the generator of synthetic drift, and the notebook used to make

the image-similarity measurements (all under MIT licenses) are available on

GitHub (https://github.com/guijacquemet/Fast4DReg) and their source

code is archived on Zenodo (https://zenodo.org/record/7514913).

Fast4DReg is also available through a Fiji update site (https://imagej.net/

plugins/fast4dreg).
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Society of Finland (Syöpäjärjestöt; to G.J.) and the Solutions for Health strategic
funding to Åbo Akademi University (to G.J.). J.W.P. was supported by Health
Campus Turku 2.0 funded by the Academy of Finland. R.F.L. was supported by a
Medical Research Council Skills development fellowship (MR/T027924/1). G.F. was
supported by an Academy of Finland postdoctoral fellowship (332402). R.H. is
supported by the Gulbenkian Foundation (Fundaça ̃o Calouste Gulbenkian) and
received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (grant agreement number
101001332), the European Molecular Biology Organization (EMBO) Installation
Grant (EMBO-2020-IG4734) and the Chan Zuckerberg Initiative Visual Proteomics
Grant (vpi-0000000044). This research was supported by InFLAMES Flagship
Programme of the Academy of Finland (decision number: 337531). Open access
funding provided by the University of Turku. Deposited in PMC for immediate
release.

Data availability
All datasets used in this study and the code used to generate them are available on
Zenodo (https://zenodo.org/record/7514913).

First Person
This article has an associated First Person interviewwith the first author of the paper.

Peer review history
The peer review history is available online at https://journals.biologists.com/jcs/
article-lookup/doi/10.1242/jcs.260728.reviewer-comments.pdf

References
Fernandez, R. and Moisy, C. (2021). Fijiyama: a registration tool for 3D multimodal

time-lapse imaging. Bioinformatics 37, 1482-1484. doi:10.1093/bioinformatics/
btaa846

Fox, Z. R., Fletcher, S., Fraisse, A., Aditya, C., Sosa-Carrillo, S., Petit, J.,

Gilles, S., Bertaux, F., Ruess, J. and Batt, G. (2022). Enabling reactive
microscopy with MicroMator. Nat. Commun. 13, 1. doi:10.1038/s41467-022-
29888-z

Jacquemet, G., Paatero, I., Carisey, A. F., Padzik, A., Orange, J. S., Hamidi, H.

and Ivaska, J. (2017). FiloQuant reveals increased filopodia density during breast
cancer progression. J. Cell Biol. 216, 3387-3403. doi:10.1083/jcb.201704045

Klein, S., Staring, M., Murphy, K., Viergever, M. A. and Pluim, J. P. W. (2010).
elastix: a toolbox for intensity-basedmedical image registration. IEEE Trans. Med.

Imaging 29, 196-205. doi:10.1109/TMI.2009.2035616
Laine, R. F., Tosheva, K. L., Gustafsson, N., Gray, R. D. M., Almada, P.,

Albrecht, D., Risa, G. T., Hurtig, F., Lindås, A.-C., Baum, B. et al. (2019).
NanoJ: a high-performance open-source super-resolution microscopy toolbox.
J. Phys. D Appl. Phys. 52, 163001. doi:10.1088/1361-6463/ab0261

Laine, R. F., Arganda-Carreras, I., Henriques, R. and Jacquemet, G. (2021).
Avoiding a replication crisis in deep-learning-based bioimage analysis. Nat.

Methods 18, 1136-1144. doi:10.1038/s41592-021-01284-3
Linkert, M., Rueden, C. T., Allan, C., Burel, J.-M., Moore, W., Patterson, A.,

Loranger, B., Moore, J., Neves, C., Macdonald, D. et al. (2010). Metadata
matters: access to image data in the real world. J. Cell Biol. 189, 777-782. doi:10.
1083/jcb.201004104

Mccormick, M., Liu, X., Ibanez, L., Jomier, J. andMarion, C. (2014). ITK: enabling
reproducible research and open science. Front. Neuroinform. 8, 13. doi:10.3389/
fninf.2014.00013 https://www.frontiersin.org/articles/10.3389/fninf.2014.00013.

Parslow, A., Cardona, A. and Bryson-Richardson, R. J. (2014). Sample drift
correction following 4D confocal time-lapse imaging. J. Vis. Exp. 86, 51086.
doi:10.3791/51086

10

TOOLS AND RESOURCES Journal of Cell Science (2023) 136, jcs260728. doi:10.1242/jcs.260728

Jo
u
rn
a
l
o
f
C
e
ll
S
c
ie
n
c
e



Original Publications 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Popovic, A., Miihkinen, M., Ghimire, S., Saup, R., Grönloh, M., Ball, N.,
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Large drift  (pixels)

Frame X-drift Y-drift Z-drift

1 -0.1846 -0.842 0.7736

2 1.1534 0.69 -1.0418

3 0.3099 1.261 -0.5265

4 1.3837 1.961 -2.517

5 2.8785 1 -3.3751

6 3.221 -0.072 -4.0643

7 4.83 -2.012 -2.4789

8 6.2691 -4.293 -4.9687

9 7.1845 -7.21 -5.6736

10 8.8191 -11.375 -7.2127

11 12.1096 -13.948 -6.6842

12 13.6142 -18.579 -7.6793

13 15.5335 -25.244 -7.4236

14 18.8507 -32.933 -7.7894

15 21.5718 -37.042 -9.3144

16 25.3066 -45.681 -8.9694

17 28.4077 -52.989 -9.1761

18 32.8398 -60.376 -9.9103

19 34.7591 -71.216 -10.8287

20 40.0535 -79.337 -10.9413

21 42.8704 -90.376 -11.5039

22 47.4757 -100.918 -13.4116

23 51.8525 -112.391 -14.2919

24 56.8755 -124.903 -14.3824

25 62.7437 -137.609 -14.8706
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Fig. S1. Fast4DReg outperforms Correct3DD and Fijiyama on a synthetic 3D + t 

dataset. (A-C) Two synthetic 3D video datasets were created, one with no drift, and 

another with a large amount of drift (see also Fig. 2). (A) Drift table indicating the 

amount of drift added to create the large drift dataset. (B and C) The large drift dataset 

was then corrected using Fast4DReg, Correct3DD, and Fijiyama, and the registration 

quality assed using image similarity metrics. The mSSIM (B) and NRMSE metrics (C) 

between the first and each subsequent frame were calculated. For mSSIM a value of 1 

indicates perfect drift correction, for NRMSE, a lower value indicates a better drift 

correction. (D) Comparison of Fast4DReg processing time when the RAM saving mode 

is enabled (HUVEC monolayer -dataset).
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Fig. S2. Fast4DReg user interface. Screenshot highlighting Fast4DReg 

user interface.

