

AN EVALUATION OF HOW WEB FRAMEWORKS

SUPPORT DEVELOPERS TO BUILD SECURE

APPLICATIONS

Kim Leppänen

Master’s thesis in Software Engineering

Instructor: Ivan Porres Paltor

Faculty of Science and Engineering

Åbo Akademi University

2024

1

Abstract

An increasing number of applications are being built for the web. For this task,

developers typically use a number of different frameworks to ease and speed

up the development. Frameworks can make complex problems easy by

providing tools, patterns and abstraction layers, but can frameworks help

developers in one often forgotten area: the application’s security?

Vulnerabilities in web applications can originate from many different

sources. A vulnerability might exist due to improper implementation, but also

due to poor design. A feature that has been designed in an insecure manner,

cannot necessarily be made secure even with a perfect implementation.

 The purpose of this thesis is to evaluate how modern web frameworks

can help developers build more secure applications. What aspects of security

is something a framework can independently manage, what kind of tools can

a framework provide the developer to guide them build secure software and

what parts of the security is such that a framework cannot manage and is left

solely as the responsibility of the developer.

 An example application using Vaadin Flow and Spring Boot

frameworks, both modern Java based tools, was written for this thesis. The

example application was then security tested for vulnerabilities described in

the OWASP Top Ten list. The purpose of the evaluation was to understand,

which vulnerabilities were directly mitigated by the frameworks and which

aspects of the application security is something the developers must

understand and mitigate themselves.

 This thesis found that only a few explicit technical vulnerabilities were

mitigated by the frameworks, while some of the vulnerabilities were such that

frameworks could guide the developers by providing tools, but could not

ensure full mitigation of the vulnerabilities. To properly secure an application,

collaboration is needed between software, network, system, and security

engineers, and good DevSecOps practices need to be implemented.

2

Table of Contents

1 INTRODUCTION ... 4

1.1 Open Web Application Security Project - OWASP 4

1.1.1 OWASP Top Ten .. 5

1.1.2 OWASP Testing Guide ... 5

1.1.3 OWASP’s Application Security Verification Standard (ASVS) 5

1.2 Scope of the thesis ... 6

2 EXAMPLE APPLICATION ... 7

2.1 Functional requirements .. 8

2.2 Non-functional requirements ... 9

3 APPLICATION DESIGN .. 9

3.1 High-level architecture .. 9

3.2 Data model .. 10

3.2.1 Users and roles .. 11

3.2.2 Course information ... 11

4 IMPLEMENTATION ... 12

4.1 Vaadin Flow .. 12

4.2 Spring Boot ... 13

4.3 Presentation layer and the user interface.. 13

4.4 Business logic layer .. 14

4.5 Data access layer ... 14

5 VULNERABILITY REVIEW.. 15

5.1 A01:2021-Broken Access Control ... 15

5.1.1 Insecure Direct Object References ... 20

5.1.2 Cross-Site Request Forgery (CSRF) .. 26

5.2 A02:2021-Cryptographic Failures ... 32

5.2.1 Framework level mitigation ... 33

5.3 A03:2021-Injection .. 33

5.3.1 SQL injections .. 35

5.3.2 Cross-site scripting - XSS ... 40

5.4 A04:2021-Insecure Design .. 46

3

5.4.1 Framework level mitigation ... 46

5.5 A05:2021-Security Misconfiguration ... 47

5.5.1 Analysis of frameworks’ default configuration 48

5.6 A06:2021-Vulnerable and Outdated Components 50

5.7 A07:2021-Identification and Authentication Failures 51

5.7.1 Framework level mitigation ... 51

5.8 A08:2021-Software and Data Integrity Failures 54

5.8.1 Software integrity .. 54

5.8.2 Data integrity .. 55

5.9 A09:2021-Security Logging and Monitoring Failures 57

5.10 A10:2021-Server-Side Request Forgery ... 58

5.10.1 Mitigation strategies .. 60

5.10.2 Framework level mitigation strategies .. 61

6 DISCUSSION AND CONCLUSIONS .. 62

7 REFERENCES .. 67

8 SVENSKT SAMMANDRAG ... 80

9 APPENDIX A ... 83

4

1 INTRODUCTION

In today's world, we see an increasing number of applications being written for

the web. Even such applications as have traditionally been considered desktop

software have been transformed into web applications. Google has released

several web versions of applications previously only existing as desktop

software. A good example is Google’s project, which brings traditional office

tools to a web environment, allowing the creation and editing of text

documents, spreadsheets, and presentation documents with your browser.

Microsoft responded to this by creating Office 365, their web equivalent for the

traditional version of their office suite.

We see web applications used for many aspects of our day-to-day lives,

from hosting sensitive information such as personal, financial, or even

healthcare data to applications we use for controlling devices such as smart

doorbells (ring.com) or other IoT devices. Even though these applications are

made to make our lives more comfortable and convenient, they also come with

a dark side: they have become lucrative targets for hackers.

Applications are becoming more complex, while development teams

are expected to deliver features at an increasing pace. This combination

makes it difficult to ensure that the applications we develop are built securely.

Unfortunately, the priorities of software development are often in the

functionality, the appearance, and the usability, values that directly appeal to

the end user. Security, however, often comes as a secondary priority.

Sometimes security is considered a software feature that could be applied to

the application at the last stages of development. In fact, security should be

taken into account early in the design phase before any code has been written.

If security has not been taken into account early enough in the development,

correcting security issues to an almost completed software can be next to

impossible, or at least expensive and time-consuming.

1.1 Open Web Application Security Project - OWASP

Open Web Application Security Project, commonly known as OWASP, is the

world’s largest nonprofit organization aiming to improve software security. It is

a global organization that provides industry-leading educational and training

conferences around secure software development (OWASP, n.d.-a). OWASP

maintains and develops several community-led open-source projects that

provide the community with valuable resources used by developers worldwide

to secure their applications. For the structure and foundation, this thesis will

rely on three of OWASP’s projects.

5

1.1.1 OWASP Top Ten

The OWASP Top Ten project was created to raise awareness of the most

critical security risks found in modern web applications. The project’s purpose

is not to release a comprehensive list of all vulnerabilities but to release a

document listing vulnerabilities the security community has a consensus of

being the ten most critical vulnerability categories found in web applications.

The published document functions as a starting point for developers and

organizations that want to improve the security of their applications (OWASP,

n.d.-b). The project started in 2003 and, over the years, has achieved a

pseudo-standard status, being used as a baseline for application security

(OWASP, 2021a). The newest version of the document was released in 2021.

The OWASP Top Ten list will be used as a baseline for the security

assessment done in this thesis.

1.1.2 OWASP Testing Guide

When building software, results are typically tested for defects. The

functionality goes through acceptance testing, verifying that the application’s

business logic works in the way intended and that the application accurately

performs the designed functions. Security is often not a visible feature, yet the

software we build is expected to be secure. Secure software does not happen

by accident; it results from careful design, thoughtful implementation, and

rigorous and systematic security testing.

 In order to have a more systematic approach based on the principles of

engineering and science, OWASP has created a program called the Web

Security Testing Guide (WSTG). The Web Security Testing Guide provides a

practical guideline on how to test an application for common web

vulnerabilities (OWASP, n.d.-e). This thesis will use OWASP’s Web Security

Testing Guide as a foundation for testing an example application against the

described vulnerabilities.

1.1.3 OWASP’s Application Security Verification Standard (ASVS)

While OWASP’s Web Security Testing Guide gives guidance on how to test

an application, it does not dictate what should be tested. The Application

Security Verification Standard is a project released by OWASP, a standard

with a list of requirements applications should fulfill to be considered secure.

Not all applications need to be equally secure. Implementing rigorous

security controls comes with a high monetary cost, which might not be sensible

for all applications. Security is a matter of risk assessment: which risks are we

6

willing to accept, and which risks need to be mitigated? ASVS acknowledges

this principle by defining three different security levels, each increasing in

depth. Level 1 is meant for low-risk applications that do not handle any

sensitive data. Level 2 is intended for applications that contain sensitive data,

while level 3 should be used for critical applications (OWASP, 2021d, p. 11).

This thesis will use ASVS version 4.0.3, level 1 when considering what

security aspects to consider in the example application.

1.2 Scope of the thesis

This thesis aims to review how modern software development frameworks

help developers create secure software. While frameworks can do only so

much, the responsibility of securing an application cannot be left solely to the

frameworks being used. Ultimately, it is the developer's responsibility to ensure

design and implementation take security into account from the get-go and is

not an afterthought.

 The thesis will rely on OWASP’s Top Ten, WSTG, and ASVS projects.

These projects were chosen due to the status OWASP has gained in the

security community. The Top Ten and ASVS projects are considered de facto

baselines or standards in many contexts, even though competing projects

exist.

As a basis for the thesis, a simple web application has been built using

modern frameworks commonly used by web developers. The target is to

review the implementation against common web application vulnerabilities

outlined in OWASP Top Ten. The evaluated questions are

● Which vulnerabilities are mitigated by the used frameworks and require

minimal knowledge from the developers to use securely?

● For proper mitigation, which vulnerabilities need more active design or

implementation-specific decisions from the developers?

● How do the default settings of the chosen frameworks correlate to

security standards?

The review for vulnerability mitigation provided by frameworks will be

grouped into four categories.

1. Mitigated out-of-the-box by the framework. The framework mitigates

these vulnerabilities in such a way that it requires no active interaction

from the software developer.

2. Mitigated by the framework through configurations. Vulnerabilities

falling into this category can be mitigated by the frameworks used but

7

not through default configuration. Using the default configuration would

make the application vulnerable.

3. Helpers are provided by the framework. The frameworks do not directly

mitigate the vulnerabilities, but they give the developers helpers that

guide or ease the implementation of secure solutions.

4. No mitigation support is provided. These vulnerabilities need to be

mitigated by the developers through proper design and implementation.

The application's source code is only one aspect of secure

development; the overall security is also impacted by the infrastructure of the

development and deployment environments. While equally important, this

thesis focuses on the frameworks used, and thus, this thesis will not cover, for

example, attacks against servers with improper configurations or attacks made

through vulnerabilities in protocols or cryptographic algorithms. These

vulnerabilities are not application-level vulnerabilities and, hence, are not

affected by framework choices and thus will be left out of the scope of this

thesis. What is covered could be considered as the aspects the developer has

to consider when doing the actual implementation of the software, not what

the server administrator does when deploying the application or when setting

up the deployment environment. The focus is on weaknesses in an application

due to improper or insufficient technical implementations. For example, SQL

injections (discussed in chapter 5.3.1) are discussed because an attack is

often possible due to improper ways of constructing and executing queries. At

the same time, vulnerabilities in third-party libraries are not evaluated in-depth,

as those are often mitigated through processes and tools in the CI/CD pipeline.

2 EXAMPLE APPLICATION

For this thesis, an example web application has been built using a modern

technology stack. The domain for the example application was chosen in such

a way that it will demonstrate requirements commonly found in web

applications, such as restricting content from non-authenticated users or users

who otherwise lack appropriate privileges.

 The example application is a course management software that can be

used by service providers (for example, universities or companies providing

training) to publish course information and maintain course registrations and

evaluations. The application will have typical features, such as authentication

and authorization, create, read, update, and delete operations, and the need

to maintain both data confidentiality and integrity.

8

2.1 Functional requirements

The example application will need to fulfill the following functional

requirements:

1. Users and access rights

1.1. The application must support four access rights levels: non-

authenticated users, course attendees, course instructors, and

administrators.

1.2. Anyone should be able to register as a user with course attendee

access rights, providing a name and email address.

1.3. A course attendee should have access to everything a non-

authenticated user has

1.4. A course instructor should have access to everything a course

attendee has in addition to views and actions limited explicitly to

this role.

1.5. An administrator should have access to everything a course

instructor has in addition to views and actions limited explicitly to

this role.

2. Viewing courses

2.1. The application should list all available published courses that

have yet to end.

2.2. Regardless of access rights, any user has to be able to review

course basic information for any published course (even those

that have ended).

2.3. A user should be able to use keywords to search for courses.

2.4. Different views and variations of those (e.g., different course

information) should be accessible through direct URLs and thus

be bookmarkable.

3. Registering for a course

3.1. A course attendee should be able to register for any course

within its registration period, but not beyond it, if and only if the

maximal number of attendees has yet to be reached.

4. Course management

4.1. A course should contain the following information: name,

description, course schedule (start and end date), maximal

number of attendees, registration validity period, and status

(published/unpublished).

4.2. A course instructor should be able to add a new course.

4.3. A course instructor should be able to modify all course

information except course registrations if the course has not

been completed.

9

4.4. A course instructor should be able to publish or unpublish

courses.

4.5. A course instructor should be able to grade the attendees for a

course.

5. User profile

5.1. A course attendee should be able to see in their user profile for

which courses they have signed up for in their user profile.

5.2. A course attendee should be able to cancel their signup during

the registration period.

5.3. A course attendee should be able to see their course grade for

completed courses.

6. User administration

6.1. An administrator should be able to define the access level for

any user.

2.2 Non-functional requirements

The example application will need to fulfill the following non-functional

requirements:

1. Data integrity of the course evaluations needs to be ensured. The

application needs to provide means for auditing who has made the

course evaluations and provide technical means for guaranteeing that

the data has not been tampered with.

2. A set of password policies needs to be applied, even if hard-coded.

3 APPLICATION DESIGN

3.1 High-level architecture

The example application follows a simple three-layer architecture. As the

name indicates, the application code is separated into three different logical

layers: a presentation layer, a business logic layer, and a data access layer.

10

Figure 1. Illustration of the high-level architecture of the example
application.

The presentation layer is responsible for the user interface and handling

the interactions with the end user. The presentation layer solely manages and

forwards the user interactions and is responsible for the user interface logic

but does not know anything about how to access the underlying data layer or

how to process user inputs.

The business logic layer is responsible for processing data and

handling user interactions. The business logic layer decides what to do with

the data and how it should be processed. While the business logic layer

interacts with the data, it does not know anything about the underlying data

sources or how they are accessed.

The data access layer acts as a glue between the application logic and

the underlying data source. The data access layer determines how the data

sources are accessed, potentially combining data from multiple data sources.

This abstraction layer gives the flexibility to change the underlying data

sources (for example, switch from one database provider to another or change

the database level data model) without making any changes to the business

logic or presentation layer.

3.2 Data model

The application is implemented with a single relational database. Below is a

description of the database table structure used in the application.

11

3.2.1 Users and roles

Figure 2. The data model for storing users and the user roles used for
access control.

Users and roles are represented by two simple database tables with a many-

to-many relationship. The user table contains details about the user, including

a hashed version of their password with a salt value. The user_role table is

a mapping table linking an individual user to the user roles it possesses.

3.2.2 Course information

Figure 3. The data model for course-related information.

Managing the course information and registration data is implemented

using three database tables. The course table hosts all the information

related directly to the course, such as descriptions and validity periods. The

course_signup table acts as a mapping table of which users have signed

up for any particular course.

12

The course_grade table contains the information of a student’s grade

for a particular course. In principle, this information has been included in the

signup table. However, as the concept of signup and grade differs on a logical

level and in functionality, it makes sense to separate these into two different

tables. A signup is a boolean value; either a user is signed up for a course or

not. If the user is not signed up for a course, then the mapping table should

not contain an entry for the user, while a grade is something more persistent

data. A grade can be updated (for example, if the wrong grade was entered or

the user has raised their grade), but once a grade has been given, it should

never be deleted.

If the grade needs to be updated, it will not be managed as an update

query; rather, a new table entry will be made with a new timestamp. When

fetching a user’s grade, we simply fetch the row with the latest timestamp for

any given user_id ↔ course_id combination. This effectively means that

the course_grade table’s entries can be considered immutable, as they are

never changed or deleted.

This logical difference allows us to implement an extra layer of security

already on the database level. Instead of allowing the database user full

access to the course_grade table, we can grant it only access to SELECT

and INSERT queries, limiting the possibility of malicious users falsely

modifying or deleting grades. However, this is not a sufficient measure to

guarantee the integrity of the grades, as discussed later in the thesis.

4 IMPLEMENTATION

The example application is implemented using two popular Java-based

frameworks. The user interface is implemented using the open-source Vaadin

Flow framework, while the business logic and the data access layers are

implemented using Spring Boot.

4.1 Vaadin Flow

Vaadin Flow is a full-stack web application framework that allows developers

to build web applications purely in Java without writing any HTML or JavaScript

code (Vaadin, n.d.-a). Unlike many other web frameworks, Vaadin Flow is a

server-side framework, meaning the user interface logic and application state

are handled and maintained on the server (Vaadin, n.d.-b).

 Vaadin’s architecture is discussed more in-depth in the chapter

describing broken access control.

13

4.2 Spring Boot

The Spring Framework is a Java-based tool that provides a comprehensive

programming and configuration model for modern Java-based enterprise

applications. Spring provides infrastructural support on the application level,

such as dependency injection, authentication and authorization, simple APIs

for data access over JDBC or JPA, and many more core functionalities needed

in any modern web application. Spring provides these functionalities without

unnecessary ties to deployment environments, allowing developers to focus

on application-level business logic (Spring, n.d.-c).

 Spring Boot is a version of Spring Framework that takes an opinionated

stance on the framework's configuration and third-party libraries, allowing the

developers to create a standalone application with minimal upfront

configuration (Spring, n.d.-d).

4.3 Presentation layer and the user interface

The application is built as a single-page application using Vaadin Flow as the

frontend technology. The application consists of five views providing the main

functionality of the application:

● The main view, accessible by all users, lists all available courses.

● The course detail view is used to view course details and sign up for a

course.

● Course management view where teachers can add, modify, and delete

courses and manage attendees and their grades.

● The user profile view is where an individual user can manage their

account details and see their course signups and grades.

● The administration view is where the application administrator can,

among others, manage the users of the application.

In addition to these main functionality views, there are a small number of helper

views:

● Login view

● Registration view

● Search results view

The user interface is implemented following the principles outlined in Vaadin

Flow’s documentation. The application only uses out-of-the-box user interface

components, and no custom client-side code was written. Application and user

interface logic was implemented on the server side using Java.

14

4.4 Business logic layer

The business logic layer is lightweight and consists of only two classes:

CourseService and UserService. These two classes contain the simple

business logic needed for the application and interact as an intermediary layer

between the user interface and the data access layer.

4.5 Data access layer

The application connects to a relational database, using MySQL as the

relational database management system. The application uses a data access

layer as an abstraction layer between the application logic and the part

accessing the database and executing the queries.

Figure 4. Illustration of the data access layer.

The data access layer consists of three types of classes: repositories,

mappers, and models. Repositories act as a facade towards the business logic

layer. It publishes APIs through which create, read, update, and delete

operations are performed. The business logic layer never interacts directly with

the underlying mechanisms, such as mappers or JDBC.

JdbcTemplate is Spring’s core to the JDBC package, providing

simplified usage of JDBC (Spring, n.d.-b). The class executes SQL queries

and maps the responses into resultsets, which then can be mapped into Java

objects. In the example application, for example, the CourseMapper is a

15

RowMapper, which translates a query result into Course objects that the

business logic and presentation layers can directly use.

When the business logic layer makes a request to the repository, for

example, asking for all available courses, it makes the requests through the

CourseRepository and receives as a result a set of Course objects. The

underlying JdbcTemplate and Mappers are entirely invisible to the business

logic layer.

5 VULNERABILITY REVIEW

This chapter will review the vulnerability categories listed in the OWASP Top

Ten list. Each category is presented with a high-level description, after which

the category is analyzed against vulnerabilities on the application level versus

vulnerabilities in the server configuration, certificates, or the development

process. The vulnerabilities that are affected (or caused) by the

implementation (including choice of frameworks) are discussed in more detail.

