
Validation of a simulator for an engine 

power plant 

Master’s Thesis in Computer Engineering 

Author: Jens Lassus 

Supervisor: Jerker Björkqvist 

Faculty of Science and Engineering 

Åbo Akademi University 

2024  



Abstract 

Simulation software is used extensively in many industries today because it is usually 

faster and cheaper to develop and test new products this way, since there is no need 

for a physical prototype. In some cases, it is infeasible to build a physical version just 

for testing. This could be because it is prohibitively expensive, or because testing over 

a vast time span is required. Simulation software solves these issues, since it is 

relatively quick and cheap to reconfigure. Additionally, simulations can be run faster 

than real time. All these factors contribute to faster and cheaper prototyping. 

One scenario in which simulation is very valuable is when building an engine power 

plant. It has become increasingly important to be able to accurately predict the 

performance of a power plant already during the sales process, as it can directly affect 

the revenue of the customer. As this is a very competitive market, a manufacturer can 

gain an advantage by committing to better performance guarantees than their 

competitors, but this is risky unless the performance can be accurately predicted. This 

risk can be mitigated if the manufacturer has access to reliable simulation software. 

Looking at existing installations is not a complete solution, because engine power 

plants are purpose-built for their application, and engines perform differently 

depending on ambient conditions, such as air temperature, air pressure, and humidity, 

as well as load, fuel methane number, and gas pressure. 

One potential concern about simulating the real world is the accuracy of the simulator. 

If the results of the simulations are used to make important decisions, something about 

the accuracy of the simulator should be known. The purpose of this thesis is to develop 

software to speed up the process of evaluating the accuracy of a particular piece of 

simulation software used for simulating engine power plants. The accuracy can be 

evaluated by comparing the simulated values against values recorded at a real 

installation. This feedback from the real world back into the simulator can be thought 

of as a kind of digital twin, the concept of which is explained in section 3.3. 

Because the dataset used in this thesis is limited to a single power plant, it is not 

possible to fully evaluate the simulator against the full range of power plants that it is 

capable of simulating. However, the software produced as a part of this thesis should 

make future validation against other datasets faster. Additionally, even with this 



limited dataset it is possible to simulate and compare those performance parameters 

that may vary within one installation, such as the ambient and fuel conditions 

mentioned above. Over a longer period of time, it is also possible to study the effects 

aging has on performance. 

The process of manually entering each sensor reading into the simulator would be very 

tedious and prone to human error. For this reason, the practical part of this thesis 

consists of developing a piece of software that automates the process of feeding input 

parameters into the simulator, running the simulation, then extracting the results and 

comparing them to the corresponding real readings from the sensors. The benefit of 

this is that it makes it easy to test the simulator against datasets from other power 

plants, as well as comparing different versions of the simulator against each other using 

the same dataset. Without this piece of software, this process would be very tedious, 

which would prevent large datasets from being assessed. Another benefit is that it 

enables plant operators to see if their power plant is behaving as expected. Anomalous 

readings can be detected by comparing them to their simulated counterparts. The 

challenge with developing the software is that the simulator was built in Microsoft 

Excel, with some core parts written in C++, and it was never intended for this use case. 

Although the causes of inaccuracies in the simulator are discussed briefly, this is not 

the focus of this thesis. 

  



Table of Contents 

 

1. Introduction .............................................................................................................. 1 

2. Background .............................................................................................................. 3 

2.1. Motivation for using a simulator ....................................................................... 4 

2.2. Motivation for assessing simulator accuracy .................................................... 4 

2.2.1. Verifying performance manuals ................................................................. 4 

2.2.2. Contractual risks ......................................................................................... 5 

2.2.3. Verifying operating configuration .............................................................. 6 

2.2.4. Verifying using large datasets .................................................................... 6 

3. Theory ...................................................................................................................... 7 

3.1. Simulation ......................................................................................................... 7 

3.2. Model validation ................................................................................................ 8 

3.3. Digital Twins ..................................................................................................... 8 

3.4. Big Data ............................................................................................................. 9 

3.5. GAIA-X ............................................................................................................. 9 

3.6. Black Box testing .............................................................................................. 9 

3.7. ISO 3046 .......................................................................................................... 10 

4. Implementation ....................................................................................................... 11 

4.1. Structure .......................................................................................................... 11 

4.2. Libraries ........................................................................................................... 12 

4.2.1. Microsoft Office Interoperability Library ................................................ 13 

4.2.2. C# ............................................................................................................. 13 

4.3. Program structure ............................................................................................ 14 

4.3.1. Database ................................................................................................... 14 

4.3.2. Simulator interface ................................................................................... 15 



4.3.3. Handling popups ....................................................................................... 15 

4.4. Data ................................................................................................................. 15 

4.4.1. Time aggregation ...................................................................................... 16 

4.4.2. Weather .................................................................................................... 16 

4.4.3. Required parameters ................................................................................. 16 

4.4.4. Missing parameters ................................................................................... 16 

4.5. Performance ..................................................................................................... 17 

4.5.1. Hardware .................................................................................................. 17 

4.5.2. Motivation ................................................................................................ 17 

4.5.3. Benchmarking the automation software ................................................... 18 

4.5.4. Benchmarking the simulator .................................................................... 19 

4.5.5. Memory optimization ............................................................................... 22 

5. Results .................................................................................................................... 24 

5.1. Heat rate .......................................................................................................... 24 

5.2. Exhaust gas temperature .................................................................................. 28 

6. Conclusion .............................................................................................................. 32 

Summary in Swedish .................................................................................................. 33 

References .................................................................................................................. 36 

 



1 

 

1. Introduction 

During the development of a product, it is often useful to know how it would perform 

in a particular configuration, before a physical product is built. In some cases, physical 

models can be built for testing, but in more complex cases it is often easier to simulate 

the product using software. This is especially true when power plants are concerned. 

Power plants are complex systems that are expensive and time consuming to build. In 

addition, every power plant is its separate project with its own unique requirements 

and operating environment, which means that often no data exists for how a plant will 

perform in a specific configuration. 

In the past, the primary customers for engine power plants were industries generating 

power for their own use, to reduce the amount of energy that had to be bought from 

the power grid. Efficiency was important in terms of fuel savings, but would only 

affect the cost of production, not the revenue directly. Today, the dominating customer 

category is grid-scale utility customers, whose core business is selling energy to the 

power grid. To maximize their revenue, it is in these customers’ interest to bid as many 

kilowatt hours as possible to the energy market. More accurate predictions for 

performance allows for tighter tolerances, which means that the customer can bid 

closer to their maximum generating capacity. 

Lowering tolerances increases risk. The consequences of not fulfilling the 

commitments towards the energy market would hit the customer’s profitability 

directly. This is a risk that needs to be mitigated. A common way of doing so is by 

transferring this risk to the supplier of the power plant in the form of monetary 

penalties. If the performance parameters guaranteed in the supply contract are not met 

at the site acceptance test, considerable penalties are materialized, hitting the 

profitability of the supplier. Consequently, the supplier also needs to mitigate this risk. 

As the consequences are fixed, and the risk cannot be transferred, the supplier must 

aim to lower the probability of the risk materializing. The supplier also does not want 

to promise less than they can deliver, as this could cause them to lose a contract to 

competition. If nothing else is available, estimates about performance can be made 

based on previous projects and known characteristics of each component. However, 

this is tedious manual work that is susceptible to human errors. For these reasons, an 



2 

 

accurate and configurable power plant simulator can be an efficient and effective tool 

for risk management during the sales process. 

Based on theory and physical laws, the simulator can calculate how a theoretical power 

plant would perform in various configurations and environments. This simulation 

software can also be referred to as a model. One drawback with any type of model is 

that it is not perfectly accurate. It is interesting to know the accuracy of the model, 

because if the accuracy is unknown, no confidence can be placed in any assumptions 

made based on simulated data. The process of determining the accuracy of the model 

is called model validation. It is not possible to prove absolute validity of a model. It is 

only possible to invalidate, or fail to invalidate. A more attainable goal is a high degree 

of face validity, which means that the model appears to be an accurate representation 

of the system from all outward indications [1]. 