Table S1. Table S1 lists the Fast4DReg, Corect3DD, and Fijiyama 

settings used to analyze the various datasets presented in this study.

Click here to download Table S1
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Movie 1. Dataset with a large amount of drift corrected using Fast4DReg, 

Correct3DD, and Fijiyama. The top panels show a selected z-plane of the uncorrected 

and corrected videos. To visualize the axial drift, the bottom panels show the y projection 

of the uncorrected and corrected videos. Note that the drift correction tools generate a 

cropped image, causing a mismatch in the location of the cell compared to the raw data. 

Scale bar 10 µm.

Movie 2. Comparison of the drift correction performance of Fast4DReg Correct3DD 

and Fijiyama. A selected region of ground truth and drift-corrected videos was magnified 

to visualize the drift-correction performance of Fast4DReg, Correct3DD, and Fijiyama. 

Scale bar 10 µm.

J. Cell Sci.: doi:10.1242/jcs.260728: Supplementary information
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Movie 3. HUVEC-monolayer dataset corrected using Fast4DReg and Correct3DD. 

HUVEC cells labeled with SiR-actin were imaged in 3D using a Zeiss 880 Airyscan confocal 

microscope. This dataset suffered from significant drift, corrected using Fast4DReg and 

Correct3DD. The top panels show a selected z-plane of the uncorrected and corrected 

videos. The bottom panels show the y-projection of the uncorrected and corrected videos to 

visualize the axial drift. Scale bar 5 µm.

Movie 4. 3D surface rendering of the mouse lung dataset. AsPC1 cancer cell 

migrating inside the mouse lung vasculature was imaged ex-vivo in 3D using a Zeiss 880 

Airyscan confocal microscope. The original dataset suffered from lateral and axial drift, 

which was corrected using Fast4DReg. 3D surface renderings of the original and 

Fast4DReg corrected 3D videos were created using Arivis Vision4D.

J. Cell Sci.: doi:10.1242/jcs.260728: Supplementary information
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Movie 5. The mouse lung dataset corrected using Fast4DReg. AsPC1 cancer cell 

migrating inside the mouse lung vasculature was imaged ex-vivo in 3D using a Zeiss 

880 Airyscan confocal microscope. The original dataset suffered from lateral and axial 

drift, which was corrected using Fast4DReg. The top panels show z-projection of the 

uncorrected and corrected videos. The bottom panels show the y-projection of the 

uncorrected and corrected videos to visualize the axial drift. Scale bar 10 µm.

J. Cell Sci.: doi:10.1242/jcs.260728: Supplementary information
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TrackMate is an automated tracking software used to ana-
lyze bioimages and is distributed as a Fiji plugin. Here, we 
introduce a new version of TrackMate. TrackMate 7 is built to 
address the broad spectrum of modern challenges research-
ers face by integrating state-of-the-art segmentation algo-
rithms into tracking pipelines. We illustrate qualitatively and 
quantitatively that these new capabilities function effectively 
across a wide range of bio-imaging experiments.

In the life sciences, tracking is used, for instance, to follow single 
particles, subcellular organelles, bacteria, cells, and whole animals. 
Owing to the sheer diversity of images, no single software can 
address every tracking challenge. This has prompted the develop-
ment of flexible and extensible software tracking platforms1–5 that 
enable biologists to build automated tracking pipelines tailored to 
a specific problem. Most tracking algorithms proceed in two steps. 
First, a detection algorithm detects or segments individual objects 
at each time point. Second, a linking algorithm links the detections 
to build tracks that follow each object over time. Importantly, the 
accurate detection of objects is crucial for the tracking process6. 
However, the low signal-to-noise ratio (SNR) that is typical of 
live-cell fluorescence microscopy often makes segmentation chal-
lenging. Aberrant object detection then leads to missing links and 
the generation of tracks that end prematurely, with multiple short 
tracks representing an individual object over time. Objects at high 
density can also be challenging to segment owing to overlap or close 
contact. Most detection algorithms will treat tightly packed objects 
as a single entity, resulting in breaks in tracks or single tracks link-
ing groups of objects. Modern segmentation algorithms, in par-
ticular those based on machine learning (ML) and deep learning 
(DL) approaches, can address these challenges, because they excel 
at image-segmentation tasks in low-SNR and high-density images7. 
TrackMate4 is a user-friendly Fiji8 plugin for tracking objects in 
fluorescence microscopy images. TrackMate offers automated and 
semi-automated tracking algorithms, together with advanced visu-
alization and analysis tools. However, until now, TrackMate detec-
tors were solely based on the Laplacian of Gaussian (LoG) filter 
that is efficient against sub-resolved particles9 or other blob-like 
objects, but performs poorly for textured objects, objects with  

complex shapes, and imaging modalities other than fluorescence. 
These detectors are also limited to measuring the objects’ position 
and not their shape.

TrackMate 7: integrating state-of-the-art 
segmentation algorithms into tracking pipelines

Dmitry Ershov1,2,11, Minh-Son Phan1,11, Joanna W. Pylvänäinen 3,4,5,11, Stéphane U. Rigaud1,11, 

Laure Le Blanc 6, Arthur Charles-Orszag6, James R. W. Conway 3, Romain F. Laine7,8,10, 

Nathan H. Roy9, Daria Bonazzi6, Guillaume Duménil6, Guillaume Jacquemet 3,4,5✉ and 

Jean-Yves Tinevez 1✉
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Fig. 1 | The new capabilities of TrackMate. TrackMate can now create, 

use, analyze, and store object contours segmented from 2D images. These 

contours enable TrackMate to extract morphological features of the tracked 

objects over time. We also wrote a new application programming interface 

(API) to allow the integration of external components in TrackMate. 

We use this API to incorporate popular segmentation tools including 

ilastik, the Weka Trainable-Segmentation Fiji plugin, cellpose, StarDist, 

and the morphological segmentation tool MorphoLibJ within TrackMate. 

TrackMate can also import segmentation results as masks or label images 

and use them for tracking, making it compatible with any segmentation 

algorithm. B&W, Black and White.
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Brief CommuniCation NaTurE METHoDs

Here, we introduce a new version of TrackMate (TrackMate 7) 
that has been rewritten to improve performance, usability, and ver-
satility, all of which present several advantages over other available 
tracking tools (Supplementary Table 1). In particular, we devel-
oped a new application programming interface (API) that enables 
developers to integrate segmentation tools as TrackMate detectors. 
As examples, we provide detectors based on ilastik10, Weka11, cell-
pose12, MorphoLibJ13, and StarDist14. While the training of custom 
ML and DL models must be performed with external tools (using, 
for example, ilastik or the ZeroCostDL4Mic15 platform for StarDist 
and cellpose), popular built-in models are now fully integrated into 
TrackMate with a user-friendly interface and scripting capabilities. 

