
Jonatan Wiik

Contract-Based Design of 
Dataflow Programs





Contract-Based Design of
Dataflow Programs

JonatanWiik

Computer Engineering
Faculty of Science and Engineering

Åbo Akademi University
Åbo, Finland, 2023



Supervisors
Docent Marina Waldén
Faculty of Science and Engineering
Åbo Akademi University
Vattenborgsvägen 3, 20500 Åbo, Finland

Docent Pontus Boström
Faculty of Science and Engineering
Åbo Akademi University
Vattenborgsvägen 3, 20500 Åbo, Finland

Reviewers
Associate Professor Lionel Morel
INSA-Lyon (Université de Lyon)
6 avenue des Arts
F-69621 Villeurbanne, France

Associate Professor Jani Boutellier
School of Technology and Innovation
University of Vaasa
Yliopistonranta 10, 65200 Vaasa, Finland

Opponent
Professor Klaus Schneider
Department of Computer Science
RPTU Kaiserslautern-Landau
P.O. Box 3049, 67653 Kaiserslautern, Germany

ii

ISBN 978-952-12-4339-4 (printed)
ISBN 978-952-12-4340-0 (digital)
Painosalama, Åbo, Finland 2023



Abstract

Quality and correctness are becoming increasingly important aspects of
software development, as our reliance on software systems in everyday life
continues to increase. Highly complex software systems are today found
in critical appliances such as medical equipment, cars, and telecommuni-
cation infrastructure. Failures in these kinds of systems may have disas-
trous consequences. At the same time, modern computer platforms are
increasingly concurrent, as the computational capacity of modern CPUs
is improved mainly by increasing the number of processor cores. Com-
puter platforms are also becoming increasingly parallel, distributed and
heterogeneous, often involving special processing units, such as graphics
processing units (GPU) or digital signal processors (DSP) for perform-
ing specific tasks more efficiently than possible on general-purpose CPUs.
These modern platforms allow implementing increasingly complex func-
tionality in software. Cost efficient development of software that effi-
ciently exploits the power of this type of platforms and at the same time
ensures correctness is, however, a challenging task.

Dataflow programming has become popular in development of safety-
critical software in many domains in the embedded community. For
instance, in the automotive domain, the dataflow language Simulink has
become widely used in model-based design of control software. However,
for more complex functionality, this model of computation may not be
expressive enough. In the signal processing domain, more expressive,
dynamic models of computation have attracted much attention. These
models of computation have, however, not gained as significant uptake
in safety-critical domains due to a great extent to that it is challenging
to provide guarantees regarding e.g. timing or determinism under these
more expressive models of computation.

Contract-based design has become widespread to specify and verify
correctness properties of software components. A contract consists of
assumptions (preconditions) regarding the input data and guarantees
(postconditions) regarding the output data. By verifying a component
with respect to its contract, it is ensured that the output fulfils the
guarantees, assuming that the input fulfils the assumptions.

iii



While contract-based verification of traditional object-oriented pro-
grams has been researched extensively, verification of asynchronous data-
flow programs has not been researched to the same extent. In this thesis,
a contract-based design framework tailored specifically to dataflow pro-
grams is proposed. The proposed framework supports both an extensive
subset of the discrete-time Simulink synchronous language, as well as a
more general, asynchronous and dynamic, dataflow language.

The proposed contract-based verification techniques are automatic,
only guided by user-provided invariants, and based on encoding dataflow
programs in existing, mature verification tools for sequential programs,
such as the Boogie guarded command language and its associated verifier.
It is shown how dataflow programs, with components implemented in an
expressive programming language with support for matrix computations,
can be efficiently encoded in such a verifier. Furthermore, it is also shown
that contract-based design can be used to improve runtime performance
of dataflow programs by allowing more scheduling decisions to be made
at compile-time. All the proposed techniques have been implemented in
prototype tools and evaluated on a large number of different programs.
Based on the evaluation, the methods were proven to work in practice
and to scale to real-world programs.

iv



Sammanfattning

Kvalitet och korrekthet blir idag allt viktigare aspekter inom mjukvaru-
utveckling, då vi i allt högre grad förlitar oss på mjukvarusystem i vå-
ra vardagliga sysslor. Mycket komplicerade mjukvarusystem finns idag
i kritiska tillämpningar så som medicinsk utrustning, bilar och infra-
struktur för telekommunikation. Fel som uppstår i de här typerna av
system kan ha katastrofala följder. Samtidigt utvecklas kapaciteten hos
moderna datorplattformar idag främst genom att öka antalet processor-
kärnor. Därtill blir datorplattformar allt mer parallella, distribuerade
och heterogena, och innefattar ofta specialla processorer så som grafik-
processorer (GPU) eller signalprocessorer (DSP) för att utföra specifi-
ka beräkningar snabbare än vad som är möjligt på vanliga processorer.
Den här typen av plattformar möjligör implementering av allt mer kom-
plicerade beräkningar i mjukvara. Kostnadseffektiv utveckling av mjuk-
vara som effektivt utnyttjar kapaciteten i den här typen av plattformar
och samtidigt säkerställer korrekthet är emellertid en mycket utmanande
uppgift.

Dataflödesprogrammering har blivit ett populärt sätt att utveckla
mjukvara inom flera områden som innefattar säkerhetskritiska inbyggda
datorsystem. Till exempel inom fordonsindustrin har dataflödesspråket
Simulink kommit att användas i bred utsträckning för modellbaserad
design av kontrollsystem. För mer komplicerad funktionalitet kan dock
den här modellen för beräkning vara för begränsad beträffande vad som
kan beksrivas. Inom signalbehandling har mera expressiva och dynamis-
ka modeller för beräkning attraherat stort intresse. De här modellerna
för beräkning har ändå inte tagits i bruk i samma utsträckning inom
säkerhetskritiska tillämpningar. Det här beror till en stor del på att det
är betydligt svårare att garantera egenskaper gällande till exempel timing
och determinism under sådana här modeller för beräkning.

Kontraktbaserad design har blivit ett vanligt sätt att specifiera och
verifiera korrekthetsegenskaper hos mjukvarukomponeneter. Ett kontrakt
består av antaganden (förvillkor) gällande indata och garantier (eftervill-
kor) gällande utdata. Genom att verifiera en komponent gentemot sitt
konktrakt kan man bevisa att utdatan uppfyller garantierna, givet att
indatan uppfyller antagandena.

v



Trots att kontraktbaserad verifiering i sig är ett mycket beforskat om-
råde, så har inte verifiering av asynkrona dataflödesprogram beforskats
i samma utsträckning. I den här avhandlingen presenteras ett ramverk
för kontraktbaserad design skräddarsytt för dataflödesprogram. Det fö-
reslagna ramverket stödjer så väl en stor del av det synkrona språket
Simulink med diskret tid som ett mera generellt asynkront och dyna-
miskt dataflödesspråk.

De föreslagna kontraktbaserade verifieringsteknikerna är automatis-
ka. Utöver kontraktets för- och eftervillkor ger användaren endast de
invarianter som krävs för att möjliggöra verifieringen. Verifieringstekni-
kerna grundar sig på att omkoda dataflödesprogram till input för existe-
rande och beprövade verifieringsverktyg för sekventiella program så som
Boogie. Avhandlingen visar hur dataflödesprogram implementerade i ett
expressivt programmeringsspråk med inbyggt stöd för matrisoperatio-
ner effektivt kan omkodas till input för ett verifieringsverktyg som Boo-
gie. Utöver detta visar avhandlingen också att kontraktbaserad design
också kan förbättra prestandan hos dataflödesprogram i körningsskedet
genom att möjliggöra flera schemaläggningsbeslut redan i kompilerings-
skedet. Alla tekniker som presenteras i avhandlingen har implementerats
i prototypverktyg och utvärderats på en stor mängd olika program. Ut-
värderingen bevisar att teknikerna fungerar i praktiken och är tillräckligt
skalbara för att också fungera på program av realistisk storlek.

vi



Acknowledgements

Completing this thesis has been a long journey. While the cover of the
thesis bears my name only, many people and organizations have con-
tributed in different ways to make this thesis possible.

First of all, I would like to express my gratitude to my supervisors
Pontus Boström and Marina Waldén for your invaluable support, which
has been instrumental in completing this thesis. In particular, I would
like to thank Pontus for all the encouraging guidance, support, and fruit-
ful discussions during the initial stages of this research work. I would like
to thank Marina especially for your patience and untiring encouragement
during the last years of my studies, when the time and energy I was able
to allocate to this thesis was very limited.

I would like to thank Associate Professor Lionel Morel and Associate
Professor Jani Boutellier for finding time to review my thesis and provid-
ing valuable comments and insights that helped me improve the quality
of the thesis. I would also like to thank Professor Klaus Schneider who
has kindly agreed to act as opponent at the public defence of this thesis.

I would like to thank my co-author Johan Ersfolk, especially for the
abundant amount of time used to discuss and implement ideas that even-
tually came to constitute an essential part of this thesis. It was a great
pleasure to work with you. Moreover, I would like to thank all the people
at the IT department of Åbo Akademi, who over the years contributed
to it being an inspiring place to work and conduct research.

I would like to acknowledge the funding I have received from Åbo
Akademi, Academy of Finland, Business Finland, Nokia Foundation, and
Ulla Tuomisen Säätiö. The funding I received was essential to be able to
focus on this research full-time for several years.

I am grateful to my current colleagues at Awake.AI who paved way
for me to finalize this thesis beside a full-time job. In particular, I am
grateful to Jussi Poikonen, whose encouraging attitude was greatly help-
ful in finding inspiration to finalize the thesis.

Finally, this journey had not been possible without the continuous
support from my family and close friends. Thank you all!

November, 2023
Jonatan Wiik

vii



viii



List of original publications

I P. Boström and J. Wiik. Contract-based verification of discrete-
time multi-rate Simulink models. Software & Systems Modeling,
15(4):1141–1161, 2016

II J. Wiik and P. Boström. Contract-based verification of MATLAB-
style matrix programs. Formal Aspects of Computing, 28(1):79–107,
2016

III J. Wiik and P. Boström. Specification and automated verification of
dynamic dataflow networks. In A. Cimatti and M. Sirjani, editors,
Software Engineering and Formal Methods, SEFM 2017, volume
10469 of LNCS, pages 136–151. Springer International Publishing,
2017

IV J. Wiik, J. Ersfolk, and M. Waldén. A contract-based approach
to scheduling and verification of dynamic dataflow networks. In
P. Derler and S. Gao, editors, 16th ACM/IEEE International Con-
ference on Formal Methods and Models for System Design, MEM-
OCODE 2018, pages 1–10. IEEE, 2018

ix



x



List of other co-authored
publications

1. J. Wiik and P. Boström. Contract-based verification of MATLAB and
Simulink matrix-manipulating code. In S. Merz and J. Pang, editors,
Formal Methods and Software Engineering, ICFEM 2014, volume 8829
of LNCS, pages 396–412. Springer International Publishing, 2014

2. J. Wiik and P. Boström. Contract-based verification of MATLAB and
Simulink matrix-manipulating code. Technical Report 1107, TUCS,
2014

3. J. Wiik and P. Boström. Contract-based specification and verification
of dataflow programs. In L. Aceto and A. Ingolfsdottir, editors, Pro-
ceedings of 27th Nordic Workshop on Programming Theory, NWPT
2015. Reykjavik University, 2015

4. J. Wiik and P. Boström. Specification and automated verification of
dynamic dataflow networks. Technical Report 1170, TUCS, 2016

5. J. Ersfolk, P. Boström, V. Timonen, J. Westerholm, J. Wiik,
O. Karhu, M. Linjama, and M. Waldén. Optimal digital valve control
using embedded GPU. In J. Uusi-Heikkilä and M. Linjama, editors,
Proceedings of the 8th Workshop on Digital Fluid Power. Tampere
University of Technology, 2016

xi



xii



Contents

I Research summary 1

1 Introduction 3
1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Research problem . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Research methods . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Dataflow programming 9
2.1 Dataflow languages . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Simulink . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 CAL . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Models of computation . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Kahn process networks . . . . . . . . . . . . . . . . 14
2.2.2 Dataflow process networks . . . . . . . . . . . . . . 14
2.2.3 Dynamic dataflow . . . . . . . . . . . . . . . . . . 15
2.2.4 Static dataflow . . . . . . . . . . . . . . . . . . . . 16
2.2.5 The synchronous model of computation . . . . . . 16

3 Language definition 19
3.1 Actor language . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Host language . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Type system . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Translating Simulink models . . . . . . . . . . . . . . . . . 24

4 Specification 29
4.1 Contracts for dataflow networks . . . . . . . . . . . . . . . 29

4.1.1 Invariants . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.2 Assertion language . . . . . . . . . . . . . . . . . . 32

4.2 Contracts for dataflow actors . . . . . . . . . . . . . . . . 33
4.3 Contracts for Simulink models . . . . . . . . . . . . . . . 35
4.4 Mapping Simulink contracts to asynchronous dataflow con-

tracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

xiii



5 Verification 39
5.1 From dataflow to sequential program . . . . . . . . . . . . 39
5.2 Boogie encoding of actors and networks . . . . . . . . . . 41
5.3 Host language encoding . . . . . . . . . . . . . . . . . . . 43

6 Scheduling 47
6.1 Contract-based scheduling . . . . . . . . . . . . . . . . . . 47
6.2 Ensuring correctness . . . . . . . . . . . . . . . . . . . . . 48
6.3 Improving runtime performance using contracts . . . . . . 50
6.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7 Related work 53
7.1 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2 Type systems . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.3 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8 Conclusions 59
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Bibliography 62

II Original publications 73

Paper I 75

Paper II 99

Paper III 131

Paper IV 149

xiv



Part I

Research summary

1





Chapter 1

Introduction

Mathematical approaches for assessing program correctness have been
studied since the 1960s [32]. Using these formal techniques, software can
be mathematically proven to adhere to desirable properties or to lack
undesirable properties for all possible inputs. For a long time, practical
adoption of these techniques have been limited by the huge amount of
work and expertise that is required to carry out such proofs on programs
of realistic size. Over the last years, however, the performance of tools
used to automatically carry out this kind of proofs have improved rapidly,
making it increasingly feasible to prove also real world software.

In the context of object-oriented software, design-by-contract has
become a widespread concept used to specify and verify intended be-
haviour of software modules. Design-by-contract was introduced as a
term by Bertrand Meyer [65, 64] in the 1980s during the design of the
Eiffel programming language. Using contracts, properties are provided
as preconditions and postconditions stating properties that a program
should adhere to. In practice, the preconditions and postconditions are
often provided as extra annotations in the program code. Research on
the topic has resulted in mature automatic verification tools for many
widely used programming languages, including Java [15, 18], C# [6] and
C [49].

While object-oriented programming has gained widespread adoption,
the paradigm is limited in that it does not exploit parallelism in pro-
grams very naturally. Instead, programmers are typically responsible for
mapping computations to threads, which is an error-prone and difficult
task. This is a limitation of growing magnitude, as today the perfor-
mance of modern computing platforms are improved to a large extent
by increasing the number of computation cores or by utilising special-
purpose hardware, such as graphical processing units or digital signal
processors to perform certain tasks efficiently. Furthermore, objects do
not necessarily provide the most suitable abstraction in all problem do-
mains.

3



In the embedded domain, dataflow programming has become a widely
used paradigm to implement so called reactive systems. As opposed to
a traditional transformational system, which computes an output given
some input, a reactive system is continuously interacting with its envi-
ronment. The history of dataflow programming dates back to the 1960s
when Petri nets [68] were introduced. Further research was carried out
by Dennis [23] and Kahn [48] in the 1970s. In dataflow programming,
a program is described as a graph where the nodes, which are com-
monly called actors, blocks or processes, perform computations, and the
edges, which are commonly called channels, signals or buffers, describe
the communication of data between the nodes. The nodes communicate
exclusively over the edges. This restricted model of computation has
several compelling advantages, e.g.:

1. It provides a natural way to express reactive systems.

2. It naturally makes parallelism in the program explicit, which in
turn makes it easy to map different actors to processing units.