The cause of a vulnerability is explained along with the recommended

mitigation strategy; then, the example application is tested against the

vulnerability. Finally, an analysis is made as to whether the vulnerability was

mitigated by the frameworks used or by the developer’s implementation and

whether the framework could have done the mitigation.

5.1 A01:2021-Broken Access Control

Broken access control refers to a set of vulnerabilities that give unauthorized

access to information or functionality that was not intended for the user

(OWASP, 2021b). Let us consider a trivial example where an application

provides partial access to news articles, but reading the full article requires a

paid subscription. The application wants the user to be able to read the

beginning of the article to get them interested but hides most of the content for

non-subscribers. The feature might be implemented so that the beginning of

the content is available for all users, and the remainder of the article is

accessible through a “Subscribe to read the full article” button. What technical

means does a developer have to limit the content to subscribed users? Is the

full article added to the DOM tree and just visually limited? Is the full article

accessible through another URL, and is the access limited to it in any way? Or

maybe the application uses an AJAX call to a REST API that serves the

browser with the article’s content, but are there any checks in the REST API’s

implementation to make sure that the user is authorized to access the content?

16

To properly secure an application against broken access control,

appropriate authorization mechanisms must be implemented in all relevant

places, including the user interface and any available APIs. It includes limiting

access to functionality, parts of the user interface, to resources (such as files),

and APIs.

 The OWASP Testing Guide instructs to test the access control both

horizontally and vertically (OWASP, n.d.-c). Horizontal access control testing

means we test if a user can gain access to functions or resources that should

be accessible to a user who holds a different identity but has the roles or level

of privileges. Vertical testing, on the other hand, tests if we can gain access to

functions or resources that should only be accessible to a user who holds a

higher role. Another approach that needs to be tested is privilege escalation.

In other words, are there ways we can interfere with the application’s behavior

in such a way that we can change the role and access rights of a user to gain

a higher role?

 The testing starts by identifying the potential places where these kinds

of privilege escalations or circumventions could happen. In the example

application, it could be accessing views one does not have the rights to access

(user and course management views) or performing actions that are not

allowed to the given user (changing a user’s role, modifying course data,

course evaluations, or course registration for unauthenticated users).

 Vaadin provides a built-in, view-based access control mechanism to

manage the authorization of users’ access to a view (Vaadin, 2023). To define

the access rights for a view, a developer can simply annotate a view

@AnonymousAllowed, @PermitAll, @RolesAllowed, or @DenyAll

annotations. When a user wants to access a particular view in the application,

an HTTP request is sent to the server, triggering a navigation event. Vaadin’s

navigation mechanism will automatically check the view class for access

control annotations and based on the defined access controls and the current

user’s authentication status, either grant or deny access to the view. For

example, the user administration view definition looks as follows:

@PageTitle("Users")

@Route(value = "users/:courseUserID?/:action?(edit)", layout

= MainLayout.class)

@RolesAllowed("ADMIN")

public class UsersView extends Div implements

BeforeEnterObserver {

17

Whether the access is granted or not, Vaadin will give the user access to the

view or redirect the user to the login page. While Vaadin does provide the

developer with an easy-to-use mechanism for controlling access to individual

views, it does not, however, provide a means for performing access control on

individual actions, such as adding a new course.

Vaadin’s server-side architecture does, however, make it more

challenging to attack individual actions. With a more traditional choice of

frameworks, a developer might develop the user interface with one technology

(such as React1), which communicates with a backend containing the

business logic over REST APIs. With this architecture, the developer is

responsible for implementing the server-client communication. That

communication sequence flow might look something like this:

1. The end user fills in a form with course details and clicks on the “Add

new course” button.

2. The presentation layer code (running as JavaScript in the browser)

aggregates the information and makes an HTTP request to the correct

API on the server. That API might live in a URL such as

https://example.com/api/v1/addCourse.

3. The server processes the request and response with an appropriate

HTTP response message.

Figure 5. Illustration of how the “add course” action could be implemented in
a more thick-client architecture.

With this communication architecture, the developer would need to

secure the REST API as well to make sure that a user lacking the appropriate

authorization cannot trigger the action that creates a new course. Even though

the application’s user interface logic performs the HTTP request, nothing is

stopping a malicious user from circumventing the client-side logic and making

the HTTP request to the REST API with arbitrary values.

Vaadin’s component-based architecture differs from this by only

exposing an RPC (Remote Procedure Call) interface to an individual

component’s actions, such as the button was clicked. The button click event is

1 https://reactjs.org/

https://example.com/api/v1/addCourse

18

entirely business logic agnostic; only the information about a particular button

in the user interface being clicked is sent to the server. The user interface logic

resides on the server side, which then processes the button click event, which

in turn calls the addCourse method in the business logic. Note that the

addCourse method is never exposed to the Internet and thus would never be

accessible directly by a (malicious) end user. It does not mean that when

developing an application with Vaadin, the developer would not need to

implement access control mechanisms for actions; it only means the

architecture makes it more difficult for malicious users to exploit vulnerabilities

in broken access control.

Figure 6. Vaadin’s architecture relies on remote procedure calls, which
delegate only information on user interface events, such as button clicks,
while the application logic resides completely on the server side.

 Vaadin maintains its application state on the server side, meaning the

server is, at any given moment, aware of what is visible on the user’s screen

and in which state the different user interface elements are. In practice, this

means that if we disable a button, the server will know that the button is in the

disabled state. If the button is in the disabled state, then the server also knows

that it should not be possible to click on the button. Thus, if an attacker tries to

send a false request that emulates a click event, the server would know not to

expect such an event and refuse to process the event, blocking any attempts

to circumvent the application state.

 While Vaadin’s inbuilt components use a user interface and business

logic agnostic implementation, that is not necessarily true for components built

by third parties or the development team. With Vaadin, it is possible to create

your own components with their own client-side implementation, allowing the

developers themselves to decide what kind of functionality is exposed directly

to the internet as RPC calls. From a purely technical perspective, it is possible

to create a more client-heavy view which would implement some of the user

interface logic on the client side and expose the addCourse method through

the RPC interface. For this reason, it is good to abide by the defense in depth

principle. The defense in depth principle is based on layering security controls,

19

in other words, implementing security controls in multiple places and not

relying just on one control (Conklin & Shoemaker, 2022, p183). The principle

is not meant to be applied only at the source code level but also for, for

example, the network and server infrastructure. However, we could implement

the defense in depth principle in the example application by applying method-

level authorization on the service layer. It has the added benefit of having the

security controls already in place if we later want to expose those same

services for another application, such as a native mobile client of the same

application.

 Spring Framework security module (Spring Security) has functionality

for implementing method-level authorization (Spring, n.d.). As Vaadin’s

authentication implementation is based on Spring Security, the method-level

authorization will work mostly out-of-the-box with a Vaadin application. The

authorization mechanism works simply by adding an annotation to the

methods we want to secure, defining which roles can access the method.

When the method is being called, Spring Security will verify whether or not the

given user has the appropriate roles to execute the method. If the user lacks

the needed rights, then an AccessDeniedException is thrown.

In the example application, the appropriate place for adding method-

level security would be in the service layer. The below example illustrates how

the CourseService class secures the updating of course information to only

valid user roles.

@Service

public class CourseService {

 @PreAuthorize("hasAnyRole('INSTRUCTOR','ADMIN')")

 public Course update(Course entity) {

 return repository.save(entity);

 }

}

Listing 1. Example of how method level protection is applied in the business

logic layer, restricting user access based on roles to the function updating

course data.

Evaluation. Reviewing against the evaluation criteria defined in section

1.2, we can conclude that helpers are provided by the frameworks for

managing access control.

In addition to trying to circumvent access control directly, exploiting

other vulnerabilities can achieve the same results. The OWASP Testing Guide

instructs to test the application against Insecure Direct Object References. The

20

OWASP Top Ten category description also includes Cross-Site Request

Forgery attacks in this category, which are attacks against improper session

management. These two vulnerabilities are discussed in detail in the following

sections.

5.1.1 Insecure Direct Object References

An insecure direct object reference vulnerability occurs when an application

exposes details about internal implementation objects, such as files, database

records, or keys, as URL parameters or as hidden fields in forms. Exposing

the internal values used for referencing an object can be dangerous, as it

exposes the application to a multitude of different kinds of attacks and

potentially gives an attacker access to read, update, or delete content that they

otherwise would not have access to.

 Consider a typical web application requiring its users to register to the

site. The application will most likely have some sort of profile page the user

can use to manage their details. The form for editing one’s details might look

as shown in Figure 7.

Figure 7. Example of a form used for modifying a user’s details.

Traditionally, these forms have been built using HTML’s form elements,

with the visible parts as input fields and metadata added as hidden fields. The

example form’s HTML is shown below.

<form action="/updateProfile" method="POST">

<!-- Meta data -->

<input type="hidden" name="user_id" value="4183" />

<!-- Input fields -->

Name: <input type="text" name="name" value="John Doe" />

Email: <input type="text" name="email"

value="john@example.com" />

 ...

<input type="submit" value="Save changes">

21

</form>

Listing 2. Example of how a traditional HTML form for updating a user profile

might be implemented.

 The example form exposes internal object details in the metadata,

namely, the user ID field. The user ID field is added so the application knows

which user record needs to be updated. From the field's value, we can guess

that the value is most likely the primary key of the database record containing

the user details. If the application lacks authorization checks to ensure the

current user whose profile is being modified is the same, then the application

would make itself vulnerable to a malicious user modifying a database record

to which they should not have access. Even though the user ID field is not

visible on the rendered page, it is still trivial for a malicious user to modify the

hidden field’s value to any other value.

 For example, this kind of vulnerability can be used to take over an

account. Let us assume that a malicious user could change the email address

of any given user by just changing the user_id field’s value. If the malicious

user can figure out the administrator’s user ID (it might be simply the first

database record, having an ID value of ‘1’), then they could potentially use this

vulnerability for an account takeover. Changing the email address means that

any emails sent by the system will be redirected to an address of the attacker’s

choice - including any password reset emails. Password resets are often

implemented by submitting a reset link to the email address provided in the

user profile. If multifactor authentication is not enabled, then this attack path

might be successful and compromise the whole system.

 The vulnerability can also be leveraged against other objects than

database records. Consider an application with three roles: normal users,

power users, and administrators. Maybe a power user can manage other user

accounts, including elevating their roles up to also being power users. The

input field for selecting the appropriate user role might be a simple select field,

as shown below. What would happen if a malicious user used an HTTP proxy

or the browser’s developer tools to change the value of one of the options to

“administrator”?

<select name="role">

 <option value="user">Normal user</option>

 <option value="power_user">Power user</option>

</select>

Listing 3. A selection drop-down menu uses the internal role names as the

option values, thus exposing the application's internal implementation details.

22

 It is worth noting that this vulnerability is not limited to just hidden form

fields. However, it can be any reference to an object that exists on the client

side, for example, cookies, URL parameters, JSON objects in the local

storage, form field values, or any other form of data that is exposed to the

browser.

5.1.1.1 Mitigation strategies

There are two main mitigation strategies against indirect object reference

vulnerabilities (CWE, n.d.). The first method to mitigate the vulnerability is to

implement record-level access control, meaning that the application will verify

that the user requesting access to an item has permission to access the

record. In the profile update example above, the application should verify that

the user_id value in the hidden form field matches the user ID of the logged-in

user. If there is a mismatch between the IDs, then the action should be denied.

 The second mitigation strategy is not to expose the IDs to the browser

in the first place. It can be implemented by encrypting the IDs or by replacing

and mapping the keys to internal values. For example, instead of using

numbers, the application could use a randomly generated string or some other

representation of the value that does not expose the underlying key.

5.1.1.2 Framework level mitigation

Vaadin provides protection against indirect object reference vulnerabilities out-

of-the-box without the developer needing to even be aware of it - to some

extent. In a Vaadin application, the client side is relatively thin, meaning it does

not have any application logic and contains only a limited amount of application

data. In a Vaadin application, the server is in complete control of the

application state and what is shown on the screen and, thus, in full control of

what data needs to be exposed to the browser. This architecture allows Vaadin

to limit the exposed data to contain only relevant data for rendering the view

in the desired way, meaning only the texts that need to be shown. It allows

Vaadin to hide all underlying objects and never expose any identifiers, such

as primary keys, to the browser.

 The following example will illustrate how Vaadin hides internal object

details from the browser and only exposes relevant data. The example

implements a similar role selection as described in section 5.1.1. For this

example, we have implemented a Java class called Role with two properties,

name and UUID. The UUID is a randomly generated string that uniquely

identifies an object. This property represents an internal value that should not

be directly exposed to the client side.

23

private class Role {

 private String uuid;

 private String name;

 public Role(String uuid, String name) {

 this.setUuid(uuid);

 this.setName(name);

 }

 // Getters and setters are omitted for brevity

}

Listing 4. Example of a class that uses a UUID as the unique identifier instead

of an integer.

 Next, an ArrayList is populated with three Roles, each with its unique

identifier. The ArrayList is then linked with Vaadin’s Select component

(Vaadin’s implementation of a dropdown menu).

List<Role> roles = new ArrayList<>();

roles.add(new Role(UUID.randomUUID().toString(),

"Administrator"));

roles.add(new Role(UUID.randomUUID().toString(), "Power

User"));

roles.add(new Role(UUID.randomUUID().toString(), "User"));

Select<Role> roleSelect = new Select<>();

roleSelect.setItemLabelGenerator(Role::getName);

roleSelect.setItems(roles);

Listing 5. Three roles are added to a dropdown selection menu in a Vaadin

application. Note how the role UUIDs are passed to the select component.

 When rendering the view, the response to the HTTP request contains

a JSON object describing what should be rendered to the screen. By

examining this JSON object, we can see that the role names are sent to the

browser (as they are used as the labels in the dropdown) but not the UUIDs.

In listing 6 we can see that for each item, we have a text value for the label,

but the item's value property is simply an integer between one and three, which

in this case is also the order value of the items in the dropdown selection.

[

24

 {

 ...

 "changes": [

 ...

 {

 "node": 48,

 "type": "put",

 "key": "label",

 "feat": 3,

 "value": "User"

 },

 {

 "node": 48,

 "type": "put",

 "key": "value",

 "feat": 3,

 "value": "3"

 },

 ...

 {

 "node": 50,

 "type": "put",

 "key": "label",

 "feat": 3,

 "value": "Power User"

 },

 {

 "node": 50,

 "type": "put",

 "key": "value",

 "feat": 3,

 "value": "2"

 },

 ...

 {

 "node": 52,

 "type": "put",

 "key": "label",

 "feat": 3,

 "value": "Administrator"

 },

25

 {

 "node": 52,

 "type": "put",

 "key": "value",

 "feat": 3,

 "value": "1"

 }

],

 ...

 }

]

Listing 6. Part of the JSON in the HTTP response instructs the presentation

layer to render a dropdown menu. We can see that the labels for the options

are in the JSON, but the UUID is never exposed to the client side.

 Even though Vaadin does provide an out-of-the-box solution for

protecting the application against indirect object references, it is still possible

for a developer to introduce such a vulnerability. The example application’s

requirement 2.4 states that a user should be able to bookmark the individual

views and their content variations. In practice, this means that, for example,

for the course details view, we want to be able to access any individual

course’s details directly through a unique URL. The URL could look like this:

Figure 8. The URL structure for accessing a specific course’s details.

In this example, the URL would consist of three parts: the domain, view

name, and view parameters. The third part, the parameter, is in the example

application used for defining which course information should be shown in the

view. The example shows it as an integer value, but in practice, it could be any

value that can be used in a URL. When encountering an integer value in the

URL, an educated guess would be that it is mostly the primary key for the

database record containing the view’s details. It would expose the application

to be vulnerable to an indirect object reference exploitation. If the application’s

implementation lacks record-level access control, then an attacker could

enumerate all courses, even those that should be hidden from the user.

Viewing hidden course details is not probably the end of the world, but what if

26

a similar vulnerability would exist in a healthcare application showing patient

data?

 A framework, such as Vaadin, cannot know what a developer’s intent is

with the view parameters. They may or may not be used for identifying objects.

Because the view parameters can be used in any arbitrary way, a framework

cannot impose a mechanism to obfuscate the values, as that might break the

intent of the parameters themselves. Hence, securing this part of the

application’s functionality will reside with the developer, not the framework.

Evaluation. Reviewing against the evaluation criteria defined in section

1.2, we can conclude that indirect object reference vulnerabilities are mitigated

out-of-the-box by the framework, to the extent feasible, considering limitations

to knowing the developers’ intentions.

5.1.2 Cross-Site Request Forgery (CSRF)

Cross-site request forgery, also known as CSRF or XSRF, is a vulnerability in

web applications where a user is tricked into performing an action in the

vulnerable application without the consent or knowledge of the user. This

vulnerability becomes possible if the server treats an HTTP request as an

authentic request regardless of its origin (CWE, n.d.-b).

 What makes this vulnerability devious is that it is executed through the

victim’s browser using the victim’s HTTP session. From the server’s

perspective, the HTTP request is made by a valid, authenticated user and thus

any security controls implemented to restrict access to functions or data will

not be sufficient to protect the user and the application against this

vulnerability.

The vulnerability can best be explained through an example. Consider

an online banking application where users can pay bills and transfer money to

other accounts. The application is built as a single-page web application that

uses its backend functionality through REST API calls. When the user Alice

wants to make a money transfer, a GET request is made to the URL

http://bank.site/api/transfer with two parameters, account and

amount, where the first parameter specifies the receiver's account number and

the latter specifies the sum to be transferred. When transferring money to the

account number 1234, the request could look as follows:

http://bank.site/api/transfer?account=1234&sum=1000

This request contains two types of information: the GET parameters

dictating how much money should be sent and the account number dictating

to which account the money will be sent. The HTTP header will contain the

user’s normal session token, authenticating the user as Alice.

27

A malicious user, let us call them Eve, could now use this information

to create a cross-site request forgery attack and trick Alice into transferring

money to Eve's account. Eve can construct a malicious URL and send it as a

link to Alice.

<a href="http://bank.site/api/transfer?account=5678

&sum=1000">View my pictures

Alice will see a link with the text “View my pictures,” if she is not paying

attention, she might not notice that the link leads to somewhere other than

what the text might indicate. When Alice clicks on the link, a request is sent to

the server using Alice’s session requesting money to be transferred to Eve’s

account. As the request came from Alice’s browser, using Alice’s session, the

server will not be able to distinguish this from any other valid request. This

particular attack would require Alice to click on the link to trigger the request.

Eve could increase her chances of having the malicious URL requested by

embedding the URL in an image tag and using social engineering tactics to

trick Alice into visiting a website containing the image tag.

<img src="http://bank.site/transfer?account=5678

&sum=1000" />

Visiting a page containing the above image tag would trigger a similar

HTTP request as Alice clicking on a link directly, with the exception that the

only indication that something is wrong is that the image would not load. Alice

would only see a broken image while the banking application receives a valid-

looking request for a money transfer. The broken image can be circumvented

by visually hiding the image, for example, by making the image’s size 1px by

1px. If Alice is logged into her banking account when visiting the malicious site,

money will get transferred from her account to Eve's account without Alice

noticing it (OWASP, n.d.-d). Although the example scenario is unlikely, it

demonstrates the principle behind the attack.

 The application level trust problem, which is the principle behind cross-site

request forgery attacks, was first described by Norm Hardy (1988, pp. 36-38)

in what he called “confused deputy”.

In January 2008, Symantec reported a cross-site request forgery attack

that took place in Mexico, an attack with devastating consequences

(Symantec, 2008). The attacker embedded malicious code inside an e-mail

and sent it to unsuspecting users. The e-mail was disguised as a notification

to the victim, telling him they had received an e-card at a popular website. The

e-mail also contained an tag, triggering an HTTP GET request to the

user's router control panel. The attack targeted a specific vulnerable route

model popular in Mexico. The router's security vulnerability allowed the

attacker to redefine DNS settings with a cross-site request forgery attack

28

without requiring the user to log in to the router's control panel. Back to the

malicious email containing the attack payload, anyone who loaded the HTML

in the e-mail and was the owner of this specific router model became a victim

of the attack.