TrackMate can also import segmentation results as mask or label 
images for tracking, making it possible to perform tracking with any 
segmentation algorithm. Notably, as TrackMate now detects object 
contours in every frame, we reconfigured the TrackMate data model 
to store, display and analyze two-dimensional (2D) morphological 
features of the tracked objects over time (Fig. 1). The new detectors 
work for 2D and three-dimensional (3D) images when possible, but 
the analysis of object contours is currently limited to 2D images.

These new features widely increase the breadth of TrackMate 
applications and capabilities (Fig. 2, Supplementary Videos 1–11, 
Extended Data Figs. 1–4, Supplementary Manual, and Supplementary 
Tutorials) and its tracking performance (Supplementary Table 2). 
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For instance, the StarDist integration offers efficient and versatile 
nuclei detection in fluorescence images via the built-in model (from 
image set BBBC038v1 in ref. 16). Our integration also provides an 
interface to use custom StarDist models. To illustrate this, we used 
custom StarDist models trained with the ZeroCostDL4Mic plat-
form15 to track fluorescently labeled nuclei of collectively migrat-
ing breast cancer cells, or rapidly migrating T cells from brightfield 
images (Fig. 2a,b and Supplementary Videos 1 and 2). Before this 
integration, fully automated tracking of label-free cells was not pos-
sible in TrackMate.

As TrackMate supports multi-dimensional images, users can 
now track objects using one channel while measuring the changing 
intensities of the tracked objects in separate channels over time. As 
an example, we tracked the nuclei of breast cancer cells expressing 
a kinase translocation reporter, following changes in ERK activity 
in single cells as they migrated (Fig. 2c, Extended Data Fig. 1, and 
Supplementary Video 3).

To further showcase the versatility of TrackMate, we used a Weka 
model (trained using the Weka Fiji plugin) together with the new 
overlap tracker (linking algorithm based on object overlap between 
consecutive frames) to follow focal adhesions in endothelial cells 
(Extended Data Fig. 2 and Supplementary Video 4). We also used 
an ilastik pixel classifier (trained using ilastik) to follow Neisseria 
meningitidis growth and correlate lineage information to single 
bacteria morphological measurements (Fig. 2d and Supplementary 
Video 5). To showcase that TrackMate can now import segmenta-
tion results directly, then follow the imported objects, we tracked 
migrating cancer cells (fluorescent images and brightfield images), 
and hematopoietic stem cells (ref. 17, brightfield images) previously 
segmented using cellpose12 (Fig. 2e, Extended Data Fig. 3, and 
Supplementary Videos 6–8).

TrackMate’s new detectors can also be used to perform 3D seg-
mentation. Indeed, by swapping the z dimension of the source 
image with time, TrackMate can propagate 2D segmentation results 
across z planes and generate a 3D segmentation result from succes-
sive annotated 2D planes. This new feature makes the segmentation 
of 3D objects accessible, flexible, and possible without program-
ming knowledge (Fig. 2f, Extended Data Fig. 4, and Supplementary 
Videos 9–11).

TrackMate v7 currently offers a choice of ten segmentation 
detectors (plus the integration of custom models for some of them) 
and five particle-linking algorithms for tracking the detected 
objects. To facilitate choosing an optimal combination for a specific 
dataset, we developed an additional module, the TrackMate helper 
(Supplementary Manual and Extended Data Fig. 5). This module 

is a user-friendly application that performs parameter sweeps over 
any combination of detectors and particle-linking algorithms. Using 
the ground truth provided by the user, TrackMate helper computes 
the Cell-Tracking-Challenge (CTC) metrics18 for each parameter 
combination and reports the optimal one for each of the CTC met-
rics (Supplementary Table 2). In a nutshell, TrackMate helper allows 
the optimization of the tracking parameters for a whole dataset 
systematically.

Altogether, TrackMate now enables powerful segmentation 
approaches for tracking purposes directly in Fiji within a user inter-
face already familiar to many. We envision that, by enabling scien-
tists to resolve complex tracking problems more efficiently, this new 
version of TrackMate will accelerate biological discovery. We expect 
that TrackMate will continue to evolve in the years to come. In par-
ticular, as core libraries handling 3D objects are further developed 
in Fiji, the analysis of 3D object contours and shapes during track-
ing could become an invaluable addition. TrackMate was also built 
as a software platform to be extended by others independently and 
is documented as such. As DL-based segmentation and tracking 
algorithms are being developed, we hope contributors will consider 
TrackMate as a platform to accelerate the dissemination of their 
work to researchers in the Life Sciences and beyond18,19.
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Methods
Cells and reagents. MDA-MB-231 and U2OS cells were engineered to express 
ERK-KTR by first producing lentiviral particles in HEK 293FT packaging cells 
(Thermo Fisher, R70007). Cells were co-transfected with the third-generation 
lentiviral packaging system composed of pMDLg / pRRE (Addgene plasmid 
12251), pRSV-Rev (Addgene plasmid 12253), and pMD2.G (Addgene plasmid 
12259), along with the pLentiPGK Puro DEST ERK KTRClover (a kind gift 
from M. Covert; Addgene plasmid 90227) transfer plasmid, using Lipofectamine 
3000 (ThermoFisher) in OptiMEM (Gibco, 31985070), as per the manufacturer’s 
protocol20,21. After 24 hours, the medium was replaced with complete growth 
medium and incubated for 24 hours, at which point the medium was collected 
and filtered through a 0.45-µm syringe filter. MDA-MB-231 and U2OS cells were 
transduced with lentivirus for 48 hours in the presence of polybrene (8 µg/ml; 
Sigma, TR-1003-G), before washing and selection of stable positive cells using 
puromycin (2 µg/ml). Cells were then sorted by fluorescence-activated cell sorting 
(FACS) to isolate a population within a similar fluorescence range. MCF10 DCIS.
COM cells were cultured in a 1:1 mix of DMEM (Sigma Aldrich) and F12 (Sigma 
Aldrich) supplemented with 5% horse serum (16050-122; Gibco BRL), 20 ng/ml 
human EGF (E9644; Sigma Aldrich), 0.5 mg/ml hydrocortisone (H0888-1G; Sigma 
Aldrich), 100 ng/ml cholera toxin (C8052-1MG; Sigma Aldrich), 10 µg/ml insulin 
(I9278-5ML; Sigma Aldrich), and 1% (vol/vol) penicillin/streptomycin (P0781-
100ML; Sigma Aldrich). All cell lines were regularly checked for mycoplasma 
contamination, and all cell lines tested negative. MDA-MB-231 triple-negative 
human breast adenocarcinoma cells were acquired from ATCC (catalog number: 
HTB-26). U2OS osteosarcoma cells were provided by the Leibniz Institute 
DSMZ-German Collection of Microorganisms and Cell Cultures (cat. no. ACC 
785). MCF10DCIS.COM cells were provided by J. F. Marshall (Barts Cancer 
Institute, Queen Mary University of London).