3. It simplifies reasoning about the programs significantly, as compo-
nents communicate exclusively over statically defined channels.

The dataflow programs considered in this thesis can broadly be split
into two classes; synchronous1 (or synchronous-reactive) and asynchron-
ous dataflow. In synchronous languages, computations are carried out in
synchronous rounds triggered by a signal. This signal is often, but not
necessarily, ticks of a clock. In asynchronous dataflow, on the other hand,
communication between actors is buffered and the actors can execute
(fire) whenever required tokens are available on the incoming buffers.

The objective of this thesis is to propose a contract-based frame-
work supporting specification, verification and scheduling of dataflow
programs. The framework supports both asynchronous models of com-
putation as well as an extensive subset of the synchronous language
Simulink. Additionally, the framework supports verification of actors
implemented in an expressive programming language, with MATLAB-
style built-in support for matrix operations.

1.1 Contribution
The most central contributions of this thesis can be summarized as fol-
lows:

1This is not the synchronous dataflow (SDF) proposed by Lee and Messerschmitt
[52, 53], which actually belongs to asynchronous dataflow according to this classifica-
tion.

4



1. Specification constructs for both discrete-time Simulink as well as
more general, asynchronous and dynamic dataflow models of com-
putation.

2. A unified automatic verification approach for both synchronous
and asynchronous dataflow, based on mapping dataflow programs
to sequential programs and verifying them using well-established
techniques.

3. A static type and matrix shape inference approach, as well as a
contract-based verification approach for an expressive imperative
programming language with built-in support for MATLAB-style
matrix operations.

4. An approach to scheduling of dataflow programs utilising infor-
mation provided in contracts, allowing scheduling of dataflow pro-
grams not belonging to any well-established statically schedulable
model of computation.

5. Tool-support for all the implemented verification and scheduling
techniques and evaluation on example programs of realistic size.

1.2 Research problem
The focus of this thesis is on specification constructs and automated veri-
fication techniques for dataflow programs. Dataflow languages are widely
used in the development of embedded software systems, which often are
safety-critical with high reliability requirements. This justifies the extra
effort involved with using more rigorous specification and verification
techniques. This leads to the following research questions:

1. What are good specification constructs for different types of data-
flow programs? It is, for instance, important that the specifications
are expressive enough to express properties of interest, but at the
same time it is also essential that they are intuitive and usable to
engineers.

2. How can the specification constructs and dataflow programs be ef-
ficiently encoded in an automatic verifier? The encoding should
take into account a sufficiently large subset of the considered data-
flow language and at the same time, for usability, the verification
conditions should be automatically dischargeable with as few user-
provided invariants as possible.

5



1.3 Research methods
The research in this thesis was carried out by first identifying representa-
tive programs with properties typical for the kind of programs of interest.
Intuitive specification languages for expressing these types of properties
were then developed. After this, techniques to verify the program with
respect to the specifications were developed. The last stage was to im-
plement the techniques in tools for validation on realistic programs.

When developing automated verification techniques, prototype tool
implementations are essential to judge if the technique is well suited for
automation. This is primarily due to the fact that one has to consider
subtle limitations of proof tools and other backend tools. Therefore, great
emphasis in the research of this thesis has been put on implementing all
proposed techniques in automated verification tools.

1.4 Thesis structure
The research conducted as part of this thesis is reported in four peer-
reviewed papers, which are included in Part II of this thesis. Part I is
a research summary of the papers. The research summary is divided
into 8 chapters and is aimed at linking the research papers together. In
this section, the content of each research paper as well as the research
summary is briefly outlined. The contribution by the thesis author in
each of the paper is also described.

Paper I
Paper I presents an approach to contract-based verification of discrete-
time Simulink models based on translation into functionally equivalent
SDF (static dataflow) networks. Well-established scheduling methods are
then used to obtain sequential programs which are verified to be correct
with respect to the contracts. To formally argue for the correctness of
the translation from Simulink to SDF, a semantics for Simulink based
on Kahn Process Networks is presented. A refinement-based approach is
used to verify correctness with respect to contracts and the approach is
evaluated on a pressure relief controller for a digital hydraulics system.
The approach was implemented in a prototype verification tool named
VerSÅA.

Author’s contribution The initial work for the paper was done in
the scope of the author’s master’s thesis [78], for which the co-author
acted as supervisor. The work was further extended for the paper and

6



the work, including development of the verification technique, improved
tool implementation, and writing of the paper, was split evenly between
the two authors.

Paper II
Paper II extends Paper I by adding support for matrix computations.
The main contributions of the paper are identification of a large subset
of Embedded MATLAB that can be efficiently encoded in verifiers, as
well as a static type and shape inference approach for the considered sub-
set. Additionally, two approaches to encoding MATLAB’s builtin matrix
functions and operators in a verifier is presented and they are evaluated
on examples. Both the Boogie intermediate verification language as well
as direct encoding in the SMT solver are evaluated as backends on a
number of examples. Finally, k-induction in conjunction with matrix
operations is also evaluated as a way of reducing the number of required
loop invariant annotations.

Author’s contribution The work on development of the specification
and verification technique, tool implementation, and writing of the paper,
was split evenly between the two authors. The evaluation on examples
was performed by the author.

Paper III
Paper III extends Paper I by considering specification and verification of
more general, dynamic and asynchronous dataflow networks, for which a
static schedule cannot be obtained in the general case. SDF is a subset
of the dataflow networks considered in this paper. Hence, also the SDF
graphs obtained from the Simulink translation in Paper I can be handled
in this approach. The contributions of the paper include a method to
specify the behaviour of dataflow networks based on the reaction of the
network to individual input tokens. An encoding into the Boogie inter-
mediate verification language is also presented, as well as a method to
automatically generate invariants for a common class of actors. The ap-
proach was implemented in a prototype verification tool named Actris2

and evaluated on a number of examples.

Author’s contribution The initial research idea is due to the the-
sis author. The early development of the specification and verification
technique was done jointly by the two authors. The thesis author was

2https://github.com/jwiik/actris-verifier

7



responsible for refining the idea, developing the detailed specification
language, the verifier encoding and the invariant generation technique,
as well as implementing tool-support for the verification approach. The
research paper was written by the thesis author with feedback from the
co-author.

Paper IV
Paper IV is an extension of Paper III also considering compile-time
scheduling based on contracts. The contract language proposed in Pa-
per III is reused in this work. The obtained schedules are then also
utilised in verification to reduce the number of needed invariant annota-
tions. The contributions of the paper include showing that contracts can
aid the scheduling of dataflow networks and enable scheduling of actors
that do not conform to any well-known statically schedulable model of
computation. A scalable hierarchical scheduling method based on con-
tracts, which can be used to obtain schedules optimal with respect to a
cost function is also presented. Finally, a method that verify actors and
networks by using static schedules is also presented. The approach was
implemented as an extension of the Actris tool developed for Paper III.

Author’s contribution The initial idea and the scheduling technique
was co-developed by the thesis author and one of the co-authors. The
verification approach and tool implementation was developed by the the-
sis author. The paper was written by the thesis author with feedback
from the other co-authors.

This thesis
In this thesis it is described how the four research papers together form
a unified contract-based framework for both the synchronous dataflow
language Simulink as well as asynchronous dataflow languages. This is
achieved by using the translation from Simulink to SDF presented in Pa-
per I to map Simulink to asynchronous dataflow. Based on this transla-
tion, Simulink models can, essentially, be verified using the more general
approach for dynamic dataflow programs presented in Paper III. It is
also outlined on an informal level how the contracts for Simulink models
presented in Paper I can be mapped into the contracts for asynchronous
dataflow presented in Paper III. Together with the contributions of Pa-
per II and Paper IV a versatile framework for contract-based design of
dataflow programs is achieved.

8



Chapter 2

Dataflow programming

In the dataflow programming paradigm, a program is described as a static
network of actors connected via channels, forming a directed graph. The
actors communicate exclusively through these explicit channels. Actors
implement algorithms which they execute on the data on the incoming
channels and output the result on the outgoing channels. Different vari-
ants of dataflow programs have proven useful in a number of different
domains. In e.g. the automotive domain the language Simulink1 has
become a de facto standard for describing control software. Also in the
signal processing domain dataflow graphs are widely used, as they pro-
vide a natural way of expressing operators and the flow of data between
them.

The dataflow models discussed in this thesis can be divided into two
distinct classes of models of computation. These classes are asynchronous
and synchronous models of computation. In asynchronous dataflow, ac-
tors fire in response to tokens being available on the input channels, while
in a synchronous model of computation actors fire synchronously in re-
sponse to a signal. This synchronous signal is often a clock, but can also
be some other event. In asynchronous dataflow, the channels are asyn-
chronous order-preserving channels, i.e. buffers, while in synchronous
dataflow, the value on a channel is updated each synchronous round.
In this thesis, the focus is on Simulink as a synchronous language and
on a variant of the Cal Actor Language (CAL) [26], as a more general,
asynchronous language.

In this chapter, the dataflow programming languages in focus are first
described on an informal level. After this, the models of computation
relevant to the thesis and the relationship between them are reviewed
through these languages.

1https://www.mathworks.com/help/simulink/

9



2.1 Dataflow languages
In this section, the two dataflow languages focused on in this thesis are
informally presented. These are the synchronous language Simulink and
the dataflow language RVC-CAL [63], a version of the original CAL lan-
guage [26] that was adopted in an MPEG standard [63].

A dataflow programming language can be coarsely divided into two
parts; an actor language which is used to declare actors, networks and
their interconnection, and a host language which is used to implement
algorithms in actors. The actor language is often graphical, and is largely
independent of the host language, while the host language can be, for
instance, a standard imperative programming language.

2.1.1 Simulink
Simulink has become one of the most widely used tools in model-based
design of control systems. In some industries, e.g. the automotive, it has
even become a de facto standard. Simulink has a user-friendly modelling
notation and good simulation tools for testing and validation of control
software together with models of the controlled plant.

Simulink is a graphical programming language based on hierarchical
dataflow diagrams. The diagrams consists of blocks2 connected by sig-
nals. The signals describe the flow of data between the blocks. While
Simulink can be used to describe a wide range of dynamic systems, this
thesis considers an extensive subset of discrete-time Simulink models.
Such models can be considered an instance of the synchronous language
model of computation, which means that each block is evaluated period-
ically with a fixed sampling period. A model where not every block is
updated with the same period is considered to be multi-rate.

As an example, consider the Simulink diagram in Figure 2.1. It mod-
els a 4th order finite impulse response (FIR) filter. It additionally has
a Rate Transition block named RT which is used to modify the rate at
which the filter output y is updated. As the output sampling rate is dif-
ferent than the input sampling rate, this diagram describes a multi-rate
system. In the diagram D1, D2 and D3 are blocks of type Unit delay,
which delay their input with one sampling step. The Gain blocks mul-
tiply their input by a constant given as parameter. Connected to the
Gain blocks is an Add block which outputs the sum of the input signals.
Assuming that the input sampling rate Tx is faster than or equal to the
output sampling rate Ty, i.e. Ty = nTx for an integer n > 1, the diagram
in Figure 2.1 calculates the following difference equation, where y(nk)

2In the context of Simulink, the term block is commonly used for actors.

10



Figure 2.1: A Simulink subsystem modelling a FIR filter with an addi-
tional rate transition on the output y.

denotes the filter output at time nk:

y(nk) = b0x(nk) + b1x(nk − 1) + b2x(nk − 2) + b3x(nk − 3)

where bi is the value of the impulse response at the i’th instance, given as
parameters to the Gain blocks. Note that signal values are not defined
for a time t that is not a multiple of the sampling period of the signal.

The basic blocks in Simulink diagrams are fairly primitive operators
available via a built-in block library. Diagrams constructed from these
basic blocks can then be hierarchically grouped into subsystems, which
form reusable modules implementing more complex functionalities. In
Simulink it is common practice to use block diagrams to describe func-
tionality down to the level of, e.g., single arithmetic operators, but this
is not the case for all dataflow languages. In CAL, for instance, it is
common to implement fairly complex algorithms inside a single actor
using the host language. While not used to the same extent, this can
be accomplished also in Simulink, using blocks containing user-defined
code, written in a subset of the MATLAB language.

2.1.2 CAL
CAL [26] is a programming language aimed at describing asynchronous
dynamic dataflow programs. In this thesis a language similar to the RVC-
CAL [63] variant of CAL is considered. RVC-CAL can be considered a
subset of the original CAL language [26], adopted by MPEG as part of
the Reconfigurable Video Coding (RVC) standard [63]. One of the most
significant differences between RVC-CAL and the original CAL language
is that RVC-CAL has explicit type annotations. The actor language

11



(a)
actor Sum int x1, x2 =⇒ int y:
action x1:[i], x2:[j] =⇒ y:[i+j] end

end

(b)

actor Delay(int y0) int x =⇒ int y:
initialize =⇒ y:[y0] end
action x:[i] =⇒ y:[i] end

end

(c)

actor Merge int x1, x2 =⇒ int y:
bool switch := false

a1:
action x1:[i] =⇒ y:[i]
guard switch = false
do
switch := true;

end

a2:
action x2:[i] =⇒ y:[i]
guard switch = true
do
switch := false;

end

end

Figure 2.2: Examples of CAL actors.

considered throughout this thesis is essentially RVC-CAL extended with
contract annotations.

In CAL, a program consists of a static network of actors, where an
actor is a stateful operator having a set of inports, a set of outports, a set
of state variables, and a set of actions. An action is enabled or disabled
based on the amount and values of tokens available on the inports and the
actor state. An actor executes by firing an enabled action, which updates
the actor state and produces a number of tokens on the outports.

To concretise this discussion, consider the example actors in Fig-
ure 2.2. The actor Sum has two inports named x1 and x2, one outport
named y, and a single action. The action consists of the input patterns
x1:[i] and x2:[j], which means that, when fired, the action consumes
one token on each of the inports x1 and x2 and assigns them the vari-
able names i and j, respectively. The action also has the output pattern

12



y:[i+j], which means that it outputs a token containing the sum i + j
on the outport y.

The actor Delay has a special initialisation action declared with the
keyword initialize, which outputs an initial token with value y0 on the
outport. An initialisation action is only executed once, when the actor
is initialised. As the name suggest, the actor Delay effectively delays the
data on its input, by prepending the additional token y0 to its output
sequence.

The actor Merge forwards the tokens on the two input ports x1 and
x2 to the output port in turns. In other words, the output stream of the
actor Merge consists of interleaved tokens from the inports. The actor
actions have guards on the actor state variable switch to control which
action to execute next.

It is worth noting that it is easy to construct inconsistent networks
by connecting actors like those in Figure 2.2. For instance, if an actor of
type Sum only receives input on one of the inports, it will never become
enabled. On the other hand, if it continuously receives more tokens on
port x1 than on x2 the buffer on x1 will grow indefinitely. It is also
worth noting that it is easy to express an actor with non-deterministic
behaviour. Consider, for instance, removing the guards from the actor
Merge. If there are tokens available on both inputs, such an actor would
non-deterministically fire one of the actions. As discussed later on, one
of the goals of the verification framework presented in this thesis is to
statically check for the absence of this kind of inconsistencies, as well as
non-determinism.

2.2 Models of computation
In the previous section the dataflow languages CAL and Simulink were
introduced through examples. In this section dataflow programming is
viewed from a more formal perspective, by considering different mod-
els of computation (MoC). A dataflow MoC defines the behaviour of
a dataflow network. In other words, a MoC is an interpretation of a
dataflow network, which defines in which order and how the actors are
executed. In this section several common dataflow MoCs relevant to this
thesis and the relations between them are reviewed. The section starts
by introducing Kahn Process Networks, which are then used as a founda-
tion to formalise the discussion on the relationships between other, more
practical MoCs.

13



2.2.1 Kahn process networks
Kahn process networks (KPN) [48] differ from the programs expressible
in the CAL-based actor language introduced in the previous section in
that it lacks the notion of firing. KPN is, nevertheless, useful as a concept
to provide semantics for dataflow programs. A KPN is formed of a set
of independent processes which communicate through unbounded unidi-
rectional FIFO channels. Each channel x can be considered to carry a
stream ⟨x0, x1, x2, . . . ⟩, where each xi is a data token. In a Kahn process,
reads from a channel are blocking while writes are non-blocking.

