

Automatic deployment of a
PrestaShop web shop

Mattias Berg

Master of Science in Technology Thesis

Supervisor: Annamari Soini

Advisors: Tim Wallin, Erik Nylund

Software Engineering Laboratory

Department of Information Technologies

Åbo Akademi University

2024

Abstract

The objective of this thesis is to create a solution for automatic deployment of a

PrestaShop web shop to allow for a faster, more streamlined, and less error-prone

way of working. Based on the wishes of the stakeholders, the solution should

introduce as few new tools as possible. After some investigation of what tools are

already installed when developing PrestaShop-based web shops, a solution based on

the Python programming language was chosen as it was able to integrate smoothly

with most frameworks for automatic deployment. The solution consists of three

features, of which the first and main feature is to create a new web shop. This is the

most programmatically complex feature and with the modular approach in the design

of the solution it will allow for a high level of code reuse. The other two features are

to delete a web shop and modify a web shop. Modifying a web shop was initially

scoped to be able to change multiple parts of the web shop but was eventually

reduced to only the adding of new PrestaShop modules. The solution is successfully

able to automatically create and deploy a new web shop to a server, delete it, and

modify it in limited ways. It unfortunately falls short when it comes to the continued

way of working after a deployment, as it is not able to keep changes made through

the web browser synchronized with what it is trying to deploy from. A key lesson

learned is that DevOps practices will need to take the full lifecycle into account or risk

falling short and creating new problems where there previously were none.

Keywords: automatic deployment, prestashop, web shop, rocketeer

Table of Contents

ABSTRACT 1

TABLE OF CONTENTS 2

TABLE OF FIGURES 4

ABBREVIATIONS 5

1 INTRODUCTION 1

1.1 PROBLEM STATEMENT 1
1.2 THESIS STRUCTURE 2

2 REQUIREMENTS 4

2.1 THE SERVER 4
2.2 THE CLIENT 5
2.3 QUALITY CRITERIA 10
2.4 FEATURES 11

3 TECHNOLOGIES AND CONCEPTS 13

3.1 PHP 13
3.2 WEB SHOPS 13
3.3 AUTOMATIC DEPLOYMENT 14

4 DESIGN 16

4.1 SYSTEM DEVELOPMENT PROCESS 16
4.2 ARCHITECTURE 17
4.3 TESTING AND ERROR HANDLING 19
4.4 FRAMEWORKS FOR AUTOMATIC DEPLOYMENT 20

4.4.1 Rocketeer 20
4.4.2 Capistrano 21
4.4.3 Ansible 22

4.5 FURTHER CONSIDERATIONS 22

5 IMPLEMENTATION 22

5.1 HANDLING STATEFUL FILES 23
5.2 FEATURES 24

5.2.1 Create a shop 24
5.2.2 Delete a shop 25
5.2.3 Modify a shop 25

5.3 TESTING AND ERROR HANDLING 26

6 EVALUATION 27

6.1 WEB SHOP 27
6.2 QUALITY CRITERIA 27

6.2.1 Easy to use 28
6.2.2 Automate as much as possible 28
6.2.3 Safe 29
6.2.4 No extra tools 29

6.3 FEATURES 30
6.3.1 Create a shop 30
6.3.2 Delete a shop 31
6.3.3 Modify a shop 32

6.4 RESOURCE USAGE 32
6.4.1 The server 32
6.4.2 The client 33

6.5 PERFORMANCE 33

7 FUTURE IMPROVEMENTS 34

8 CONCLUSION 35

SWEDISH SUMMARY – SVENSK SAMMANFATTNING 36

AUTOMATISK DISTRIBUERING AV EN PRESTASHOP-WEBBSHOP 36

INTRODUKTION 36
KRAV 36
BAKGRUND 37
DESIGN 38
IMPLEMENTATION 39
UTVÄRDERING 39
FRAMTIDA FÖRBÄTTRINGAR 40
SLUTSATS 40

BIBLIOGRAPHY 42

Table of Figures

Figure 1 Client workflow 7

Figure 2 User ends the feature execution early 8

Figure 3 User ends the feature execution in the middle 9

Figure 4 Creating a new feature branch. 16

Figure 5 Changes made on the feature branch are merged back to the main branch. 16

Figure 6 Hello world written as a module. 18

Figure 7 Source code file tree example. 19

Figure 8 Rocketeer folder structure. 21

https://docs.google.com/document/d/0B2VnuIhVM0q0NG1QWU5kUU1Uc1k/edit?resourcekey=0-vo9JFR5GvCysNHJ5k3isGQ#heading=h.2bn6wsx
https://docs.google.com/document/d/0B2VnuIhVM0q0NG1QWU5kUU1Uc1k/edit?resourcekey=0-vo9JFR5GvCysNHJ5k3isGQ#heading=h.2bn6wsx
https://docs.google.com/document/d/0B2VnuIhVM0q0NG1QWU5kUU1Uc1k/edit?resourcekey=0-vo9JFR5GvCysNHJ5k3isGQ#heading=h.2bn6wsx
https://docs.google.com/document/d/0B2VnuIhVM0q0NG1QWU5kUU1Uc1k/edit?resourcekey=0-vo9JFR5GvCysNHJ5k3isGQ#heading=h.2bn6wsx
https://docs.google.com/document/d/0B2VnuIhVM0q0NG1QWU5kUU1Uc1k/edit?resourcekey=0-vo9JFR5GvCysNHJ5k3isGQ#heading=h.2bn6wsx
https://docs.google.com/document/d/0B2VnuIhVM0q0NG1QWU5kUU1Uc1k/edit?resourcekey=0-vo9JFR5GvCysNHJ5k3isGQ#heading=h.2bn6wsx
https://docs.google.com/document/d/0B2VnuIhVM0q0NG1QWU5kUU1Uc1k/edit?resourcekey=0-vo9JFR5GvCysNHJ5k3isGQ#heading=h.2bn6wsx
https://docs.google.com/document/d/0B2VnuIhVM0q0NG1QWU5kUU1Uc1k/edit?resourcekey=0-vo9JFR5GvCysNHJ5k3isGQ#heading=h.2bn6wsx
https://docs.google.com/document/d/0B2VnuIhVM0q0NG1QWU5kUU1Uc1k/edit?resourcekey=0-vo9JFR5GvCysNHJ5k3isGQ#heading=h.2bn6wsx
https://docs.google.com/document/d/0B2VnuIhVM0q0NG1QWU5kUU1Uc1k/edit?resourcekey=0-vo9JFR5GvCysNHJ5k3isGQ#heading=h.2bn6wsx
https://docs.google.com/document/d/0B2VnuIhVM0q0NG1QWU5kUU1Uc1k/edit?resourcekey=0-vo9JFR5GvCysNHJ5k3isGQ#heading=h.2bn6wsx
https://docs.google.com/document/d/0B2VnuIhVM0q0NG1QWU5kUU1Uc1k/edit?resourcekey=0-vo9JFR5GvCysNHJ5k3isGQ#heading=h.2bn6wsx

Abbreviations

PHP PHP: Hypertext pre-processor

PHP/FI Personal Home Page Tools Forms Interpreter

SSH Secure Shell

CLI Command Line Interface

DevOps Cooperation between development and IT operations

CI Continuous integration

SMTP Simple Mail Transfer Protocol

1

1 Introduction

Today’s web shops run on several different technologies. It is not uncommon to find

web shops written in programming languages such as C#, PHP, or even JavaScript.