Tracking migrating breast cancer cells. Migrating MCF10DCIS.com cells were 
tracked using either StarDist directly implemented within TrackMate or using 
Cellpose and then TrackMate. To track MCF10DCIS.com cells labeled with 
sir-DNA using StarDist and TrackMate, a custom StarDist model was generated 
using the ZeroCostDL4Mic platform14,15. This custom StarDist model was trained 
for 100 epochs on 72 paired image patches (image dimensions: 1024 × 1024, 
patch size: 1024 × 1024) with a batch size of 2 and a mae loss function, using 
the StarDist 2D ZeroCostDL4Mic notebook (v1.12.2). The StarDist ‘Versatile 
fluorescent nuclei’ model was used as a training starting point. Key python 
packages used include TensorFlow (v1.15), Keras (v2.3.1), CSBdeep (v0.6.1), 
NumPy (v1.19.5), and Cuda (v10.1.243). The training was accelerated using a 
Tesla P100 GPU. This model generated excellent segmentation results on our test 
dataset (average F1 score > 0.96). This model, the training dataset, and the code 
used for training are available on Zenodo22. In TrackMate, the StarDist detector 
custom model (score threshold = 0.41 and overlap threshold = 0.5) and the LAP 
tracker (linking max distance = 30 µm; track segment splitting = 15 µm) were 
used. Tracks were filtered in the function of their total distance traveled, and 
tracks shorter than 80 µm were excluded.

To track MCF10DCIS.com cells expressing lifeact-RFP (cell line described 
in ref. 23) and labeled with sir-DNA, cells were first segmented using the 
ZeroCostDL4Mic cellpose 2D notebook (v1.12, refs. 12,15). The cellpose model 
Cyto was used for the segmentation and the lifeact staining was used as the 
main segmentation channel. The Sir-DNA channel was used as the secondary 
segmentation channel. The following cellpose parameters were used: flow 
threshold = 0.4, cell probability threshold = 0, object diameter = 50. This approach 
generated excellent segmentation results on our test dataset (average F1 score > 
0.93). In TrackMate, the label image detector and the LAP tracker (linking max 
distance = 30 µm; track segment gap closing = 15 µm and 2 frames; track segment 
splitting = 15 µm) were used. Tracks were filtered in the function of the total 
number of spots detected, and tracks with fewer than 40 spots were excluded. This 
dataset is available on Zenodo24,25.

Tracking migrating T cells. T cells migrating on ICAM-1 were automatically 
tracked using StarDist directly implemented within TrackMate. The StarDist model 
used was described previously26 and is publicly available on Zenodo27,28. This model 
generated excellent segmentation results on our test dataset (F1 score > 0.99). In 
TrackMate, the StarDist detector custom model (score threshold = 0.41 and overlap 
threshold = 0.5) and the Simple LAP tracker (linking max distance = 30 µm; gap 
closing max distance = 15 µm, gap closing max frame gap = 2 frames) were used. 
This dataset is available on Zenodo27.

Following ERK activity in migrating cells. MDA-MD-231 or U2OS cells stably 
expressing clover-ERK-KTR were seeded on fibronectin-coated (1 µg /ml) Ibidi 
8-well slides (Ibidi) 1 day before imaging. Four hours before imaging, the medium 
was supplemented with 250 nM sir-DNA (Cytoskeleton) and 25 mM HEPES 
(Sigma). Cells were then imaged live (37 °C, 5% CO2) using a Nikon Eclipse Ti2-E 
microscope (Nikon) equipped with an sCMOS Orca Flash4.0 camera (Hamamatsu) 
and controlled by the NIS-Elements software (Nikon, v 5.11.01). MDA-MD-231 
cells were imaged using a 20× Nikon CFI Plan Apo Lambda objective (NA 0.75), 
either 1 frame per minute for 2 hours or 1 frame every 5 minutes for 17 hours. In 

these experiments, a camera binning of 2 × 2 was used. U2OS cells were imaged 
using a 10× Nikon CFI Plan-Fluor objective (NA 0.3) every 5 minutes for 3 hours. 
Cell nuclei were automatically tracked over time by using StarDist in TrackMate.

To track the nuclei of U2OS cells, a custom StarDist model was trained using 
the ZeroCostDL4Mic platform15. The training source for the model was generated 
from 25 manually annotated images (dimensions: 2048 × 2048) using the LOCI 
plugin in Fiji. The generated training source and target were randomly cropped 
into size 1024 × 1024, rotated, flipped, and multiplied by 5 using the Augmentor 
ZeroCostDL4Mic notebook15,29 to generate a dataset of 120 paired images. The 
custom StarDist model was trained for 200 epochs on the 120 paired image patches 
(image dimensions: 1024 × 1024, patch size: 1024 × 1024) with a batch size of 
2 and a mae loss function, using the StarDist 2D ZeroCostDL4Mic notebook 
(v1.12.2)15. Key python packages used include TensorFlow (v1.15), Keras (v2.3.1), 
CSBdeep (v0.6.1), NumPy (v1.19.5), and Cuda (v11). The training was accelerated 
using a Tesla P100GPU. This model generated excellent segmentation results on 
our test dataset (average F1 score > 0.918). In TrackMate, the StarDist detector 
custom model (score threshold = 0.41 and overlap threshold = 0.5) and the LAP 
tracker (linking max distance = 20 µm; track segment gap closing = 25 µm, gap 
closing max frame gap = 10 frames) were used. Tracks were filtered in function of 
their track duration and tracks shorter than 34 frames (2 hours and 40 minutes) 
were excluded. This dataset is available on Zenodo.

To track the nuclei of MDA-MB-231 cells, the ‘Versatile fluorescent nuclei’ 
StarDist model was used. In TrackMate, the StarDist detector (score threshold 
= 0.41; overlap threshold = 0.5) and the LAP tracker (linking max distance = 
40 µm; track segment splitting = 30 µm) were used. Tracks were filtered using their 
duration, and only the tracks spanning the whole video were considered for further 
analysis (directly in TrackMate). For each tracked cell, the average intensity of the 
ERK reporter was measured in their nucleus over time (directly in TrackMate). 
To visualize the changes in ERK activity over time, results were uploaded to 
PlotTwist30, and data were rescaled between 0 and 1 and visualized as heatmaps. 
This dataset is available on Zenodo31.