Kahn gave KPN a denotational semantics [48] where a process F with
m inputs and n outputs is defined as a function F : Sm → Sn, where Si

denotes the set of i-tuples of streams. In the semantics, Kahn processes
are required to be continuous in the sense explained below. Consider a
prefix order relation defined on streams x and y:

x ⪯ y (2.1)

denoting that x is a prefix of y. In other words, the k first elements of y
are equal to the k elements of x. Streams are considered equal if they are
prefixes of each other. Now consider a chain w of streams, where each
stream is comparable using ⪯ and let ⊔w denote the least upper bound
of w. A process F is continuous if for every such chain ⊔F (w) exists and:

F (⊔w) = ⊔F (w) (2.2)

A continuous process is also monotone [48], which means that:

x ⪯ y ⇒ F (x) ⪯ F (y) (2.3)

A KPN can be described by a set of equations where each equation
is defined by a Kahn process. If each process is continuous, the set
of equations has a unique least fixpoint solution which describes the
histories of tokens which appeared on the network channels.

That a process F is monotone means, in essence, that previous output
tokens of F will not change in response to receiving additional input
tokens. In addition to this, a continuous process F will not wait for an
infinite amount of input tokens before it produces output tokens.

2.2.2 Dataflow process networks
The dataflow process network (DPN) model of computation was for-
malised by Lee and Parks [51, 54]. They view DPN as a special case of
KPN, where the streams are built up from sequences of firings. Formally,

14



a DPN actor can be considered as a pair {f, R}, where f : Sm → Sn is a
firing function and R ⊂ Sn is the set of firing rules. The firing rules are
expressed as patterns in the form of finite sequences describing when the
actor is allowed to fire. A firing rule is satisfied if it forms a prefix of the
unconsumed tokens on the corresponding input port.

A Kahn process F based on {f, R} can be constructed based on re-
peated firings of f , where ⊥ denotes the empty sequence and s.s′ denotes
the concatenation of the sequences s and s′:

F (x) =
{

f(r).F (x′) if there exists an r ∈ R such that x = r.x′

⊥ otherwise (2.4)

Lee and Parks showed [51, 54] that sufficient conditions for a DPN
actor to be continuous, as defined in (2.2), is that the process is functional
and that the set of firing rules is sequential. Here, functional means that
the actor lacks side effects and that the output tokens are a pure function
of the input tokens consumed during that firing. Sequential means that
firing rules can be tested in a predefined order using only blocking reads.

The requirement that actors be functional seems to exclude actors
with state. However, Lee and Parks [51, 54] argue that actor state can
be expressed simply as feedback loops on the top-level network. Hence,
actors with state expressed in the language considered here can be con-
sidered functional. In an actor language such as CAL, it is, possible to
express firing rules that are not sequential. However, it can be ensured
that actors are sequential by checking that the firing rules are mutually
exclusive. Hence, actors described in the CAL language can be restricted
to the DPN MoC by requiring that the firing rules are mutually exclusive.

2.2.3 Dynamic dataflow
A dataflow network where computations are described with as a set of
firing rules which depend on state variables or data tokens that are eval-
uated at run-time, can be considered to belong to a MoC called Dynamic
dataflow (DDF). However, DDF is vaguely defined in the literature and
seems to, in many cases, be used as a name for asynchronous dataflow
programs that do not correspond to any other more restrictive model of
computation. In this thesis the definition given in [77] is used. According
to this definition a firing rule can be any Boolean expression and a DDF
program is also allowed to be nondeterministic. Based on the definition,
DDF is more general than DPN and essentially all programs expressible
in the CAL language introduced in Section 2.1.2 introduced language can
be classified as DDF. Consequently, DDF is also a superset of DPN.

15



2.2.4 Static dataflow
Static dataflow (SDF) [52, 53] was proposed by Lee and Messerschmitt
in 1987. The name synchronous dataflow is commonly used for SDF, but
the term static dataflow is used here to distinguish it from the MoC of
synchronous languages such as Simulink, which are synchronous in a dif-
ferent sense. In SDF the term synchronous refers to the fact that the size
of communication buffers can be computed statically at compile-time,
while in the synchronous MoC synchronous refers to that computations
are synchronized by a clock signal. Based on this classification, SDF is
an asynchronous model of computation.

SDF is a subset of DPN where actors consume and produce a fixed
amount of tokens each time they fire. Formally, this means that in (2.4)
each firing rule r ∈ R is of the form ⟨∗, . . . , ∗⟩, where ∗ denotes a wildcard
matching any token. This means that, e.g., ⟨∗, ∗⟩ is a prefix of any stream
with at least two tokens.

In practice, the actor language can be syntactically limited to SDF by
restricting actors to have only one non-initializing action without guard.
SDF also requires actors to be stateless, hence restricting SDF networks
to only have state in the form of delay tokens on feedback loops.

The restrictions SDF imposes allow networks to be statically sched-
uled. This means that SDF networks can be compiled into a sequence
of actor firings, which, when executed, will return the network buffers to
the initial state. Scheduling is discussed in more detail in Chapter 6.

2.2.5 The synchronous model of computation
The models of computation of synchronous dataflow languages such as
Simulink and Lustre differ significantly from the asynchronous models of
computation described above. In a synchronous dataflow MoC compu-
tation is carried out in synchronous rounds. These rounds are typically,
but not necessarily, triggered by a clock.

Discrete-time multi-rate Simulink has a synchronous model of com-
putation where each actor is given a sampling period at which it is trig-
gered. A channel in a Simulink model that is updated with a sampling
period Ts can be considered a stream xTs = ⟨x(0), x(1), . . . ⟩, where x(k)
is the value at the channel at time kTs. In Simulink the output yTs(k) of
an actor f is computed based on the input uTs(k) at the same sampling
period. Additionally, Simulink actors can be parametrised and are also
allowed to have state. In its most general form, a Simulink actor with

16



equal input and output sampling periods can be described by:

yTs(k) = f(c, xTs(k), uTs(k))
xTs(k + 1) = f(c, xTs(k), uTs(k))
xTs(0) = xinit

(2.5)

Here c is a set of parameters, u is the set of input streams, y the set of
output streams, and x is the set of streams modelling the state vector.
The function f gives the k:th values on the output streams y while g
gives the next values on the streams x representing the state.

In Simulink, only special Rate Transition actors are allowed to alter
sampling periods, i.e. have an output sampling period different than
the input sampling period. These actors cannot be described by (2.5).
Stream sampling operators can be introduced to handle rate transitions
(Paper I).

Definition 1. Assume T2 = nT1 for n ∈ N+. Further, let / denote
integer division. Then the upsampling operator ↑T1 is defined as:

∀k ∈ N · (↑T1 xT2)(k) = xT2(kT1/T2)

The downsampling operator ↓T2 is defined as:

∀k ∈ N · (↓T2 xT1)(k) = xT1(kT2/T1)

Based on these operators, it is possible to define the behaviour of the
Simulink rate transitions. In case the input sampling period Ti is greater
than the output sampling period To, i.e. Ti = nTo, the rate transition
actor is defined as:

yTo(k) = ↑To(xTi(k))
xTi(kTo/Ti + 1) = uTi(kTo/Ti)
xTi(0) = xinit

(2.6)

In case nTi = To:
yTo(k) = ↓To(uTi(k)) (2.7)

Simulink models can be given semantics based on KPN (Paper I).
The least fixpoint solution for a Simulink model consisting of streams
x1, . . . , xm can then be expressed analogously to KPNs [48] as:

xT,i(0) = xinit

xT,i(k + 1) = τi(xT,i(k), . . . , xT,m(k)) (2.8)

17



for i ∈ 1, . . . , m, where each τi is based on the continuous operators given
by the actors, i.e. Simulink functional blocks. xinit denotes the initial
values on streams and are supplied as parameters to Simulink actors.
However, it is not possible to construct τ directly, as the sampling periods
have to be taken into account. In (2.8), T is the base period of the model.
For a Simulink model with rates T1, . . . , Tn, T is defined as:

T = gcd(T1, . . . , Tn)

The base period gives the time points at which a stream can change
values. For a stream xTx it is then possible to construct the stream at
the base period using ↑T (xTx).

In Section 3.4 a mapping from discrete-time Simulink to SDF is pre-
sented. This mapping is essential to enable handling Simulink models
using the same specification and verification framework used for asyn-
chronous networks.

18



Chapter 3

Language definition

In this chapter, the dataflow programming language considered in this
thesis, and introduced through examples in Chapter 2, is defined more
precisely. A dataflow programming language can generally be split into
two parts; an actor language and a host language. The actor language
is used to declare actors, networks and their interconnection, while the
host language is used to implement algorithms in actor actions. The
actor language is virtually independent of the choice of host language.
In practice it is common that the actor language is, at least partially, a
graphical language. For instance, both in Simulink and RVC-CAL the
interconnections between actors and networks can be defined graphically.

The actor language part of the proposed dataflow programming lan-
guage is essentially an extensive subset of RVC-CAL [63], which has been
extended with specification constructs like preconditions, postconditions
and invariants. RVC-CAL, in turn, is a subset of the CAL Actor Lan-
guage [26], which was standardised as part of an MPEG standard [63].
As host language, a subset of Embedded MATLAB (Paper II) is used.
This language is very similar to the original imperative host language of
RVC-CAL. Disregarding some minor syntactical differences, Embedded
MATLAB could even be considered an extension of the RVC-CAL host
language, with support for matrix functions and operators.

In the end of the chapter, it is additionally covered how Simulink
models can be expressed in the proposed dataflow programming lan-
guage, by mapping a subset of the Simulink language to SDF.

3.1 Actor language
In this section the grammar of the actor language considered in this the-
sis is defined. The grammar is given in Figure 3.1. In this grammar, S
denotes a program statement in the host language, while e denotes an
expression in the host language. Furthermore, A is an assertion used in
the contracts defined later in this thesis. The elements Contract, Inv

19



Prog ::= (ActorDecl | NwDecl)∗

ActorDecl ::= actor id⟨VarDecl∗⟩ PortDecl : ActorMem∗ end
NwDecl ::= network id⟨VarDecl∗⟩ PortDecl : NwMem∗ end
PortDecl ::= VarDecl∗ =⇒ VarDecl∗

ActorMem ::= VarDecl | Inv | Contract | Action | InitAction
NwMem ::= Inv | Contract | Entities | Structure
Action ::= action (id : [id∗])∗ =⇒ (id : [e∗])∗ (guard e)∗ Spec (do S)? end
InitAction ::= initialize =⇒ (id : [e∗])∗ Spec (do S)? end
Contract ::= contract (id : n)∗ =⇒ (id : n)∗ (guard A)∗ Spec end
Entities ::= entities (id = id⟨e∗⟩)∗ end
Structure ::= structure (id(.id)? −→ id(.id)?)∗ end
Inv ::= contract invariant A | action invariant A
Spec ::= (requires A | ensures A)∗

VarDecl ::= type id

Figure 3.1: The grammar of the actor language.

and Spec are used for specification and will be discussed later. In the
grammar, ⟨ and ⟩ are used for concrete parentheses to differentiate them
from parentheses used for grouping to describe the grammar. Further-
more, x∗ and x? are used to denote any number of repetitions of x and
0 or 1 repetitions of x, respectively. The elements S and e stands for
statements and expressions in the chosen host language.

Based on the grammar, a program consists of a set of actor decla-
rations and network declarations. An actor declaration consists of set
of variable declarations, a set of invariants, a set of contracts, a set of
actions and optionally an initialisation action. A network consists of a
set of invariants, a set of contracts, an entities block and a structure
block. The entities and structure blocks declares the networks compo-
nents and their interconnection, respectively. An action consists of a set
of input patterns, a set of output patterns, a set of guards, a specification
(contract) and possibly an actor body.

3.2 Host language
While the choice of host language is largely independent of the actor
language, it is still important for e.g productivity to choose an appro-
priate host language for the problem domain in question. In this thesis,
an extensive subset of Embedded MATLAB (EML) is considered as host
language. EML is different to most general purpose languages in that it
has builtin support for matrix computations. This means that e.g. the

20



addition operator can be used both on scalar values and on matrices. For
some examples, consider a matrix a:

a =
[
a11 a12
a21 a22

]

The following piece of code:

b := abs(a);
c := 5−a;

assigns the variables b and c as follows:

b =
[
abs(a11) abs(a12)
abs(a21) abs(a22)

]
c =

[
5 − a11 5 − a12
5 − a21 5 − a22

]

The functions abs and the operator ’−’ are said to work element-wise on
matrices.

In MATLAB, an element-wise function or operator f(x, y) is defined
if x and y have equivalent shapes, or if either of x and y is scalar. The
resulting matrix has the same shape as the input matrix with the larger
shape. Many typical mathematical functions that are usually defined for
scalars are in MATLAB generalised to matrices in the form of an element-
wise function. There are, however, some important matrix functions in
MATLAB that are not element-wise. One such example is the function
sum that can be considered to belong to a class of functions that are
collapsing. A collapsing function collapses vectors to scalars and other
matrices to a row vector. In MATLAB, a vector is a matrix where either
the number of columns or the number of rows is equal to 1, while a scalar
is a matrix where both the number of columns and the number of rows
is equal to 1. Consider the example code below involving the collapsing
functions sum and prod:

d := sum(a);
e := prod(d);

which results in the following values being assigned to e and d:

d =
[
a11 + a21 a12 + a22

]
e = (a11 + a21) · (a12 + a22)

Hence, the behaviour of the function sum depends on the shape of the
input. This is also the case, e.g., for the multiplication operator ∗, which
denotes standard matrix multiplication if both arguments are matrices,
but element-wise multiplication if one of the arguments is scalar.

21



S ::= v := e | Assigment
if e S1 else S2 end | If-statement
S1 ; S2 | Sequential composition
while e (invariant A)∗ S end | While loop
for id = e (invariant A)∗ S end For loop

e ::=
e1 (+ | − | ∗ | / | .∗ | ./) e2 | Arithmetic expression
e1 (∧ | ∨ | ⇒ | ⇔) e2 | Logical expression
e1 (= | ̸= | < | > | ≥ | ≤) e2 | Relational expression
(∀ | ∃) (type id)∗ · e | Quantified expression
¬e | −e | Unary operators
if e1 then e2 else e3 end | Conditional expression
e1 ⟨(e2 | :) (e3 | :)?⟩ | Matrix accessor
id⟨e1 , . . . , en⟩ | Function call
id | Identifier
n | Numeric literal
[e11 , . . . , e1n ; . . . ; em1 , . . . , emn ] | Matrix literal
c1 :c2 | c1 :c2 :c3 | Range
true | false Boolean literal

Figure 3.2: Grammar of the host language with builtin support for matrix
operators.

Every datatype in the considered host language is essentially a ma-
trix. A matrix type is considered to consist of an intrinsic type, e.g.
double, int, or bool and a shape. The syntax ⟨m, n⟩ denotes a shape
with m rows and n columns. The syntax matrix(t, ⟨m, n⟩) is then used
to express a matrix type with intrinsic type t and shape ⟨m, n⟩.

In Figure 3.2, the grammar of statements S and the grammar of
expressions e for the considered host language are given. Note that the
MATLAB operators .∗ and ./ denotes element-wise multiplication and
element-wise division, respectively.

The presented host language based on EML is syntactically very sim-
ilar to the imperative host language of RVC-CAL, but there are some
small differences. For instance are normal parentheses used to access
matrix elements in EML, while square brackets are used to access array
elements in RVC-CAL. However, these differences are not significant to
the specification and verification methods presented in this thesis.

22



3.3 Type system
The focus of this thesis is on static verification with respect to contracts.
As discussed later, the proposed verification approach relies on utilising
matrix shapes. As a consequence, matrix shapes need to be statically
determined and checked. For this purpose, a static type and matrix
shape inference method was developed as part of this thesis (Paper II).