In this thesis, the accuracy of a piece of simulation software for engine power plants 

is assessed. The motivation is that by knowing the accuracy of the simulated data, more 

confidence can be placed in it. This reduces the risk for the supplier of the power plant, 

for the reasons outlined above. 

To assess the accuracy of the simulator, data recorded from a real engine power plant 

under known conditions is used. Some parameters, for instance load and ambient 

temperature, are used as input values for the simulator. Other parameters, such as 

efficiency and exhaust gas temperature, are compared to the corresponding simulated 

values. The accuracy of the simulation is determined by how close the simulated values 

are to the recorded values. When doing this for large datasets, this process would be 

tedious to do by hand. For this reason, the practical part of this thesis focuses on 

automating the process of importing the data into the simulator interface, converting 

units, running the simulation, and finally exporting the results into a file. The intentions 

are to modify the simulator as little as possible, which means using the existing 

interface that was made in Microsoft Excel. 



3 

 

2. Background 

Evaluating the performance of an engine power plant for a particular application is not 

as simple as looking at the catalogue values. The performance of an internal 

combustion engine is dependent on many different parameters, some of which cannot 

be controlled by the operator – instead they depend on ambient conditions, such as 

temperature, humidity, and pressure. For a customer to be able to somewhat fairly 

compare the performance between products from different manufacturers, the 

parameters affecting the performance need to be the same. To enable this, there are 

internationally accepted standards. One such standard is the ISO 3046 [2], which sets 

the standard reference conditions at which the performance is stated (unless otherwise 

stated by the manufacturer). 

In a laboratory, such conditions could in theory be produced. However, considering 

for example the huge amount of airflow required, conditioning the temperature to meet 

the standard reference conditions may not be viable in practice. Therefore, there is also 

a need for international standards providing methods for translating performance 

measured at one set of conditions to those expected at standard reference conditions. 

This is also provided by ISO 3046. 

Engines manufactured for the automotive industry and similar may be sold as off-the-

shelf, free-standing products, according to catalogue values. This would make little 

sense for applications where the equipment is used in utility-scale powerplants. The 

performance needs to be further translated from catalogue values, i.e. standard 

reference conditions, to site conditions. This lets the customer make a true evaluation 

of the expected performance on their installation site, in order to compare different 

offers. 

The simulator that will be evaluated in this thesis was originally created in the 1980s 

by an employee working as a sales representative in a different time zone than the main 

office. During the sales process, some calculations needed to be done. These 

calculations used to be done manually by experts located at the main office. Because 

of time zone differences, this process was rather slow. To speed up this process, a 

relatively simple tool for doing these calculations was created in Microsoft Excel. This 

initial tool was based on the ISO 3046 standard, as well as the company’s own 



4 

 

performance manuals. The performance manuals describe cooling systems, exhaust 

gas temperatures and flow rates, as well as corrections for various factors. Some 

calculations in the simulator are based on physical laws, while others are based on 

internal research. One example of internal research is the research on condensation in 

the intercooler. 

At the time, only diesel engines were of interest. As gas engines were developed, the 

need arose to simulate those as well. As the approximations made for diesel engines 

in ISO 3046 do not fit today’s gas engines too well, the standard allows for the 

manufacturers to use substitute reference conditions to better simulate the 

performance. Another example where the standard permits manufacturers to utilize 

their own specifications is the internal mechanical resistance of an engine. For these 

reasons, the performance manuals of a manufacturer may differ slightly from the ISO 

3046 standard. 

2.1. Motivation for using a simulator 

Conducting a project is always associated with some risk. A risk is the chance that 

some event that negatively affects the project occurs. This is why risk management is 

an important part of project management. Risk management is the process of 

identifying the possible events that could affect the project, and assessing the 

probability of them occurring, as well as how they would affect the project [3]. In 

2001, a study designed to answer which tool provides the greatest benefit for the 

project risk management process was conducted. The highest-ranking tool in the study 

was simulation [4]. The second and third highest ranking tools were responsibility 

assignment and risk impact assessment, respectively. 

2.2. Motivation for assessing simulator accuracy 

By assessing the accuracy of the simulator, the accuracy of the performance manuals 

is also assessed, since the simulator is based on them. Other benefits include reducing 

contractual risks and verifying that the plant is operated as intended. 

2.2.1. Verifying performance manuals 

The performance manuals themselves are not necessarily perfect, for several reasons. 

One reason is that the simulation software used during development, GT-POWER [5], 



5 

 

is more tailored towards small engines, such as those found in a regular car. 

Additionally, the prototype engines used for testing and for creating the performance 

manuals may not perfectly represent an engine that is delivered to a customer. 

Prototype engines often have fewer cylinders than the final product. Furthermore, 

engine-to-engine variations exist due to component tolerances. It is difficult to know 

if a particular engine is a good representation of the average engine. The software 

created alongside this thesis could help verify the correctness of the performance 

manuals, since the simulator is based on them. 

2.2.2. Contractual risks 

Another reason to verify the accuracy of the simulator is that it can help reduce 

contractual risks. When selling a power plant, certain guarantees are given about 

minimum efficiencies, for example. The performance of the power plant is dependent 

on external factors, such as temperature, humidity, and pressure. If not carefully 

considered, the seller may end up promising something that they cannot deliver. Using 

a simulator, the power plant can be simulated in its target environment before a 

contract is signed, significantly reducing contractual risks. 

The contracts may in some cases include guarantees about performance degradation 

over time. However, in addition to normal wear and tear, which can be mitigated quite 

well by regular maintenance, unexpected external factors could also contribute to 

performance degradation. For example, if the area is very dusty, that dust may build 

up in the radiators, insulating them and reducing their efficiency. Performance 

degradation of a real power plant could be measured using the simulator by running it 

based on the current input parameters and comparing the sensor readings of interest to 

their theoretical values, calculated by the simulator. Assuming that the simulator is 

otherwise very accurate, the difference between the theoretical values and the actual 

values would be due to performance degradation. 

From a customer’s point of view, knowing the degradation ahead of time is important 

because it will affect the payback time of the power plant. It does not matter how 

efficient the new power plant is, if it degrades to below average after a few years. The 

customer may be willing to pay a higher initial price for a stronger performance 

guarantee. The seller takes a risk by giving this guarantee, but by having an accurate 

simulator, this risk is reduced. 



6 

 

2.2.3. Verifying operating configuration 

An accurate simulator can be used to compare certain parameters from a real power 

plant against their calculated values, in order to find cases where the power plant is 

configured differently than expected. For example, if the exhaust gas temperature 

differs from the simulated value, this could indicate that the power plant is running in 

a different configuration than intended. 

2.2.4. Verifying using large datasets 

Automation enables developers to test the simulator on large datasets. This provides 

greater coverage of all possible input parameters, which means they can be more 

confident that it is accurate. A model can never be proven to be correct, but the more 

different cases it can accurately predict, the more confidence can be placed in it. 



7 

 

3. Theory 

This chapter covers some background information and theory about simulation, model 

validation, digital twins, big data, black box testing, and the ISO 3046 standard. 

3.1. Simulation 

Simulation and models are closely related and are sometimes used somewhat 

interchangeably. Shannon defines simulation as “the process of designing a model of 

a real system and conducting experiments with this model for the purpose of either 

understanding the behavior of the system and/or evaluating various strategies for the 

operation of the system” [6]. 

A model is an approximation of a system, phenomenon, or process. It is simpler than 

the real system, while still replicating its most important properties. A model can be 

physical, mathematical, or logical [7, p. 117], [8]. The purpose of a model is to predict 

how the real system will behave, without the need to interact with the real system. The 

real system does not even need to exist. For example, by constructing a model before 

the real system is built, the performance of the proposed system can be evaluated, 

reducing the risk of failure to meet specifications. The system can also be simulated 

faster than real-time, allowing the effects of running the system in certain 

configurations for long periods of time to be analyzed much more quickly and cheaply 

than using the real system. The model is easy to reconfigure and experiment with, 

allowing questions concerning what would happen in various scenarios and in different 

configurations to be answered. In many cases, this would be impossible or impractical 

to do using a real system. This would necessitate the use of a model. Another advantage 

of using a model is that training can be done in a safe environment where neither 

people nor equipment can be harmed, even if operator mistakes are made. 