Tracking mouse hematopoietic stem cells migrating in hydrogel microwells. 
Mouse hematopoietic stem cells migrating in a hydrogel microwell17 were 
automatically segmented using cellpose (Cyto model) implemented in the 
ZeroCostDL4Mic platform12,15. The following Cellpose parameters were used: 
flow threshold = 0.4 and cell probability threshold = 0, object diameter = 17. This 
approach generated excellent segmentation results on our test dataset (average 
F1 score > 0.93). The resulting label images were automatically tracked using 
TrackMate. In TrackMate, the label image detector and the LAP tracker (linking 
max distance = 30 µm; track segment gap closing = 15 µm and 2 frames; track 
segment splitting = 15 µm) were used. Spots were filtered by their circularity and 
area. Tracks were filtered by the total distance traveled; tracks shorter than 80 µm 
were excluded. This dataset is available from the Cell Tracking Challenge website 
(http://celltrackingchallenge.net/).

Tracking glioblastoma-astrocytoma cells migrating on a polyacrylamide 
gel. Glioblastoma-astrocytoma U373 cells migrating on a polyacrylamide 
gel were automatically segmented using a custom cellpose trained using the 
ZeroCostDL4Mic platform12,15. This cellpose model was trained for 500 epochs 
on 214 paired image patches (image dimensions: 520 × 696), with a batch size 
of 8, using the cellpose ZeroCostDL4Mic notebook (v1.13). The cellpose Cyto2 
model was used as a training starting point. The training was accelerated using a 
Tesla K80 GPU. The following cellpose parameters were used for inference: flow 
threshold = 0.4 and cell probability threshold = 0, object diameter = 100. This 
approach generated excellent segmentation results on our test dataset (average 
F1 score > 0.97). The resulting label images were automatically tracked using 
TrackMate. In TrackMate, the label image detector and the simple LAP tracker 
(linking max distance = 100 µm; track segment gap closing = 100 µm and 10 
frames) were used. This dataset is available from the Cell Tracking Challenge 
website (http://celltrackingchallenge.net/) and on Zenodo32.

Neisseria meningitidis sample preparation and imaging. The Neisseria meningitidis 
strain 2C43 (ref. 33) pilQ/pilQ-mCherryind was grown on GCB agar plates (Difco) 
containing Kellog’s supplements, 3 µg/ml vancomycin and 5 µg/ml chloramphenicol at 
37 °C in a moist atmosphere containing 5% CO2. The pMGC17 plasmid was designed 
in order to generate the 2C43 pilQ/pilQ-mCherryind strain allowing IPTG-inducible 
expression of the type IV pilus secretin protein PilQ with a carboxy-terminal fusion 
to mCherry expressed from the Neisseria meningitidis chromosome.

First, pilQ was PCR-amplified from Neisseria meningitidis chromosomal DNA 
with primers p il Q- F: T TA ATTAAAGGAGTAATTTTATGAATACCAAACTGAC
AAAAATCGTCGACTCAATAGCGCAGGCTGTTGC

This PCR fragment was cloned in a pCRII-Blunt-TOPO vector (Invitrogen).  
Then, the mCherry ORF was PCR-amplified with a forward primer containing  
a region homologous to the 3’ of pilQ (minus the stop codon) as well as a Gly-Ser- 
Gly linker, and a reverse primer containing a SalI restriction site and a region  
homologous to the TOPO vector (MUTmChCT-F: AGCCTGCGCTATGGTT 
CCGGTGTGAGCAAGGGC, MUTmChCT-R: CTGCAGAATTCGCCCTTGTC 
GACTCACTTGTACAG).
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This PCR fragment was used as a mutagenesis megaprimer to amplify 
pilQ from the TOPO vector34. Finally, this vector was digested with PacI and 
SalI restriction enzymes and the resulting insert ligated into pMGC10. The 
pMGC10 plasmid was generated by inserting the lacI gene and the lac promoter 
in the pMGC3 plasmid35. The fragment of interest was PCR-amplified from the 
pMMB207 plasmid36 using primers (LacIF2: GAA TTC GCT AAC TTA CAT TAA 
TTG CGT TGC, LacIPR: GTC GAC GAT CTT AAT TAT TTC CTG TGT GAA 
ATT GTT ATC CG) and cloned in pMGC3 using EcoRI and SalI restriction. The 
pMGC17 plasmid was used to transform Neisseria meningitidis, generating an 
intermediate strain that carries both a native pilQ and pilQ-mCherry. This strain 
was then transformed with chromosomal DNA from a pilQ mutant strain37,38.

Bacteria in exponential phase from a 2-hour pre-culture in RPMI + 10% 
FBS supplemented with 100 µM IPTG at 37 °C and 5% CO2 were diluted to an 
optical density of 0.015 (1.5 × 107 bacteria/ml) and dropped onto a 2% agarose 
gel supplemented with 100 µM IPTG. Once the bacteria-containing droplet had 
dried up, the agar pad was flipped down onto a Fluorodish (Ibidi, 60-µm dish, 
35-mm-high glass-bottom). Fluorescently labeled proliferating bacteria were 
acquired using an inverted spinning-disk confocal microscope (Nikon, TI Eclipse) 
equipped with a 100× immersion objective (Plan-Fluor, NA = 0.5–1.3) at 37 °C 
in the presence of 5% CO2. Bacterial fluorescence was imaged in time-lapse at a 
5-min frame rate with an exposure time of 300 ms for 5.5 hours and recorded with 
a CMOS Camera (Photometrics, 95BPrime) using Metamorph Imaging Software 
(Molecular Devices, MetaMorph v7.10.4.407). The focus was maintained with the 
Perfect Focus System (PFS, Nikon).

We trained an ilastik model using the Pixel Classification workflow using 
images from these experiments. This model was then used in the TrackMate-Ilastik 
detector, with a threshold on the probability map of 0.5. Spurious detections 
larger than 4,000 µm2 were removed prior to linking. We used the LAP tracker for 
linking, using a max linking distance of 1 µm, with a max gap-closing distance of 
2 µm over a maximum of 2 frames, and detecting cell divisions over a maximal 
distance of 2 µm. We then filtered out tracks that start after 43 minutes. This dataset 
is available on Zenodo39.

Tracking focal adhesions in endothelial cells. Live imaging of the endothelial 
cells expressing paxillin-eGFP was described previously40. Briefly, human dermal 
microvascular blood endothelial cells expressing paxillin were imaged using a 
Marianas spinning disk confocal microscope. This microscope was controlled 
by SlideBook 6 (Intelligent Imaging Innovations), equipped with a Yokogawa 
CSU-W1 scanning unit, an inverted Zeiss Axio Observer Z1 body, and a 100×, 
NA-1.4 oil (Plan-Apochromat, M27) objective. Images were acquired every two 
minutes using an Orca Flash4 sCMOS camera (chip size 2048 × 2048; 2 × 2 camera 
binning enabled; Hamamatsu Photonics), at 37 °C and in the presence of 5% CO2. 
Acquired images were then processed using Fiji to remove background (rolling ball 
radius: 10 pixels), compensate for bleaching (exponential fit method), and correct 
drifting (StackReg, Rigid body). A custom Weka pixel classifier was then trained 
in Fiji to segment the focal adhesions. In TrackMate, the Weka detector (threshold 
on probability = 0.5) and the overlap tracker (min IoU = 0.3, scale factor = 1) were 
used. This dataset is available on Zenodo41.