Looking at just PHP, we find multiple web shop frameworks, the biggest ones being

WordPress using the WooCommerce module, Magento, and PrestaShop which is the

one we will use in this thesis.

The goal of this thesis is to create a solution for deploying a PrestaShop web shop.

The solution should be as automatic as possible and avoid requiring the user to

connect manually to the server. The solution should also be suitable for the server

environment used by the stakeholder.

Throughout this thesis, I will refer to different aspects which may easily be confused

with each other. To make things clearer I will define them shortly here.

The stakeholder refers to the company or interested party who has an invested

interest in the solution. These individuals are those who set the broader non-

technical requirements for the solution and expect to see how feasible a solution

such as this would be.

The client is the component of the solution that runs locally on the user’s machine. It

serves as the interface between the user and the broader set of features of the

solution.

The user represents the individual actively using the solution. He or she interacts with

the client to perform operations against the deployment of a web shop. The user is

expected to be a developer with experience of the PrestaShop web shop and is

expected to be able to take manual intervention, if needed.

1.1 Problem statement

The stakeholder’s current deployment process of a PrestaShop web shop requires a

long series of manual steps to be performed and no part of the process is automated.

To give insight into what is required when a new web shop is to be deployed, here

2

are some of the major steps that need to be performed: connecting to the server to

copy over files, setting up the database for storing stock and customer information,

configuring the http server for serving the web shop, configuring the web shop to run

in the production environment, and several other smaller steps. These are

unnecessary and risk-filled steps for a developer to undertake manually.

Reducing the amount of work required to deploy a web shop would free up

development resources in terms of time. The time saved in the deployment phase

can be spent on other tasks. If the other task is billable, a direct financial benefit can

be gained.

Fewer manual steps required in the deployment process will also reduce the

likelihood of human error. When connected directly to a production environment a

misconfiguration may result in several different problems. The web shop being

deployed may see a delay in deployment, requiring more time or even resulting in a

missed deadline. The misconfiguration may even be server-wide, resulting in

downtime for other applications running on the same server.

1.2 Thesis structure

The introduction is primarily focused on the stakeholder, what the stakeholder wants

and what the stakeholder expects to benefit from a solution to the problem. The

introduction will also contain a thesis structure overview.

The requirements section describes the system development process, including

development tools and environments. The quality criteria for the final solution will

be presented and discussed. The requirements section will also describe the different

requirements on the client and server, how error handling should be done, and other

considerations such as the user interface and the security aspects of the solution.

The background section examines the different tools and frameworks used in the

stakeholder's standard PrestaShop web shop setup. This section will also examine the

different deployment solutions considered to solve the problem described in the

introduction section.

3

Following the background section, the implementation section will go into details of

the implementation of the solution, starting with the implementation of the

requirements on the server and on the client, and then describe how the different

features are implemented, and finally how the error handling and testing were done.

The evaluation section will examine if the solution works and how well it meets the

quality criteria set by the stakeholder. This section is followed by potential future

improvements to the solution such as continuous delivery, smarter configuration,

and integration to other solutions solving different problems related to automated

deployment.

4

2 Requirements

The requirements of the solution are set by both the stakeholder and me. This is to

ensure that the resulting product will fulfill the functionality the stakeholder

expects and that the project is suitable for a Master’s thesis.

The solution should be modular to be able to be extended easily in the future for

other applications that follow a similar deployment process as PrestaShop does.

These would generally be other types of PHP-based web sites or web applications.

Modules should be as atomic and general in their operations as practically possible

to allow for greater reuse.

A set of workflows should also be created which describe the modules and in what

order they should be executed to perform a set task. A workflow here is specialized

for a single larger purpose, for example, to create a new shop or update an existing

shop.

2.1 The server

In theory, the server can be any server that supports running an SSH-server and Git.

In this case, however, it is only required to be able to run on Debian-based servers as

this is what the stakeholder uses for all PrestaShop deployments, which allows us to

limit the design to work on that specific type of system.

The server needs to meet or preferably exceed the minimum required specifications

for running a PrestaShop web shop. While there are no fixed requirements for CPU

and memory, a minimum of 256 MB of memory per script execution is

recommended. [1]

In addition to being fast enough, the server needs to have PHP installed as this is a

requirement to be able to run PrestaShop. The PHP version requirement for the

PrestaShop version used needs to be at least version 5.2. [1] Newer versions of

PrestaShop will require a newer version of PHP. The PrestaShop CLI installer will be

used by the solution to configure the web shop and the CLI installer is executed using

PHP.

5

The server also requires a web server to host the web shop. This is ideally Apache,

since PrestaShop comes with configuration files out of the box. However, an Nginx-

based web server will also work but its configuration will need to be manually set up.

The ability to automatically configure the web server for hosting the new web shop

is seen as an optional feature rather than an essential requirement.

Additionally, the server will need to be able to connect to a database. This database

will store all the essential information that PrestaShop requires to function. This

includes all products, prices, shipping options, and payment options to name a few.

The database must be SQL-based, as PrestaShop only supports this type of database.

It can be installed on the same server or a different one, if PrestaShop can connect to

it. [1]

In addition to the requirements of PrestaShop itself, the server must run an SSH

daemon service. A daemon service is a service that runs as a background process.

This is required for the development computer to communicate and run commands

on the remote server. The server must also have a Git client installed and access to a

version control repository, for the solution to be able to request the latest version of

the web shop being deployed.

For the rollback functionality to work, the server must also have enough disk space

available to be able to store multiple versions of the same web shop. While this is not

a strict requirement, not having it would compromise the safety of the deployment.

2.2 The client

From the stakeholder only basic requirements are given. The solution should be

possible to run from the type of computers used by the developers. These computers

are laptops running either Microsoft Windows or Apple macOS. The interface for a

user to interact with the client should be limited to a command-line interface. A

command-line interface is simply a text-based way for a user to interact with a

computer. This is to allow work to be spent on the parts of the solution which bring

value.

6

Some method for the client to communicate with the server will be required for the

deployment to work. While there are multiple ways of establishing a connection to

transfer files to a server, the stakeholder currently uses SSH for all server

communication. To avoid having to set up a different method of communication SSH

will be used as the method of communication. Both Microsoft Windows and Apple

macOS support SSH, although only Apple macOS comes with it pre-installed. On

Microsoft Windows, it will need to be installed before the solution can be used.

As the solution will likely require some programming, the language used should be

one suitable for command-line interfaces and the chosen automatic deployment

framework. The stakeholder has recommended Python, as it is a language that they

use for similar projects to this solution. It is also suitable for command-line interfaces.

7

Figure 1 Client workflow

The primary workflow will consist of the user executing the program with the wanted

feature, for example, to create a shop. The client will then query the user for any

required information and give the user a final summary and ask if it should continue.

When the user accepts the summary and lets the client continue, it will open an

8

encrypted connection to the server where a series of commands will set up the web

shop according to the specifications given earlier. During this process, the client will

query the user if more information is needed or before performing any potentially

destructive operation for confirmation.