Simulation also has some disadvantages. Unlike an analytical approach, a simulation 

is run with a set of input parameters and returns a set of output parameters, rather than 

solved for the optimal set of input parameters. Using this approach, it is impossible to 

tell if there is a different set of input parameters that would yield a better result, without 

trying all of them. 



8 

 

3.2. Model validation 

One potential problem with models is validity. An inaccurate model is not useful. 

Depending on the level of inaccuracy, it might not reduce project risks at all. At the 

very least, engineers and project managers should be aware of the limitations of the 

model, so that not too much confidence is placed in it. The purpose of this thesis is to 

speed up the process of assessing the validity of an existing model for engine power 

plants. The method used in this thesis is to run the simulation using input parameters 

from a real power plant under known conditions, and then compare the simulated 

parameters to the corresponding readings from the real power plant. 

It should be noted that, similar to a scientific theory, a model can only be proved to be 

invalid. Its validity cannot be proved. However, by sufficiently testing the model using 

varied input data and comparing it to known output data, one can be reasonably certain 

that the model is accurate in most circumstances [1]. 

3.3. Digital Twins 

Complex physical systems, such as power plants, are outfitted with a host of different 

sensors, continuously recording everything of interest about the system, for example 

temperature, pressure, voltage, and flow sensors. Some of this data is required for the 

system to operate, while other data is more interesting from an analytical standpoint. 

A digital twin takes the idea of a model a step further. While a regular model can 

represent a real system, after it is created, it is disconnected from reality. A digital twin 

continuously takes in new data from the real system, enabling real-time simulation. 

IBM provides a definition of what a digital twin is: 

“The digital twin is the virtual representation of a physical object or system across its 

life-cycle. It uses real-time data and other sources to enable learning, reasoning, and 

dynamically recalibrating for improved decision making.” [9] 

In other words, a digital twin aims to mirror a physical system as closely as possible. 

Digital twins could, for example, be used to find early indications of a developing 

fault. An additional benefit is that engineers can diagnose potential problems from 

anywhere in the world, from the comfort of their desk. This could be especially useful 

if a problem develops on a ship out at sea, for example. 



9 

 

The concept of a digital twin was initially formulated in 2002 by Michael Grieves at 

the University of Michigan [10, p. 93], but in practice, digital twins have been used by 

NASA since the 1960s [11]. 

3.4. Big Data 

Companies today are increasingly data driven, meaning that they record, process, and 

analyze large quantities of data, for the purpose of improving their business in various 

ways. When the datasets become extremely large and complex, they are called Big 

Data. What size dataset is considered big constantly changes, due to constantly 

growing computing capabilities. One way of defining big data is to say that it is data 

that is too large for traditional relational databases to handle. The variety of data, as 

well as the rate that new data is received, also play a role [12]. 

The data used in this thesis is not quite of that scale; it comes from a single power plant 

and only a relatively small number of parameters are used. Nonetheless, one could 

imagine that in the future, all sensor data from all power plants are available from a 

central point. At that point, it could probably be considered big data. 

3.5. GAIA-X 

GAIA-X is a European initiative for creating a secure, centralized system where data 

and services can be made available [13]. The goal of this initiative is to promote 

innovation, by ensuring transparency and interoperability, while remaining secure. 

GAIA-X also guarantees data sovereignty, meaning that users decide where their data 

is stored, who may process it, and for what purpose. 

Examples of use cases cover many different sectors, including industry, smart living, 

finance, health, public sector, mobility, agriculture, energy, and geoinformation. A 

relevant use case for engine power plants might be the gathering and processing of 

sensor information from components installed at various locations across the world. In 

cases like these, questions arise regarding the ownership of data, and who is allowed 

to access it. 

3.6. Black Box testing 

Black box testing is a category of software testing where the tester knows nothing 

about the inner workings of the software [14]. All the tester knows is what output the 



10 

 

software is supposed to return for some given input parameters. The tester can then try 

to give that input to the software and see what output it produces. If the output is the 

same as the expected output, the test is passed. 

Although not quite the same, this is analogous to how the simulation software is to be 

verified. Inspecting the source code in order to find mistakes is not viable, since it 

consists of tens of thousands of lines of code, some of which are based on expert 

knowledge. It is also possible that some of the resources used when developing the 

software are inaccurate. These inaccuracies would not be caught by this method, 

assuming that the same resources would have to be used to verify the code. This is 

why the black box method is chosen. The difference is that instead of specifications, 

there are sensor readings from a physical version of the system to use as a reference. 

3.7. ISO 3046 

The simulator is based on the ISO 3046 standard [2], which specifies how to calculate 

corrections for power when ambient temperature, air pressure, or humidity, differ from 

the reference conditions. The reference conditions are T = 298 K, p = 100 kPa, 

humidity = 0.3. 

Properties of internal combustion engines, for example the rated power, are always 

declared at certain reference conditions. This includes the ambient air temperature, 

pressure, and relative humidity. However, real-world applications may not match these 

conditions. The ISO 3046 standard defines formulas for calculating corrections for, 

among other things, power and fuel consumption, based on the actual conditions. It is 

a satellite standard to the ISO 15550 standard, which contains the reference conditions. 

The ISO 3046 standard can also be used to calculate derating factors. Derating is the 

process of reducing the maximum allowed power, based on ambient conditions. 

Ambient conditions that reduce the maximum power are high temperature, high 

humidity, and low air pressure. 



11 

 

4. Implementation 

For the practical part of this thesis, the objective is to automate the process of running 

the simulation on input data recorded from a real installation. 

4.1. Structure 

The simulator consists of a Microsoft Excel document with code written in Visual 

Basic for Applications (VBA), as well as some core modules written in C++. Two 

sheets in the Excel document are of importance for the automation software: the table 

sheet and the report sheet. These can be seen as the import and export sheets, 

respectively. In the import sheet, there is a column for each simulation case. This is 

where the automation software needs to insert the input data for the simulation. 

Similarly, there is a column for each simulation case in the output sheet. These are the 

columns the automation software needs to read and compare to the measured data. 

Additionally, the import sheet contains design data. This data contains static 

information such as altitude and what auxiliary equipment is installed at the site. This 

data does affect the simulation, but because it is static, it is not available anywhere in 

the sensor data. This limitation means that the Excel document needs to be manually 

configured for a specific site. 

Importing and exporting the data from the input and output sheet is nontrivial. The 

rows of the input and output sheets are labeled, but they follow a different naming 

system compared to the sensor data. Some required input data must be calculated from 

multiple parameters in the sensor data. Additionally, the simulator uses SI units, such 

as Kelvin and Pascal, while the sensor data uses more everyday units, such as Celsius 

and bar. The solution used here is to map unit conversion functions to each input 

parameter, where required, as well as mapping each input parameter either directly to 

a sensor parameter, or to a function that calculates the value based on multiple sensor 

values. 



12 

 

 

Figure 1 

Figure 1 shows the flow of data through the application. The sensor data includes 

sensor readings from a real power plant, in CSV format. Each row represents a 

particular time period, and each column represents a sensor. The length of a time 

period is consistent within a file but can vary between files. Some sensor readings, 

such as ambient temperature, are used as input to the simulator, while others, for 

example the heat rate, are used as reference values for comparing to the output data 

from the simulator. The report is also a CSV file. Each row in the sensor data produces 

one row in the report. The report contains pairs of columns, where the first column is 

the calculated value from the simulator, and the second is the corresponding measured 

value from the power plant. 

From a data flow perspective, the automation software converts units and maps 

parameters back and forth between the different naming schemes and units used in the 

sensor data and the simulator. The input must be converted to the format expected by 

the simulator. The output from the simulator must also be converted back to the same 

format as the input data, so that it can be compared easily. The sensor data and 

simulator components are darker to indicate that these are already existing, fixed 

components that the rest of the application must be built around. 

4.2. Libraries 

The libraries used are chosen according to the needs of the project. If reading or 

modifying an Excel file were enough, there would be many options for several 

different programming languages. Python and Openpyxl would be one possible 



13 

 

combination. These types of libraries typically just provide an easy way to read and 

write the Excel file format. The advantage is that Excel does not need to be installed 

on the machine running the code. The problem is that simply reading or modifying the 

file is not enough for this project. To run the simulation, some VBA macros in the 

Excel file need to be invoked, which means that the code needs to interface with a 

running instance of Excel. This limits the number of options. 