The proposed type and shape inference method is based on providing
pre-defined type and shape signatures for all supported builtin MATLAB
functions. Consider a simple program:

a := [1, 2; 3, 4];
b := 2;
c := a + b;

To determine the type and shape of c in this program, we need signatures
for the element-wise + operator as well the function sum. In this case
these type signature declares that, since a is matrix of shape ⟨2, 2⟩ and b
is a scalar, the output of a + b is also a matrix of shape ⟨2, 2⟩. Addition-
ally, the type signature also declares that the intrinsic type (e.g. int or
double) is the same as the intrinsic type of the inputs. More formally
this can be stated using the following type signature:

∀ t ⊑t numtype · Π m1, n1, m2, n2 · matrix(t, ⟨m1, n1⟩) × matrix(t, ⟨m2, n2⟩)
→ matrix(t, maxs(⟨m1, n1⟩, ⟨m2, n2⟩))

In this type signature, ∀ denotes universal quantification over intrinsic
types, while Π denotes universal quantification over shapes. Hence, in the
example above, the type signature for the minus operator is universally
quantified over both intrinsic type and shape. The operator ⊑t denotes
bounds on quantification. Hence, the quantified variable t is bounded to
intrinsic types that are subtypes of numtype. The type numtype is
assumed to be an abstract super-type of any numeric type. The variables
m1, n1, m2 and n2 are quantified shape variables. In the type signature,
the result shape of the operator is given by a shape function maxs, which
is defined as follows:

maxs(⟨m1, n1⟩, ⟨m2, n2⟩) =


⟨m1, n1⟩ if m1 = m2 and n1 = n2

⟨m1, n1⟩ if m2 = n2 = 1
⟨m2, n2⟩ if m1 = n1 = 1
⟨∞, ∞⟩ otherwise

Here ∞ is used to denote an error. A program is type-correct only if
there are no shapes of infinite size. The function maxs determines the

23



type for all binary element-wise functions. There are also corresponding
functions for e.g. collapsing functions and matrix multiplication.

This type system is discussed in detail in Paper II. It should, how-
ever, be noted that the host language considered here is explicitly typed,
while Embedded MATLAB which is considered in Paper II is implicitly
typed. For an implicitly typed language, types and shapes have to be
inferred, while it for an explicitly typed language is enough to check type
correctness.

3.4 Translating Simulink models
Discrete-time multi-rate Simulink as defined in Section 2.2.5 can be
mapped to SDF in a manner such that each sample in a Simulink stream
x corresponds to a buffer position sdf(x) in the SDF representation:

xTs(k) = sdf(x)(k) (3.1)

In this section, it is reviewed how this can be done for different types
of Simulink actors. A detailed description of the translation as well as
proofs of the correctness of the translation is given in the research paper
(Paper I).

Functional blocks Consider a general Simulink functional actor as
defined by (2.5). An actor in this general form can be represented in
SDF using two actors; one for computing the function f and one for
computing the function g. The interconnection of these two actors are
illustrated in Figure 3.3. Here the boxes with black background denotes
ports and the number inside these boxes denotes the rate, i.e. the number
of tokens consumed or produced on the port when the actor fires. The
source code of the actors is also given to illustrate how they could be
described in the actor language. In the source code, t denotes a type in
the type system of the chosen host language and u, x and y denote the set
of all inports, outports and block memories, respectively. In Figure 3.4
there are concrete examples how the Simulink functional blocks used in
the FIR filter in Figure 2.1 can be mapped to the actor language.

It should be noted that the behaviour of a Simulink functional block
could also be described in a single actor with state in the actor lan-
guage. However, this would not adhere to the traditional SDF definition,
which only allows state in the form of delay tokens on buffers. A pure
SDF representation was chosen here, as well-established frameworks and
scheduling methods developed for SDF can then be reused directly.

24



y	=	f(u,x)

1 1

1

u

x

y

x’	=	g(u,x)

1 1

1

u

x

x' 1D

actor F t1 U, t2 X =⇒ t3 Y:
action U:[u], X:[x] =⇒ Y:[ f(u, x) ] end

end

actor G(int x0) t1 U, t2 X =⇒ t2 X':
initialize =⇒ X':[x0] end
action U:[u], X:[x] =⇒ X':[ g(u, x) ] end

end

Figure 3.3: SDF representation of a general Simulink functional block.

Rate transition blocks Rate transition blocks are used to connect
parts of a model operating at different sampling periods. All blocks ex-
cept rate transitions are required to have the same output and input
sampling periods. In Simulink, the behaviour of a rate transition de-
pends on if the output sampling period is longer than or shorter than
the input sampling period. The behaviour of a slow-to-fast rate transi-
tion is given by (2.6). SDF blocks implementing this behaviour are given
in Figure 3.5a. The blocks F and G are assumed to be connected in
the same way as illustrated in Figure 3.3. Note that xn in Figure 3.5a
denotes outputting a token with value x n times, where n is given by
n = Ti/To assuming that Ti is the input sampling period and To is the
output sampling period.

The behaviour of a fast-to-slow rate transition is given by (2.7) and
an SDF representation of this block is given in Figure 3.5b. Here the
block G produces n − 1 initial tokens x0, where n = To/Ti . The block F
consumes n tokens when it fires and outputs the last token it consumed.

Multi-rate subsystems Subsystems are in Simulink used to hierar-
chically structure the diagrams. They hence have the same purpose as
networks in the actor language. Simulink subsystems are either virtual
or atomic. Virtual subsystems are merely used for visual grouping and
have no semantic effect. Subsystems are here assumed to be atomic. The
period of a subsystem Tsub is the shortest period of its subcomponents,
i.e. the greatest common divisor of all subcomponent sampling periods.

25



(a)
actor Gain(t g) t U =⇒ t Y:
action U:[u] =⇒ Y:[g ∗ u] end

end

(b)

actor Add t U1, t U2, t U3, t U4 =⇒ t Y:
action
U1:[u1], U2:[u2], U3[u3], U4:[u4] =⇒ Y:[u1+u2+u3+u4]

end
end

(c)

actor UnitDelayF t X =⇒ t Y:
action X:[x] =⇒ Y:[x] end

end

actor UnitDelayG(t x0) t U =⇒ t X':
initialize =⇒ X':[x0] end
action U:[u] =⇒ X':[u] end

end

Figure 3.4: SDF representations of the Simulink blocks in the FIR filter.
The actor in (a) outputs the input multiplied with a constant g. The
actor in (b) outputs the sum of its four inputs. The actor in (c) delays
its input by one sampling period, i.e. the output y(n) becomes the input
u(n − 1).

This also means that all inputs and outputs have to be converted to the
subsystem period Tsub. This is achieved by inserting rate transition ac-
tors before subsystem inports and after subsystem outports as illustrated
in Figure 3.6. Here S2F corresponds to the rate transition in Figure 3.5c,
which is equivalent to the the rate transition in Figure 3.5a except that it
does not delay the input. The fast-to-slow rate transition, F2S , denotes
the rate transition described in Figure 3.5b. In Figure 3.6, ki = Ti/Tsub
and ko = To/Tsub, where Ti and To are the sampling periods of inport i
and outport o, respectively.

Input blocks and output blocks In Simulink, special input blocks
and output blocks are used in subsystems to receive input and export
output. These have counterparts also in asynchronous dataflow, but the
rates should also be converted to the original rates of the signals. Hence,
the opposite rate transitions to those connected to the ports on the level
above are connected to the input actors and output actors, as illustrated
in Figure 3.6.

26



(a)

actor F t X =⇒ t Y:
action X:[x] =⇒ Y:[xn] end

end
actor G(t x0) t U =⇒ t X':

initialize =⇒ X':[x0] end
action U:[u] =⇒ X':[u] end

end

(b)

actor F t X =⇒ t Y:
action X:[x1, . . . , xn] =⇒ Y:[xn] end

end
actor G(t x0) t U =⇒ t X':

initialize =⇒ X':[x0
n−1] end

action U:[u] =⇒ X':[u] end
end

(c)
actor F t U =⇒ t Y:

action U:[u] =⇒ Y:[un] end
end

Figure 3.5: SDF representations of different types of rate transition
blocks: (a) a slow-to-fast rate transition, (b) a fast-to-slow rate tran-
sition, and (c) a slow-to-fast rate transition without delay. Here xn is
used to denote a sequence of n tokens with value x.

S2F

1 u y

F2S

1u y

Subsystem

1 1i o

i

F2S

1u y
o

S2F

1 u yki ko

ki ko

Figure 3.6: The SDF representation of Simulink subsystem interface.
The dashed box represents the actual content (components) of the sub-
system

27



28



Chapter 4

Specification

In this thesis, the main focus is on specification and verification of data-
flow programs using contracts. The contracts considered state functional
properties that the specified component should adhere to. The contracts
presented are traditional assume-guarantee contracts, consisting of pre-
conditions specifying legal inputs and postconditions specifying legal out-
puts.

In this chapter, the contract formats for both Simulink, proposed in
Paper I, and the actor language, proposed in Paper III, are reviewed. A
mapping of the Simulink contracts to the more general actor language
contracts is also discussed.

4.1 Contracts for dataflow networks
In accordance with the KPN-based semantics discussed in Chapter 2,
dataflow channels can be considered as streams. Hence, each channel c
in a dataflow network can be viewed as a stream ⟨c0, c1, . . . ⟩ of tokens.
The contract format proposed describes the response of a dataflow com-
ponent to a finite sequence of input tokens as a finite sequence of output
tokens. These finite sequences form windows over the input channels
and output channels. In the contract format the keyword requires is
used to denote preconditions and ensures is used to denote postcondi-
tions. These keywords have become common practice in contracts for
object-oriented languages. More precisely, the contract format proposed
is defined as follows:
Definition 2 (Contract). A contract:

C : contract x : n =⇒ y : m guard G requires P ensures Q end

defines a contract with label C, which specifies that, given n input tokens
on port x conforming to G ∧ P , the component outputs m tokens on port
y that conforms to Q.

29



Here the difference between the guard G and the precondition P is
that the contract is enabled when G is satisfied, while P is required to
hold for any input that enables the contract. A component can have
more than one contract, but the contract guards must then be mutu-
ally exclusive. In other words, at most one contract can be enabled by
any input data. Viewed differently this means that contracts essentially
specify different modes of the component, which are triggered based on
input tokens.

The contract C describes the behaviour of the component over a
window of size n on the input and a window of size m on the output.
From now on a window over the channels described by a contract are
referred to as the contract window. The contract window is a central
concept in the specification and verification technique proposed in this
thesis. As discussed in more detail in Chapter 5, the proof of correctness
with respect to contract is, in essence, done inductively by showing that
a component satisfies the contract by considering an arbitrary contract
window.

To make the discussion more concrete, consider the network N in Fig-
ure 4.1. The functionality of this network is that it subtracts the current
input with the previous input. A contract C describing the network is
included in the code listing in Figure 4.1. In the contract conditions, the
operator • is used to conveniently refer to tokens consumed or produced
during a contract window. To discuss the semantics of the contracts, the
bullet operator •(c) needs to be defined.

Definition 3 (Bullet). •(c) for a channel c is the total number of tokens
that had been consumed on c before the current contract window.

For convenience, the argument can be left out when • is used in a
channel index, i.e. c[•] is synonymous to c[•(c)]. It is also possible to, for
instance, refer to the last token produced during the previous contract
window using an offset of −1 with •, i.e. c[• − 1]. Positive offsets can be
used to refer to additional tokens produced inside the contract window.

For the purpose of illustrating contract features, the example con-
tract C in Figure 4.1 requires that inputs are greater than 0 and that
each input is greater than the previous one. The example contract also
has a postcondition stating that the output on y is always non-negative.
Additionally, the second postcondition states that starting from the sec-
ond output, the output is the difference between input in the considered
contract window and in the previous window. Verifying the network N
with respect to its contract C means ensuring that the postconditions
are always satisfied, assuming that the input satisfies the preconditions.

30



It is worth noting that a contract describes the behaviour of a com-
ponent in a similar way as actor actions do. A contract could even be
considered as a form of composite action, which consists of a sequence of
actions on the hierarchical level below.

Delay

Sub

actor Delay(int y0) int x =⇒ int y:
initialize =⇒ y:[y0] end
action x:[i] =⇒ y:[i] end

end

actor Sub int x1, int x2 =⇒ int y:
action x1:[i], x2:[j] =⇒ y:[i−j] end

end

network N int x =⇒ int y:

C: contract x:1 =⇒ y:1
requires 0 ≤ x[•]
requires 0 < •(x) =⇒ x[•−1] ≤ x[•]
ensures 0 ≤ y[•]
ensures 0 < •(y) =⇒ y[•] = x[•] − x[•−1]

end

contract invariant tokens(c,1)
action invariant c[0] = 0
action invariant 0 ≤ c[•]

entities
del = Delay(0);
sub = Sub();

end

structure
a: x −→ del.x;
b: x −→ sub.x1;
c: del.y −→ sub.x2;
d: sub.y −→ y;

end
end

Figure 4.1: An example dataflow network and a contract describing its
functionality.

31



A ::= A1 ∧ A2 | tokens(id, e) | e

Figure 4.2: The grammar of the assertion language.

4.1.1 Invariants
The proof of correctness with respect to contracts is done inductively
on contract windows. To enable inductive proofs of properties regarding
dataflow components, it is often necessary to annotate the component
with a set of invariants. There are two types of invariants: contract
invariants and action invariants. Contract invariants are required to
hold between contract windows and are hence used to describe the state
of the component between the contract windows. In other words, any
sequence of actions executed in a contract window must return the com-
ponent to a state where the contract invariants hold. Action invariants
are required to hold when contract invariants are required to hold and
are additionally also required to hold between each action firing inside
the contract window. In the case of a network, this means that all firings
of subcomponents have to preserve the action invariant.

Consider again the example in Figure 4.1. The network N is anno-
tated with two action invariants and one contract invariant. The con-
struct tokens(c,1) used in the contract invariant expresses that there
should be exactly 1 token on the channel named c between each contract
window. The action invariant c[0] = 0 expresses that the initial token
produced on c is equal to 0. This follows from the initialization action
of the actor instance del. The second action invariant essentially states
that any token produced on channel c is non-negative.

4.1.2 Assertion language
An assertion language is used to express conditions, i.e. the predicates, in
contracts. The assertion language should be expressive enough to allow
expressing the desired properties, but on the other hand it should also be
easy to use for e.g. engineers. In this work, the assertion language A is
an extension of the host expression language e defined in Figure 3.2. In
essence, the assertion language is equivalent to the expression language
e, but complemented with some additional functions not part of the
language. This has the advantage that the engineer is typically already
familiar with the host language. The functions available are summarised
together with short descriptions of their meaning in Table 4.1.

The formal grammar of the assertion language is given in Figure 4.2.
According to the grammar, an assertion is a series of conjunctions. The

32



Table 4.1: Description of specification constructs

Construct Description
•(c) The number of tokens consumed on c before the current con-

tract window.
rd(c) Total number of tokens consumed on channel c.
tot(c) Total number of tokens produced on channel c.
urd(c) Number of unread tokens on c, i.e. tot(c) − rd(c).
rd•(c) Number of tokens consumed on c during the current contract

window, i.e. rd(c) − •(c).
tot•(c) Number of tokens produced during the current contract win-

dow plus previously unconsumed tokens, i.e. tot(c) − •(c).
next(c) The next token to be consumed on c.
prev(c) The latest token that was consumed on c.
last(c) The latest token that was produced on c.
tokens(c, e) Predicate expressing that the number of unread tokens on c is

equal to e.

construct tokens can only appear as an independent operand in the con-
junction. This limitation helps the verifier in keeping track of for which
channels tokens has been used. Although, according to the grammar, an
assertion can be any expression expressible in the expression language,
a well-formed assertion is always of Boolean type, i.e. a predicate. On
the contrary, only assertions can contain specification constructs such as
•(c), rd(c) and tot(c).

4.2 Contracts for dataflow actors
In addition to specifying the behaviour of dataflow networks, the contract
format introduced in Definition 2 can also be used to specify behaviour
of actors.