Figure 2 User ends the feature execution early

9

Figure 3 User ends the feature execution in the middle

If the process is aborted by the user before any operation is performed by the client,

the client should simply close without contacting the server. If the process is aborted

by the user in the middle of a feature execution, the client should attempt to undo

all previous steps performed during the feature execution, then close the connection

to the server and give a summary to the user before closing.

10

2.3 Quality Criteria

The solution should be easy to use for novice or senior developers given that they are

familiar with a command-line user interface. This is because a graphical user interface

is explicitly not in scope due to project size constraints. The solution should be

designed so that a command-line user interface will be sufficient for the intended

users. Even though the user interface is not graphical, it should always be clear what

the next step the solution will perform is. Before any action is taken by the solution,

the user should know what will happen and ideally be able to stop or revert execution

at any step.

Each step in the process of running the solution should be clear as to what it does. If

the step involves modifying data in a non-reversible manner, the step should clearly

state it. Before executing a non-reversible step, a yes or no question should be asked

before proceeding. If the user answers no to the question on whether or not to

execute the non-reversible step, the solution should revert all changes it has made

so far, or at a minimum notify the user about what has been left for manual cleanup.

It should notify the user regarding what needs manual cleanup, if the execution has

stopped after a non-reversible step has been executed.

The solution should take into account that both passwords and SSH keys will be used

to configure the web shop, fetch source code from the version control, and

communicate securely with the server. The solution should at no point show

passwords while executing the solution. The solution should also ensure that there

are no passwords or SSH keys stored in a manner where another user would be able

to read them once execution is done.

Human error reduction is a key point in the decision to create this solution. One of

the goals of the solution is to remove several manual and error-prone steps which

are often poorly documented. The process of using the solution should require as few

manual steps as practically possible. This should increase efficiency as well as

minimize the risk of human error occuring.

11

For security and practical reasons, the solution should ideally not require the user to

install any extra programs or tools on the development computer. For the same

reasons, the server should not require any extra programs or tools. Some minimal

number of additional tools or programs is still expected. This requirement criterion

should be regarded as the fewer additional programs or tools needed the better.

The result of running the solution should be one of the following based on which

feature has been executed:

1. A new web shop running on the server based on the configuration given at

the start of execution.

2. A new version of an existing web shop running on the server with a new or

updated module.

3. An updated version of PrestaShop itself.

4. The removal of a chosen existing web shop that was previously created using

the solution.

2.4 Features

Several features were identified and prioritized for the solution. Being able to create

a new shop is ranked highest, as this is what brings the most value and enables the

other features. Being able to modify a shop is ranked lowest due to its complexity.

Deleting a shop is then left in between priority-wise, as it should be a very simple

feature to implement after the creation of a shop feature, even though its value is

considered less than that of the other two.

Being able to create a shop is the main use case for the solution, which means this

feature is seen as a must have. When creating a shop, the solution should set up all

the necessary infrastructure such as the database, folder structure, logging, and any

other part that is required by PrestaShop. Once the infrastructure is set up, the

solution should set up the shop based on a template source code repository.

Deleting a shop is second on the priority list and while it will not give any large amount

of value, it will ease the cleanup when a shop is to be decomissioned. Cleaning up the

12

server after a web shop has been closed down is a slow and manual task where it is

easy to forget to remove parts of the web shop. These parts, which can be a database,

log files, or even parts of the web shop itself, are usually harmless but can be the

cause of confusion when another web shop is to be deployed. This confusion will

generally lead to delays that should rather be avoided.

Modifying a shop is quite useful, as it will allow changes to be made to the shop and

have those changes recorded or tracked with the solution. There are multiple parts

that could be modified in a shop, but the most useful would be to handle modules.

Being able to add, remove, and upgrade a module could open up for a standard set

of modules to be maintained across all web shops. A less important part to be able

to modify through this feature would be the theme of the web shop. A theme in

PrestaShop refers to the overall design, such as layout, typography, and color

scheme. It is not expected that this feature will be able to modify shops not created

using this solution.

13

3 Technologies and concepts

The technologies used in the solution are all close to what the developer would

already have installed on their computer or what the developer would be familiar

with for PrestaShop development. The only exception are the technologies which are

directly related to the new concept being introduced to the development workflow.

The concept of automatic deployment is not something that has been utilized in

PrestaShop development by the stakeholder.

3.1 PHP

PHP: Hypertext preprocessor as it is known today is seen as a successor of PHP/FI that

was written by Rasmus Lerdorf in 1994. PHP was then short for Personal Home Page

Tools and the FI part was short for Forms Interpreter. PHP was originally created as a

tool to track visits to Lerdorf’s online resume. [2]

PHP 3 development began in 1997 and was completed in 1998 by a group of three

developers, the original creator Rasmus Lerdorf being one of them. This release was

also where PHP received its new name that it still uses today, PHP: Hypertext

preprocessor. [2]

The next big release of PHP was PHP 5. Released in 2004, it introduced the Zend

engine 2 and an object model making PHP a true object-oriented programming

language. [3] Even to this day, PHP 5 is still in use by many websites around the world

and is the language version used by the client's PrestaShop deployments.

3.2 Web shops

A web shop refers to a website or online platform that offers functionalities to

facilitate the purchase of goods or services over the Internet. A web shop is also

known as an e-commerce website, it is a subset of the broader e-commerce term

which encompasses more than just the selling of goods and services. E-commerce

refers to all types of commercial transactions done over the internet, such as

14

electronic payment and digital marketing. A web shop is the component of e-

commerce that allows businesses to engage in online sale of goods and services. [4]

A core aspect of a successful web shop is being able to efficiently handle product

listings and stock management. This involves keeping track of inventory, updating

products, and ensuring that the information is accurate as far as product availability

is concerned. Web shops often use highlighted products in a prominent place in the

home page of the website to attract new customers. Building customer profiles and

tracking purchase history is used widely by web shops to enhance the experience and

keep customers returning with targeted sales coupons or advertisement campaigns.

PrestaShop is an open-source e-commerce platform built using the PHP programming

language. It is designed in a modular way to allow for a high degree of customizability.

This design principle makes it easy for the end user to make changes to the

appearance or functionality of the store. [5] These modules allow PrestaShop to fulfill

the key aspects of a successful web shop described earlier.

3.3 Automatic deployment

Automatic deployment, often referred to as continuous deployment or continuous

delivery, is a software development practice that involves automating the process of

deploying new code or configuration to a server. While these terms are often used

interchangeably, they are not the same. Continuous deployment or continuous

delivery is about automatically deploying code or configuration changes to at least a

test environment without any human interaction. Automatic deployment, in turn, is

about automating the deployment process while still requiring a human to start it.

Automatic deployment should not be confused with continuous integration, which is

the process of continuously integrating code changes to a centralized branch to be

built and tested but does not include deployment of those changes.

Automatic deployment relies on having one’s code in an already deployable state.

This means it does not take into account any type of testing that might be required

to ensure the code works correctly and it requires a final build of the software. This

15

final build would be, for example, an executable file, minified and packaged

javascript, or in the case of interpreted languages such as PHP the code might be

ready to deploy as it is. In the solution described in this thesis, the PHP code only

requires configuration to work correctly and that configuration is already stored on

the server it is being deployed to. This means that the code is already in a deployable

state.