The cross-site request forgery attack changed the victim's router DNS

settings so that any requests to a popular Mexico-based banking site would

be automatically redirected to a domain controlled by the attacker. The domain

controlled by the attacker had a rogue version of the banking site, and any

user who used this site had their credentials stolen.

5.1.2.1 Countermeasures

A study by Likaj et al. (2021) outlined the various methods used in web

applications to counter cross-site request forgery vulnerabilities. They

identified 16 distinct defense mechanisms against CSRF, categorized into four

groups of vulnerable behaviors that, when removed, the CSRF attack is no

longer successful. These four groups introduced by Likaj et al. (2021) are

described below with examples of concrete mitigation strategies.

Origin checks. As the name of the vulnerability indicates, the source

of a CSRF vulnerability is when the server accepts a request originating from

a third-party source as a valid, user-intended request. It may be a JavaScript

XHR or submitting a form on a website controlled by the attacker. An effective

countermeasure, when applicable, is verifying that the request’s Origin header

matches the application’s domain address (Barth et al., 2008, pp. 82-83).

Tricking a user into clicking on a link in an e-mail or embedding the malicious

URL to an image tag and posting it on a forum would mean that the attack

originates from another site than the site where the target application lies. It

means the HTTP header containing the origin site would be something other

than the target application's URL. As the origin header is defined by the

browser and not by the requesting application, we can ensure the request does

not originate from a third-party site. However, it is worth noting that the Origin

header is not included in all requests, for example, in GET requests (Mozilla,

n.d.). Thus, all state-changing requests should use, for example, POST

requests.

Another approach to ensuring the requests are coming from the same

domain as where the application lies is using customer headers (OWASP,

n.d.-f). JavaScript allows developers to include custom headers in

XmlHttpRequest (XHR) calls. Custom headers can, however, only be used

within the same domain and will not be included in the HTTP request if the call

is cross-domain. The server can thus check the presence of the header - if

present, the request must have come from within the same domain. If absent,

29

the request may have originated from another source. The downside of this

approach is that it is only applicable for XmlHttpRequests.

Request Unguessability. An application is vulnerable to CSRF if the

attacker can consistently replicate a request to seem valid. An effective

countermeasure is to modify the content of an HTTP request so that an

attacker cannot know all the needed content of a request, which would be

considered valid for processing.

Stateful applications can use a shared secret (token), which is included

in all HTTP requests and validated by the server before processing the

request. A cryptographically secure token is generated on the server side and

stored in the server-side session. The same token is provided to the client side

for the browser to include in every HTTP request as either a URL parameter

(for GET requests) or as a parameter in the request body (Schreiber, 2004).

 Consider the use case described earlier, where a user wants to transfer

money from their account to another account. When the user opens the form

containing the information for money transfer, a token is created, which is

unique to this specific action for the active user session. This token is then

added as a parameter to the HTTP request by embedding the token as a

hidden field in the form. When the application receives the request, it validates

that the token is present and is actually linked to the active user session. If a

valid token is not found, the application should not perform the requested

action but instead log the incident in the security logs as a possible case of a

cross-site request forgery attack.

<form action="/transfer">

<input type="text" name="account" />

<input type="text" name="sum" />

<input type="hidden" name="csrf_token"

value="so3rrZtS0khWkwh9h6Fbh2tUqFsoXYd4BMzfo3rXAL8LcyLj

PQcV1oqeiizWb4R9" />

...

Listing 7. Example of a HTML form containing a unique CSRF token.

 Even though using secret tokens provides an application with a high level

of protection against cross-site request forgery attacks, it does not secure an

application completely against these attacks. The application is still vulnerable

if the token is leaked to an attacker. There are multiple ways this could happen.

For example, it could be exposed via GET requests where the token could leak

to HTTP log files, browser history, or the referrer header if the application links

to a third-party site (Likaj et al., 2021, p. 375). Hence, it is recommended that

all sensitive actions are performed as POST requests and GET requests are

30

only used for data retrieval; this way, security tokens do not need to be

embedded in the GET requests (OWASP, n.d.-f).

 A similar approach can be applied to applications with a stateless

backend. This pattern is called “double submit,” which relies on submitting a

token in two different ways so that an attacker cannot forge it. Instead of storing

the token in the server-side session, the token can be stored as a variable in

a cookie. The application thus needs to send the token both as a cookie value

and as a parameter in the request. The server then validates that the

parameter in the body matches the parameter in the cookie. This mechanism

is effective, as cookies’ same origin policy disallows third-party sites from

reading cookie values.

Same-Origin Policy for Cookies. An application can add a browser

cookie, which is required to be passed back to the server for any state-

changing action to be performed. If the cookie is missing, the server should

reject the action. Setting the cookie’s SameSite attribute to strict will

ensure that the browser will pass the cookie to the server only if the request

originates within the same domain.

User Intention. Cross-site request forgery attacks can also be hindered

by verifying the user’s intent. After performing an action, such as transferring

money from an account, the user can be requested to perform a simple task

to verify that the action was intentional. Such a task could be solving a

CAPTCHA or entering a one-time token delivered by, for example, an SMS or

an email.

It is worth noting that any two-step action is not sufficient to protect

against cross-site request forgeries. For example, a simple confirmation popup

asking, “are you sure you want to transfer the money?” is insufficient if the

HTTP request sequence is predictable (Schreiber, 2004). Let us consider the

above example of money transfer. The initial request might look like this:

(1) http://bank.site/api/transfer?account=5678&sum=1000

 After this, the user is presented with a summary page of the transfer

with a button for confirming the transaction. This transaction triggers another

HTTP request, such as the one below.

(2) http://bank.site/api/transfer?confirm=1

A successful transfer would now require the user to confirm their

intention. However, since the two HTTP request contents are predictable, an

attacker can craft a simple script that first makes an HTTP call to (1), after

which a slight delay is performed, after which an HTTP request is triggered to

(2) finalizing the transaction, without the user’s knowledge or true consent.

31

5.1.2.2 Framework level mitigation

We can examine the example application’s HTTP requests to determine if any

CSRF protections are in place. A simple action in the application triggered the

following request.

POST /?v-r=uidl&v-uiId=0 HTTP/1.1

Host: localhost:9090

Content-Length: 210

// ..some headers excluded for clarity

Origin: http://localhost:9090

Referer: http://localhost:9090/

Cookie: JSESSIONID=9B7BE1749278E15205B884481C6F4C44

Connection: close

{

"csrfToken":"710307d4-fa87-4fc3-967a-9e5dd01f438f",

"rpc":[

{"type":"publishedEventHandler",

"node":5,

"templateEventMethodName":"confirmUpdate",

"templateEventMethodArgs":[1],

"Promise":1}

],

"syncId":3,"clientId":3

}

Listing 8. An HTTP request made by a Vaadin application. We can see the

presence of a CSRF token in the request body.

 We can immediately see that the request body has JSON containing a

csrfToken attribute. This token is added by the Vaadin framework

automatically out-of-the-box without any configuration required by the

developers. The same token is repeated in subsequent HTTP requests.

Vaadin uses only one endpoint through which all remote procedure calls

(RPCs) go through without providing any additional endpoints, limiting the

potential attack surface. Thus, we can conclude that Vaadin applications are

sufficiently secured against CSRF attacks by making the requests

unguessable using a CSRF token.

Evaluation. Reviewing against the evaluation criteria defined in section

1.2, we can conclude that cross-site request forgery vulnerabilities are

mitigated out-of-the-box by the framework.

32

5.2 A02:2021-Cryptographic Failures

The next category in OWASP’s top ten list is “Cryptographic Failures”. In

previous versions of the top ten list, the category was called “Sensitive Data

Exposure”, which describes the symptoms often caused by cryptographic

failures. This category deals primarily with vulnerabilities related to data and

how sensitive data might inadvertently be exposed in the application (OWASP,

2021c).

 Sensitive data exposure is something that needs to be subjectively

considered for each application - one type of data might be sensitive in one

application while in another application, it would not be considered sensitive.

While a lot of the data sensitivity categorization is subjective, there are,

however, a number of types of data that always need to be protected in a

secure manner, such as passwords, health information, or credit card

numbers.

 Once the sensitive data in the application has been identified, we need

to consider how the data is protected both when at rest (for example, how it is

stored in the database or disk) and when in transit (for example, how the data

is protected between the browser and the server, between the load balancer

and the backend). Protecting the data is done using cryptographic measures,

for example, by encrypting or hashing the data. When using cryptographic

methods, we need to ensure that the used algorithms are not deprecated as

old and weak.

The example application does not have a lot of data that would be

considered sensitive, with the exception of users’ passwords. Nor does the

application integrate into any third-party services, which would need to be

secured. Let us review how Vaadin Flow and Spring Framework handle the

passwords both at transit and at rest.

 The example application is built to be deployed and run on one

application server, meaning, the web server serving the browser and the

backend all reside on the same application server. Hence, there is no data in

transit on the server side, only between the browser and the web server and

potentially, depending on the configuration, between the application server

and the database server. Encryption of the data between the browser and

server is done using SSL, which is configured in the application server and not

in the application code. Hence, we can conclude that considering data at

transit is out-of-scope in this thesis.

 Let us consider how the frameworks help us store passwords in a

secure manner. Passwords should never be stored as plaintext or encoded

(CWE, 2006) as a vulnerability, such as an SQL injection, might expose all of

the users’ passwords to the attacker. A password should be stored so that

33

even if the raw data of the password (typically, a cryptographic hash of the

plaintext password) is compromised, it would be impractical for an attacker to

guess or otherwise discover the correct password. There are a number of best

practices that dictate how passwords (or other memorized secrets, such as

PIN codes) should be stored; for example, one is released by the US

government’s National Institute of Standards and Technology (Grassi et al.,

2017, pp. 13-15). When storing the password, the password shall be salted

(CWE, 2009) and hashed using a suitable (and strong enough) one-way key

derivation function (CWE, 2006b). The salt used should be such that it is not

easily predictable, such as using the user’s username as the salt value (CWE,

2009b).

5.2.1 Framework level mitigation

Vaadin Flow is agnostic to how and where any application data is stored, as it

is purely a user interface framework. Vaadin Flow does integrate with Spring

Security, allowing developers to leverage Spring’s authentication features.

Vaadin promotes using their Vaadin Start service to create an application stub

upon which a developer can continue building their Vaadin application

(Vaadin, 2023b). The application stub provides a simple login feature using an

in-memory database integrated with Spring Security. In the stub application,

the passwords are stored as hashes using bcrypt, which is among the

recommended algorithms for this purpose (OWASP, 2021d, p 26). It is worth

noting that nothing forces the developers to use this practice but rather leaves

password management as the developer's concern.

 On a more general level, storing sensitive data, not just passwords,

needs to be protected accordingly. Upon inspection, Spring Framework does

not seem to provide any helpers for the developer to handle storing sensitive

data.

Evaluation. Reviewing against the evaluation criteria defined in section

1.2, we can conclude that the chosen frameworks do not provide mitigation

support against cryptographic failures, even though there is some help for one

use case, but a generic solution is lacking.

5.3 A03:2021-Injection

An injection attack is possible when a web application does not validate user

input data and uses the unvalidated data in the application logic. It might allow

a malicious user to inject their code into the application logic and perform

activities the application was not designed to do. Such an activity could be, for

34

example, reading database content that is not meant to be exposed to the end

user.

Most of today’s websites and applications are, to some degree,

interactive or dynamic. Even a simple company website might today be built

using content management systems (CMS), have a contact form, or maybe

ask the user to sign up for their newsletter. It means that even the simplest

websites are rarely completely statically implemented using plain HTML files

with no scripting or backend functionality and thus interact with the end user

in some way. For a simple website built using a content management system,

it means, at minimum, that the CMS needs to know which pages to serve to

the end user. The navigation information is often passed to the CMS using

URL parameters or dynamic URLs. This information is considered user-

provided data; if the data is not validated on the server-side, it might make a

web application vulnerable to injection attacks.

 Injection attacks are based on a problem where user input data is poorly

(or not at all) validated before being used in the application logic. Failure to

properly validate the user's input data can lead to a situation where the

attacker can manipulate the application's commands by entering unexpected

data and thus changing the commands executed by the application. Consider

an example where the user is asked for his birth year. We know that the input

data the user provides should be a four-digit number; however, nothing

guarantees that the user will enter a valid value. The question is how an

application will behave with unexpected data. What if the year is something

other than numbers? If the input data has not been validated, we cannot be

sure how the application will behave. In a best-case scenario, the application

will discard the value and continue functioning as expected. A worse scenario

would be that the application goes into a state from which it cannot recover

automatically; in other words, the application could break, a situation that

would be bad for the user experience. The worst possible scenario would be

that invalid data validation would open up unexpected doors for an attacker,

allowing him to perform various attacks against the server, the application, and

the users.

 User input should always be validated before using any application logic,

such as SQL queries. A common mistake made by inexperienced

programmers is the failure to properly validate data from an HTML form. An

HTML form can contain hidden fields which are not visible in the user's

browser. Often, these fields are filled by the application logic and never require

any interaction from the user. An inexperienced programmer may think that

validating these fields is not necessary, since it was filled by the application

logic and therefore we know what it contains. Hidden fields can be misleading

because even if the user cannot see the field in his browser, it does not mean

that it cannot be manipulated. Therefore, it is imperative always to validate all

35

data sent by the client (in this case, the browser) and not only the visible fields

of a form and trust the hidden content to be valid.

 In this chapter, we will discuss various injection attacks. Some of these

injection attacks target the server, trying to extract data, elevate privileges, or

even compromise the server itself. Some injection attacks, such as cross-site

scripting attacks, target the end user, for example, to steal their credentials.

5.3.1 SQL injections

Structured Query Language, or SQL, is a standardized computer language

designed to retrieve, manipulate, and manage data in relational databases.

The most common SQL commands have to do with data retrieval and

manipulation, but SQL is not limited to that. With SQL, one can also manipulate

the actual database, for instance, by creating and deleting database tables,

users, or even entire databases.

 SQL injections were first reported in 1998 when a security researcher

noticed that by manipulating normal user inputs like “name”, he was able to

extract sensitive data from a Microsoft SQL server (Horner & Hyslip, 2017, p.

99). A SQL injection vulnerability occurs when unvalidated user input data is

passed directly into a query, modifying the query’s original purpose. The

reason to perform an SQL injection varies a lot. However, the attack intent can

be grouped into the following categories: identifying injectable parameters (in

other words, probing which parameters are vulnerable to SQL injection

attacks), performing database finger-printing, determining database schema,

extracting data, adding or modifying data, performing denial of service,

evading detection (for example, remove auditing logs), bypassing

authentication, executing remote commands and performing privilege

escalation (Halfond et al., 2006).

 There have been numerous instances of data systems falling victim to

SQL injections. Albert Gonzalez, an American hacker, was sentenced to 20

years in prison for his involvement in a credit card processor breach.

Collaborating with two other hackers, Gonzalez employed SQL injection

techniques to infiltrate 7-Eleven's network in August 2007. This breach

resulted in the unauthorized access and theft of an unspecified amount of

credit card data. In the same year, the hacker group utilized SQL injection to

compromise Hannaford Brothers, which led to the theft of 4.2 million debit and

credit card numbers. (Zetter, 2010).

5.3.1.1 Example

36

SQL injections can best be described through an example. Consider the

example application, which requires the user to log in before he gets access

to certain parts of the application. Logging in is done by providing a username

and a corresponding password. Our example application has a database table

called 'user' containing the login credentials of all users. The table contains

four fields: a user ID, the username, the user’s name, and the password. Let

us view an example of how the table would be populated with the three fields

typically used for authenticating the user (excluding the name of the user).

id username hashed_password

1 George #####

2 Susan #####

3 William #####

Table 1. Example data in the 'user' table. The hashed passwords are masked

for simplicity.

 When a user logs in, he provides a username and a password in a login

form. The user-given password is hashed, and then the database is queried

for the user with the following SQL query.

"SELECT id, username, hashed_password FROM user

WHERE username='" + username +

"' AND hashed_password='" + password + "'"

 If the input value for the username is "George" and the value for the

password is "foo", then the resulting query would be

"SELECT id, username, hashed_password FROM user

WHERE username='George' AND hashed_password ='<hashed value of

foo>'"

 If both the username and the password match the ones in the database,

the query will return the first row in the table. However, the query was

constructed by concatenating the query’s content and the user-provided input.

Suppose the user’s input data is not validated. In that case, an attacker can

leverage a tautology-based attack where code is injected with a conditional

statement that is always evaluated to be true (Halfond et al., 2006). Consider

what would happen if the string "' OR 1=1 --" would be entered as the

username. The resulting query would look like this:

37

"SELECT id, username, hashed_password FROM user

WHERE username='' OR 1=1 --' AND hashed_password =''"

 The username provided by the attacker begins with a single quote, which

closes the username constraint in the query. The username field cannot be

empty, which would thus yield zero results, but then the attacker added the

conditional (OR 1=1), which is always evaluated as true. The double dash

represents the beginning of a comment, and the query interpreter will ignore

everything after the dashes. This query would thus return all users in the

database.

 This application might still not work correctly, as it might expect the

query to return just one row, not multiple rows. The injection could be further

modified by adding a clause that limits the query from returning more than one

row. Depending on the database engine used, this can be achieved, for

example, with MySQL, by adding “LIMIT 1” to the end of the query (MySQL,

n.d.). With this simple injection, a malicious user could gain access to the

system without knowing a single username or password.

 A more harmful SQL injection attack could be done using a piggy-backed

query-based attack. In this type of an attack, the attacker tries to inject

additional queries to be executed together with the original query (Halfond et

al., 2006). A malicious user could try to drop database tables to perform a

denial-of-service attack. It can achieved by entering the following username:

"'; DROP TABLE user; --". The resulting query would be

"SELECT id, username, hashed_password FROM user

WHERE username=''; DROP TABLE

user; --' AND hashed_password =''"

 In SQL, the semicolon represents a separator between two different

queries. The resulting query would actually be two different and independent

queries. The first query would try to fetch a user, while the second query would

delete the user table altogether. To, among other, limit the impact of these

kinds of potential vulnerabilities, it is recommended that the database user

used for accessing the data is only granted access to specific databases and

granted limited permission for performing actions, for example, allowing only

SELECT, UPDATE and DELETE queries (OWASP, n.d.-j).

5.3.1.2 Countermeasures

38

SQL injection countermeasures can be broadly classified into three different

categories: defensive coding, SQL injection vulnerability detection, and SQL

injection attack runtime prevention. The SQL injection vulnerability detection

methods rely on methods and tools mainly used in the testing and debugging

phase, such as using static analysis, injection tools, or manual testing. The

runtime prevention of SQL injection attacks is based on tools deployed

together with the software that might, for example, try to recognize and stop

harmful strings (Shar & Tan, 2013, p70-75). In this thesis, we will focus more

on the defensive coding, as it is more relevant to what help frameworks can

provide to the developers.

 The means to defend against SQL injection vulnerabilities depends to

some extent on the nature of the SQL query being executed. For most cases,

such as the example used earlier in this section, the best approach would be

to use prepared statements using parameterized queries (OWASP, n.d.-k).

public void login(String username, String hashedPassword) {

 String query = "SELECT id, username,

hashed_password FROM user WHERE username=? AND

hashed_password=?";

 PreparedStatement statement =

connection.prepareStatement(query);

 statement.setString(1, username);

 statement.setString(2, hashedPassword);

 ResultSet results = pstmt.executeQuery();

 // The rest of the method is removed for

 // simplicity

 }

Listing 9. An example of a SQL query being structured used parameters and

executed as a prepared statement.