In a CAL-style language, actor actions are often fired in a predefined
order. However, this order is not always made explicit in actor code.
Consider the actor Split16 in Figure 4.3. The functionality of this actor
is that it receives 16 tokens on the inport and forwards the first token
to the outport out1 and the remaining 15 tokens to the outport out2. A
natural way to express this as actor actions is to have a separate action
first for the first token and another action rest for the additional tokens.
The actor state, which determines which action is to be executed next,
is maintained as a variable count. While not immediately apparent from
the action implementations, Split16 has a repeating behaviour where a
firing of first is always followed by 15 firings of the action rest.

33



actor Split16 int in =⇒ int out1, int out2:

int count := 0;

contract in:16 =⇒ out1:1, out2:15
ensures out1[•] = in[•]
ensures ∀ int i · 0 ≤ i < 15 =⇒ out2[•+i] = in[•+i+1]

end

contract invariant count = 0

first: action in:[ x ] =⇒ out1:[ x ]
guard count = 0
do

count := count + 1;
end

rest: action in:[ x ] =⇒ out2:[ x ]
guard count ̸= 0
do

count := count + 1
if (count = 16)
count := 0;

end
end

end
end

Figure 4.3: Example of an actor with a contract allowing static schedul-
ing.

The contract format defined in Definition 2 can be used to describe
repeating behaviours like the one of Split16. Consider the contract of
Split16, defining the amount of input and output tokens as well the
relationship between input tokens and output tokens. Essentially, the
contract defines a composite action consisting of 16 actor firings. When
verifying networks containing actors with contract specifications, the be-
haviour of the actors can be abstracted by assuming that they behave
according to their contract specification. Hence the specification and
verification approach is hierarchical and modular. This simplifies the
reasoning and makes the verification approach scalable.

34



4.3 Contracts for Simulink models
The model of computation in Simulink differs from asynchronous data-
flow in that actors are triggered by a clock and updated at sampling
times. To be intuitive, also contracts for Simulink models should then
state properties about signals at certain sampling times. Furthermore,
as contracts describe multi-rate subsystems, different sampling periods
also have to be taken into account. The proposed contract format for
Simulink models (Paper I) is given in Figure 4.4. The contract for-
mat is syntactically similar to the one defined for dataflow programs in
Definition 2. Syntactically, the largest difference is that the Simulink
contracts also declare types for inports and outports. As Simulink is im-
plicitly typed, these explicit type annotations in contracts aid in ensuring
type correctness.

In Figure 4.4 an example contract for the subsystem illustrated in
Figure 2.1 is given. The precondition states that the input of type double
should have either value 0 or 1. The postcondition then states that the
output should be the decimal value calculated based on the four last
inputs. Here the construct delay(s, i) is used to refer to the previous
value on a signal s, where i is the initial value of that signal, i.e. s(0).
The invariant in the contract relates the delays to block memories in the
Simulink model. Here the syntax B_X is used to refer to the memory
X of block B.

4.4 Mapping Simulink contracts to asynchronous
dataflow contracts

As discussed in Section 2.2.5, an extensive subset of discrete-time Simu-
link can be mapped to static dataflow (SDF). In this section it is out-
lined on a high level how the Simulink contracts can be mapped into the
contract format defined in Definition 2 in a way such that a Simulink
subsystem period is mapped to a contract window. Based on this map-
ping, a unified specification and verification framework for asynchronous
dataflow languages and synchronous languages similar to Simulink is
achieved.

Consider a Simulink contract C for Simulink subsystem with an in-
port x and an outport y. Assume further that the subsystem sampling
period is Tsub and the subsystem repeating period is P . When trans-
lated to an SDF representation, the SDF network will consume or pro-
duce P/Tsub tokens on each inport and outport. It is then possible to
translate a port variable p in the Simulink contract according to the

35



contract
inports (id : type)∗

outports (id : type)∗

parameters (id : type)∗

requires AP

ensures AQ

invariant AI

end

contract
inports x: double
outports y: double
parameters
B0: double
B1: double
B2: double
B3: double

ensures
y =
B0 ∗ x +
B1 ∗ delay(x,0) +
B2 ∗ delay(delay(x,0),0) +
B3 ∗ delay(delay(delay(x,0),0),0)

invariant
delay(x,0) = D1_X ∧
delay(delay(x,0),0) = D2_X ∧
delay(delay(delay(x,0),0),0) = D3_X

end

Figure 4.4: The proposed Simulink contract format and an example con-
tract for the FIR filter in Figure 2.1.

following:
p = sdf(p)[• − d]

where d is the number of delays. This means that, if p is not referenced
inside a delay construct, then there is no delay and d = 0. If p is nested
inside n delay constructs, then the delay d is n.

However, the upsampling of inports and outports to the subsystem
rate in the SDF representation means that the precondition P and post-
condition Q have to be quantified over the period. This means that a
precondition A(x) takes the following form:

∀k · 0 ≤ k < P/Tsub =⇒ A(sdf(x)[• + k])

while a postcondition A(x, y) takes the following form:

∀k · 0 ≤ k < P/Tsub =⇒ A(sdf(x)[• − d], sdf(y)[• + k])

Considering this mapping more closely reveals some limitations in ex-
pressiveness of the Simulink contract format. It is, for instance, not pos-
sible to refer to individual sampling points of the input inside a period in
the contracts, which the more general contract format for asynchronous
dataflow allows using the • operator.

36



Considering the contract for the FIR filter as an example, it can be
mapped to the following actor contract and actor invariants, assuming
that P/Tsub = 4:

contract x:4 =⇒ y:4
ensures ∀ int k · 0 ≤ k ∧ k < 4 =⇒
y[•+k] = B0 ∗ x[•] + B1 ∗ x[•−1] + B2 ∗ x[•−2] + B3 ∗ x[•−3]

end

invariant tokens(D1_X, 1) ∧ tokens(D2_X, 1) ∧ tokens(D3_X, 1)
invariant D1_X[0] = 0 ∧ D2_X[0] = 0 ∧ D3_X[0] = 0
invariant x[•−1] = D1_X[•] ∧ x[•−2] = D2_X[•] ∧ x[•−3] = D3_X[•]

The first and second invariants derives from the block memories of the
Simulink Unit Delay blocks. The third invariant is derived from the
invariant given in the Simulink contract.

37



38



Chapter 5

Verification

One of the main targets of this thesis work is to enable automated verifi-
cation of dataflow programs with respect to contracts. Automated here
means that the verification is done automatically only guided by user-
provided invariant annotations. The purpose of this chapter is to outline
how the programming languages and contracts described in the previous
chapters can be converted into efficient input for an automatic verifier.

The proposed verification approach is based on translating the data-
flow programs and contracts into input for a well-tested and efficient ver-
ification tool. The Boogie [5] verifier was chosen for this purpose, because
of its expressive input language and tight integration with the state-of-
the-art SMT solver Z3 [21]. The verification problem then essentially
becomes converting dataflow programs and accompanying contracts into
Boogie input that can be efficiently verified. The input language for
Boogie is a sequential programming language, which makes it straight-
forward to encode many of the host language constructs. However, the
matrix functions and operators need special treatment, as there is no
native matrix support in Boogie. In addition to this, the main challenge
regarding this encoding consists in describing actor networks and their
specifications in terms of sequential programming language constructs.
In this chapter the mapping of dataflow programs into verifiable sequen-
tial program routines is discussed on a mainly informal level, deferring
most of the formal details to the research papers.

5.1 From dataflow to sequential program
For restricted models of computation like static dataflow and synchronous
languages, well-studied algorithms for conversion of dataflow diagrams
to sequential programs exist [53, 52, 74, 17]. These algorithms consist
in scheduling actor actions into a static sequence of firings of actor ac-
tions. However, for more general models of computation like DPN, this

39



approach is not possible in the general case, because scheduling is a run-
time problem and no static schedule can be obtained. This essentially
follows from the fact that an actor can be enabled or disabled based on
the values of incoming tokens, which are not known at compile-time.

The purpose of dataflow scheduling is to find a sequence of actor
firings to allow the network to return to a state corresponding to the
one before executing the sequence. This means that, e.g. the number
of tokens on channels are the same after executing a schedule. The
purpose of these schedules are that they can be repeated indefinitely to
execute the network. To concretise the discussion, the example network
in Figure 4.1 can again be considered. This network has two actors
Del and Sub. When the network receives one input token both actions
become enabled. This means that the network has two possible schedules
[del, sub] and [sub, del], which both are functionally equivalent. Executing
only one of either of the actors would not return the number of tokens
on the channels to the original state and are hence not valid schedules.

To extend the idea of sequential schedules to MoCs which are not
statically schedulable, we can consider expressing the program as a loop
in which each iteration non-deterministically fires an enabled action:

Receive input tokens
while (enabled actors)

Non-deterministically execute an enabled actor action
end
Send output tokens

(5.1)

Executing a dataflow diagram then consists in repeated executions of the
above program. Since it has been established that, given some restric-
tions, all schedules are functionally equivalent [54, 51] we can use the
above scheme as a basis to verify asynchronous dataflow networks with-
out computing a static schedule, given that we can check for the required
restrictions.

40



If we again consider the example network N in Figure 4.1, it can be
expressed according to the scheme above as follows:

Receive 1 token on x
while ((del enabled) ∨ (sub enabled))

do
(del.a enabled) → execute del.a
| (sub.a enabled) → execute sub.a

end
end
Output 1 token on y

where the construct G1 → S1 | G2 → S2 denotes non-deterministic
choice, meaning that any Si where Gi is true can be executed. Con-
sidering this pseudocode it becomes apparent that there needs to be a
method to decide the appropriate number of input tokens. The number
of input tokens should allow N to fire in such a way that the network
channels are returned to an initial state where no components in N are
fireable without receiving additional network input. As discussed earlier,
the contract format defined in Definition 2 makes explicit the number of
input and output tokens.

It is worth noting that the same strategy can be used to encode not
only networks, but also basic actors. In this case the actions executed in
the while loop are those defined in the actor itself.

5.2 Boogie encoding of actors and networks
Based on the mapping from dataflow to sequential programs introduced
in the previous section, it is possible to verify dataflow components using
traditional program verification techniques. Consider again a contract C:

C : contract x : Cx =⇒ y : Cy

guard Cgrd
requires Cpre
ensures Cpost

end

Further assume that there are contract invariants Ccinv and action in-
variants Cainv. On a very high level, to verify a network N with respect
to C, the following proof obligations have to be discharged:

1. Executing the initialisation actions of the components in N estab-
lishes the Ccinv and Cainv.

41



2. Receiving Cx input tokens on channel x satisfying Cgrd and Cpre
preserves the action invariants.

3. Executing the components of N (i.e. the while loop) preserves
Cainv.

4. Assuming Cainv holds and the loop condition is falsified (i.e. the
loop has terminated), there is Cy output tokens on channel y, and
Ccinv, Cainv, and Cpost hold.

If a network has more than one contract, the steps 2 and 4 above need
to be proven separately for each contract.

However, to efficiently encode the proof obligations in practice, there
are many issues that need to be addressed. For instance, dataflow con-
structs like channels need to be efficiently encoded in the Boogie lan-
guage.

To encode network channels, an encoding based on Boogie’s poly-
morphic maps was chosen. The encoding is based on the following global
map variables:

I : ch → int R : ch → int C : ch → int M : (ch⟨β⟩, int) → β

Here I, R and C are maps from channels to integers. The integer I[c] is
the number of tokens that had been consumed on the channel c before
the current contract window. The integer R[c] is the total number of
consumed tokens on c, while C[c] is the total number of tokens produced
on c. The variable M contains the actual channel tokens. Note that M
is a polymorphic map where β is a type variable for the channel contents.
The value M[c, i] denotes the i:th token produced on channel c.

Based on the global map definitions, it becomes possible to define
Boogie encodings for the specification constructs introduced in Table 4.1.
The definitions are listed in Figure 5.1. In the figure, the notion TAU
is used to denote the Boogie encoding of the specification construct A.
As an example, consider the encoding of the following precondition in
contract C in Figure 4.1:

T0 < •(x) =⇒ x[•−1] ≤ x[•]U
which encodes into the following Boogie expression:

0 < I[x] =⇒ M[x, I[x] − 1] ≤ M[x, I[x]]

42



Tc[i]U = M[c, TiU]T•(c)U = I[c]Trd(c)U = R[c]Ttot(c)U = C[c]Trd•(c)U = R[c] − I[c]Ttot•(c)U = C[c] − I[c]

Turd(c)U = C[c] − R[c]Tnext(c)U = R[c]Tprev(c)U = R[c] − 1Tlast(c)U = C[c] − 1Ttokens(c, e)U = C[c] − R[c] = TeU
Figure 5.1: Encoding of assertion constructs.

Note that standard arithmetic and logical operators have direct corre-
spondences in Boogie. These are hence straight-forward to encode and
are not included in Figure 5.1.

One of the main drawbacks with the loop-based encoding approach
outlined above is the number of action invariants needed to verify pro-
grams of realistic size. In practice the approach requires that, for each
network component D reading from a channel a and writing to a channel
b, there is invariants expressing the relation between the tokens on a and
b. In Chapter 6 it is discussed that, with the help of contracts, it is often
possible to compute static schedules for parts of the dataflow networks
not adhering to any well-known schedulable model of computation and
that this can greatly reduce the number of invariants required.

5.3 Host language encoding
To verify that actor actions satisfy their contracts action bodies need to
be encoded in the verifier. Boogie is itself a sequential programming lan-
guage, which makes many of the constructs straight-forward to encode.
However, the host language introduced in Section 3.2 has built-in sup-
port for MATLAB-style matrix operators and functions, which are not
natively supported by Boogie or SMT solvers in general, and therefore
need special treatment. Boogie’s map datatype, used in the previous sec-
tion to encode dataflow channels, can also be used to describe matrices.
A matrix is encoded as a map of maps, where sub-maps correspond to
matrix rows. However, operators and function on matrices also need to
be encoded.

Within the scope of this thesis (Paper II), two different approaches to
encoding verification conditions involving matrix operations in a verifier
were evaluated. The first approach is based on giving matrix operations
preconditions and postconditions in the same manner as in traditional
program verification. The second approach uses information about ma-
trix shapes to expand matrix operations.

43



As an example of the axiomatisation approach, consider the MAT-
LAB addition operator (denoted with the sign +). When both operands
are matrices, this operator returns the element-wise sum of the two
operands. This behaviour can be described with the following axiom:

∀ int i, int j · 1 ≤ i ≤ m ∧ 1 ≤ j ≤ n =⇒ (a + b)(i, j) = a(i, j) +s b(i, j)

where the operator +s denotes standard scalar addition. However, the
behaviour of the MATLAB addition operator depends on the size of the
operand matrices. If either of the operands is a scalar, the resulting
matrix is the same size as the non-scalar operand, where each element
is summed with the scalar operand. This can be described with the
following axiom:

∀ int i, int j · 1 ≤ i ≤ m ∧ 1 ≤ j ≤ n =⇒ (a + b)(i, j) = a(i, j) +s b

Hence, the MATLAB addition operator needs to be described by different
axioms depending on the input matrix shapes. Consequently, this means
that matrix size need to be known when generating verification condi-
tions. The type system described in Section 3.3 is hence used to infer
types, including matrix sizes, before generating verification conditions.

The other encoding approach evaluated within the scope of this thesis
is expansion. The idea behind expansion is to utilize the fact that ma-
trix shapes are known to expand matrix functions and operators. For a
matrix a, the expansion TaU denotes the syntactically expanded matrix:

TaU =

 Ta(1, 1)U · · · Ta(1, n)U
... . . . ...Ta(m, 1)U · · · Ta(m, n)U


Element-wise operators and functions like the addition operator for two
matrices of size ⟨m, n⟩ described above is encoded as:

Ta + bU =

 Ta(1, 1)U +s Tb(1, 1)U · · · Ta(1, n)U +s Tb(1, n)U
... . . . ...Ta(m, 1)U +s Tb(m, 1)U · · · Ta(m, n)U +s Tb(m, n)U


Matrix element accesses are encoded as TaU(i, j). However, if a is

an expression and i and j are known variables the element can directly
extracted from a. This essentially means that, e.g., T(a + b)(2, 2)U can
be converted to Ta(2, 2)U +s Tb(2, 2)U directly.