Automatic deployment and its further developed continuous integration and

continuous deployment are crucial practices for DevOps and agile development

teams. They speed up the deployment process while also reducing the risk of human

error and increase the consistency and reliability of deployments.

16

4 Design

The scope of the solution is limited to creating, modifying, and deleting a web shop

and only through a command line interface. This allows the solution design to focus

on the core functionality to fulfill the requirements and tailor the architecture and

framework decisions to the limited scope. The biggest decision to make will be which

framework to base the solution on, as that will impact the workflow of the solution.

Choosing the wrong framework will potentially make the solution unable to fulfill the

requirements or even prevent wanted features from being implemented. The system

development process is the only part that does not need any specific decisions to be

made, as it will have to follow the stakeholder’s standard practices.

4.1 System development process

Standard development practices of the stakeholder should be followed during the

system development process. This includes but is not limited to storing all code in a

version control system, generally following the code style for the language used and

including a readme file in the version control system.

Figure 4 Creating a new feature branch.

Figure 5 Changes made on the feature branch are merged back to the main branch.

The version control system should be of the same type that the company otherwise

uses, even though the version control service supports other types. The version

17

control type to use is called Git. Git supports a functionality called branching which

allows a developer or team of developers to work on an isolated version of the source

code without affecting other developers. A basic workflow to use is called Feature

Branch Workflow [6] and is the recommended workflow by the stakeholder. It starts

by the developer creating a new branch, known as a feature branch, based on the

main branch, illustrated in Figure 5. The developer can then make changes and

commit those changes to the version control system without affecting the main

branch. Once the feature branch is ready to be merged back into the main branch the

developer opens a pull request which allows other developers to review the code

before it is merged into the main branch [7]. When the pull request is approved and

merged the resulting version control history will look similar to what is illustrated in

Figure 6.

The code style of the language chosen should be followed unless otherwise agreed

on unless it makes sense to go against the style guide under specific circumstances.

While this is not a strict rule the idea of it should be followed, which is to maintain

human readability of the code.

The code repository should contain a file called "Readme.md". This file should contain

all information a developer requires for getting started with the project. This

information can be in the form of a brief introduction, a step-by-step guide on what

needs to be done to get started with either developing the tool further or using the

tool, and preferably a list of known issues. In this case, information needs to include

using the tool as well as continuing the development of the solution.

4.2 Architecture

The solution uses a modular approach to allow for new functionality to be easily

added without affecting current functionality. Modules are loaded on demand based

on the selected use case.

Python supports dynamic imports of new source code files during runtime [8]. This

allows the solution to only import the modules which are needed for the current use

18

case. While this was a positive side effect for resource usage, the original intent was

to not have to worry about which modules should be executed and which should not

be for a given use case.

If, for example, the create shop use case is selected the solution will read the list and

order of modules to be loaded from a configuration file linked to that use case. The

modules are then executed in the order they are in the configuration file.

Figure 6 Hello world written as a module.

For this to work, each module must follow a specified interface which takes

inspiration from the command pattern [9]. Each module must implement at least one

class and an initialization method which returns an instance of the class. The class

must implement two methods, one which returns the module name in human

readable form and one to start the execution of the module. The figure above, see

Figure 7, shows an example of what a “Hello world” type application would look like

when written as a module to the client.

19

Figure 7 Source code file tree example.

In the source code file tree example figure, see Figure 8, the Client.py would be the

main entry point to execute the client. When executed with a flag to use the create

shop feature it would first read the create_a_shop.txt file to fetch a list of modules

to execute and to know in which order they should be executed. All modules are

already set up to follow a specific interface which allows Client.py to know how to

run them.

4.3 Testing and error handling

In case of any error during the process, the solution should report the error to the

user and ideally roll back any changes it has made, if possible. If it notices any changes

that might be destructive, the user should have to decide whether to continue or not.

Any type of error logging and traceability will not be included as part of this first

version of the solution. If the solution is changed to run in a continuous integration

environment, then this would need to be added since no person would be actively

following along the process. A continuous integration, or CI for short, environment is

most often a build service where the software is built, tested, and sometimes

integrated with other components in an automated way to provide quick feedback

to the developers. [10]

20

4.4 Frameworks for automatic deployment

Several different solutions for automatic deployment were evaluated for this

solution. The three main contenders are described in more detail below. With a goal

of minimum extra dependencies on the development computer Rocketeer was

eventually chosen as the solution to use. This is due to it being able to handle Git

code repositories, its runtime being PHP, and because there is built-in support for a

shared folder between releases. [11]

4.4.1 Rocketeer

Rocketeer is built using PHP and runs using PHP, which is an ideal scenario since that

is what the development computer is required to have as well when developing

PrestaShop applications.

In its core Rocketeer is a basic SSH (secure shell) task runner, which means after

configuring the setup it will be able to connect to a server using SSH and perform

different tasks on that server. However, it is the built-in functions for deployment,

which make it a contender and ultimately the chosen automatic deployment tool for

this project.

Figure 8 Rocketeer folder structure.

21

When using the built-in functions for deployment, Rocketeer is given a root folder to

work in on the server. Any operations it will perform will be performed within this

folder. Inside this folder three different folders will be created, see Figure 9. The first

folder is called Current. This is the folder which the web server should serve. The

second folder is called Releases. This folder is used to store a predefined number of

releases of the application. The Current folder will always point to one of these

release folders using a symbolic link. This allows Rocketeer to perform rollbacks to an

earlier release, if the latest release is experiencing problems. The final folder is called

Shared and it contains shared files or folders between releases, such as images, log

files, or configurations. [12]

4.4.2 Capistrano

Capistrano is a task-based remote server automation and deployment tool written in

Ruby. Even though it is written in Ruby, it can deploy any language due to its

extendibility. This also means that the development computer also requires Ruby to

be installed in addition to the normal development tools.

Like Rocketeer, Capistrano is based on using SSH to manage one’s deployments on

the server. It is also based on the same idea of having a Current folder, which is a

symbolic link to a folder inside another folder called Releases. It also utilizes a folder

called Shared for any files that should be shared between releases.

What sets Capistrano more apart from Rocketeer is that it also has the code

repository stored in a folder called Repo. If the code repository is based on Git, then

the raw Git repository will be stored there. [13]

22

4.4.3 Ansible

Ansible is a much larger tool than the others mentioned above and application

deployment is just a part of what it offers. Ansible is task based and uses SSH to

perform those tasks on the server just like the other tools.

What sets Ansible apart from these other tools is that instead of triggering predefined

scripts it allows you to describe the state one wants, and it executes different

commands to get one to that state based on the current state and the environment.

These on-demand created scripts are sent to the server as a module, executed and

then removed from the server. [14]

4.5 Further considerations

While the solution will be a console application only, it should be self-explanatory to

use. Using it should be like following a step-by-step guide. Each step should explain

what it does and what it requires as input.

Security will also be an important factor to consider. The solution will be connecting

directly to a server, interfacing with the code repository, and managing application

credentials.

As far as connecting directly to a server is concerned the solution will need to manage

SSH keys and/or passwords. These should not be stored in plain text or even be

shown in the console window while using the solution. Passwords should ideally be

hidden from view and only stored in memory for the duration they are needed and

then forgotten.