The above example illustrates the usage of prepared statements with

parameters. The developer first defines the query and then binds the

parameter values to the query. This way, the database can distinguish

between what the executable code for the query is and which parts are

variables. This approach makes it impossible for an attacker to escape the

variable context to modify the actual query’s structure.

 A similar alternative for prepared statements would be to use stored

procedures. Stored procedures are queries that are “stored” and thus known

by the database server. When the application wants to execute a query, it

makes a call to the stored procedure with the wanted parameters. In this

39

method, the user’s input values only affect the variables in the query but cannot

modify the structure of the query itself.

 Stored procedures and prepared statements work well in cases where

the structure of the SQL query is known and not constructed dynamically.

OWASP (n.d-k) encourages avoiding dynamic queries and refactoring the

code to only use known queries when possible. However, there are some valid

use cases where dynamic queries might be necessary. One such example

could be dynamic reporting - in order to allow the end user completely free

hands in combining and fetching data for reports, it might be required to create

the queries dynamically, meaning, for example, changing the FROM part of the

query or adding JOINs based on the end user’s input.

 When dynamic queries are needed, a combination of escaping, data

type validation (e.g., not allowing strings where integers are expected), and

whitelisting (only accepting predefined values) should be used. If possible, one

should also consider using an Object Relational Mapping (ORM) framework

that builds the queries for you.

5.3.1.3 Framework level mitigation

Spring Frameworks comes with modules providing the developer with a variety

of ways to connect to an underlying data source. Spring Data JPA makes it

easy to implement repositories using the Java Persistence API (JPA). JPA

provides developers with an object-relational mapping facility, which allows the

developers to interact with the database through objects and method calls.

The underlying SQL queries are mostly hidden from the developer.

 For those developers who want to avoid using JPA, Spring Data JDBC

provides an alternative that provides similar functionalities with Object

Mapping and repositories (Spring, n.d.-g). Developers can define their queries

using annotations, which by nature are completely static and cannot be

modified in runtime. Any variables needed in the query are thus forced to be

parameterized.

 The developer can interact with the JdbcTemplate class, which

simplifies the use of JDBC to avoid common errors. It executes core JDBC

workflow, while the application code is responsible for providing the SQL query

and extracting the results. The following example illustrates how we can

update the user details of a given user using the JdbcTemplate.

String updateQuery = "UPDATE users SET name = ? WHERE id =

?";

jdbcTemplate.update(updateQuery, user.getName(),

user.getId());

40

Listing 10. Example of the usage of Spring’s jdbcTemplate.

 When diving deeper into Spring’s internals, we can see that the update

method uses prepared statements to set up the query execution.

 Evaluation. Reviewing against the evaluation criteria defined in section

1.2, we can conclude that Spring provides helpers for mitigating SQL injection

vulnerabilities. We can deduce that Spring provides the developer with good

tools to protect against SQL injection vulnerabilities, given that the tools are

used correctly. As with any tool, they can leave us vulnerable if used

incorrectly. From a technical perspective, nothing is stopping a developer from

implementing the above method in an insecure manner and introducing a SQL

injection vulnerability.

String updateQuery = "UPDATE users SET name = '" +

user.getName() + "' WHERE id = " + user.getId();

jdbcTemplate.update(updateQuery);

Listing 11: An example of the same functionality used incorrectly introducing a

vulnerability.

5.3.2 Cross-site scripting - XSS

Web applications and pages often leverage user-generated content or input to

make the application more tailored for the individual user. A trivial example of

this is to greet a user by their name when they log into a website. However,

from a browser’s perspective, the browser does not know what content is user-

provided and what is part of the application - the browser simply renders all of

the HTML content it receives. Thus, what happens if the user-provided content

is not so innocent after all?

Figure 9. Google greets its logged-in users by the user’s first name. The
name is user-provided data, and thus, could contain malicious content.

41

 Cross-site scripting (XSS) attacks are a type of injection attack where

an attacker is able to inject malicious code into a vulnerable website. The

attack occurs when the malicious code is executed on another end user’s

browser (OWASP, n.d.-l). The term cross-site scripting was coined in 2000

when CERT released its advisory detailing the vulnerability (CERT, 2000).

 One of the most known XSS attacks occurred in 2005, a case so

famous that it received a name of its own: the Samy Worm. A teen named

Samy Kamkar was using a then-popular social networking site called

MySpace. MySpace contained a feature allowing its users to customize their

user profile pages. Samy noticed that the customization feature allowed him

to use HTML and custom JavaScript. He worked on a script that would

automatically add him as a friend by anyone visiting his profile page. Samy

quickly noticed this was inefficient, as few were visiting his profile page. He

then modified his script to copy itself on the visitor’s profile page, becoming a

self-propagating worm. The script spread like wildfire, and Samy received

more than a million friend requests within the first 24 hours. This incident

forced MySpace to shut down its site for them to understand what was

happening and purge the site of the worm (Franceschi-Bicchierai, 2015).

 A cross-site scripting vulnerability also played a role in the US

presidential election campaigns in 2008. During the Pennsylvania Democratic

primary election in April 2008, a hacker found an XSS vulnerability in Barack

Obama’s election campaign website. By crafting a simple redirect script, the

attacker could forward any user who visited the community blog section of

Obama’s site to Hillary Clinton’s website instead (Dignan, 2008).

Another example is from March 2010, when the Conservatives in the

United Kingdom launched a website containing a feature that directly embed

Tweets with the hashtag #cashgordon on their website. The site did, however,

not validate the content of the Twitter posts before embedding them. The

failure to validate data from an untrusted source made it possible to launch a

cross-site scripting attack simply by including the attack code in a Twitter post.

This vulnerability was used, among others, to redirect unsuspecting visitors to

other pages on the Internet, such as the Labour Party's website and

pornographic pages (Beckford, 2010).

 The above examples might feel relatively harmless as to the

consequences of an XSS vulnerability, but in reality, the impact might be much

more severe. Suppose no validation on user input is made and no content

filtering is applied. In that case, it is up to the attacker's imagination in which

ways they could leverage the vulnerability. After all, the attack could be any

JavaScript the attacker wants to execute on the victim’s browser. The script

could be, for example, a keylogger to steal user credentials, stealing user

cookies for account hijacking or scanning the victim’s intranet for sensitive

information.

42

 Cross-site scripting attacks can generally be divided into three

categories: stored attacks, reflected attacks, and DOM-based attacks, based

on how they are performed. The three categories are discussed in more detail

below.

5.3.2.1 Stored attacks

Stored attacks are attacks where a malicious user manages to get the

malicious code persisted onto the target server (OWASP, n.d.-l). The attack is

possible in cases where the applications allow users to enter data, which will

then be stored in the server's database. Examples of such applications could

be message forums, comment fields, or, for example, in the attack against

Barack Obama's site, a blog engine open to community members. Consider a

social networking website that allows users to post their own content. An

attacker could post a message containing the malicious code. The code would

be persisted on the server and executed by any subsequent users to whom

the malicious user’s post is shown.

5.3.2.2 Reflected attacks

Reflected cross-site scripting attacks are performed in a way where the

malicious code is sent to the server and rendered on the page without the

malicious code being stored on the target server (OWASP, n.d.-l). An example

of a typical reflected attack is where the malicious code is transferred along

with the HTTP request in the form of a URL parameter. Consider a search

engine that takes the search keywords as a URL parameter. A valid request

searching for sites with information about cross-site scripting could look like

this:

http://search.engine/?keywords=xss

 The results page would contain the text "Sites found with the keywords

'xss':" along with a list of links to sites matching the keywords. Consider what

would happen if the keywords were changed as follows.

http://search.engine/?keywords=<script>alert('xss');</script>

 With the URL above, an attacker would try to inject a piece of JavaScript

into the page. If the site includes the keywords unvalidated on the results page,

the script tag and its content would be embedded into the page source code

and executed as a part of the page. A script that alerts some text might irritate

the user, but it does not harm the user from a security perspective. The same

43

vulnerability can be used to steal the user's cookies from the vulnerable site.

For example, the attacker could use the cookie to launch an automated attack

to hijack the victim's user account on the target. The following URL would

create an image tag pointing to a domain controlled by the attacker. As a URL

parameter to the image, we add the user’s cookie contents, thus allowing the

attacker to steal the cookies (Stuttard & Pinto, 2011, p. 610)

http://search.engine/?keywords=<script>var+i=new0Image;+i.src=

”http://evil.site/”%2bdocument.cookie;</script>

 This attack is more difficult to execute because the exploiting script is not

stored on the target server but is transferred as a part of the URL. Only users

who open the URL containing the malicious script can become attack victims.

To make people open the malicious URL will require some social engineering.

The attacker could, for example, try to disguise the URL so that it is not

immediately recognized as malicious by the potential victim. For example, the

attacker could disguise the URL by using a URL shortener service.

5.3.2.3 DOM-based attacks

The third type of XSS vulnerability was described in 2005 by security

researcher Amit Klein. The vulnerability is quite similar to a reflected XSS

vulnerability. However, the mechanism is slightly different. Stored and

reflected attacks rely on malicious code being sent to the server, which then

embeds the code along with the rest of the page content in the HTTP

response. DOM-based attacks do not require the malicious code to be sent to

the server where countermeasures usually are applied. Instead, it relies on the

vulnerable site to have client-side code (JavaScript) that uses data from the

document object (or other objects the attacker can influence) in an insecure

manner (Klein, 2005).

Klein demonstrated the vulnerability through a simple web page that

shows the visitor’s name on the page.

<HTML>

<TITLE>Welcome!</TITLE>

Welcome,

<SCRIPT>

var pos=document.URL.indexOf("name=")+5;

document.write(document.URL.substring(pos,document.URL.length));

</SCRIPT>

</HTML>

44

Listing 12. Example of a web page that reads a URL parameter using

JavaScript and shows the name on the page.

 The page’s code is static, in the sense that the generated code returned at

the end of the HTTP request is always the same. However, the page contains

a small JavaScript portion that reads the URL parameters and parses the user-

entered name. The name is then dynamically added to the page to show the

individualized welcome message. Typically, this page could be called with the

following URL:

http://some.site/vulnerable_page.html?name=Joe

 The page would print out the text "Welcome, Joe". By changing the name

parameter, the script can be used for printing out arbitrary text, for example,

JavaScript. The following example would show the user’s cookie contents in

an alert box.

http://some.site/vulnerable_page.html?name=

<script>alert(document.cookie);</script>

 The difference between a DOM-based attack and a reflected attack lies

in whether the untrusted user-supplied data is incorporated into an HTTP

response generated by the server or if it is processed on the client side,

subsequently updating the Document Object Model (DOM) with an unsafe

JavaScript call. OWASP has also used this differentiation to simplify the XSS

vulnerability types into two categories: Server XSS and Client XSS (OWASP,

n.d.-m).

5.3.2.4 Countermeasures

Countering cross-site scripting vulnerabilities can be challenging, as there is

no specific single action the developer should take, as the appropriate

countermeasures are context-dependent. User data might be added into

several contexts, not just as text to the page. For example, the developers

might want to use user-supplied data to be inserted into the CSS code to allow

end users to modify the look and feel for some parts of the application, or when

providing a URL to another site, that URL is used in the <a> tag’s href

attribute to make the URL a clickable link.

 To avoid XSS vulnerabilities, the developers have to make sure that

user-provided data cannot escape their intended context or allow the

execution of unintended code. OWASP provides developers with a

cheatsheet on how to prevent XSS vulnerabilities. On a high level, these

45

mechanisms can be summarized into the following three actions (OWASP,

n.d.-n).

 Encoding. User-provided data should be encoded in the appropriate

context-dependent way before using the data. For example, for HTML contexts

(such as <div>$userContent</div>), HTML entity encoding should be

performed on the user-provided data. HTML entity encoding transforms

characters such as < or quotation marks to < and ", respectively

(OWASP, n.d.-n).

 HTML Sanitization. In some use cases, the developers need to allow

the end user to enter custom HTML code. For example, a content

management system (CSM) might want to allow the administrator to change

the structure of the page by using a What You See Is What You Get

(WYSIWYG) editor. Applying HTML entity encoding on the resulting HTML

would prevent XSS vulnerabilities but also break the functionality. In these

situations, the correct approach is to sanitize the HTML to remove any unsafe

content. For this, the developer should use an existing library, such as

DOMPurify, and not try to implement the sanitization themselves (OWASP,

n.d.-n).

 Safe Sinks. Where possible, the developers should prefer using so-

called safe sinks. These are variables that the browser will interpret as text

and not as code, effectively leaving the encoding up to the browser. An

example would be using the elem.textContent or elem.value instead of

elem.innerHTML (OWASP, n.d.-n).

5.3.2.5 Framework level mitigation

According to Vaadin’s documentation, the framework has built-in protection

against cross-site scripting vulnerabilities (Vaadin, n.d.-e). The framework

relies on the safe sinks approach, using browser APIs, such as innerText

instead of innerHTML) that interpret the content as text instead of HTML. To

allow some valid use cases for using custom HTML and JavaScript, Vaadin

provides APIs allowing HTML but also warns the developers to sanitize the

content before passing it to the insecure methods.

Div div = new Div();

div.getElement().setProperty("innerHTML", "This IS

bolded.");

div.add(new Html("This IS bolded."));

new Checkbox().setLabelAsHtml("This is bolded too.");

Listing 13. Example of insecure methods that allow raw HTML content. The

developers using these APIs are responsible for sanitizing the content before

using the methods.

46

Evaluation. Reviewing against the evaluation criteria defined in section

1.2, we can conclude that Vaadin provides an out-of-the-box mitigation for

XSS vulnerabilities when the developers do not explicitly go outside the

defined boundaries.

5.4 A04:2021-Insecure Design

Insecure design refers to vulnerabilities stemming from design decisions that

have not taken security into account. This category separates between

insecure design and insecure implementation. A flaw in the design cannot be

remedied by any implementation that adheres to the design, as the

vulnerability might lie, for example, in the business logic and not in the

implementation code (OWASP, 2021f).

An example of an insecure design is how users recover accounts when

they forget their passwords. A commonly seen variant is to ask users for known

secrets during the account registration phase, such as, “What was the name

of your first pet?”, and use these questions to validate identity when recovering

an account in case of a forgotten password. This approach is inherently

insecure, as the answers to these “secret” questions might be known to people

close to the victim or might be exposed through open-source intelligence or

social engineering. Hence, NIST 800-63b prohibits using a memorized secret

to obtain a new list of look-up secrets (Grassi et al., 2017, p. 47).

To counter security-related design flaws, OWASP recommends, among

others, to collaborate with application security experts to implement a robust

and secure development lifecycle, and to help evaluate and design security

and privacy-related controls. It is recommended to use threat modeling for

critical authentication, access control, business logic, and key flows to identify

potential security problems already in the design (OWASP, 2021f).

5.4.1 Framework level mitigation

While this category is extremely broad in its content, highly context-dependent,

and implementation agnostic and, thus, mostly out-of-scope for this thesis, it

is worth noting that the used frameworks' architecture does provide protection

against some limited aspects of this category. Applications built with Vaadin

are thin-client applications, meaning the code executed in the client (browser)

is extremely limited and does not contain any application or business logic. It

means some security controls, such as input validation, are automatically

implemented on the server side.

The example application built for this thesis has a non-functional

requirement stating that data integrity needs to be ensured. The purpose was

47

to have means in place that ensured that an attacker could not modify the

course evaluations without leaving a trace. The implementation for this is a

design decision, and neither Vaadin nor Spring provides any functionality to

help the developers ensure the data's integrity. Proper data integrity is a

combination of implementing proper access control, implementing audit logs

that, for example, use cryptographic signing of the changes, and generally

adopting security best practices.

Evaluation. Reviewing against the evaluation criteria defined in section

1.2, we can conclude that this category is Not Applicable.

5.5 A05:2021-Security Misconfiguration

The applications themselves and the frameworks used for creating the

application are becoming increasingly configurable. Configurability serves

multiple purposes, providing flexibility for the vendors and developers using

the tools. For example, feature flags (the ability to enable or disable certain

features using configurations) allow the developers to cover a larger amount

of varying use cases without having to release different software versions.

However, a framework vendor cannot know which features a user wants to

use; hence, by default, all features might be enabled, or maybe the framework

vendor has made an educated guess on which features are typically used and

enable those by default while lesser used functionality is disabled by default.

The discussion on whether or not to enable a feature by default boils

down to usability versus security. Having a feature enabled by default makes

it work out-of-the-box, making it easy for the user to start using the feature.

This does come with the caveat that most users do not use all features,

meaning there might be unused features that stay enabled even in production,

allowing attackers a larger attack surface.

 Another perspective is that the same software has different

configuration needs depending on the development lifecycle. While developing

an application, it is important for the developers to get as much information as

possible about what is happening in the application, and hence, it is essential

to have maximum transparency into the application’s inner workings - what

errors are occurring, stack traces of the errors or what software components

are being used. While this is beneficial for the developers, a production version

should not have the same level of transparency, as all the same information

would disclose details to a potential threat actor, making it easier to perform a

successful attack against the application.

 The fifth category in OWASP’s top ten list is about how the application

and the server it is running on are configured - is the whole stack configured

so that no unnecessary features are enabled, default passwords have been

48

changed, and no unnecessary details about the inner workings leak out

(OWASP, 2021e).

5.5.1 Analysis of frameworks’ default configuration

In the scope of this thesis, server-level configuration will be considered out-of-

scope, and the focus will be purely on the frameworks used. Testing the

application for misconfiguration focuses on improper input validation, which

might cause stack traces to leak to the client (OWASP, n.d.-g), making sure

debug modes are disabled and HTTP headers are handled appropriately

(OWASP, 2021d, 62-63).

 The default build of a Vaadin application is meant for development

purposes and is in so-called debug mode. This mode is meant to provide the

developers with as much information as possible using transparency. For

example, it reveals information about the different software versions used.

Figure 10. The default build of a Vaadin application is meant for development
time, enabling an information window showing the application's internal
details.

 An attempt to break the input validation, send improper requests, or

cause a runtime exception to occur on the server does not reveal any stack

traces to the client side, even in development mode. Accessing unauthorized

49

files or folders on the server is prevented even in development mode, but it

does reveal all accessible paths in the application.

Figure 11: The development time build reveals all available paths in the
application, information that should not be disclosed in a production build.

 Running Vaadin in a production mode is done by running a build using

a production profile (Vaadin, n.d.-c). When testing the application’s behavior

with a production build, none of the sensitive information was disclosed as it

was in a development mode build.

 While most security headers were present, a Content Security Header

policy was seen to be missing. However, this is typically configured in the

application server and not in the application (although possible in the

application as well).

 As Vaadin is a programming framework, the framework package does

not contain any example applications, administrative pages, or default

passwords that should be disabled or removed.

Evaluation. Reviewing against the evaluation criteria defined in section

1.2, we can conclude that this category is mitigated by the framework through

configurations.

50

5.6 A06:2021-Vulnerable and Outdated Components

When creating software, we rarely build it without using any third-party

dependencies. It would be quite impractical and time-consuming to write

software without using any frameworks or libraries, and for any application with

even a minimal amount of complexity, it would be next to impossible. Using

third-party libraries does come with a caveat - they might contain security

vulnerabilities we may not be aware of. A vulnerability in a third-party library

might thus expose one’s application to the same vulnerability.

 An example of such an incident is the vulnerability known as log4shell.

It was a vulnerability publicly reported on December 10th, 2021, in the highly

popular logging framework log4j (CVE, 2021). The vulnerability allowed an

attacker to gain remote code execution (RCE) by injecting a prepared string

into the logging. A remote code execution vulnerability allows an attacker to

run arbitrary commands on the victim machine, and thus, NIST categorized

this vulnerability as critical, the highest possible severity level (NIST, 2021).