4.2.1. Microsoft Office Interoperability Library 

The library chosen to interface with Excel is the Microsoft Office Interoperability 

library [15]. The choice of programming language falls on C#, since this is one of the 

supported languages, and it is familiar to the author. The Office Interoperability library 

enables launching Excel as a background task and provides an API for reading and 

modifying Excel files, as well as running macros. This is required if the goal is to keep 

the modifications of the simulation software to the minimum. 

Microsoft Office applications have COM-based object models. Component Object 

Model (COM) is a standard for binary interfaces, which allows for the creation of 

language-independent binary software components. COM objects have well-defined 

interfaces, through which they communicate with other objects. The Microsoft Office 

Interoperability library is a COM interoperability library, which allows managed code 

to interact with COM objects. The important distinction between managed code and 

COM objects is that managed code executes inside a runtime environment, which 

manages its memory, while COM objects exist in unmanaged memory. The 

interoperability library also handles marshaling, which is the process of converting 

back and forth between equivalent data types, since they might differ between the 

COM object and the managed code. 

4.2.2. C# 

C# (pronounced “See Sharp”) [16] is a strongly typed, general-purpose object-oriented 

programming language developed by Microsoft. It was chosen for this project partly 

due to its compatibility with the Microsoft Interoperability Library for Microsoft 

Excel, and partly because its syntax is very similar to other well-known languages, for 

example C++ and Java. For this reason, it is easy to learn for anyone familiar with 

those languages. 



14 

 

The official implementation of C# has two branches. One uses the .NET Framework 

and is limited to Windows only. The other uses .NET Core and is compatible with 

multiple platforms. The .NET Framework implementation is used in this project. 

4.3. Program structure 

The purpose of the software is to make it faster and easier to run many simulations. 

For this reason, the software is given a Graphical User Interface (GUI). This makes 

the software more accessible to people without technical knowledge. Figure 2 shows 

a screenshot of the GUI. 

 

Figure 2 

The source code is divided into several classes, which is a common structure in object-

oriented programming languages. Each of these classes handles its own logical part of 

the problem. 

4.3.1. Database 

The purpose of the database class is to read the data from a file, translate the column 

names to names that the simulator can understand, as well as converting units. The 

database class is also responsible for saving the results to disk. 

Initially, this class would import all the data at once into memory. In memory, the data 

would take up several times the space that it used on disk. This does not scale for large 

datasets. The final implementation uses a custom class that only keeps an index of the 



15 

 

position of each line in the file. This way, it provides reasonably fast random access to 

each line of the file, without keeping them in memory. This is discussed more in 

section 4.5.5. 

4.3.2. Simulator interface 

The simulator class interfaces with the simulator, i.e. Microsoft Excel. This class has 

methods for importing and exporting data, as well as running the simulation. Many 

details about mapping the Excel sheets and understanding where data should be read 

from and written to are irrelevant to the rest of the program. For this reason, it is 

separated into its own class. 

4.3.3. Handling popups 

In the VBA code that is part of the simulator, popup messages are used to inform the 

user when the simulation is done, and about potential errors. These messages cannot 

be disabled without editing them out of the VBA code. Since the goal was to avoid 

modifications to the simulator software, and since no other modifications to the VBA 

code were needed, it would be unfortunate to require code modifications for such a 

simple issue. The only other solution to this problem was to automatically detect the 

popup messages and close them. One problem is that the call to the VBA code is 

synchronous, which means that the entire thread is waiting for the popup window to 

be closed. The solution was to have a separate thread that uses polling to detect when 

the window appears, and then click the button to let the main thread continue. Although 

the solution is not very elegant, one benefit compared to just disabling the popup 

messages in the VBA code is that error messages can now be captured and displayed 

in the user interface of the automation software. 

4.4. Data 

To accelerate the first phase of development, some simulated data was provided as 

input data. This was done so work could focus on how to interface with the simulator 

programmatically, without the need to map and convert sensor readings, since these 

were already fully compatible. 

The actual input data used for testing the software comes from a real gas engine power 

plant. The data is made available through a web interface. The interface allows the 



16 

 

user to select the desired parameters to export, the time frame, time aggregation, as 

well as filters, and makes this data available to download as a CSV file. 

4.4.1. Time aggregation 

Several choices must be made when selecting what data to use for testing and analysis. 

The time aggregation is important because the simulator was only made to simulate 

steady-state scenarios. A time aggregation of one second can be considered dynamic 

and does not represent the expected output from the simulator well. On the other hand, 

a time aggregation of one hour might hide too much of what happened during that 

hour. A middle-ground value of one minute was chosen, since this is a reasonably high 

time resolution, without including second-to-second variations in power output, for 

example. 

4.4.2. Weather 

Another factor to consider is the weather at the time when the data was recorded. The 

power plant will perform differently depending on the ambient temperature and 

humidity. Only the absolute humidity is relevant to the engine. This means that in cold 

weather, the engine will work with dryer air. 

4.4.3. Required parameters 

The simulator must know the temperature, pressure, and humidity of the air entering 

the engine, as well as the air surrounding the radiators. Various temperature and 

humidity sensors are placed around the power plant. Some are on the engine itself, 

while others are part of a weather station. The pressure is assumed to be constant and 

was calculated based on the known altitude of the plant. 

The simulator must also know the composition of the fuel. While natural gas consists 

mainly of methane (CH4), some amount of other gases, such as ethane (C2H6) and 

nitrogen (N2) are also usually present [17]. This power plant has a gas analyzer, so 

most of these parameters are available. The other components are assumed to be zero. 

4.4.4. Missing parameters 

Some required input parameters, apart from the design data, are not available in the 

web interface. These must be assumed to be some reasonable, static value. 



17 

 

4.5. Performance 

The speed and memory usage of the software is examined below. When referring to 

the existing software, i.e. the simulator itself, the term “simulator” is used. This is 

considered to be a black box. When referring to the new software, i.e. the software 

built around the simulator to automate it, the term “automation software” is used. 

When referring to the combination of the two, the term “automated simulator” is used. 

4.5.1. Hardware 

All benchmarks are run on a laptop running Windows 10, with an Intel Core i5-8365U 

processor and 8 gigabytes of system memory. The installed version of Microsoft Excel 

is Microsoft Excel for Microsoft 365 MSO (Version 2109, 32-bit). During benchmarks 

the charger was plugged in, so battery saving modes should not be a concern. However, 

a few other factors exist that could contribute to inconsistent results. The CPU has a 

variable frequency, and a change in temperature could affect the boost frequency of 

the CPU. Various unpredictable background tasks could also use resources during the 

benchmark and affect the results. 

4.5.2. Motivation 

The performance of the automated simulator is measured in how many scenarios per 

second it can simulate. A scenario is defined here as a set of input parameters from 

one power plant, aggregated on a specific time frame. The simulator is only designed 

to simulate steady-state scenarios, in which the power plant has been running in the 

same configuration long enough for all sensor readings to settle to a steady value. It is 

unclear how long this time span is, but since there are only a limited number of 

different steady-state scenarios that can occur during a day, the speed of the automated 

simulator is not crucial. Currently, it is not significant whether it takes ten seconds or 

one minute to simulate a full day’s worth of data. 

However, because the simulator is only made to simulate steady-state scenarios, it 

could be of interest to measure how large the inaccuracies in the simulator become 

when run on data that has been identified as dynamic. In this case, it could become 

relevant to run the simulator on data with a frequency of up to one hertz. Another 

reason for wanting to keep up with a data frequency of one hertz would be if this 

project was developed into a digital twin in the future. Depending on the input data, 



18 

 

the simulator may or may not be able to keep up with this data rate, as shown in the 

results below. This limits what the current implementation can be used for in the future, 

but it is sufficient for the purposes of this project. 

4.5.3. Benchmarking the automation software 

Initially, the main goal of benchmarking was to see how much time the automation 

software adds on top of the simulation time, as well as to establish whether the batch 

size influences the overall execution time of the automated simulator. The batch size 

is the number of scenarios that are imported into the simulator at a time. Batch sizes 

of 1, 10, and 100 were tested. To reduce inaccuracies, the tests were run 10 times each 

and the fastest time for each batch size was recorded. The same dataset was used for 

all batch sizes. The dataset consists of 100 rows (scenarios) of data with a time 

aggregation of one minute. The results are shown in Figure 3. All benchmarked 

datasets use data recorded when the power plant had been close to maximum power 

for at least an hour, since it is known that lower power scenarios take longer to 

simulate, and to ensure that the system is as close to a steady state as possible. 