3D segmentation based on the association of 2D segmentation results. To 
form spheroids, MCF10 DCIS.com cells were seeded as single cells, in standard 
growth medium, at low density (3,000 cells per well) on growth factor reduced 
(GFR) Matrigel-coated glass-bottom dishes (coverslip No. 0; MatTek). After 
12 h, the medium was replaced by a normal growth medium supplemented with 
2% (vol/vol) GFR matrigel. After 6 days, spheroids were fixed with 4% PFA for 
10 min at room temperature and labeled using DAPI. Spheroids were then imaged 
using a spinning-disk confocal microscope (Z step = 0.5 µm). The spinning-disk 
confocal microscope used was a Marianas spinning disk imaging system with 
a Yokogawa CSU-W1 scanning unit on an inverted Zeiss Axio Observer Z1 
microscope (Intelligent Imaging Innovations) equipped with a 100× (NA 1.4) oil, 
Plan-Apochromat, M27 (Zeiss). To generate 3D labels, nuclei were detected and 
tracked across the Z volume using StarDist implemented in TrackMate.

In TrackMate, the StarDist detector (score threshold = 0.41 and overlap 
threshold = 0.5) and the LAP tracker (linking max distance = 1 µm, track merging 
and splitting enabled) were used. Detected spots were filtered in function of 
their mean intensity to exclude spots with weak intensities. Tracks were filtered 
in function of the number of spots per track, and only the tracks with more 
than three spots were considered for further analysis (directly in TrackMate). In 
TrackMate, tracked nuclei were then exported as a label image to create 3D labels. 
3D labels were then visualized using the FPBioimage software42. The video was also 
generated using the FPBioimage software. This dataset is available on Zenodo43.

Confocal images of Arabidopsis thaliana floral meristem44 and light-sheet 
images of a developing Drosophila melanogaster embryo45,46 were automatically 
segmented using cellpose (Cyto2 model) implemented in the ZeroCostDL4Mic 
platform12,15. The following cellpose parameters were used: flow threshold = 0.4 
and cell probability threshold = 0, object diameter = 0. This approach generated 
excellent segmentation results on our test datasets (Arabidopsis thaliana floral 
meristem, average F1 score > 0.97; Drosophila melanogaster embryo, average 
F1 score > 0.89). To generate 3D labels, the 2D label images were tracked using 

TrackMate. In TrackMate, the label image detector and the simple LAP tracker 
were used. The videos were generated using the FPBioimage software.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data Availability
All of the new data used in this article are available on Zenodo, under a dedicated 
collection (https://zenodo.org/communities/trackmate). They are publicly available 
under the Creative Commons Attribution 4.0 International license.

Code Availability
TrackMate 7 and TrackMate-Helper introduced and used in this article are 
open-source software (GNU General Public License v3.0). Their source code is 
available on GitHub (https://github.com/fiji/TrackMate and https://github.com/
tinevez/TrackMate-CTCRunner). TrackMate 7 is directly available in the  
Fiji software by simply updating it. TrackMate is documented on the ImageJ  
wiki: https://imagej.net/plugins/trackmate/ and the documentation for the 
new features can be accessed from https://imagej.net/plugins/trackmate/
trackmate-v7-detectors.
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Extended Data Fig. 1 | Following ERK activity in migrating cells. U2OS (a, b.) and MDA-MB-231 cells (c. and d.) stably expressing an ERK activity reporter 

(ERK-KTR-Clover) and labeled using SiR-DNA were recorded live using a widefield fluorescence microscope. U2OS cells were recorded live over 3 hours 

(1 image every 5 minutes) and MDA-MB-231 cells were recorded live over 2 hours (1 image every minute). Cell nuclei were automatically tracked over 

time by using StarDist in TrackMate. A custom StarDist model was trained to detect the U2OS nuclei using the ZeroCostDL4Mic platform. The “Versatile 

fluorescent nuclei” StarDist model was used to track the MDA-MB-231 cell nuclei. For each tracked cell, the average intensity of the ERK reporter was 

measured in their nucleus over time (directly in TrackMate). Changes in ERK activity are displayed as heatmaps (blue high, yellow low). Heatmaps were 

generated using PlotTwist. Scale bar = 250 µm.
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Extended Data Fig. 2 | Tracking focal adhesions in endothelial cells using Weka and TrackMate. Endothelial cells expressing paxillin-GFP were recorded 

live using a spinning disk confocal microscope. Focal adhesions were then segmented and tracked using Weka integrated within TrackMate (Movie 4). 

Raw data (inverted LUT), Weka segmentation results, tracked focal adhesion, and the focal adhesion tracks are displayed for selected time points. Tracked 

focal adhesions are color-coded to indicate their lifetime (red, long-lived, blue short-lived). In the bottom panel, track colors indicate ID. Scale bar = 25 µm.
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Extended Data Fig. 3 | Tracking label images using TrackMate. a. Mouse hematopoietic stem cells migrating in a hydrogel microwell were automatically 

segmented using cellpose (Cyto model) implemented in the ZeroCostDL4Mic platform. The resulting label images were automatically tracked using 

TrackMate (Movie 7). Example raw and label images, as well as local and full cell tracks, are displayed. Yellow squares highlight regions of interest that 

are magnified. Scale bar = 250 µm. This dataset is available from the Cell Tracking Challenge. b. MCF10DCIS.com cells stably expressing lifeact-RFP and 

labeled with SiR-DNA were recorded live using a spinning disk confocal microscope. Cells were segmented using cellpose (Cyto model) implemented in 

the ZeroCostDL4Mic platform. The resulting label images were tracked using TrackMate (Movie 8). Example raw and label images, as well as local and full 

cell tracks, are displayed. Yellow squares highlight regions of interest that are magnified. Scale bar = 250 µm.
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Extended Data Fig. 4 | Tracking 2D labels to generate 3D labels using TrackMate. (a.) Confocal images of Arabidopsis thaliana floral meristem and (b.) 

light-sheet images of a developing Drosophila melanogaster embryo were automatically segmented using cellpose 2D (Cyto2 model) implemented in 

the ZeroCostDL4Mic platform. Representative single Z plane and the corresponding cellpose segmentation results are displayed. To generate 3D labels, 

cellpose 2D segmentation results were then tracked using TrackMate. 3D rendering of the raw data and the 3D segmentation results are also shown. Scale 

bars: (a) = 25 µm, (b) = 100 µm.
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Extended Data Fig. 5 | The TrackMate Helper module. Screenshot highlighting the user interface of TrackMate helper, a module that performs systematic 

parameter sweeps over any user-defined combination of TrackMate detectors and particle-linking algorithms. Using the ground truth provided by the user, 