On December 11th, 2021, Microsoft’s Threat Intelligence team reported that

they had observed multiple tracked nation-state activity groups originating

from China, Iran, North Korea, and Turkey using the vulnerability (Microsoft,

2021). Just days later, it was reported that the vulnerability was being used to

infect machines by cryptominers and botnets (Kimayong, 2021).

 The sixth category in OWASP’s top ten list is about using third-party

dependencies without maintaining the dependencies and updating them as

vulnerabilities become known, thus exposing one’s application to the

vulnerability (OWASP, 2021g). This vulnerability category is not directly

related to the frameworks used or their features, but rather, how an application

is maintained and how dependencies are taken into account in the secure

development lifecycle. For example, OWASP provides a free, open-source

Software Composition Analysis (SCA) tool for scanning a project’s

dependencies and checking the used versions against known vulnerabilities

(OWASP, n.d.-h). The tool can be easily integrated into the project’s build

process by adding a maven dependency and enabling the dependency

checker plugin. The plugin can be configured to fail the build if a vulnerability

of the given criticality level is found in one or more of the dependencies used

in the project.

 Below is a summary of a software composition analysis scan to the

example project, with the default dependencies created by Vaadin Start.

fi.abo.kim.mycourses:mycourses:1.0-SNAPSHOT

Scan Information (show less):

● dependency-check version: 8.3.1
● Report Generated On: Sat, 29 Jul 2023 14:00:03 +0300

51

● Dependencies Scanned: 2051 (777 unique)
● Vulnerable Dependencies: 26
● Vulnerabilities Found: 59
● Vulnerabilities Suppressed: 0
● NVD CVE Checked: 2023-07-29T13:59:29
● NVD CVE Modified: 2023-07-29T13:00:01
● VersionCheckOn: 2023-07-29T13:59:36
● kev.checked: 1690628378

As it can be noted, there is a high number of dependencies for a relatively

trivial application, and those dependencies contain a non-trivial number of

vulnerabilities, some of which are considered critical-level vulnerabilities (see

Appendix A). Even though the dependencies contain critical-level

vulnerabilities, it is not as straightforward to conclude that the example

application also contains critical vulnerabilities that can be leveraged. Some of

the vulnerabilities listed are only exploitable in specific deployment

environments with specific configurations, which would not be applicable to

the example application. This means there can be a high level of false

positives, and any conclusions about the vulnerabilities’ exploitability would

need to be made only after a careful analysis.

Evaluation. Reviewing against the evaluation criteria defined in section

1.2, we can conclude that this category is Not Applicable as dependency

management is more related to the development pipeline than the frameworks

used.

5.7 A07:2021-Identification and Authentication Failures

Authentication often has a central role in an application. It identifies the user,

based on which the application determines what data and features the user

can access. The ability to gain unauthorized access critically impacts the

system's reliability. The Identification and Authentication Failures category

highlights vulnerabilities and design flaws related to user authentication. These

cover technical flaws, for example, related to session management, allowing

session fixation attacks, stealing of session identifiers, or mismanagement of

the session lifecycle. Design flaws might include missing protection against

brute force attacks, password spraying or credential stuffing, allowing weak

passwords, or lacking multi-factor authentication (OWASP, 2021h).

5.7.1 Framework level mitigation

52

Vaadin’s recommended way of handling authentication is through Spring

Security, for which Vaadin provides an integration. Spring security provides a

number of different ways to authenticate a user, ranging from a traditional

username/password combination to OAuth2, SAML 2.0, CAS, JAAS, and

X509 certificate-based authentication (Spring, n.d.-e).

 ASVS chapters 2 and 3 dictate several requirements for both

authentication and session management. The responsibility of implementing

these requirements depends on the chosen authentication method. For

example, suppose the application uses OAuth2 to implement single sign-on

through social sites such as Google, Twitter, Facebook, or GitHub. In that

case, requirements related to password management and recovery are the

responsibility of those third-party sites, not the application. Let us first explore

requirements related to session management, which are agnostic to the

authentication method used.

5.7.1.1 Session management

Managing the HTTP session is out-of-scope in this thesis, as the J2EE

framework manages it. Thus, vulnerabilities such as session fixation or

ensuring that the generation of session tokens is cryptographically sound

would not be something that is in control of the developers.

Vaadin Flow applications store their application state as a session

variable on the server side. Ensuring the session’s lifecycle and cookies are

managed correctly is essential for these applications. ASVS defines the

appropriate requirements in sections 3.1-3.4. Reflecting against ASVS L1

requirements, we need to verify that a new session ID is generated upon the

user’s authentication and at logout and to ensure that using the browser’s back

button does not re-authenticate the user. Reviewing the HTTP responses

shows that the previous sessions are invalidated, and new session IDs are

generated upon both login and logout actions.

ASVS also recommends that session cookies use the secure attribute,

ensuring that the cookie is transmitted only over HTTPS and that the

sameSite attribute property is set to limit exposure to cross-site request

forgery attacks. With default settings, the session cookies look as follows.

Set-Cookie: JSESSIONID=219A218A83FB6E3286314A72E645DC6A;

Path=/; HttpOnly

As seen, neither the secure nor the sameSite attributes are defined

by default. However, these can easily be configured in Spring’s settings using

the following properties:

53

server.servlet.session.cookie.same-site=Strict

server.servlet.session.cookie.secure=true

 We can now see that the cookie is limited to HTTPS only and will only

be submitted to the server when the request originates from the same domain.

Set-Cookie: JSESSIONID=1DD0D02B5A4C86BC32BBEAF25890B14D;

Path=/; Secure; HttpOnly; SameSite=Strict

Evaluation. Reviewing against the evaluation criteria defined in section

1.2, we can conclude that session management vulnerabilities are partially

mitigated by the framework through configurations (cookie settings) and

partially helpers are provided by the framework (session invalidation on

login/logout when the helpers are being used).

5.7.1.2 Authentication when not using external authentication providers

If we do not use external authentication providers but rather decide to

implement the authentication, user and password management ourselves,

then ASVS sets a number of additional requirements. Vaadin Flow and Spring

Security provide means for authenticating a user against a

username/password combination but do not provide any built-in functionality

for, for example, managing users, password recovery, multi-factor

authentication, or protection against brute force attacks.

 Vaadin Flow does provide some means to help fulfill some of ASVS’s

requirements, such as requirement 2.1.12 “Verify that the user can choose to

either temporarily view the entire masked password, or temporarily view the

last typed character of the password on platforms that do not have this as

built-in functionality.”. This requirement is built into Vaadin’s PasswordField

component.

Figure 12. Vaadin provides a PasswordField component that allows the
unmasking of a password, thus filling the ASVS 2.1.12 requirement.

Evaluation. Reviewing against the evaluation criteria defined in section

1.2, we can conclude that no mitigation support is provided when it comes to

54

the secure implementation of authentication without using external

authentication providers. Even though the PasswordField component does

fulfill one of the ASVS criteria, it is not enough to conclude that, on a general

level, the framework would provide helpers for managing this vulnerability

category.

5.8 A08:2021-Software and Data Integrity Failures

This category deals with integrity. In other words, the software we use and the

data we receive and manage are what we expect them to be and are not

maliciously modified in any way.

5.8.1 Software integrity

Let us first discuss the integrity of software. Earlier, we discussed the risks

related to using outdated third-party components containing known

vulnerabilities, but that is not the only risk related to using third-party libraries.

Suppose we do not manage our build pipeline and our dependencies securely.

In that case, it can be possible for an attacker to intentionally introduce a

vulnerability or a backdoor into our application through third-party libraries.

Such a vulnerability might occur if an application loads third-party

dependencies from a source outside the intended control sphere. Let us

consider application A, which loads a third-party JavaScript library hosted on

another server, for example, on a Content Delivery Network server (CDN). If

an attacker gains access to the CDN server, they could upload a modified

version of the JavaScript library application A uses, containing malicious code,

such as a JavaScript-based key-logger. If application A does not sufficiently

ensure the authenticity of the loaded code, it becomes vulnerable itself. These

types of attacks are called supply chain attacks. Sonatype published their

research results in their annual State of the Software Supply Chain report,

where they estimated that supply chain attacks in open-source software have

grown by an average of 742% annually in the past three years (Sonatype,

2023).

 The mitigation strategies for supply chain attacks revolve around

ensuring that non-vetted code does not end up in the application, whether

through a dependency or not. In practice, this means that one should never

use untrusted sources for fetching dependencies, use cryptographically

secure hashes to verify the authenticity of the content downloaded and

implement a secure CI/CD pipeline, including code review practices to make

sure unintended code is not injected in the repository (OWASP, 2021i). For

example, suppose an application uses a CDN server to serve its resources.

55

For external resources, it is recommended to use subresource integrity checks

to make sure that the downloaded files have not been modified. The

verification can be done by calculating a hash of a vetted resource and then

including the hash in the script tag’s integrity attribute (Mozilla, n.d.-b). The

browser will verify that the hash of the file has not changed and thus ensure

that the library has stayed unmodified from when it was vetted.

<script src="https://example.com/example-framework.js"

integrity="sha384-

oqVuAfXRKap7fdgcCY5uykM6+R9GqQ8K/uxy9rx7HNQlGYl1kPzQho1wx4Jw

Y8wC" crossorigin="anonymous"></script>

Listing 14. An example of the integrity attribute, which helps ensure that

libraries hosted on a third-party server have not been modified.

5.8.1.1 Framework level mitigation

Supply chain attacks are mostly out of scope for this thesis, as they are more

related to build pipelines and dependency management. Vaadin Start provides

an application stub using Maven for dependency management. Default

dependencies come either from Maven Central or Vaadin’s repository for add-

ons.

 Reviewing run-time dependencies, we can see that a Vaadin Flow

application provides all JavaScript resources locally and does not rely on

Content Delivery Network servers; thus, subresource integrity checks are not

used.

Evaluation. Reviewing against the evaluation criteria defined in section

1.2, we can conclude that the category is Not Applicable.

5.8.2 Data integrity

The second part of this category is the integrity of data. An application should

never trust data from an untrusted source to be valid and non-malicious. For

web applications, this contains but is not limited to, any data originating from

the browser.

 A trivial example of this vulnerability is trusting a cookie’s values in

security-critical functions without ensuring they have not been modified (for

example, by using a cryptographic hash to sign the values) (CWE, 2006c). For

example, this could be storing the user details in a cookie and relying on those

values for authentication or authorization. Simply modifying the cookie value

could thus allow the attacker to bypass the authentication and authorization

56

controls easily (see section 5.1 Broken Access Control and 5.4 Insecure

Design).

 Another more traitorous vulnerability is the deserialization of untrusted

data. In some situations, it is convenient to pass objects around by serializing

the object at the sender's end and deserializing it by the receiving party. Java

allows its objects to be serialized, for example, into a byte array, which can be

encoded into a string. This string can be used as any other string; it can be

stored in a database or passed to the browser. When we want to use the object

again, the string can be decoded back into a byte array, which can then be

deserialized into an ordinary Java object. Serialization is commonly used for

caching, persistence, or for clustering.

The vulnerability comes into play if there is a possibility that a malicious

user could modify the serialized object, and the server then deserializes the

object without verifying its contents first. In the worst case, this would allow an

attacker to execute arbitrary code on the server, leading to a so-called Remote

Code Execution vulnerability, which is considered the most critical type of

vulnerability. The popular continuous integration server, Jenkins, was found in

2015 to have a remote code execution vulnerability due to unsafe

deserialization. By crafting a specialized serialized Java object, an attacker

could execute any arbitrary code on the server (CVE, 2015).

5.8.2.1 Framework level mitigation

Vaadin’s thin-client architecture might make it less prone to data

integrity vulnerabilities. Vaadin stores the application’s state on the server

side, meaning unnecessary information is never sent to the client. For

example, for authentication and authorization, user information, such as the

logged-in user’s ID or roles, is not transmitted to the client. This type of

information is stored as a session variable, and the only cookie the browser

uses is the session ID.

Vaadin communicates between the server and the client using remote

procedure calls, which allows the browser to call on server-side methods and

pass arguments to those. However, Vaadin is using a whitelisting approach to

limit which methods can be called, and it limits the data types that can be used

as arguments in a method call. To publish a server-side method for the client

to use, it needs to be annotated using the @ClientCallable annotation and

accepts only a few basic data types as arguments (Vaadin, n.d.-d). No

complex data structures are passed between the client and the server, which

would need a serialization/deserialization scheme.

While Vaadin limits the data types to a few basic ones and validates

that the data it receives corresponds to these types, the framework cannot

control the design decisions a developer might make. For example, Vaadin

57

does not (and should not) limit what type of information a developer decides

to store in a browser cookie, which might expose the application to data

integrity vulnerabilities.

Evaluation. Reviewing against the evaluation criteria defined in section

1.2, we can conclude that data integrity failure protection is categorized as

helpers are provided by the framework. The argument for this categorization

is that Vaadin’s architecture does provide some protection. However, in the

end, it is the developer’s design decisions that impact what a framework can

and cannot manage on behalf of the developer.

5.9 A09:2021-Security Logging and Monitoring Failures

Logging is rarely the source of a vulnerability, but it plays a vital role in

detecting and investigating breaches. Properly designed logging and active

monitoring of application logs can help us stop breaches to the application as

they occur. On the other hand, the lack of appropriate and sufficient logging

makes it impossible to detect ongoing breaches or even to investigate them

afterward. Logs are the breadcrumbs the incident response teams use for

tracking down what has happened in the application and who might be

responsible for it.

 What exactly should or should not be logged is context-dependent. The

National Institute of Standards and Technology has released

recommendations on how to perform computer security log management

(Kent & Souppaya, 2006). On a high level, an application should log events

related to user accounts (such as both failed and successful login attempts,

password changes, or use of privileges), usage information (the number and

size of various transactions), and significant operational actions (such as

application failures or configuration changes). By actively monitoring the logs,

we are able to detect, for example, brute force attacks or significant data

transfers and perform countermeasures as they are happening (for example,

locking of accounts). An appropriate log message should contain relevant (but

not sensitive) information, such as which action was performed, which user did

the action, and from which IP address the action was performed.

 The log messages must be sufficiently encoded to avoid log forging and

log injection attacks. An example of this is the log4shell vulnerability discussed

in section 5.6.

 Security logging is not strictly a technical feature but rather a design

question, and hence, it cannot be “mitigated” on a framework level. That said,

for the security logs to be useful, they need to be monitored (which is out-of-

scope in this thesis), and for the monitoring to work, the logs need to be in a

format that is easily understood by the monitoring tools. Spring Boot uses

Apache Commons Logging for all internal logging, allowing developers to

58

choose the underlying log framework implementation. Spring Boot provides

default configurations for Java Util Logging, Log4J2, and Logback (Spring,

n.d.-f).

 Evaluation. Reviewing against the evaluation criteria defined in section

1.2, we can conclude that the category is Not Applicable.

5.10 A10:2021-Server-Side Request Forgery

Modern web applications often implement features that are convenient to the

end user. A commonly seen feature in social media applications is the

previewing of links. The end user provides the application with a link, the server

makes a request to the provided URL, interprets the response content,

condenses it into a format that can give a glimpse into the URL’s content, and

then provides the end users a preview of the content of the URL. This feature

is convenient for other users to have an idea of what content is behind a link

without having to visit the site.

Figure 12. Example sequence flow of an application showing a preview of a
user-provided URL.

59

Figure 13. The popular instant messaging application Slack provides a
preview of the content of links posted by users.

 Another typical use case is integrating an application into an external

system using webhooks. A webhook is simply a callback function to an

external API, which is called when specific conditions are met. An example of

this could be an instant messaging application that scans for specific

keywords. When a specific keyword, such as “#help” is noticed, the application

makes an API call to an external system, providing the system with messages

containing the keyword. The feature can be used, for example, to automate

the creation of support tickets when people request help in a chat. The

sequence flow is relatively similar to the first example, except the call is now

made to a pre-configured URL. The process might even be almost invisible to

the end user, who might only receive an email verification for creating a

support ticket.

Figure 14. An example of the flow for an application to notice a keyword in a
user message and use a webhook to create a support ticket in an external
system.

60

 As with many other vulnerabilities, the problems occur when user-

provided input is not properly validated, and a malicious user behaves in an

unexpected way. In its simplicity, a Server-Side Request Forgery (SSRF)

attack is when an application allows an attacker to cause server-side requests

to unintended locations (OWASP, 2021j).

There are multiple ways an attacker can leverage the vulnerability. A

typical way to exploit the vulnerability is to gain access to resources that

otherwise would be out of reach for the attacker. At its simplest, instead of

providing a web URL, an attacker could try to use a different protocol and

access local files, for example, file:///etc/passwd . Another example is

to access an internal server that is not accessible from the public internet. The

attack is performed by providing an IP-based URL pointing to an IP in the

internal network, such as https://192.168.0.68/admin (PortSwigger,

n.d.).

Figure 15. Example of how an SSRF vulnerability could be used to access
resources in the internal network outside of the DMZ.

5.10.1 Mitigation strategies

At first glance, mitigating server-side request forgeries might seem like a

relatively simple task of proper input validation to ensure that only external

resources are requested. Although proper input validation and enforcement of

61

specific ports and protocols make it more difficult to leverage the vulnerability,

it is not enough to mitigate the problem. Some techniques to circumvent SSRF

protections include obfuscation of URLs, registering a domain but registering

the DNS to point to, for example, 127.0.0.1, or using redirects (PortSwigger,

n.d.). Especially the two latter approaches cannot be detected as malicious

purely by programmatically examining the URL.

 An effective strategy for the mitigation of SSRF vulnerabilities requires

a combination of application and network-level strategies. Input validation and

firewall policies denying the application access to internal resources are

recommended (OWASP, n.d.-i).

Jabiyev et al. (2021, pp. 1629-1631) propose a generic solution using

a separate server isolated from the internal network with the sole purpose of

fetching external resources. As this helper server is isolated from the internal

network, any DNS pointers to internal servers or redirects would not be

effective. In front of the web application, the research group placed a reverse

proxy to detect all external URLs and modify them to point to the helper server.

Thus, when the application makes a request to a URL, it is directed to the

helper server, which performs the actual request to the external resource. This

way, the web application and the web server would never make requests to

other sources than the helper server, and thus all the internal resources would

be protected.

Figure 15.: Overall architecture of the defense solution proposed by Jabiyev
et al.

5.10.2 Framework level mitigation strategies

At the time of the writing of this thesis, neither Vaadin nor Spring Framework

had any functionality that, by default, performed requests that could be

vulnerable to server-side request forgery. Spring offers means for making

requests to external sources, but the framework is entirely agnostic to how

developers use that feature and for which purposes.

62

 There are many different valid use cases for making server-side

requests. However, it is extremely hard to generalize on a high level what

should and should not be allowed, as the needs might vary significantly

depending on the use case. Hence, it would be impractical for the Spring

framework to implement limitations that may or may not meet the developers'

needs. Thus, it is more up to the individual application developers to ensure

they implement the appropriate mitigations. If, for example, Vaadin decides to

implement a built-in “preview content” component into their framework, then it

would be meaningful for Vaadin to implement restrictions already into the

framework, if nothing else, at least with default configurations that limit the end

users possibilities to abuse the feature. However, as stated in the previous

section, a successful mitigation strategy needs both an application and

network-level mitigation.

Evaluation. Reviewing against the evaluation criteria defined in section

1.2, we can conclude that Server-Side Request Forgery is categorized as no

mitigation support is provided. A proper mitigation implementation requires

both application and network-level protection, and neither Vaadin nor Spring

provides the developers with any additional help for implementing such a

protection.

6 DISCUSSION AND CONCLUSIONS

This thesis has reviewed the security aspect of developing an application using

a modern Java development stack against vulnerabilities defined in OWASP’s

Top Ten list. We have explored the root causes for the vulnerabilities the

recommended mitigation strategies, and reviewed how Vaadin and Spring

frameworks either mitigate or help the developers to mitigate the vulnerabilities

when developing an application.