Evaluation (Paper II) showed that the expansion approach yields ef-
ficient verification conditions as long as matrices are of relatively small

44



size, which in practice is common in embedded control applications. The
main drawback of the axiomatisation approach concerns so-called collaps-
ing functions, e.g. for obtaining the sum over a vector, which typically
needs recursive axioms. This is something not handled very efficiently
by off-the-shelf SMT solvers. This problem does not arise with the ex-
pansion approach, as axioms for matrix functions and operators are not
needed.

45



46



Chapter 6

Scheduling

One of the main drawbacks with dynamic dataflow programs, compared
to restricted models of computation like static dataflow, is that schedul-
ing of actions is a runtime problem. This incurs an execution over-
head, decreasing the performance of the implemented program. Differ-
ent approaches to alleviate this problem, by enabling as many schedul-
ing decisions as possible to be made at compile-time, have been pro-
posed [7, 14, 30]. In this chapter, it is discussed how contracts can aid in
finding static schedules for dataflow programs which cannot be classified
to belong to any well-established model of computation. Consequently,
dataflow contracts are not only useful for specifying and verifying cor-
rect behaviour, but can also be utilised to improve runtime performance.
Furthermore, it is also shown that the obtained schedules can be utilised
in the verification process and that this significantly reduces the need for
user-provided invariant annotations.

6.1 Contract-based scheduling
In the scheduling approach presented here, the target is to obtain a static
schedule for each contract of the scheduled component. Contracts are
used to specify the number of input tokens consumed and output tokens
produced during one iteration of the schedule. A valid schedule is a
sequence of firings, i.e. executions of actions, that returns the component
to a state satisfying the contract invariants.

The contract-based scheduling approach is based on the observation
that contracts naturally make explicit information that can be used to
guide the search for repeating schedules. Consider again the example
actor in Figure 4.3 and its contract. The contract describes the repeating
behaviour of this actor, which is one firing of the action first followed by
15 firings of the action rest. Automatically finding these schedules is
not a trivial problem and has been subject to extensive research. For
instance, Ersfolk et al. [28, 14] used state-space analysis with the SPIN

47



model checker to search for repeating schedules of dataflow networks.
Their work does, however, not utilize extra user-provided information
given in the form of contracts in this approach.

Based on the information provided in the contract, the schedule
search for the example in Figure 4.3 can be narrowed to search for sched-
ules that consume 16 integer input tokens. The search is performed
by translating actors and networks to the input language of the SPIN
model checker, named Promela, essentially reusing the work of Ersfolk
et al. [28, 14]. Promela is designed to describe concurrent processes
and hence includes built-in constructs such as communication channels,
which are useful to describe actor networks. To utilize our contracts in
the schedule search, the SMT solver Z3 is first used to generate an arbi-
trary instance of input satisfying the contract, which is then used in the
generated Promela program. SPIN is then used to find a state where all
input tokens have been consumed and the component has returned to
a state satisfying the contract invariants. The actual schedule can then
be obtained as an execution trace of a counter-example from the model
checker.

It should be noted that this state space analysis only ensures that the
obtained schedule is valid for the specific instance of input generated by
the SMT solver. Further measures are needed to ensure that the schedule
is valid for any input allowed by the contract.

6.2 Ensuring correctness
A schedule obtained through state space analysis can be utilised to ensure
that a component is correct with respect to its contract. However, it also
needs to be ensured that schedule is valid for all inputs allowed by the
contract. Both correctness with respect to the contract as well as sched-
ule validity can be verified by generating a Boogie program based on the
schedule, including assertions ensuring that each step in the schedule is
firable for any valid input. For the example in Figure 4.3, a Boogie pro-
gram like the one outlined Figure 6.1 is obtained. Verifying the program
ensures that:

1. The obtained schedule is valid for all inputs allowed by the con-
tract. This means that the component is deadlock-free and that no
preconditions of the subcomponents are violated.

2. The dataflow component is correct with respect to its contract.
This follows from the fact that, for DPN, all valid schedules are
functionally equivalent, as proved by Lee et al. [51, 54].

48



assume TCcinvU;
C[in] := C[in] + 16;
assume TCgrdU ∧ TCpreU
assert 1 ≤ C[in] − R[in] ∧ Tcount = 0U;
fire(first);
assert 1 ≤ C[in] − R[in] ∧ Tcount ̸= 0U;
fire(rest);
assert 1 ≤ C[in] − R[in] ∧ Tcount ̸= 0U;
fire(rest);
...
assert C[out1] − R[out1] = 1 ∧ C[out2] − R[out2] = 15
assert TCpostU ∧ TCcinvU;

Figure 6.1: High-level overview of the Boogie program obtained by
scheduling the actor in Figure 4.3 according to its contract.

In Figure 6.1, fire is used to denote firing of an action or sub-component.
In practice fire consists e.g. of updating the global state variables R,
C and M, asserting sub-componenent preconditions, and assuming sub-
component postconditions.

One of the main advantages with utilising contracts and schedules in
the correctness proof, compared to the approach in Chapter 5, is that
the number of invariants the user needs to provide is greatly reduced.
Scheduling essentially unrolls the loop in (5.1), which means that most
often no invariants are needed to express the relationship between com-
ponents in the network. In practice, only contract invariants, expressing
the state between contract windows, are then needed. On the other
hand, the main drawback with the schedule-based verification approach
is that schedules with a very large number of firings also converts into
large Boogie programs, which consequently may be challenging or slow
to verify. In Table 6.1 a comparison of number of invariants and elapsed
verification time for a number of example programs with and without
scheduling is presented (Paper IV). It can be noted that scheduling sig-
nificantly reduces the number of needed invariants, but the verification
time also increased in most cases. This is due to the larger Boogie pro-
grams generated.

49



Table 6.1: The number of user-provided invariants needed as well as
verification time for a number of different dataflow networks with and
without contract-based scheduling (Paper IV)

Unscheduled Scheduled
Network Invariants Time (s) Invariants Time (s)
SumNet 3 1.7 3 5.1
DataDependent 6 1.9 0 7.4
IIR 2 1.9 2 5.3
FIR 4 2.4 4 5.8
LMS 9 14.6 9 12.1
ZigBee 28 6.8 2 250.7
Addressing 11 3.4 1 12.3
DCRInvpred 25 38.2 1 18.2
DCSplit 6 11.8 1 8.6
Algo_IS 8 3.4 2 72.0
Algo_IAP 5 2.7 1 22.3
Dequant 3 2.2 1 11.1
Algo_IDCT2D 2 3.6 0 13.4
DCReconstruction 13 4.6 0 40.6
Texture 29 5.9 0 103.9

6.3 Improving runtime performance using con-
tracts

Schedules obtained by scheduling can also be used to generate executable
code for the network. As the schedule defines in which order actions will
be fired, there is no need to use processor time to evaluate action guards
for the scheduled actions at runtime. For dataflow networks of realistic
size, this kind of optimisations can have significant impact on execution
time [7, 14, 30]. Hence, contracts are not only useful to state and verify
functional properties, but they can also improve runtime performance.

Going further, contracts can, in fact, enable compile-time schedul-
ing decisions that would be extremely challenging or even impossible
to deduce solely based on the network and actor implementations. As
an example, consider the actor DupNonNeg and the network N in Fig-
ure 6.2. The actor DupNonNeg writes non-negative outputs twice to the
output channel and negative input once. Assume that it is known that
the input to N is always a negative number followed by a non-negative
number. This can be expressed as a contract precondition, as done for
the contract C of N. Based on C, the proposed contract-based scheduling

50



actor DupNonNeg int in1, int in2 =⇒ int out:
a1: action in:[ x ] =⇒ out:[ x, x ] guard 0 ≤ x end
a2: action in:[ x ] =⇒ out:[ x ] guard x < 0 end

end

network N int in =⇒ int out:
C: contract in:2 =⇒ out:3
requires in[•] < 0 ∧ 0 ≤ in[•+1]

end

entities
a = DupNonNeg();

end

structure
a: in −→ a.in;
b: a.out −→ out;

end
end

Figure 6.2: Properties provided in contracts can be used to do scheduling
decisions.

approach can deduce a static schedule for N consisting of one firing of
a2 followed by one firing of a1. Without the extra information provided
in the contract C, it would not be possible to obtain this static schedule
for the network N.

Furthermore, state-space analysis can be used not only to find an ar-
bitrary valid schedule, but a schedule optimal with respect to a provided
cost function. This is possible by instructing the SPIN model checker
to search for schedules in a Branch-and-Bound fashion [70]. Hence, it is
possible to, for instance, find a schedule optimised for minimal channel
buffer sizes.

Within this thesis (Paper IV), the runtime performance improve-
ments for an MPEG-4 decoder obtained by scheduling according to two
different cost functions were evaluated. The programs were evaluated
on two different platforms; a laptop with an Intel i5 processor and an
Odroid platform with an ARMv7 processor. Overall, improvements in
throughput of 70 to 95 %, compared to making all scheduling decisions
at runtime, were observed. It was also observed that, depending on the
platform, it varied which scheduling cost function produced the most
efficient code.

51



actor Sign int in =⇒ int out:
contract in:1 =⇒ out:1 end
pos: action in:[ x ] =⇒ out:[ 1 ] guard x > 0 end
zero: action in:[ x ] =⇒ out:[ 0 ] guard x = 0 end
neg: action in:[ x ] =⇒ out:[ −1 ] guard x < 0 end

end

Figure 6.3: Although an actor satisifes its contract, it is not necessarily
possible to generate a static schedule based on the contract.

6.4 Limitations
The scheduling approach described above has some limitations. A con-
tract guard and precondition is not necessarily strict enough to yield a
schedule valid for any allowed input. Consider, for instance, the simple
actor in Figure 6.3 implementing a sign function. It is apparent that
the actor satisfies the contract, which only states that the actor con-
sumes 1 token and outputs 1 token. However, it is not possible to obtain
a static schedule valid for all inputs based on this contract, as any of
the three actions can fire on inputs allowed by the contract. Using the
proposed contract-based scheduling approach, state-space analysis would
return a schedule for one of the actions, depending on the input instance
generated by the SMT solver, but the Boogie correctness check would
fail, since the obtained schedule is not correct for all allowed inputs. In
cases like this, a separate contract has to be supplied for all three cases.
However, the presented verification approach does not require that the
entire network is statically schedulable. This means that the approach
with unknown schedule described in Chapter 5 can be applied to select
components of the network, while the schedule-based approach is used
to verify other components.

Another limitation regarding the schedule-based approach concerns
networks with feedback loops. The hierarchical scheduling performed
based on contracts is not always possible for such networks. However,
also in these cases the approach in Chapter 5 can be used as a fall back.

52



Chapter 7

Related work

The focus of this thesis is on contract-based specification and verification
of dataflow programs. The thesis is based on, and relates to, research
from several different research topics. In this chapter, the thesis is re-
viewed in relation to other work. The chapter is split into different
sections roughly based on research topic.

7.1 Verification
The use of contracts has a long history. The foundations go back to
the works of Dijkstra [24], Hoare [41] and Jones [47], while contract-
based design as a term was introduced by Meyer [65, 43]. Contract-based
static verification has been researched and verifiers implemented for a
large amount of widely used general-purpose programming languages,
for instance, Java [15, 18], C# [6] and C [49] and .NET [29].

Dafny [55] is a rich programming language that is designed specifically
with contracts and verification of functional correctness in mind. The
language Chalice [56, 57] and the verifier with the same name support
verification of multi-threaded programs. Chalice also supports commu-
nication over channels that can be verified to be deadlock free [58].

Several verification backends that aim to ease the transformation
from programs with specifications (e.g. contracts) to input for an SMT
solver exist, for instance Boogie [5], Why3 [31] and Viper [67]. In this
thesis work, Boogie [5] has been used as a backend because it is a mature
tool supporting an expressive sequential programming language as input.
This makes it convenient to encode the considered host language. Boogie
also has tight integration with the SMT solver Z3 [21], which means that
it typically generates very efficient verification conditions. Also verifiers
for other languages mentioned above, e.g. Dafny and Chalice, are based
on translating the programs and contracts to a Boogie representation.

Verification of dataflow programs has also been studied extensively
before, especially in the synchronous setting. In [62] Maraninchi and

53



Morel presented contracts for Lustre. Based on the connection between
Simulink and Lustre [75] this could be applied also on Simulink mod-
els. Hagen and Tinelli have used k-induction with Lustre [36, 35]. A
more recent contract language for synchronous reactive systems is Co-
CoSpec [19]. CoCoSpec is mode-aware, which, in essence, is similar to
annotating components with multiple contracts in the approach of this
thesis. Dragomir, Preoteasa and Tripakis have developed a composi-
tional semantics and analysis framework for reactive systems based on
predicate transformers [25]. They have also developed a type inference
technique for Simulink diagrams in Isabelle [69]. In recent work [73] by
Sun et al. a contract-based semantics and refinement for Simulink models
supporting both continuous and discrete-time Simulink was developed.
They do, however, not support multi-rate models and do not discuss
automatic verification. Limiting the scope to discrete-time Simulink en-
ables verifying Simulink models through translation to SDF, as done in
this thesis. However, none of the approaches mentioned above support
asynchronous dataflow in the same framework.

Static analysis of dynamic dataflow networks has also been studied to
some extent before. In [44] an approach to modular analysis of Dataflow
Process Networks based on Interface Automata is presented. In this
work, dataflow processes are associated interface automata describing
the interface and environmental assumptions. An extension to this work,
Counting Interface Automata [76], has also been researched. Counting
Interface Automata can capture temporal and quantitative aspects of
actor interfaces. However, neither of these approaches consider contract-
based verification.

The work in this thesis extends on a line of research by Boström
et al. [9, 10, 11, 12] on contract-based design of Simulink models. The
work in this thesis extends on the above works by generalizing it to
consider, for instance, multi-rate Simulink models, matrix data types,
as well as asynchronous and dynamic dataflow models of computation.
The approach is also evaluated on example programs to a much greater
extent in this thesis.

The actor model introduced by Hewitt, Bishop and Steiger [40] should
also be mentioned in this context. On a high level, actors are concurrent
objects that communicate with each other by message passing. Under
this broad definition also the dataflow actor networks considered in this
thesis could be considered special cases of the actor model. Implemen-
tations of the actor model are found in many modern programming lan-
guages and software libraries, such as Erlang [4], Scala [37], and Ray [66].
Several frameworks for analysis of actor programs exists. Rebeca [71], for
instance, provides a formalism and model checking technique for actor

54



networks. Recent work by Lohstroh et al. [60] introduces an interesting
model called reactors, which combines concepts from the actor model
with concepts from dataflow and synchronous models of computation to
achieve a deterministic and timed model of computation. Closely re-
lated to the actor model is also the concept of active (or asynchronous)
objects [20]. There exists a large amount of research [2, 45, 50] on spec-
ification and verification of such programs. In contrast to the data-
flow networks considered in this thesis, the actor model is inherently
non-deterministic, which makes it more challenging to verify correctness
properties. Dataflow actor networks are also static, while actors in the
above models can be dynamically created. Restricting the approach to
deterministic and static networks significantly simplifies reasoning and
enables proving stronger properties fully automatically.

7.2 Type systems
In this thesis, a matrix shape aware type system is proposed to allow
compile-time type checking and type inference of a subset of the Embed-
ded MATLAB language. Similar type systems for MATLAB have been
studied before, but for the purpose of program optimisation [3, 22, 46].
The main target of these works is to achieve performance gains by us-
ing inferred matrix shapes to pre-allocate memory and avoiding runtime
bounds checks. In these works, failed static type inference means fall
back to runtime inference, while the verification approach proposed in
this thesis requires that all matrix shapes are known at compile-time.
Also MATLAB performs static type and shape inference e.g. when gen-
erating code for embedded platforms. It seems that forward-propagation
of type information is applied there.

There are some programming languages, e.g. FiSH [42], which have a
type system that has been designed with the explicit goal to be aware of
data shapes. FiSH allows the user to provide type annotations containing
matrix and vector shapes. A dependent type system for ML [87, 88] has
also been investigated, which uses constraint solving for type inference.
The index language used for array shapes can be arbitrarily complex
and is ultimately restricted only by the abilities of the chosen constraint
solver. While this approach is applied to the functional language ML, it
is potentially more general than the one proposed in this thesis.