 

Figure 3 

As expected, Figure 3 shows that most of the execution time is used to simulate. Still, 

the simulation software adds around 50% on top of the simulation time. Ways to 

optimize these function calls could be investigated in the future. Figure 3 also shows 

117

127

130

387

385

397

67

61

66

0 100 200 300 400 500 600 700

100

10

1

Time [ms]

B
at

ch
 s

iz
e

Import Simulate Export



19 

 

that there is no significant advantage to increasing the batch size. Increasing it from 1 

to 10 only reduces the overall execution time per scenario by 20ms, or around 3%. 

Increasing it from 10 to 100 only reduces the execution time by 2ms, which is within 

the margin of error. The option to change the batch size is still left in case this changes 

in the future. It should be noted that a large batch size in theory increases memory 

usage, but this is an implementation detail of Microsoft Excel. In testing, no significant 

change in memory usage was noted when comparing a batch size of 1 to a batch size 

of 100. The memory usage was examined using Windows Task Manager while the 

simulator was running. 

One advantage of keeping the batch size small is that it makes the software seem more 

responsive to the user. This is because the call to the simulator code is synchronous 

and does not provide any feedback before the simulations of all scenarios are done. If 

the batch size is small, the call returns often, and the progress can be reported back to 

the user. Another advantage of small batch sizes is that in case the simulator encounters 

an error, the entire batch is discarded. Cancelling the operation is also faster with a 

smaller batch size, since the automation software waits for the currently simulating 

batch to be done before terminating. 

4.5.4. Benchmarking the simulator 

As benchmarking progressed, it became evident that some scenarios were significantly 

slower to simulate than others. What these scenarios seemed to have in common was 

the time of the year the data was recorded. Data from July, when temperatures could 

reach at least 35 °C, was significantly slower to simulate. For this reason, ambient 

temperature and humidity were suspected to have an impact on the execution time. 

Two separate tests were run, in order to isolate the effects of changes in temperature 

from the effects of changes in humidity. 



20 

 

 

Figure 4 

Figure 4 shows how the time to simulate increases as the temperature rises. The first 

scenario, with a temperature of 0.3 °C, is an unmodified scenario recorded in January. 

The other two are versions of the same scenario, where only the temperature and 

relative humidity have been modified. Since only the absolute humidity is relevant to 

the engine, the relative humidity had to be recalculated to achieve a constant absolute 

humidity. 

 

Figure 5 

523

409

349

0 100 200 300 400 500 600

30 °C 15.7 %

15 °C 40 %

0.3 °C 100 %

Time [ms]

543

598

1253

0 200 400 600 800 1000 1200 1400

29.5 °C 0 %

29.5 °C 40 %

29.5 °C 73 %

Time [ms]



21 

 

Figure 5 shows how the time to simulate decreases as the humidity decreases. The first 

scenario, with a relative humidity of 73%, is an unmodified scenario recorded in July. 

The other two are modified versions of the same scenario, where only the relative 

humidity has been reduced. 

These results show that both the temperature and humidity affect the time to simulate, 

but an absolute humidity above a certain level seems to have an especially large 

impact. To see how much impact this has on real data, a dataset from January was 

compared to a dataset from July. The average execution time for each scenario is 

shown in Figure 6 and Figure 7, for January and July respectively. 

 

Figure 6 



22 

 

 

Figure 7 

As expected, comparing Figure 6 (January) to Figure 7 (July) reveals that the 

simulation takes significantly longer in July, while the import and export times stay 

the same. 

4.5.5. Memory optimization 

The memory optimization in the automation software is worth considering, more 

specifically, the way the input data is handled. Initially, all rows of the input data were 

imported at once before the simulation started. The data was imported into a list of 

dictionaries, with a dictionary for each row. This provided fast random access to each 

row, and each data point in the row was accessible by its column name. Additionally, 

any filtering on a specific column becomes easier if the data is already parsed into rows 

and columns. This way, accurate progress can be reported to the user, since the total 

number of rows, after filtering, is known. This worked well for input data sizes up to 

a few megabytes. One megabyte of data in CSV format can hold roughly 3000 rows. 

Each row represents one scenario. Three thousand scenarios is equivalent to 125 days 

worth of data, if aggregated for each hour, and would take roughly 30 minutes to 

simulate in the best case scenario. Given this information, it seems unlikely that 

datasets much larger than this would be used with the automation software in its 

current form. This would indicate that optimizing for memory usage is not necessary. 

However, in case the simulator was optimized to handle larger datasets in the future, 



23 

 

this solution scales poorly. It was noted that when loading a CSV file of around 300 

megabytes, the total memory usage of the automation software was roughly 1.6 

gigabytes. 

The improved data handler is divided into two classes. The first one, called 

FileLineRandomAccess, provides random access to each line of a text file, without 

keeping it in memory. It does this by scanning the entire file at first and keeping an 

index of the position and length of each line. The reason that the length is needed is 

that it also allows for a filter to be specified, which means that not all lines are 

necessarily included. If all lines were always included, the length could be found from 

the position of the next line. Including the length also allows for dynamic handling of 

both Unix and Windows-style line breaks. Windows-style line breaks consist of two 

characters, a carriage return and a newline character, whereas line breaks in Linux 

consist of only a newline character. Reducing the line length by one extra character if 

a carriage return is detected ensures that both Windows-style and Unix-style line 

breaks are excluded from the end of the line. 

The second class, called CsvReader, builds on top of FileLineRandomAccess to enable 

random access to the rows of a CSV file. Additionally, the columns in the row can be 

indexed either by numeric index or by column name. It is also possible to filter the 

rows on a column. All of this is transparent to the rest of the program. The result is 

that the data is as easy to access as before, but this solution scales much better when 

memory usage is concerned. In theory, this solution is slightly slower since the file 

must be read twice, and since each row is accessed from disk rather than memory. In 

practice, however, this difference is negligible compared to the execution time of the 

simulator. Testing revealed that reading one row of data from the disk using the 

improved method always takes less than 2ms, but it should be noted that the input file 

was accessed from a solid-state drive (SSD). If accessed from a traditional spinning 

hard drive, this could take slightly more time. However, even if it were to take ten 

times longer, it could still be considered insignificant. 



24 

 

5. Results 

The strategy for determining how closely the simulator resembles reality is as follows. 

First, snapshots of readings from a real power plant are taken. Simulations based on 

the data from these snapshots are then run. Finally, key output parameters from these 

simulations are compared to the corresponding readings in the snapshots. The two key 

output parameters selected for comparison are heat rate and exhaust gas temperature. 

Additionally, the effects of changes in key external factors on these output parameters 

are examined. These external factors are ambient temperature, ambient humidity, and 

load. Other parameters that may affect the results are kept as static as possible. Nothing 

prevents someone from comparing additional parameters, but these are some of the 

most interesting, for reasons explained in their corresponding sections (5.1 and 5.2). 

Parameters other than the ones being compared are kept as static as possible. This 

limits the number of available data points. Another option would be to take as many 

data points as there is time to run through the simulator and compare the corresponding 

measured and calculated values. The problem with this approach is that without 

context, it is difficult to know if the snapshot was taken during a dynamic or steady-

state scenario. 

All graphs in this chapter follow the same pattern. They come in pairs, where the first 

graph shows the calculated and corresponding measured value as absolute values for 

the parameter in question. The numeric values of the y-axis scale have been 

intentionally removed for data protection reasons. The second graph shows the 

measured value relative to the calculated value, in percentages. It is also worth noting 

that, although the dots in the graphs are joined by lines, this is only to make the graphs 

more readable. The values are not necessarily in chronological order. The values on 

the x-axis are also not necessarily evenly spaced. 