 As we can see from the OWASP Top Ten category descriptions, the

categories are not necessarily just one vulnerability with a specific technical

mitigation strategy. A category might be more conceptual and raise awareness

of security-oriented thinking (such as the “Secure Design” category) or be a

collection of multiple specific vulnerabilities, such as the “Broken Access

Control” category. The latter included broader concepts and specific

vulnerabilities such as indirect object references and cross-site request

forgeries.

 This thesis aimed to review the vulnerability categories and then map

how frameworks help developers mitigate the vulnerabilities. The mapping

was done against four different groups: Mitigated out-of-the-box by the

framework, Mitigated by the framework through configurations, Helpers are

provided by the framework, and No mitigation support is provided. The table

below summarizes the mapping done in this thesis.

63

M
itig

a
te

d
 o

u
t-o

f-th
e
-

b
o
x
 b

y
 th

e
 fra

m
e
w

o
rk

M
itig

a
te

d
 b

y
 th

e

fra
m

e
w

o
rk

 th
ro

u
g

h

c
o
n
fig

u
ra

tio
n
s

H
e
lp

e
rs

 a
re

 p
ro

v
id

e
d

b
y
 th

e
 fra

m
e
w

o
rk

N
o
 m

itig
a
tio

n
 s

u
p
p

o
rt

is
 p

ro
v
id

e
d

A01:2021-Broken Access
Control

•

Insecure Direct Object
References •

Cross-Site Request
Forgery (CSRF) •

A02:2021-Cryptographic
Failures

•

A03:2021-Injection

SQL injections
•

Cross-site scripting - XSS

•

A04:2021-Insecure Design Not Applicable

A05:2021-Security
Misconfiguration

•

A06:2021-Vulnerable and
Outdated Components

Not Applicable

A07:2021-Identification and
Authentication Failures

Session management
• •

Authentication when not
using external
authentication providers

•

A08:2021-Software and Data

64

M
itig

a
te

d
 o

u
t-o

f-th
e
-

b
o
x
 b

y
 th

e
 fra

m
e
w

o
rk

M
itig

a
te

d
 b

y
 th

e

fra
m

e
w

o
rk

 th
ro

u
g

h

c
o
n
fig

u
ra

tio
n
s

H
e
lp

e
rs

 a
re

 p
ro

v
id

e
d

b
y
 th

e
 fra

m
e
w

o
rk

N
o
 m

itig
a
tio

n
 s

u
p
p

o
rt

is
 p

ro
v
id

e
d

Integrity Failures

Software integrity Not Applicable

Data integrity
•

A09:2021-Security Logging
and Monitoring Failures

Not Applicable

A10:2021-Server-Side
Request Forgery

•

Summary, count 3 2 4 3

The first thing we can notice from the summary table is that multiple rows are

marked as “Not Applicable”. It indicates that to create an application that is

also deployed securely, the development team needs to consider multiple

aspects beyond just the application itself. To achieve a high level of security,

one needs to consider how the server, the application server, the database,

and all other related infrastructure are configured. How is the network

segmented, in which way are user accounts isolated from unnecessary

privileges that might be abused, or how is the CI/CD pipeline secured?

 Out of the evaluated categories and explicit vulnerabilities, only three

were mitigated out-of-the-box by the framework (and even two were subpoints

to Broken Access Control). Could this number be increased? Surely, but not

without a cost. Let us discuss what practical consequences there would be if

a framework took a bigger responsibility for the application’s security.

 Default configurations. Vaadin has chosen the default build to be a

development build, not a production build. There is no technical limitation as

to why the default build could not be a production build, but rather, it is a

conscious decision on Vaadin’s part. Like many other tool vendors, the default

settings tend to be geared towards ease of use rather than production use.

The reason for this is to help developers get started with the tools with

minimum hassle, thus increasing the adoption of the tools. Changing the

default settings to suit production use would most likely mean that it is more

65

difficult to take the tool into use or to get started with it. In Vaadin’s case, it

would mean that the debug information would not be as easily available,

something quite vital for a beginner when getting started.

 Helpers are provided by the framework. Some vulnerabilities in this

category cannot be handled by the framework, no matter what. For example,

access control is a good example where the difference between “right” and

“wrong” solely depends on the application’s intent. A framework cannot know

which users should have access to a view and who should be denied access,

not without someone configuring this information. Then again, a framework

could mitigate SQL injections completely by not allowing the developer to write

their own queries. Instead, a framework could force users to use an ORM or

allow query building only through typesafe APIs. Some frameworks do exactly

this, but the drawback is that the developer loses flexibility and maybe even

the ability to define complex (but efficient) queries.

 No mitigation was provided. Similar to the category above, not

everything can be handled by a framework. For example, secure design, by

definition, is something that is context-dependent and needs to be designed to

fit the purpose. Some other more implementation-level categories, such as the

implementation of authentication and secure user management, are

something a framework could handle (emphasis on the words a framework).

Frameworks typically specialize in solving one problem (or at least, problems

within one domain). For example, Vaadin is built for creating modern web-

based user interfaces using Java. However, it is not an authentication

framework nor an ORM, even though both are functionalities typically used in

a Vaadin application. There are platforms that provide developers with

everything end-to-end. However, these are often no-code or low-code

platforms that reduce the flexibility in what and how things are built or even

where the application can be deployed.

 Even if a framework could mitigate most vulnerabilities, the

recommended approach is to apply the defense-in-depth principle, meaning

that we do not have a single point of failure in the application but apply security

on several layers. If one layer fails, there is another layer to catch the problem.

One approach that has gained popularity is using Web Application Firewalls

(WAF). A WAF is a piece of software that is deployed in front of the application

itself, and all network traffic goes through the WAF.

The WAF inspects user inputs, and in many instances, it can detect and stop

malicious payloads, such as XSS or SQL injection attack attempts. While Web

Application Firewalls can be, in many cases, effective, they might give

developers a false sense of security. An accidental misconfiguration routing

the traffic directly to the application, bypassing the WAF, will expose the

application to vulnerabilities. If the vulnerabilities are not mitigated at the root

cause, then a WAF is simply a bandaid that might one day accidentally come

off, and one might end up losing one’s data or worse.

66

There is no silver bullet to security. To build secure software, the

developers need to understand how the tools they are using work, what the

responsibility of the framework is, and what the developers’ responsibilities

are. Developers need to understand what kind of vulnerabilities their

applications might be exposed to and what risks those potential vulnerabilities

impose. Collaboration is needed with network, system, and security engineers;

good DevSecOps practices should be implemented, and proper risk tolerance

should be agreed upon with the business stakeholders. After all, the level of

security we implement is directly tied to the risks we are willing to take - a

hobby project will not need the same level of security as a healthcare system

responsible for literally vital functions.

67

7 REFERENCES

Barth, A., Jackson, C., & Mitchell, J. C. (2008). Robust Defenses for Cross-

Site Request Forgery. In Proceedings of the 2008, Conference on Computer

and Communications Security, 2008, Alexandria, Virginia, USA, October 27-

31, 2008 (pp. 75-88). Association for Computing Machinery.

https://doi.org/10.1145/1455770.1455782

Beckford, M. (2010, March 23). Conservatives embarrassed as hackers

exploit loophole on anti-union website. Telegraph.

https://www.telegraph.co.uk/technology/twitter/7499228/Conservatives-

embarrassed-as-hackers-exploit-loophole-on-anti-union-website.html

CERT. (2000, February 2). CA-2000-02: Malicious HTML Tags Embedded in

Client Web Requests. 2000 CERT Advisories. Retrieved December 7, 2023,

from https://insights.sei.cmu.edu/documents/507/2000_019_001_496188.pdf

Conklin, W. A., & Shoemaker, D. P. (2022). CSSLP Certification All-in-One

Exam Guide, Third Edition. McGraw-Hill Education.

CVE. (2015, November 25). CVE-2015-8103. Retrieved October 22, 2023,

from https://www.cve.org/CVERecord?id=CVE-2015-8103

CVE. (2021, December 10). CVE Record. CVE Record | CVE. Retrieved July

29, 2023, from https://www.cve.org/CVERecord?id=CVE-2021-44228

68

CWE. (2006, July 19). CWE - CWE-261: Weak Encoding for Password

(4.12). Common Weakness Enumeration. Retrieved July 24, 2023, from

https://cwe.mitre.org/data/definitions/261.html

CWE. (2006b, July 19). CWE - CWE-328: Use of Weak Hash (4.12).

Common Weakness Enumeration. Retrieved July 24, 2023, from

https://cwe.mitre.org/data/definitions/328.html

CWE. (2006c, July 19). CWE - CWE-565: Reliance on Cookies without

Validation and Integrity Checking (4.12). Common Weakness Enumeration.

Retrieved August 20, 2023, from

https://cwe.mitre.org/data/definitions/565.html

CWE. (2009, March 03). CWE - CWE-759: Use of a One-Way Hash without

a Salt (4.12). Common Weakness Enumeration. Retrieved July 24, 2023,

from https://cwe.mitre.org/data/definitions/759.html

CWE. (2009b, March 03). CWE - CWE-760: Use of a One-Way Hash with a

Predictable Salt (4.12). Common Weakness Enumeration. Retrieved July 24,

2023, from https://cwe.mitre.org/data/definitions/760.html

CWE. (n.d.-b). CWE - CWE-352: Cross-Site Request Forgery (CSRF) (4.11).

Common Weakness Enumeration. Retrieved January 30, 2023, from

https://cwe.mitre.org/data/definitions/352.html

69

CWE. (n.d.-a). CWE - CWE-639: Authorization Bypass Through User-

Controlled Key (4.11). Common Weakness Enumeration. Retrieved January

12, 2023, from https://cwe.mitre.org/data/definitions/639.html

Dignan, L. (2008, April 21). Obama site hacked; Redirected to Hillary Clinton.

ZDNET. https://www.zdnet.com/article/obama-site-hacked-redirected-to-

hillary-clinton/

Franceschi-Bicchierai, L. (2015, October 4). The MySpace Worm that

Changed the Internet Forever. VICE.

https://www.vice.com/en/article/wnjwb4/the-myspace-worm-that-changed-

the-internet-forever

Grassi, P. A., Fenton, J. L., Newton, E. M., Perlner, R. A., Regenscheid, A.

R., Burr, W. E., & Richer, J. P. (2017, June). Digital Identity Guidelines:

Authentication and Lifecycle Management.

https://doi.org/10.6028/NIST.SP.800-63b

Halfond, W. G.J., Viegas, J., & Orso, A. (2006). A Classification of SQL

Injection Attacks and Countermeasures. Georgia Institute of Technology.

Retrieved November 19, 2023, from

http://www.cc.gatech.edu/fac/Alex.Orso/papers/halfond.viegas.orso.ISSSE06

.pdf

70

Hardy, N. (1988, October). The Confused Deputy: (or why capabilities might

have been invented). ACM SIGOPS Operating Systems Review, 22(4), 36-

38. https://doi.org/10.1145/54289.871709

Horner, M., & Hyslip, T. (2017, June 30). SQL Injection: The Longest

Running Sequel in Programming History. Journal of Digital Forensics,

Security and Law, 12(2), 97-108. https://doi.org/10.15394/jdfsl.2017.1475

IETF. (1999, June). RFC 2616 HTTP/1.1. Hypertext Transfer Protocol --

HTTP/1.1. Retrieved May 6, 2023, from https://www.ietf.org/rfc/rfc2616.txt

Jabiyev, B., Mirzaei, O., Kharraz, A., & Kirda, E. (2021). Preventing Server-

Side Request Forgery Attacks. In Proceedings of the 36th Annual ACM

Symposium on Applied Computing (pp. 1626–1635). Association for

Computing Machinery. https://doi.org/10.1145/3412841.3442036

Kent, K., & Souppaya, M. (2006, September). Retrieved August 3, 2023,

from https://doi.org/10.6028/NIST.SP.800-92

Kimayong, P. (2021, December 17). Log4j Attack Payloads In The Wild |

Official Juniper Networks Blogs. Juniper Blogs. Retrieved July 29, 2023, from

https://blogs.juniper.net/en-us/security/in-the-wild-log4j-attack-payloads

Klein, A. (2005, July 4). [DOM Based Cross Site Scripting or XSS of the Third

Kind] Web Security Articles. Web Application Security Consortium. Retrieved

71

December 21, 2023, from

http://www.webappsec.org/projects/articles/071105.shtml

Likaj, X., Khodayari, S., & Pellegrino, G. (2021). Where We Stand (or Fall):

An Analysis of CSRF Defenses in Web. In Proceedings of 2021 24th

International Symposium on Research in Attacks, Intrusions and Defenses

(RAID 2021): October 6-8, 2021, Donostia-San Sebastián, Spain (pp. 370-

385). Association for Computing Machinery.

https://doi.org/10.1145/3471621.3471846

Microsoft. (2021, December 11). Guidance for preventing, detecting, and

hunting for exploitation of the Log4j 2 vulnerability. Microsoft. Retrieved July

29, 2023, from https://www.microsoft.com/en-

us/security/blog/2021/12/11/guidance-for-preventing-detecting-and-hunting-

for-cve-2021-44228-log4j-2-exploitation/

Mozilla. (n.d.). Origin - HTTP | MDN. MDN Web Docs. Retrieved July 11,

2023, from https://developer.mozilla.org/en-

US/docs/Web/HTTP/Headers/Origin

Mozilla. (n.d.-b). Subresource Integrity - Security on the web | MDN. MDN

Web Docs. Retrieved August 6, 2023, from https://developer.mozilla.org/en-

US/docs/Web/Security/Subresource_Integrity

72

MySQL. (n.d.). MySQL :: MySQL 8.0 Reference Manual :: 8.2.1.19 LIMIT

Query Optimization. MySQL :: Developer Zone. Retrieved November 20,

2023, from https://dev.mysql.com/doc/refman/8.0/en/limit-optimization.html

NIST. (2021, December 10). NVD - CVE-2021-44228. NVD. Retrieved July

29, 2023, from https://nvd.nist.gov/vuln/detail/CVE-2021-44228

OWASP. (2021c, September 21). A02 Cryptographic Failures - OWASP Top

10:2021. Retrieved July 24, 2023, from https://owasp.org/Top10/A02_2021-

Cryptographic_Failures/

OWASP. (2021b, September 24). A01 Broken Access Control - OWASP Top

10:2021. Retrieved November 19, 2022, from

https://owasp.org/Top10/A01_2021-Broken_Access_Control/

OWASP. (2021e, September 24). A05 Security Misconfiguration - OWASP

Top 10:2021. Retrieved July 26, 2023, from

https://owasp.org/Top10/A05_2021-Security_Misconfiguration/

OWASP. (2021f, September 24). A04 Insecure Design - OWASP Top

10:2021. Retrieved July 27, 2023, from https://owasp.org/Top10/A04_2021-

Insecure_Design/

73

OWASP. (2021g, September 24). A06 Vulnerable and Outdated

Components - OWASP Top 10:2021. Retrieved July 29, 2023, from

https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/

OWASP. (2021h, September 24). A07 Identification and Authentication

Failures - OWASP Top 10:2021. Retrieved July 30, 2023, from

https://owasp.org/Top10/A07_2021-

Identification_and_Authentication_Failures/

OWASP. (2021i, September 24). A08 Software and Data Integrity Failures -

OWASP Top 10:2021. Retrieved August 4, 2023, from

https://owasp.org/Top10/A08_2021-Software_and_Data_Integrity_Failures/

OWASP. (2021j, September 24). A10 Server Side Request Forgery (SSRF) -

OWASP Top 10:2021. Retrieved November 5, 2023, from

https://owasp.org/Top10/A10_2021-Server-

Side_Request_Forgery_%28SSRF%29/

OWASP. (2021a, September 24). The OWASP Top Ten. The OWASP Top

Ten. Retrieved November 19, 2022, from https://www.owasptopten.org/

OWASP. (2021d, October). The OWASP Application Security Verification

Standard (ASVS) 4.0.3. GitHub. Retrieved July 25, 2023, from

https://github.com/OWASP/ASVS/raw/v4.0.3/4.0/OWASP%20Application%2

0Security%20Verification%20Standard%204.0.3-en.pdf

74

OWASP. (n.d.-a). About the OWASP Foundation. OWASP Foundation.

Retrieved November 18, 2022, from https://owasp.org/about/

OWASP. (n.d.-d). Cross Site Request Forgery (CSRF). OWASP Foundation.

Retrieved February 9, 2023, from https://owasp.org/www-

community/attacks/csrf

OWASP. (n.d.-f). Cross-Site Request Forgery Prevention. OWASP Cheat

Sheet Series. Retrieved July 11, 2023, from

https://cheatsheetseries.owasp.org/cheatsheets/Cross-

Site_Request_Forgery_Prevention_Cheat_Sheet.html

OWASP. (n.d.-n). Cross Site Scripting Prevention. OWASP Cheat Sheet

Series. Retrieved December 22, 2023, from

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Preve

ntion_Cheat_Sheet.html

OWASP. (n.d.-l). Cross Site Scripting (XSS). OWASP Foundation. Retrieved

December 7, 2023, from https://owasp.org/www-community/attacks/xss/

OWASP. (n.d.-j). Database Security. OWASP Cheat Sheet Series. Retrieved

December 5, 2023, from

https://cheatsheetseries.owasp.org/cheatsheets/Database_Security_Cheat_

Sheet.html

75

OWASP. (n.d.-h). OWASP Dependency-Check. OWASP Foundation.

Retrieved July 29, 2023, from https://owasp.org/www-project-dependency-

check/

OWASP. (n.d.-b). OWASP Top Ten. OWASP Foundation. Retrieved

November 19, 2022, from https://owasp.org/www-project-top-ten/

OWASP. (n.d.-i). Server Side Request Forgery Prevention. OWASP Cheat

Sheet Series. Retrieved November 9, 2023, from

https://cheatsheetseries.owasp.org/cheatsheets/Server_Side_Request_Forg

ery_Prevention_Cheat_Sheet.html

OWASP. (n.d.-k). SQL Injection Prevention. OWASP Cheat Sheet Series.

Retrieved December 6, 2023, from

https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_

Cheat_Sheet.html

OWASP. (n.d.-m). Types of XSS. OWASP Foundation. Retrieved December

22, 2023, from https://owasp.org/www-community/Types_of_Cross-

Site_Scripting

OWASP. (n.d.-e). WSTG - Stable. WSTG - Stable | OWASP Foundation.

Retrieved July 4, 2023, from https://owasp.org/www-project-web-security-

testing-guide/stable/0-Foreword/README

76

OWASP. (n.d.-g). WSTG - Stable. WSTG - Stable | OWASP Foundation.

Retrieved July 26, 2023, from https://owasp.org/www-project-web-security-

testing-guide/stable/4-Web_Application_Security_Testing/08-

Testing_for_Error_Handling/01-Testing_For_Improper_Error_Handling

OWASP. (n.d.-c). WSTG - v4.2. WSTG - v4.2 | OWASP Foundation.

Retrieved November 29, 2022, from https://owasp.org/www-project-web-

security-testing-guide/v42/4-Web_Application_Security_Testing/05-

Authorization_Testing/02-Testing_for_Bypassing_Authorization_Schema

PortSwigger. (n.d.). What is SSRF (Server-side request forgery)? Tutorial &

Examples | Web Security Academy. PortSwigger. Retrieved November 5,

2023, from https://portswigger.net/web-security/ssrf

Schreiber, T. (2004, December). Session Riding - A Widespread Vulnerability

in Today's Web Applications. SecureNet GmbH. Retrieved July 11, 2023,

from https://crypto.stanford.edu/cs155old/cs155-

spring08/papers/Session_Riding.pdf

Shar, L. K., & Tan, H. B. K. (2013, March). Defeating SQL Injection.