55



7.3 Scheduling
The verification approaches discussed in this thesis are to a large extent
based on mapping, i.e. scheduling, the dataflow networks to sequential
programs. Lee et al. [51, 54] established that, given some restrictions such
as mutual exclusiveness of firing rules, sequential schedules for dataflow
process networks are functionally equivalent. This is a central result,
which the verification approaches presented in this thesis build upon.

For static dataflow (SDF), there exists well-established scheduling
algorithms [52, 53]. Using model checking to find schedules exhibiting
certain properties has also been done before [34, 59]. The approach pro-
posed in this thesis enables this for a broader class of dataflow programs
than SDF.

Boutellier et al. [14] presented a method for merging actors into com-
posite actors. To do this, they use model checking to find static schedules
for parts of a network. The actions of the obtained composite actors are
similar to those obtained based on contracts in this work. Essentially,
they try to automatically deduce similar properties that are made ex-
plicit in contracts in this work. The translation from dataflow networks
to SPIN used in this thesis work is based on their work.

A classification method for dataflow actors using satisfiability and
abstract interpretation has been developed by Wipliez and Raulet [86].
They also use the Z3 SMT solver as a backend. Using the SMT solver,
they detect, e.g., a class of actors that they call time-dependent, which
can react to absence of tokens on channels. Their classification can, e.g.,
ensure actor determinism, which is also achieved by generating verifica-
tion conditions checking for mutual exclusiveness action guards in this
work.

There are also approaches that more explicitly describe dynamic be-
haviour. Siyoum et al. [72] presented an approach based on scenarios,
where dynamic dataflow networks are implemented according to a Dis-
ciplined Dataflow Network MoC. The dynamic behaviour is captured by
special actors, which have a purpose similar to that of contracts in this
work. However, these actors are part of the actual programs and not
implementation independent like the contracts proposed in this thesis
work.

Composition of dataflow actors does not preserve rate consistency
and deadlock freedom. Tripakis et al. [74] proposed DSSF (Deterministic
SDF with Shared FIFOs), a profile-based methodology to handle actor
composition in hierarchical dataflow networks. Falk et al. [30] proposed a
rule-based quasi-static scheduling approach with similar targets. In their
work, static actors are composed to form composite actors for which the

56



quasi-static schedules guarantee global deadlock freedom. In this thesis
work, deadlock freedom is guaranteed by verification with respect to
contracts.

The dependencies between actors in a dataflow program can also be
analysed from execution traces of the program. Canale et al. [16] pre-
sented an approach which translates execution trace graphs of a dataflow
program to Petri Nets which are used for e.g. buffer dimensioning. A
similar approach could potentially be used as an alternative to optimizing
the schedules by model checking as done in this thesis work.

Scheduling and code generation methods specifically aimed at syn-
chronous, rather than asynchronous, languages have also been researched
to a great extent. Modular code generation methods for synchronous
languages similar to Lustre have been proposed [8, 61]. In [61], code
generation for a fairly general block diagram notation is presented. The
blocks can be triggered by different means such as clocks or other signals.
Diagrams where the time is given by a period-phase pair as in Simulink
are discussed in detail. The code generation methods in [8, 61] could
be considered as an alternative to scheduling Simulink models through
translation to SDF in this thesis work. However, using SDF as an inter-
mediate approach enables a unified framework which handles also more
general asynchronous MoCs.

57



58



Chapter 8

Conclusions

This thesis has presented a contract-based approach to specification, ver-
ification, as well as scheduling of dataflow programs. The thesis is based
on four peer-reviewed research papers, which together form a unified
specification and verification framework for synchronous as well as asyn-
chronous dataflow programs. In this chapter, the main contributions of
the thesis are summarised, followed by a discussion on possible directions
for future work.

8.1 Summary
In the introduction of this thesis, in Section 1.2, two research questions
were stated. One of the questions concerned finding specification con-
structs suitable for dataflow programs. The thesis proposed two contract-
based specification formats, for Simulink and asynchronous dataflow pro-
grams, respectively. Both contract formats consist of precondition and
postcondition assertions expressed in languages that are similar to the
expressions of the host languages used to implement the actors. This al-
lows engineers to write contract conditions in a language already familiar
to them. Evaluation showed that the contract formats also are expres-
sive enough to describe interesting properties of dataflow programs. The
relationship between the proposed contract formats were reviewed and
it was outlined how Simulink contracts can be mapped to contracts for
asynchronous dataflow.

The second research question concerned how to efficiently encode
specification constructs and dataflow programs for automatic verifica-
tion. The thesis proposed verification approaches that are based on
translating dataflow networks to sequential programs, which enable veri-
fication using well-established techniques and tools developed for sequen-
tial program verification. The Boogie program verifier was found to be
a suitable verification backend. It is an efficient verification tool, which
input language is an expressive sequential programming language. The

59



polymorphic map support of Boogie offered a convenient and efficient
way to encode both matrix data types as well as dataflow communi-
cation buffers. Using a verifier for sequential programs also provides a
convenient way to handle verification of actors implemented in sequantial
code within the same framework.

In the proposed verification approach, Simulink models are handled
by translation to an intermediate representation in the asynchronous
static dataflow (SDF) model of computation. This enables handling both
Simulink as well as more general, asynchronous, models of computation
in the same framework.

A type system and method for compile-time inference of matrix types
and shapes for a subset of Embedded MATLAB was also proposed as
part of this thesis. This allows verifying dataflow networks and actors
which have MATLAB-style native support for matrix data types. Two
approaches to encoding matrix operators and functions were investigated.
An approach, where the inferred matrix shapes are utilised to expand
the matrix functions and operators, was found to be efficient for typical
embedded applications, where matrix sizes are relatively small.

Furthermore, it was also shown that providing dataflow networks
with the proposed contracts does not only enable automatic verifica-
tion of the stated properties, but can also improve runtime performance.
This is based on the observation that the proposed contracts often make
explicit properties implicitly assumed by the developer. By utilising
this information, a larger amount of scheduling decision can be done
at compile-time, hence avoiding costly scheduling decisions at runtime.
Additionally, it was also found that obtained schedules can be utilized
in the verification, with the advantage that, in many cases, significantly
fewer invariants are needed to enable automatic verification.

8.2 Future work
There are several potential directions for future research. Feedback loops
in dataflow networks should be better supported in the contract-based
verification and scheduling approach. This could potentially be solved
by introducing state at the level of contracts in conjunction with finer-
grained scheduling.

It would also be beneficial to extend the number of MATLAB ma-
trix constructs supported. For instance, Embedded MATLAB supports
choosing any sub-matrix from a given matrix, which is currently not sup-
ported in this framework. In addition, abstract interpretation [38, 33]

60



could possibly be applied to infer properties regarding recursively defined
functions, which could enable more efficient verification conditions.

Another interesting future direction would be to investigate networks
where actors could be dynamically created, e.g. as response to input val-
ues. This would bring the model of computation closer to the more gen-
eral actor model [40, 39, 1] and would, for instance, introduce challenges
regarding non-determinism not present in strictly static networks.

During recent years, several dataflow-based frameworks aimed at im-
plementing data and machine learning pipelines have emerged. Widely
used frameworks are, for instance, Kubeflow Pipelines1, Flyte2 and Pre-
fect3. It would be interesting to investigate the relationship between
these frameworks and the dataflow models of computation considered in
this thesis. Potentially, the contract-based framework proposed in this
thesis could be used as a basis to develop a contract-based framework
for data and machine learning pipelines.

1https://www.kubeflow.org/docs/components/pipelines/
2https://flyte.org/
3https://www.prefect.io/

61



62



Bibliography

[1] G. A. Agha. Actors: A model of concurrent computation in dis-
tributed systems. PhD thesis, University of Michigan, USA, 1985.

[2] W. Ahrendt and M. Dylla. A system for compositional verification
of asynchronous objects. Sci. Comput. Program., 77(12):1289–1309,
2012.

[3] G. Almási and D. Padua. MaJIC: Compiling MATLAB for speed
and responsiveness. SIGPLAN Not., 37(5):294–303, 2002.

[4] J. Armstrong, R. Virding, and M. Williams. Concurrent program-
ming in ERLANG. Prentice Hall, 2 edition, 1996.

[5] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M.
Leino. Boogie: A modular reusable verifier for object-oriented pro-
grams. In F. S. de Boer, M. M. Bonsangue, S. Graf, and W.-P.
de Roever, editors, Formal Methods for Components and Objects,
FMCO 2005, volume 4111 of LNCS, pages 364–387. Springer Berlin
Heidelberg, 2006.

[6] M. Barnett, M. Fähndrich, K. R. M. Leino, P. Müller, W. Schulte,
and H. Venter. Specification and verification: the Spec# experience.
Commun. ACM, 54(6):81–91, 2011.

[7] B. Bhattacharya and S. Bhattacharyya. Quasi-static scheduling
of reconfigurable dataflow graphs for dsp systems. In Proceedings
11th International Workshop on Rapid System Prototyping. RSP
2000. Shortening the Path from Specification to Prototype (Cat.
No.PR00668), pages 84–89, 2000.

[8] D. Biernacki, J.-L. Colaço, G. Hamon, and M. Pouzet. Clock-
directed modular code generation for synchronous data-flow lan-
guages. In Proceedings of the 2008 ACM SIGPLAN-SIGBED Con-
ference on Languages, Compilers, and Tools for Embedded Systems,
LCTES 2008, page 121–130. ACM, 2008.

63



[9] P. Boström. Contract-based verification of Simulink models. In
S. Qin and Z. Qiu, editors, Formal Methods and Software Engineer-
ing, ICFEM 2011, volume 6991 of LNCS, pages 291–306. Springer
Berlin Heidelberg, 2011.

[10] P. Boström, M. Linjama, L. Morel, L. Siivonen, and M. Waldén.
Design and validation of digital controllers for hydraulics systems.
In The 10th Scandinavian International Conference on Fluid Power,
2007.

[11] P. Boström, L. Morel, and M. Waldén. Stepwise development of
simulink models using the refinement calculus framework. In C. B.
Jones, Z. Liu, and J. Woodcock, editors, Theoretical Aspects of Com-
puting, ICTAC 2007, volume 4711 of LNCS, pages 79–93. Springer
Berlin Heidelberg, 2007.

[12] P. Boström. Formal Design and Verification of Systems Using
Domain-Specific Languages. PhD thesis, Turku Centre for Com-
puter Science, 2008.

[13] P. Boström and J. Wiik. Contract-based verification of discrete-
time multi-rate Simulink models. Software & Systems Modeling,
15(4):1141–1161, 2016.

[14] J. Boutellier, J. Ersfolk, J. Lilius, M. Mattavelli, G. Roquier, and
O. Silvén. Actor merging for dataflow process networks. IEEE
Trans. Signal Process., 63(10):2496–2508, 2015.

[15] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T.
Leavens, K. R. M. Leino, and E. Poll. An overview of JML tools
and applications. Int. J. Softw. Tools Technol. Transf., 7(3):212–232,
2005.

[16] M. Canale, S. C. Brunet, E. Bezati, M. Mattavelli, and J. W. Jan-
neck. Dataflow programs analysis and optimization using model pre-
dictive control techniques - two examples of bounded buffer schedul-
ing: Deadlock avoidance and deadlock recovery strategies. J. Signal
Process. Syst., 84(3):371–381, 2016.

[17] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. Lustre: A
declarative language for real-time programming. In Proceedings of
the 14th ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages, POPL ’87, page 178–188. ACM, 1987.

64



[18] P. Chalin, J. R. Kiniry, G. T. Leavens, and E. Poll. Beyond as-
sertions: Advanced specification and verification with jml and es-
c/java2. In F. S. de Boer, M. M. Bonsangue, S. Graf, and W.-P.
de Roever, editors, Formal Methods for Components and Objects,
FMCO 2005, volume 4111 of LNCS, pages 342–363. Springer Berlin
Heidelberg, 2006.

[19] A. Champion, A. Gurfinkel, T. Kahsai, and C. Tinelli. CoCoSpec: A
mode-aware contract language for reactive systems. In R. De Nicola
and E. Kühn, editors, Software Engineering and Formal Methods,
SEFM 2016, volume 9763 of LNCS, pages 347–366. Springer Inter-
national Publishing, 2016.

[20] F. S. de Boer, V. Serbanescu, R. Hähnle, L. Henrio, J. Rochas, C. C.
Din, E. B. Johnsen, M. Sirjani, E. Khamespanah, K. Fernandez-
Reyes, and A. M. Yang. A survey of active object languages. ACM
Comput. Surv., 50(5):76:1–76:39, 2017.

[21] L. de Moura and N. Bjørner. Z3: An efficient smt solver. In C. R.
Ramakrishnan and J. Rehof, editors, Tools and Algorithms for the
Construction and Analysis of Systems, TACAS 2008, volume 4963
of LNCS, pages 337–340. Springer Berlin Heidelberg, 2008.

[22] L. De Rose and D. Padua. Techniques for the translation of MAT-
LAB programs into Fortran 90. ACM Trans. Program. Lang. Syst.,
21(2):286–323, 1999.

[23] J. B. Dennis. First version of a data flow procedure language. In
B. Robinet, editor, Programming Symposium: Proceedings, Col-
loque sur la Programmation Paris, April 9–11, 1974, pages 362–376.
Springer Berlin Heidelberg, 1974.

[24] E. W. Dijkstra. A discipline of programming. Prentice-Hall, Engle-
wood Cliffs, 1976.

[25] I. Dragomir, V. Preoteasa, and S. Tripakis. Compositional semantics
and analysis of hierarchical block diagrams. In D. Bošnački and
A. Wijs, editors, Model Checking Software, SPIN 2016, volume 9641
of LNCS, pages 38–56. Springer International Publishing, 2016.

[26] J. Eker. and J. W. Janneck. CAL language report. Technical Report
ERL Technical Memo UCB/ERL M03/48, University of California
at Berkeley, 2003.

65



[27] J. Ersfolk, P. Boström, V. Timonen, J. Westerholm, J. Wiik,
O. Karhu, M. Linjama, and M. Waldén. Optimal digital valve con-
trol using embedded GPU. In J. Uusi-Heikkilä and M. Linjama,
editors, Proceedings of the 8th Workshop on Digital Fluid Power.
Tampere University of Technology, 2016.

[28] J. Ersfolk, G. Roquier, J. Lilius, and M. Mattavelli. Scheduling
of dynamic dataflow programs based on state space analysis. In
2012 IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pages 1661–1664, 2012.

[29] M. Fähndrich and F. Logozzo. Static contract checking with ab-
stract interpretation. In B. Beckert and C. Marché, editors, Formal
Verification of Object-Oriented Software, FoVeOOS 2010, volume
6528 of LNCS, pages 10–30. Springer Berlin Heidelberg, 2011.

[30] J. Falk, C. Zebelein, C. Haubelt, and J. Teich. A rule-based quasi-
static scheduling approach for static islands in dynamic dataflow
graphs. ACM Trans. Embed. Comput. Syst., 12(3):74:1–74:31, 2013.

[31] J.-C. Filliâtre and A. Paskevich. Why3 — where programs meet
provers. In M. Felleisen and P. Gardner, editors, Programming
Languages and Systems, ESOP 2013, volume 7792 of LNCS, pages
125–128. Springer Berlin Heidelberg, 2013.

[32] R. W. Floyd. Assigning meanings to programs. In Proceedings of
a Symposium on Applied Mathematics, volume 19 of Mathematical
Aspects of Computer Science, pages 19–32. American Mathematical
Society, 1967.

[33] P.-L. Garoche, T. Kahsai, and C. Tinelli. Incremental invariant
generation using logic-based automatic abstract transformers. In
G. Brat, N. Rungta, and A. Venet, editors, NASA Formal Methods,
NFM 2013, volume 7871 of LNCS, pages 139–154. Springer Berlin
Heidelberg, 2013.