5 Implementation

Rocketeer was the framework chosen to base this solution on. The solution itself was

built using the Python programming language. It wraps the Rocketeer commands as

well as makes any code modifications required for the deployment. Implementing

the solution in a satisfactory way to meet most of the requirements turned out to be

the simple part. The challenge was how PrestaShop handles its configuration files.

23

5.1 Handling stateful files

PrestaShop stores modules and configuration of modules as files on disk. During the

design and requirements gathering, this was not seen as a problem as the designed

solution supports shared files and folders between releases. What was noted quite

early in the implementation phase is that PrestaShop not only modifies files on disk

as the user makes configuration changes to the installed modules. It can also remove

and create new files as a module is installed, upgraded, or removed through the back

office.

The PrestaShop back office is the management part of the web shop. This is where

basic web shop functionality, such as products, stock, shipping, and prices, is handled.

It is also where PrestaShop handles its modules. A module can be for example a

shipping or payment solution. The PrestaShop back office allows an administrator of

the web shop to install new modules, configure or upgrade existing ones, and remove

modules no longer needed.

The initial thought was to simply store the entire modules folder as a shared folder.

This would unfortunately not work, as it would break the rollback functionality.

Modules are able to store data in the database, which is not something that can be

rolled back safely due to the risk of losing order data.

In the end, a web shop deployment will have to choose between one of three options.

The first option is to abandon rollback functionality and store all modules as shared

folders between releases. The second option is to only allow modules to be managed

through the modify a shop feature. The last and least practical option is to manually

and continuously maintain the list of files to be shared between releases. This last

option would allow rollback functionality to work, as well as allow modules to be

handled through the back office. This is a choice that can be made per web shop

deployed using this solution, most of them will likely choose the first option as it

maintains the full functionality of the shop.

24

5.2 Features

The solution consists of three features, the first and main feature is to be able to

create a new web shop. This feature will need to query the user for all the necessary

information needed for installing a new web shop and running the installer while

keeping the code in the repository up to date with what will be running on the server.

The second feature is to delete a web shop that has been deployed by this solution.

As a requirement here is that the web shop was deployed using this solution, it will

know the location of all files and other types of configuration and infrastructure by

asking the user a few questions, such as the name of the web shop. The third and

final feature is to modify a web shop. This feature is able to reuse several parts of the

first feature but was eventually limited in scope due to the complexities of deleting

and modifying modules.

5.2.1 Create a shop

Running the create a shop functionality loads a configuration and modules required

to deploy a new web shop. The major steps are as follows:

1. Gather information from the user

2. Set up an empty shop from a template

3. Copy over any chosen modules or themes

4. Set up a project repository

5. Deploy an initial version with Rocketeer

6. Set up a database

7. Run the CLI installer

8. Commit finalized shop changes to repository

9. Redeploy the shop with Rocketeer

The first step involves querying the user for information about the shop, such as the

name of the web shop and which domain name it will run on, the server, such as

which folder the shop will be deployed to, and also credentials to be able to access

the server and version control repositories.

25

Steps two through five are all about setting up the base of the shop in a version-

controlled manner. Rocketeer deployments work by fetching a new version from a

version control repository and to be able to proceed with the next steps the web shop

will need to be located on the server.

Steps six through nine take the base shop and configure it to the specifications given

earlier in the process.

5.2.2 Delete a shop

The delete a shop functionality is by far the simplest but also the most dangerous, if

given the wrong information. It will completely delete all source code, configurations

and databases related to the shop that the other functionalities have created. It does

this by first querying the user for all required information about the shop. It then

checks the data for any obvious errors, prints the information out and asks if the user

wants to continue. Only after being prompted to continue after displaying the

information will it proceed with the deletion.

5.2.3 Modify a shop

This functionality was initially planned to be able to add or remove both modules and

themes. However, due to difficulties mentioned when discussing the handling of

stateful files, the functionality was limited to only adding new modules. The main

issue here was how PrestaShop manages configuration files for modules that need to

be shared between releases.

Adding a new module ended up following much the same steps as when creating a

new shop, so many parts could be reused. In the end, it mainly involved modifying

the project repository to include the new module and then triggering a new

deployment through Rocketeer. The enabling and configuring of the module must be

performed manually in the PrestaShop back office.

26

5.3 Testing and error handling

Due to the limitations in the initial architecture of the solution, no automatic testing

was created. All testing has been done manually and this negatively impacted on the

result, since not all cases could be practically tested. The solution has been manually

tested by executing each functionality. The “happy path”, the path through the

process where no issues are expected to be found, has been the testing case through

most of the development process. Towards the end of the development process all

functionality has been tested by attempting to cancel execution at each step to

ensure the solution is able to revert changes and any data input fields have been

tested with both valid and invalid inputs. Invalid inputs include writing only letters

where numbers are expected, leaving an input field empty, or inserting symbols or

non-standard characters.

If the solution encounters an error an exception will be thrown and the process will

in most cases be reverted back to how things were before the execution started.

There are a few cases where the process has performed an irreversible step, before

each of these the user will be notified. The expectation is that the user of the solution

will know how to handle all the steps manually so that an execution can be reverted

to prevent any lasting effects on the server. The solution has multiple steps where it

checks that all required information has been given and is in the correct format, as

well as checking that the connection to the server is working so that in case of a

detected error it alerts the user and stops any execution it is doing to prevent non-

reversible damage.

27

6 Evaluation

There is very little information in terms of numbers to gather as far as the use and

success of the solution is concerned. The evaluation will be focused on user feedback

and to which degree the solution fulfills the different use cases.

6.1 Web shop

The first check is a visual inspection that the web shop is deployed correctly and is

working. This visual inspection will ensure that no major hidden errors have occurred.

The web shop deploys correctly with the selected theme and modules, otherwise

PrestaShop default values are used. There are no visible errors and normal

functionality of the web shop is working. However, the solution is not able to

configure the modules added nor is it able to configure default functionality, such as

payment or shipping options. Configuring default functionality was not part of the

initial requirements, however, it would be beneficial to have.

The steps of setting up a new web shop are the same as before from the perspective

of the server, from the perspective of the developer the process is much different.

The developer now interacts with a Python program which will query for information

about the web shop being created, modified, or deleted and will then in the

background perform the previously manually done tasks for setting up a new web

shop.

6.2 Quality criteria

Due to the area the tool operates in as well as the requirements set by the customer,

the evaluation of the quality criteria is limited. This means that the evaluation of

quality criteria will be mostly based on human feedback and descriptions of what

does and does not work according to the initial requirements.

28

6.2.1 Easy to use

The solution guides the user through each step in the process and explains what will

happen. It would be beneficial if it were better able to revert changes when the user

cancels the process, but it does warn before a change happens that it will not be able

to revert.

It was noted from an end user of the solution that they only needed minimal

knowledge about the server itself. Previously, the end user had to know a great deal

about the configuration of the server. Directories had to be created in the correct

places, web servers had to be configured, and databases had to be set up with correct

credentials and settings.

Generally, while the feedback concerning the solution has not been comprehensive,

it has been seen as a significant improvement compared to before. The initial setup

of the solution on the user’s computer did cause some confusion due to the

differences in Python versions. The user’s computer did not have the correct Python

version installed by default and had to be updated. This issue stems from the long

overlap of Python version 2 and Python version 3. Python version 3 was released in

2008 [15] while Python version 2 was maintained all the way until 2020 [16] and in

this case the developer’s computer had Python version 2 installed.