Computer, 46(2013.13), 69-77. 10.1109/MC.2012.283

Sonatype. (2023). Sonatype | State of the Software Supply Chain - 8th

annual report. Retrieved August 4, 2023, from

https://www.sonatype.com/hubfs/8th%20Annual%20SSCR%20-%202023.pdf

77

Spring. (n.d.). Method Security :: Spring Security. Spring Boot. Retrieved

December 28, 2022, from https://docs.spring.io/spring-

security/reference/servlet/authorization/method-security.html

Spring. (n.d.-b). JdbcTemplate (Spring Framework 6.0.10 API). Retrieved

July 3, 2023, from https://docs.spring.io/spring-

framework/docs/current/javadoc-

api/org/springframework/jdbc/core/JdbcTemplate.html

Spring. (n.d.-f). Spring Boot | Logging. Retrieved August 3, 2023, from

https://docs.spring.io/spring-

boot/docs/3.1.2/reference/html/features.html#features.logging

Spring. (n.d.-e). Authentication. Spring. Retrieved July 30, 2023, from

https://docs.spring.io/spring-

security/reference/servlet/authentication/index.html#servlet-authentication

Spring. (n.d.-d). Spring Boot. Spring Boot. Retrieved July 4, 2023, from

https://spring.io/projects/spring-boot

Spring. (n.d.-g). Spring Data JDBC and R2DBC. Spring. Retrieved December

6, 2023, from https://docs.spring.io/spring-

data/relational/reference/index.html

78

Spring. (n.d.-c). Spring Framework. Spring Boot. Retrieved July 4, 2023, from

https://spring.io/projects/spring-framework

Stuttard, D., & Pinto, M. (2011). The Web Application Hacker's Handbook:

Finding and Exploiting Security Flaws. Wiley.

Symantec. (2008, January 22). Drive-by Pharming in the Wild. Retrieved

February 8, 2019, from http://www.symantec.com/connect/blogs/drive-

pharming-wild

Vaadin. (2023, March 28). Enabling Security. Vaadin. Retrieved May 1, 2023,

from https://vaadin.com/docs/latest/security/enabling-security

Vaadin. (2023b, April 19). Starting a Project | Get Started. Vaadin. Retrieved

July 25, 2023, from https://vaadin.com/docs/latest/guide/start

Vaadin. (n.d.-e). Common Vulnerabilities | Advanced Security Topics |

Security. Vaadin. Retrieved December 22, 2023, from

https://vaadin.com/docs/latest/security/advanced-topics/vulnerabilities

Vaadin. (n.d.-c). Production Build | Deploying to Production. Vaadin.

Retrieved July 26, 2023, from

https://vaadin.com/docs/latest/production/production-build

79

Vaadin. (n.d.-d). Remote Procedure Calls | Element API | Creating UI.

Vaadin. Retrieved October 22, 2023, from

https://vaadin.com/docs/latest/create-ui/element-api/client-server-rpc

Vaadin. (n.d.-b). Security Architecture | Advances Security Topics. Vaadin.

Retrieved July 3, 2023, from

https://vaadin.com/docs/latest/security/advanced-topics/architecture

Vaadin. (n.d.-a). Vaadin Flow | The Full-Stack Java Web Framework. Vaadin.

Retrieved July 3, 2023, from https://vaadin.com/flow

Zetter, K. (2010, March 26). Hacker Sentenced to 20 Years for Breach of

Credit Card Processor. WIRED. https://www.wired.com/2010/03/heartland-

sentencing/

80

8 SVENSKT SAMMANDRAG

En evaluering om hur webbramverk kan hjälpa utvecklare att bygga mer

säkra webbapplikationer

Allt fler applikationer utvecklas i dagens läge för webben. Även sådana

applikationer som traditionellt har betraktats som desktop-programvara har

omvandlats till webbapplikationer. Webbapplikationer används för många

aspekter av vårt dagliga liv, vi betalar fakturor på nätbanken, beställer mat från

butiken eller diskuterar med läkaren över en chat. Även om dessa

applikationer är gjorda för att underlätta våra liv, har de också en mörk sida:

de har blivit lukrativa mål för hackare.

 Open Web Application Security Project (OWASP) är världens största

icke-vinstdrivande organisation som jobbar med it-säkerhet av

webbapplikationer. Deras kanske mest kända projekt är OWASP Top Ten,

som sammansätter till ett dokument vilka sårbarheter som anses vara de tio

mest kritiska kategorierna av sårbarheter som finns i webbapplikationer. Två

andra välkända projekt är Web Security Testing Guide (WSTG) och

Application Security Verification Standard (ASVS). WSTG är ett dokument

som beskriver hur man skall säkerhetstesta en webbapplikation, medan ASVS

beskriver vad man skall testa.

Avsiktet med detta diplomarbete är att utvärdera på vilka sätt

webbramverk kan hjälpa utvecklare att bygga mer säkra webbapplikationer.

För att evaluera de valda ramverken används en kursregistreringsapplikation

vars funktionella och ickefunktionella krav från ett säkerhetsperspektiv

motsvarar en typisk modern webbapplikation. Applikationen säkerhetstestas

för de sårbarheter enumererat i OWASP Top Ten med hjälp av principerna

och metoderna som beskrivs i WSTG och ASVS. Sårbarheterna kategoriseras

i fyra olika grupper på basen av hur ramverken stöder utvecklarna att mitigera

sårbarheterna. Kategorierna är:

1. Åtgärdas direkt av ramverket. Dessa sårbarheter mitigeras av

ramverket på ett sådant sätt att det inte kräver någon aktiv interaktion

från programutvecklaren.

2. Åtgärdas av ramverket genom konfigurationer. Sårbarheter i denna

kategori kan mitigeras av de ramverk som används, men inte genom

standardkonfigurationer. Att använda standardkonfigurationen skulle

göra applikationen sårbar.

3. Ramverket innehåller hjälpverktyg. Sårbarheterna mitigeras inte

direkt av ramverken, men ramverken förser utvecklarna med

hjälpmedel som vägleder eller underlättar utvecklarna att implementera

säkra lösningar.

81

4. Inga hjälpmedel för att mitigera sårbarheten. Sårbarheterna måste

åtgärdas av utvecklarna genom korrekta beslut om design och

implementering.

Exempelapplikationen är byggd användande av en trenivå-arkitektur där

presentationslagret (användargränssnittet), logiklagret samt lagret med

tillgång till databasen är separerade från varandra. Användargränssnittet

implementerades med hjälp av Vaadin Flow-ramverket. Med hjälp av Vaadin

Flow, kan utvecklarna bygga webbapplikationer användande endast av java-

programmeringsspråket, vilket betyder att utvecklarna inte har behov att lära

sig HTML eller JavaScript, något som annars är typiskt för webbutveckling.

Logik- samt datalagret implementerades med hjälp av Spring Boot.

En OWASP Top Ten kategori kan vara mer konceptuell med avsikt att

öka medvetenheten om säkerhetsorienterat tänkande (t.ex. kategorin "Säker

design") medan en annan kategori kan vara en samling av flera specifika

sårbarheter, t.ex. kategorin "Broken Access Control". Den senare omfattar inte

bara bredare begrepp, utan även specifika sårbarheter som indirekta

objektreferenser och cross-site request forgeries. En OWASP Top Ten

kategori kunde således kategoriseras i evaluering i fler än en av de valda

grupperna, beroende på om kategorin innehöll mer specifika sårbarheter eller

ifall de handlade om bredare begrepp.

 Analysen hanterade sammanlagt 15 olika specifika sårbarheter eller

sårbarhetsgrupper. Det första man kunde se av analysen var att fyra av

sårbarhetskategorierna var evaluerade som “ej tillämpligt”. Detta betyder att

dessa sårbarheter ligger inte i koden av programmet, utan, till exempel i själva

tekniska designet av applikationen - en osäker design kan inte göras säkert

genom en bra implementation. På grund av att grundproblemet av

sårbarheterna ligger utanför koden, kan de inte därför heller hanteras av

ramverken. Detta betyder att utvecklingsteamet måste ta hänsyn till flera

aspekter utöver själva programmerandet, för att kunna skapa en applikation

som kan konstateras vara säker.

 Endast tre av de evaluerade sårbarheterna kunde mitigeras direkt av

ramverken: “Insecure Direct Object References”, “Cross-Site Request

Forgery” samt “Cross-Site Scripting”. Dessa är tekniska sårbarheter med

specifika tekniska lösningar och därför kan de hanteras direkt av ramverken.

 Fyra sårbarheter eller sårbarhetskategorier grupperades under

“ramverket innehåller hjälpverktyg”: bristfällig åtkomstkontroll, SQL-inketioner,

sessionhantering samt integritet av data. Vissa av dessa sårbarheter kan inte

av tekniska skäl hanteras av ramverket. Som ett bra exempel är bristfällig

åtkomstkontroll. Sårbarheten handlar om att försäkra, att användare inte kan

komma åt funktionalitet, data eller andra resurser som de inte har rättigheter

till. Själva begränsandet av rättigheterna kan hanteras av ramverken, men

problemet ligger i att ett ramverk inte kan veta vilka resurser en användare bör

82

ha rättigheter till, eftersom det alltid är beroende på ett icke-tekniskt kontext.

SQL-injektioner är ett annat bra exempel. Spring Boot erbjuder bra verktyg för

att mitigera sårbarheten, men ramverket kan inte tvinga användaren att

använda verktygen på ett rätt sätt. Om utvecklaren inte förstår hur SQL-

injektionssårbarheterna uppstår är det möjligt att hen använder ramverkets

verktyg på fel sätt åt på det sättet introducerar en sårbarhet i själva

applikationen.

 Två sårbarheter kunde mitigeras med hjälp av konfigurationer.

Standardkonfigurationerna är ofta avsedda för att göra det enkelt för

utvecklare att ta i bruk nya verktyg och utveckla med dem, men dessa

konfigurationer är inte lämpliga för produktionsanvändning.

 Inga mitigationsstrategier eller verktyg erbjöds av de valda ramverken

till tre sårbarhetskategorier. Server-Side Request Forgery är ett tekniskt

problem som kräver en gemensam lösning mellan programvaran och

nätverket, och därför kan inte lösas direkt av ett ramverk. Kryptografiska fel

och autentisering av användare handlar mycket om vad man anser att är ett

ramverks ansvar. Vaadin har valt att lösa ett problem omkring utveckling av

användargränssnitt, medan Spring Boot löser problem i logiklagret.

Varkendera av dessa ramverk har valt att ha autentisering inom det

problemdomän de vill erbjuda lösningar till - till sist och slut handlar det om att

ramverksutvecklarna måste bestämma hur de spendera de begränsade

resurser de har har till förfogande. Det finns ramverk som löser problemet kring

autentisering av användare, men ett sådant ramverk var inte med i

evalueringen.

 Det finns ingen patentlösning för säkerhet. För att bygga säker

programvara måste utvecklarna förstå hur de verktyg de använder fungerar,

vad som är ramverkets ansvar och vad som är utvecklarens ansvar.

Utvecklarna måste förstå vilken typ av sårbarheter som deras applikationer

kan utsättas för och vilka risker dessa potentiella sårbarheter medför. För att

bygga en applikation som kan anses vara säker, krävs det samarbete med

nätverks-, system- och säkerhetsingenjörer, god DevSecOps-praxis och en

lämplig risktolerans bör överenskommas med produktägaren. När allt kommer

omkring är den säkerhetsnivå vi implementerar direkt kopplad till de risker vi

är villiga att ta - ett hobbyprojekt behöver inte samma säkerhetsnivå som ett

sjukvårdssystem som ansvarar för livsviktiga funktioner.

83

9 APPENDIX A

Dependency Vulnerability IDs Package Highest

Severity

CVE

Count

Confidence Evidence

Count

bcprov-jdk18on-

1.71.jar

cpe:2.3:a:bouncycastle:bouncy-castle-

crypto-package:1.71:*:*:*:*:*:*:*

cpe:2.3:a:bouncycastle:bouncy_castle_c

rypto_package:1.71:*:*:*:*:*:*:*

cpe:2.3:a:bouncycastle:legion-of-the-

bouncy-castle:1.71:*:*:*:*:*:*:*

cpe:2.3:a:bouncycastle:legion-of-the-

bouncy-castle-java-crytography-

api:1.71:*:*:*:*:*:*:*

cpe:2.3:a:bouncycastle:the_bouncy_cas

tle_crypto_package_for_java:1.71:*:*:*:*:

::*

pkg:maven/org.bouncycastle/

bcprov-jdk18on@1.71

MEDIUM 1 Low 60

commons-fileupload-

1.4.jar

cpe:2.3:a:apache:commons_fileupload:1

.4:*:*:*:*:*:*:*

pkg:maven/commons-

fileupload/commons-

fileupload@1.4

HIGH 1 Highest 115

ejs:3.1.8 cpe:2.3:a:ejs:ejs:3.1.8:*:*:*:*:*:*:* pkg:npm/ejs@3.1.8 CRITICAL 1 Highest 8

h2-2.1.214.jar cpe:2.3:a:h2database:h2:2.1.214:*:*:*:*:*

:*:*

pkg:maven/com.h2database/

h2@2.1.214

HIGH 2 Highest 44

jackson-databind-

2.13.4.2.jar

cpe:2.3:a:fasterxml:jackson-

databind:2.13.4.2:*:*:*:*:*:*:*

cpe:2.3:a:fasterxml:jackson-modules-

pkg:maven/com.fasterxml.jac

kson.core/jackson-

databind@2.13.4.2

MEDIUM 1 Highest 44

https://ossindex.sonatype.org/component/pkg:maven/org.bouncycastle/bcprov-jdk18on@1.71?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://ossindex.sonatype.org/component/pkg:maven/org.bouncycastle/bcprov-jdk18on@1.71?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Aapache&cpe_product=cpe%3A%2F%3Aapache%3Acommons_fileupload&cpe_version=cpe%3A%2F%3Aapache%3Acommons_fileupload%3A1.4
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Aapache&cpe_product=cpe%3A%2F%3Aapache%3Acommons_fileupload&cpe_version=cpe%3A%2F%3Aapache%3Acommons_fileupload%3A1.4
https://ossindex.sonatype.org/component/pkg:maven/commons-fileupload/commons-fileupload@1.4?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://ossindex.sonatype.org/component/pkg:maven/commons-fileupload/commons-fileupload@1.4?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://ossindex.sonatype.org/component/pkg:maven/commons-fileupload/commons-fileupload@1.4?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Aejs&cpe_product=cpe%3A%2F%3Aejs%3Aejs&cpe_version=cpe%3A%2F%3Aejs%3Aejs%3A3.1.8
https://ossindex.sonatype.org/component/pkg:npm/ejs@3.1.8?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Ah2database&cpe_product=cpe%3A%2F%3Ah2database%3Ah2&cpe_version=cpe%3A%2F%3Ah2database%3Ah2%3A2.1.214
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Ah2database&cpe_product=cpe%3A%2F%3Ah2database%3Ah2&cpe_version=cpe%3A%2F%3Ah2database%3Ah2%3A2.1.214
https://ossindex.sonatype.org/component/pkg:maven/com.h2database/h2@2.1.214?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://ossindex.sonatype.org/component/pkg:maven/com.h2database/h2@2.1.214?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Afasterxml&cpe_product=cpe%3A%2F%3Afasterxml%3Ajackson-databind&cpe_version=cpe%3A%2F%3Afasterxml%3Ajackson-databind%3A2.13.4.2
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Afasterxml&cpe_product=cpe%3A%2F%3Afasterxml%3Ajackson-databind&cpe_version=cpe%3A%2F%3Afasterxml%3Ajackson-databind%3A2.13.4.2
https://ossindex.sonatype.org/component/pkg:maven/com.fasterxml.jackson.core/jackson-databind@2.13.4.2?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://ossindex.sonatype.org/component/pkg:maven/com.fasterxml.jackson.core/jackson-databind@2.13.4.2?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://ossindex.sonatype.org/component/pkg:maven/com.fasterxml.jackson.core/jackson-databind@2.13.4.2?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1

84

java8:2.13.4.2:*:*:*:*:*:*:*

json5:2.2.1 cpe:2.3:a:json5:json5:2.2.1:*:*:*:*:*:*:* pkg:npm/json5@2.2.1 HIGH 2 Highest 8

maven-core-3.0.jar cpe:2.3:a:apache:maven:3.0:*:*:*:*:*:*:* pkg:maven/org.apache.mave

n/maven-core@3.0

CRITICAL 1 Highest 23

maven-settings-

3.0.jar

 pkg:maven/org.apache.mave

n/maven-settings@3.0

CRITICAL 1 25

maven-shared-utils-

3.1.0.jar

cpe:2.3:a:apache:maven_shared_utils:3.

1.0:*:*:*:*:*:*:*

cpe:2.3:a:utils_project:utils:3.1.0:*:*:*:*:*:

:

pkg:maven/org.apache.mave

n.shared/maven-shared-

utils@3.1.0

CRITICAL 1 Highest 30

nimbus-jose-jwt-

9.23.jar (shaded:

net.minidev:json-

smart:2.4.8)

cpe:2.3:a:json-smart_project:json-

smart:2.4.8:*:*:*:*:*:*:*

cpe:2.3:a:json-smart_project:json-smart-

v2:2.4.8:*:*:*:*:*:*:*

pkg:maven/net.minidev/json-

smart@2.4.8

HIGH 1 High 31

semver:6.3.0 pkg:npm/semver@6.3.0 HIGH 2 5

semver:7.0.0 pkg:npm/semver@7.0.0 HIGH 1 5

semver:7.3.7 pkg:npm/semver@7.3.7 HIGH 2 6

snakeyaml-1.30.jar cpe:2.3:a:snakeyaml_project:snakeyaml

:1.30:*:*:*:*:*:*:*

pkg:maven/org.yaml/snakeya

ml@1.30

CRITICAL 7 Highest 44

https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Ajson5&cpe_product=cpe%3A%2F%3Ajson5%3Ajson5&cpe_version=cpe%3A%2F%3Ajson5%3Ajson5%3A2.2.1
https://ossindex.sonatype.org/component/pkg:npm/json5@2.2.1?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Aapache&cpe_product=cpe%3A%2F%3Aapache%3Amaven&cpe_version=cpe%3A%2F%3Aapache%3Amaven%3A3.0
https://ossindex.sonatype.org/component/pkg:maven/org.apache.maven/maven-core@3.0?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://ossindex.sonatype.org/component/pkg:maven/org.apache.maven/maven-core@3.0?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://ossindex.sonatype.org/component/pkg:maven/org.apache.maven/maven-settings@3.0?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://ossindex.sonatype.org/component/pkg:maven/org.apache.maven/maven-settings@3.0?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Aapache&cpe_product=cpe%3A%2F%3Aapache%3Amaven_shared_utils&cpe_version=cpe%3A%2F%3Aapache%3Amaven_shared_utils%3A3.1.0
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Aapache&cpe_product=cpe%3A%2F%3Aapache%3Amaven_shared_utils&cpe_version=cpe%3A%2F%3Aapache%3Amaven_shared_utils%3A3.1.0
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Autils_project&cpe_product=cpe%3A%2F%3Autils_project%3Autils&cpe_version=cpe%3A%2F%3Autils_project%3Autils%3A3.1.0
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Autils_project&cpe_product=cpe%3A%2F%3Autils_project%3Autils&cpe_version=cpe%3A%2F%3Autils_project%3Autils%3A3.1.0
https://ossindex.sonatype.org/component/pkg:maven/org.apache.maven.shared/maven-shared-utils@3.1.0?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://ossindex.sonatype.org/component/pkg:maven/org.apache.maven.shared/maven-shared-utils@3.1.0?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://ossindex.sonatype.org/component/pkg:maven/org.apache.maven.shared/maven-shared-utils@3.1.0?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Ajson-smart_project&cpe_product=cpe%3A%2F%3Ajson-smart_project%3Ajson-smart&cpe_version=cpe%3A%2F%3Ajson-smart_project%3Ajson-smart%3A2.4.8
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Ajson-smart_project&cpe_product=cpe%3A%2F%3Ajson-smart_project%3Ajson-smart&cpe_version=cpe%3A%2F%3Ajson-smart_project%3Ajson-smart%3A2.4.8
https://ossindex.sonatype.org/component/pkg:maven/net.minidev/json-smart@2.4.8?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://ossindex.sonatype.org/component/pkg:maven/net.minidev/json-smart@2.4.8?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://ossindex.sonatype.org/component/pkg:npm/semver@6.3.0?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://ossindex.sonatype.org/component/pkg:npm/semver@7.0.0?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://ossindex.sonatype.org/component/pkg:npm/semver@7.3.7?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Asnakeyaml_project&cpe_product=cpe%3A%2F%3Asnakeyaml_project%3Asnakeyaml&cpe_version=cpe%3A%2F%3Asnakeyaml_project%3Asnakeyaml%3A1.30
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Asnakeyaml_project&cpe_product=cpe%3A%2F%3Asnakeyaml_project%3Asnakeyaml&cpe_version=cpe%3A%2F%3Asnakeyaml_project%3Asnakeyaml%3A1.30
https://ossindex.sonatype.org/component/pkg:maven/org.yaml/snakeyaml@1.30?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://ossindex.sonatype.org/component/pkg:maven/org.yaml/snakeyaml@1.30?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1

85

spring-boot-2.7.5.jar cpe:2.3:a:vmware:spring_boot:2.7.5:*:*:*

:*:*:*:*

pkg:maven/org.springframew

ork.boot/spring-boot@2.7.5

CRITICAL 2 Highest 38

spring-boot-devtools-

2.7.5.jar

cpe:2.3:a:vmware:spring_boot:2.7.5:*:*:*

:*:*:*:*

cpe:2.3:a:vmware:spring_boot_tools:2.7.