TrackMate helper computes the Cell-Tracking -Challenge metrics to help users choose the best detector/tracker combination for their data.
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Deep learning has revolutionised the analysis of extensive mi-
croscopy datasets, yet challenges persist in the widespread adop-
tion of these techniques. Many lack access to training data,
computing resources, and expertise to develop complex mod-
els. We introduce DL4MicEverywhere, advancing our previ-
ous ZeroCostDL4Mic platform, to make deep learning more
accessible. DL4MicEverywhere uniquely allows flexible train-
ing and deployment across diverse computational environments
by encapsulating methods in interactive Jupyter notebooks
within Docker containers –a standalone virtualisation of re-
quired packages and code to reproduce a computational envi-
ronment–. This enhances reproducibility and convenience. The
platform includes twice as many techniques as originally pro-
vided by ZeroCostDL4Mic and enables community contribu-
tions via automated build pipelines. DL4MicEverywhere em-
powers participatory innovation and aims to democratise deep
learning for bioimage analysis.

phototoxicity | live microscopy | machine learning | cell division
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Introduction
Deep learning enables the transformative analysis of large
multidimensional microscopy datasets, but barriers remain
in implementing these advanced techniques (3, 4). Many
researchers lack access to sufficient annotated data, high-
performance computing resources, and expertise to develop,
train, and deploy complex deep-learning models. In recent
years, several approaches have been developed to democra-
tise the usage of deep learning for microscopy (4). Multi-
ple tools, such as BioImage.io, facilitate sharing and reusing
broadly useful, previously trained deep learning models, dis-
tributing them as one-click image analysis solutions (1, 5).
Yet often, deep learning models need to be trained or fine-
tuned on the end user dataset to perform well (1, 4, 6). We
previously released ZeroCostDL4Mic (2), an online platform

Bespoke notebooks

Inspired by ZeroCostDL4Mic
Hosted in DL4MicEverywhere

External notebooks
#ZeroCostDL4Mic

Continuous
integration

Automatic testing

DL4MicEverywhere-compatible

Notebooks

DEVELOPERS

Easy-to-use

interface to train,

evaluate and use models

Easy to deploy,
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and benchmark

Local / HPC / Cloud

DL container
images

Models

Reproducible
STANDARDS
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BioImage.IO

Transferable
Transparent
FAIR

COMMUNITY
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Fig. 1. DL4MicEverywhere platform. a) DL4MicEverywhere eases deep learning
workflow sharing, deployment, and showcasing by providing a user-friendly inter-
active environment to train and use models. Enabling cross-platform compatibil-
ity ensures deep-learning model training reproducibility. DL4MicEverywhere con-
tributes to deep learning standardisation in bioimage analysis by promoting trans-
ferable, FAIR, and transparent pipelines. The platform exports models compati-
ble with the BioImage Model Zoo(1) and populates the Docker hub with free and
open source (FOSS) container images that developers can reuse, incrementing
the list of available workflows. b) DL4MicEverywhere accepts three types of note-
book contributions: ZeroCostDL4Mic(2) notebooks, bespoke notebooks inspired by
ZeroCostDL4Mic(2), and notebooks hosted in external repositories that are com-
pliant with our format. These contributions are automatically tested to ensure the
correct requirements and format.
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Fig. 2. a) When running DL4MicEverywhere, the user interacts with an interface to choose a notebook, image and output folder, and choose a GPU running model if possible.
b) DL4MicEverywhere will automatically identify the system architecture and requirements to build a Docker container image. If the image is not available in the Docker hub,
it is built in the user’s machine. This image is used to create a Docker container: a functional instance of the image that gathers the code environment to use the chosen
notebook. c) A Jupyter lab session is launched inside the Docker container to train, evaluate or use the chosen deep learning model. DL4MicEverywhere notebooks are
also interactive and equivalent to ZeroCostDL4Mic (2) notebooks. d-f) DL4MicEverywhere enables the use of the same notebooks in different local or remote infrastructures
such as workstations, the cloud or high-performance computing clusters. This is, researchers could run exactly the same d) super-resolution, e) artificial-labelling or g)
segmentation pipelines, among many others, in different systems.

relying on Google Colab that helped democratise deep learn-
ing by providing a zero-code interface to train and evalu-
ate models capable of performing various bioimage anal-
ysis tasks, such as segmentation, object detection, denois-
ing, super-resolution microscopy, and image-to-image trans-
lation. Here, we introduce DL4MicEverywhere, a major ad-
vancement of the ZeroCostDL4Mic (2) framework (Fig.1).
DL4MicEverywhere allows users the flexibility to train and
deploy their models across various computational environ-
ments, including Google Colab, their own computational re-
sources (e.g., desktop or laptop), or high-performance com-
puting systems. This flexibility is made possible by enclos-
ing each deep learning technique in an interactive Jupyter
notebook, which is then contained in a Docker (7)-based
environment. This enables users to install and interact
with deep learning techniques easily. Incorporating cross-
platform containerisation technology boosters the long-term
platform’s stability and reproducibility and enhances user
convenience (8).

Results

DL4MicEverywhere introduces a novel and user-friendly
graphical interface that enables users to easily access and
launch a comprehensive collection of interactive Jupyter
notebooks. Each notebook comes packaged into a Docker
container with all necessary software dependencies, as illus-
trated in Fig. 2a-c.
DL4MicEverywhere has gone beyond simply containeris-
ing notebooks, providing a zero-code interface that han-

dles all behind-the-scenes complexities. Users are not re-
quired to deal with the intricacies of Docker or configur-
ing deep learning frameworks. The intuitive interface ab-
stracts away these technical details, while the Docker en-
capsulation provides a standardised and rich environment for
executing advanced techniques reliably (Figure 2b). Re-
searchers can select a notebook, choose computing resources,
and run the corresponding deep learning-powered analysis
with just a few clicks. The platform handles deploying the
encapsulated coding environment seamlessly in the back-
ground. This allows users to train and apply models on
various computing resources they control, eliminating re-
liance on third-party platforms. Furthermore, researchers can
launch a notebook on local or remote systems with GPU
acceleration on clusters whenever available, without worry-
ing about complex software dependencies, docker container
management or losing access to deep-learning frameworks
(Fig. 2d-f). DL4MicEverywhere offers twice the number of
deep learning approaches than what was initially available
in ZeroCostDL4Mic. The platform is designed to encour-
age sharing and reuse of models via the BioImage Model
Zoo. DL4MicEverywhere’s infrastructure is strengthened by
automated build pipelines (9), which allows for the seam-
less integration of new trainable models contributed by the
community (10–13) (as shown in Fig. 1b). These con-
tributions are further facilitated through user-friendly tem-
plates, allowing new notebooks to be added independently
of the original ZeroCostDL4Mic framework. By empower-
ing participatory innovation in an open and flexible platform,
DL4MicEverywhere aims to make deep learning more ac-
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cessible for bioimage analysis. Developers can share a note-
book based on our template and metadata for their method,
and DL4MicEverywhere handles the testing and building of
fully documented and open-source containerisation. Note
that notebook containerisation allows others to reliably repli-
cate analyses and build on the latest methods. The highly
flexible nature of Docker containers encapsulating notebooks
enhances long-term reproducibility across operating systems
and computing environments. Researchers can easily share
not just code, but the full software environment required to
run it reliably. This reusable encapsulation empowers others
to replicate analysis, evaluate methods, and build on research.