5.1. Heat rate 

Heat rate is the inverse of efficiency. The unit of heat rate here is kilojoules per 

kilowatt-hours (kJ/kWh). This tells how many kilojoules worth of fuel that must be 

consumed to generate one kilowatt-hour of energy. A theoretical perfect 100% 

efficiency would be 3600 kJ/kWh, since 3600 kJ = 1 kWh. The generated energy can 



25 

 

be measured as mechanical energy, or as electrical energy, either at the generator 

terminals or after converting to high voltage. Both converting mechanical energy to 

electrical energy, and converting low voltage to high voltage, are subject to 

inefficiencies. Measuring the heat rate after these processes results in a higher 

measured heat rate (lower efficiency). In this case, the energy is measured as electrical 

energy at the generator terminals. The heat rate is important, because it tells how much 

fuel the customer will have to use to generate the electricity that they sell. In other 

words, it heavily affects their profits. The formula to convert heat rate in kJ/kWh to 

efficiency in percent is 

3600 kJ kWh⁄

𝑥 kJ kWh⁄
× 100% 

The graph in Figure 8 shows the calculated and measured heat rate at different ambient 

temperatures as absolute values. The graph in Figure 9 shows the same data, except 

that it is represented as the measured heat rate relative to the calculated heat rate, in 

percentages. A value above zero means that the measured heat rate is above the 

calculated heat rate. 

 

Figure 8 

2
3

,8

2
3

,9

2
4

,1

2
4

,1

2
4

,7

2
4

,8

2
4

,9

2
5

,1

2
5

,1

2
5

,2

2
5

,7

2
6

,1

2
6

,3

2
6

,7

2
6

,9

2
7

,9

2
8

,1

2
9

,1

2
9

,4

2
9

,6

2
9

,7

2
9

,8

2
9

,9

3
0

,1

3
0

,2

3
1

,6

3
2

,0

3
2

,3

H
ea

t 
ra

te
 [

kJ
/k

W
h

]

Ambient temperature [°C]

Heat rate

Calculated Measured



26 

 

 

Figure 9 

The data point at 26.1 °C in Figure 8 and Figure 9 shows that the measured heat rate 

is significantly lower than the calculated heat rate. There is also a significant difference 

at 24.1 °C. It is unlikely that these differences have anything to do with these specific 

temperatures. What is more likely is that something has caused the power plant to 

deviate from the expected heat rate. This could be because the power plant was in the 

process of ramping up or down the load, or due to a factor that was not accounted for 

in the simulator. It is worth noting that some required input parameters could not easily 

be extracted from the data and were given a default value in the automation software. 

If one or several of these parameters deviated significantly for this data point, but were 

not accounted for, it could explain why the deviation was not present in the calculated 

data. Another possible reason is that a sensor could be reporting inaccurate values. 

-5

-4

-3

-2

-1

0

1

2

3

2
3

,8

2
3

,9

2
4

,1

2
4

,1

2
4

,7

2
4

,8

2
4

,9

2
5

,1

2
5

,1

2
5

,2

2
5

,7

2
6

,1

2
6

,3

2
6

,7

2
6

,9

2
7

,9

2
8

,1

2
9

,1

2
9

,4

2
9

,6

2
9

,7

2
9

,8

2
9

,9

3
0

,1

3
0

,2

3
1

,6

3
2

,0

3
2

,3

H
ea

t 
ra

te
(m

ea
su

re
d

 r
el

at
iv

e 
to

 c
al

cu
la

te
d

) 
[%

]

Ambient temperature [°C]

Heat rate (relative)



27 

 

 

Figure 10 

 

Figure 11 

Figure 10 and Figure 11 show the heat rate at different ambient humidity levels, while 

the ambient temperature is kept between 25 °C and 26 °C. When referring to ambient 

humidity, a relative measurement ranging from 0% to 100% is commonly used. 

However, only the absolute humidity, measured in grams of water per kilogram of air, 

is relevant to the power plant. The problem with this is that the ambient temperature 

affects the humidity and sets a maximum absolute humidity. This means that limiting 

the temperature to a small range also greatly limits the range of the humidity. A 

1
5

,3

1
5

,8

1
6

,4

1
6

,8

1
7

,0

1
7

,3

1
7

,3

1
7

,4

1
7

,6

1
7

,8

1
8

,6

1
8

,8

1
8

,9

1
9

,1

1
9

,2

1
9

,5

1
9

,6

1
9

,8

2
0

,1

H
ea

t 
ra

te
 [

kJ
/k

W
h

]

Ambient humidity [g/kg]

Heat rate

Calculated Measured

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

2,5

3

1
5

,3

1
5

,8

1
6

,4

1
6

,8

1
7

,0

1
7

,3

1
7

,3

1
7

,4

1
7

,6

1
7

,8

1
8

,6

1
8

,8

1
8

,9

1
9

,1

1
9

,2

1
9

,5

1
9

,6

1
9

,8

2
0

,1

H
ea

t 
ra

te
(m

ea
su

re
d

 r
el

at
iv

e 
to

 c
al

cu
la

te
d

) 
[%

]

Ambient humidity [g/kg]

Heat rate (relative)



28 

 

temperature range of 25 °C to 26 °C was chosen because it includes humidity readings 

ranging from 15.21 g/kg to 21.26 g/kg. 

 

 

Figure 12 

 

Figure 13 

Figure 12 and Figure 13 show the heat rate at different loads. One observation that was 

made is that the simulator is quite unstable and inaccurate at very low load levels. 

5.2. Exhaust gas temperature 

The exhaust gas temperature is interesting to examine because it also gives an 

indication of the efficiency. A higher exhaust gas temperature means a lower 

6
2

5

1
4

4
9

1
0

5
1

0

1
1

3
1

6

1
1

3
2

8

1
1

3
4

0

1
1

3
4

1

1
1

3
4

9

1
1

3
5

3

1
1

3
6

0

1
1

3
6

2

1
1

3
6

6

1
1

3
7

2

1
1

3
8

0

1
1

3
8

1

1
1

3
9

0

1
1

3
9

4

1
1

3
9

7

1
1

4
0

4

1
1

4
1

0

1
1

4
2

4

1
1

4
2

6

H
ea

t 
ra

te
 [

kJ
/k

W
h

]

Plant load [kW]

Heat rate

Calculated Measured

-5

0

5

10

15

20

6
2

5

1
4

4
9

1
0

5
1

0

1
1

3
1

6

1
1

3
2

8

1
1

3
4

0

1
1

3
4

1

1
1

3
4

9

1
1

3
5

3

1
1

3
6

0

1
1

3
6

2

1
1

3
6

6

1
1

3
7

2

1
1

3
8

0

1
1

3
8

1

1
1

3
9

0

1
1

3
9

4

1
1

3
9

7

1
1

4
0

4

1
1

4
1

0

1
1

4
2

4

1
1

4
2

6

H
ea

t 
ra

te
(m

ea
su

re
d

 c
o

m
p

ar
ed

 t
o

 c
al

cu
la

te
d

) 
[%

]

Plant load [kW]

Heat rate (relative)



29 

 

efficiency. The temperature is also interesting from a heat recovery perspective. Heat 

from the cooling system as well as the exhaust may be used for district heating, as well 

as for producing steam for industrial use, or for driving a steam turbine. 

In Figure 14 and Figure 15, the exhaust gas temperature is shown at different ambient 

temperatures. 

 

Figure 14 

 

Figure 15 

2
3

,8

2
3

,9

2
4

,1

2
4

,1

2
4

,7

2
4

,8

2
4

,9

2
5

,1

2
5

,1

2
5

,2

2
5

,7

2
6

,1

2
6

,3

2
6

,7

2
6

,9

2
7

,9

2
8

,1

2
9

,1

2
9

,4

2
9

,6

2
9

,7

2
9

,8

2
9

,9

3
0

,1

3
0

,2

3
1

,6

3
2

,0

3
2

,3

Ex
h

au
st

 g
as

 t
em

p
er

at
u

re
 [

°C
]

Ambient temperature [°C]

Exhaust gas temperature

Calculated Measured

-5

0

5

10

15

20

25

30

35

2
3

,8

2
3

,9

2
4

,1

2
4

,1

2
4

,7

2
4

,8

2
4

,9

2
5

,1

2
5

,1

2
5

,2

2
5

,7

2
6

,1

2
6

,3

2
6

,7

2
6

,9

2
7

,9

2
8

,1

2
9

,1

2
9

,4

2
9

,6

2
9

,7

2
9

,8

2
9

,9

3
0

,1

3
0

,2

3
1

,6

3
2

,0

3
2

,3

Ex
h

au
st

 g
as

 t
em

p
er

at
u

re
(m

ea
su

re
d

 m
in

u
s 

ca
lc

u
la

te
d

) 
[°

C
]

Ambient temperature [°C]

Exhaust gas temperature (difference)



30 

 

The exhaust temperature should ideally be known within 15 °C. As Figure 15 shows, 

the measured temperature is consistently between 25 and 30 °C higher than the 

calculated temperature, ignoring the two outliers. However, if the calculated 

temperatures were simply increased by around 25 °C, they would be accurate to within 

5 °C in this limited dataset, again ignoring the outliers. 