5:*:*:*:*:*:*:*

cpe:2.3:a:vmware:spring_tools:2.7.5:*:*:

::*:*:*

pkg:maven/org.springframew

ork.boot/spring-boot-

devtools@2.7.5

CRITICAL 2 Highest 40

spring-boot-starter-

web-2.7.5.jar

cpe:2.3:a:vmware:spring_boot:2.7.5:*:*:*

:*:*:*:*

cpe:2.3:a:web_project:web:2.7.5:*:*:*:*:*:

:

pkg:maven/org.springframew

ork.boot/spring-boot-starter-

web@2.7.5

CRITICAL 2 Highest 36

spring-core-5.3.23.jar cpe:2.3:a:pivotal_software:spring_frame

work:5.3.23:*:*:*:*:*:*:*

cpe:2.3:a:springsource:spring_framewor

k:5.3.23:*:*:*:*:*:*:*

cpe:2.3:a:vmware:spring_framework:5.3

.23:*:*:*:*:*:*:*

pkg:maven/org.springframew

ork/spring-core@5.3.23

HIGH 3 Highest 37

spring-security-core-

5.7.4.jar

cpe:2.3:a:pivotal_software:spring_securi

ty:5.7.4:*:*:*:*:*:*:*

cpe:2.3:a:vmware:spring_security:5.7.4:

::*:*:*:*:*

pkg:maven/org.springframew

ork.security/spring-security-

core@5.7.4

CRITICAL 4 Highest 38

spring-security-

crypto-5.7.4.jar

cpe:2.3:a:pivotal_software:spring_securi

ty:5.7.4:*:*:*:*:*:*:*

cpe:2.3:a:vmware:spring_security:5.7.4:

::*:*:*:*:*

pkg:maven/org.springframew

ork.security/spring-security-

crypto@5.7.4

CRITICAL 5 Highest 38

https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Avmware&cpe_product=cpe%3A%2F%3Avmware%3Aspring_boot&cpe_version=cpe%3A%2F%3Avmware%3Aspring_boot%3A2.7.5
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Avmware&cpe_product=cpe%3A%2F%3Avmware%3Aspring_boot&cpe_version=cpe%3A%2F%3Avmware%3Aspring_boot%3A2.7.5
https://ossindex.sonatype.org/component/pkg:maven/org.springframework.boot/spring-boot@2.7.5?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://ossindex.sonatype.org/component/pkg:maven/org.springframework.boot/spring-boot@2.7.5?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Avmware&cpe_product=cpe%3A%2F%3Avmware%3Aspring_boot&cpe_version=cpe%3A%2F%3Avmware%3Aspring_boot%3A2.7.5
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Avmware&cpe_product=cpe%3A%2F%3Avmware%3Aspring_boot&cpe_version=cpe%3A%2F%3Avmware%3Aspring_boot%3A2.7.5
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Avmware&cpe_product=cpe%3A%2F%3Avmware%3Aspring_boot_tools&cpe_version=cpe%3A%2F%3Avmware%3Aspring_boot_tools%3A2.7.5
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Avmware&cpe_product=cpe%3A%2F%3Avmware%3Aspring_boot_tools&cpe_version=cpe%3A%2F%3Avmware%3Aspring_boot_tools%3A2.7.5
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Avmware&cpe_product=cpe%3A%2F%3Avmware%3Aspring_tools&cpe_version=cpe%3A%2F%3Avmware%3Aspring_tools%3A2.7.5
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Avmware&cpe_product=cpe%3A%2F%3Avmware%3Aspring_tools&cpe_version=cpe%3A%2F%3Avmware%3Aspring_tools%3A2.7.5
https://ossindex.sonatype.org/component/pkg:maven/org.springframework.boot/spring-boot-devtools@2.7.5?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://ossindex.sonatype.org/component/pkg:maven/org.springframework.boot/spring-boot-devtools@2.7.5?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://ossindex.sonatype.org/component/pkg:maven/org.springframework.boot/spring-boot-devtools@2.7.5?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Avmware&cpe_product=cpe%3A%2F%3Avmware%3Aspring_boot&cpe_version=cpe%3A%2F%3Avmware%3Aspring_boot%3A2.7.5
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Avmware&cpe_product=cpe%3A%2F%3Avmware%3Aspring_boot&cpe_version=cpe%3A%2F%3Avmware%3Aspring_boot%3A2.7.5
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Aweb_project&cpe_product=cpe%3A%2F%3Aweb_project%3Aweb&cpe_version=cpe%3A%2F%3Aweb_project%3Aweb%3A2.7.5
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Aweb_project&cpe_product=cpe%3A%2F%3Aweb_project%3Aweb&cpe_version=cpe%3A%2F%3Aweb_project%3Aweb%3A2.7.5
https://ossindex.sonatype.org/component/pkg:maven/org.springframework.boot/spring-boot-starter-web@2.7.5?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://ossindex.sonatype.org/component/pkg:maven/org.springframework.boot/spring-boot-starter-web@2.7.5?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://ossindex.sonatype.org/component/pkg:maven/org.springframework.boot/spring-boot-starter-web@2.7.5?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Apivotal_software&cpe_product=cpe%3A%2F%3Apivotal_software%3Aspring_framework&cpe_version=cpe%3A%2F%3Apivotal_software%3Aspring_framework%3A5.3.23
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Apivotal_software&cpe_product=cpe%3A%2F%3Apivotal_software%3Aspring_framework&cpe_version=cpe%3A%2F%3Apivotal_software%3Aspring_framework%3A5.3.23
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Aspringsource&cpe_product=cpe%3A%2F%3Aspringsource%3Aspring_framework&cpe_version=cpe%3A%2F%3Aspringsource%3Aspring_framework%3A5.3.23
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Aspringsource&cpe_product=cpe%3A%2F%3Aspringsource%3Aspring_framework&cpe_version=cpe%3A%2F%3Aspringsource%3Aspring_framework%3A5.3.23
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Avmware&cpe_product=cpe%3A%2F%3Avmware%3Aspring_framework&cpe_version=cpe%3A%2F%3Avmware%3Aspring_framework%3A5.3.23
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Avmware&cpe_product=cpe%3A%2F%3Avmware%3Aspring_framework&cpe_version=cpe%3A%2F%3Avmware%3Aspring_framework%3A5.3.23
https://ossindex.sonatype.org/component/pkg:maven/org.springframework/spring-core@5.3.23?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://ossindex.sonatype.org/component/pkg:maven/org.springframework/spring-core@5.3.23?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Apivotal_software&cpe_product=cpe%3A%2F%3Apivotal_software%3Aspring_security&cpe_version=cpe%3A%2F%3Apivotal_software%3Aspring_security%3A5.7.4
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Apivotal_software&cpe_product=cpe%3A%2F%3Apivotal_software%3Aspring_security&cpe_version=cpe%3A%2F%3Apivotal_software%3Aspring_security%3A5.7.4
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Avmware&cpe_product=cpe%3A%2F%3Avmware%3Aspring_security&cpe_version=cpe%3A%2F%3Avmware%3Aspring_security%3A5.7.4
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Avmware&cpe_product=cpe%3A%2F%3Avmware%3Aspring_security&cpe_version=cpe%3A%2F%3Avmware%3Aspring_security%3A5.7.4
https://ossindex.sonatype.org/component/pkg:maven/org.springframework.security/spring-security-core@5.7.4?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://ossindex.sonatype.org/component/pkg:maven/org.springframework.security/spring-security-core@5.7.4?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://ossindex.sonatype.org/component/pkg:maven/org.springframework.security/spring-security-core@5.7.4?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Apivotal_software&cpe_product=cpe%3A%2F%3Apivotal_software%3Aspring_security&cpe_version=cpe%3A%2F%3Apivotal_software%3Aspring_security%3A5.7.4
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Apivotal_software&cpe_product=cpe%3A%2F%3Apivotal_software%3Aspring_security&cpe_version=cpe%3A%2F%3Apivotal_software%3Aspring_security%3A5.7.4
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Avmware&cpe_product=cpe%3A%2F%3Avmware%3Aspring_security&cpe_version=cpe%3A%2F%3Avmware%3Aspring_security%3A5.7.4
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Avmware&cpe_product=cpe%3A%2F%3Avmware%3Aspring_security&cpe_version=cpe%3A%2F%3Avmware%3Aspring_security%3A5.7.4
https://ossindex.sonatype.org/component/pkg:maven/org.springframework.security/spring-security-crypto@5.7.4?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://ossindex.sonatype.org/component/pkg:maven/org.springframework.security/spring-security-crypto@5.7.4?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://ossindex.sonatype.org/component/pkg:maven/org.springframework.security/spring-security-crypto@5.7.4?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1

86

spring-security-web-

5.7.4.jar

cpe:2.3:a:pivotal_software:spring_securi

ty:5.7.4:*:*:*:*:*:*:*

cpe:2.3:a:vmware:spring_security:5.7.4:

::*:*:*:*:*

cpe:2.3:a:web_project:web:5.7.4:*:*:*:*:*:

:

pkg:maven/org.springframew

ork.security/spring-security-

web@5.7.4

CRITICAL 4 Highest 38

spring-web-5.3.23.jar cpe:2.3:a:pivotal_software:spring_frame

work:5.3.23:*:*:*:*:*:*:*

cpe:2.3:a:springsource:spring_framewor

k:5.3.23:*:*:*:*:*:*:*

cpe:2.3:a:vmware:spring_framework:5.3

.23:*:*:*:*:*:*:*

cpe:2.3:a:web_project:web:5.3.23:*:*:*:*:

::*

pkg:maven/org.springframew

ork/spring-web@5.3.23

CRITICAL 4 Highest 35

spring-webmvc-

5.3.23.jar

cpe:2.3:a:pivotal_software:spring_frame

work:5.3.23:*:*:*:*:*:*:*

cpe:2.3:a:springsource:spring_framewor

k:5.3.23:*:*:*:*:*:*:*

cpe:2.3:a:vmware:spring_framework:5.3

.23:*:*:*:*:*:*:*

cpe:2.3:a:web_project:web:5.3.23:*:*:*:*:

::*

pkg:maven/org.springframew

ork/spring-webmvc@5.3.23

HIGH 3 Highest 37

tomcat-embed-core-

9.0.68.jar

cpe:2.3:a:apache:tomcat:9.0.68:*:*:*:*:*:*

:*

cpe:2.3:a:apache_tomcat:apache_tomc

at:9.0.68:*:*:*:*:*:*:*

pkg:maven/org.apache.tomca

t.embed/tomcat-embed-

core@9.0.68

HIGH 2 Highest 65

vaadin-core-

23.2.9.jar

cpe:2.3:a:vaadin:vaadin:23.2.9:*:*:*:*:*:*:

*

pkg:maven/com.vaadin/vaadi

n-core@23.2.9

MEDIUM 2 Highest 15

https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Apivotal_software&cpe_product=cpe%3A%2F%3Apivotal_software%3Aspring_security&cpe_version=cpe%3A%2F%3Apivotal_software%3Aspring_security%3A5.7.4
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Apivotal_software&cpe_product=cpe%3A%2F%3Apivotal_software%3Aspring_security&cpe_version=cpe%3A%2F%3Apivotal_software%3Aspring_security%3A5.7.4
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Avmware&cpe_product=cpe%3A%2F%3Avmware%3Aspring_security&cpe_version=cpe%3A%2F%3Avmware%3Aspring_security%3A5.7.4
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Avmware&cpe_product=cpe%3A%2F%3Avmware%3Aspring_security&cpe_version=cpe%3A%2F%3Avmware%3Aspring_security%3A5.7.4
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Aweb_project&cpe_product=cpe%3A%2F%3Aweb_project%3Aweb&cpe_version=cpe%3A%2F%3Aweb_project%3Aweb%3A5.7.4
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Aweb_project&cpe_product=cpe%3A%2F%3Aweb_project%3Aweb&cpe_version=cpe%3A%2F%3Aweb_project%3Aweb%3A5.7.4
https://ossindex.sonatype.org/component/pkg:maven/org.springframework.security/spring-security-web@5.7.4?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://ossindex.sonatype.org/component/pkg:maven/org.springframework.security/spring-security-web@5.7.4?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://ossindex.sonatype.org/component/pkg:maven/org.springframework.security/spring-security-web@5.7.4?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Apivotal_software&cpe_product=cpe%3A%2F%3Apivotal_software%3Aspring_framework&cpe_version=cpe%3A%2F%3Apivotal_software%3Aspring_framework%3A5.3.23
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Apivotal_software&cpe_product=cpe%3A%2F%3Apivotal_software%3Aspring_framework&cpe_version=cpe%3A%2F%3Apivotal_software%3Aspring_framework%3A5.3.23
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Aspringsource&cpe_product=cpe%3A%2F%3Aspringsource%3Aspring_framework&cpe_version=cpe%3A%2F%3Aspringsource%3Aspring_framework%3A5.3.23
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Aspringsource&cpe_product=cpe%3A%2F%3Aspringsource%3Aspring_framework&cpe_version=cpe%3A%2F%3Aspringsource%3Aspring_framework%3A5.3.23
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Avmware&cpe_product=cpe%3A%2F%3Avmware%3Aspring_framework&cpe_version=cpe%3A%2F%3Avmware%3Aspring_framework%3A5.3.23
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Avmware&cpe_product=cpe%3A%2F%3Avmware%3Aspring_framework&cpe_version=cpe%3A%2F%3Avmware%3Aspring_framework%3A5.3.23
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Aweb_project&cpe_product=cpe%3A%2F%3Aweb_project%3Aweb&cpe_version=cpe%3A%2F%3Aweb_project%3Aweb%3A5.3.23
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Aweb_project&cpe_product=cpe%3A%2F%3Aweb_project%3Aweb&cpe_version=cpe%3A%2F%3Aweb_project%3Aweb%3A5.3.23
https://ossindex.sonatype.org/component/pkg:maven/org.springframework/spring-web@5.3.23?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://ossindex.sonatype.org/component/pkg:maven/org.springframework/spring-web@5.3.23?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Apivotal_software&cpe_product=cpe%3A%2F%3Apivotal_software%3Aspring_framework&cpe_version=cpe%3A%2F%3Apivotal_software%3Aspring_framework%3A5.3.23
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Apivotal_software&cpe_product=cpe%3A%2F%3Apivotal_software%3Aspring_framework&cpe_version=cpe%3A%2F%3Apivotal_software%3Aspring_framework%3A5.3.23
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Aspringsource&cpe_product=cpe%3A%2F%3Aspringsource%3Aspring_framework&cpe_version=cpe%3A%2F%3Aspringsource%3Aspring_framework%3A5.3.23
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Aspringsource&cpe_product=cpe%3A%2F%3Aspringsource%3Aspring_framework&cpe_version=cpe%3A%2F%3Aspringsource%3Aspring_framework%3A5.3.23
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Avmware&cpe_product=cpe%3A%2F%3Avmware%3Aspring_framework&cpe_version=cpe%3A%2F%3Avmware%3Aspring_framework%3A5.3.23
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Avmware&cpe_product=cpe%3A%2F%3Avmware%3Aspring_framework&cpe_version=cpe%3A%2F%3Avmware%3Aspring_framework%3A5.3.23
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Aweb_project&cpe_product=cpe%3A%2F%3Aweb_project%3Aweb&cpe_version=cpe%3A%2F%3Aweb_project%3Aweb%3A5.3.23
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Aweb_project&cpe_product=cpe%3A%2F%3Aweb_project%3Aweb&cpe_version=cpe%3A%2F%3Aweb_project%3Aweb%3A5.3.23
https://ossindex.sonatype.org/component/pkg:maven/org.springframework/spring-webmvc@5.3.23?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://ossindex.sonatype.org/component/pkg:maven/org.springframework/spring-webmvc@5.3.23?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Aapache&cpe_product=cpe%3A%2F%3Aapache%3Atomcat&cpe_version=cpe%3A%2F%3Aapache%3Atomcat%3A9.0.68
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Aapache&cpe_product=cpe%3A%2F%3Aapache%3Atomcat&cpe_version=cpe%3A%2F%3Aapache%3Atomcat%3A9.0.68
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Aapache_tomcat&cpe_product=cpe%3A%2F%3Aapache_tomcat%3Aapache_tomcat&cpe_version=cpe%3A%2F%3Aapache_tomcat%3Aapache_tomcat%3A9.0.68
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Aapache_tomcat&cpe_product=cpe%3A%2F%3Aapache_tomcat%3Aapache_tomcat&cpe_version=cpe%3A%2F%3Aapache_tomcat%3Aapache_tomcat%3A9.0.68
https://ossindex.sonatype.org/component/pkg:maven/org.apache.tomcat.embed/tomcat-embed-core@9.0.68?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://ossindex.sonatype.org/component/pkg:maven/org.apache.tomcat.embed/tomcat-embed-core@9.0.68?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://ossindex.sonatype.org/component/pkg:maven/org.apache.tomcat.embed/tomcat-embed-core@9.0.68?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Avaadin&cpe_product=cpe%3A%2F%3Avaadin%3Avaadin&cpe_version=cpe%3A%2F%3Avaadin%3Avaadin%3A23.2.9
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Avaadin&cpe_product=cpe%3A%2F%3Avaadin%3Avaadin&cpe_version=cpe%3A%2F%3Avaadin%3Avaadin%3A23.2.9
https://ossindex.sonatype.org/component/pkg:maven/com.vaadin/vaadin-core@23.2.9?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1
https://ossindex.sonatype.org/component/pkg:maven/com.vaadin/vaadin-core@23.2.9?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1

87

vite:3.1.0 cpe:2.3:a:vitejs:vite:3.1.0:*:*:*:*:*:*:* pkg:npm/vite@3.1.0 HIGH 2 Highest 8

https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cpe_vendor=cpe%3A%2F%3Avitejs&cpe_product=cpe%3A%2F%3Avitejs%3Avite&cpe_version=cpe%3A%2F%3Avitejs%3Avite%3A3.1.0
https://ossindex.sonatype.org/component/pkg:npm/vite@3.1.0?utm_source=dependency-check&utm_medium=integration&utm_content=8.3.1