6.2.2 Automate as much as possible

Starting by looking at what was not automated, the largest manual work remaining

is that entering information by hand is still needed. Moving away from manual

information entry would be a large project of its own, requiring a way to parse offers

or contracts to be able to extract the needed information.

After the web shop has been created, there are still some configurations that the

solution does not yet support automatic configuration of. E-mail settings such as

Simple Mail Transfer Protocol, often just known as SMTP, server and authentication,

default payment options, shipping, and the web shop slogan have to be manually

entered by the user in the web shop back office. Any added module will also need to

be manually configured. A potential workaround for this could be to supply

29

preconfigured modules but since each web shop usually requires its own

configuration for the modules, this would not be a good way of managing it.

After gathering information from the user, the solution will automatically set up a

new empty web shop with any chosen modules or themes in its own code repository.

This allows a developer to continue to make any manual changes, if needed. The

solution will then deploy the initial version to a server, set up any necessary

infrastructure, such as a database, and run the CLI installer fully automated. The code

repository for the web shop will then automatically be updated by the solution to

include the installation changes. That these parts were automated was seen as an

enormous time saver.

6.2.3 Safe

Each step the solution performs is clearly described to the user and to avoid mistakes

it requires a ‘Yes’ response at certain times in the process. This is generally before it

does something it cannot undo itself but also, for example, after it has shown the

user a summary of entries. This gives the user a chance to quit the process at multiple

steps to minimize the impact of errors, if one should occur.

All communication with the server is done securely over SSH. This ensures that no

third party can listen in on the communication and steal credentials to gain unwanted

access. SSH is set up on the server to use public and private keys to authenticate.

These keys are generally stored securely and encrypted with a password.

Unfortunately, due to a limitation with Rocketeer the password for the SSH key is

stored in plain text on the user’s computer. The solution warns about this, so the user

can delete the password after use. The solution does not show any passwords or keys

on the screen while it is being used. This means that if the user removes the stored

password after using it, it will no longer be visible or potentially visible to anyone.

6.2.4 No extra tools

To run the solution, Python and Pip as well as the Rocketeer binary are required. The

Rocketeer binary is supplied with the solution so the only extra tools needed to be

30

installed on the client side, other than what should already be installed by default,

are Python and Pip. Pip is the package installer for Python and is used to fetch Python

packages from the Python Package Index [17].

The server requires an SSH daemon to be running to enable access to run commands

and copy files from the client. This is because Rocketeer communicates with the

server using SSH. Luckily, this is already installed and enabled on the server the

solution would be targeting, so no additional programs are required to be installed

on the server.

6.3 Features

Not all features were successfully implemented. Most notably, the modification of an

existing web shop feature ended up being almost unusable due to its limitations of

only functioning correctly, if run directly after a web shop creation. The most

successful feature was creating a new web shop. This feature ended up working

exactly as required and it was also the feature which was considered the most

important. The feature related to deleting a web shop is working as intended, but it

was noted by the stakeholder that the ease of running this functionality with the

potentially high negative impact if the wrong web shop was deleted was a high risk.

Previously, deleting a web shop required much more manual work and was not

something that could easily be done accidentally.

6.3.1 Create a shop

This is the main use case of the solution. All information needed for setting up a new

web shop is asked from the user and stored in memory for later use. The workflow

then creates a new project repository in the source code management software. This

repository is where the code for the web shop is stored and where modifications for

it can be made. When there is a place to store the code the solution adds the

template web shop, any selected modules, and theme to the repository. Using the

code repository that has just been created the solution deploys the code to the server

31

by using the Rocketeer framework. With the code deployed to the server it sets up a

database and a database user so that the actual installation of PrestaShop can begin.

The solution uses the PrestaShop CLI installer to set up the web shop based on the

information provided at the beginning of running this workflow. This CLI installer

normally functions by querying the user for information as it runs. However, by

providing all necessary information as parameters to the installer it will run in a non-

interactive mode. The solution takes this into account and makes sure not to continue

execution during the information input phase, if the solution does not receive the

necessary information. When all this setup is completed, the solution updates the

code repository with the installed code so that both sides, what is on the server and

what is in the code repository, are synchronized. A developer can now make changes

to the code in the code repository and deploy those changes to the server, as needed.

This functionality works as initially envisioned and fulfills the requirements.

Unfortunately, the expected continued way of working with editing the code in the

repository and deploying those changes to the server is not feasible. PrestaShop

makes changes to the files of the web shop as it is configured through the web

browser interface and as such makes the two codes, what is on the server and what

is in the code repository, will be unsynchronized. If a new deployment were to be

made, it would likely cause changes to be reverted or, in the worst case, it would

cause the web shop to malfunction.

6.3.2 Delete a shop

Running this workflow results in a complete deletion of the database, database user,

source code, and project code repository. This does unfortunately not include any

type of restore feature, if done by mistake, so care should be taken when running this

functionality.

The files on one’s local computer are left untouched, which means that a new web

shop with the same configurations can be created again. This will, however, be a new

and empty web shop since the database and all configurations stored in files on the

32

server will be gone. Aside from that, this can be a useful way to quite quickly deploy

a new web shop, if some mistake were made with the initial web shop.

6.3.3 Modify a shop

Due to the way PrestaShop handles configurations and module source code, when

making changes to them through the back office, this workflow only performs as

expected as long as the modules have not been updated or no new modules have

been added through the back office.

In practice, this feature is only something that can be used immediately after creating

a shop. If it is used after the shop has been used or even configured, it may start

overriding configurations. This reduces the usefulness of this functionality in a major

way and makes it more of a data integrity issue if used. This functionality ended up

being disabled in the final version of the solution.

6.4 Resource usage

The only resource of note when using this solution is the disk usage, and by that is

meant that the file system is not edited outside of the working directory and that no

extra files or folders are left on the system.

6.4.1 The server

Rocketeer, which is used to deploy the web shop, only works in one specific folder.

This means that if the given folder is empty, creating a new shop or modifying an

existing shop does not impact the rest of the server.

The solution itself does not in its current state perform any operations outside the

working directory, but this can change due to its modular design and easy

extendibility. To keep the solution as open as possible, there are no blocks in place to

keep a developer from creating a module it can use which would make changes

outside the working directory.

33

6.4.2 The client

The solution stores the configuration files of the deployed shop. This enables easy

redeployment of new changes. However, part of this configuration has passwords

stored in plain text. This is a limitation of Rocketeer, but since it is on the client only

and the solution warns about it, it is seen as acceptable.

6.5 Performance

Deploying or deleting a shop requires information input from the user. This causes

any performance numbers to become unusable in terms of measurement. Deploying

a shop previously could take anything from a few hours to a few days depending on

the complexity of the shop. With the solution, deployment of a base shop could be

performed in minutes given that all information is known from the start. In a best-

case scenario for both manually deploying and using the solution, the speed of

deployment has moved from hours to minutes.

34

7 Future improvements

The solution currently only contains a minimum set of features that generate the

most value. If its development continues, several quality-of-life features could be

added.

The solution at its current state automates most of the steps required to deploy a

new web shop. However, there are a few steps that still require manual work to be

finalized. The data entering at the start of each workflow could be reduced and

PrestaShop module configuration could be automated.