Discussion

Deep learning is revolutionising microscopy through data-
driven analysis and discovery (14). However, significant bar-
riers persist in accessing these advanced techniques, includ-
ing a lack of training data, computing resources, and ex-
pertise (4, 6, 14). Proprietary platforms create technolog-
ical and cultural obstacles, while complex workflows im-
pede adoption by non-experts. DL4MicEverywhere is an
initiative that aims to make deep learning accessible to ev-
eryone by providing a flexible and community-driven plat-
form. Encapsulating software in Docker containers makes
it possible to integrate new methods and enrich the mi-
croscopy community through participatory innovation. In-
tuitive graphical user interfaces also lower the barriers to
entry, making it easier for non-experts to use the platform.
Users can rely on shared techniques while customising mod-
els across diverse hardware, retaining control over data and
analysis. The platform will particularly be useful with the
increasing development and use of cutting-edge foundation
models (15). By bundling these sophisticated models into
shareable containers, researchers can customise and exploit
them in their microscopy applications. DL4MicEverywhere
also simplifies complex deep learning workflows for non-
experts through automated pipelines, and is optimised for use
with local computational resources, high-performance com-
puting, and cloud-based solutions. This flexibility is pre-
cious for 1) sensitive biomedical data, where privacy risks
may limit reliance on public cloud platforms, and 2) contin-
uously scaling data such as time-lapse volumetric images or
high-throughput high-content imaging data, where storage,
dissemination and access rely on institutional infrastructures
with specific data sharing protocols. DL4MicEverywhere
also adheres to FAIR principles, enhancing discoverability
and interoperability. We expect DL4MicEverywhere to rep-
resent an important step towards reliable, transparent, and
participatory artificial intelligence in microscopy.

Code availability. The source code, documentation, and tu-
torials for DL4MicEverywhere can be found at https://
github.com/HenriquesLab/DL4MicEverywhere.
DL4MicEverywhere is made available under the Creative
Commons CC-BY-4.0 license.
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Methods
DL4MicEverywhere Platform Implementation. The core
DL4MicEverywhere platform was implemented in Bash
packaging and managing Python notebook workflows
through Docker containers. An overview of the key technical
components is provided below.

Docker Containerization. Each notebook is encapsulated
into a Docker container, including all dependencies required
for smooth runtime (Docker v24.0.5, Docker Inc.). These
containers are functional instances of Docker images –soft-
ware units that contain the virtualisation of a specific com-
putational environment, with all the specified dependencies
and packages included. Images were built from Ubuntu
(v20.04/22.04) base images, with optional Nvidia CUDA
support for GPU acceleration. Python (v3.7/3.8/3.10), deep
learning packages (TensorFlow, Keras or Pytorch), and note-
book packages were installed according to the requirements
into the containers. Unique containers were constructed
for each notebook using a parameterised Docker file build
process, taking metadata like notebook URL and software
versions as input. These images are uploaded to Docker
hub so they can be distributed as free and open source
(FOSS) and belong to the Open Container Initiative (OCI)
(https://opencontainers.org/).

Launch Script and GUI. A Bash shell script launch.sh was
implemented to manage the building, running, and monitor-
ing of the notebook containers based on user input. Key
functions included argument parsing, installation checking,
Docker image building, and Jupyter Lab invocation within
the container. A graphical user interface was additionally
created using Wish (a Tcl/Tk application) to enable intuitive
notebook and parameter selection through a desktop window.
This is invoked by the launch script and passed user selec-
tions.

Configuration Metadata. Inspired by the BioImage Model
Zoo (1) specifications, notebook container construction was
driven by human-readable YAML configuration files spec-
ifying necessary build metadata for each notebook, includ-
ing the URL of the notebook itself, Python requirements, and
Docker parameters. These configurations were loaded by the
launch script when initialising a container. This format estab-
lishes a basis for a seamless connection with the BioEngine
of the Zoo.
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Testing and Deployment Pipelines. GitHub Actions
workflows were implemented to automatically build and pub-
lish container images for each new notebook, handling test-
ing across platforms like AMD64 and ARM64. Images
were versioned based on notebook metadata and published to
DockerHub for distribution. Strict conventions enforced by
templates facilitated notebook contributions from the com-
munity. These contributions are further checked via GitHub
Actions to assert that they follow the specified format with
valid URLs and that it is possible to build a Docker image.

Jupyter Notebooks and Widgets. Notebooks were
adapted from the ZeroCostDL4Mic Colab format to interac-
tive Jupyter notebooks leveraging ipywidgets for a simplified
user interface requiring no coding. Parameters could be
configured via graphical elements rather than edits to code.
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Joanna Pylvänäinen

Bioimage analysis for life scientists: tools for live 
cell imaging

Live imaging is essential in visualizing biological processes such as normal tissue development, 
wound healing, and cancer — processes too small for the bare human eye to observe. 
Optical microscopy has enabled the magnification of these processes, and the integration of 
sensitive digital cameras has enabled the acquisition of images for subsequent observation 
and analysis. Extracting meaningful information from live imaging poses several challenges. 
Despite the availability of several tools to improve live cell imaging, challenges persist. Live 
cell imaging data often drifts, dyes bleach, and sample health is frequently compromised, 
hindering the extraction of meaningful information from microscopy experiments. 
Computational bioimage processing and analysis emerge as promising solutions to address 
many of these issues.
This thesis presents user-friendly live cell image prosessing and analysis tools for life scientists. 
First, Fast4DReg swiftly corrects drifting in 4D images, second, DL4MicEverywhere allows 
implementation of deep learning in various computational environments without coding, 
and third, TrackMate v7 tracking software integrates cutting-edge segmentation algorithms 
into tracking pipelines. To ensure usability, comprehensive documentation and tutorials have 
been created. This thesis demonstrates the use of these tools in studies of pancreatic cancer 
cell interactions during metastasis and drug resistance mechanisms. In summary, the user-
friendly image analysis tools developed in this thesis offer efficient and accessible solutions 
for processing and analyzing live cell imaging data, benefiting researchers across various 
fields and contributing to our understanding of cell behavior and disease processes.
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