 

Figure 16 

 

Figure 17 

Figure 16 and Figure 17 show the exhaust gas temperature at different ambient 

humidity levels. As was the case with the ambient temperature, the measured values 

are consistently around 25 °C higher than the calculated ones. 

1
5

,3

1
5

,8

1
6

,4

1
6

,8

1
7

,0

1
7

,3

1
7

,3

1
7

,4

1
7

,6

1
7

,8

1
8

,6

1
8

,8

1
8

,9

1
9

,1

1
9

,2

1
9

,5

1
9

,6

1
9

,8

2
0

,1

Ex
h

au
st

 g
as

 t
em

p
er

at
u

re
 [

°C
]

Ambient humidity [g/kg]

Exhaust gas temperature

Calculated Measured

0

5

10

15

20

25

30

35

1
5

,3

1
5

,8

1
6

,4

1
6

,8

1
7

,0

1
7

,3

1
7

,3

1
7

,4

1
7

,6

1
7

,8

1
8

,6

1
8

,8

1
8

,9

1
9

,1

1
9

,2

1
9

,5

1
9

,6

1
9

,8

2
0

,1

Ex
h

au
st

 g
as

 t
em

p
er

at
u

re
(m

ea
su

re
d

 m
in

u
s 

ca
lc

u
la

te
d

) 
[°

C
]

Ambient humidity [g/kg]

Exhaust gas temperature (difference)



31 

 

 

Figure 18 

 

Figure 19 

Figure 18 and Figure 19 show the exhaust gas temperature at different load levels. 

Again, the measured temperatures are consistently higher, ignoring the outliers caused 

by the instability of the simulator at low load levels. 

The inaccuracies shown in the above graphs could be the result of many different 

uncertainties. For instance, the sensors measuring the Lower Heating Value (energy 

content of the gas) and the gas flow sensors have some uncertainty. The coolant flow 

rate in the cooling system is also unknown. 

6
2

5

1
4

4
9

1
0

5
1

0

1
1

3
1

6

1
1

3
2

8

1
1

3
4

0

1
1

3
4

1

1
1

3
4

9

1
1

3
5

3

1
1

3
6

0

1
1

3
6

2

1
1

3
6

6

1
1

3
7

2

1
1

3
8

0

1
1

3
8

1

1
1

3
9

0

1
1

3
9

4

1
1

3
9

7

1
1

4
0

4

1
1

4
1

0

1
1

4
2

4

1
1

4
2

6

Ex
h

au
st

 g
as

 t
em

p
er

at
u

re
 [

°C
]

Plant load [kW]

Exhaust gas temperature

Calculated Measured

0

10

20

30

40

50

60

70

80

6
2

5

1
4

4
9

1
0

5
1

0

1
1

3
1

6

1
1

3
2

8

1
1

3
4

0

1
1

3
4

1

1
1

3
4

9

1
1

3
5

3

1
1

3
6

0

1
1

3
6

2

1
1

3
6

6

1
1

3
7

2

1
1

3
8

0

1
1

3
8

1

1
1

3
9

0

1
1

3
9

4

1
1

3
9

7

1
1

4
0

4

1
1

4
1

0

1
1

4
2

4

1
1

4
2

6

Ex
h

au
st

 g
as

 t
em

p
er

at
u

re
(m

ea
su

re
d

 m
in

u
s 

ca
lc

u
la

te
d

) 
[°

C
]

Plant load [kW]

Exhaust gas temperature (difference)



32 

 

6. Conclusion 

The results in the previous chapter show that most of the calculated parameters are 

reasonably close to their measured counterparts. However, with the simulated readings 

for the heat rate sometimes deviating with up to 2.5% compared to the measured 

values, it is not enough for commercial use. The exhaust gas temperatures seem to 

have a systematic error that causes the simulated values to be around 25 °C lower than 

the measured values. This may only need a simple offset to be accurate. It could also 

indicate that the power plant is configured differently compared to the simulator. The 

graphs showing various parameter comparisons at different plant loads show that the 

simulator is the most accurate close to the maximum load. This makes sense, since this 

is how the plants are intended to be operated. At this stage it is difficult to know 

whether the rest of the inaccuracies can be attributed to the simulator being inaccurate, 

or something else. Some input parameters were chosen to be static, since no 

corresponding parameters were found in the real data. If chosen incorrectly, this could 

lead to inaccuracies in the simulated data even if the simulator itself is accurate. 

Ultimately, the graphs shown in the previous chapter are not the most important part 

of this thesis. This is because they only show a few selected parameters, and because 

the dataset is taken from a single power plant. It is more important that in the future, 

similar comparisons can be made more easily due to the automation software that was 

produced as a part of this thesis work. Once a satisfactory level of accuracy has been 

achieved for a range of different applications and external factors, the simulator can 

be trusted even more during the sales process. Additionally, the automated simulator 

can be used to verify that existing installations are running as expected. 

Some areas of the software are still worth improving. To simplify further automation, 

a command-line API could be implemented. The graphs in the previous chapter were 

created manually. A web-based tool for visualizing these graphs could be created. This 

tool could accept CSV files from real installations, run the simulator, then 

automatically render the graphs. The ultimate version of this tool could have access to 

the source data through an API and show the graphs in real time. 



33 

 

Summary in Swedish 

Validering av en simulator för ett motorkraftverk 

Mjukvara för simulering används i stor utsträckning inom många industrier idag. 

Orsaken är att det ofta är snabbare och billigare att utveckla och testa nya produkter 

på det här sättet, eftersom man inte behöver tillverka fysiska prototyper. I vissa fall är 

det orimligt att bygga fysiska versioner endast för att testa, antingen för att det är 

orimligt dyrt, eller för att man har behov av att testa produkten över en lång tidsperiod. 

Simuleringsmjukvara löser dessa problem eftersom den är relativt snabb och billig att 

konfigurera om. Dessutom kan simulatorer köras snabbare än realtid. Alla dessa 

faktorer bidrar till snabbare och billigare utveckling. 

Ett exempel på ett fall där simulering är väldigt värdefullt är då ett motorkraftverk ska 

byggas. Det har blivit allt viktigare att kunna förutsäga prestandan hos ett kraftverk 

redan under försäljningsprocessen, eftersom den kan ha direkt inverkan på kundens 

intäkter. Eftersom det förekommer hård konkurrens på den här marknaden kan en 

tillverkare uppnå ett övertag genom att ge bättre prestandagarantier än konkurrenterna, 

men det här är riskfyllt om man inte kan förutsäga prestandan med tillräcklig 

noggrannhet. Den här risken kan hanteras om tillverkaren har tillgång till en pålitlig 

simulator. Att titta på existerande kraftverk är ingen fullständig lösning, eftersom 

kraftverken specialbyggs för deras ändamål. Dessutom påverkas prestandan hos 

motorerna av yttre faktorer som luftens temperatur, fuktighet och tryck, samt 

kraftverkets belastning och bränslets metantal och gastryck. 

En nackdel med simulatorer är att de inte stämmer helt överens med verkligheten. Ifall 

resultaten från simulatorn används för att ta viktiga beslut borde man veta något om 

dess noggrannhet. Avsikten med denna avhandling är att utveckla mjukvara för att 

snabba upp processen att utvärdera precisionen hos en viss mjukvara som används för 

att simulera motorkraftverk. Detta görs genom att jämföra de simulerade värdena mot 

värden som uppmätts i ett riktigt kraftverk. Att mata in återkoppling från ett verkligt 

kraftverk tillbaka in i simulatorn kan liknas vid en digital tvilling (digital twin), som 

är en sorts digital representation av ett system genom hela dess livscykel. 