Only one environment is currently supported, which limits the use of the solution in

bigger projects that require larger changes during the lifetime of the shop. Adding

support for deploying to different environments, such as test or quality assurance,

would greatly help in the reliability of deployments.

Changing the solution to run as a service would also allow for tighter integration to

source control systems which, in turn, could enable a form of continuous delivery.

This would even further reduce the need for human interaction in the deployment

process. The change would, however, require much better logging and handling of

errors as there would not be a human in the loop.

Considerations regarding changing the underlying architecture to allow for robust

unit testing and integration testing would increase the reliability of the solution. This

would help especially when or if further development begins to prevent regression

issues.

Additional lower value functionality would be support for SSH keys to reduce the

need for passwords. A graphical user interface to ease the use of the solution when

used by developers who are not familiar with a command prompt would also be

beneficial.

35

8 Conclusion

The result of this thesis is a solution that can in a largely automated way manage a

PrestaShop deployment on a web server. The solution can deploy a new web shop

including configuring the web server and setting up a new database in a mostly

automated way. It is also able to delete a shop that has earlier been deployed using

the solution as well as modify the shop in limited ways.

Creating a good DevOps [18] workflow is more difficult and time consuming than

most people realize. It requires careful design and continuous development to be

performant and easy to use in a changing business environment. If too little focus is

put on DevOps practices, much of it will end up becoming an afterthought and

manual work.

While Rocketeer has several good parts to it, it has also been difficult to work with

when it comes to a PrestaShop deployment. PrestaShop handles its configurations by

modifying files in multiple locations. These configurations would normally be handled

by marking them as shared between releases. They can, however, be changed,

moved, or created at any time from the back office. This makes multiple releases of

the shop nearly impossible in the Rocketeer workflow.

The solution in its current state fulfills the requirements, but during development

some of the core aspects of it were not ideal. The solution is designed to be run on

one computer, and it stores information about a deployment only on that computer.

If the solution instead were running as a service, multiple users and computers could

access it at any one time.

36

Swedish summary – Svensk sammanfattning

Automatisk distribuering av en PrestaShop-webbshop

Introduktion

Målet med denna avhandling är att utveckla ett verktyg och en metod för att

distribuera en PrestaShop-webbshop. Metoden ska distribuera en webbshop på ett

så automatiserat sätt som möjligt och vara passande för den servermiljö som kunden

använder.

En webbshop är en webbsajt där försäljning av varor och tjänster sker på internet.

Detta är känt som e-handel. PrestaShop är en e-handelsplattform som är byggd med

programmeringsspråket PHP. Dess källkod är öppen och designad att vara modulär

för att möjliggöra snabb och enkel modifikation utan behov att redigera existerande

kod. Installation och uppdatering av moduler görs med hjälp av PrestaShops inbyggda

administrationssida.

Det nuvarande systemet för att distribuera en PrestaShop-webbshop kräver mycket

manuellt och tidskrävande arbete. Denna tid kunde istället spenderas på andra

debiterbara uppgifter. Det manuella arbetet måste också göras direkt i en

produktionsmiljö som kör flera webbsajter och webbshoppar. En felkonfigurering kan

lätt orsaka problem för hela miljön, vilket leder till uppehåll i driften.

Krav

Rocketeer är ramverket som valts att basera detta verktyg på. Själva verktyget

kommer att vara skrivet i programmeringsspråket Python och fungerar som ett mer

användarvänligt skal till Rocketeer. Verktyget ska vara modulärt i sin design för att

senare kunna utvecklas vidare för att stödja mer än bara PrestaShop-utgivningar.

Modulerna i verktyget kommer att köras i den ordning som ett arbetsflöde säger.

Dessa arbetsflöden ska inkludera alla nödvändiga steg för att till exempel skapa en ny

webbshop.

37

Verktyget ska vara enkelt och säkert att använda även för oerfarna utvecklare. Det

ska inte finnas osäkerhet i vad nästa steg kommer att göra. En av nyckelpunkterna

som verktyget försöker lösa är att reducera antalet manuella steg som behöver göras

eftersom det är vid dessa som det sker misstag. Om verktyget behöver utföra ett steg

som det inte går att gå tillbaka från så ska verktyget först fråga användaren om det

ska fortsätta eller inte. Lösenord som fylls i ska inte synas i användargränssnittet eller

i någon fil under verktygets körning eller efter körning.

Användning av verktyget ska inte kräva att en utvecklare installerar extra program på

sin dator medan så mycket av processen som möjligt ska automatiseras. Det slutliga

resultatet av en körning av verktyget ska vara en nyutgåva av mjukvaran.

Verktyget måste gå att köras på Microsoft Windows och Apple Mac OS X-baserade

datorer. PHP, Python, en Python-pakethanterare och en SSH-klient behövs på

användarsidan för att köra verktyget. Alla är antingen förinstallerade eller går lätt att

installera så detta har blivit godkänt av kunden.

Bakgrund

PHP: Hypertext preprocessor, förkortat PHP, som det är känt som i dag är en

uppföljare till PHP/FI som utvecklades 1994 av Rasmus Lerdorf. Det var först i version

tre, som färdigställdes 1998, som PHP fick det fulla namn det har i dag. PHP 5 är nästa

stora version av språket och färdigställdes 2004. PHP 5 introducerade en

objektmodell som möjliggjorde att språket kunde användas med en objektorienterad

stil. Detta är också den version som kundens PrestaShop-distributioner använder.

Automatisk distribuering är processen att få mjukvara från versionshantering

distribuerad till exempel till en server där en slutanvändare har tillgång till den.

Ramverket som valts för att automatisera detta heter Rocketeer. Detta ramverk

valdes för att det är byggt att köras på PHP, kan hantera GIT-baserad

versionshantering och stöder en delad mapp mellan utgåvor av koden.

Rocketeer är byggt med PHP och kör på PHP. Detta ger en perfekt passform eftersom

utveckling av PrestaShop-webbshoppar görs med PHP. Grundidén med Rocketeer är

att paketera in SSH-kommandon (secure shell) i ett lättare använt verktyg. Ramverket

38

innehåller flera inbyggda funktioner som underlättar många manuella steg i

distribuering.

Hjälpfunktionerna för distribuering i Rocketeer arbetar i en given mapp på servern.

Inne i denna mapp skapar Rocketeer tre mappar: Current, Releases och Shared.

Current-mappen är egentligen endast en länk till en mapp i Releases-mappen.

Releases-mappen innehåller ett förbestämt antal utgivningar i egna mappar. Shared

innehåller filer som är delade mellan olika utgivningar, till exempel bilder och

konfigurationsfiler.

Design

All kod i projektet kommer att sparas i versionshanteringssystem för att ge tillgång

till historik och enkel delning av koden till andra utvecklare. Kodstilen för språket som

används ska följas och en introduktionstext ska finnas tillgänglig i

versionshanteringssystemet.

Versionshanteringssystemet som ska användas heter Git. Även om Rocketeer och

versionshanteringsleverantören stödjer andra versionshanteringssystem så är det Git

som används av Gambit i alla övriga projekt.

Den officiella kodstilen för språket ska användas. Detta är för att behålla läsbarheten

och enigheten med annan kod skriven med samma språk. Det är godtaget att gå emot

den officiella kodstilen i enskilda fall ifall det förbättrar läsbarheten vid till exempel

variabelnamn.