[34] M. Geilen, T. Basten, and S. Stuijk. Minimising buffer requirements
of synchronous dataflow graphs with model checking. In Proceedings.
42nd Design Automation Conference, 2005, pages 819–824. ACM,
2005.

[35] G. Hagen and C. Tinelli. Scaling up the formal verification of Lustre
programs with SMT-based techniques. In 2008 Formal Methods in
Computer-Aided Design (FMCAD), pages 1–9, 2008.

66



[36] G. E. Hagen. Verifying Safety Properties of Lustre Programs: An
SMT-based Approach. PhD thesis, University of Iowa, 2008.

[37] P. Haller and M. Odersky. Scala actors: Unifying thread-based and
event-based programming. Theor. Comput. Sci., 410(2-3):202–220,
2009.

[38] T. A. Henzinger, T. Hottelier, L. Kovács, and A. Voronkov. Invariant
and type inference for matrices. In G. Barthe and M. Hermenegildo,
editors, Verification, Model Checking, and Abstract Interpretation,
VMCAI 2010, volume 5944 of LNCS, pages 163–179. Springer Berlin
Heidelberg, 2010.

[39] C. Hewitt. Viewing control structures as patterns of passing mes-
sages. Artifical Intelligence, 8(3):323–364, 1977.

[40] C. Hewitt, P. B. Bishop, and R. Steiger. A universal modular AC-
TOR formalism for artificial intelligence. In N. J. Nilsson, editor,
Proceedings of the 3rd International Joint Conference on Artificial
Intelligence, pages 235–245. William Kaufmann, 1973.

[41] C. A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576–580, 1969.

[42] C. B. Jay and P. A. Steckler. The functional imperative: Shape!
In C. Hankin, editor, Programming Languages and Systems, ESOP
1998, volume 1381 of LNCS, pages 139–153. Springer Berlin Heidel-
berg, 1998.

[43] J.-M. Jazequel and B. Meyer. Design by contract: The lessons of
Ariane. IEEE Comput., 30(1):129–130, 1997.

[44] Y. Jin, R. Esser, C. Lakos, and J. W. Janneck. Modular analysis
of dataflow process networks. In M. Pezzè, editor, Fundamental
Approaches to Software Engineering, FASE 2003, volume 2621 of
LNCS, pages 184–199. Springer Berlin Heidelberg, 2003.

[45] E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen.
ABS: A core language for abstract behavioral specification. In B. K.
Aichernig, F. S. de Boer, and M. M. Bonsangue, editors, Formal
Methods for Components and Objects, FMCO 2010, volume 6957 of
LNCS, pages 142–164. Springer Berlin Heidelberg, 2012.

[46] P. G. Joisha and P. Banerjee. An algebraic array shape inference
system for MATLAB. ACM Trans. Program. Lang. Syst., 28(5):848–
907, 2006.

67



[47] C. B. Jones. Development methods for computer programs including
a notion of interference. PhD thesis, Oxford University, 1981.

[48] G. Kahn. The semantics of a simple language for parallel program-
ming. In J. L. Rosenfeld, editor, Information Processing, Proceed-
ings of the 6th IFIP Congress 1974, pages 471–475. North-Holland,
1974.

[49] F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and
B. Yakobowski. Frama-C: A software analysis perspective. Form.
Asp. Comp., 27(3):573–609, 2015.

[50] I. W. Kurnia and A. Poetzsch-Heffter. Verification of open concur-
rent object systems. In E. Giachino, R. Hähnle, F. S. de Boer, and
M. M. Bonsangue, editors, Formal Methods for Components and Ob-
jects, FMCO 2012, volume 7866 of LNCS, pages 83–118. Springer
Berlin Heidelberg, 2013.

[51] E. A. Lee. A denotational semantics for dataflow with firing. Techni-
cal Report Technical Memorandum UCB/ERL M97/3, Electronics
Research Laboratory, Berkeley, 1997.

[52] E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous
data flow programs for digital signal processing. IEEE Trans. Com-
put., C-36(1):24–35, 1987.

[53] E. A. Lee and D. G. Messerschmitt. Synchronous data flow. Proc.
IEEE, 75(9):1235–1245, 1987.

[54] E. A. Lee and T. M. Parks. Dataflow process networks. Proc. IEEE,
83(5):773–801, 1995.

[55] K. R. M. Leino. Dafny: An automatic program verifier for functional
correctness. In E. M. Clarke and A. Voronkov, editors, Logic for
Programming, Artificial Intelligence, and Reasoning, LPAR 2010,
volume 6355 of LNCS, pages 348–370. Springer Berlin Heidelberg,
2010.

[56] K. R. M. Leino and P. Müller. A basis for verifying multi-threaded
programs. In G. Castagna, editor, Programming Languages and Sys-
tems, ESOP 2009, volume 5502 of LNCS, pages 378–393. Springer
Berlin Heidelberg, 2009.

[57] K. R. M. Leino, P. Müller, and J. Smans. Verification of concurrent
programs with Chalice. In A. Aldini, G. Barthe, and R. Gorrieri,

68



editors, Foundations of Security Analysis and Design V, FOSAD
2007-2009, volume 5702 of LNCS, pages 195–222. Springer Berlin
Heidelberg, 2009.

[58] K. R. M. Leino, P. Müller, and J. Smans. Deadlock-free channels and
locks. In A. D. Gordon, editor, Programming Languages and Sys-
tems, ESOP 2010, volume 6012 of LNCS, pages 407–426. Springer
Berlin Heidelberg, 2010.

[59] W. Liu, Z. Gu, J. Xu, Y. Wang, and M. Yuan. An efficient tech-
nique for analysis of minimal buffer requirements of synchronous
dataflow graphs with model checking. In 7th IEEE/ACM Inter-
national Conference on Hardware/Software Codesign and System
Synthesis, CODES+ISSS 2009, pages 61–70. ACM, 2009.

[60] M. Lohstroh, Í. Í. Romeo, A. Goens, P. Derler, J. Castrillón, E. A.
Lee, and A. L. Sangiovanni-Vincentelli. Reactors: A determinis-
tic model for composable reactive systems. In R. D. Chamberlain,
M. E. Grimheden, and W. Taha, editors, Cyber Physical Systems,
Model-Based Design, CyPhy 2019, and WESE 2019, volume 11971
of LNCS, pages 59–85. Springer, 2019.

[61] R. Lublinerman, C. Szegedy, and S. Tripakis. Modular code gener-
ation from synchronous block diagrams: Modularity vs. code size.
In ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2009, pages 78–89. ACM, 2009.

[62] F. Maraninchi and L. Morel. Logical-time contracts for reactive
embedded components. In 30th Euromicro Conference, 2004, pages
48–55, Aug 2004.

[63] M. Mattavelli, I. Amer, and M. Raulet. The reconfigurable video
coding standard. IEEE Signal Process. Mag., 27(3):159–167, 2010.

[64] B. Meyer. Design by contract. Technical Report Technical Report
TR-EI-12/CO, University of California at Berkeley, 1986.

[65] B. Meyer. Applying ’design by contract’. IEEE Comput., 25(10):40–
51, 1992.

[66] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
M. Elibol, Z. Yang, W. Paul, M. I. Jordan, and I. Stoica. Ray: A
distributed framework for emerging AI applications. In A. C. Arpaci-
Dusseau and G. Voelker, editors, 13th USENIX Conference on Op-
erating Systems Design and Implementation, OSDI 2018, pages 561–
577. USENIX Association, 2018.

69



[67] P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A verification
infrastructure for permission-based reasoning. In B. Jobstmann and
K. R. M. Leino, editors, Verification, Model Checking, and Abstract
Interpretation, VMCAI 2016, volume 9583 of LNCS, pages 41–62.
Springer Berlin Heidelberg, 2016.

[68] C. A. Petri. Kommunikation mit Automaten. PhD thesis, Univer-
sität Hamburg, 1962.

[69] V. Preoteasa, I. Dragomir, and S. Tripakis. Type inference of
Simulink hierarchical block diagrams in Isabelle. In A. Bouajjani
and A. Silva, editors, Formal Techniques for Distributed Objects,
Components, and Systems, FORTE 2017, volume 10321 of LNCS,
pages 194–209. Springer International Publishing, 2017.

[70] T. C. Ruys. Optimal scheduling using branch and bound with SPIN
4.0. In Model Checking Software, SPIN 2003, volume 2648 of LNCS,
pages 1–17. Springer-Verlag, 2003.

[71] M. Sirjani, A. Movaghar, A. Shali, and F. S. de Boer. Modeling and
verification of reactive systems using Rebeca. Fundam. Informaticae,
63(4):385–410, 2004.

[72] F. Siyoum, M. Geilen, J. Eker, C. von Platen, and H. Corporaal. Au-
tomated extraction of scenario sequences from disciplined dataflow
networks. In 2013 ACM/IEEE International Conference on Formal
Methods and Models for Codesign, MEMOCODE 2013, pages 47–56,
2013.

[73] Q. Sun, W. Zhang, C. Wang, and Z. Liu. A contract-based seman-
tics and refinement for Simulink. In W. Dong and J.-P. Talpin,
editors, Dependable Software Engineering. Theories, Tools, and Ap-
plications, SETTA 2022, volume 13649 of LNCS, pages 134–148.
Springer Nature Switzerland, 2022.

[74] S. Tripakis, D. Bui, M. Geilen, B. Rodiers, and E. A. Lee. Com-
positionality in synchronous data flow: Modular code generation
from hierarchical SDF graphs. ACM Trans. Embed. Comput. Syst.,
12(3):83:1–83:26, 2013.

[75] S. Tripakis, C. Sofronis, P. Caspi, and A. Curic. Translating
discrete-time Simulink to Lustre. ACM Trans. Embed. Comput.
Syst., 4(4):779–818, 2005.

70



[76] E. Wandeler, J. W. Janneck, E. A. Lee, and L. Thiele. Counting
interface automata and their application in static analysis of actor
models. In Third IEEE International Conference on Software En-
gineering and Formal Methods, SEFM 2005, pages 106–115. IEEE,
2005.

[77] P. Wauters, M. Engels, R. Lauwereins, and J. A. Peperstraete.
Cyclo-dynamic dataflow. In 4th Euromicro Workshop on Parallel
and Distributed Processing, pages 319–326, 1996.

[78] J. Wiik. Contract-based verification of multi-rate Simulink models.
Master’s thesis, Åbo Akademi University, 2012.

[79] J. Wiik and P. Boström. Contract-based verification of MATLAB
and Simulink matrix-manipulating code. In S. Merz and J. Pang,
editors, Formal Methods and Software Engineering, ICFEM 2014,
volume 8829 of LNCS, pages 396–412. Springer International Pub-
lishing, 2014.

[80] J. Wiik and P. Boström. Contract-based verification of MATLAB
and Simulink matrix-manipulating code. Technical Report 1107,
TUCS, 2014.

[81] J. Wiik and P. Boström. Contract-based verification of MATLAB-
style matrix programs. Formal Aspects of Computing, 28(1):79–107,
2016.

[82] J. Wiik and P. Boström. Specification and automated verification of
dynamic dataflow networks. Technical Report 1170, TUCS, 2016.

[83] J. Wiik and P. Boström. Specification and automated verification of
dynamic dataflow networks. In A. Cimatti and M. Sirjani, editors,
Software Engineering and Formal Methods, SEFM 2017, volume
10469 of LNCS, pages 136–151. Springer International Publishing,
2017.

[84] J. Wiik and P. Boström. Contract-based specification and verifi-
cation of dataflow programs. In L. Aceto and A. Ingolfsdottir, edi-
tors, Proceedings of 27th Nordic Workshop on Programming Theory,
NWPT 2015. Reykjavik University, 2015.

[85] J. Wiik, J. Ersfolk, and M. Waldén. A contract-based approach to
scheduling and verification of dynamic dataflow networks. In P. Der-
ler and S. Gao, editors, 16th ACM/IEEE International Conference
on Formal Methods and Models for System Design, MEMOCODE
2018, pages 1–10. IEEE, 2018.

71



[86] M. Wipliez and M. Raulet. Classification of dataflow actors with sat-
isfiability and abstract interpretation. International Journal of Em-
bedded and Real-Time Communication Systems, 3(1):49–69, 2012.

[87] H. Xi. Dependent ML: An approach to practical programming with
dependent types. J. Funct. Program., 17(2):215–286, 2007.

[88] H. Xi and F. Pfenning. Dependent types in practical programming.
In Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 1999, pages 214–227.
ACM, 1999.

72





ISBN 978-952-12-4340-0


	Abstract
	Sammanfattning
	Acknowledgements
	List of original publications
	List of other co-authored publications
	Contents
	I Research summary
	1 Introduction
	1.1 Contribution
	1.2 Research problem
	1.3 Research methods
	1.4 Thesis structure

	2 Dataflow programming
	2.1 Dataflow languages
	2.1.1 Simulink
	2.1.2 CAL

	2.2. Models of computation
	2.2.1 Kahn process networks
	2.2.2 Dataflow process networks
	2.2.3 Dynamic dataflow
	2.2.4 Static dataflow
	2.2.5 The synchronous model of computation


	3 Language definition
	3.1 Actor language
	3.2 Host language
	3.3 Type system
	3.4 Translating Simulink models

	4 Specification
	4.1 Contracts for dataflow networks
	4.1.1 Invariants
	4.1.2 Assertion language

	4.2 Contracts for dataflow actors
	4.3 Contracts for Simulink models
	4.4 Mapping Simulink contracts to asynchronous dataflow contracts

	5 Verification
	5.1 From dataflow to sequential program
	5.2 Boogie encoding of actors and networks
	5.3 Host language encoding

	6 Scheduling
	6.1 Contract-based scheduling
	6.2 Ensuring correctness
	6.3 Improving runtime performance using contracts
	6.4 Limitations

	7 Related work
	7.1 Verification
	7.2 Type systems
	7.3 Scheduling

	8 Conclusions
	8.1 Summary
	8.2 Future work

	Bibliography



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 7.087 x 10.000 inches / 180.0 x 254.0 mm
     Shift: none
     Normalise (advanced option): 'original'
     Keep bleed margin: no
      

        
     D:20231222085241
      

        
     Shift
     32
            
       D:20231220134940
       720.0000
       Blank
       510.2362
          

     Tall
     1
     0
     No
     1785
     784
     None
     Right
     8.5039
     0.0000
            
                
         Both
         31
         AllDoc
         33
              

       CurrentAVDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus5
     Quite Imposing Plus 5.3k
     Quite Imposing Plus 5
     1
      

        
     91
     174
     173
     174
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: before current page
     Number of pages: 2
     Page size: same as current
      

        
     D:20231222090819
      

        
     Blanks
     Always
     2
     1
            
       D:20231005115041
       765.3543
       Blank
       37.4173
          

     1
     Tall
     1561
     636
     0
     1
     qi3alphabase[QI 3.0/QHI 3.0 alpha]
     1
            
       CurrentAVDoc
          

     SameAsCur
     BeforeCur
      

        
     QITE_QuiteImposingPlus5
     Quite Imposing Plus 5.3k
     Quite Imposing Plus 5
     1
      

        
     0
     2
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 2
     Page size: same as current
      

        
     D:20231222090841
      

        
     Blanks
     Always
     2
     1
            
       D:20231005115041
       765.3543
       Blank
       37.4173
          

     1
     Tall
     1561
     636
     0
     1
     qi3alphabase[QI 3.0/QHI 3.0 alpha]
     1
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus5
     Quite Imposing Plus 5.3k
     Quite Imposing Plus 5
     1
      

        
     176
     2
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 6.929 x 9.843 inches / 176.0 x 250.0 mm
     Shift: none
     Normalise (advanced option): 'original'
     Keep bleed margin: no
      

        
     D:20231222090903
      

        
     Shift
     32
            
       D:20231003151711
       708.6614
       B5
       Blank
       498.8976
          

     Tall
     1
     0
     No
     1785
     784
    
     None
     Right
     8.5039
     0.0000
            
                
         Both
         31
         AllDoc
         33
              

       CurrentAVDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus5
     Quite Imposing Plus 5.3k
     Quite Imposing Plus 5
     1
      

        
     177
     178
     177
     178
      

   1
  

 HistoryList_V1
 qi2base