I denna avhandling är det inte möjligt att utvärdera simulatorn mot alla sorters 

kraftverk som den kan simulera, eftersom sensordatan är begränsad till ett kraftverk. 



34 

 

Mjukvaran som utvecklas inom ramarna för denna avhandling borde ändå snabba upp 

framtida utvärderingar av simulatorn mot data från andra kraftverk. Dessutom kan man 

även med detta begränsade dataset jämföra de variabler som kan variera inom ett 

kraftverk, exempelvis väder och bränsleparametrar som nämndes tidigare. Över längre 

tidsperioder kunde man också studera hur kraftverkets åldrande påverkar dess 

prestanda. 

Att manuellt skriva in alla sensorvärden i simulatorn för hundratals eller tusentals fall 

skulle ta alltför länge och risken för mänskliga misstag är stor. Därför består den 

praktiska delen av denna avhandling av att utveckla mjukvara som automatiserar 

processen att mata in parametrar i simulatorn, köra den, och sedan läsa resultatet och 

jämföra det med verkliga mätvärden från kraftverket. Detta gör det dessutom lättare 

att göra om undersökningen med andra kraftverk, samt att jämföra olika versioner av 

simulatorn med samma dataset. Utan denna mjukvara skulle det här vara extremt 

tidskrävande, vilket skulle förhindra utvärdering av större dataset. En annan fördel är 

att det blir lättare att upptäcka om ett kraftverk inte beter sig som förväntat. Avvikande 

värden kan upptäckas genom att jämföra dessa mot motsvarande värde från simulatorn. 

Källor till eventuella fel i simulatorn diskuteras kort, men detta är inte fokus för denna 

avhandling. 

Simulatorn baserar sig på ISO 3046-standarden. Standarden beskriver hur värden som 

effekt och bränsleförbrukning, som bestäms vid ett visst lufttryck, lufttemperatur och 

luftfuktighet, kan räknas om så att de gäller vid andra förhållanden. Standarden kan 

också användas för att beräkna en så kallad derating-faktor, som berättar hur mycket 

man måste sänka maxeffekten på motorn under vissa förhållanden. 

Omgivningsfaktorer som sänker maxeffekten är exempelvis hög temperatur, hög 

luftfuktighet eller hög höjd (lågt lufttryck). 

Förutom ISO 3046 används också interna prestandamanualer som baserar sig på 

simuleringar i GT-POWER, samt laboratorietest av motorer. Problemet med detta är 

att GT-POWER är designat för att simulera förbränningsmotorer av mindre skala, 

exempelvis de som finns i vanliga personbilar. Motorerna som testas i laboratorier har 

ofta mindre antal cylindrar än de som levereras till kraftverk, vilket också kan ge 

upphov till fel. 



35 

 

Simulatorn består av ett Microsoft Excel-dokument, där en stor del av koden består av 

VBA-kod, samt några kärnmoduler skrivna i C++. De två Excel-arken av intresse kan 

för detta ändamål ses som inmatningsarket och utmatningsarket. I båda dessa ark finns 

en rad för varje mätpunkt. Sensordatan från kraftverket består av en CSV-fil, där varje 

rad motsvarar en tidpunkt, och varje kolumn motsvarar en mätpunkt. 

Automatiseringen som byggts inom ramen för detta arbete tar datan från kraftverket, 

en rad åt gången, och matar in sensorvärdena på motsvarande rad i inmatningsarket. 

Svårigheten i detta steg är att para ihop rätt kolumn i sensordatan med rätt rad i 

inmatningsarket, eftersom dessa har olika namngivningssystem. För en del mätpunkter 

måste också en enhetskonvertering göras. Därefter körs simulatorn. Sedan måste 

mätpunkterna från utmatningsarket konverteras tillbaka på motsvarande sätt, eftersom 

målet är att rapporten som skapas ska använda samma format som datan från 

kraftverket. 

Resultaten av utvärderingen visar att simulatorn stämmer hyfsat bra överens med de 

uppmätta värdena, men eftersom exempelvis verkningsgraden har ett fel på upp till 2,5 

procent så är den inte tillräckligt exakt för kommersiell användning. 

Avgastemperaturerna verkar också ha ett systematiskt fel som gör att de simulerade 

temperaturerna är ca 25 °C lägre än de verkliga temperaturerna. Dessa fel behöver 

dock inte bero på fel i simulatorn. En möjlig förklaring är att kraftverket är 

konfigurerat annorlunda än simulatorn. Dessutom gavs några parametrar statiska 

värden eftersom några motsvarande mätdata inte hittades. Om dessa gavs felaktiga 

värden kunde det ge upphov till fel i de simulerade värdena. Inexakta sensorvärden för 

exempelvis gasflödet eller gasens energiinnehåll (LHV) kunde också påverka 

resultatet. Det viktigaste är ändå att mjukvaran som utvecklades som en del av denna 

avhandling gör att det är lättare att undersöka vad dessa fel kan bero på. 



36 

 

References 

[1] ProModel, “Model Validation.” [Online]. Accessed: Jul. 14, 2021. Available: 

https://www.promodel.com/onlinehelp/promodel/80/C-03%20-

%20Model%20Validation.htm 

[2] Reciprocating internal combustion engines, ISO Standard 3046, May 2002. 

[3] D. V. Pym, “Risk Management,” PM Netw., pp. 33–36, Aug. 1987. 

[4] T. Raz and E. Michael, “Use and benefits of tools for project risk management,” 

Int. J. Proj. Manag., vol. 19, no. 1, pp. 9–17, Jan. 2001, doi: 10.1016/S0263-

7863(99)00036-8. 

[5] “GT-POWER.” Gamma Technologies, LLC. 

[6] R. E. Shannon, “Introduction to Simulation,” in Proceedings of the 24th 

Conference on Winter Simulation, in WSC ’92. New York, NY, USA: Association 

for Computing Machinery, 1992, pp. 65–73. doi: 10.1145/167293.167302. 

[7] B. Lightsey, Systems engineering fundamentals. 2001. 

[8] A. Maria, “Introduction to modeling and simulation,” in Proceedings of the 29th 

conference on Winter simulation - WSC ’97, Atlanta, Georgia, United States: ACM 

Press, 1997, pp. 7–13. doi: 10.1145/268437.268440. 

[9] M. Armstrong, “Cheat sheet: What is Digital Twin?” [Online]. Accessed: Feb. 28, 

2021. Available: https://www.ibm.com/blogs/internet-of-things/iot-cheat-sheet-

digital-twin/ 

[10] M. Grieves and J. Vickers, “Digital Twin: Mitigating Unpredictable, 

Undesirable Emergent Behavior in Complex Systems,” 2017, pp. 85–113. doi: 

10.1007/978-3-319-38756-7_4. 

[11] B. D. Allen, “Digital Twins and Living Models at NASA,” Nov. 01, 2021. 

[Online]. Accessed: Mar. 11, 2024. Available: 

https://ntrs.nasa.gov/citations/20210023699 

[12] Oracle, “What Is Big Data?” [Online]. Accessed: Mar. 11, 2024. Available: 

https://www.oracle.com/big-data/what-is-big-data/ 

[13] Gaia-X, “About Gaia-X.” [Online]. Accessed: Mar. 11, 2024. Available: 

https://gaia-x.eu/what-is-gaia-x/about-gaia-x/ 

[14] S. Nidhra, “Black Box and White Box Testing Techniques - A Literature 

Review,” Int. J. Embed. Syst. Appl., vol. 2, pp. 29–50, Jun. 2012, doi: 

10.5121/ijesa.2012.2204. 

[15] Microsoft, “Interoperability Overview.” [Online]. Accessed: Mar. 11, 2024. 

Available: https://learn.microsoft.com/en-us/dotnet/csharp/advanced-

topics/interop/ 

[16] Microsoft, “A tour of the C# language.” [Online]. Accessed: Mar. 11, 2024. 

Available: https://learn.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/ 

[17] Britannica, “Composition and properties of natural gas.” [Online]. Accessed: 

Apr. 02, 2023. Available: https://www.britannica.com/science/natural-

gas/Composition-and-properties-of-natural-gas 

 

 