Tillsammans med koden ska det finnas en fil som heter “Readme.md”. Denna fil ska

innehålla all information en utvecklare, med liknande kunskapsnivå som skribenten

av filen själv har, behöver för att komma igång med vidareutveckling av projektet.

Denna fil innehåller vanligtvis en lista över steg för hur man kommer igång och en

kort introduktion till vad koden gör.

39

Implementation

Verktyget använder sig av en modulär uppbyggnad för att ny funktionalitet lätt ska

kunna läggas till utan att nuvarande funktionalitet riskerar att ändras. Modulerna

läses in endast om de är tillsatta i arbetsflödet som valts. Om till exempel

arbetsflödet skapa webbshop är valt så kommer verktyget endast att läsa in de

moduler som används för det arbetsflödet. Arbetsflöden skapas genom att redigera

en konfigurationsfil med samma namn som arbetsflödet.

För att modulerna ska kunna läsas in och köras endast vid behov måste de följa ett

specifikt gränssnitt. Detta gränssnitt kräver att modulen förverkligar åtminstone en

klass och en initieringsmetod som returnerar en instans av klassen. Klassen måste

implementera två metoder, en som returnerar modulens namn i läsbar form och en

som startar exekveringen av modulen.

Utvärdering

Resultatet av distribueringsfunktionen i verktyget är att en webbshop körs korrekt på

den angivna servern. Detta inkluderar även valt tema för webbshoppen och

eventuella moduler. Dessa moduler behöver dock ännu konfigureras manuellt.

Enligt respons från användare av verktyget är det väldigt lätt att använda jämfört med

hur processen varit tidigare. Det största problemet från en användarsynvinkel var att

versionen av Python-programmet inte var tydligt beskrivet från början och att det

resulterande felmeddelandet inte var lätt att tyda.

Användaren behöver fortfarande manuellt fylla i all information om webbshopen

men efter det sköter verktyget automatiskt om att utföra de nödvändiga uppgifterna

för att få webbshopen att fungera. Dessa uppgifter görs säkert över en krypterad

kommunikationskanal till servern.

Verktyget kan korrekt skapa och radera en webbshop enligt den information som

användaren fyllt i. Att modifiera en webbshop är dock inte möjligt i praktiken

eftersom det endast kan göras om inte någon använt webbshopen ännu. Detta beror

på hur Prestashop hanterar sina konfigurationer. Dessa funktioner har en betydande

40

effekt på hur snabbt hanteringen av webbshopar kan göras. Tiden det tar att skapa

en ny webbshop har gått ner från flera timmar till några minuter.

Framtida förbättringar

Verktyget innehåller endast en minimal uppsättning av funktioner som genererar

mest värde. Om verktyget vidareutvecklas så skulle jag rekommendera funktioner

som ger arbetsflödet mera värde, till exempel möjlighet att endast göra små

ändringar i specifika moduler eller att uppdatera PrestaShops version.

Att ändra verktyget så att det körs som en tjänst på en server skulle möjliggöra bättre

integration med versionshanteringssystem. Detta kan sedan vidareutvecklas till en

form av kontinuerlig distribuering, vilket leder till färre manuella steg i

distribueringsprocessen.

Den nuvarande arkitekturen med modulär struktur gör det möjligt att snabbt skapa

nya arbetsflöden, men denna arkitektur lämpar sig för tillfället inte bra för

enhetstestning och integreringstestning. En vidareutveckling på denna front skulle

minska risken att fel uppstår vid ändringar till verktyget.

Slutsats

Resultatet av denna avhandling är ett verktyg som kan till stor del automatiskt

distribuera en PrestaShop-webbshop till en webbserver. Verktyget kan distribuera

en ny webbshop med konfiguration för webbservern och sätta upp en ny databas

och databasanvändare. Verktyget kan också radera en webbshop som skapats med

verktyget och redigera en webbshop till viss mån.

Att skapa ett bra DevOps-arbetsflöde är mycket svårare och mera tidskrävande än

man kunde tro. Det kräver noggrann design och kontinuerlig vidareutveckling för att

behålla sin användbarhet i en värld som förändras snabbt.

Rocketeer har många bra sidor men det har inte fungerat smidigt att använda med

PrestaShop-distribueringar. PrestaShop hanterar sina konfigurationer genom att

modifiera filer på flera ställen i källkoden. För att Rocketeer ska fungera korrekt

41

mellan distribueringar måste alla dessa filer finnas i den delade mappen. Detta

fungerar bra i början när en webbshop skapas men om PrestaShop-moduler ändras

från PrestaShops inbyggda administrationssida så kommer nya konfigurationsfiler

att skapas och de finns inte med i den delade mappen.

42

Bibliography

[1] System requirements for PrestaShop 1.7 :: PrestaShop Developer

Documentation. PrestaShop Developer Documentation,

https://devdocs.prestashop-project.org/1.7/basics/installation/system-

requirements/ (Last read: 7.1.2024)

[2] Lerdorf, Rasmus. History of PHP - Manual. PHP,

http://php.net/manual/en/history.php.php (Last read: 7.1.2024)

[3] Pleva, Justin T. PHP: Hypertext Preprocessor. 2013.

[4] Bârsan, Ghiţă, and Oancea Romana. Considerations on e-commerce

platforms. 2014.

[5] About PrestaShop, the open source e-commerce software.

PrestaShop, https://prestashop.com/about-us/ (Last read: 7.1.2024)

[6] Git Feature Branch Workflow. Atlassian,

https://www.atlassian.com/git/tutorials/comparing-workflows/feature-

branch-workflow (Last read: 4.2.2024)

[7] Pull Requests. Atlassian,

https://www.atlassian.com/git/tutorials/making-a-pull-request (Last read:

4.2.2024)

[8] imp load_source,

https://docs.python.org/2/library/imp.html#imp.load_source (Last read:

7.1.2024)

[9] Sarcar, Vaskaran. Java Design Patterns: A Hands-On Experience with

Real-World Examples. Apress, 2022.

43

[10] What is CI? - Continuous Integration Explained. AWS,

https://aws.amazon.com/devops/continuous-integration/ (Last read:

4.2.2024)

[11] Humble, Jez, and David Farley. Continuous Delivery. Addison-Wesley,

2011.

[12] Rocketeer. Home, http://rocketeer.autopergamene.eu/I-

Introduction/Whats-Rocketeer.html (Last read: 7.1.2024)

[13] Capistrano. A remote server automation and deployment tool

written in Ruby., 1 June 2013, https://capistranorb.com/ (Last read:

7.1.2024)

[14] Ansible. Ansible is Simple IT Automation, https://www.ansible.com/

(Last read: 7.1.2024)

[15] Python 3.0 Release. Python.org,

https://www.python.org/download/releases/3.0/ (Last read: 10.2.2024)

[16] Sunsetting Python 2. Python.org,

https://www.python.org/doc/sunset-python-2/ (Last read: 10.2.2024)

[17] pip documentation v24.0, https://pip.pypa.io/en/stable/ (Last read:

10.2.2024)

[18] What is DevOps? Atlassian, https://www.atlassian.com/devops (Last

read: 7.1.2024)

